]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - net/core/dev.c
net/mlxfw: remove redundant goto on error check
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
f1083048 84#include <linux/sched/mm.h>
4a3e2f71 85#include <linux/mutex.h>
1da177e4
LT
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
0187bdfb 95#include <linux/ethtool.h>
1da177e4
LT
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
a7862b45 98#include <linux/bpf.h>
b5cdae32 99#include <linux/bpf_trace.h>
457c4cbc 100#include <net/net_namespace.h>
1da177e4 101#include <net/sock.h>
02d62e86 102#include <net/busy_poll.h>
1da177e4 103#include <linux/rtnetlink.h>
1da177e4 104#include <linux/stat.h>
1da177e4 105#include <net/dst.h>
fc4099f1 106#include <net/dst_metadata.h>
1da177e4 107#include <net/pkt_sched.h>
87d83093 108#include <net/pkt_cls.h>
1da177e4 109#include <net/checksum.h>
44540960 110#include <net/xfrm.h>
1da177e4
LT
111#include <linux/highmem.h>
112#include <linux/init.h>
1da177e4 113#include <linux/module.h>
1da177e4
LT
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
1da177e4 117#include <net/iw_handler.h>
1da177e4 118#include <asm/current.h>
5bdb9886 119#include <linux/audit.h>
db217334 120#include <linux/dmaengine.h>
f6a78bfc 121#include <linux/err.h>
c7fa9d18 122#include <linux/ctype.h>
723e98b7 123#include <linux/if_arp.h>
6de329e2 124#include <linux/if_vlan.h>
8f0f2223 125#include <linux/ip.h>
ad55dcaf 126#include <net/ip.h>
25cd9ba0 127#include <net/mpls.h>
8f0f2223
DM
128#include <linux/ipv6.h>
129#include <linux/in.h>
b6b2fed1
DM
130#include <linux/jhash.h>
131#include <linux/random.h>
9cbc1cb8 132#include <trace/events/napi.h>
cf66ba58 133#include <trace/events/net.h>
07dc22e7 134#include <trace/events/skb.h>
5acbbd42 135#include <linux/pci.h>
caeda9b9 136#include <linux/inetdevice.h>
c445477d 137#include <linux/cpu_rmap.h>
c5905afb 138#include <linux/static_key.h>
af12fa6e 139#include <linux/hashtable.h>
60877a32 140#include <linux/vmalloc.h>
529d0489 141#include <linux/if_macvlan.h>
e7fd2885 142#include <linux/errqueue.h>
3b47d303 143#include <linux/hrtimer.h>
e687ad60 144#include <linux/netfilter_ingress.h>
40e4e713 145#include <linux/crash_dump.h>
b72b5bf6 146#include <linux/sctp.h>
1da177e4 147
342709ef
PE
148#include "net-sysfs.h"
149
d565b0a1
HX
150/* Instead of increasing this, you should create a hash table. */
151#define MAX_GRO_SKBS 8
152
5d38a079
HX
153/* This should be increased if a protocol with a bigger head is added. */
154#define GRO_MAX_HEAD (MAX_HEADER + 128)
155
1da177e4 156static DEFINE_SPINLOCK(ptype_lock);
62532da9 157static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
158struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159struct list_head ptype_all __read_mostly; /* Taps */
62532da9 160static struct list_head offload_base __read_mostly;
1da177e4 161
ae78dbfa 162static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
163static int call_netdevice_notifiers_info(unsigned long val,
164 struct net_device *dev,
165 struct netdev_notifier_info *info);
90b602f8 166static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 167
1da177e4 168/*
7562f876 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
170 * semaphore.
171 *
c6d14c84 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
173 *
174 * Writers must hold the rtnl semaphore while they loop through the
7562f876 175 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
178 *
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
182 *
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
185 * semaphore held.
186 */
1da177e4 187DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
188EXPORT_SYMBOL(dev_base_lock);
189
af12fa6e
ET
190/* protects napi_hash addition/deletion and napi_gen_id */
191static DEFINE_SPINLOCK(napi_hash_lock);
192
52bd2d62 193static unsigned int napi_gen_id = NR_CPUS;
6180d9de 194static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 195
18afa4b0 196static seqcount_t devnet_rename_seq;
c91f6df2 197
4e985ada
TG
198static inline void dev_base_seq_inc(struct net *net)
199{
643aa9cb 200 while (++net->dev_base_seq == 0)
201 ;
4e985ada
TG
202}
203
881d966b 204static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 205{
8387ff25 206 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 207
08e9897d 208 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
209}
210
881d966b 211static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 212{
7c28bd0b 213 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
214}
215
e36fa2f7 216static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
217{
218#ifdef CONFIG_RPS
e36fa2f7 219 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
220#endif
221}
222
e36fa2f7 223static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
224{
225#ifdef CONFIG_RPS
e36fa2f7 226 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
227#endif
228}
229
ce286d32 230/* Device list insertion */
53759be9 231static void list_netdevice(struct net_device *dev)
ce286d32 232{
c346dca1 233 struct net *net = dev_net(dev);
ce286d32
EB
234
235 ASSERT_RTNL();
236
237 write_lock_bh(&dev_base_lock);
c6d14c84 238 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 239 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
240 hlist_add_head_rcu(&dev->index_hlist,
241 dev_index_hash(net, dev->ifindex));
ce286d32 242 write_unlock_bh(&dev_base_lock);
4e985ada
TG
243
244 dev_base_seq_inc(net);
ce286d32
EB
245}
246
fb699dfd
ED
247/* Device list removal
248 * caller must respect a RCU grace period before freeing/reusing dev
249 */
ce286d32
EB
250static void unlist_netdevice(struct net_device *dev)
251{
252 ASSERT_RTNL();
253
254 /* Unlink dev from the device chain */
255 write_lock_bh(&dev_base_lock);
c6d14c84 256 list_del_rcu(&dev->dev_list);
72c9528b 257 hlist_del_rcu(&dev->name_hlist);
fb699dfd 258 hlist_del_rcu(&dev->index_hlist);
ce286d32 259 write_unlock_bh(&dev_base_lock);
4e985ada
TG
260
261 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
262}
263
1da177e4
LT
264/*
265 * Our notifier list
266 */
267
f07d5b94 268static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
269
270/*
271 * Device drivers call our routines to queue packets here. We empty the
272 * queue in the local softnet handler.
273 */
bea3348e 274
9958da05 275DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 276EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 277
cf508b12 278#ifdef CONFIG_LOCKDEP
723e98b7 279/*
c773e847 280 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
281 * according to dev->type
282 */
643aa9cb 283static const unsigned short netdev_lock_type[] = {
284 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
285 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
286 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
287 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
288 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
289 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
290 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
291 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
292 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
293 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
294 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
295 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
296 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
297 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
298 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 299
643aa9cb 300static const char *const netdev_lock_name[] = {
301 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
302 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
303 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
304 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
305 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
306 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
307 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
308 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
309 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
310 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
311 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
312 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
313 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
314 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
315 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
316
317static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 318static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
319
320static inline unsigned short netdev_lock_pos(unsigned short dev_type)
321{
322 int i;
323
324 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
325 if (netdev_lock_type[i] == dev_type)
326 return i;
327 /* the last key is used by default */
328 return ARRAY_SIZE(netdev_lock_type) - 1;
329}
330
cf508b12
DM
331static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 unsigned short dev_type)
723e98b7
JP
333{
334 int i;
335
336 i = netdev_lock_pos(dev_type);
337 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
338 netdev_lock_name[i]);
339}
cf508b12
DM
340
341static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342{
343 int i;
344
345 i = netdev_lock_pos(dev->type);
346 lockdep_set_class_and_name(&dev->addr_list_lock,
347 &netdev_addr_lock_key[i],
348 netdev_lock_name[i]);
349}
723e98b7 350#else
cf508b12
DM
351static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
352 unsigned short dev_type)
353{
354}
355static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
356{
357}
358#endif
1da177e4
LT
359
360/*******************************************************************************
eb13da1a 361 *
362 * Protocol management and registration routines
363 *
364 *******************************************************************************/
1da177e4 365
1da177e4 366
1da177e4
LT
367/*
368 * Add a protocol ID to the list. Now that the input handler is
369 * smarter we can dispense with all the messy stuff that used to be
370 * here.
371 *
372 * BEWARE!!! Protocol handlers, mangling input packets,
373 * MUST BE last in hash buckets and checking protocol handlers
374 * MUST start from promiscuous ptype_all chain in net_bh.
375 * It is true now, do not change it.
376 * Explanation follows: if protocol handler, mangling packet, will
377 * be the first on list, it is not able to sense, that packet
378 * is cloned and should be copied-on-write, so that it will
379 * change it and subsequent readers will get broken packet.
380 * --ANK (980803)
381 */
382
c07b68e8
ED
383static inline struct list_head *ptype_head(const struct packet_type *pt)
384{
385 if (pt->type == htons(ETH_P_ALL))
7866a621 386 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 387 else
7866a621
SN
388 return pt->dev ? &pt->dev->ptype_specific :
389 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
390}
391
1da177e4
LT
392/**
393 * dev_add_pack - add packet handler
394 * @pt: packet type declaration
395 *
396 * Add a protocol handler to the networking stack. The passed &packet_type
397 * is linked into kernel lists and may not be freed until it has been
398 * removed from the kernel lists.
399 *
4ec93edb 400 * This call does not sleep therefore it can not
1da177e4
LT
401 * guarantee all CPU's that are in middle of receiving packets
402 * will see the new packet type (until the next received packet).
403 */
404
405void dev_add_pack(struct packet_type *pt)
406{
c07b68e8 407 struct list_head *head = ptype_head(pt);
1da177e4 408
c07b68e8
ED
409 spin_lock(&ptype_lock);
410 list_add_rcu(&pt->list, head);
411 spin_unlock(&ptype_lock);
1da177e4 412}
d1b19dff 413EXPORT_SYMBOL(dev_add_pack);
1da177e4 414
1da177e4
LT
415/**
416 * __dev_remove_pack - remove packet handler
417 * @pt: packet type declaration
418 *
419 * Remove a protocol handler that was previously added to the kernel
420 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
421 * from the kernel lists and can be freed or reused once this function
4ec93edb 422 * returns.
1da177e4
LT
423 *
424 * The packet type might still be in use by receivers
425 * and must not be freed until after all the CPU's have gone
426 * through a quiescent state.
427 */
428void __dev_remove_pack(struct packet_type *pt)
429{
c07b68e8 430 struct list_head *head = ptype_head(pt);
1da177e4
LT
431 struct packet_type *pt1;
432
c07b68e8 433 spin_lock(&ptype_lock);
1da177e4
LT
434
435 list_for_each_entry(pt1, head, list) {
436 if (pt == pt1) {
437 list_del_rcu(&pt->list);
438 goto out;
439 }
440 }
441
7b6cd1ce 442 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 443out:
c07b68e8 444 spin_unlock(&ptype_lock);
1da177e4 445}
d1b19dff
ED
446EXPORT_SYMBOL(__dev_remove_pack);
447
1da177e4
LT
448/**
449 * dev_remove_pack - remove packet handler
450 * @pt: packet type declaration
451 *
452 * Remove a protocol handler that was previously added to the kernel
453 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
454 * from the kernel lists and can be freed or reused once this function
455 * returns.
456 *
457 * This call sleeps to guarantee that no CPU is looking at the packet
458 * type after return.
459 */
460void dev_remove_pack(struct packet_type *pt)
461{
462 __dev_remove_pack(pt);
4ec93edb 463
1da177e4
LT
464 synchronize_net();
465}
d1b19dff 466EXPORT_SYMBOL(dev_remove_pack);
1da177e4 467
62532da9
VY
468
469/**
470 * dev_add_offload - register offload handlers
471 * @po: protocol offload declaration
472 *
473 * Add protocol offload handlers to the networking stack. The passed
474 * &proto_offload is linked into kernel lists and may not be freed until
475 * it has been removed from the kernel lists.
476 *
477 * This call does not sleep therefore it can not
478 * guarantee all CPU's that are in middle of receiving packets
479 * will see the new offload handlers (until the next received packet).
480 */
481void dev_add_offload(struct packet_offload *po)
482{
bdef7de4 483 struct packet_offload *elem;
62532da9
VY
484
485 spin_lock(&offload_lock);
bdef7de4
DM
486 list_for_each_entry(elem, &offload_base, list) {
487 if (po->priority < elem->priority)
488 break;
489 }
490 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
491 spin_unlock(&offload_lock);
492}
493EXPORT_SYMBOL(dev_add_offload);
494
495/**
496 * __dev_remove_offload - remove offload handler
497 * @po: packet offload declaration
498 *
499 * Remove a protocol offload handler that was previously added to the
500 * kernel offload handlers by dev_add_offload(). The passed &offload_type
501 * is removed from the kernel lists and can be freed or reused once this
502 * function returns.
503 *
504 * The packet type might still be in use by receivers
505 * and must not be freed until after all the CPU's have gone
506 * through a quiescent state.
507 */
1d143d9f 508static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
509{
510 struct list_head *head = &offload_base;
511 struct packet_offload *po1;
512
c53aa505 513 spin_lock(&offload_lock);
62532da9
VY
514
515 list_for_each_entry(po1, head, list) {
516 if (po == po1) {
517 list_del_rcu(&po->list);
518 goto out;
519 }
520 }
521
522 pr_warn("dev_remove_offload: %p not found\n", po);
523out:
c53aa505 524 spin_unlock(&offload_lock);
62532da9 525}
62532da9
VY
526
527/**
528 * dev_remove_offload - remove packet offload handler
529 * @po: packet offload declaration
530 *
531 * Remove a packet offload handler that was previously added to the kernel
532 * offload handlers by dev_add_offload(). The passed &offload_type is
533 * removed from the kernel lists and can be freed or reused once this
534 * function returns.
535 *
536 * This call sleeps to guarantee that no CPU is looking at the packet
537 * type after return.
538 */
539void dev_remove_offload(struct packet_offload *po)
540{
541 __dev_remove_offload(po);
542
543 synchronize_net();
544}
545EXPORT_SYMBOL(dev_remove_offload);
546
1da177e4 547/******************************************************************************
eb13da1a 548 *
549 * Device Boot-time Settings Routines
550 *
551 ******************************************************************************/
1da177e4
LT
552
553/* Boot time configuration table */
554static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
555
556/**
557 * netdev_boot_setup_add - add new setup entry
558 * @name: name of the device
559 * @map: configured settings for the device
560 *
561 * Adds new setup entry to the dev_boot_setup list. The function
562 * returns 0 on error and 1 on success. This is a generic routine to
563 * all netdevices.
564 */
565static int netdev_boot_setup_add(char *name, struct ifmap *map)
566{
567 struct netdev_boot_setup *s;
568 int i;
569
570 s = dev_boot_setup;
571 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
572 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
573 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 574 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
575 memcpy(&s[i].map, map, sizeof(s[i].map));
576 break;
577 }
578 }
579
580 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
581}
582
583/**
722c9a0c 584 * netdev_boot_setup_check - check boot time settings
585 * @dev: the netdevice
1da177e4 586 *
722c9a0c 587 * Check boot time settings for the device.
588 * The found settings are set for the device to be used
589 * later in the device probing.
590 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
591 */
592int netdev_boot_setup_check(struct net_device *dev)
593{
594 struct netdev_boot_setup *s = dev_boot_setup;
595 int i;
596
597 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
598 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 599 !strcmp(dev->name, s[i].name)) {
722c9a0c 600 dev->irq = s[i].map.irq;
601 dev->base_addr = s[i].map.base_addr;
602 dev->mem_start = s[i].map.mem_start;
603 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
604 return 1;
605 }
606 }
607 return 0;
608}
d1b19dff 609EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
610
611
612/**
722c9a0c 613 * netdev_boot_base - get address from boot time settings
614 * @prefix: prefix for network device
615 * @unit: id for network device
616 *
617 * Check boot time settings for the base address of device.
618 * The found settings are set for the device to be used
619 * later in the device probing.
620 * Returns 0 if no settings found.
1da177e4
LT
621 */
622unsigned long netdev_boot_base(const char *prefix, int unit)
623{
624 const struct netdev_boot_setup *s = dev_boot_setup;
625 char name[IFNAMSIZ];
626 int i;
627
628 sprintf(name, "%s%d", prefix, unit);
629
630 /*
631 * If device already registered then return base of 1
632 * to indicate not to probe for this interface
633 */
881d966b 634 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
635 return 1;
636
637 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
638 if (!strcmp(name, s[i].name))
639 return s[i].map.base_addr;
640 return 0;
641}
642
643/*
644 * Saves at boot time configured settings for any netdevice.
645 */
646int __init netdev_boot_setup(char *str)
647{
648 int ints[5];
649 struct ifmap map;
650
651 str = get_options(str, ARRAY_SIZE(ints), ints);
652 if (!str || !*str)
653 return 0;
654
655 /* Save settings */
656 memset(&map, 0, sizeof(map));
657 if (ints[0] > 0)
658 map.irq = ints[1];
659 if (ints[0] > 1)
660 map.base_addr = ints[2];
661 if (ints[0] > 2)
662 map.mem_start = ints[3];
663 if (ints[0] > 3)
664 map.mem_end = ints[4];
665
666 /* Add new entry to the list */
667 return netdev_boot_setup_add(str, &map);
668}
669
670__setup("netdev=", netdev_boot_setup);
671
672/*******************************************************************************
eb13da1a 673 *
674 * Device Interface Subroutines
675 *
676 *******************************************************************************/
1da177e4 677
a54acb3a
ND
678/**
679 * dev_get_iflink - get 'iflink' value of a interface
680 * @dev: targeted interface
681 *
682 * Indicates the ifindex the interface is linked to.
683 * Physical interfaces have the same 'ifindex' and 'iflink' values.
684 */
685
686int dev_get_iflink(const struct net_device *dev)
687{
688 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
689 return dev->netdev_ops->ndo_get_iflink(dev);
690
7a66bbc9 691 return dev->ifindex;
a54acb3a
ND
692}
693EXPORT_SYMBOL(dev_get_iflink);
694
fc4099f1
PS
695/**
696 * dev_fill_metadata_dst - Retrieve tunnel egress information.
697 * @dev: targeted interface
698 * @skb: The packet.
699 *
700 * For better visibility of tunnel traffic OVS needs to retrieve
701 * egress tunnel information for a packet. Following API allows
702 * user to get this info.
703 */
704int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
705{
706 struct ip_tunnel_info *info;
707
708 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
709 return -EINVAL;
710
711 info = skb_tunnel_info_unclone(skb);
712 if (!info)
713 return -ENOMEM;
714 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
715 return -EINVAL;
716
717 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
718}
719EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
720
1da177e4
LT
721/**
722 * __dev_get_by_name - find a device by its name
c4ea43c5 723 * @net: the applicable net namespace
1da177e4
LT
724 * @name: name to find
725 *
726 * Find an interface by name. Must be called under RTNL semaphore
727 * or @dev_base_lock. If the name is found a pointer to the device
728 * is returned. If the name is not found then %NULL is returned. The
729 * reference counters are not incremented so the caller must be
730 * careful with locks.
731 */
732
881d966b 733struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 734{
0bd8d536
ED
735 struct net_device *dev;
736 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 737
b67bfe0d 738 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
739 if (!strncmp(dev->name, name, IFNAMSIZ))
740 return dev;
0bd8d536 741
1da177e4
LT
742 return NULL;
743}
d1b19dff 744EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 745
72c9528b 746/**
722c9a0c 747 * dev_get_by_name_rcu - find a device by its name
748 * @net: the applicable net namespace
749 * @name: name to find
750 *
751 * Find an interface by name.
752 * If the name is found a pointer to the device is returned.
753 * If the name is not found then %NULL is returned.
754 * The reference counters are not incremented so the caller must be
755 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
756 */
757
758struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
759{
72c9528b
ED
760 struct net_device *dev;
761 struct hlist_head *head = dev_name_hash(net, name);
762
b67bfe0d 763 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
764 if (!strncmp(dev->name, name, IFNAMSIZ))
765 return dev;
766
767 return NULL;
768}
769EXPORT_SYMBOL(dev_get_by_name_rcu);
770
1da177e4
LT
771/**
772 * dev_get_by_name - find a device by its name
c4ea43c5 773 * @net: the applicable net namespace
1da177e4
LT
774 * @name: name to find
775 *
776 * Find an interface by name. This can be called from any
777 * context and does its own locking. The returned handle has
778 * the usage count incremented and the caller must use dev_put() to
779 * release it when it is no longer needed. %NULL is returned if no
780 * matching device is found.
781 */
782
881d966b 783struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
784{
785 struct net_device *dev;
786
72c9528b
ED
787 rcu_read_lock();
788 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
789 if (dev)
790 dev_hold(dev);
72c9528b 791 rcu_read_unlock();
1da177e4
LT
792 return dev;
793}
d1b19dff 794EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
795
796/**
797 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 798 * @net: the applicable net namespace
1da177e4
LT
799 * @ifindex: index of device
800 *
801 * Search for an interface by index. Returns %NULL if the device
802 * is not found or a pointer to the device. The device has not
803 * had its reference counter increased so the caller must be careful
804 * about locking. The caller must hold either the RTNL semaphore
805 * or @dev_base_lock.
806 */
807
881d966b 808struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 809{
0bd8d536
ED
810 struct net_device *dev;
811 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 812
b67bfe0d 813 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
814 if (dev->ifindex == ifindex)
815 return dev;
0bd8d536 816
1da177e4
LT
817 return NULL;
818}
d1b19dff 819EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 820
fb699dfd
ED
821/**
822 * dev_get_by_index_rcu - find a device by its ifindex
823 * @net: the applicable net namespace
824 * @ifindex: index of device
825 *
826 * Search for an interface by index. Returns %NULL if the device
827 * is not found or a pointer to the device. The device has not
828 * had its reference counter increased so the caller must be careful
829 * about locking. The caller must hold RCU lock.
830 */
831
832struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
833{
fb699dfd
ED
834 struct net_device *dev;
835 struct hlist_head *head = dev_index_hash(net, ifindex);
836
b67bfe0d 837 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
838 if (dev->ifindex == ifindex)
839 return dev;
840
841 return NULL;
842}
843EXPORT_SYMBOL(dev_get_by_index_rcu);
844
1da177e4
LT
845
846/**
847 * dev_get_by_index - find a device by its ifindex
c4ea43c5 848 * @net: the applicable net namespace
1da177e4
LT
849 * @ifindex: index of device
850 *
851 * Search for an interface by index. Returns NULL if the device
852 * is not found or a pointer to the device. The device returned has
853 * had a reference added and the pointer is safe until the user calls
854 * dev_put to indicate they have finished with it.
855 */
856
881d966b 857struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
858{
859 struct net_device *dev;
860
fb699dfd
ED
861 rcu_read_lock();
862 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
863 if (dev)
864 dev_hold(dev);
fb699dfd 865 rcu_read_unlock();
1da177e4
LT
866 return dev;
867}
d1b19dff 868EXPORT_SYMBOL(dev_get_by_index);
1da177e4 869
90b602f8
ML
870/**
871 * dev_get_by_napi_id - find a device by napi_id
872 * @napi_id: ID of the NAPI struct
873 *
874 * Search for an interface by NAPI ID. Returns %NULL if the device
875 * is not found or a pointer to the device. The device has not had
876 * its reference counter increased so the caller must be careful
877 * about locking. The caller must hold RCU lock.
878 */
879
880struct net_device *dev_get_by_napi_id(unsigned int napi_id)
881{
882 struct napi_struct *napi;
883
884 WARN_ON_ONCE(!rcu_read_lock_held());
885
886 if (napi_id < MIN_NAPI_ID)
887 return NULL;
888
889 napi = napi_by_id(napi_id);
890
891 return napi ? napi->dev : NULL;
892}
893EXPORT_SYMBOL(dev_get_by_napi_id);
894
5dbe7c17
NS
895/**
896 * netdev_get_name - get a netdevice name, knowing its ifindex.
897 * @net: network namespace
898 * @name: a pointer to the buffer where the name will be stored.
899 * @ifindex: the ifindex of the interface to get the name from.
900 *
901 * The use of raw_seqcount_begin() and cond_resched() before
902 * retrying is required as we want to give the writers a chance
903 * to complete when CONFIG_PREEMPT is not set.
904 */
905int netdev_get_name(struct net *net, char *name, int ifindex)
906{
907 struct net_device *dev;
908 unsigned int seq;
909
910retry:
911 seq = raw_seqcount_begin(&devnet_rename_seq);
912 rcu_read_lock();
913 dev = dev_get_by_index_rcu(net, ifindex);
914 if (!dev) {
915 rcu_read_unlock();
916 return -ENODEV;
917 }
918
919 strcpy(name, dev->name);
920 rcu_read_unlock();
921 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
922 cond_resched();
923 goto retry;
924 }
925
926 return 0;
927}
928
1da177e4 929/**
941666c2 930 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 931 * @net: the applicable net namespace
1da177e4
LT
932 * @type: media type of device
933 * @ha: hardware address
934 *
935 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
936 * is not found or a pointer to the device.
937 * The caller must hold RCU or RTNL.
941666c2 938 * The returned device has not had its ref count increased
1da177e4
LT
939 * and the caller must therefore be careful about locking
940 *
1da177e4
LT
941 */
942
941666c2
ED
943struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
944 const char *ha)
1da177e4
LT
945{
946 struct net_device *dev;
947
941666c2 948 for_each_netdev_rcu(net, dev)
1da177e4
LT
949 if (dev->type == type &&
950 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
951 return dev;
952
953 return NULL;
1da177e4 954}
941666c2 955EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 956
881d966b 957struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
958{
959 struct net_device *dev;
960
4e9cac2b 961 ASSERT_RTNL();
881d966b 962 for_each_netdev(net, dev)
4e9cac2b 963 if (dev->type == type)
7562f876
PE
964 return dev;
965
966 return NULL;
4e9cac2b 967}
4e9cac2b
PM
968EXPORT_SYMBOL(__dev_getfirstbyhwtype);
969
881d966b 970struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 971{
99fe3c39 972 struct net_device *dev, *ret = NULL;
4e9cac2b 973
99fe3c39
ED
974 rcu_read_lock();
975 for_each_netdev_rcu(net, dev)
976 if (dev->type == type) {
977 dev_hold(dev);
978 ret = dev;
979 break;
980 }
981 rcu_read_unlock();
982 return ret;
1da177e4 983}
1da177e4
LT
984EXPORT_SYMBOL(dev_getfirstbyhwtype);
985
986/**
6c555490 987 * __dev_get_by_flags - find any device with given flags
c4ea43c5 988 * @net: the applicable net namespace
1da177e4
LT
989 * @if_flags: IFF_* values
990 * @mask: bitmask of bits in if_flags to check
991 *
992 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 993 * is not found or a pointer to the device. Must be called inside
6c555490 994 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
995 */
996
6c555490
WC
997struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
998 unsigned short mask)
1da177e4 999{
7562f876 1000 struct net_device *dev, *ret;
1da177e4 1001
6c555490
WC
1002 ASSERT_RTNL();
1003
7562f876 1004 ret = NULL;
6c555490 1005 for_each_netdev(net, dev) {
1da177e4 1006 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1007 ret = dev;
1da177e4
LT
1008 break;
1009 }
1010 }
7562f876 1011 return ret;
1da177e4 1012}
6c555490 1013EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1014
1015/**
1016 * dev_valid_name - check if name is okay for network device
1017 * @name: name string
1018 *
1019 * Network device names need to be valid file names to
c7fa9d18
DM
1020 * to allow sysfs to work. We also disallow any kind of
1021 * whitespace.
1da177e4 1022 */
95f050bf 1023bool dev_valid_name(const char *name)
1da177e4 1024{
c7fa9d18 1025 if (*name == '\0')
95f050bf 1026 return false;
b6fe17d6 1027 if (strlen(name) >= IFNAMSIZ)
95f050bf 1028 return false;
c7fa9d18 1029 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1030 return false;
c7fa9d18
DM
1031
1032 while (*name) {
a4176a93 1033 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1034 return false;
c7fa9d18
DM
1035 name++;
1036 }
95f050bf 1037 return true;
1da177e4 1038}
d1b19dff 1039EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1040
1041/**
b267b179
EB
1042 * __dev_alloc_name - allocate a name for a device
1043 * @net: network namespace to allocate the device name in
1da177e4 1044 * @name: name format string
b267b179 1045 * @buf: scratch buffer and result name string
1da177e4
LT
1046 *
1047 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1048 * id. It scans list of devices to build up a free map, then chooses
1049 * the first empty slot. The caller must hold the dev_base or rtnl lock
1050 * while allocating the name and adding the device in order to avoid
1051 * duplicates.
1052 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1053 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1054 */
1055
b267b179 1056static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1057{
1058 int i = 0;
1da177e4
LT
1059 const char *p;
1060 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1061 unsigned long *inuse;
1da177e4
LT
1062 struct net_device *d;
1063
1064 p = strnchr(name, IFNAMSIZ-1, '%');
1065 if (p) {
1066 /*
1067 * Verify the string as this thing may have come from
1068 * the user. There must be either one "%d" and no other "%"
1069 * characters.
1070 */
1071 if (p[1] != 'd' || strchr(p + 2, '%'))
1072 return -EINVAL;
1073
1074 /* Use one page as a bit array of possible slots */
cfcabdcc 1075 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1076 if (!inuse)
1077 return -ENOMEM;
1078
881d966b 1079 for_each_netdev(net, d) {
1da177e4
LT
1080 if (!sscanf(d->name, name, &i))
1081 continue;
1082 if (i < 0 || i >= max_netdevices)
1083 continue;
1084
1085 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1086 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1087 if (!strncmp(buf, d->name, IFNAMSIZ))
1088 set_bit(i, inuse);
1089 }
1090
1091 i = find_first_zero_bit(inuse, max_netdevices);
1092 free_page((unsigned long) inuse);
1093 }
1094
d9031024
OP
1095 if (buf != name)
1096 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1097 if (!__dev_get_by_name(net, buf))
1da177e4 1098 return i;
1da177e4
LT
1099
1100 /* It is possible to run out of possible slots
1101 * when the name is long and there isn't enough space left
1102 * for the digits, or if all bits are used.
1103 */
1104 return -ENFILE;
1105}
1106
b267b179
EB
1107/**
1108 * dev_alloc_name - allocate a name for a device
1109 * @dev: device
1110 * @name: name format string
1111 *
1112 * Passed a format string - eg "lt%d" it will try and find a suitable
1113 * id. It scans list of devices to build up a free map, then chooses
1114 * the first empty slot. The caller must hold the dev_base or rtnl lock
1115 * while allocating the name and adding the device in order to avoid
1116 * duplicates.
1117 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118 * Returns the number of the unit assigned or a negative errno code.
1119 */
1120
1121int dev_alloc_name(struct net_device *dev, const char *name)
1122{
1123 char buf[IFNAMSIZ];
1124 struct net *net;
1125 int ret;
1126
c346dca1
YH
1127 BUG_ON(!dev_net(dev));
1128 net = dev_net(dev);
b267b179
EB
1129 ret = __dev_alloc_name(net, name, buf);
1130 if (ret >= 0)
1131 strlcpy(dev->name, buf, IFNAMSIZ);
1132 return ret;
1133}
d1b19dff 1134EXPORT_SYMBOL(dev_alloc_name);
b267b179 1135
828de4f6
G
1136static int dev_alloc_name_ns(struct net *net,
1137 struct net_device *dev,
1138 const char *name)
d9031024 1139{
828de4f6
G
1140 char buf[IFNAMSIZ];
1141 int ret;
8ce6cebc 1142
828de4f6
G
1143 ret = __dev_alloc_name(net, name, buf);
1144 if (ret >= 0)
1145 strlcpy(dev->name, buf, IFNAMSIZ);
1146 return ret;
1147}
1148
1149static int dev_get_valid_name(struct net *net,
1150 struct net_device *dev,
1151 const char *name)
1152{
1153 BUG_ON(!net);
8ce6cebc 1154
d9031024
OP
1155 if (!dev_valid_name(name))
1156 return -EINVAL;
1157
1c5cae81 1158 if (strchr(name, '%'))
828de4f6 1159 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1160 else if (__dev_get_by_name(net, name))
1161 return -EEXIST;
8ce6cebc
DL
1162 else if (dev->name != name)
1163 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1164
1165 return 0;
1166}
1da177e4
LT
1167
1168/**
1169 * dev_change_name - change name of a device
1170 * @dev: device
1171 * @newname: name (or format string) must be at least IFNAMSIZ
1172 *
1173 * Change name of a device, can pass format strings "eth%d".
1174 * for wildcarding.
1175 */
cf04a4c7 1176int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1177{
238fa362 1178 unsigned char old_assign_type;
fcc5a03a 1179 char oldname[IFNAMSIZ];
1da177e4 1180 int err = 0;
fcc5a03a 1181 int ret;
881d966b 1182 struct net *net;
1da177e4
LT
1183
1184 ASSERT_RTNL();
c346dca1 1185 BUG_ON(!dev_net(dev));
1da177e4 1186
c346dca1 1187 net = dev_net(dev);
1da177e4
LT
1188 if (dev->flags & IFF_UP)
1189 return -EBUSY;
1190
30e6c9fa 1191 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1192
1193 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1194 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1195 return 0;
c91f6df2 1196 }
c8d90dca 1197
fcc5a03a
HX
1198 memcpy(oldname, dev->name, IFNAMSIZ);
1199
828de4f6 1200 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1201 if (err < 0) {
30e6c9fa 1202 write_seqcount_end(&devnet_rename_seq);
d9031024 1203 return err;
c91f6df2 1204 }
1da177e4 1205
6fe82a39
VF
1206 if (oldname[0] && !strchr(oldname, '%'))
1207 netdev_info(dev, "renamed from %s\n", oldname);
1208
238fa362
TG
1209 old_assign_type = dev->name_assign_type;
1210 dev->name_assign_type = NET_NAME_RENAMED;
1211
fcc5a03a 1212rollback:
a1b3f594
EB
1213 ret = device_rename(&dev->dev, dev->name);
1214 if (ret) {
1215 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1216 dev->name_assign_type = old_assign_type;
30e6c9fa 1217 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1218 return ret;
dcc99773 1219 }
7f988eab 1220
30e6c9fa 1221 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1222
5bb025fa
VF
1223 netdev_adjacent_rename_links(dev, oldname);
1224
7f988eab 1225 write_lock_bh(&dev_base_lock);
372b2312 1226 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1227 write_unlock_bh(&dev_base_lock);
1228
1229 synchronize_rcu();
1230
1231 write_lock_bh(&dev_base_lock);
1232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1233 write_unlock_bh(&dev_base_lock);
1234
056925ab 1235 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1236 ret = notifier_to_errno(ret);
1237
1238 if (ret) {
91e9c07b
ED
1239 /* err >= 0 after dev_alloc_name() or stores the first errno */
1240 if (err >= 0) {
fcc5a03a 1241 err = ret;
30e6c9fa 1242 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1243 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1244 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1245 dev->name_assign_type = old_assign_type;
1246 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1247 goto rollback;
91e9c07b 1248 } else {
7b6cd1ce 1249 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1250 dev->name, ret);
fcc5a03a
HX
1251 }
1252 }
1da177e4
LT
1253
1254 return err;
1255}
1256
0b815a1a
SH
1257/**
1258 * dev_set_alias - change ifalias of a device
1259 * @dev: device
1260 * @alias: name up to IFALIASZ
f0db275a 1261 * @len: limit of bytes to copy from info
0b815a1a
SH
1262 *
1263 * Set ifalias for a device,
1264 */
1265int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1266{
7364e445
AK
1267 char *new_ifalias;
1268
0b815a1a
SH
1269 ASSERT_RTNL();
1270
1271 if (len >= IFALIASZ)
1272 return -EINVAL;
1273
96ca4a2c 1274 if (!len) {
388dfc2d
SK
1275 kfree(dev->ifalias);
1276 dev->ifalias = NULL;
96ca4a2c
OH
1277 return 0;
1278 }
1279
7364e445
AK
1280 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1281 if (!new_ifalias)
0b815a1a 1282 return -ENOMEM;
7364e445 1283 dev->ifalias = new_ifalias;
0b815a1a
SH
1284
1285 strlcpy(dev->ifalias, alias, len+1);
1286 return len;
1287}
1288
1289
d8a33ac4 1290/**
3041a069 1291 * netdev_features_change - device changes features
d8a33ac4
SH
1292 * @dev: device to cause notification
1293 *
1294 * Called to indicate a device has changed features.
1295 */
1296void netdev_features_change(struct net_device *dev)
1297{
056925ab 1298 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1299}
1300EXPORT_SYMBOL(netdev_features_change);
1301
1da177e4
LT
1302/**
1303 * netdev_state_change - device changes state
1304 * @dev: device to cause notification
1305 *
1306 * Called to indicate a device has changed state. This function calls
1307 * the notifier chains for netdev_chain and sends a NEWLINK message
1308 * to the routing socket.
1309 */
1310void netdev_state_change(struct net_device *dev)
1311{
1312 if (dev->flags & IFF_UP) {
54951194
LP
1313 struct netdev_notifier_change_info change_info;
1314
1315 change_info.flags_changed = 0;
1316 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1317 &change_info.info);
7f294054 1318 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1319 }
1320}
d1b19dff 1321EXPORT_SYMBOL(netdev_state_change);
1da177e4 1322
ee89bab1 1323/**
722c9a0c 1324 * netdev_notify_peers - notify network peers about existence of @dev
1325 * @dev: network device
ee89bab1
AW
1326 *
1327 * Generate traffic such that interested network peers are aware of
1328 * @dev, such as by generating a gratuitous ARP. This may be used when
1329 * a device wants to inform the rest of the network about some sort of
1330 * reconfiguration such as a failover event or virtual machine
1331 * migration.
1332 */
1333void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1334{
ee89bab1
AW
1335 rtnl_lock();
1336 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1337 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1338 rtnl_unlock();
c1da4ac7 1339}
ee89bab1 1340EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1341
bd380811 1342static int __dev_open(struct net_device *dev)
1da177e4 1343{
d314774c 1344 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1345 int ret;
1da177e4 1346
e46b66bc
BH
1347 ASSERT_RTNL();
1348
1da177e4
LT
1349 if (!netif_device_present(dev))
1350 return -ENODEV;
1351
ca99ca14
NH
1352 /* Block netpoll from trying to do any rx path servicing.
1353 * If we don't do this there is a chance ndo_poll_controller
1354 * or ndo_poll may be running while we open the device
1355 */
66b5552f 1356 netpoll_poll_disable(dev);
ca99ca14 1357
3b8bcfd5
JB
1358 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1359 ret = notifier_to_errno(ret);
1360 if (ret)
1361 return ret;
1362
1da177e4 1363 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1364
d314774c
SH
1365 if (ops->ndo_validate_addr)
1366 ret = ops->ndo_validate_addr(dev);
bada339b 1367
d314774c
SH
1368 if (!ret && ops->ndo_open)
1369 ret = ops->ndo_open(dev);
1da177e4 1370
66b5552f 1371 netpoll_poll_enable(dev);
ca99ca14 1372
bada339b
JG
1373 if (ret)
1374 clear_bit(__LINK_STATE_START, &dev->state);
1375 else {
1da177e4 1376 dev->flags |= IFF_UP;
4417da66 1377 dev_set_rx_mode(dev);
1da177e4 1378 dev_activate(dev);
7bf23575 1379 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1380 }
bada339b 1381
1da177e4
LT
1382 return ret;
1383}
1384
1385/**
bd380811
PM
1386 * dev_open - prepare an interface for use.
1387 * @dev: device to open
1da177e4 1388 *
bd380811
PM
1389 * Takes a device from down to up state. The device's private open
1390 * function is invoked and then the multicast lists are loaded. Finally
1391 * the device is moved into the up state and a %NETDEV_UP message is
1392 * sent to the netdev notifier chain.
1393 *
1394 * Calling this function on an active interface is a nop. On a failure
1395 * a negative errno code is returned.
1da177e4 1396 */
bd380811
PM
1397int dev_open(struct net_device *dev)
1398{
1399 int ret;
1400
bd380811
PM
1401 if (dev->flags & IFF_UP)
1402 return 0;
1403
bd380811
PM
1404 ret = __dev_open(dev);
1405 if (ret < 0)
1406 return ret;
1407
7f294054 1408 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1409 call_netdevice_notifiers(NETDEV_UP, dev);
1410
1411 return ret;
1412}
1413EXPORT_SYMBOL(dev_open);
1414
44345724 1415static int __dev_close_many(struct list_head *head)
1da177e4 1416{
44345724 1417 struct net_device *dev;
e46b66bc 1418
bd380811 1419 ASSERT_RTNL();
9d5010db
DM
1420 might_sleep();
1421
5cde2829 1422 list_for_each_entry(dev, head, close_list) {
3f4df206 1423 /* Temporarily disable netpoll until the interface is down */
66b5552f 1424 netpoll_poll_disable(dev);
3f4df206 1425
44345724 1426 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1427
44345724 1428 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1429
44345724
OP
1430 /* Synchronize to scheduled poll. We cannot touch poll list, it
1431 * can be even on different cpu. So just clear netif_running().
1432 *
1433 * dev->stop() will invoke napi_disable() on all of it's
1434 * napi_struct instances on this device.
1435 */
4e857c58 1436 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1437 }
1da177e4 1438
44345724 1439 dev_deactivate_many(head);
d8b2a4d2 1440
5cde2829 1441 list_for_each_entry(dev, head, close_list) {
44345724 1442 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1443
44345724
OP
1444 /*
1445 * Call the device specific close. This cannot fail.
1446 * Only if device is UP
1447 *
1448 * We allow it to be called even after a DETACH hot-plug
1449 * event.
1450 */
1451 if (ops->ndo_stop)
1452 ops->ndo_stop(dev);
1453
44345724 1454 dev->flags &= ~IFF_UP;
66b5552f 1455 netpoll_poll_enable(dev);
44345724
OP
1456 }
1457
1458 return 0;
1459}
1460
1461static int __dev_close(struct net_device *dev)
1462{
f87e6f47 1463 int retval;
44345724
OP
1464 LIST_HEAD(single);
1465
5cde2829 1466 list_add(&dev->close_list, &single);
f87e6f47
LT
1467 retval = __dev_close_many(&single);
1468 list_del(&single);
ca99ca14 1469
f87e6f47 1470 return retval;
44345724
OP
1471}
1472
99c4a26a 1473int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1474{
1475 struct net_device *dev, *tmp;
1da177e4 1476
5cde2829
EB
1477 /* Remove the devices that don't need to be closed */
1478 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1479 if (!(dev->flags & IFF_UP))
5cde2829 1480 list_del_init(&dev->close_list);
44345724
OP
1481
1482 __dev_close_many(head);
1da177e4 1483
5cde2829 1484 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1485 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1486 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1487 if (unlink)
1488 list_del_init(&dev->close_list);
44345724 1489 }
bd380811
PM
1490
1491 return 0;
1492}
99c4a26a 1493EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1494
1495/**
1496 * dev_close - shutdown an interface.
1497 * @dev: device to shutdown
1498 *
1499 * This function moves an active device into down state. A
1500 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1501 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1502 * chain.
1503 */
1504int dev_close(struct net_device *dev)
1505{
e14a5993
ED
1506 if (dev->flags & IFF_UP) {
1507 LIST_HEAD(single);
1da177e4 1508
5cde2829 1509 list_add(&dev->close_list, &single);
99c4a26a 1510 dev_close_many(&single, true);
e14a5993
ED
1511 list_del(&single);
1512 }
da6e378b 1513 return 0;
1da177e4 1514}
d1b19dff 1515EXPORT_SYMBOL(dev_close);
1da177e4
LT
1516
1517
0187bdfb
BH
1518/**
1519 * dev_disable_lro - disable Large Receive Offload on a device
1520 * @dev: device
1521 *
1522 * Disable Large Receive Offload (LRO) on a net device. Must be
1523 * called under RTNL. This is needed if received packets may be
1524 * forwarded to another interface.
1525 */
1526void dev_disable_lro(struct net_device *dev)
1527{
fbe168ba
MK
1528 struct net_device *lower_dev;
1529 struct list_head *iter;
529d0489 1530
bc5787c6
MM
1531 dev->wanted_features &= ~NETIF_F_LRO;
1532 netdev_update_features(dev);
27660515 1533
22d5969f
MM
1534 if (unlikely(dev->features & NETIF_F_LRO))
1535 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1536
1537 netdev_for_each_lower_dev(dev, lower_dev, iter)
1538 dev_disable_lro(lower_dev);
0187bdfb
BH
1539}
1540EXPORT_SYMBOL(dev_disable_lro);
1541
351638e7
JP
1542static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1543 struct net_device *dev)
1544{
1545 struct netdev_notifier_info info;
1546
1547 netdev_notifier_info_init(&info, dev);
1548 return nb->notifier_call(nb, val, &info);
1549}
0187bdfb 1550
881d966b
EB
1551static int dev_boot_phase = 1;
1552
1da177e4 1553/**
722c9a0c 1554 * register_netdevice_notifier - register a network notifier block
1555 * @nb: notifier
1da177e4 1556 *
722c9a0c 1557 * Register a notifier to be called when network device events occur.
1558 * The notifier passed is linked into the kernel structures and must
1559 * not be reused until it has been unregistered. A negative errno code
1560 * is returned on a failure.
1da177e4 1561 *
722c9a0c 1562 * When registered all registration and up events are replayed
1563 * to the new notifier to allow device to have a race free
1564 * view of the network device list.
1da177e4
LT
1565 */
1566
1567int register_netdevice_notifier(struct notifier_block *nb)
1568{
1569 struct net_device *dev;
fcc5a03a 1570 struct net_device *last;
881d966b 1571 struct net *net;
1da177e4
LT
1572 int err;
1573
1574 rtnl_lock();
f07d5b94 1575 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1576 if (err)
1577 goto unlock;
881d966b
EB
1578 if (dev_boot_phase)
1579 goto unlock;
1580 for_each_net(net) {
1581 for_each_netdev(net, dev) {
351638e7 1582 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1583 err = notifier_to_errno(err);
1584 if (err)
1585 goto rollback;
1586
1587 if (!(dev->flags & IFF_UP))
1588 continue;
1da177e4 1589
351638e7 1590 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1591 }
1da177e4 1592 }
fcc5a03a
HX
1593
1594unlock:
1da177e4
LT
1595 rtnl_unlock();
1596 return err;
fcc5a03a
HX
1597
1598rollback:
1599 last = dev;
881d966b
EB
1600 for_each_net(net) {
1601 for_each_netdev(net, dev) {
1602 if (dev == last)
8f891489 1603 goto outroll;
fcc5a03a 1604
881d966b 1605 if (dev->flags & IFF_UP) {
351638e7
JP
1606 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1607 dev);
1608 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1609 }
351638e7 1610 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1611 }
fcc5a03a 1612 }
c67625a1 1613
8f891489 1614outroll:
c67625a1 1615 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1616 goto unlock;
1da177e4 1617}
d1b19dff 1618EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1619
1620/**
722c9a0c 1621 * unregister_netdevice_notifier - unregister a network notifier block
1622 * @nb: notifier
1da177e4 1623 *
722c9a0c 1624 * Unregister a notifier previously registered by
1625 * register_netdevice_notifier(). The notifier is unlinked into the
1626 * kernel structures and may then be reused. A negative errno code
1627 * is returned on a failure.
7d3d43da 1628 *
722c9a0c 1629 * After unregistering unregister and down device events are synthesized
1630 * for all devices on the device list to the removed notifier to remove
1631 * the need for special case cleanup code.
1da177e4
LT
1632 */
1633
1634int unregister_netdevice_notifier(struct notifier_block *nb)
1635{
7d3d43da
EB
1636 struct net_device *dev;
1637 struct net *net;
9f514950
HX
1638 int err;
1639
1640 rtnl_lock();
f07d5b94 1641 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1642 if (err)
1643 goto unlock;
1644
1645 for_each_net(net) {
1646 for_each_netdev(net, dev) {
1647 if (dev->flags & IFF_UP) {
351638e7
JP
1648 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1649 dev);
1650 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1651 }
351638e7 1652 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1653 }
1654 }
1655unlock:
9f514950
HX
1656 rtnl_unlock();
1657 return err;
1da177e4 1658}
d1b19dff 1659EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1660
351638e7
JP
1661/**
1662 * call_netdevice_notifiers_info - call all network notifier blocks
1663 * @val: value passed unmodified to notifier function
1664 * @dev: net_device pointer passed unmodified to notifier function
1665 * @info: notifier information data
1666 *
1667 * Call all network notifier blocks. Parameters and return value
1668 * are as for raw_notifier_call_chain().
1669 */
1670
1d143d9f 1671static int call_netdevice_notifiers_info(unsigned long val,
1672 struct net_device *dev,
1673 struct netdev_notifier_info *info)
351638e7
JP
1674{
1675 ASSERT_RTNL();
1676 netdev_notifier_info_init(info, dev);
1677 return raw_notifier_call_chain(&netdev_chain, val, info);
1678}
351638e7 1679
1da177e4
LT
1680/**
1681 * call_netdevice_notifiers - call all network notifier blocks
1682 * @val: value passed unmodified to notifier function
c4ea43c5 1683 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1684 *
1685 * Call all network notifier blocks. Parameters and return value
f07d5b94 1686 * are as for raw_notifier_call_chain().
1da177e4
LT
1687 */
1688
ad7379d4 1689int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1690{
351638e7
JP
1691 struct netdev_notifier_info info;
1692
1693 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1694}
edf947f1 1695EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1696
1cf51900 1697#ifdef CONFIG_NET_INGRESS
4577139b
DB
1698static struct static_key ingress_needed __read_mostly;
1699
1700void net_inc_ingress_queue(void)
1701{
1702 static_key_slow_inc(&ingress_needed);
1703}
1704EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1705
1706void net_dec_ingress_queue(void)
1707{
1708 static_key_slow_dec(&ingress_needed);
1709}
1710EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1711#endif
1712
1f211a1b
DB
1713#ifdef CONFIG_NET_EGRESS
1714static struct static_key egress_needed __read_mostly;
1715
1716void net_inc_egress_queue(void)
1717{
1718 static_key_slow_inc(&egress_needed);
1719}
1720EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1721
1722void net_dec_egress_queue(void)
1723{
1724 static_key_slow_dec(&egress_needed);
1725}
1726EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1727#endif
1728
c5905afb 1729static struct static_key netstamp_needed __read_mostly;
b90e5794 1730#ifdef HAVE_JUMP_LABEL
b90e5794 1731static atomic_t netstamp_needed_deferred;
13baa00a 1732static atomic_t netstamp_wanted;
5fa8bbda 1733static void netstamp_clear(struct work_struct *work)
1da177e4 1734{
b90e5794 1735 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1736 int wanted;
b90e5794 1737
13baa00a
ED
1738 wanted = atomic_add_return(deferred, &netstamp_wanted);
1739 if (wanted > 0)
1740 static_key_enable(&netstamp_needed);
1741 else
1742 static_key_disable(&netstamp_needed);
5fa8bbda
ED
1743}
1744static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1745#endif
5fa8bbda
ED
1746
1747void net_enable_timestamp(void)
1748{
13baa00a
ED
1749#ifdef HAVE_JUMP_LABEL
1750 int wanted;
1751
1752 while (1) {
1753 wanted = atomic_read(&netstamp_wanted);
1754 if (wanted <= 0)
1755 break;
1756 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1757 return;
1758 }
1759 atomic_inc(&netstamp_needed_deferred);
1760 schedule_work(&netstamp_work);
1761#else
c5905afb 1762 static_key_slow_inc(&netstamp_needed);
13baa00a 1763#endif
1da177e4 1764}
d1b19dff 1765EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1766
1767void net_disable_timestamp(void)
1768{
b90e5794 1769#ifdef HAVE_JUMP_LABEL
13baa00a
ED
1770 int wanted;
1771
1772 while (1) {
1773 wanted = atomic_read(&netstamp_wanted);
1774 if (wanted <= 1)
1775 break;
1776 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1777 return;
1778 }
1779 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1780 schedule_work(&netstamp_work);
1781#else
c5905afb 1782 static_key_slow_dec(&netstamp_needed);
5fa8bbda 1783#endif
1da177e4 1784}
d1b19dff 1785EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1786
3b098e2d 1787static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1788{
2456e855 1789 skb->tstamp = 0;
c5905afb 1790 if (static_key_false(&netstamp_needed))
a61bbcf2 1791 __net_timestamp(skb);
1da177e4
LT
1792}
1793
588f0330 1794#define net_timestamp_check(COND, SKB) \
c5905afb 1795 if (static_key_false(&netstamp_needed)) { \
2456e855 1796 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1797 __net_timestamp(SKB); \
1798 } \
3b098e2d 1799
f4b05d27 1800bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1801{
1802 unsigned int len;
1803
1804 if (!(dev->flags & IFF_UP))
1805 return false;
1806
1807 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1808 if (skb->len <= len)
1809 return true;
1810
1811 /* if TSO is enabled, we don't care about the length as the packet
1812 * could be forwarded without being segmented before
1813 */
1814 if (skb_is_gso(skb))
1815 return true;
1816
1817 return false;
1818}
1ee481fb 1819EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1820
a0265d28
HX
1821int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1822{
4e3264d2 1823 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1824
4e3264d2
MKL
1825 if (likely(!ret)) {
1826 skb->protocol = eth_type_trans(skb, dev);
1827 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1828 }
a0265d28 1829
4e3264d2 1830 return ret;
a0265d28
HX
1831}
1832EXPORT_SYMBOL_GPL(__dev_forward_skb);
1833
44540960
AB
1834/**
1835 * dev_forward_skb - loopback an skb to another netif
1836 *
1837 * @dev: destination network device
1838 * @skb: buffer to forward
1839 *
1840 * return values:
1841 * NET_RX_SUCCESS (no congestion)
6ec82562 1842 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1843 *
1844 * dev_forward_skb can be used for injecting an skb from the
1845 * start_xmit function of one device into the receive queue
1846 * of another device.
1847 *
1848 * The receiving device may be in another namespace, so
1849 * we have to clear all information in the skb that could
1850 * impact namespace isolation.
1851 */
1852int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1853{
a0265d28 1854 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1855}
1856EXPORT_SYMBOL_GPL(dev_forward_skb);
1857
71d9dec2
CG
1858static inline int deliver_skb(struct sk_buff *skb,
1859 struct packet_type *pt_prev,
1860 struct net_device *orig_dev)
1861{
1080e512
MT
1862 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1863 return -ENOMEM;
71d9dec2
CG
1864 atomic_inc(&skb->users);
1865 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1866}
1867
7866a621
SN
1868static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1869 struct packet_type **pt,
fbcb2170
JP
1870 struct net_device *orig_dev,
1871 __be16 type,
7866a621
SN
1872 struct list_head *ptype_list)
1873{
1874 struct packet_type *ptype, *pt_prev = *pt;
1875
1876 list_for_each_entry_rcu(ptype, ptype_list, list) {
1877 if (ptype->type != type)
1878 continue;
1879 if (pt_prev)
fbcb2170 1880 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1881 pt_prev = ptype;
1882 }
1883 *pt = pt_prev;
1884}
1885
c0de08d0
EL
1886static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1887{
a3d744e9 1888 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1889 return false;
1890
1891 if (ptype->id_match)
1892 return ptype->id_match(ptype, skb->sk);
1893 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1894 return true;
1895
1896 return false;
1897}
1898
1da177e4
LT
1899/*
1900 * Support routine. Sends outgoing frames to any network
1901 * taps currently in use.
1902 */
1903
74b20582 1904void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1905{
1906 struct packet_type *ptype;
71d9dec2
CG
1907 struct sk_buff *skb2 = NULL;
1908 struct packet_type *pt_prev = NULL;
7866a621 1909 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1910
1da177e4 1911 rcu_read_lock();
7866a621
SN
1912again:
1913 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1914 /* Never send packets back to the socket
1915 * they originated from - MvS (miquels@drinkel.ow.org)
1916 */
7866a621
SN
1917 if (skb_loop_sk(ptype, skb))
1918 continue;
71d9dec2 1919
7866a621
SN
1920 if (pt_prev) {
1921 deliver_skb(skb2, pt_prev, skb->dev);
1922 pt_prev = ptype;
1923 continue;
1924 }
1da177e4 1925
7866a621
SN
1926 /* need to clone skb, done only once */
1927 skb2 = skb_clone(skb, GFP_ATOMIC);
1928 if (!skb2)
1929 goto out_unlock;
70978182 1930
7866a621 1931 net_timestamp_set(skb2);
1da177e4 1932
7866a621
SN
1933 /* skb->nh should be correctly
1934 * set by sender, so that the second statement is
1935 * just protection against buggy protocols.
1936 */
1937 skb_reset_mac_header(skb2);
1938
1939 if (skb_network_header(skb2) < skb2->data ||
1940 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1941 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1942 ntohs(skb2->protocol),
1943 dev->name);
1944 skb_reset_network_header(skb2);
1da177e4 1945 }
7866a621
SN
1946
1947 skb2->transport_header = skb2->network_header;
1948 skb2->pkt_type = PACKET_OUTGOING;
1949 pt_prev = ptype;
1950 }
1951
1952 if (ptype_list == &ptype_all) {
1953 ptype_list = &dev->ptype_all;
1954 goto again;
1da177e4 1955 }
7866a621 1956out_unlock:
71d9dec2
CG
1957 if (pt_prev)
1958 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1959 rcu_read_unlock();
1960}
74b20582 1961EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1962
2c53040f
BH
1963/**
1964 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1965 * @dev: Network device
1966 * @txq: number of queues available
1967 *
1968 * If real_num_tx_queues is changed the tc mappings may no longer be
1969 * valid. To resolve this verify the tc mapping remains valid and if
1970 * not NULL the mapping. With no priorities mapping to this
1971 * offset/count pair it will no longer be used. In the worst case TC0
1972 * is invalid nothing can be done so disable priority mappings. If is
1973 * expected that drivers will fix this mapping if they can before
1974 * calling netif_set_real_num_tx_queues.
1975 */
bb134d22 1976static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1977{
1978 int i;
1979 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1980
1981 /* If TC0 is invalidated disable TC mapping */
1982 if (tc->offset + tc->count > txq) {
7b6cd1ce 1983 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1984 dev->num_tc = 0;
1985 return;
1986 }
1987
1988 /* Invalidated prio to tc mappings set to TC0 */
1989 for (i = 1; i < TC_BITMASK + 1; i++) {
1990 int q = netdev_get_prio_tc_map(dev, i);
1991
1992 tc = &dev->tc_to_txq[q];
1993 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1994 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1995 i, q);
4f57c087
JF
1996 netdev_set_prio_tc_map(dev, i, 0);
1997 }
1998 }
1999}
2000
8d059b0f
AD
2001int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2002{
2003 if (dev->num_tc) {
2004 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2005 int i;
2006
2007 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2008 if ((txq - tc->offset) < tc->count)
2009 return i;
2010 }
2011
2012 return -1;
2013 }
2014
2015 return 0;
2016}
2017
537c00de
AD
2018#ifdef CONFIG_XPS
2019static DEFINE_MUTEX(xps_map_mutex);
2020#define xmap_dereference(P) \
2021 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2022
6234f874
AD
2023static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2024 int tci, u16 index)
537c00de 2025{
10cdc3f3
AD
2026 struct xps_map *map = NULL;
2027 int pos;
537c00de 2028
10cdc3f3 2029 if (dev_maps)
6234f874
AD
2030 map = xmap_dereference(dev_maps->cpu_map[tci]);
2031 if (!map)
2032 return false;
537c00de 2033
6234f874
AD
2034 for (pos = map->len; pos--;) {
2035 if (map->queues[pos] != index)
2036 continue;
2037
2038 if (map->len > 1) {
2039 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2040 break;
537c00de 2041 }
6234f874
AD
2042
2043 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2044 kfree_rcu(map, rcu);
2045 return false;
537c00de
AD
2046 }
2047
6234f874 2048 return true;
10cdc3f3
AD
2049}
2050
6234f874
AD
2051static bool remove_xps_queue_cpu(struct net_device *dev,
2052 struct xps_dev_maps *dev_maps,
2053 int cpu, u16 offset, u16 count)
2054{
184c449f
AD
2055 int num_tc = dev->num_tc ? : 1;
2056 bool active = false;
2057 int tci;
6234f874 2058
184c449f
AD
2059 for (tci = cpu * num_tc; num_tc--; tci++) {
2060 int i, j;
2061
2062 for (i = count, j = offset; i--; j++) {
2063 if (!remove_xps_queue(dev_maps, cpu, j))
2064 break;
2065 }
2066
2067 active |= i < 0;
6234f874
AD
2068 }
2069
184c449f 2070 return active;
6234f874
AD
2071}
2072
2073static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2074 u16 count)
10cdc3f3
AD
2075{
2076 struct xps_dev_maps *dev_maps;
024e9679 2077 int cpu, i;
10cdc3f3
AD
2078 bool active = false;
2079
2080 mutex_lock(&xps_map_mutex);
2081 dev_maps = xmap_dereference(dev->xps_maps);
2082
2083 if (!dev_maps)
2084 goto out_no_maps;
2085
6234f874
AD
2086 for_each_possible_cpu(cpu)
2087 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2088 offset, count);
10cdc3f3
AD
2089
2090 if (!active) {
537c00de
AD
2091 RCU_INIT_POINTER(dev->xps_maps, NULL);
2092 kfree_rcu(dev_maps, rcu);
2093 }
2094
6234f874 2095 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2096 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2097 NUMA_NO_NODE);
2098
537c00de
AD
2099out_no_maps:
2100 mutex_unlock(&xps_map_mutex);
2101}
2102
6234f874
AD
2103static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2104{
2105 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2106}
2107
01c5f864
AD
2108static struct xps_map *expand_xps_map(struct xps_map *map,
2109 int cpu, u16 index)
2110{
2111 struct xps_map *new_map;
2112 int alloc_len = XPS_MIN_MAP_ALLOC;
2113 int i, pos;
2114
2115 for (pos = 0; map && pos < map->len; pos++) {
2116 if (map->queues[pos] != index)
2117 continue;
2118 return map;
2119 }
2120
2121 /* Need to add queue to this CPU's existing map */
2122 if (map) {
2123 if (pos < map->alloc_len)
2124 return map;
2125
2126 alloc_len = map->alloc_len * 2;
2127 }
2128
2129 /* Need to allocate new map to store queue on this CPU's map */
2130 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2131 cpu_to_node(cpu));
2132 if (!new_map)
2133 return NULL;
2134
2135 for (i = 0; i < pos; i++)
2136 new_map->queues[i] = map->queues[i];
2137 new_map->alloc_len = alloc_len;
2138 new_map->len = pos;
2139
2140 return new_map;
2141}
2142
3573540c
MT
2143int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2144 u16 index)
537c00de 2145{
01c5f864 2146 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2147 int i, cpu, tci, numa_node_id = -2;
2148 int maps_sz, num_tc = 1, tc = 0;
537c00de 2149 struct xps_map *map, *new_map;
01c5f864 2150 bool active = false;
537c00de 2151
184c449f
AD
2152 if (dev->num_tc) {
2153 num_tc = dev->num_tc;
2154 tc = netdev_txq_to_tc(dev, index);
2155 if (tc < 0)
2156 return -EINVAL;
2157 }
2158
2159 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2160 if (maps_sz < L1_CACHE_BYTES)
2161 maps_sz = L1_CACHE_BYTES;
2162
537c00de
AD
2163 mutex_lock(&xps_map_mutex);
2164
2165 dev_maps = xmap_dereference(dev->xps_maps);
2166
01c5f864 2167 /* allocate memory for queue storage */
184c449f 2168 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2169 if (!new_dev_maps)
2170 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2171 if (!new_dev_maps) {
2172 mutex_unlock(&xps_map_mutex);
01c5f864 2173 return -ENOMEM;
2bb60cb9 2174 }
01c5f864 2175
184c449f
AD
2176 tci = cpu * num_tc + tc;
2177 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2178 NULL;
2179
2180 map = expand_xps_map(map, cpu, index);
2181 if (!map)
2182 goto error;
2183
184c449f 2184 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2185 }
2186
2187 if (!new_dev_maps)
2188 goto out_no_new_maps;
2189
537c00de 2190 for_each_possible_cpu(cpu) {
184c449f
AD
2191 /* copy maps belonging to foreign traffic classes */
2192 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2193 /* fill in the new device map from the old device map */
2194 map = xmap_dereference(dev_maps->cpu_map[tci]);
2195 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2196 }
2197
2198 /* We need to explicitly update tci as prevous loop
2199 * could break out early if dev_maps is NULL.
2200 */
2201 tci = cpu * num_tc + tc;
2202
01c5f864
AD
2203 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2204 /* add queue to CPU maps */
2205 int pos = 0;
2206
184c449f 2207 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2208 while ((pos < map->len) && (map->queues[pos] != index))
2209 pos++;
2210
2211 if (pos == map->len)
2212 map->queues[map->len++] = index;
537c00de 2213#ifdef CONFIG_NUMA
537c00de
AD
2214 if (numa_node_id == -2)
2215 numa_node_id = cpu_to_node(cpu);
2216 else if (numa_node_id != cpu_to_node(cpu))
2217 numa_node_id = -1;
537c00de 2218#endif
01c5f864
AD
2219 } else if (dev_maps) {
2220 /* fill in the new device map from the old device map */
184c449f
AD
2221 map = xmap_dereference(dev_maps->cpu_map[tci]);
2222 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2223 }
01c5f864 2224
184c449f
AD
2225 /* copy maps belonging to foreign traffic classes */
2226 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2227 /* fill in the new device map from the old device map */
2228 map = xmap_dereference(dev_maps->cpu_map[tci]);
2229 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2230 }
537c00de
AD
2231 }
2232
01c5f864
AD
2233 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2234
537c00de 2235 /* Cleanup old maps */
184c449f
AD
2236 if (!dev_maps)
2237 goto out_no_old_maps;
2238
2239 for_each_possible_cpu(cpu) {
2240 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2241 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2242 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2243 if (map && map != new_map)
2244 kfree_rcu(map, rcu);
2245 }
537c00de
AD
2246 }
2247
184c449f
AD
2248 kfree_rcu(dev_maps, rcu);
2249
2250out_no_old_maps:
01c5f864
AD
2251 dev_maps = new_dev_maps;
2252 active = true;
537c00de 2253
01c5f864
AD
2254out_no_new_maps:
2255 /* update Tx queue numa node */
537c00de
AD
2256 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2257 (numa_node_id >= 0) ? numa_node_id :
2258 NUMA_NO_NODE);
2259
01c5f864
AD
2260 if (!dev_maps)
2261 goto out_no_maps;
2262
2263 /* removes queue from unused CPUs */
2264 for_each_possible_cpu(cpu) {
184c449f
AD
2265 for (i = tc, tci = cpu * num_tc; i--; tci++)
2266 active |= remove_xps_queue(dev_maps, tci, index);
2267 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2268 active |= remove_xps_queue(dev_maps, tci, index);
2269 for (i = num_tc - tc, tci++; --i; tci++)
2270 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2271 }
2272
2273 /* free map if not active */
2274 if (!active) {
2275 RCU_INIT_POINTER(dev->xps_maps, NULL);
2276 kfree_rcu(dev_maps, rcu);
2277 }
2278
2279out_no_maps:
537c00de
AD
2280 mutex_unlock(&xps_map_mutex);
2281
2282 return 0;
2283error:
01c5f864
AD
2284 /* remove any maps that we added */
2285 for_each_possible_cpu(cpu) {
184c449f
AD
2286 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2287 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2288 map = dev_maps ?
2289 xmap_dereference(dev_maps->cpu_map[tci]) :
2290 NULL;
2291 if (new_map && new_map != map)
2292 kfree(new_map);
2293 }
01c5f864
AD
2294 }
2295
537c00de
AD
2296 mutex_unlock(&xps_map_mutex);
2297
537c00de
AD
2298 kfree(new_dev_maps);
2299 return -ENOMEM;
2300}
2301EXPORT_SYMBOL(netif_set_xps_queue);
2302
2303#endif
9cf1f6a8
AD
2304void netdev_reset_tc(struct net_device *dev)
2305{
6234f874
AD
2306#ifdef CONFIG_XPS
2307 netif_reset_xps_queues_gt(dev, 0);
2308#endif
9cf1f6a8
AD
2309 dev->num_tc = 0;
2310 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2311 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2312}
2313EXPORT_SYMBOL(netdev_reset_tc);
2314
2315int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2316{
2317 if (tc >= dev->num_tc)
2318 return -EINVAL;
2319
6234f874
AD
2320#ifdef CONFIG_XPS
2321 netif_reset_xps_queues(dev, offset, count);
2322#endif
9cf1f6a8
AD
2323 dev->tc_to_txq[tc].count = count;
2324 dev->tc_to_txq[tc].offset = offset;
2325 return 0;
2326}
2327EXPORT_SYMBOL(netdev_set_tc_queue);
2328
2329int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2330{
2331 if (num_tc > TC_MAX_QUEUE)
2332 return -EINVAL;
2333
6234f874
AD
2334#ifdef CONFIG_XPS
2335 netif_reset_xps_queues_gt(dev, 0);
2336#endif
9cf1f6a8
AD
2337 dev->num_tc = num_tc;
2338 return 0;
2339}
2340EXPORT_SYMBOL(netdev_set_num_tc);
2341
f0796d5c
JF
2342/*
2343 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2344 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2345 */
e6484930 2346int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2347{
1d24eb48
TH
2348 int rc;
2349
e6484930
TH
2350 if (txq < 1 || txq > dev->num_tx_queues)
2351 return -EINVAL;
f0796d5c 2352
5c56580b
BH
2353 if (dev->reg_state == NETREG_REGISTERED ||
2354 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2355 ASSERT_RTNL();
2356
1d24eb48
TH
2357 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2358 txq);
bf264145
TH
2359 if (rc)
2360 return rc;
2361
4f57c087
JF
2362 if (dev->num_tc)
2363 netif_setup_tc(dev, txq);
2364
024e9679 2365 if (txq < dev->real_num_tx_queues) {
e6484930 2366 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2367#ifdef CONFIG_XPS
2368 netif_reset_xps_queues_gt(dev, txq);
2369#endif
2370 }
f0796d5c 2371 }
e6484930
TH
2372
2373 dev->real_num_tx_queues = txq;
2374 return 0;
f0796d5c
JF
2375}
2376EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2377
a953be53 2378#ifdef CONFIG_SYSFS
62fe0b40
BH
2379/**
2380 * netif_set_real_num_rx_queues - set actual number of RX queues used
2381 * @dev: Network device
2382 * @rxq: Actual number of RX queues
2383 *
2384 * This must be called either with the rtnl_lock held or before
2385 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2386 * negative error code. If called before registration, it always
2387 * succeeds.
62fe0b40
BH
2388 */
2389int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2390{
2391 int rc;
2392
bd25fa7b
TH
2393 if (rxq < 1 || rxq > dev->num_rx_queues)
2394 return -EINVAL;
2395
62fe0b40
BH
2396 if (dev->reg_state == NETREG_REGISTERED) {
2397 ASSERT_RTNL();
2398
62fe0b40
BH
2399 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2400 rxq);
2401 if (rc)
2402 return rc;
62fe0b40
BH
2403 }
2404
2405 dev->real_num_rx_queues = rxq;
2406 return 0;
2407}
2408EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2409#endif
2410
2c53040f
BH
2411/**
2412 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2413 *
2414 * This routine should set an upper limit on the number of RSS queues
2415 * used by default by multiqueue devices.
2416 */
a55b138b 2417int netif_get_num_default_rss_queues(void)
16917b87 2418{
40e4e713
HS
2419 return is_kdump_kernel() ?
2420 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2421}
2422EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2423
3bcb846c 2424static void __netif_reschedule(struct Qdisc *q)
56079431 2425{
def82a1d
JP
2426 struct softnet_data *sd;
2427 unsigned long flags;
56079431 2428
def82a1d 2429 local_irq_save(flags);
903ceff7 2430 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2431 q->next_sched = NULL;
2432 *sd->output_queue_tailp = q;
2433 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2434 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2435 local_irq_restore(flags);
2436}
2437
2438void __netif_schedule(struct Qdisc *q)
2439{
2440 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2441 __netif_reschedule(q);
56079431
DV
2442}
2443EXPORT_SYMBOL(__netif_schedule);
2444
e6247027
ED
2445struct dev_kfree_skb_cb {
2446 enum skb_free_reason reason;
2447};
2448
2449static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2450{
e6247027
ED
2451 return (struct dev_kfree_skb_cb *)skb->cb;
2452}
2453
46e5da40
JF
2454void netif_schedule_queue(struct netdev_queue *txq)
2455{
2456 rcu_read_lock();
2457 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2458 struct Qdisc *q = rcu_dereference(txq->qdisc);
2459
2460 __netif_schedule(q);
2461 }
2462 rcu_read_unlock();
2463}
2464EXPORT_SYMBOL(netif_schedule_queue);
2465
46e5da40
JF
2466void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2467{
2468 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2469 struct Qdisc *q;
2470
2471 rcu_read_lock();
2472 q = rcu_dereference(dev_queue->qdisc);
2473 __netif_schedule(q);
2474 rcu_read_unlock();
2475 }
2476}
2477EXPORT_SYMBOL(netif_tx_wake_queue);
2478
e6247027 2479void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2480{
e6247027 2481 unsigned long flags;
56079431 2482
9899886d
MJ
2483 if (unlikely(!skb))
2484 return;
2485
e6247027
ED
2486 if (likely(atomic_read(&skb->users) == 1)) {
2487 smp_rmb();
2488 atomic_set(&skb->users, 0);
2489 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2490 return;
bea3348e 2491 }
e6247027
ED
2492 get_kfree_skb_cb(skb)->reason = reason;
2493 local_irq_save(flags);
2494 skb->next = __this_cpu_read(softnet_data.completion_queue);
2495 __this_cpu_write(softnet_data.completion_queue, skb);
2496 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2497 local_irq_restore(flags);
56079431 2498}
e6247027 2499EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2500
e6247027 2501void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2502{
2503 if (in_irq() || irqs_disabled())
e6247027 2504 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2505 else
2506 dev_kfree_skb(skb);
2507}
e6247027 2508EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2509
2510
bea3348e
SH
2511/**
2512 * netif_device_detach - mark device as removed
2513 * @dev: network device
2514 *
2515 * Mark device as removed from system and therefore no longer available.
2516 */
56079431
DV
2517void netif_device_detach(struct net_device *dev)
2518{
2519 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2520 netif_running(dev)) {
d543103a 2521 netif_tx_stop_all_queues(dev);
56079431
DV
2522 }
2523}
2524EXPORT_SYMBOL(netif_device_detach);
2525
bea3348e
SH
2526/**
2527 * netif_device_attach - mark device as attached
2528 * @dev: network device
2529 *
2530 * Mark device as attached from system and restart if needed.
2531 */
56079431
DV
2532void netif_device_attach(struct net_device *dev)
2533{
2534 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2535 netif_running(dev)) {
d543103a 2536 netif_tx_wake_all_queues(dev);
4ec93edb 2537 __netdev_watchdog_up(dev);
56079431
DV
2538 }
2539}
2540EXPORT_SYMBOL(netif_device_attach);
2541
5605c762
JP
2542/*
2543 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2544 * to be used as a distribution range.
2545 */
2546u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2547 unsigned int num_tx_queues)
2548{
2549 u32 hash;
2550 u16 qoffset = 0;
2551 u16 qcount = num_tx_queues;
2552
2553 if (skb_rx_queue_recorded(skb)) {
2554 hash = skb_get_rx_queue(skb);
2555 while (unlikely(hash >= num_tx_queues))
2556 hash -= num_tx_queues;
2557 return hash;
2558 }
2559
2560 if (dev->num_tc) {
2561 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
f4563a75 2562
5605c762
JP
2563 qoffset = dev->tc_to_txq[tc].offset;
2564 qcount = dev->tc_to_txq[tc].count;
2565 }
2566
2567 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2568}
2569EXPORT_SYMBOL(__skb_tx_hash);
2570
36c92474
BH
2571static void skb_warn_bad_offload(const struct sk_buff *skb)
2572{
84d15ae5 2573 static const netdev_features_t null_features;
36c92474 2574 struct net_device *dev = skb->dev;
88ad4175 2575 const char *name = "";
36c92474 2576
c846ad9b
BG
2577 if (!net_ratelimit())
2578 return;
2579
88ad4175
BM
2580 if (dev) {
2581 if (dev->dev.parent)
2582 name = dev_driver_string(dev->dev.parent);
2583 else
2584 name = netdev_name(dev);
2585 }
36c92474
BH
2586 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2587 "gso_type=%d ip_summed=%d\n",
88ad4175 2588 name, dev ? &dev->features : &null_features,
65e9d2fa 2589 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2590 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2591 skb_shinfo(skb)->gso_type, skb->ip_summed);
2592}
2593
1da177e4
LT
2594/*
2595 * Invalidate hardware checksum when packet is to be mangled, and
2596 * complete checksum manually on outgoing path.
2597 */
84fa7933 2598int skb_checksum_help(struct sk_buff *skb)
1da177e4 2599{
d3bc23e7 2600 __wsum csum;
663ead3b 2601 int ret = 0, offset;
1da177e4 2602
84fa7933 2603 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2604 goto out_set_summed;
2605
2606 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2607 skb_warn_bad_offload(skb);
2608 return -EINVAL;
1da177e4
LT
2609 }
2610
cef401de
ED
2611 /* Before computing a checksum, we should make sure no frag could
2612 * be modified by an external entity : checksum could be wrong.
2613 */
2614 if (skb_has_shared_frag(skb)) {
2615 ret = __skb_linearize(skb);
2616 if (ret)
2617 goto out;
2618 }
2619
55508d60 2620 offset = skb_checksum_start_offset(skb);
a030847e
HX
2621 BUG_ON(offset >= skb_headlen(skb));
2622 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2623
2624 offset += skb->csum_offset;
2625 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2626
2627 if (skb_cloned(skb) &&
2628 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2629 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2630 if (ret)
2631 goto out;
2632 }
2633
4f2e4ad5 2634 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2635out_set_summed:
1da177e4 2636 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2637out:
1da177e4
LT
2638 return ret;
2639}
d1b19dff 2640EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2641
b72b5bf6
DC
2642int skb_crc32c_csum_help(struct sk_buff *skb)
2643{
2644 __le32 crc32c_csum;
2645 int ret = 0, offset, start;
2646
2647 if (skb->ip_summed != CHECKSUM_PARTIAL)
2648 goto out;
2649
2650 if (unlikely(skb_is_gso(skb)))
2651 goto out;
2652
2653 /* Before computing a checksum, we should make sure no frag could
2654 * be modified by an external entity : checksum could be wrong.
2655 */
2656 if (unlikely(skb_has_shared_frag(skb))) {
2657 ret = __skb_linearize(skb);
2658 if (ret)
2659 goto out;
2660 }
2661 start = skb_checksum_start_offset(skb);
2662 offset = start + offsetof(struct sctphdr, checksum);
2663 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2664 ret = -EINVAL;
2665 goto out;
2666 }
2667 if (skb_cloned(skb) &&
2668 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2669 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2670 if (ret)
2671 goto out;
2672 }
2673 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2674 skb->len - start, ~(__u32)0,
2675 crc32c_csum_stub));
2676 *(__le32 *)(skb->data + offset) = crc32c_csum;
2677 skb->ip_summed = CHECKSUM_NONE;
dba00306 2678 skb->csum_not_inet = 0;
b72b5bf6
DC
2679out:
2680 return ret;
2681}
2682
53d6471c 2683__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2684{
252e3346 2685 __be16 type = skb->protocol;
f6a78bfc 2686
19acc327
PS
2687 /* Tunnel gso handlers can set protocol to ethernet. */
2688 if (type == htons(ETH_P_TEB)) {
2689 struct ethhdr *eth;
2690
2691 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2692 return 0;
2693
2694 eth = (struct ethhdr *)skb_mac_header(skb);
2695 type = eth->h_proto;
2696 }
2697
d4bcef3f 2698 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2699}
2700
2701/**
2702 * skb_mac_gso_segment - mac layer segmentation handler.
2703 * @skb: buffer to segment
2704 * @features: features for the output path (see dev->features)
2705 */
2706struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2707 netdev_features_t features)
2708{
2709 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2710 struct packet_offload *ptype;
53d6471c
VY
2711 int vlan_depth = skb->mac_len;
2712 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2713
2714 if (unlikely(!type))
2715 return ERR_PTR(-EINVAL);
2716
53d6471c 2717 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2718
2719 rcu_read_lock();
22061d80 2720 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2721 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2722 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2723 break;
2724 }
2725 }
2726 rcu_read_unlock();
2727
98e399f8 2728 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2729
f6a78bfc
HX
2730 return segs;
2731}
05e8ef4a
PS
2732EXPORT_SYMBOL(skb_mac_gso_segment);
2733
2734
2735/* openvswitch calls this on rx path, so we need a different check.
2736 */
2737static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2738{
2739 if (tx_path)
6e7bc478
ED
2740 return skb->ip_summed != CHECKSUM_PARTIAL &&
2741 skb->ip_summed != CHECKSUM_NONE;
2742
2743 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2744}
2745
2746/**
2747 * __skb_gso_segment - Perform segmentation on skb.
2748 * @skb: buffer to segment
2749 * @features: features for the output path (see dev->features)
2750 * @tx_path: whether it is called in TX path
2751 *
2752 * This function segments the given skb and returns a list of segments.
2753 *
2754 * It may return NULL if the skb requires no segmentation. This is
2755 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2756 *
2757 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2758 */
2759struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2760 netdev_features_t features, bool tx_path)
2761{
b2504a5d
ED
2762 struct sk_buff *segs;
2763
05e8ef4a
PS
2764 if (unlikely(skb_needs_check(skb, tx_path))) {
2765 int err;
2766
b2504a5d 2767 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2768 err = skb_cow_head(skb, 0);
2769 if (err < 0)
05e8ef4a
PS
2770 return ERR_PTR(err);
2771 }
2772
802ab55a
AD
2773 /* Only report GSO partial support if it will enable us to
2774 * support segmentation on this frame without needing additional
2775 * work.
2776 */
2777 if (features & NETIF_F_GSO_PARTIAL) {
2778 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2779 struct net_device *dev = skb->dev;
2780
2781 partial_features |= dev->features & dev->gso_partial_features;
2782 if (!skb_gso_ok(skb, features | partial_features))
2783 features &= ~NETIF_F_GSO_PARTIAL;
2784 }
2785
9207f9d4
KK
2786 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2787 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2788
68c33163 2789 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2790 SKB_GSO_CB(skb)->encap_level = 0;
2791
05e8ef4a
PS
2792 skb_reset_mac_header(skb);
2793 skb_reset_mac_len(skb);
2794
b2504a5d
ED
2795 segs = skb_mac_gso_segment(skb, features);
2796
2797 if (unlikely(skb_needs_check(skb, tx_path)))
2798 skb_warn_bad_offload(skb);
2799
2800 return segs;
05e8ef4a 2801}
12b0004d 2802EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2803
fb286bb2
HX
2804/* Take action when hardware reception checksum errors are detected. */
2805#ifdef CONFIG_BUG
2806void netdev_rx_csum_fault(struct net_device *dev)
2807{
2808 if (net_ratelimit()) {
7b6cd1ce 2809 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2810 dump_stack();
2811 }
2812}
2813EXPORT_SYMBOL(netdev_rx_csum_fault);
2814#endif
2815
1da177e4
LT
2816/* Actually, we should eliminate this check as soon as we know, that:
2817 * 1. IOMMU is present and allows to map all the memory.
2818 * 2. No high memory really exists on this machine.
2819 */
2820
c1e756bf 2821static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2822{
3d3a8533 2823#ifdef CONFIG_HIGHMEM
1da177e4 2824 int i;
f4563a75 2825
5acbbd42 2826 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2827 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2828 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 2829
ea2ab693 2830 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2831 return 1;
ea2ab693 2832 }
5acbbd42 2833 }
1da177e4 2834
5acbbd42
FT
2835 if (PCI_DMA_BUS_IS_PHYS) {
2836 struct device *pdev = dev->dev.parent;
1da177e4 2837
9092c658
ED
2838 if (!pdev)
2839 return 0;
5acbbd42 2840 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2841 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2842 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
f4563a75 2843
5acbbd42
FT
2844 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2845 return 1;
2846 }
2847 }
3d3a8533 2848#endif
1da177e4
LT
2849 return 0;
2850}
1da177e4 2851
3b392ddb
SH
2852/* If MPLS offload request, verify we are testing hardware MPLS features
2853 * instead of standard features for the netdev.
2854 */
d0edc7bf 2855#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2856static netdev_features_t net_mpls_features(struct sk_buff *skb,
2857 netdev_features_t features,
2858 __be16 type)
2859{
25cd9ba0 2860 if (eth_p_mpls(type))
3b392ddb
SH
2861 features &= skb->dev->mpls_features;
2862
2863 return features;
2864}
2865#else
2866static netdev_features_t net_mpls_features(struct sk_buff *skb,
2867 netdev_features_t features,
2868 __be16 type)
2869{
2870 return features;
2871}
2872#endif
2873
c8f44aff 2874static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2875 netdev_features_t features)
f01a5236 2876{
53d6471c 2877 int tmp;
3b392ddb
SH
2878 __be16 type;
2879
2880 type = skb_network_protocol(skb, &tmp);
2881 features = net_mpls_features(skb, features, type);
53d6471c 2882
c0d680e5 2883 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2884 !can_checksum_protocol(features, type)) {
996e8021 2885 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2886 }
7be2c82c
ED
2887 if (illegal_highdma(skb->dev, skb))
2888 features &= ~NETIF_F_SG;
f01a5236
JG
2889
2890 return features;
2891}
2892
e38f3025
TM
2893netdev_features_t passthru_features_check(struct sk_buff *skb,
2894 struct net_device *dev,
2895 netdev_features_t features)
2896{
2897 return features;
2898}
2899EXPORT_SYMBOL(passthru_features_check);
2900
8cb65d00
TM
2901static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2902 struct net_device *dev,
2903 netdev_features_t features)
2904{
2905 return vlan_features_check(skb, features);
2906}
2907
cbc53e08
AD
2908static netdev_features_t gso_features_check(const struct sk_buff *skb,
2909 struct net_device *dev,
2910 netdev_features_t features)
2911{
2912 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2913
2914 if (gso_segs > dev->gso_max_segs)
2915 return features & ~NETIF_F_GSO_MASK;
2916
802ab55a
AD
2917 /* Support for GSO partial features requires software
2918 * intervention before we can actually process the packets
2919 * so we need to strip support for any partial features now
2920 * and we can pull them back in after we have partially
2921 * segmented the frame.
2922 */
2923 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2924 features &= ~dev->gso_partial_features;
2925
2926 /* Make sure to clear the IPv4 ID mangling feature if the
2927 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2928 */
2929 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2930 struct iphdr *iph = skb->encapsulation ?
2931 inner_ip_hdr(skb) : ip_hdr(skb);
2932
2933 if (!(iph->frag_off & htons(IP_DF)))
2934 features &= ~NETIF_F_TSO_MANGLEID;
2935 }
2936
2937 return features;
2938}
2939
c1e756bf 2940netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2941{
5f35227e 2942 struct net_device *dev = skb->dev;
fcbeb976 2943 netdev_features_t features = dev->features;
58e998c6 2944
cbc53e08
AD
2945 if (skb_is_gso(skb))
2946 features = gso_features_check(skb, dev, features);
30b678d8 2947
5f35227e
JG
2948 /* If encapsulation offload request, verify we are testing
2949 * hardware encapsulation features instead of standard
2950 * features for the netdev
2951 */
2952 if (skb->encapsulation)
2953 features &= dev->hw_enc_features;
2954
f5a7fb88
TM
2955 if (skb_vlan_tagged(skb))
2956 features = netdev_intersect_features(features,
2957 dev->vlan_features |
2958 NETIF_F_HW_VLAN_CTAG_TX |
2959 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2960
5f35227e
JG
2961 if (dev->netdev_ops->ndo_features_check)
2962 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2963 features);
8cb65d00
TM
2964 else
2965 features &= dflt_features_check(skb, dev, features);
5f35227e 2966
c1e756bf 2967 return harmonize_features(skb, features);
58e998c6 2968}
c1e756bf 2969EXPORT_SYMBOL(netif_skb_features);
58e998c6 2970
2ea25513 2971static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2972 struct netdev_queue *txq, bool more)
f6a78bfc 2973{
2ea25513
DM
2974 unsigned int len;
2975 int rc;
00829823 2976
7866a621 2977 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2978 dev_queue_xmit_nit(skb, dev);
fc741216 2979
2ea25513
DM
2980 len = skb->len;
2981 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2982 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2983 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2984
2ea25513
DM
2985 return rc;
2986}
7b9c6090 2987
8dcda22a
DM
2988struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2989 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2990{
2991 struct sk_buff *skb = first;
2992 int rc = NETDEV_TX_OK;
7b9c6090 2993
7f2e870f
DM
2994 while (skb) {
2995 struct sk_buff *next = skb->next;
fc70fb64 2996
7f2e870f 2997 skb->next = NULL;
95f6b3dd 2998 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2999 if (unlikely(!dev_xmit_complete(rc))) {
3000 skb->next = next;
3001 goto out;
3002 }
6afff0ca 3003
7f2e870f
DM
3004 skb = next;
3005 if (netif_xmit_stopped(txq) && skb) {
3006 rc = NETDEV_TX_BUSY;
3007 break;
9ccb8975 3008 }
7f2e870f 3009 }
9ccb8975 3010
7f2e870f
DM
3011out:
3012 *ret = rc;
3013 return skb;
3014}
b40863c6 3015
1ff0dc94
ED
3016static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3017 netdev_features_t features)
f6a78bfc 3018{
df8a39de 3019 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3020 !vlan_hw_offload_capable(features, skb->vlan_proto))
3021 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3022 return skb;
3023}
f6a78bfc 3024
43c26a1a
DC
3025int skb_csum_hwoffload_help(struct sk_buff *skb,
3026 const netdev_features_t features)
3027{
3028 if (unlikely(skb->csum_not_inet))
3029 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3030 skb_crc32c_csum_help(skb);
3031
3032 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3033}
3034EXPORT_SYMBOL(skb_csum_hwoffload_help);
3035
55a93b3e 3036static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
3037{
3038 netdev_features_t features;
f6a78bfc 3039
eae3f88e
DM
3040 features = netif_skb_features(skb);
3041 skb = validate_xmit_vlan(skb, features);
3042 if (unlikely(!skb))
3043 goto out_null;
7b9c6090 3044
8b86a61d 3045 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3046 struct sk_buff *segs;
3047
3048 segs = skb_gso_segment(skb, features);
cecda693 3049 if (IS_ERR(segs)) {
af6dabc9 3050 goto out_kfree_skb;
cecda693
JW
3051 } else if (segs) {
3052 consume_skb(skb);
3053 skb = segs;
f6a78bfc 3054 }
eae3f88e
DM
3055 } else {
3056 if (skb_needs_linearize(skb, features) &&
3057 __skb_linearize(skb))
3058 goto out_kfree_skb;
4ec93edb 3059
f6e27114
SK
3060 if (validate_xmit_xfrm(skb, features))
3061 goto out_kfree_skb;
3062
eae3f88e
DM
3063 /* If packet is not checksummed and device does not
3064 * support checksumming for this protocol, complete
3065 * checksumming here.
3066 */
3067 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3068 if (skb->encapsulation)
3069 skb_set_inner_transport_header(skb,
3070 skb_checksum_start_offset(skb));
3071 else
3072 skb_set_transport_header(skb,
3073 skb_checksum_start_offset(skb));
43c26a1a 3074 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3075 goto out_kfree_skb;
7b9c6090 3076 }
0c772159 3077 }
7b9c6090 3078
eae3f88e 3079 return skb;
fc70fb64 3080
f6a78bfc
HX
3081out_kfree_skb:
3082 kfree_skb(skb);
eae3f88e 3083out_null:
d21fd63e 3084 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3085 return NULL;
3086}
6afff0ca 3087
55a93b3e
ED
3088struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3089{
3090 struct sk_buff *next, *head = NULL, *tail;
3091
bec3cfdc 3092 for (; skb != NULL; skb = next) {
55a93b3e
ED
3093 next = skb->next;
3094 skb->next = NULL;
bec3cfdc
ED
3095
3096 /* in case skb wont be segmented, point to itself */
3097 skb->prev = skb;
3098
55a93b3e 3099 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3100 if (!skb)
3101 continue;
55a93b3e 3102
bec3cfdc
ED
3103 if (!head)
3104 head = skb;
3105 else
3106 tail->next = skb;
3107 /* If skb was segmented, skb->prev points to
3108 * the last segment. If not, it still contains skb.
3109 */
3110 tail = skb->prev;
55a93b3e
ED
3111 }
3112 return head;
f6a78bfc 3113}
104ba78c 3114EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3115
1def9238
ED
3116static void qdisc_pkt_len_init(struct sk_buff *skb)
3117{
3118 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3119
3120 qdisc_skb_cb(skb)->pkt_len = skb->len;
3121
3122 /* To get more precise estimation of bytes sent on wire,
3123 * we add to pkt_len the headers size of all segments
3124 */
3125 if (shinfo->gso_size) {
757b8b1d 3126 unsigned int hdr_len;
15e5a030 3127 u16 gso_segs = shinfo->gso_segs;
1def9238 3128
757b8b1d
ED
3129 /* mac layer + network layer */
3130 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3131
3132 /* + transport layer */
1def9238
ED
3133 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3134 hdr_len += tcp_hdrlen(skb);
3135 else
3136 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3137
3138 if (shinfo->gso_type & SKB_GSO_DODGY)
3139 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3140 shinfo->gso_size);
3141
3142 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3143 }
3144}
3145
bbd8a0d3
KK
3146static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3147 struct net_device *dev,
3148 struct netdev_queue *txq)
3149{
3150 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3151 struct sk_buff *to_free = NULL;
a2da570d 3152 bool contended;
bbd8a0d3
KK
3153 int rc;
3154
a2da570d 3155 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3156 /*
3157 * Heuristic to force contended enqueues to serialize on a
3158 * separate lock before trying to get qdisc main lock.
f9eb8aea 3159 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3160 * often and dequeue packets faster.
79640a4c 3161 */
a2da570d 3162 contended = qdisc_is_running(q);
79640a4c
ED
3163 if (unlikely(contended))
3164 spin_lock(&q->busylock);
3165
bbd8a0d3
KK
3166 spin_lock(root_lock);
3167 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3168 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3169 rc = NET_XMIT_DROP;
3170 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3171 qdisc_run_begin(q)) {
bbd8a0d3
KK
3172 /*
3173 * This is a work-conserving queue; there are no old skbs
3174 * waiting to be sent out; and the qdisc is not running -
3175 * xmit the skb directly.
3176 */
bfe0d029 3177
bfe0d029
ED
3178 qdisc_bstats_update(q, skb);
3179
55a93b3e 3180 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3181 if (unlikely(contended)) {
3182 spin_unlock(&q->busylock);
3183 contended = false;
3184 }
bbd8a0d3 3185 __qdisc_run(q);
79640a4c 3186 } else
bc135b23 3187 qdisc_run_end(q);
bbd8a0d3
KK
3188
3189 rc = NET_XMIT_SUCCESS;
3190 } else {
520ac30f 3191 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3192 if (qdisc_run_begin(q)) {
3193 if (unlikely(contended)) {
3194 spin_unlock(&q->busylock);
3195 contended = false;
3196 }
3197 __qdisc_run(q);
3198 }
bbd8a0d3
KK
3199 }
3200 spin_unlock(root_lock);
520ac30f
ED
3201 if (unlikely(to_free))
3202 kfree_skb_list(to_free);
79640a4c
ED
3203 if (unlikely(contended))
3204 spin_unlock(&q->busylock);
bbd8a0d3
KK
3205 return rc;
3206}
3207
86f8515f 3208#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3209static void skb_update_prio(struct sk_buff *skb)
3210{
6977a79d 3211 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3212
91c68ce2 3213 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3214 unsigned int prioidx =
3215 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3216
3217 if (prioidx < map->priomap_len)
3218 skb->priority = map->priomap[prioidx];
3219 }
5bc1421e
NH
3220}
3221#else
3222#define skb_update_prio(skb)
3223#endif
3224
f60e5990 3225DEFINE_PER_CPU(int, xmit_recursion);
3226EXPORT_SYMBOL(xmit_recursion);
3227
95603e22
MM
3228/**
3229 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3230 * @net: network namespace this loopback is happening in
3231 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3232 * @skb: buffer to transmit
3233 */
0c4b51f0 3234int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3235{
3236 skb_reset_mac_header(skb);
3237 __skb_pull(skb, skb_network_offset(skb));
3238 skb->pkt_type = PACKET_LOOPBACK;
3239 skb->ip_summed = CHECKSUM_UNNECESSARY;
3240 WARN_ON(!skb_dst(skb));
3241 skb_dst_force(skb);
3242 netif_rx_ni(skb);
3243 return 0;
3244}
3245EXPORT_SYMBOL(dev_loopback_xmit);
3246
1f211a1b
DB
3247#ifdef CONFIG_NET_EGRESS
3248static struct sk_buff *
3249sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3250{
3251 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3252 struct tcf_result cl_res;
3253
3254 if (!cl)
3255 return skb;
3256
8dc07fdb 3257 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
1f211a1b
DB
3258 qdisc_bstats_cpu_update(cl->q, skb);
3259
87d83093 3260 switch (tcf_classify(skb, cl, &cl_res, false)) {
1f211a1b
DB
3261 case TC_ACT_OK:
3262 case TC_ACT_RECLASSIFY:
3263 skb->tc_index = TC_H_MIN(cl_res.classid);
3264 break;
3265 case TC_ACT_SHOT:
3266 qdisc_qstats_cpu_drop(cl->q);
3267 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3268 kfree_skb(skb);
3269 return NULL;
1f211a1b
DB
3270 case TC_ACT_STOLEN:
3271 case TC_ACT_QUEUED:
3272 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3273 consume_skb(skb);
1f211a1b
DB
3274 return NULL;
3275 case TC_ACT_REDIRECT:
3276 /* No need to push/pop skb's mac_header here on egress! */
3277 skb_do_redirect(skb);
3278 *ret = NET_XMIT_SUCCESS;
3279 return NULL;
3280 default:
3281 break;
3282 }
3283
3284 return skb;
3285}
3286#endif /* CONFIG_NET_EGRESS */
3287
638b2a69
JP
3288static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3289{
3290#ifdef CONFIG_XPS
3291 struct xps_dev_maps *dev_maps;
3292 struct xps_map *map;
3293 int queue_index = -1;
3294
3295 rcu_read_lock();
3296 dev_maps = rcu_dereference(dev->xps_maps);
3297 if (dev_maps) {
184c449f
AD
3298 unsigned int tci = skb->sender_cpu - 1;
3299
3300 if (dev->num_tc) {
3301 tci *= dev->num_tc;
3302 tci += netdev_get_prio_tc_map(dev, skb->priority);
3303 }
3304
3305 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3306 if (map) {
3307 if (map->len == 1)
3308 queue_index = map->queues[0];
3309 else
3310 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3311 map->len)];
3312 if (unlikely(queue_index >= dev->real_num_tx_queues))
3313 queue_index = -1;
3314 }
3315 }
3316 rcu_read_unlock();
3317
3318 return queue_index;
3319#else
3320 return -1;
3321#endif
3322}
3323
3324static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3325{
3326 struct sock *sk = skb->sk;
3327 int queue_index = sk_tx_queue_get(sk);
3328
3329 if (queue_index < 0 || skb->ooo_okay ||
3330 queue_index >= dev->real_num_tx_queues) {
3331 int new_index = get_xps_queue(dev, skb);
f4563a75 3332
638b2a69
JP
3333 if (new_index < 0)
3334 new_index = skb_tx_hash(dev, skb);
3335
3336 if (queue_index != new_index && sk &&
004a5d01 3337 sk_fullsock(sk) &&
638b2a69
JP
3338 rcu_access_pointer(sk->sk_dst_cache))
3339 sk_tx_queue_set(sk, new_index);
3340
3341 queue_index = new_index;
3342 }
3343
3344 return queue_index;
3345}
3346
3347struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3348 struct sk_buff *skb,
3349 void *accel_priv)
3350{
3351 int queue_index = 0;
3352
3353#ifdef CONFIG_XPS
52bd2d62
ED
3354 u32 sender_cpu = skb->sender_cpu - 1;
3355
3356 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3357 skb->sender_cpu = raw_smp_processor_id() + 1;
3358#endif
3359
3360 if (dev->real_num_tx_queues != 1) {
3361 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3362
638b2a69
JP
3363 if (ops->ndo_select_queue)
3364 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3365 __netdev_pick_tx);
3366 else
3367 queue_index = __netdev_pick_tx(dev, skb);
3368
3369 if (!accel_priv)
3370 queue_index = netdev_cap_txqueue(dev, queue_index);
3371 }
3372
3373 skb_set_queue_mapping(skb, queue_index);
3374 return netdev_get_tx_queue(dev, queue_index);
3375}
3376
d29f749e 3377/**
9d08dd3d 3378 * __dev_queue_xmit - transmit a buffer
d29f749e 3379 * @skb: buffer to transmit
9d08dd3d 3380 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3381 *
3382 * Queue a buffer for transmission to a network device. The caller must
3383 * have set the device and priority and built the buffer before calling
3384 * this function. The function can be called from an interrupt.
3385 *
3386 * A negative errno code is returned on a failure. A success does not
3387 * guarantee the frame will be transmitted as it may be dropped due
3388 * to congestion or traffic shaping.
3389 *
3390 * -----------------------------------------------------------------------------------
3391 * I notice this method can also return errors from the queue disciplines,
3392 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3393 * be positive.
3394 *
3395 * Regardless of the return value, the skb is consumed, so it is currently
3396 * difficult to retry a send to this method. (You can bump the ref count
3397 * before sending to hold a reference for retry if you are careful.)
3398 *
3399 * When calling this method, interrupts MUST be enabled. This is because
3400 * the BH enable code must have IRQs enabled so that it will not deadlock.
3401 * --BLG
3402 */
0a59f3a9 3403static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3404{
3405 struct net_device *dev = skb->dev;
dc2b4847 3406 struct netdev_queue *txq;
1da177e4
LT
3407 struct Qdisc *q;
3408 int rc = -ENOMEM;
3409
6d1ccff6
ED
3410 skb_reset_mac_header(skb);
3411
e7fd2885
WB
3412 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3413 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3414
4ec93edb
YH
3415 /* Disable soft irqs for various locks below. Also
3416 * stops preemption for RCU.
1da177e4 3417 */
4ec93edb 3418 rcu_read_lock_bh();
1da177e4 3419
5bc1421e
NH
3420 skb_update_prio(skb);
3421
1f211a1b
DB
3422 qdisc_pkt_len_init(skb);
3423#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3424 skb->tc_at_ingress = 0;
1f211a1b
DB
3425# ifdef CONFIG_NET_EGRESS
3426 if (static_key_false(&egress_needed)) {
3427 skb = sch_handle_egress(skb, &rc, dev);
3428 if (!skb)
3429 goto out;
3430 }
3431# endif
3432#endif
02875878
ED
3433 /* If device/qdisc don't need skb->dst, release it right now while
3434 * its hot in this cpu cache.
3435 */
3436 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3437 skb_dst_drop(skb);
3438 else
3439 skb_dst_force(skb);
3440
f663dd9a 3441 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3442 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3443
cf66ba58 3444 trace_net_dev_queue(skb);
1da177e4 3445 if (q->enqueue) {
bbd8a0d3 3446 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3447 goto out;
1da177e4
LT
3448 }
3449
3450 /* The device has no queue. Common case for software devices:
eb13da1a 3451 * loopback, all the sorts of tunnels...
1da177e4 3452
eb13da1a 3453 * Really, it is unlikely that netif_tx_lock protection is necessary
3454 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3455 * counters.)
3456 * However, it is possible, that they rely on protection
3457 * made by us here.
1da177e4 3458
eb13da1a 3459 * Check this and shot the lock. It is not prone from deadlocks.
3460 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3461 */
3462 if (dev->flags & IFF_UP) {
3463 int cpu = smp_processor_id(); /* ok because BHs are off */
3464
c773e847 3465 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3466 if (unlikely(__this_cpu_read(xmit_recursion) >
3467 XMIT_RECURSION_LIMIT))
745e20f1
ED
3468 goto recursion_alert;
3469
1f59533f
JDB
3470 skb = validate_xmit_skb(skb, dev);
3471 if (!skb)
d21fd63e 3472 goto out;
1f59533f 3473
c773e847 3474 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3475
73466498 3476 if (!netif_xmit_stopped(txq)) {
745e20f1 3477 __this_cpu_inc(xmit_recursion);
ce93718f 3478 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3479 __this_cpu_dec(xmit_recursion);
572a9d7b 3480 if (dev_xmit_complete(rc)) {
c773e847 3481 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3482 goto out;
3483 }
3484 }
c773e847 3485 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3486 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3487 dev->name);
1da177e4
LT
3488 } else {
3489 /* Recursion is detected! It is possible,
745e20f1
ED
3490 * unfortunately
3491 */
3492recursion_alert:
e87cc472
JP
3493 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3494 dev->name);
1da177e4
LT
3495 }
3496 }
3497
3498 rc = -ENETDOWN;
d4828d85 3499 rcu_read_unlock_bh();
1da177e4 3500
015f0688 3501 atomic_long_inc(&dev->tx_dropped);
1f59533f 3502 kfree_skb_list(skb);
1da177e4
LT
3503 return rc;
3504out:
d4828d85 3505 rcu_read_unlock_bh();
1da177e4
LT
3506 return rc;
3507}
f663dd9a 3508
2b4aa3ce 3509int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3510{
3511 return __dev_queue_xmit(skb, NULL);
3512}
2b4aa3ce 3513EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3514
f663dd9a
JW
3515int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3516{
3517 return __dev_queue_xmit(skb, accel_priv);
3518}
3519EXPORT_SYMBOL(dev_queue_xmit_accel);
3520
1da177e4 3521
eb13da1a 3522/*************************************************************************
3523 * Receiver routines
3524 *************************************************************************/
1da177e4 3525
6b2bedc3 3526int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3527EXPORT_SYMBOL(netdev_max_backlog);
3528
3b098e2d 3529int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3530int netdev_budget __read_mostly = 300;
7acf8a1e 3531unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3532int weight_p __read_mostly = 64; /* old backlog weight */
3533int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3534int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3535int dev_rx_weight __read_mostly = 64;
3536int dev_tx_weight __read_mostly = 64;
1da177e4 3537
eecfd7c4
ED
3538/* Called with irq disabled */
3539static inline void ____napi_schedule(struct softnet_data *sd,
3540 struct napi_struct *napi)
3541{
3542 list_add_tail(&napi->poll_list, &sd->poll_list);
3543 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3544}
3545
bfb564e7
KK
3546#ifdef CONFIG_RPS
3547
3548/* One global table that all flow-based protocols share. */
6e3f7faf 3549struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3550EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3551u32 rps_cpu_mask __read_mostly;
3552EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3553
c5905afb 3554struct static_key rps_needed __read_mostly;
3df97ba8 3555EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3556struct static_key rfs_needed __read_mostly;
3557EXPORT_SYMBOL(rfs_needed);
adc9300e 3558
c445477d
BH
3559static struct rps_dev_flow *
3560set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3561 struct rps_dev_flow *rflow, u16 next_cpu)
3562{
a31196b0 3563 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3564#ifdef CONFIG_RFS_ACCEL
3565 struct netdev_rx_queue *rxqueue;
3566 struct rps_dev_flow_table *flow_table;
3567 struct rps_dev_flow *old_rflow;
3568 u32 flow_id;
3569 u16 rxq_index;
3570 int rc;
3571
3572 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3573 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3574 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3575 goto out;
3576 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3577 if (rxq_index == skb_get_rx_queue(skb))
3578 goto out;
3579
3580 rxqueue = dev->_rx + rxq_index;
3581 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3582 if (!flow_table)
3583 goto out;
61b905da 3584 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3585 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3586 rxq_index, flow_id);
3587 if (rc < 0)
3588 goto out;
3589 old_rflow = rflow;
3590 rflow = &flow_table->flows[flow_id];
c445477d
BH
3591 rflow->filter = rc;
3592 if (old_rflow->filter == rflow->filter)
3593 old_rflow->filter = RPS_NO_FILTER;
3594 out:
3595#endif
3596 rflow->last_qtail =
09994d1b 3597 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3598 }
3599
09994d1b 3600 rflow->cpu = next_cpu;
c445477d
BH
3601 return rflow;
3602}
3603
bfb564e7
KK
3604/*
3605 * get_rps_cpu is called from netif_receive_skb and returns the target
3606 * CPU from the RPS map of the receiving queue for a given skb.
3607 * rcu_read_lock must be held on entry.
3608 */
3609static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3610 struct rps_dev_flow **rflowp)
3611{
567e4b79
ED
3612 const struct rps_sock_flow_table *sock_flow_table;
3613 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3614 struct rps_dev_flow_table *flow_table;
567e4b79 3615 struct rps_map *map;
bfb564e7 3616 int cpu = -1;
567e4b79 3617 u32 tcpu;
61b905da 3618 u32 hash;
bfb564e7
KK
3619
3620 if (skb_rx_queue_recorded(skb)) {
3621 u16 index = skb_get_rx_queue(skb);
567e4b79 3622
62fe0b40
BH
3623 if (unlikely(index >= dev->real_num_rx_queues)) {
3624 WARN_ONCE(dev->real_num_rx_queues > 1,
3625 "%s received packet on queue %u, but number "
3626 "of RX queues is %u\n",
3627 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3628 goto done;
3629 }
567e4b79
ED
3630 rxqueue += index;
3631 }
bfb564e7 3632
567e4b79
ED
3633 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3634
3635 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3636 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3637 if (!flow_table && !map)
bfb564e7
KK
3638 goto done;
3639
2d47b459 3640 skb_reset_network_header(skb);
61b905da
TH
3641 hash = skb_get_hash(skb);
3642 if (!hash)
bfb564e7
KK
3643 goto done;
3644
fec5e652
TH
3645 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3646 if (flow_table && sock_flow_table) {
fec5e652 3647 struct rps_dev_flow *rflow;
567e4b79
ED
3648 u32 next_cpu;
3649 u32 ident;
3650
3651 /* First check into global flow table if there is a match */
3652 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3653 if ((ident ^ hash) & ~rps_cpu_mask)
3654 goto try_rps;
fec5e652 3655
567e4b79
ED
3656 next_cpu = ident & rps_cpu_mask;
3657
3658 /* OK, now we know there is a match,
3659 * we can look at the local (per receive queue) flow table
3660 */
61b905da 3661 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3662 tcpu = rflow->cpu;
3663
fec5e652
TH
3664 /*
3665 * If the desired CPU (where last recvmsg was done) is
3666 * different from current CPU (one in the rx-queue flow
3667 * table entry), switch if one of the following holds:
a31196b0 3668 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3669 * - Current CPU is offline.
3670 * - The current CPU's queue tail has advanced beyond the
3671 * last packet that was enqueued using this table entry.
3672 * This guarantees that all previous packets for the flow
3673 * have been dequeued, thus preserving in order delivery.
3674 */
3675 if (unlikely(tcpu != next_cpu) &&
a31196b0 3676 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3677 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3678 rflow->last_qtail)) >= 0)) {
3679 tcpu = next_cpu;
c445477d 3680 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3681 }
c445477d 3682
a31196b0 3683 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3684 *rflowp = rflow;
3685 cpu = tcpu;
3686 goto done;
3687 }
3688 }
3689
567e4b79
ED
3690try_rps:
3691
0a9627f2 3692 if (map) {
8fc54f68 3693 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3694 if (cpu_online(tcpu)) {
3695 cpu = tcpu;
3696 goto done;
3697 }
3698 }
3699
3700done:
0a9627f2
TH
3701 return cpu;
3702}
3703
c445477d
BH
3704#ifdef CONFIG_RFS_ACCEL
3705
3706/**
3707 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3708 * @dev: Device on which the filter was set
3709 * @rxq_index: RX queue index
3710 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3711 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3712 *
3713 * Drivers that implement ndo_rx_flow_steer() should periodically call
3714 * this function for each installed filter and remove the filters for
3715 * which it returns %true.
3716 */
3717bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3718 u32 flow_id, u16 filter_id)
3719{
3720 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3721 struct rps_dev_flow_table *flow_table;
3722 struct rps_dev_flow *rflow;
3723 bool expire = true;
a31196b0 3724 unsigned int cpu;
c445477d
BH
3725
3726 rcu_read_lock();
3727 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3728 if (flow_table && flow_id <= flow_table->mask) {
3729 rflow = &flow_table->flows[flow_id];
3730 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3731 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3732 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3733 rflow->last_qtail) <
3734 (int)(10 * flow_table->mask)))
3735 expire = false;
3736 }
3737 rcu_read_unlock();
3738 return expire;
3739}
3740EXPORT_SYMBOL(rps_may_expire_flow);
3741
3742#endif /* CONFIG_RFS_ACCEL */
3743
0a9627f2 3744/* Called from hardirq (IPI) context */
e36fa2f7 3745static void rps_trigger_softirq(void *data)
0a9627f2 3746{
e36fa2f7
ED
3747 struct softnet_data *sd = data;
3748
eecfd7c4 3749 ____napi_schedule(sd, &sd->backlog);
dee42870 3750 sd->received_rps++;
0a9627f2 3751}
e36fa2f7 3752
fec5e652 3753#endif /* CONFIG_RPS */
0a9627f2 3754
e36fa2f7
ED
3755/*
3756 * Check if this softnet_data structure is another cpu one
3757 * If yes, queue it to our IPI list and return 1
3758 * If no, return 0
3759 */
3760static int rps_ipi_queued(struct softnet_data *sd)
3761{
3762#ifdef CONFIG_RPS
903ceff7 3763 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3764
3765 if (sd != mysd) {
3766 sd->rps_ipi_next = mysd->rps_ipi_list;
3767 mysd->rps_ipi_list = sd;
3768
3769 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3770 return 1;
3771 }
3772#endif /* CONFIG_RPS */
3773 return 0;
3774}
3775
99bbc707
WB
3776#ifdef CONFIG_NET_FLOW_LIMIT
3777int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3778#endif
3779
3780static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3781{
3782#ifdef CONFIG_NET_FLOW_LIMIT
3783 struct sd_flow_limit *fl;
3784 struct softnet_data *sd;
3785 unsigned int old_flow, new_flow;
3786
3787 if (qlen < (netdev_max_backlog >> 1))
3788 return false;
3789
903ceff7 3790 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3791
3792 rcu_read_lock();
3793 fl = rcu_dereference(sd->flow_limit);
3794 if (fl) {
3958afa1 3795 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3796 old_flow = fl->history[fl->history_head];
3797 fl->history[fl->history_head] = new_flow;
3798
3799 fl->history_head++;
3800 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3801
3802 if (likely(fl->buckets[old_flow]))
3803 fl->buckets[old_flow]--;
3804
3805 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3806 fl->count++;
3807 rcu_read_unlock();
3808 return true;
3809 }
3810 }
3811 rcu_read_unlock();
3812#endif
3813 return false;
3814}
3815
0a9627f2
TH
3816/*
3817 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3818 * queue (may be a remote CPU queue).
3819 */
fec5e652
TH
3820static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3821 unsigned int *qtail)
0a9627f2 3822{
e36fa2f7 3823 struct softnet_data *sd;
0a9627f2 3824 unsigned long flags;
99bbc707 3825 unsigned int qlen;
0a9627f2 3826
e36fa2f7 3827 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3828
3829 local_irq_save(flags);
0a9627f2 3830
e36fa2f7 3831 rps_lock(sd);
e9e4dd32
JA
3832 if (!netif_running(skb->dev))
3833 goto drop;
99bbc707
WB
3834 qlen = skb_queue_len(&sd->input_pkt_queue);
3835 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3836 if (qlen) {
0a9627f2 3837enqueue:
e36fa2f7 3838 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3839 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3840 rps_unlock(sd);
152102c7 3841 local_irq_restore(flags);
0a9627f2
TH
3842 return NET_RX_SUCCESS;
3843 }
3844
ebda37c2
ED
3845 /* Schedule NAPI for backlog device
3846 * We can use non atomic operation since we own the queue lock
3847 */
3848 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3849 if (!rps_ipi_queued(sd))
eecfd7c4 3850 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3851 }
3852 goto enqueue;
3853 }
3854
e9e4dd32 3855drop:
dee42870 3856 sd->dropped++;
e36fa2f7 3857 rps_unlock(sd);
0a9627f2 3858
0a9627f2
TH
3859 local_irq_restore(flags);
3860
caf586e5 3861 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3862 kfree_skb(skb);
3863 return NET_RX_DROP;
3864}
1da177e4 3865
ae78dbfa 3866static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3867{
b0e28f1e 3868 int ret;
1da177e4 3869
588f0330 3870 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3871
cf66ba58 3872 trace_netif_rx(skb);
df334545 3873#ifdef CONFIG_RPS
c5905afb 3874 if (static_key_false(&rps_needed)) {
fec5e652 3875 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3876 int cpu;
3877
cece1945 3878 preempt_disable();
b0e28f1e 3879 rcu_read_lock();
fec5e652
TH
3880
3881 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3882 if (cpu < 0)
3883 cpu = smp_processor_id();
fec5e652
TH
3884
3885 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3886
b0e28f1e 3887 rcu_read_unlock();
cece1945 3888 preempt_enable();
adc9300e
ED
3889 } else
3890#endif
fec5e652
TH
3891 {
3892 unsigned int qtail;
f4563a75 3893
fec5e652
TH
3894 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3895 put_cpu();
3896 }
b0e28f1e 3897 return ret;
1da177e4 3898}
ae78dbfa
BH
3899
3900/**
3901 * netif_rx - post buffer to the network code
3902 * @skb: buffer to post
3903 *
3904 * This function receives a packet from a device driver and queues it for
3905 * the upper (protocol) levels to process. It always succeeds. The buffer
3906 * may be dropped during processing for congestion control or by the
3907 * protocol layers.
3908 *
3909 * return values:
3910 * NET_RX_SUCCESS (no congestion)
3911 * NET_RX_DROP (packet was dropped)
3912 *
3913 */
3914
3915int netif_rx(struct sk_buff *skb)
3916{
3917 trace_netif_rx_entry(skb);
3918
3919 return netif_rx_internal(skb);
3920}
d1b19dff 3921EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3922
3923int netif_rx_ni(struct sk_buff *skb)
3924{
3925 int err;
3926
ae78dbfa
BH
3927 trace_netif_rx_ni_entry(skb);
3928
1da177e4 3929 preempt_disable();
ae78dbfa 3930 err = netif_rx_internal(skb);
1da177e4
LT
3931 if (local_softirq_pending())
3932 do_softirq();
3933 preempt_enable();
3934
3935 return err;
3936}
1da177e4
LT
3937EXPORT_SYMBOL(netif_rx_ni);
3938
0766f788 3939static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3940{
903ceff7 3941 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3942
3943 if (sd->completion_queue) {
3944 struct sk_buff *clist;
3945
3946 local_irq_disable();
3947 clist = sd->completion_queue;
3948 sd->completion_queue = NULL;
3949 local_irq_enable();
3950
3951 while (clist) {
3952 struct sk_buff *skb = clist;
f4563a75 3953
1da177e4
LT
3954 clist = clist->next;
3955
547b792c 3956 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3957 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3958 trace_consume_skb(skb);
3959 else
3960 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3961
3962 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3963 __kfree_skb(skb);
3964 else
3965 __kfree_skb_defer(skb);
1da177e4 3966 }
15fad714
JDB
3967
3968 __kfree_skb_flush();
1da177e4
LT
3969 }
3970
3971 if (sd->output_queue) {
37437bb2 3972 struct Qdisc *head;
1da177e4
LT
3973
3974 local_irq_disable();
3975 head = sd->output_queue;
3976 sd->output_queue = NULL;
a9cbd588 3977 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3978 local_irq_enable();
3979
3980 while (head) {
37437bb2
DM
3981 struct Qdisc *q = head;
3982 spinlock_t *root_lock;
3983
1da177e4
LT
3984 head = head->next_sched;
3985
5fb66229 3986 root_lock = qdisc_lock(q);
3bcb846c
ED
3987 spin_lock(root_lock);
3988 /* We need to make sure head->next_sched is read
3989 * before clearing __QDISC_STATE_SCHED
3990 */
3991 smp_mb__before_atomic();
3992 clear_bit(__QDISC_STATE_SCHED, &q->state);
3993 qdisc_run(q);
3994 spin_unlock(root_lock);
1da177e4
LT
3995 }
3996 }
3997}
3998
181402a5 3999#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4000/* This hook is defined here for ATM LANE */
4001int (*br_fdb_test_addr_hook)(struct net_device *dev,
4002 unsigned char *addr) __read_mostly;
4fb019a0 4003EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4004#endif
1da177e4 4005
1f211a1b
DB
4006static inline struct sk_buff *
4007sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4008 struct net_device *orig_dev)
f697c3e8 4009{
e7582bab 4010#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
4011 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4012 struct tcf_result cl_res;
24824a09 4013
c9e99fd0
DB
4014 /* If there's at least one ingress present somewhere (so
4015 * we get here via enabled static key), remaining devices
4016 * that are not configured with an ingress qdisc will bail
d2788d34 4017 * out here.
c9e99fd0 4018 */
d2788d34 4019 if (!cl)
4577139b 4020 return skb;
f697c3e8
HX
4021 if (*pt_prev) {
4022 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4023 *pt_prev = NULL;
1da177e4
LT
4024 }
4025
3365495c 4026 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4027 skb->tc_at_ingress = 1;
24ea591d 4028 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 4029
87d83093 4030 switch (tcf_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
4031 case TC_ACT_OK:
4032 case TC_ACT_RECLASSIFY:
4033 skb->tc_index = TC_H_MIN(cl_res.classid);
4034 break;
4035 case TC_ACT_SHOT:
24ea591d 4036 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
4037 kfree_skb(skb);
4038 return NULL;
d2788d34
DB
4039 case TC_ACT_STOLEN:
4040 case TC_ACT_QUEUED:
8a3a4c6e 4041 consume_skb(skb);
d2788d34 4042 return NULL;
27b29f63
AS
4043 case TC_ACT_REDIRECT:
4044 /* skb_mac_header check was done by cls/act_bpf, so
4045 * we can safely push the L2 header back before
4046 * redirecting to another netdev
4047 */
4048 __skb_push(skb, skb->mac_len);
4049 skb_do_redirect(skb);
4050 return NULL;
d2788d34
DB
4051 default:
4052 break;
f697c3e8 4053 }
e7582bab 4054#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4055 return skb;
4056}
1da177e4 4057
24b27fc4
MB
4058/**
4059 * netdev_is_rx_handler_busy - check if receive handler is registered
4060 * @dev: device to check
4061 *
4062 * Check if a receive handler is already registered for a given device.
4063 * Return true if there one.
4064 *
4065 * The caller must hold the rtnl_mutex.
4066 */
4067bool netdev_is_rx_handler_busy(struct net_device *dev)
4068{
4069 ASSERT_RTNL();
4070 return dev && rtnl_dereference(dev->rx_handler);
4071}
4072EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4073
ab95bfe0
JP
4074/**
4075 * netdev_rx_handler_register - register receive handler
4076 * @dev: device to register a handler for
4077 * @rx_handler: receive handler to register
93e2c32b 4078 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4079 *
e227867f 4080 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4081 * called from __netif_receive_skb. A negative errno code is returned
4082 * on a failure.
4083 *
4084 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4085 *
4086 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4087 */
4088int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4089 rx_handler_func_t *rx_handler,
4090 void *rx_handler_data)
ab95bfe0 4091{
1b7cd004 4092 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4093 return -EBUSY;
4094
00cfec37 4095 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4096 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4097 rcu_assign_pointer(dev->rx_handler, rx_handler);
4098
4099 return 0;
4100}
4101EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4102
4103/**
4104 * netdev_rx_handler_unregister - unregister receive handler
4105 * @dev: device to unregister a handler from
4106 *
166ec369 4107 * Unregister a receive handler from a device.
ab95bfe0
JP
4108 *
4109 * The caller must hold the rtnl_mutex.
4110 */
4111void netdev_rx_handler_unregister(struct net_device *dev)
4112{
4113
4114 ASSERT_RTNL();
a9b3cd7f 4115 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4116 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4117 * section has a guarantee to see a non NULL rx_handler_data
4118 * as well.
4119 */
4120 synchronize_net();
a9b3cd7f 4121 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4122}
4123EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4124
b4b9e355
MG
4125/*
4126 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4127 * the special handling of PFMEMALLOC skbs.
4128 */
4129static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4130{
4131 switch (skb->protocol) {
2b8837ae
JP
4132 case htons(ETH_P_ARP):
4133 case htons(ETH_P_IP):
4134 case htons(ETH_P_IPV6):
4135 case htons(ETH_P_8021Q):
4136 case htons(ETH_P_8021AD):
b4b9e355
MG
4137 return true;
4138 default:
4139 return false;
4140 }
4141}
4142
e687ad60
PN
4143static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4144 int *ret, struct net_device *orig_dev)
4145{
e7582bab 4146#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4147 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4148 int ingress_retval;
4149
e687ad60
PN
4150 if (*pt_prev) {
4151 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4152 *pt_prev = NULL;
4153 }
4154
2c1e2703
AC
4155 rcu_read_lock();
4156 ingress_retval = nf_hook_ingress(skb);
4157 rcu_read_unlock();
4158 return ingress_retval;
e687ad60 4159 }
e7582bab 4160#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4161 return 0;
4162}
e687ad60 4163
9754e293 4164static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4165{
4166 struct packet_type *ptype, *pt_prev;
ab95bfe0 4167 rx_handler_func_t *rx_handler;
f2ccd8fa 4168 struct net_device *orig_dev;
8a4eb573 4169 bool deliver_exact = false;
1da177e4 4170 int ret = NET_RX_DROP;
252e3346 4171 __be16 type;
1da177e4 4172
588f0330 4173 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4174
cf66ba58 4175 trace_netif_receive_skb(skb);
9b22ea56 4176
cc9bd5ce 4177 orig_dev = skb->dev;
8f903c70 4178
c1d2bbe1 4179 skb_reset_network_header(skb);
fda55eca
ED
4180 if (!skb_transport_header_was_set(skb))
4181 skb_reset_transport_header(skb);
0b5c9db1 4182 skb_reset_mac_len(skb);
1da177e4
LT
4183
4184 pt_prev = NULL;
4185
63d8ea7f 4186another_round:
b6858177 4187 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4188
4189 __this_cpu_inc(softnet_data.processed);
4190
8ad227ff
PM
4191 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4192 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4193 skb = skb_vlan_untag(skb);
bcc6d479 4194 if (unlikely(!skb))
2c17d27c 4195 goto out;
bcc6d479
JP
4196 }
4197
e7246e12
WB
4198 if (skb_skip_tc_classify(skb))
4199 goto skip_classify;
1da177e4 4200
9754e293 4201 if (pfmemalloc)
b4b9e355
MG
4202 goto skip_taps;
4203
1da177e4 4204 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4205 if (pt_prev)
4206 ret = deliver_skb(skb, pt_prev, orig_dev);
4207 pt_prev = ptype;
4208 }
4209
4210 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4211 if (pt_prev)
4212 ret = deliver_skb(skb, pt_prev, orig_dev);
4213 pt_prev = ptype;
1da177e4
LT
4214 }
4215
b4b9e355 4216skip_taps:
1cf51900 4217#ifdef CONFIG_NET_INGRESS
4577139b 4218 if (static_key_false(&ingress_needed)) {
1f211a1b 4219 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4220 if (!skb)
2c17d27c 4221 goto out;
e687ad60
PN
4222
4223 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4224 goto out;
4577139b 4225 }
1cf51900 4226#endif
a5135bcf 4227 skb_reset_tc(skb);
e7246e12 4228skip_classify:
9754e293 4229 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4230 goto drop;
4231
df8a39de 4232 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4233 if (pt_prev) {
4234 ret = deliver_skb(skb, pt_prev, orig_dev);
4235 pt_prev = NULL;
4236 }
48cc32d3 4237 if (vlan_do_receive(&skb))
2425717b
JF
4238 goto another_round;
4239 else if (unlikely(!skb))
2c17d27c 4240 goto out;
2425717b
JF
4241 }
4242
48cc32d3 4243 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4244 if (rx_handler) {
4245 if (pt_prev) {
4246 ret = deliver_skb(skb, pt_prev, orig_dev);
4247 pt_prev = NULL;
4248 }
8a4eb573
JP
4249 switch (rx_handler(&skb)) {
4250 case RX_HANDLER_CONSUMED:
3bc1b1ad 4251 ret = NET_RX_SUCCESS;
2c17d27c 4252 goto out;
8a4eb573 4253 case RX_HANDLER_ANOTHER:
63d8ea7f 4254 goto another_round;
8a4eb573
JP
4255 case RX_HANDLER_EXACT:
4256 deliver_exact = true;
4257 case RX_HANDLER_PASS:
4258 break;
4259 default:
4260 BUG();
4261 }
ab95bfe0 4262 }
1da177e4 4263
df8a39de
JP
4264 if (unlikely(skb_vlan_tag_present(skb))) {
4265 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4266 skb->pkt_type = PACKET_OTHERHOST;
4267 /* Note: we might in the future use prio bits
4268 * and set skb->priority like in vlan_do_receive()
4269 * For the time being, just ignore Priority Code Point
4270 */
4271 skb->vlan_tci = 0;
4272 }
48cc32d3 4273
7866a621
SN
4274 type = skb->protocol;
4275
63d8ea7f 4276 /* deliver only exact match when indicated */
7866a621
SN
4277 if (likely(!deliver_exact)) {
4278 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4279 &ptype_base[ntohs(type) &
4280 PTYPE_HASH_MASK]);
4281 }
1f3c8804 4282
7866a621
SN
4283 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4284 &orig_dev->ptype_specific);
4285
4286 if (unlikely(skb->dev != orig_dev)) {
4287 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4288 &skb->dev->ptype_specific);
1da177e4
LT
4289 }
4290
4291 if (pt_prev) {
1080e512 4292 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4293 goto drop;
1080e512
MT
4294 else
4295 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4296 } else {
b4b9e355 4297drop:
6e7333d3
JW
4298 if (!deliver_exact)
4299 atomic_long_inc(&skb->dev->rx_dropped);
4300 else
4301 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4302 kfree_skb(skb);
4303 /* Jamal, now you will not able to escape explaining
4304 * me how you were going to use this. :-)
4305 */
4306 ret = NET_RX_DROP;
4307 }
4308
2c17d27c 4309out:
9754e293
DM
4310 return ret;
4311}
4312
4313static int __netif_receive_skb(struct sk_buff *skb)
4314{
4315 int ret;
4316
4317 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 4318 unsigned int noreclaim_flag;
9754e293
DM
4319
4320 /*
4321 * PFMEMALLOC skbs are special, they should
4322 * - be delivered to SOCK_MEMALLOC sockets only
4323 * - stay away from userspace
4324 * - have bounded memory usage
4325 *
4326 * Use PF_MEMALLOC as this saves us from propagating the allocation
4327 * context down to all allocation sites.
4328 */
f1083048 4329 noreclaim_flag = memalloc_noreclaim_save();
9754e293 4330 ret = __netif_receive_skb_core(skb, true);
f1083048 4331 memalloc_noreclaim_restore(noreclaim_flag);
9754e293
DM
4332 } else
4333 ret = __netif_receive_skb_core(skb, false);
4334
1da177e4
LT
4335 return ret;
4336}
0a9627f2 4337
b5cdae32
DM
4338static struct static_key generic_xdp_needed __read_mostly;
4339
4340static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4341{
4342 struct bpf_prog *new = xdp->prog;
4343 int ret = 0;
4344
4345 switch (xdp->command) {
4346 case XDP_SETUP_PROG: {
4347 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4348
4349 rcu_assign_pointer(dev->xdp_prog, new);
4350 if (old)
4351 bpf_prog_put(old);
4352
4353 if (old && !new) {
4354 static_key_slow_dec(&generic_xdp_needed);
4355 } else if (new && !old) {
4356 static_key_slow_inc(&generic_xdp_needed);
4357 dev_disable_lro(dev);
4358 }
4359 break;
4360 }
4361
4362 case XDP_QUERY_PROG:
4363 xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog);
4364 break;
4365
4366 default:
4367 ret = -EINVAL;
4368 break;
4369 }
4370
4371 return ret;
4372}
4373
4374static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4375 struct bpf_prog *xdp_prog)
4376{
4377 struct xdp_buff xdp;
4378 u32 act = XDP_DROP;
4379 void *orig_data;
4380 int hlen, off;
4381 u32 mac_len;
4382
4383 /* Reinjected packets coming from act_mirred or similar should
4384 * not get XDP generic processing.
4385 */
4386 if (skb_cloned(skb))
4387 return XDP_PASS;
4388
4389 if (skb_linearize(skb))
4390 goto do_drop;
4391
4392 /* The XDP program wants to see the packet starting at the MAC
4393 * header.
4394 */
4395 mac_len = skb->data - skb_mac_header(skb);
4396 hlen = skb_headlen(skb) + mac_len;
4397 xdp.data = skb->data - mac_len;
4398 xdp.data_end = xdp.data + hlen;
4399 xdp.data_hard_start = skb->data - skb_headroom(skb);
4400 orig_data = xdp.data;
4401
4402 act = bpf_prog_run_xdp(xdp_prog, &xdp);
4403
4404 off = xdp.data - orig_data;
4405 if (off > 0)
4406 __skb_pull(skb, off);
4407 else if (off < 0)
4408 __skb_push(skb, -off);
4409
4410 switch (act) {
4411 case XDP_TX:
4412 __skb_push(skb, mac_len);
4413 /* fall through */
4414 case XDP_PASS:
4415 break;
4416
4417 default:
4418 bpf_warn_invalid_xdp_action(act);
4419 /* fall through */
4420 case XDP_ABORTED:
4421 trace_xdp_exception(skb->dev, xdp_prog, act);
4422 /* fall through */
4423 case XDP_DROP:
4424 do_drop:
4425 kfree_skb(skb);
4426 break;
4427 }
4428
4429 return act;
4430}
4431
4432/* When doing generic XDP we have to bypass the qdisc layer and the
4433 * network taps in order to match in-driver-XDP behavior.
4434 */
4435static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4436{
4437 struct net_device *dev = skb->dev;
4438 struct netdev_queue *txq;
4439 bool free_skb = true;
4440 int cpu, rc;
4441
4442 txq = netdev_pick_tx(dev, skb, NULL);
4443 cpu = smp_processor_id();
4444 HARD_TX_LOCK(dev, txq, cpu);
4445 if (!netif_xmit_stopped(txq)) {
4446 rc = netdev_start_xmit(skb, dev, txq, 0);
4447 if (dev_xmit_complete(rc))
4448 free_skb = false;
4449 }
4450 HARD_TX_UNLOCK(dev, txq);
4451 if (free_skb) {
4452 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4453 kfree_skb(skb);
4454 }
4455}
4456
ae78dbfa 4457static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4458{
2c17d27c
JA
4459 int ret;
4460
588f0330 4461 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4462
c1f19b51
RC
4463 if (skb_defer_rx_timestamp(skb))
4464 return NET_RX_SUCCESS;
4465
2c17d27c
JA
4466 rcu_read_lock();
4467
b5cdae32
DM
4468 if (static_key_false(&generic_xdp_needed)) {
4469 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4470
4471 if (xdp_prog) {
4472 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4473
4474 if (act != XDP_PASS) {
4475 rcu_read_unlock();
4476 if (act == XDP_TX)
4477 generic_xdp_tx(skb, xdp_prog);
4478 return NET_RX_DROP;
4479 }
4480 }
4481 }
4482
df334545 4483#ifdef CONFIG_RPS
c5905afb 4484 if (static_key_false(&rps_needed)) {
3b098e2d 4485 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4486 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4487
3b098e2d
ED
4488 if (cpu >= 0) {
4489 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4490 rcu_read_unlock();
adc9300e 4491 return ret;
3b098e2d 4492 }
fec5e652 4493 }
1e94d72f 4494#endif
2c17d27c
JA
4495 ret = __netif_receive_skb(skb);
4496 rcu_read_unlock();
4497 return ret;
0a9627f2 4498}
ae78dbfa
BH
4499
4500/**
4501 * netif_receive_skb - process receive buffer from network
4502 * @skb: buffer to process
4503 *
4504 * netif_receive_skb() is the main receive data processing function.
4505 * It always succeeds. The buffer may be dropped during processing
4506 * for congestion control or by the protocol layers.
4507 *
4508 * This function may only be called from softirq context and interrupts
4509 * should be enabled.
4510 *
4511 * Return values (usually ignored):
4512 * NET_RX_SUCCESS: no congestion
4513 * NET_RX_DROP: packet was dropped
4514 */
04eb4489 4515int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4516{
4517 trace_netif_receive_skb_entry(skb);
4518
4519 return netif_receive_skb_internal(skb);
4520}
04eb4489 4521EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4522
41852497 4523DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4524
4525/* Network device is going away, flush any packets still pending */
4526static void flush_backlog(struct work_struct *work)
6e583ce5 4527{
6e583ce5 4528 struct sk_buff *skb, *tmp;
145dd5f9
PA
4529 struct softnet_data *sd;
4530
4531 local_bh_disable();
4532 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4533
145dd5f9 4534 local_irq_disable();
e36fa2f7 4535 rps_lock(sd);
6e7676c1 4536 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4537 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4538 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4539 kfree_skb(skb);
76cc8b13 4540 input_queue_head_incr(sd);
6e583ce5 4541 }
6e7676c1 4542 }
e36fa2f7 4543 rps_unlock(sd);
145dd5f9 4544 local_irq_enable();
6e7676c1
CG
4545
4546 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4547 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4548 __skb_unlink(skb, &sd->process_queue);
4549 kfree_skb(skb);
76cc8b13 4550 input_queue_head_incr(sd);
6e7676c1
CG
4551 }
4552 }
145dd5f9
PA
4553 local_bh_enable();
4554}
4555
41852497 4556static void flush_all_backlogs(void)
145dd5f9
PA
4557{
4558 unsigned int cpu;
4559
4560 get_online_cpus();
4561
41852497
ED
4562 for_each_online_cpu(cpu)
4563 queue_work_on(cpu, system_highpri_wq,
4564 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4565
4566 for_each_online_cpu(cpu)
41852497 4567 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4568
4569 put_online_cpus();
6e583ce5
SH
4570}
4571
d565b0a1
HX
4572static int napi_gro_complete(struct sk_buff *skb)
4573{
22061d80 4574 struct packet_offload *ptype;
d565b0a1 4575 __be16 type = skb->protocol;
22061d80 4576 struct list_head *head = &offload_base;
d565b0a1
HX
4577 int err = -ENOENT;
4578
c3c7c254
ED
4579 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4580
fc59f9a3
HX
4581 if (NAPI_GRO_CB(skb)->count == 1) {
4582 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4583 goto out;
fc59f9a3 4584 }
d565b0a1
HX
4585
4586 rcu_read_lock();
4587 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4588 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4589 continue;
4590
299603e8 4591 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4592 break;
4593 }
4594 rcu_read_unlock();
4595
4596 if (err) {
4597 WARN_ON(&ptype->list == head);
4598 kfree_skb(skb);
4599 return NET_RX_SUCCESS;
4600 }
4601
4602out:
ae78dbfa 4603 return netif_receive_skb_internal(skb);
d565b0a1
HX
4604}
4605
2e71a6f8
ED
4606/* napi->gro_list contains packets ordered by age.
4607 * youngest packets at the head of it.
4608 * Complete skbs in reverse order to reduce latencies.
4609 */
4610void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4611{
2e71a6f8 4612 struct sk_buff *skb, *prev = NULL;
d565b0a1 4613
2e71a6f8
ED
4614 /* scan list and build reverse chain */
4615 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4616 skb->prev = prev;
4617 prev = skb;
4618 }
4619
4620 for (skb = prev; skb; skb = prev) {
d565b0a1 4621 skb->next = NULL;
2e71a6f8
ED
4622
4623 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4624 return;
4625
4626 prev = skb->prev;
d565b0a1 4627 napi_gro_complete(skb);
2e71a6f8 4628 napi->gro_count--;
d565b0a1
HX
4629 }
4630
4631 napi->gro_list = NULL;
4632}
86cac58b 4633EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4634
89c5fa33
ED
4635static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4636{
4637 struct sk_buff *p;
4638 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4639 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4640
4641 for (p = napi->gro_list; p; p = p->next) {
4642 unsigned long diffs;
4643
0b4cec8c
TH
4644 NAPI_GRO_CB(p)->flush = 0;
4645
4646 if (hash != skb_get_hash_raw(p)) {
4647 NAPI_GRO_CB(p)->same_flow = 0;
4648 continue;
4649 }
4650
89c5fa33
ED
4651 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4652 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4653 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4654 if (maclen == ETH_HLEN)
4655 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4656 skb_mac_header(skb));
89c5fa33
ED
4657 else if (!diffs)
4658 diffs = memcmp(skb_mac_header(p),
a50e233c 4659 skb_mac_header(skb),
89c5fa33
ED
4660 maclen);
4661 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4662 }
4663}
4664
299603e8
JC
4665static void skb_gro_reset_offset(struct sk_buff *skb)
4666{
4667 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4668 const skb_frag_t *frag0 = &pinfo->frags[0];
4669
4670 NAPI_GRO_CB(skb)->data_offset = 0;
4671 NAPI_GRO_CB(skb)->frag0 = NULL;
4672 NAPI_GRO_CB(skb)->frag0_len = 0;
4673
4674 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4675 pinfo->nr_frags &&
4676 !PageHighMem(skb_frag_page(frag0))) {
4677 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4678 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4679 skb_frag_size(frag0),
4680 skb->end - skb->tail);
89c5fa33
ED
4681 }
4682}
4683
a50e233c
ED
4684static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4685{
4686 struct skb_shared_info *pinfo = skb_shinfo(skb);
4687
4688 BUG_ON(skb->end - skb->tail < grow);
4689
4690 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4691
4692 skb->data_len -= grow;
4693 skb->tail += grow;
4694
4695 pinfo->frags[0].page_offset += grow;
4696 skb_frag_size_sub(&pinfo->frags[0], grow);
4697
4698 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4699 skb_frag_unref(skb, 0);
4700 memmove(pinfo->frags, pinfo->frags + 1,
4701 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4702 }
4703}
4704
bb728820 4705static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4706{
4707 struct sk_buff **pp = NULL;
22061d80 4708 struct packet_offload *ptype;
d565b0a1 4709 __be16 type = skb->protocol;
22061d80 4710 struct list_head *head = &offload_base;
0da2afd5 4711 int same_flow;
5b252f0c 4712 enum gro_result ret;
a50e233c 4713 int grow;
d565b0a1 4714
b5cdae32 4715 if (netif_elide_gro(skb->dev))
d565b0a1
HX
4716 goto normal;
4717
89c5fa33
ED
4718 gro_list_prepare(napi, skb);
4719
d565b0a1
HX
4720 rcu_read_lock();
4721 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4722 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4723 continue;
4724
86911732 4725 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4726 skb_reset_mac_len(skb);
d565b0a1 4727 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4728 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4729 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4730 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4731 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4732 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4733 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4734 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4735
662880f4
TH
4736 /* Setup for GRO checksum validation */
4737 switch (skb->ip_summed) {
4738 case CHECKSUM_COMPLETE:
4739 NAPI_GRO_CB(skb)->csum = skb->csum;
4740 NAPI_GRO_CB(skb)->csum_valid = 1;
4741 NAPI_GRO_CB(skb)->csum_cnt = 0;
4742 break;
4743 case CHECKSUM_UNNECESSARY:
4744 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4745 NAPI_GRO_CB(skb)->csum_valid = 0;
4746 break;
4747 default:
4748 NAPI_GRO_CB(skb)->csum_cnt = 0;
4749 NAPI_GRO_CB(skb)->csum_valid = 0;
4750 }
d565b0a1 4751
f191a1d1 4752 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4753 break;
4754 }
4755 rcu_read_unlock();
4756
4757 if (&ptype->list == head)
4758 goto normal;
4759
25393d3f
SK
4760 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4761 ret = GRO_CONSUMED;
4762 goto ok;
4763 }
4764
0da2afd5 4765 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4766 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4767
d565b0a1
HX
4768 if (pp) {
4769 struct sk_buff *nskb = *pp;
4770
4771 *pp = nskb->next;
4772 nskb->next = NULL;
4773 napi_gro_complete(nskb);
4ae5544f 4774 napi->gro_count--;
d565b0a1
HX
4775 }
4776
0da2afd5 4777 if (same_flow)
d565b0a1
HX
4778 goto ok;
4779
600adc18 4780 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4781 goto normal;
d565b0a1 4782
600adc18
ED
4783 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4784 struct sk_buff *nskb = napi->gro_list;
4785
4786 /* locate the end of the list to select the 'oldest' flow */
4787 while (nskb->next) {
4788 pp = &nskb->next;
4789 nskb = *pp;
4790 }
4791 *pp = NULL;
4792 nskb->next = NULL;
4793 napi_gro_complete(nskb);
4794 } else {
4795 napi->gro_count++;
4796 }
d565b0a1 4797 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4798 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4799 NAPI_GRO_CB(skb)->last = skb;
86911732 4800 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4801 skb->next = napi->gro_list;
4802 napi->gro_list = skb;
5d0d9be8 4803 ret = GRO_HELD;
d565b0a1 4804
ad0f9904 4805pull:
a50e233c
ED
4806 grow = skb_gro_offset(skb) - skb_headlen(skb);
4807 if (grow > 0)
4808 gro_pull_from_frag0(skb, grow);
d565b0a1 4809ok:
5d0d9be8 4810 return ret;
d565b0a1
HX
4811
4812normal:
ad0f9904
HX
4813 ret = GRO_NORMAL;
4814 goto pull;
5d38a079 4815}
96e93eab 4816
bf5a755f
JC
4817struct packet_offload *gro_find_receive_by_type(__be16 type)
4818{
4819 struct list_head *offload_head = &offload_base;
4820 struct packet_offload *ptype;
4821
4822 list_for_each_entry_rcu(ptype, offload_head, list) {
4823 if (ptype->type != type || !ptype->callbacks.gro_receive)
4824 continue;
4825 return ptype;
4826 }
4827 return NULL;
4828}
e27a2f83 4829EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4830
4831struct packet_offload *gro_find_complete_by_type(__be16 type)
4832{
4833 struct list_head *offload_head = &offload_base;
4834 struct packet_offload *ptype;
4835
4836 list_for_each_entry_rcu(ptype, offload_head, list) {
4837 if (ptype->type != type || !ptype->callbacks.gro_complete)
4838 continue;
4839 return ptype;
4840 }
4841 return NULL;
4842}
e27a2f83 4843EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4844
bb728820 4845static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4846{
5d0d9be8
HX
4847 switch (ret) {
4848 case GRO_NORMAL:
ae78dbfa 4849 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4850 ret = GRO_DROP;
4851 break;
5d38a079 4852
5d0d9be8 4853 case GRO_DROP:
5d38a079
HX
4854 kfree_skb(skb);
4855 break;
5b252f0c 4856
daa86548 4857 case GRO_MERGED_FREE:
ce87fc6c
JG
4858 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4859 skb_dst_drop(skb);
f991bb9d 4860 secpath_reset(skb);
d7e8883c 4861 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4862 } else {
d7e8883c 4863 __kfree_skb(skb);
ce87fc6c 4864 }
daa86548
ED
4865 break;
4866
5b252f0c
BH
4867 case GRO_HELD:
4868 case GRO_MERGED:
25393d3f 4869 case GRO_CONSUMED:
5b252f0c 4870 break;
5d38a079
HX
4871 }
4872
c7c4b3b6 4873 return ret;
5d0d9be8 4874}
5d0d9be8 4875
c7c4b3b6 4876gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4877{
93f93a44 4878 skb_mark_napi_id(skb, napi);
ae78dbfa 4879 trace_napi_gro_receive_entry(skb);
86911732 4880
a50e233c
ED
4881 skb_gro_reset_offset(skb);
4882
89c5fa33 4883 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4884}
4885EXPORT_SYMBOL(napi_gro_receive);
4886
d0c2b0d2 4887static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4888{
93a35f59
ED
4889 if (unlikely(skb->pfmemalloc)) {
4890 consume_skb(skb);
4891 return;
4892 }
96e93eab 4893 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4894 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4895 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4896 skb->vlan_tci = 0;
66c46d74 4897 skb->dev = napi->dev;
6d152e23 4898 skb->skb_iif = 0;
c3caf119
JC
4899 skb->encapsulation = 0;
4900 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4901 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 4902 secpath_reset(skb);
96e93eab
HX
4903
4904 napi->skb = skb;
4905}
96e93eab 4906
76620aaf 4907struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4908{
5d38a079 4909 struct sk_buff *skb = napi->skb;
5d38a079
HX
4910
4911 if (!skb) {
fd11a83d 4912 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4913 if (skb) {
4914 napi->skb = skb;
4915 skb_mark_napi_id(skb, napi);
4916 }
80595d59 4917 }
96e93eab
HX
4918 return skb;
4919}
76620aaf 4920EXPORT_SYMBOL(napi_get_frags);
96e93eab 4921
a50e233c
ED
4922static gro_result_t napi_frags_finish(struct napi_struct *napi,
4923 struct sk_buff *skb,
4924 gro_result_t ret)
96e93eab 4925{
5d0d9be8
HX
4926 switch (ret) {
4927 case GRO_NORMAL:
a50e233c
ED
4928 case GRO_HELD:
4929 __skb_push(skb, ETH_HLEN);
4930 skb->protocol = eth_type_trans(skb, skb->dev);
4931 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4932 ret = GRO_DROP;
86911732 4933 break;
5d38a079 4934
5d0d9be8 4935 case GRO_DROP:
5d0d9be8
HX
4936 case GRO_MERGED_FREE:
4937 napi_reuse_skb(napi, skb);
4938 break;
5b252f0c
BH
4939
4940 case GRO_MERGED:
25393d3f 4941 case GRO_CONSUMED:
5b252f0c 4942 break;
5d0d9be8 4943 }
5d38a079 4944
c7c4b3b6 4945 return ret;
5d38a079 4946}
5d0d9be8 4947
a50e233c
ED
4948/* Upper GRO stack assumes network header starts at gro_offset=0
4949 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4950 * We copy ethernet header into skb->data to have a common layout.
4951 */
4adb9c4a 4952static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4953{
4954 struct sk_buff *skb = napi->skb;
a50e233c
ED
4955 const struct ethhdr *eth;
4956 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4957
4958 napi->skb = NULL;
4959
a50e233c
ED
4960 skb_reset_mac_header(skb);
4961 skb_gro_reset_offset(skb);
4962
4963 eth = skb_gro_header_fast(skb, 0);
4964 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4965 eth = skb_gro_header_slow(skb, hlen, 0);
4966 if (unlikely(!eth)) {
4da46ceb
AC
4967 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4968 __func__, napi->dev->name);
a50e233c
ED
4969 napi_reuse_skb(napi, skb);
4970 return NULL;
4971 }
4972 } else {
4973 gro_pull_from_frag0(skb, hlen);
4974 NAPI_GRO_CB(skb)->frag0 += hlen;
4975 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4976 }
a50e233c
ED
4977 __skb_pull(skb, hlen);
4978
4979 /*
4980 * This works because the only protocols we care about don't require
4981 * special handling.
4982 * We'll fix it up properly in napi_frags_finish()
4983 */
4984 skb->protocol = eth->h_proto;
76620aaf 4985
76620aaf
HX
4986 return skb;
4987}
76620aaf 4988
c7c4b3b6 4989gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4990{
76620aaf 4991 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4992
4993 if (!skb)
c7c4b3b6 4994 return GRO_DROP;
5d0d9be8 4995
ae78dbfa
BH
4996 trace_napi_gro_frags_entry(skb);
4997
89c5fa33 4998 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4999}
5d38a079
HX
5000EXPORT_SYMBOL(napi_gro_frags);
5001
573e8fca
TH
5002/* Compute the checksum from gro_offset and return the folded value
5003 * after adding in any pseudo checksum.
5004 */
5005__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5006{
5007 __wsum wsum;
5008 __sum16 sum;
5009
5010 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5011
5012 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5013 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5014 if (likely(!sum)) {
5015 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5016 !skb->csum_complete_sw)
5017 netdev_rx_csum_fault(skb->dev);
5018 }
5019
5020 NAPI_GRO_CB(skb)->csum = wsum;
5021 NAPI_GRO_CB(skb)->csum_valid = 1;
5022
5023 return sum;
5024}
5025EXPORT_SYMBOL(__skb_gro_checksum_complete);
5026
e326bed2 5027/*
855abcf0 5028 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5029 * Note: called with local irq disabled, but exits with local irq enabled.
5030 */
5031static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5032{
5033#ifdef CONFIG_RPS
5034 struct softnet_data *remsd = sd->rps_ipi_list;
5035
5036 if (remsd) {
5037 sd->rps_ipi_list = NULL;
5038
5039 local_irq_enable();
5040
5041 /* Send pending IPI's to kick RPS processing on remote cpus. */
5042 while (remsd) {
5043 struct softnet_data *next = remsd->rps_ipi_next;
5044
5045 if (cpu_online(remsd->cpu))
c46fff2a 5046 smp_call_function_single_async(remsd->cpu,
fce8ad15 5047 &remsd->csd);
e326bed2
ED
5048 remsd = next;
5049 }
5050 } else
5051#endif
5052 local_irq_enable();
5053}
5054
d75b1ade
ED
5055static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5056{
5057#ifdef CONFIG_RPS
5058 return sd->rps_ipi_list != NULL;
5059#else
5060 return false;
5061#endif
5062}
5063
bea3348e 5064static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5065{
eecfd7c4 5066 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5067 bool again = true;
5068 int work = 0;
1da177e4 5069
e326bed2
ED
5070 /* Check if we have pending ipi, its better to send them now,
5071 * not waiting net_rx_action() end.
5072 */
d75b1ade 5073 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5074 local_irq_disable();
5075 net_rps_action_and_irq_enable(sd);
5076 }
d75b1ade 5077
3d48b53f 5078 napi->weight = dev_rx_weight;
145dd5f9 5079 while (again) {
1da177e4 5080 struct sk_buff *skb;
6e7676c1
CG
5081
5082 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5083 rcu_read_lock();
6e7676c1 5084 __netif_receive_skb(skb);
2c17d27c 5085 rcu_read_unlock();
76cc8b13 5086 input_queue_head_incr(sd);
145dd5f9 5087 if (++work >= quota)
76cc8b13 5088 return work;
145dd5f9 5089
6e7676c1 5090 }
1da177e4 5091
145dd5f9 5092 local_irq_disable();
e36fa2f7 5093 rps_lock(sd);
11ef7a89 5094 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5095 /*
5096 * Inline a custom version of __napi_complete().
5097 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5098 * and NAPI_STATE_SCHED is the only possible flag set
5099 * on backlog.
5100 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5101 * and we dont need an smp_mb() memory barrier.
5102 */
eecfd7c4 5103 napi->state = 0;
145dd5f9
PA
5104 again = false;
5105 } else {
5106 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5107 &sd->process_queue);
bea3348e 5108 }
e36fa2f7 5109 rps_unlock(sd);
145dd5f9 5110 local_irq_enable();
6e7676c1 5111 }
1da177e4 5112
bea3348e
SH
5113 return work;
5114}
1da177e4 5115
bea3348e
SH
5116/**
5117 * __napi_schedule - schedule for receive
c4ea43c5 5118 * @n: entry to schedule
bea3348e 5119 *
bc9ad166
ED
5120 * The entry's receive function will be scheduled to run.
5121 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5122 */
b5606c2d 5123void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5124{
5125 unsigned long flags;
1da177e4 5126
bea3348e 5127 local_irq_save(flags);
903ceff7 5128 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5129 local_irq_restore(flags);
1da177e4 5130}
bea3348e
SH
5131EXPORT_SYMBOL(__napi_schedule);
5132
39e6c820
ED
5133/**
5134 * napi_schedule_prep - check if napi can be scheduled
5135 * @n: napi context
5136 *
5137 * Test if NAPI routine is already running, and if not mark
5138 * it as running. This is used as a condition variable
5139 * insure only one NAPI poll instance runs. We also make
5140 * sure there is no pending NAPI disable.
5141 */
5142bool napi_schedule_prep(struct napi_struct *n)
5143{
5144 unsigned long val, new;
5145
5146 do {
5147 val = READ_ONCE(n->state);
5148 if (unlikely(val & NAPIF_STATE_DISABLE))
5149 return false;
5150 new = val | NAPIF_STATE_SCHED;
5151
5152 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5153 * This was suggested by Alexander Duyck, as compiler
5154 * emits better code than :
5155 * if (val & NAPIF_STATE_SCHED)
5156 * new |= NAPIF_STATE_MISSED;
5157 */
5158 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5159 NAPIF_STATE_MISSED;
5160 } while (cmpxchg(&n->state, val, new) != val);
5161
5162 return !(val & NAPIF_STATE_SCHED);
5163}
5164EXPORT_SYMBOL(napi_schedule_prep);
5165
bc9ad166
ED
5166/**
5167 * __napi_schedule_irqoff - schedule for receive
5168 * @n: entry to schedule
5169 *
5170 * Variant of __napi_schedule() assuming hard irqs are masked
5171 */
5172void __napi_schedule_irqoff(struct napi_struct *n)
5173{
5174 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5175}
5176EXPORT_SYMBOL(__napi_schedule_irqoff);
5177
364b6055 5178bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 5179{
39e6c820 5180 unsigned long flags, val, new;
d565b0a1
HX
5181
5182 /*
217f6974
ED
5183 * 1) Don't let napi dequeue from the cpu poll list
5184 * just in case its running on a different cpu.
5185 * 2) If we are busy polling, do nothing here, we have
5186 * the guarantee we will be called later.
d565b0a1 5187 */
217f6974
ED
5188 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5189 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 5190 return false;
d565b0a1 5191
3b47d303
ED
5192 if (n->gro_list) {
5193 unsigned long timeout = 0;
d75b1ade 5194
3b47d303
ED
5195 if (work_done)
5196 timeout = n->dev->gro_flush_timeout;
5197
5198 if (timeout)
5199 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5200 HRTIMER_MODE_REL_PINNED);
5201 else
5202 napi_gro_flush(n, false);
5203 }
02c1602e 5204 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
5205 /* If n->poll_list is not empty, we need to mask irqs */
5206 local_irq_save(flags);
02c1602e 5207 list_del_init(&n->poll_list);
d75b1ade
ED
5208 local_irq_restore(flags);
5209 }
39e6c820
ED
5210
5211 do {
5212 val = READ_ONCE(n->state);
5213
5214 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5215
5216 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5217
5218 /* If STATE_MISSED was set, leave STATE_SCHED set,
5219 * because we will call napi->poll() one more time.
5220 * This C code was suggested by Alexander Duyck to help gcc.
5221 */
5222 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5223 NAPIF_STATE_SCHED;
5224 } while (cmpxchg(&n->state, val, new) != val);
5225
5226 if (unlikely(val & NAPIF_STATE_MISSED)) {
5227 __napi_schedule(n);
5228 return false;
5229 }
5230
364b6055 5231 return true;
d565b0a1 5232}
3b47d303 5233EXPORT_SYMBOL(napi_complete_done);
d565b0a1 5234
af12fa6e 5235/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 5236static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
5237{
5238 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5239 struct napi_struct *napi;
5240
5241 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5242 if (napi->napi_id == napi_id)
5243 return napi;
5244
5245 return NULL;
5246}
02d62e86
ED
5247
5248#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 5249
ce6aea93 5250#define BUSY_POLL_BUDGET 8
217f6974
ED
5251
5252static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5253{
5254 int rc;
5255
39e6c820
ED
5256 /* Busy polling means there is a high chance device driver hard irq
5257 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5258 * set in napi_schedule_prep().
5259 * Since we are about to call napi->poll() once more, we can safely
5260 * clear NAPI_STATE_MISSED.
5261 *
5262 * Note: x86 could use a single "lock and ..." instruction
5263 * to perform these two clear_bit()
5264 */
5265 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
5266 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5267
5268 local_bh_disable();
5269
5270 /* All we really want here is to re-enable device interrupts.
5271 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5272 */
5273 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5274 netpoll_poll_unlock(have_poll_lock);
5275 if (rc == BUSY_POLL_BUDGET)
5276 __napi_schedule(napi);
5277 local_bh_enable();
5278 if (local_softirq_pending())
5279 do_softirq();
5280}
5281
7db6b048
SS
5282void napi_busy_loop(unsigned int napi_id,
5283 bool (*loop_end)(void *, unsigned long),
5284 void *loop_end_arg)
02d62e86 5285{
7db6b048 5286 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 5287 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 5288 void *have_poll_lock = NULL;
02d62e86 5289 struct napi_struct *napi;
217f6974
ED
5290
5291restart:
217f6974 5292 napi_poll = NULL;
02d62e86 5293
2a028ecb 5294 rcu_read_lock();
02d62e86 5295
545cd5e5 5296 napi = napi_by_id(napi_id);
02d62e86
ED
5297 if (!napi)
5298 goto out;
5299
217f6974
ED
5300 preempt_disable();
5301 for (;;) {
2b5cd0df
AD
5302 int work = 0;
5303
2a028ecb 5304 local_bh_disable();
217f6974
ED
5305 if (!napi_poll) {
5306 unsigned long val = READ_ONCE(napi->state);
5307
5308 /* If multiple threads are competing for this napi,
5309 * we avoid dirtying napi->state as much as we can.
5310 */
5311 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5312 NAPIF_STATE_IN_BUSY_POLL))
5313 goto count;
5314 if (cmpxchg(&napi->state, val,
5315 val | NAPIF_STATE_IN_BUSY_POLL |
5316 NAPIF_STATE_SCHED) != val)
5317 goto count;
5318 have_poll_lock = netpoll_poll_lock(napi);
5319 napi_poll = napi->poll;
5320 }
2b5cd0df
AD
5321 work = napi_poll(napi, BUSY_POLL_BUDGET);
5322 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 5323count:
2b5cd0df 5324 if (work > 0)
7db6b048 5325 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 5326 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 5327 local_bh_enable();
02d62e86 5328
7db6b048 5329 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 5330 break;
02d62e86 5331
217f6974
ED
5332 if (unlikely(need_resched())) {
5333 if (napi_poll)
5334 busy_poll_stop(napi, have_poll_lock);
5335 preempt_enable();
5336 rcu_read_unlock();
5337 cond_resched();
7db6b048 5338 if (loop_end(loop_end_arg, start_time))
2b5cd0df 5339 return;
217f6974
ED
5340 goto restart;
5341 }
6cdf89b1 5342 cpu_relax();
217f6974
ED
5343 }
5344 if (napi_poll)
5345 busy_poll_stop(napi, have_poll_lock);
5346 preempt_enable();
02d62e86 5347out:
2a028ecb 5348 rcu_read_unlock();
02d62e86 5349}
7db6b048 5350EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
5351
5352#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5353
149d6ad8 5354static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5355{
d64b5e85
ED
5356 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5357 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5358 return;
af12fa6e 5359
52bd2d62 5360 spin_lock(&napi_hash_lock);
af12fa6e 5361
545cd5e5 5362 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 5363 do {
545cd5e5
AD
5364 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5365 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
5366 } while (napi_by_id(napi_gen_id));
5367 napi->napi_id = napi_gen_id;
af12fa6e 5368
52bd2d62
ED
5369 hlist_add_head_rcu(&napi->napi_hash_node,
5370 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5371
52bd2d62 5372 spin_unlock(&napi_hash_lock);
af12fa6e 5373}
af12fa6e
ET
5374
5375/* Warning : caller is responsible to make sure rcu grace period
5376 * is respected before freeing memory containing @napi
5377 */
34cbe27e 5378bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5379{
34cbe27e
ED
5380 bool rcu_sync_needed = false;
5381
af12fa6e
ET
5382 spin_lock(&napi_hash_lock);
5383
34cbe27e
ED
5384 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5385 rcu_sync_needed = true;
af12fa6e 5386 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5387 }
af12fa6e 5388 spin_unlock(&napi_hash_lock);
34cbe27e 5389 return rcu_sync_needed;
af12fa6e
ET
5390}
5391EXPORT_SYMBOL_GPL(napi_hash_del);
5392
3b47d303
ED
5393static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5394{
5395 struct napi_struct *napi;
5396
5397 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
5398
5399 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5400 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5401 */
5402 if (napi->gro_list && !napi_disable_pending(napi) &&
5403 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5404 __napi_schedule_irqoff(napi);
3b47d303
ED
5405
5406 return HRTIMER_NORESTART;
5407}
5408
d565b0a1
HX
5409void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5410 int (*poll)(struct napi_struct *, int), int weight)
5411{
5412 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5413 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5414 napi->timer.function = napi_watchdog;
4ae5544f 5415 napi->gro_count = 0;
d565b0a1 5416 napi->gro_list = NULL;
5d38a079 5417 napi->skb = NULL;
d565b0a1 5418 napi->poll = poll;
82dc3c63
ED
5419 if (weight > NAPI_POLL_WEIGHT)
5420 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5421 weight, dev->name);
d565b0a1
HX
5422 napi->weight = weight;
5423 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5424 napi->dev = dev;
5d38a079 5425#ifdef CONFIG_NETPOLL
d565b0a1
HX
5426 napi->poll_owner = -1;
5427#endif
5428 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5429 napi_hash_add(napi);
d565b0a1
HX
5430}
5431EXPORT_SYMBOL(netif_napi_add);
5432
3b47d303
ED
5433void napi_disable(struct napi_struct *n)
5434{
5435 might_sleep();
5436 set_bit(NAPI_STATE_DISABLE, &n->state);
5437
5438 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5439 msleep(1);
2d8bff12
NH
5440 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5441 msleep(1);
3b47d303
ED
5442
5443 hrtimer_cancel(&n->timer);
5444
5445 clear_bit(NAPI_STATE_DISABLE, &n->state);
5446}
5447EXPORT_SYMBOL(napi_disable);
5448
93d05d4a 5449/* Must be called in process context */
d565b0a1
HX
5450void netif_napi_del(struct napi_struct *napi)
5451{
93d05d4a
ED
5452 might_sleep();
5453 if (napi_hash_del(napi))
5454 synchronize_net();
d7b06636 5455 list_del_init(&napi->dev_list);
76620aaf 5456 napi_free_frags(napi);
d565b0a1 5457
289dccbe 5458 kfree_skb_list(napi->gro_list);
d565b0a1 5459 napi->gro_list = NULL;
4ae5544f 5460 napi->gro_count = 0;
d565b0a1
HX
5461}
5462EXPORT_SYMBOL(netif_napi_del);
5463
726ce70e
HX
5464static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5465{
5466 void *have;
5467 int work, weight;
5468
5469 list_del_init(&n->poll_list);
5470
5471 have = netpoll_poll_lock(n);
5472
5473 weight = n->weight;
5474
5475 /* This NAPI_STATE_SCHED test is for avoiding a race
5476 * with netpoll's poll_napi(). Only the entity which
5477 * obtains the lock and sees NAPI_STATE_SCHED set will
5478 * actually make the ->poll() call. Therefore we avoid
5479 * accidentally calling ->poll() when NAPI is not scheduled.
5480 */
5481 work = 0;
5482 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5483 work = n->poll(n, weight);
1db19db7 5484 trace_napi_poll(n, work, weight);
726ce70e
HX
5485 }
5486
5487 WARN_ON_ONCE(work > weight);
5488
5489 if (likely(work < weight))
5490 goto out_unlock;
5491
5492 /* Drivers must not modify the NAPI state if they
5493 * consume the entire weight. In such cases this code
5494 * still "owns" the NAPI instance and therefore can
5495 * move the instance around on the list at-will.
5496 */
5497 if (unlikely(napi_disable_pending(n))) {
5498 napi_complete(n);
5499 goto out_unlock;
5500 }
5501
5502 if (n->gro_list) {
5503 /* flush too old packets
5504 * If HZ < 1000, flush all packets.
5505 */
5506 napi_gro_flush(n, HZ >= 1000);
5507 }
5508
001ce546
HX
5509 /* Some drivers may have called napi_schedule
5510 * prior to exhausting their budget.
5511 */
5512 if (unlikely(!list_empty(&n->poll_list))) {
5513 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5514 n->dev ? n->dev->name : "backlog");
5515 goto out_unlock;
5516 }
5517
726ce70e
HX
5518 list_add_tail(&n->poll_list, repoll);
5519
5520out_unlock:
5521 netpoll_poll_unlock(have);
5522
5523 return work;
5524}
5525
0766f788 5526static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5527{
903ceff7 5528 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
5529 unsigned long time_limit = jiffies +
5530 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 5531 int budget = netdev_budget;
d75b1ade
ED
5532 LIST_HEAD(list);
5533 LIST_HEAD(repoll);
53fb95d3 5534
1da177e4 5535 local_irq_disable();
d75b1ade
ED
5536 list_splice_init(&sd->poll_list, &list);
5537 local_irq_enable();
1da177e4 5538
ceb8d5bf 5539 for (;;) {
bea3348e 5540 struct napi_struct *n;
1da177e4 5541
ceb8d5bf
HX
5542 if (list_empty(&list)) {
5543 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5544 goto out;
ceb8d5bf
HX
5545 break;
5546 }
5547
6bd373eb
HX
5548 n = list_first_entry(&list, struct napi_struct, poll_list);
5549 budget -= napi_poll(n, &repoll);
5550
d75b1ade 5551 /* If softirq window is exhausted then punt.
24f8b238
SH
5552 * Allow this to run for 2 jiffies since which will allow
5553 * an average latency of 1.5/HZ.
bea3348e 5554 */
ceb8d5bf
HX
5555 if (unlikely(budget <= 0 ||
5556 time_after_eq(jiffies, time_limit))) {
5557 sd->time_squeeze++;
5558 break;
5559 }
1da177e4 5560 }
d75b1ade 5561
d75b1ade
ED
5562 local_irq_disable();
5563
5564 list_splice_tail_init(&sd->poll_list, &list);
5565 list_splice_tail(&repoll, &list);
5566 list_splice(&list, &sd->poll_list);
5567 if (!list_empty(&sd->poll_list))
5568 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5569
e326bed2 5570 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5571out:
5572 __kfree_skb_flush();
1da177e4
LT
5573}
5574
aa9d8560 5575struct netdev_adjacent {
9ff162a8 5576 struct net_device *dev;
5d261913
VF
5577
5578 /* upper master flag, there can only be one master device per list */
9ff162a8 5579 bool master;
5d261913 5580
5d261913
VF
5581 /* counter for the number of times this device was added to us */
5582 u16 ref_nr;
5583
402dae96
VF
5584 /* private field for the users */
5585 void *private;
5586
9ff162a8
JP
5587 struct list_head list;
5588 struct rcu_head rcu;
9ff162a8
JP
5589};
5590
6ea29da1 5591static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5592 struct list_head *adj_list)
9ff162a8 5593{
5d261913 5594 struct netdev_adjacent *adj;
5d261913 5595
2f268f12 5596 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5597 if (adj->dev == adj_dev)
5598 return adj;
9ff162a8
JP
5599 }
5600 return NULL;
5601}
5602
f1170fd4
DA
5603static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5604{
5605 struct net_device *dev = data;
5606
5607 return upper_dev == dev;
5608}
5609
9ff162a8
JP
5610/**
5611 * netdev_has_upper_dev - Check if device is linked to an upper device
5612 * @dev: device
5613 * @upper_dev: upper device to check
5614 *
5615 * Find out if a device is linked to specified upper device and return true
5616 * in case it is. Note that this checks only immediate upper device,
5617 * not through a complete stack of devices. The caller must hold the RTNL lock.
5618 */
5619bool netdev_has_upper_dev(struct net_device *dev,
5620 struct net_device *upper_dev)
5621{
5622 ASSERT_RTNL();
5623
f1170fd4
DA
5624 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5625 upper_dev);
9ff162a8
JP
5626}
5627EXPORT_SYMBOL(netdev_has_upper_dev);
5628
1a3f060c
DA
5629/**
5630 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5631 * @dev: device
5632 * @upper_dev: upper device to check
5633 *
5634 * Find out if a device is linked to specified upper device and return true
5635 * in case it is. Note that this checks the entire upper device chain.
5636 * The caller must hold rcu lock.
5637 */
5638
1a3f060c
DA
5639bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5640 struct net_device *upper_dev)
5641{
5642 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5643 upper_dev);
5644}
5645EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5646
9ff162a8
JP
5647/**
5648 * netdev_has_any_upper_dev - Check if device is linked to some device
5649 * @dev: device
5650 *
5651 * Find out if a device is linked to an upper device and return true in case
5652 * it is. The caller must hold the RTNL lock.
5653 */
1d143d9f 5654static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5655{
5656 ASSERT_RTNL();
5657
f1170fd4 5658 return !list_empty(&dev->adj_list.upper);
9ff162a8 5659}
9ff162a8
JP
5660
5661/**
5662 * netdev_master_upper_dev_get - Get master upper device
5663 * @dev: device
5664 *
5665 * Find a master upper device and return pointer to it or NULL in case
5666 * it's not there. The caller must hold the RTNL lock.
5667 */
5668struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5669{
aa9d8560 5670 struct netdev_adjacent *upper;
9ff162a8
JP
5671
5672 ASSERT_RTNL();
5673
2f268f12 5674 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5675 return NULL;
5676
2f268f12 5677 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5678 struct netdev_adjacent, list);
9ff162a8
JP
5679 if (likely(upper->master))
5680 return upper->dev;
5681 return NULL;
5682}
5683EXPORT_SYMBOL(netdev_master_upper_dev_get);
5684
0f524a80
DA
5685/**
5686 * netdev_has_any_lower_dev - Check if device is linked to some device
5687 * @dev: device
5688 *
5689 * Find out if a device is linked to a lower device and return true in case
5690 * it is. The caller must hold the RTNL lock.
5691 */
5692static bool netdev_has_any_lower_dev(struct net_device *dev)
5693{
5694 ASSERT_RTNL();
5695
5696 return !list_empty(&dev->adj_list.lower);
5697}
5698
b6ccba4c
VF
5699void *netdev_adjacent_get_private(struct list_head *adj_list)
5700{
5701 struct netdev_adjacent *adj;
5702
5703 adj = list_entry(adj_list, struct netdev_adjacent, list);
5704
5705 return adj->private;
5706}
5707EXPORT_SYMBOL(netdev_adjacent_get_private);
5708
44a40855
VY
5709/**
5710 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5711 * @dev: device
5712 * @iter: list_head ** of the current position
5713 *
5714 * Gets the next device from the dev's upper list, starting from iter
5715 * position. The caller must hold RCU read lock.
5716 */
5717struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5718 struct list_head **iter)
5719{
5720 struct netdev_adjacent *upper;
5721
5722 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5723
5724 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5725
5726 if (&upper->list == &dev->adj_list.upper)
5727 return NULL;
5728
5729 *iter = &upper->list;
5730
5731 return upper->dev;
5732}
5733EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5734
1a3f060c
DA
5735static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5736 struct list_head **iter)
5737{
5738 struct netdev_adjacent *upper;
5739
5740 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5741
5742 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5743
5744 if (&upper->list == &dev->adj_list.upper)
5745 return NULL;
5746
5747 *iter = &upper->list;
5748
5749 return upper->dev;
5750}
5751
5752int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5753 int (*fn)(struct net_device *dev,
5754 void *data),
5755 void *data)
5756{
5757 struct net_device *udev;
5758 struct list_head *iter;
5759 int ret;
5760
5761 for (iter = &dev->adj_list.upper,
5762 udev = netdev_next_upper_dev_rcu(dev, &iter);
5763 udev;
5764 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5765 /* first is the upper device itself */
5766 ret = fn(udev, data);
5767 if (ret)
5768 return ret;
5769
5770 /* then look at all of its upper devices */
5771 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5772 if (ret)
5773 return ret;
5774 }
5775
5776 return 0;
5777}
5778EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5779
31088a11
VF
5780/**
5781 * netdev_lower_get_next_private - Get the next ->private from the
5782 * lower neighbour list
5783 * @dev: device
5784 * @iter: list_head ** of the current position
5785 *
5786 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5787 * list, starting from iter position. The caller must hold either hold the
5788 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5789 * list will remain unchanged.
31088a11
VF
5790 */
5791void *netdev_lower_get_next_private(struct net_device *dev,
5792 struct list_head **iter)
5793{
5794 struct netdev_adjacent *lower;
5795
5796 lower = list_entry(*iter, struct netdev_adjacent, list);
5797
5798 if (&lower->list == &dev->adj_list.lower)
5799 return NULL;
5800
6859e7df 5801 *iter = lower->list.next;
31088a11
VF
5802
5803 return lower->private;
5804}
5805EXPORT_SYMBOL(netdev_lower_get_next_private);
5806
5807/**
5808 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5809 * lower neighbour list, RCU
5810 * variant
5811 * @dev: device
5812 * @iter: list_head ** of the current position
5813 *
5814 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5815 * list, starting from iter position. The caller must hold RCU read lock.
5816 */
5817void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5818 struct list_head **iter)
5819{
5820 struct netdev_adjacent *lower;
5821
5822 WARN_ON_ONCE(!rcu_read_lock_held());
5823
5824 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5825
5826 if (&lower->list == &dev->adj_list.lower)
5827 return NULL;
5828
6859e7df 5829 *iter = &lower->list;
31088a11
VF
5830
5831 return lower->private;
5832}
5833EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5834
4085ebe8
VY
5835/**
5836 * netdev_lower_get_next - Get the next device from the lower neighbour
5837 * list
5838 * @dev: device
5839 * @iter: list_head ** of the current position
5840 *
5841 * Gets the next netdev_adjacent from the dev's lower neighbour
5842 * list, starting from iter position. The caller must hold RTNL lock or
5843 * its own locking that guarantees that the neighbour lower
b469139e 5844 * list will remain unchanged.
4085ebe8
VY
5845 */
5846void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5847{
5848 struct netdev_adjacent *lower;
5849
cfdd28be 5850 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5851
5852 if (&lower->list == &dev->adj_list.lower)
5853 return NULL;
5854
cfdd28be 5855 *iter = lower->list.next;
4085ebe8
VY
5856
5857 return lower->dev;
5858}
5859EXPORT_SYMBOL(netdev_lower_get_next);
5860
1a3f060c
DA
5861static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5862 struct list_head **iter)
5863{
5864 struct netdev_adjacent *lower;
5865
46b5ab1a 5866 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5867
5868 if (&lower->list == &dev->adj_list.lower)
5869 return NULL;
5870
46b5ab1a 5871 *iter = &lower->list;
1a3f060c
DA
5872
5873 return lower->dev;
5874}
5875
5876int netdev_walk_all_lower_dev(struct net_device *dev,
5877 int (*fn)(struct net_device *dev,
5878 void *data),
5879 void *data)
5880{
5881 struct net_device *ldev;
5882 struct list_head *iter;
5883 int ret;
5884
5885 for (iter = &dev->adj_list.lower,
5886 ldev = netdev_next_lower_dev(dev, &iter);
5887 ldev;
5888 ldev = netdev_next_lower_dev(dev, &iter)) {
5889 /* first is the lower device itself */
5890 ret = fn(ldev, data);
5891 if (ret)
5892 return ret;
5893
5894 /* then look at all of its lower devices */
5895 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5896 if (ret)
5897 return ret;
5898 }
5899
5900 return 0;
5901}
5902EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5903
1a3f060c
DA
5904static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5905 struct list_head **iter)
5906{
5907 struct netdev_adjacent *lower;
5908
5909 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5910 if (&lower->list == &dev->adj_list.lower)
5911 return NULL;
5912
5913 *iter = &lower->list;
5914
5915 return lower->dev;
5916}
5917
5918int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5919 int (*fn)(struct net_device *dev,
5920 void *data),
5921 void *data)
5922{
5923 struct net_device *ldev;
5924 struct list_head *iter;
5925 int ret;
5926
5927 for (iter = &dev->adj_list.lower,
5928 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5929 ldev;
5930 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5931 /* first is the lower device itself */
5932 ret = fn(ldev, data);
5933 if (ret)
5934 return ret;
5935
5936 /* then look at all of its lower devices */
5937 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5938 if (ret)
5939 return ret;
5940 }
5941
5942 return 0;
5943}
5944EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5945
e001bfad 5946/**
5947 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5948 * lower neighbour list, RCU
5949 * variant
5950 * @dev: device
5951 *
5952 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5953 * list. The caller must hold RCU read lock.
5954 */
5955void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5956{
5957 struct netdev_adjacent *lower;
5958
5959 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5960 struct netdev_adjacent, list);
5961 if (lower)
5962 return lower->private;
5963 return NULL;
5964}
5965EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5966
9ff162a8
JP
5967/**
5968 * netdev_master_upper_dev_get_rcu - Get master upper device
5969 * @dev: device
5970 *
5971 * Find a master upper device and return pointer to it or NULL in case
5972 * it's not there. The caller must hold the RCU read lock.
5973 */
5974struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5975{
aa9d8560 5976 struct netdev_adjacent *upper;
9ff162a8 5977
2f268f12 5978 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5979 struct netdev_adjacent, list);
9ff162a8
JP
5980 if (upper && likely(upper->master))
5981 return upper->dev;
5982 return NULL;
5983}
5984EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5985
0a59f3a9 5986static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5987 struct net_device *adj_dev,
5988 struct list_head *dev_list)
5989{
5990 char linkname[IFNAMSIZ+7];
f4563a75 5991
3ee32707
VF
5992 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5993 "upper_%s" : "lower_%s", adj_dev->name);
5994 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5995 linkname);
5996}
0a59f3a9 5997static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5998 char *name,
5999 struct list_head *dev_list)
6000{
6001 char linkname[IFNAMSIZ+7];
f4563a75 6002
3ee32707
VF
6003 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6004 "upper_%s" : "lower_%s", name);
6005 sysfs_remove_link(&(dev->dev.kobj), linkname);
6006}
6007
7ce64c79
AF
6008static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6009 struct net_device *adj_dev,
6010 struct list_head *dev_list)
6011{
6012 return (dev_list == &dev->adj_list.upper ||
6013 dev_list == &dev->adj_list.lower) &&
6014 net_eq(dev_net(dev), dev_net(adj_dev));
6015}
3ee32707 6016
5d261913
VF
6017static int __netdev_adjacent_dev_insert(struct net_device *dev,
6018 struct net_device *adj_dev,
7863c054 6019 struct list_head *dev_list,
402dae96 6020 void *private, bool master)
5d261913
VF
6021{
6022 struct netdev_adjacent *adj;
842d67a7 6023 int ret;
5d261913 6024
6ea29da1 6025 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6026
6027 if (adj) {
790510d9 6028 adj->ref_nr += 1;
67b62f98
DA
6029 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6030 dev->name, adj_dev->name, adj->ref_nr);
6031
5d261913
VF
6032 return 0;
6033 }
6034
6035 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6036 if (!adj)
6037 return -ENOMEM;
6038
6039 adj->dev = adj_dev;
6040 adj->master = master;
790510d9 6041 adj->ref_nr = 1;
402dae96 6042 adj->private = private;
5d261913 6043 dev_hold(adj_dev);
2f268f12 6044
67b62f98
DA
6045 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6046 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 6047
7ce64c79 6048 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 6049 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
6050 if (ret)
6051 goto free_adj;
6052 }
6053
7863c054 6054 /* Ensure that master link is always the first item in list. */
842d67a7
VF
6055 if (master) {
6056 ret = sysfs_create_link(&(dev->dev.kobj),
6057 &(adj_dev->dev.kobj), "master");
6058 if (ret)
5831d66e 6059 goto remove_symlinks;
842d67a7 6060
7863c054 6061 list_add_rcu(&adj->list, dev_list);
842d67a7 6062 } else {
7863c054 6063 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 6064 }
5d261913
VF
6065
6066 return 0;
842d67a7 6067
5831d66e 6068remove_symlinks:
7ce64c79 6069 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6070 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6071free_adj:
6072 kfree(adj);
974daef7 6073 dev_put(adj_dev);
842d67a7
VF
6074
6075 return ret;
5d261913
VF
6076}
6077
1d143d9f 6078static void __netdev_adjacent_dev_remove(struct net_device *dev,
6079 struct net_device *adj_dev,
93409033 6080 u16 ref_nr,
1d143d9f 6081 struct list_head *dev_list)
5d261913
VF
6082{
6083 struct netdev_adjacent *adj;
6084
67b62f98
DA
6085 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6086 dev->name, adj_dev->name, ref_nr);
6087
6ea29da1 6088 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6089
2f268f12 6090 if (!adj) {
67b62f98 6091 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 6092 dev->name, adj_dev->name);
67b62f98
DA
6093 WARN_ON(1);
6094 return;
2f268f12 6095 }
5d261913 6096
93409033 6097 if (adj->ref_nr > ref_nr) {
67b62f98
DA
6098 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6099 dev->name, adj_dev->name, ref_nr,
6100 adj->ref_nr - ref_nr);
93409033 6101 adj->ref_nr -= ref_nr;
5d261913
VF
6102 return;
6103 }
6104
842d67a7
VF
6105 if (adj->master)
6106 sysfs_remove_link(&(dev->dev.kobj), "master");
6107
7ce64c79 6108 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6109 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 6110
5d261913 6111 list_del_rcu(&adj->list);
67b62f98 6112 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 6113 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
6114 dev_put(adj_dev);
6115 kfree_rcu(adj, rcu);
6116}
6117
1d143d9f 6118static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6119 struct net_device *upper_dev,
6120 struct list_head *up_list,
6121 struct list_head *down_list,
6122 void *private, bool master)
5d261913
VF
6123{
6124 int ret;
6125
790510d9 6126 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 6127 private, master);
5d261913
VF
6128 if (ret)
6129 return ret;
6130
790510d9 6131 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 6132 private, false);
5d261913 6133 if (ret) {
790510d9 6134 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
6135 return ret;
6136 }
6137
6138 return 0;
6139}
6140
1d143d9f 6141static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6142 struct net_device *upper_dev,
93409033 6143 u16 ref_nr,
1d143d9f 6144 struct list_head *up_list,
6145 struct list_head *down_list)
5d261913 6146{
93409033
AC
6147 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6148 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
6149}
6150
1d143d9f 6151static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6152 struct net_device *upper_dev,
6153 void *private, bool master)
2f268f12 6154{
f1170fd4
DA
6155 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6156 &dev->adj_list.upper,
6157 &upper_dev->adj_list.lower,
6158 private, master);
5d261913
VF
6159}
6160
1d143d9f 6161static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6162 struct net_device *upper_dev)
2f268f12 6163{
93409033 6164 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
6165 &dev->adj_list.upper,
6166 &upper_dev->adj_list.lower);
6167}
5d261913 6168
9ff162a8 6169static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 6170 struct net_device *upper_dev, bool master,
29bf24af 6171 void *upper_priv, void *upper_info)
9ff162a8 6172{
0e4ead9d 6173 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 6174 int ret = 0;
9ff162a8
JP
6175
6176 ASSERT_RTNL();
6177
6178 if (dev == upper_dev)
6179 return -EBUSY;
6180
6181 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 6182 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
6183 return -EBUSY;
6184
f1170fd4 6185 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
6186 return -EEXIST;
6187
6188 if (master && netdev_master_upper_dev_get(dev))
6189 return -EBUSY;
6190
0e4ead9d
JP
6191 changeupper_info.upper_dev = upper_dev;
6192 changeupper_info.master = master;
6193 changeupper_info.linking = true;
29bf24af 6194 changeupper_info.upper_info = upper_info;
0e4ead9d 6195
573c7ba0
JP
6196 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6197 &changeupper_info.info);
6198 ret = notifier_to_errno(ret);
6199 if (ret)
6200 return ret;
6201
6dffb044 6202 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 6203 master);
5d261913
VF
6204 if (ret)
6205 return ret;
9ff162a8 6206
b03804e7
IS
6207 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6208 &changeupper_info.info);
6209 ret = notifier_to_errno(ret);
6210 if (ret)
f1170fd4 6211 goto rollback;
b03804e7 6212
9ff162a8 6213 return 0;
5d261913 6214
f1170fd4 6215rollback:
2f268f12 6216 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
6217
6218 return ret;
9ff162a8
JP
6219}
6220
6221/**
6222 * netdev_upper_dev_link - Add a link to the upper device
6223 * @dev: device
6224 * @upper_dev: new upper device
6225 *
6226 * Adds a link to device which is upper to this one. The caller must hold
6227 * the RTNL lock. On a failure a negative errno code is returned.
6228 * On success the reference counts are adjusted and the function
6229 * returns zero.
6230 */
6231int netdev_upper_dev_link(struct net_device *dev,
6232 struct net_device *upper_dev)
6233{
29bf24af 6234 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
6235}
6236EXPORT_SYMBOL(netdev_upper_dev_link);
6237
6238/**
6239 * netdev_master_upper_dev_link - Add a master link to the upper device
6240 * @dev: device
6241 * @upper_dev: new upper device
6dffb044 6242 * @upper_priv: upper device private
29bf24af 6243 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
6244 *
6245 * Adds a link to device which is upper to this one. In this case, only
6246 * one master upper device can be linked, although other non-master devices
6247 * might be linked as well. The caller must hold the RTNL lock.
6248 * On a failure a negative errno code is returned. On success the reference
6249 * counts are adjusted and the function returns zero.
6250 */
6251int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 6252 struct net_device *upper_dev,
29bf24af 6253 void *upper_priv, void *upper_info)
9ff162a8 6254{
29bf24af
JP
6255 return __netdev_upper_dev_link(dev, upper_dev, true,
6256 upper_priv, upper_info);
9ff162a8
JP
6257}
6258EXPORT_SYMBOL(netdev_master_upper_dev_link);
6259
6260/**
6261 * netdev_upper_dev_unlink - Removes a link to upper device
6262 * @dev: device
6263 * @upper_dev: new upper device
6264 *
6265 * Removes a link to device which is upper to this one. The caller must hold
6266 * the RTNL lock.
6267 */
6268void netdev_upper_dev_unlink(struct net_device *dev,
6269 struct net_device *upper_dev)
6270{
0e4ead9d 6271 struct netdev_notifier_changeupper_info changeupper_info;
f4563a75 6272
9ff162a8
JP
6273 ASSERT_RTNL();
6274
0e4ead9d
JP
6275 changeupper_info.upper_dev = upper_dev;
6276 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6277 changeupper_info.linking = false;
6278
573c7ba0
JP
6279 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6280 &changeupper_info.info);
6281
2f268f12 6282 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 6283
0e4ead9d
JP
6284 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6285 &changeupper_info.info);
9ff162a8
JP
6286}
6287EXPORT_SYMBOL(netdev_upper_dev_unlink);
6288
61bd3857
MS
6289/**
6290 * netdev_bonding_info_change - Dispatch event about slave change
6291 * @dev: device
4a26e453 6292 * @bonding_info: info to dispatch
61bd3857
MS
6293 *
6294 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6295 * The caller must hold the RTNL lock.
6296 */
6297void netdev_bonding_info_change(struct net_device *dev,
6298 struct netdev_bonding_info *bonding_info)
6299{
6300 struct netdev_notifier_bonding_info info;
6301
6302 memcpy(&info.bonding_info, bonding_info,
6303 sizeof(struct netdev_bonding_info));
6304 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6305 &info.info);
6306}
6307EXPORT_SYMBOL(netdev_bonding_info_change);
6308
2ce1ee17 6309static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6310{
6311 struct netdev_adjacent *iter;
6312
6313 struct net *net = dev_net(dev);
6314
6315 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6316 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6317 continue;
6318 netdev_adjacent_sysfs_add(iter->dev, dev,
6319 &iter->dev->adj_list.lower);
6320 netdev_adjacent_sysfs_add(dev, iter->dev,
6321 &dev->adj_list.upper);
6322 }
6323
6324 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6325 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6326 continue;
6327 netdev_adjacent_sysfs_add(iter->dev, dev,
6328 &iter->dev->adj_list.upper);
6329 netdev_adjacent_sysfs_add(dev, iter->dev,
6330 &dev->adj_list.lower);
6331 }
6332}
6333
2ce1ee17 6334static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6335{
6336 struct netdev_adjacent *iter;
6337
6338 struct net *net = dev_net(dev);
6339
6340 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6341 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6342 continue;
6343 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6344 &iter->dev->adj_list.lower);
6345 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6346 &dev->adj_list.upper);
6347 }
6348
6349 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6350 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6351 continue;
6352 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6353 &iter->dev->adj_list.upper);
6354 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6355 &dev->adj_list.lower);
6356 }
6357}
6358
5bb025fa 6359void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6360{
5bb025fa 6361 struct netdev_adjacent *iter;
402dae96 6362
4c75431a
AF
6363 struct net *net = dev_net(dev);
6364
5bb025fa 6365 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6366 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6367 continue;
5bb025fa
VF
6368 netdev_adjacent_sysfs_del(iter->dev, oldname,
6369 &iter->dev->adj_list.lower);
6370 netdev_adjacent_sysfs_add(iter->dev, dev,
6371 &iter->dev->adj_list.lower);
6372 }
402dae96 6373
5bb025fa 6374 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6375 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6376 continue;
5bb025fa
VF
6377 netdev_adjacent_sysfs_del(iter->dev, oldname,
6378 &iter->dev->adj_list.upper);
6379 netdev_adjacent_sysfs_add(iter->dev, dev,
6380 &iter->dev->adj_list.upper);
6381 }
402dae96 6382}
402dae96
VF
6383
6384void *netdev_lower_dev_get_private(struct net_device *dev,
6385 struct net_device *lower_dev)
6386{
6387 struct netdev_adjacent *lower;
6388
6389 if (!lower_dev)
6390 return NULL;
6ea29da1 6391 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6392 if (!lower)
6393 return NULL;
6394
6395 return lower->private;
6396}
6397EXPORT_SYMBOL(netdev_lower_dev_get_private);
6398
4085ebe8 6399
952fcfd0 6400int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6401{
6402 struct net_device *lower = NULL;
6403 struct list_head *iter;
6404 int max_nest = -1;
6405 int nest;
6406
6407 ASSERT_RTNL();
6408
6409 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6410 nest = dev_get_nest_level(lower);
4085ebe8
VY
6411 if (max_nest < nest)
6412 max_nest = nest;
6413 }
6414
952fcfd0 6415 return max_nest + 1;
4085ebe8
VY
6416}
6417EXPORT_SYMBOL(dev_get_nest_level);
6418
04d48266
JP
6419/**
6420 * netdev_lower_change - Dispatch event about lower device state change
6421 * @lower_dev: device
6422 * @lower_state_info: state to dispatch
6423 *
6424 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6425 * The caller must hold the RTNL lock.
6426 */
6427void netdev_lower_state_changed(struct net_device *lower_dev,
6428 void *lower_state_info)
6429{
6430 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6431
6432 ASSERT_RTNL();
6433 changelowerstate_info.lower_state_info = lower_state_info;
6434 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6435 &changelowerstate_info.info);
6436}
6437EXPORT_SYMBOL(netdev_lower_state_changed);
6438
b6c40d68
PM
6439static void dev_change_rx_flags(struct net_device *dev, int flags)
6440{
d314774c
SH
6441 const struct net_device_ops *ops = dev->netdev_ops;
6442
d2615bf4 6443 if (ops->ndo_change_rx_flags)
d314774c 6444 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6445}
6446
991fb3f7 6447static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6448{
b536db93 6449 unsigned int old_flags = dev->flags;
d04a48b0
EB
6450 kuid_t uid;
6451 kgid_t gid;
1da177e4 6452
24023451
PM
6453 ASSERT_RTNL();
6454
dad9b335
WC
6455 dev->flags |= IFF_PROMISC;
6456 dev->promiscuity += inc;
6457 if (dev->promiscuity == 0) {
6458 /*
6459 * Avoid overflow.
6460 * If inc causes overflow, untouch promisc and return error.
6461 */
6462 if (inc < 0)
6463 dev->flags &= ~IFF_PROMISC;
6464 else {
6465 dev->promiscuity -= inc;
7b6cd1ce
JP
6466 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6467 dev->name);
dad9b335
WC
6468 return -EOVERFLOW;
6469 }
6470 }
52609c0b 6471 if (dev->flags != old_flags) {
7b6cd1ce
JP
6472 pr_info("device %s %s promiscuous mode\n",
6473 dev->name,
6474 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6475 if (audit_enabled) {
6476 current_uid_gid(&uid, &gid);
7759db82
KHK
6477 audit_log(current->audit_context, GFP_ATOMIC,
6478 AUDIT_ANOM_PROMISCUOUS,
6479 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6480 dev->name, (dev->flags & IFF_PROMISC),
6481 (old_flags & IFF_PROMISC),
e1760bd5 6482 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6483 from_kuid(&init_user_ns, uid),
6484 from_kgid(&init_user_ns, gid),
7759db82 6485 audit_get_sessionid(current));
8192b0c4 6486 }
24023451 6487
b6c40d68 6488 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6489 }
991fb3f7
ND
6490 if (notify)
6491 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6492 return 0;
1da177e4
LT
6493}
6494
4417da66
PM
6495/**
6496 * dev_set_promiscuity - update promiscuity count on a device
6497 * @dev: device
6498 * @inc: modifier
6499 *
6500 * Add or remove promiscuity from a device. While the count in the device
6501 * remains above zero the interface remains promiscuous. Once it hits zero
6502 * the device reverts back to normal filtering operation. A negative inc
6503 * value is used to drop promiscuity on the device.
dad9b335 6504 * Return 0 if successful or a negative errno code on error.
4417da66 6505 */
dad9b335 6506int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6507{
b536db93 6508 unsigned int old_flags = dev->flags;
dad9b335 6509 int err;
4417da66 6510
991fb3f7 6511 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6512 if (err < 0)
dad9b335 6513 return err;
4417da66
PM
6514 if (dev->flags != old_flags)
6515 dev_set_rx_mode(dev);
dad9b335 6516 return err;
4417da66 6517}
d1b19dff 6518EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6519
991fb3f7 6520static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6521{
991fb3f7 6522 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6523
24023451
PM
6524 ASSERT_RTNL();
6525
1da177e4 6526 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6527 dev->allmulti += inc;
6528 if (dev->allmulti == 0) {
6529 /*
6530 * Avoid overflow.
6531 * If inc causes overflow, untouch allmulti and return error.
6532 */
6533 if (inc < 0)
6534 dev->flags &= ~IFF_ALLMULTI;
6535 else {
6536 dev->allmulti -= inc;
7b6cd1ce
JP
6537 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6538 dev->name);
dad9b335
WC
6539 return -EOVERFLOW;
6540 }
6541 }
24023451 6542 if (dev->flags ^ old_flags) {
b6c40d68 6543 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6544 dev_set_rx_mode(dev);
991fb3f7
ND
6545 if (notify)
6546 __dev_notify_flags(dev, old_flags,
6547 dev->gflags ^ old_gflags);
24023451 6548 }
dad9b335 6549 return 0;
4417da66 6550}
991fb3f7
ND
6551
6552/**
6553 * dev_set_allmulti - update allmulti count on a device
6554 * @dev: device
6555 * @inc: modifier
6556 *
6557 * Add or remove reception of all multicast frames to a device. While the
6558 * count in the device remains above zero the interface remains listening
6559 * to all interfaces. Once it hits zero the device reverts back to normal
6560 * filtering operation. A negative @inc value is used to drop the counter
6561 * when releasing a resource needing all multicasts.
6562 * Return 0 if successful or a negative errno code on error.
6563 */
6564
6565int dev_set_allmulti(struct net_device *dev, int inc)
6566{
6567 return __dev_set_allmulti(dev, inc, true);
6568}
d1b19dff 6569EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6570
6571/*
6572 * Upload unicast and multicast address lists to device and
6573 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6574 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6575 * are present.
6576 */
6577void __dev_set_rx_mode(struct net_device *dev)
6578{
d314774c
SH
6579 const struct net_device_ops *ops = dev->netdev_ops;
6580
4417da66
PM
6581 /* dev_open will call this function so the list will stay sane. */
6582 if (!(dev->flags&IFF_UP))
6583 return;
6584
6585 if (!netif_device_present(dev))
40b77c94 6586 return;
4417da66 6587
01789349 6588 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6589 /* Unicast addresses changes may only happen under the rtnl,
6590 * therefore calling __dev_set_promiscuity here is safe.
6591 */
32e7bfc4 6592 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6593 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6594 dev->uc_promisc = true;
32e7bfc4 6595 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6596 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6597 dev->uc_promisc = false;
4417da66 6598 }
4417da66 6599 }
01789349
JP
6600
6601 if (ops->ndo_set_rx_mode)
6602 ops->ndo_set_rx_mode(dev);
4417da66
PM
6603}
6604
6605void dev_set_rx_mode(struct net_device *dev)
6606{
b9e40857 6607 netif_addr_lock_bh(dev);
4417da66 6608 __dev_set_rx_mode(dev);
b9e40857 6609 netif_addr_unlock_bh(dev);
1da177e4
LT
6610}
6611
f0db275a
SH
6612/**
6613 * dev_get_flags - get flags reported to userspace
6614 * @dev: device
6615 *
6616 * Get the combination of flag bits exported through APIs to userspace.
6617 */
95c96174 6618unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6619{
95c96174 6620 unsigned int flags;
1da177e4
LT
6621
6622 flags = (dev->flags & ~(IFF_PROMISC |
6623 IFF_ALLMULTI |
b00055aa
SR
6624 IFF_RUNNING |
6625 IFF_LOWER_UP |
6626 IFF_DORMANT)) |
1da177e4
LT
6627 (dev->gflags & (IFF_PROMISC |
6628 IFF_ALLMULTI));
6629
b00055aa
SR
6630 if (netif_running(dev)) {
6631 if (netif_oper_up(dev))
6632 flags |= IFF_RUNNING;
6633 if (netif_carrier_ok(dev))
6634 flags |= IFF_LOWER_UP;
6635 if (netif_dormant(dev))
6636 flags |= IFF_DORMANT;
6637 }
1da177e4
LT
6638
6639 return flags;
6640}
d1b19dff 6641EXPORT_SYMBOL(dev_get_flags);
1da177e4 6642
bd380811 6643int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6644{
b536db93 6645 unsigned int old_flags = dev->flags;
bd380811 6646 int ret;
1da177e4 6647
24023451
PM
6648 ASSERT_RTNL();
6649
1da177e4
LT
6650 /*
6651 * Set the flags on our device.
6652 */
6653
6654 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6655 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6656 IFF_AUTOMEDIA)) |
6657 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6658 IFF_ALLMULTI));
6659
6660 /*
6661 * Load in the correct multicast list now the flags have changed.
6662 */
6663
b6c40d68
PM
6664 if ((old_flags ^ flags) & IFF_MULTICAST)
6665 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6666
4417da66 6667 dev_set_rx_mode(dev);
1da177e4
LT
6668
6669 /*
6670 * Have we downed the interface. We handle IFF_UP ourselves
6671 * according to user attempts to set it, rather than blindly
6672 * setting it.
6673 */
6674
6675 ret = 0;
d215d10f 6676 if ((old_flags ^ flags) & IFF_UP)
bd380811 6677 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6678
1da177e4 6679 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6680 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6681 unsigned int old_flags = dev->flags;
d1b19dff 6682
1da177e4 6683 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6684
6685 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6686 if (dev->flags != old_flags)
6687 dev_set_rx_mode(dev);
1da177e4
LT
6688 }
6689
6690 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 6691 * is important. Some (broken) drivers set IFF_PROMISC, when
6692 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
6693 */
6694 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6695 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6696
1da177e4 6697 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6698 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6699 }
6700
bd380811
PM
6701 return ret;
6702}
6703
a528c219
ND
6704void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6705 unsigned int gchanges)
bd380811
PM
6706{
6707 unsigned int changes = dev->flags ^ old_flags;
6708
a528c219 6709 if (gchanges)
7f294054 6710 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6711
bd380811
PM
6712 if (changes & IFF_UP) {
6713 if (dev->flags & IFF_UP)
6714 call_netdevice_notifiers(NETDEV_UP, dev);
6715 else
6716 call_netdevice_notifiers(NETDEV_DOWN, dev);
6717 }
6718
6719 if (dev->flags & IFF_UP &&
be9efd36
JP
6720 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6721 struct netdev_notifier_change_info change_info;
6722
6723 change_info.flags_changed = changes;
6724 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6725 &change_info.info);
6726 }
bd380811
PM
6727}
6728
6729/**
6730 * dev_change_flags - change device settings
6731 * @dev: device
6732 * @flags: device state flags
6733 *
6734 * Change settings on device based state flags. The flags are
6735 * in the userspace exported format.
6736 */
b536db93 6737int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6738{
b536db93 6739 int ret;
991fb3f7 6740 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6741
6742 ret = __dev_change_flags(dev, flags);
6743 if (ret < 0)
6744 return ret;
6745
991fb3f7 6746 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6747 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6748 return ret;
6749}
d1b19dff 6750EXPORT_SYMBOL(dev_change_flags);
1da177e4 6751
2315dc91
VF
6752static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6753{
6754 const struct net_device_ops *ops = dev->netdev_ops;
6755
6756 if (ops->ndo_change_mtu)
6757 return ops->ndo_change_mtu(dev, new_mtu);
6758
6759 dev->mtu = new_mtu;
6760 return 0;
6761}
6762
f0db275a
SH
6763/**
6764 * dev_set_mtu - Change maximum transfer unit
6765 * @dev: device
6766 * @new_mtu: new transfer unit
6767 *
6768 * Change the maximum transfer size of the network device.
6769 */
1da177e4
LT
6770int dev_set_mtu(struct net_device *dev, int new_mtu)
6771{
2315dc91 6772 int err, orig_mtu;
1da177e4
LT
6773
6774 if (new_mtu == dev->mtu)
6775 return 0;
6776
61e84623
JW
6777 /* MTU must be positive, and in range */
6778 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6779 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6780 dev->name, new_mtu, dev->min_mtu);
1da177e4 6781 return -EINVAL;
61e84623
JW
6782 }
6783
6784 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6785 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6786 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6787 return -EINVAL;
6788 }
1da177e4
LT
6789
6790 if (!netif_device_present(dev))
6791 return -ENODEV;
6792
1d486bfb
VF
6793 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6794 err = notifier_to_errno(err);
6795 if (err)
6796 return err;
d314774c 6797
2315dc91
VF
6798 orig_mtu = dev->mtu;
6799 err = __dev_set_mtu(dev, new_mtu);
d314774c 6800
2315dc91
VF
6801 if (!err) {
6802 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6803 err = notifier_to_errno(err);
6804 if (err) {
6805 /* setting mtu back and notifying everyone again,
6806 * so that they have a chance to revert changes.
6807 */
6808 __dev_set_mtu(dev, orig_mtu);
6809 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6810 }
6811 }
1da177e4
LT
6812 return err;
6813}
d1b19dff 6814EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6815
cbda10fa
VD
6816/**
6817 * dev_set_group - Change group this device belongs to
6818 * @dev: device
6819 * @new_group: group this device should belong to
6820 */
6821void dev_set_group(struct net_device *dev, int new_group)
6822{
6823 dev->group = new_group;
6824}
6825EXPORT_SYMBOL(dev_set_group);
6826
f0db275a
SH
6827/**
6828 * dev_set_mac_address - Change Media Access Control Address
6829 * @dev: device
6830 * @sa: new address
6831 *
6832 * Change the hardware (MAC) address of the device
6833 */
1da177e4
LT
6834int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6835{
d314774c 6836 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6837 int err;
6838
d314774c 6839 if (!ops->ndo_set_mac_address)
1da177e4
LT
6840 return -EOPNOTSUPP;
6841 if (sa->sa_family != dev->type)
6842 return -EINVAL;
6843 if (!netif_device_present(dev))
6844 return -ENODEV;
d314774c 6845 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6846 if (err)
6847 return err;
fbdeca2d 6848 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6849 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6850 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6851 return 0;
1da177e4 6852}
d1b19dff 6853EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6854
4bf84c35
JP
6855/**
6856 * dev_change_carrier - Change device carrier
6857 * @dev: device
691b3b7e 6858 * @new_carrier: new value
4bf84c35
JP
6859 *
6860 * Change device carrier
6861 */
6862int dev_change_carrier(struct net_device *dev, bool new_carrier)
6863{
6864 const struct net_device_ops *ops = dev->netdev_ops;
6865
6866 if (!ops->ndo_change_carrier)
6867 return -EOPNOTSUPP;
6868 if (!netif_device_present(dev))
6869 return -ENODEV;
6870 return ops->ndo_change_carrier(dev, new_carrier);
6871}
6872EXPORT_SYMBOL(dev_change_carrier);
6873
66b52b0d
JP
6874/**
6875 * dev_get_phys_port_id - Get device physical port ID
6876 * @dev: device
6877 * @ppid: port ID
6878 *
6879 * Get device physical port ID
6880 */
6881int dev_get_phys_port_id(struct net_device *dev,
02637fce 6882 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6883{
6884 const struct net_device_ops *ops = dev->netdev_ops;
6885
6886 if (!ops->ndo_get_phys_port_id)
6887 return -EOPNOTSUPP;
6888 return ops->ndo_get_phys_port_id(dev, ppid);
6889}
6890EXPORT_SYMBOL(dev_get_phys_port_id);
6891
db24a904
DA
6892/**
6893 * dev_get_phys_port_name - Get device physical port name
6894 * @dev: device
6895 * @name: port name
ed49e650 6896 * @len: limit of bytes to copy to name
db24a904
DA
6897 *
6898 * Get device physical port name
6899 */
6900int dev_get_phys_port_name(struct net_device *dev,
6901 char *name, size_t len)
6902{
6903 const struct net_device_ops *ops = dev->netdev_ops;
6904
6905 if (!ops->ndo_get_phys_port_name)
6906 return -EOPNOTSUPP;
6907 return ops->ndo_get_phys_port_name(dev, name, len);
6908}
6909EXPORT_SYMBOL(dev_get_phys_port_name);
6910
d746d707
AK
6911/**
6912 * dev_change_proto_down - update protocol port state information
6913 * @dev: device
6914 * @proto_down: new value
6915 *
6916 * This info can be used by switch drivers to set the phys state of the
6917 * port.
6918 */
6919int dev_change_proto_down(struct net_device *dev, bool proto_down)
6920{
6921 const struct net_device_ops *ops = dev->netdev_ops;
6922
6923 if (!ops->ndo_change_proto_down)
6924 return -EOPNOTSUPP;
6925 if (!netif_device_present(dev))
6926 return -ENODEV;
6927 return ops->ndo_change_proto_down(dev, proto_down);
6928}
6929EXPORT_SYMBOL(dev_change_proto_down);
6930
d67b9cd2
DB
6931bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op)
6932{
6933 struct netdev_xdp xdp;
6934
6935 memset(&xdp, 0, sizeof(xdp));
6936 xdp.command = XDP_QUERY_PROG;
6937
6938 /* Query must always succeed. */
6939 WARN_ON(xdp_op(dev, &xdp) < 0);
6940 return xdp.prog_attached;
6941}
6942
6943static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6944 struct netlink_ext_ack *extack,
6945 struct bpf_prog *prog)
6946{
6947 struct netdev_xdp xdp;
6948
6949 memset(&xdp, 0, sizeof(xdp));
6950 xdp.command = XDP_SETUP_PROG;
6951 xdp.extack = extack;
6952 xdp.prog = prog;
6953
6954 return xdp_op(dev, &xdp);
6955}
6956
a7862b45
BB
6957/**
6958 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6959 * @dev: device
b5d60989 6960 * @extack: netlink extended ack
a7862b45 6961 * @fd: new program fd or negative value to clear
85de8576 6962 * @flags: xdp-related flags
a7862b45
BB
6963 *
6964 * Set or clear a bpf program for a device
6965 */
ddf9f970
JK
6966int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6967 int fd, u32 flags)
a7862b45
BB
6968{
6969 const struct net_device_ops *ops = dev->netdev_ops;
6970 struct bpf_prog *prog = NULL;
d67b9cd2 6971 xdp_op_t xdp_op, xdp_chk;
a7862b45
BB
6972 int err;
6973
85de8576
DB
6974 ASSERT_RTNL();
6975
d67b9cd2 6976 xdp_op = xdp_chk = ops->ndo_xdp;
0489df9a
DB
6977 if (!xdp_op && (flags & XDP_FLAGS_DRV_MODE))
6978 return -EOPNOTSUPP;
b5cdae32
DM
6979 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
6980 xdp_op = generic_xdp_install;
d67b9cd2
DB
6981 if (xdp_op == xdp_chk)
6982 xdp_chk = generic_xdp_install;
b5cdae32 6983
a7862b45 6984 if (fd >= 0) {
d67b9cd2
DB
6985 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk))
6986 return -EEXIST;
6987 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
6988 __dev_xdp_attached(dev, xdp_op))
6989 return -EBUSY;
85de8576 6990
a7862b45
BB
6991 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6992 if (IS_ERR(prog))
6993 return PTR_ERR(prog);
6994 }
6995
d67b9cd2 6996 err = dev_xdp_install(dev, xdp_op, extack, prog);
a7862b45
BB
6997 if (err < 0 && prog)
6998 bpf_prog_put(prog);
6999
7000 return err;
7001}
a7862b45 7002
1da177e4
LT
7003/**
7004 * dev_new_index - allocate an ifindex
c4ea43c5 7005 * @net: the applicable net namespace
1da177e4
LT
7006 *
7007 * Returns a suitable unique value for a new device interface
7008 * number. The caller must hold the rtnl semaphore or the
7009 * dev_base_lock to be sure it remains unique.
7010 */
881d966b 7011static int dev_new_index(struct net *net)
1da177e4 7012{
aa79e66e 7013 int ifindex = net->ifindex;
f4563a75 7014
1da177e4
LT
7015 for (;;) {
7016 if (++ifindex <= 0)
7017 ifindex = 1;
881d966b 7018 if (!__dev_get_by_index(net, ifindex))
aa79e66e 7019 return net->ifindex = ifindex;
1da177e4
LT
7020 }
7021}
7022
1da177e4 7023/* Delayed registration/unregisteration */
3b5b34fd 7024static LIST_HEAD(net_todo_list);
200b916f 7025DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 7026
6f05f629 7027static void net_set_todo(struct net_device *dev)
1da177e4 7028{
1da177e4 7029 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 7030 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
7031}
7032
9b5e383c 7033static void rollback_registered_many(struct list_head *head)
93ee31f1 7034{
e93737b0 7035 struct net_device *dev, *tmp;
5cde2829 7036 LIST_HEAD(close_head);
9b5e383c 7037
93ee31f1
DL
7038 BUG_ON(dev_boot_phase);
7039 ASSERT_RTNL();
7040
e93737b0 7041 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 7042 /* Some devices call without registering
e93737b0
KK
7043 * for initialization unwind. Remove those
7044 * devices and proceed with the remaining.
9b5e383c
ED
7045 */
7046 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
7047 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7048 dev->name, dev);
93ee31f1 7049
9b5e383c 7050 WARN_ON(1);
e93737b0
KK
7051 list_del(&dev->unreg_list);
7052 continue;
9b5e383c 7053 }
449f4544 7054 dev->dismantle = true;
9b5e383c 7055 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 7056 }
93ee31f1 7057
44345724 7058 /* If device is running, close it first. */
5cde2829
EB
7059 list_for_each_entry(dev, head, unreg_list)
7060 list_add_tail(&dev->close_list, &close_head);
99c4a26a 7061 dev_close_many(&close_head, true);
93ee31f1 7062
44345724 7063 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
7064 /* And unlink it from device chain. */
7065 unlist_netdevice(dev);
93ee31f1 7066
9b5e383c
ED
7067 dev->reg_state = NETREG_UNREGISTERING;
7068 }
41852497 7069 flush_all_backlogs();
93ee31f1
DL
7070
7071 synchronize_net();
7072
9b5e383c 7073 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
7074 struct sk_buff *skb = NULL;
7075
9b5e383c
ED
7076 /* Shutdown queueing discipline. */
7077 dev_shutdown(dev);
93ee31f1
DL
7078
7079
9b5e383c 7080 /* Notify protocols, that we are about to destroy
eb13da1a 7081 * this device. They should clean all the things.
7082 */
9b5e383c 7083 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 7084
395eea6c
MB
7085 if (!dev->rtnl_link_ops ||
7086 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 7087 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
395eea6c
MB
7088 GFP_KERNEL);
7089
9b5e383c
ED
7090 /*
7091 * Flush the unicast and multicast chains
7092 */
a748ee24 7093 dev_uc_flush(dev);
22bedad3 7094 dev_mc_flush(dev);
93ee31f1 7095
9b5e383c
ED
7096 if (dev->netdev_ops->ndo_uninit)
7097 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 7098
395eea6c
MB
7099 if (skb)
7100 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 7101
9ff162a8
JP
7102 /* Notifier chain MUST detach us all upper devices. */
7103 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 7104 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 7105
9b5e383c
ED
7106 /* Remove entries from kobject tree */
7107 netdev_unregister_kobject(dev);
024e9679
AD
7108#ifdef CONFIG_XPS
7109 /* Remove XPS queueing entries */
7110 netif_reset_xps_queues_gt(dev, 0);
7111#endif
9b5e383c 7112 }
93ee31f1 7113
850a545b 7114 synchronize_net();
395264d5 7115
a5ee1551 7116 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
7117 dev_put(dev);
7118}
7119
7120static void rollback_registered(struct net_device *dev)
7121{
7122 LIST_HEAD(single);
7123
7124 list_add(&dev->unreg_list, &single);
7125 rollback_registered_many(&single);
ceaaec98 7126 list_del(&single);
93ee31f1
DL
7127}
7128
fd867d51
JW
7129static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7130 struct net_device *upper, netdev_features_t features)
7131{
7132 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7133 netdev_features_t feature;
5ba3f7d6 7134 int feature_bit;
fd867d51 7135
5ba3f7d6
JW
7136 for_each_netdev_feature(&upper_disables, feature_bit) {
7137 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7138 if (!(upper->wanted_features & feature)
7139 && (features & feature)) {
7140 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7141 &feature, upper->name);
7142 features &= ~feature;
7143 }
7144 }
7145
7146 return features;
7147}
7148
7149static void netdev_sync_lower_features(struct net_device *upper,
7150 struct net_device *lower, netdev_features_t features)
7151{
7152 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7153 netdev_features_t feature;
5ba3f7d6 7154 int feature_bit;
fd867d51 7155
5ba3f7d6
JW
7156 for_each_netdev_feature(&upper_disables, feature_bit) {
7157 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7158 if (!(features & feature) && (lower->features & feature)) {
7159 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7160 &feature, lower->name);
7161 lower->wanted_features &= ~feature;
7162 netdev_update_features(lower);
7163
7164 if (unlikely(lower->features & feature))
7165 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7166 &feature, lower->name);
7167 }
7168 }
7169}
7170
c8f44aff
MM
7171static netdev_features_t netdev_fix_features(struct net_device *dev,
7172 netdev_features_t features)
b63365a2 7173{
57422dc5
MM
7174 /* Fix illegal checksum combinations */
7175 if ((features & NETIF_F_HW_CSUM) &&
7176 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 7177 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
7178 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7179 }
7180
b63365a2 7181 /* TSO requires that SG is present as well. */
ea2d3688 7182 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 7183 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 7184 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
7185 }
7186
ec5f0615
PS
7187 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7188 !(features & NETIF_F_IP_CSUM)) {
7189 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7190 features &= ~NETIF_F_TSO;
7191 features &= ~NETIF_F_TSO_ECN;
7192 }
7193
7194 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7195 !(features & NETIF_F_IPV6_CSUM)) {
7196 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7197 features &= ~NETIF_F_TSO6;
7198 }
7199
b1dc497b
AD
7200 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7201 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7202 features &= ~NETIF_F_TSO_MANGLEID;
7203
31d8b9e0
BH
7204 /* TSO ECN requires that TSO is present as well. */
7205 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7206 features &= ~NETIF_F_TSO_ECN;
7207
212b573f
MM
7208 /* Software GSO depends on SG. */
7209 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 7210 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
7211 features &= ~NETIF_F_GSO;
7212 }
7213
acd1130e 7214 /* UFO needs SG and checksumming */
b63365a2 7215 if (features & NETIF_F_UFO) {
79032644 7216 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
7217 if (!(features & NETIF_F_HW_CSUM) &&
7218 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7219 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 7220 netdev_dbg(dev,
acd1130e 7221 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
7222 features &= ~NETIF_F_UFO;
7223 }
7224
7225 if (!(features & NETIF_F_SG)) {
6f404e44 7226 netdev_dbg(dev,
acd1130e 7227 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
7228 features &= ~NETIF_F_UFO;
7229 }
7230 }
7231
802ab55a
AD
7232 /* GSO partial features require GSO partial be set */
7233 if ((features & dev->gso_partial_features) &&
7234 !(features & NETIF_F_GSO_PARTIAL)) {
7235 netdev_dbg(dev,
7236 "Dropping partially supported GSO features since no GSO partial.\n");
7237 features &= ~dev->gso_partial_features;
7238 }
7239
b63365a2
HX
7240 return features;
7241}
b63365a2 7242
6cb6a27c 7243int __netdev_update_features(struct net_device *dev)
5455c699 7244{
fd867d51 7245 struct net_device *upper, *lower;
c8f44aff 7246 netdev_features_t features;
fd867d51 7247 struct list_head *iter;
e7868a85 7248 int err = -1;
5455c699 7249
87267485
MM
7250 ASSERT_RTNL();
7251
5455c699
MM
7252 features = netdev_get_wanted_features(dev);
7253
7254 if (dev->netdev_ops->ndo_fix_features)
7255 features = dev->netdev_ops->ndo_fix_features(dev, features);
7256
7257 /* driver might be less strict about feature dependencies */
7258 features = netdev_fix_features(dev, features);
7259
fd867d51
JW
7260 /* some features can't be enabled if they're off an an upper device */
7261 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7262 features = netdev_sync_upper_features(dev, upper, features);
7263
5455c699 7264 if (dev->features == features)
e7868a85 7265 goto sync_lower;
5455c699 7266
c8f44aff
MM
7267 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7268 &dev->features, &features);
5455c699
MM
7269
7270 if (dev->netdev_ops->ndo_set_features)
7271 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
7272 else
7273 err = 0;
5455c699 7274
6cb6a27c 7275 if (unlikely(err < 0)) {
5455c699 7276 netdev_err(dev,
c8f44aff
MM
7277 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7278 err, &features, &dev->features);
17b85d29
NA
7279 /* return non-0 since some features might have changed and
7280 * it's better to fire a spurious notification than miss it
7281 */
7282 return -1;
6cb6a27c
MM
7283 }
7284
e7868a85 7285sync_lower:
fd867d51
JW
7286 /* some features must be disabled on lower devices when disabled
7287 * on an upper device (think: bonding master or bridge)
7288 */
7289 netdev_for_each_lower_dev(dev, lower, iter)
7290 netdev_sync_lower_features(dev, lower, features);
7291
6cb6a27c
MM
7292 if (!err)
7293 dev->features = features;
7294
e7868a85 7295 return err < 0 ? 0 : 1;
6cb6a27c
MM
7296}
7297
afe12cc8
MM
7298/**
7299 * netdev_update_features - recalculate device features
7300 * @dev: the device to check
7301 *
7302 * Recalculate dev->features set and send notifications if it
7303 * has changed. Should be called after driver or hardware dependent
7304 * conditions might have changed that influence the features.
7305 */
6cb6a27c
MM
7306void netdev_update_features(struct net_device *dev)
7307{
7308 if (__netdev_update_features(dev))
7309 netdev_features_change(dev);
5455c699
MM
7310}
7311EXPORT_SYMBOL(netdev_update_features);
7312
afe12cc8
MM
7313/**
7314 * netdev_change_features - recalculate device features
7315 * @dev: the device to check
7316 *
7317 * Recalculate dev->features set and send notifications even
7318 * if they have not changed. Should be called instead of
7319 * netdev_update_features() if also dev->vlan_features might
7320 * have changed to allow the changes to be propagated to stacked
7321 * VLAN devices.
7322 */
7323void netdev_change_features(struct net_device *dev)
7324{
7325 __netdev_update_features(dev);
7326 netdev_features_change(dev);
7327}
7328EXPORT_SYMBOL(netdev_change_features);
7329
fc4a7489
PM
7330/**
7331 * netif_stacked_transfer_operstate - transfer operstate
7332 * @rootdev: the root or lower level device to transfer state from
7333 * @dev: the device to transfer operstate to
7334 *
7335 * Transfer operational state from root to device. This is normally
7336 * called when a stacking relationship exists between the root
7337 * device and the device(a leaf device).
7338 */
7339void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7340 struct net_device *dev)
7341{
7342 if (rootdev->operstate == IF_OPER_DORMANT)
7343 netif_dormant_on(dev);
7344 else
7345 netif_dormant_off(dev);
7346
0575c86b
ZS
7347 if (netif_carrier_ok(rootdev))
7348 netif_carrier_on(dev);
7349 else
7350 netif_carrier_off(dev);
fc4a7489
PM
7351}
7352EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7353
a953be53 7354#ifdef CONFIG_SYSFS
1b4bf461
ED
7355static int netif_alloc_rx_queues(struct net_device *dev)
7356{
1b4bf461 7357 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7358 struct netdev_rx_queue *rx;
10595902 7359 size_t sz = count * sizeof(*rx);
1b4bf461 7360
bd25fa7b 7361 BUG_ON(count < 1);
1b4bf461 7362
da6bc57a
MH
7363 rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7364 if (!rx)
7365 return -ENOMEM;
7366
bd25fa7b
TH
7367 dev->_rx = rx;
7368
bd25fa7b 7369 for (i = 0; i < count; i++)
fe822240 7370 rx[i].dev = dev;
1b4bf461
ED
7371 return 0;
7372}
bf264145 7373#endif
1b4bf461 7374
aa942104
CG
7375static void netdev_init_one_queue(struct net_device *dev,
7376 struct netdev_queue *queue, void *_unused)
7377{
7378 /* Initialize queue lock */
7379 spin_lock_init(&queue->_xmit_lock);
7380 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7381 queue->xmit_lock_owner = -1;
b236da69 7382 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7383 queue->dev = dev;
114cf580
TH
7384#ifdef CONFIG_BQL
7385 dql_init(&queue->dql, HZ);
7386#endif
aa942104
CG
7387}
7388
60877a32
ED
7389static void netif_free_tx_queues(struct net_device *dev)
7390{
4cb28970 7391 kvfree(dev->_tx);
60877a32
ED
7392}
7393
e6484930
TH
7394static int netif_alloc_netdev_queues(struct net_device *dev)
7395{
7396 unsigned int count = dev->num_tx_queues;
7397 struct netdev_queue *tx;
60877a32 7398 size_t sz = count * sizeof(*tx);
e6484930 7399
d339727c
ED
7400 if (count < 1 || count > 0xffff)
7401 return -EINVAL;
62b5942a 7402
da6bc57a
MH
7403 tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7404 if (!tx)
7405 return -ENOMEM;
7406
e6484930 7407 dev->_tx = tx;
1d24eb48 7408
e6484930
TH
7409 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7410 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7411
7412 return 0;
e6484930
TH
7413}
7414
a2029240
DV
7415void netif_tx_stop_all_queues(struct net_device *dev)
7416{
7417 unsigned int i;
7418
7419 for (i = 0; i < dev->num_tx_queues; i++) {
7420 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 7421
a2029240
DV
7422 netif_tx_stop_queue(txq);
7423 }
7424}
7425EXPORT_SYMBOL(netif_tx_stop_all_queues);
7426
1da177e4
LT
7427/**
7428 * register_netdevice - register a network device
7429 * @dev: device to register
7430 *
7431 * Take a completed network device structure and add it to the kernel
7432 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7433 * chain. 0 is returned on success. A negative errno code is returned
7434 * on a failure to set up the device, or if the name is a duplicate.
7435 *
7436 * Callers must hold the rtnl semaphore. You may want
7437 * register_netdev() instead of this.
7438 *
7439 * BUGS:
7440 * The locking appears insufficient to guarantee two parallel registers
7441 * will not get the same name.
7442 */
7443
7444int register_netdevice(struct net_device *dev)
7445{
1da177e4 7446 int ret;
d314774c 7447 struct net *net = dev_net(dev);
1da177e4
LT
7448
7449 BUG_ON(dev_boot_phase);
7450 ASSERT_RTNL();
7451
b17a7c17
SH
7452 might_sleep();
7453
1da177e4
LT
7454 /* When net_device's are persistent, this will be fatal. */
7455 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7456 BUG_ON(!net);
1da177e4 7457
f1f28aa3 7458 spin_lock_init(&dev->addr_list_lock);
cf508b12 7459 netdev_set_addr_lockdep_class(dev);
1da177e4 7460
828de4f6 7461 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7462 if (ret < 0)
7463 goto out;
7464
1da177e4 7465 /* Init, if this function is available */
d314774c
SH
7466 if (dev->netdev_ops->ndo_init) {
7467 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7468 if (ret) {
7469 if (ret > 0)
7470 ret = -EIO;
90833aa4 7471 goto out;
1da177e4
LT
7472 }
7473 }
4ec93edb 7474
f646968f
PM
7475 if (((dev->hw_features | dev->features) &
7476 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7477 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7478 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7479 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7480 ret = -EINVAL;
7481 goto err_uninit;
7482 }
7483
9c7dafbf
PE
7484 ret = -EBUSY;
7485 if (!dev->ifindex)
7486 dev->ifindex = dev_new_index(net);
7487 else if (__dev_get_by_index(net, dev->ifindex))
7488 goto err_uninit;
7489
5455c699
MM
7490 /* Transfer changeable features to wanted_features and enable
7491 * software offloads (GSO and GRO).
7492 */
7493 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7494 dev->features |= NETIF_F_SOFT_FEATURES;
7495 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7496
cbc53e08 7497 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7498 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7499
7f348a60
AD
7500 /* If IPv4 TCP segmentation offload is supported we should also
7501 * allow the device to enable segmenting the frame with the option
7502 * of ignoring a static IP ID value. This doesn't enable the
7503 * feature itself but allows the user to enable it later.
7504 */
cbc53e08
AD
7505 if (dev->hw_features & NETIF_F_TSO)
7506 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7507 if (dev->vlan_features & NETIF_F_TSO)
7508 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7509 if (dev->mpls_features & NETIF_F_TSO)
7510 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7511 if (dev->hw_enc_features & NETIF_F_TSO)
7512 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7513
1180e7d6 7514 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7515 */
1180e7d6 7516 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7517
ee579677
PS
7518 /* Make NETIF_F_SG inheritable to tunnel devices.
7519 */
802ab55a 7520 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7521
0d89d203
SH
7522 /* Make NETIF_F_SG inheritable to MPLS.
7523 */
7524 dev->mpls_features |= NETIF_F_SG;
7525
7ffbe3fd
JB
7526 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7527 ret = notifier_to_errno(ret);
7528 if (ret)
7529 goto err_uninit;
7530
8b41d188 7531 ret = netdev_register_kobject(dev);
b17a7c17 7532 if (ret)
7ce1b0ed 7533 goto err_uninit;
b17a7c17
SH
7534 dev->reg_state = NETREG_REGISTERED;
7535
6cb6a27c 7536 __netdev_update_features(dev);
8e9b59b2 7537
1da177e4
LT
7538 /*
7539 * Default initial state at registry is that the
7540 * device is present.
7541 */
7542
7543 set_bit(__LINK_STATE_PRESENT, &dev->state);
7544
8f4cccbb
BH
7545 linkwatch_init_dev(dev);
7546
1da177e4 7547 dev_init_scheduler(dev);
1da177e4 7548 dev_hold(dev);
ce286d32 7549 list_netdevice(dev);
7bf23575 7550 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7551
948b337e
JP
7552 /* If the device has permanent device address, driver should
7553 * set dev_addr and also addr_assign_type should be set to
7554 * NET_ADDR_PERM (default value).
7555 */
7556 if (dev->addr_assign_type == NET_ADDR_PERM)
7557 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7558
1da177e4 7559 /* Notify protocols, that a new device appeared. */
056925ab 7560 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7561 ret = notifier_to_errno(ret);
93ee31f1
DL
7562 if (ret) {
7563 rollback_registered(dev);
7564 dev->reg_state = NETREG_UNREGISTERED;
7565 }
d90a909e
EB
7566 /*
7567 * Prevent userspace races by waiting until the network
7568 * device is fully setup before sending notifications.
7569 */
a2835763
PM
7570 if (!dev->rtnl_link_ops ||
7571 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7572 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7573
7574out:
7575 return ret;
7ce1b0ed
HX
7576
7577err_uninit:
d314774c
SH
7578 if (dev->netdev_ops->ndo_uninit)
7579 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7580 goto out;
1da177e4 7581}
d1b19dff 7582EXPORT_SYMBOL(register_netdevice);
1da177e4 7583
937f1ba5
BH
7584/**
7585 * init_dummy_netdev - init a dummy network device for NAPI
7586 * @dev: device to init
7587 *
7588 * This takes a network device structure and initialize the minimum
7589 * amount of fields so it can be used to schedule NAPI polls without
7590 * registering a full blown interface. This is to be used by drivers
7591 * that need to tie several hardware interfaces to a single NAPI
7592 * poll scheduler due to HW limitations.
7593 */
7594int init_dummy_netdev(struct net_device *dev)
7595{
7596 /* Clear everything. Note we don't initialize spinlocks
7597 * are they aren't supposed to be taken by any of the
7598 * NAPI code and this dummy netdev is supposed to be
7599 * only ever used for NAPI polls
7600 */
7601 memset(dev, 0, sizeof(struct net_device));
7602
7603 /* make sure we BUG if trying to hit standard
7604 * register/unregister code path
7605 */
7606 dev->reg_state = NETREG_DUMMY;
7607
937f1ba5
BH
7608 /* NAPI wants this */
7609 INIT_LIST_HEAD(&dev->napi_list);
7610
7611 /* a dummy interface is started by default */
7612 set_bit(__LINK_STATE_PRESENT, &dev->state);
7613 set_bit(__LINK_STATE_START, &dev->state);
7614
29b4433d
ED
7615 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7616 * because users of this 'device' dont need to change
7617 * its refcount.
7618 */
7619
937f1ba5
BH
7620 return 0;
7621}
7622EXPORT_SYMBOL_GPL(init_dummy_netdev);
7623
7624
1da177e4
LT
7625/**
7626 * register_netdev - register a network device
7627 * @dev: device to register
7628 *
7629 * Take a completed network device structure and add it to the kernel
7630 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7631 * chain. 0 is returned on success. A negative errno code is returned
7632 * on a failure to set up the device, or if the name is a duplicate.
7633 *
38b4da38 7634 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7635 * and expands the device name if you passed a format string to
7636 * alloc_netdev.
7637 */
7638int register_netdev(struct net_device *dev)
7639{
7640 int err;
7641
7642 rtnl_lock();
1da177e4 7643 err = register_netdevice(dev);
1da177e4
LT
7644 rtnl_unlock();
7645 return err;
7646}
7647EXPORT_SYMBOL(register_netdev);
7648
29b4433d
ED
7649int netdev_refcnt_read(const struct net_device *dev)
7650{
7651 int i, refcnt = 0;
7652
7653 for_each_possible_cpu(i)
7654 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7655 return refcnt;
7656}
7657EXPORT_SYMBOL(netdev_refcnt_read);
7658
2c53040f 7659/**
1da177e4 7660 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7661 * @dev: target net_device
1da177e4
LT
7662 *
7663 * This is called when unregistering network devices.
7664 *
7665 * Any protocol or device that holds a reference should register
7666 * for netdevice notification, and cleanup and put back the
7667 * reference if they receive an UNREGISTER event.
7668 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7669 * call dev_put.
1da177e4
LT
7670 */
7671static void netdev_wait_allrefs(struct net_device *dev)
7672{
7673 unsigned long rebroadcast_time, warning_time;
29b4433d 7674 int refcnt;
1da177e4 7675
e014debe
ED
7676 linkwatch_forget_dev(dev);
7677
1da177e4 7678 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7679 refcnt = netdev_refcnt_read(dev);
7680
7681 while (refcnt != 0) {
1da177e4 7682 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7683 rtnl_lock();
1da177e4
LT
7684
7685 /* Rebroadcast unregister notification */
056925ab 7686 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7687
748e2d93 7688 __rtnl_unlock();
0115e8e3 7689 rcu_barrier();
748e2d93
ED
7690 rtnl_lock();
7691
0115e8e3 7692 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7693 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7694 &dev->state)) {
7695 /* We must not have linkwatch events
7696 * pending on unregister. If this
7697 * happens, we simply run the queue
7698 * unscheduled, resulting in a noop
7699 * for this device.
7700 */
7701 linkwatch_run_queue();
7702 }
7703
6756ae4b 7704 __rtnl_unlock();
1da177e4
LT
7705
7706 rebroadcast_time = jiffies;
7707 }
7708
7709 msleep(250);
7710
29b4433d
ED
7711 refcnt = netdev_refcnt_read(dev);
7712
1da177e4 7713 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7714 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7715 dev->name, refcnt);
1da177e4
LT
7716 warning_time = jiffies;
7717 }
7718 }
7719}
7720
7721/* The sequence is:
7722 *
7723 * rtnl_lock();
7724 * ...
7725 * register_netdevice(x1);
7726 * register_netdevice(x2);
7727 * ...
7728 * unregister_netdevice(y1);
7729 * unregister_netdevice(y2);
7730 * ...
7731 * rtnl_unlock();
7732 * free_netdev(y1);
7733 * free_netdev(y2);
7734 *
58ec3b4d 7735 * We are invoked by rtnl_unlock().
1da177e4 7736 * This allows us to deal with problems:
b17a7c17 7737 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7738 * without deadlocking with linkwatch via keventd.
7739 * 2) Since we run with the RTNL semaphore not held, we can sleep
7740 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7741 *
7742 * We must not return until all unregister events added during
7743 * the interval the lock was held have been completed.
1da177e4 7744 */
1da177e4
LT
7745void netdev_run_todo(void)
7746{
626ab0e6 7747 struct list_head list;
1da177e4 7748
1da177e4 7749 /* Snapshot list, allow later requests */
626ab0e6 7750 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7751
7752 __rtnl_unlock();
626ab0e6 7753
0115e8e3
ED
7754
7755 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7756 if (!list_empty(&list))
7757 rcu_barrier();
7758
1da177e4
LT
7759 while (!list_empty(&list)) {
7760 struct net_device *dev
e5e26d75 7761 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7762 list_del(&dev->todo_list);
7763
748e2d93 7764 rtnl_lock();
0115e8e3 7765 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7766 __rtnl_unlock();
0115e8e3 7767
b17a7c17 7768 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7769 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7770 dev->name, dev->reg_state);
7771 dump_stack();
7772 continue;
7773 }
1da177e4 7774
b17a7c17 7775 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7776
b17a7c17 7777 netdev_wait_allrefs(dev);
1da177e4 7778
b17a7c17 7779 /* paranoia */
29b4433d 7780 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7781 BUG_ON(!list_empty(&dev->ptype_all));
7782 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7783 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7784 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7785 WARN_ON(dev->dn_ptr);
1da177e4 7786
b17a7c17
SH
7787 if (dev->destructor)
7788 dev->destructor(dev);
9093bbb2 7789
50624c93
EB
7790 /* Report a network device has been unregistered */
7791 rtnl_lock();
7792 dev_net(dev)->dev_unreg_count--;
7793 __rtnl_unlock();
7794 wake_up(&netdev_unregistering_wq);
7795
9093bbb2
SH
7796 /* Free network device */
7797 kobject_put(&dev->dev.kobj);
1da177e4 7798 }
1da177e4
LT
7799}
7800
9256645a
JW
7801/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7802 * all the same fields in the same order as net_device_stats, with only
7803 * the type differing, but rtnl_link_stats64 may have additional fields
7804 * at the end for newer counters.
3cfde79c 7805 */
77a1abf5
ED
7806void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7807 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7808{
7809#if BITS_PER_LONG == 64
9256645a 7810 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7811 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7812 /* zero out counters that only exist in rtnl_link_stats64 */
7813 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7814 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7815#else
9256645a 7816 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7817 const unsigned long *src = (const unsigned long *)netdev_stats;
7818 u64 *dst = (u64 *)stats64;
7819
9256645a 7820 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7821 for (i = 0; i < n; i++)
7822 dst[i] = src[i];
9256645a
JW
7823 /* zero out counters that only exist in rtnl_link_stats64 */
7824 memset((char *)stats64 + n * sizeof(u64), 0,
7825 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7826#endif
7827}
77a1abf5 7828EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7829
eeda3fd6
SH
7830/**
7831 * dev_get_stats - get network device statistics
7832 * @dev: device to get statistics from
28172739 7833 * @storage: place to store stats
eeda3fd6 7834 *
d7753516
BH
7835 * Get network statistics from device. Return @storage.
7836 * The device driver may provide its own method by setting
7837 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7838 * otherwise the internal statistics structure is used.
eeda3fd6 7839 */
d7753516
BH
7840struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7841 struct rtnl_link_stats64 *storage)
7004bf25 7842{
eeda3fd6
SH
7843 const struct net_device_ops *ops = dev->netdev_ops;
7844
28172739
ED
7845 if (ops->ndo_get_stats64) {
7846 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7847 ops->ndo_get_stats64(dev, storage);
7848 } else if (ops->ndo_get_stats) {
3cfde79c 7849 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7850 } else {
7851 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7852 }
caf586e5 7853 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7854 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7855 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7856 return storage;
c45d286e 7857}
eeda3fd6 7858EXPORT_SYMBOL(dev_get_stats);
c45d286e 7859
24824a09 7860struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7861{
24824a09 7862 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7863
24824a09
ED
7864#ifdef CONFIG_NET_CLS_ACT
7865 if (queue)
7866 return queue;
7867 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7868 if (!queue)
7869 return NULL;
7870 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7871 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7872 queue->qdisc_sleeping = &noop_qdisc;
7873 rcu_assign_pointer(dev->ingress_queue, queue);
7874#endif
7875 return queue;
bb949fbd
DM
7876}
7877
2c60db03
ED
7878static const struct ethtool_ops default_ethtool_ops;
7879
d07d7507
SG
7880void netdev_set_default_ethtool_ops(struct net_device *dev,
7881 const struct ethtool_ops *ops)
7882{
7883 if (dev->ethtool_ops == &default_ethtool_ops)
7884 dev->ethtool_ops = ops;
7885}
7886EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7887
74d332c1
ED
7888void netdev_freemem(struct net_device *dev)
7889{
7890 char *addr = (char *)dev - dev->padded;
7891
4cb28970 7892 kvfree(addr);
74d332c1
ED
7893}
7894
1da177e4 7895/**
722c9a0c 7896 * alloc_netdev_mqs - allocate network device
7897 * @sizeof_priv: size of private data to allocate space for
7898 * @name: device name format string
7899 * @name_assign_type: origin of device name
7900 * @setup: callback to initialize device
7901 * @txqs: the number of TX subqueues to allocate
7902 * @rxqs: the number of RX subqueues to allocate
7903 *
7904 * Allocates a struct net_device with private data area for driver use
7905 * and performs basic initialization. Also allocates subqueue structs
7906 * for each queue on the device.
1da177e4 7907 */
36909ea4 7908struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7909 unsigned char name_assign_type,
36909ea4
TH
7910 void (*setup)(struct net_device *),
7911 unsigned int txqs, unsigned int rxqs)
1da177e4 7912{
1da177e4 7913 struct net_device *dev;
7943986c 7914 size_t alloc_size;
1ce8e7b5 7915 struct net_device *p;
1da177e4 7916
b6fe17d6
SH
7917 BUG_ON(strlen(name) >= sizeof(dev->name));
7918
36909ea4 7919 if (txqs < 1) {
7b6cd1ce 7920 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7921 return NULL;
7922 }
7923
a953be53 7924#ifdef CONFIG_SYSFS
36909ea4 7925 if (rxqs < 1) {
7b6cd1ce 7926 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7927 return NULL;
7928 }
7929#endif
7930
fd2ea0a7 7931 alloc_size = sizeof(struct net_device);
d1643d24
AD
7932 if (sizeof_priv) {
7933 /* ensure 32-byte alignment of private area */
1ce8e7b5 7934 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7935 alloc_size += sizeof_priv;
7936 }
7937 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7938 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7939
da6bc57a 7940 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT);
62b5942a 7941 if (!p)
1da177e4 7942 return NULL;
1da177e4 7943
1ce8e7b5 7944 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7945 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7946
29b4433d
ED
7947 dev->pcpu_refcnt = alloc_percpu(int);
7948 if (!dev->pcpu_refcnt)
74d332c1 7949 goto free_dev;
ab9c73cc 7950
ab9c73cc 7951 if (dev_addr_init(dev))
29b4433d 7952 goto free_pcpu;
ab9c73cc 7953
22bedad3 7954 dev_mc_init(dev);
a748ee24 7955 dev_uc_init(dev);
ccffad25 7956
c346dca1 7957 dev_net_set(dev, &init_net);
1da177e4 7958
8d3bdbd5 7959 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7960 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7961
8d3bdbd5
DM
7962 INIT_LIST_HEAD(&dev->napi_list);
7963 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7964 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7965 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7966 INIT_LIST_HEAD(&dev->adj_list.upper);
7967 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
7968 INIT_LIST_HEAD(&dev->ptype_all);
7969 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7970#ifdef CONFIG_NET_SCHED
7971 hash_init(dev->qdisc_hash);
7972#endif
02875878 7973 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7974 setup(dev);
7975
a813104d 7976 if (!dev->tx_queue_len) {
f84bb1ea 7977 dev->priv_flags |= IFF_NO_QUEUE;
11597084 7978 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 7979 }
906470c1 7980
36909ea4
TH
7981 dev->num_tx_queues = txqs;
7982 dev->real_num_tx_queues = txqs;
ed9af2e8 7983 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7984 goto free_all;
e8a0464c 7985
a953be53 7986#ifdef CONFIG_SYSFS
36909ea4
TH
7987 dev->num_rx_queues = rxqs;
7988 dev->real_num_rx_queues = rxqs;
fe822240 7989 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7990 goto free_all;
df334545 7991#endif
0a9627f2 7992
1da177e4 7993 strcpy(dev->name, name);
c835a677 7994 dev->name_assign_type = name_assign_type;
cbda10fa 7995 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7996 if (!dev->ethtool_ops)
7997 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7998
7999 nf_hook_ingress_init(dev);
8000
1da177e4 8001 return dev;
ab9c73cc 8002
8d3bdbd5
DM
8003free_all:
8004 free_netdev(dev);
8005 return NULL;
8006
29b4433d
ED
8007free_pcpu:
8008 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
8009free_dev:
8010 netdev_freemem(dev);
ab9c73cc 8011 return NULL;
1da177e4 8012}
36909ea4 8013EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
8014
8015/**
722c9a0c 8016 * free_netdev - free network device
8017 * @dev: device
1da177e4 8018 *
722c9a0c 8019 * This function does the last stage of destroying an allocated device
8020 * interface. The reference to the device object is released. If this
8021 * is the last reference then it will be freed.Must be called in process
8022 * context.
1da177e4
LT
8023 */
8024void free_netdev(struct net_device *dev)
8025{
d565b0a1 8026 struct napi_struct *p, *n;
b5cdae32 8027 struct bpf_prog *prog;
d565b0a1 8028
93d05d4a 8029 might_sleep();
60877a32 8030 netif_free_tx_queues(dev);
a953be53 8031#ifdef CONFIG_SYSFS
10595902 8032 kvfree(dev->_rx);
fe822240 8033#endif
e8a0464c 8034
33d480ce 8035 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 8036
f001fde5
JP
8037 /* Flush device addresses */
8038 dev_addr_flush(dev);
8039
d565b0a1
HX
8040 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8041 netif_napi_del(p);
8042
29b4433d
ED
8043 free_percpu(dev->pcpu_refcnt);
8044 dev->pcpu_refcnt = NULL;
8045
b5cdae32
DM
8046 prog = rcu_dereference_protected(dev->xdp_prog, 1);
8047 if (prog) {
8048 bpf_prog_put(prog);
8049 static_key_slow_dec(&generic_xdp_needed);
8050 }
8051
3041a069 8052 /* Compatibility with error handling in drivers */
1da177e4 8053 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 8054 netdev_freemem(dev);
1da177e4
LT
8055 return;
8056 }
8057
8058 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8059 dev->reg_state = NETREG_RELEASED;
8060
43cb76d9
GKH
8061 /* will free via device release */
8062 put_device(&dev->dev);
1da177e4 8063}
d1b19dff 8064EXPORT_SYMBOL(free_netdev);
4ec93edb 8065
f0db275a
SH
8066/**
8067 * synchronize_net - Synchronize with packet receive processing
8068 *
8069 * Wait for packets currently being received to be done.
8070 * Does not block later packets from starting.
8071 */
4ec93edb 8072void synchronize_net(void)
1da177e4
LT
8073{
8074 might_sleep();
be3fc413
ED
8075 if (rtnl_is_locked())
8076 synchronize_rcu_expedited();
8077 else
8078 synchronize_rcu();
1da177e4 8079}
d1b19dff 8080EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
8081
8082/**
44a0873d 8083 * unregister_netdevice_queue - remove device from the kernel
1da177e4 8084 * @dev: device
44a0873d 8085 * @head: list
6ebfbc06 8086 *
1da177e4 8087 * This function shuts down a device interface and removes it
d59b54b1 8088 * from the kernel tables.
44a0873d 8089 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
8090 *
8091 * Callers must hold the rtnl semaphore. You may want
8092 * unregister_netdev() instead of this.
8093 */
8094
44a0873d 8095void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 8096{
a6620712
HX
8097 ASSERT_RTNL();
8098
44a0873d 8099 if (head) {
9fdce099 8100 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
8101 } else {
8102 rollback_registered(dev);
8103 /* Finish processing unregister after unlock */
8104 net_set_todo(dev);
8105 }
1da177e4 8106}
44a0873d 8107EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 8108
9b5e383c
ED
8109/**
8110 * unregister_netdevice_many - unregister many devices
8111 * @head: list of devices
87757a91
ED
8112 *
8113 * Note: As most callers use a stack allocated list_head,
8114 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
8115 */
8116void unregister_netdevice_many(struct list_head *head)
8117{
8118 struct net_device *dev;
8119
8120 if (!list_empty(head)) {
8121 rollback_registered_many(head);
8122 list_for_each_entry(dev, head, unreg_list)
8123 net_set_todo(dev);
87757a91 8124 list_del(head);
9b5e383c
ED
8125 }
8126}
63c8099d 8127EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 8128
1da177e4
LT
8129/**
8130 * unregister_netdev - remove device from the kernel
8131 * @dev: device
8132 *
8133 * This function shuts down a device interface and removes it
d59b54b1 8134 * from the kernel tables.
1da177e4
LT
8135 *
8136 * This is just a wrapper for unregister_netdevice that takes
8137 * the rtnl semaphore. In general you want to use this and not
8138 * unregister_netdevice.
8139 */
8140void unregister_netdev(struct net_device *dev)
8141{
8142 rtnl_lock();
8143 unregister_netdevice(dev);
8144 rtnl_unlock();
8145}
1da177e4
LT
8146EXPORT_SYMBOL(unregister_netdev);
8147
ce286d32
EB
8148/**
8149 * dev_change_net_namespace - move device to different nethost namespace
8150 * @dev: device
8151 * @net: network namespace
8152 * @pat: If not NULL name pattern to try if the current device name
8153 * is already taken in the destination network namespace.
8154 *
8155 * This function shuts down a device interface and moves it
8156 * to a new network namespace. On success 0 is returned, on
8157 * a failure a netagive errno code is returned.
8158 *
8159 * Callers must hold the rtnl semaphore.
8160 */
8161
8162int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8163{
ce286d32
EB
8164 int err;
8165
8166 ASSERT_RTNL();
8167
8168 /* Don't allow namespace local devices to be moved. */
8169 err = -EINVAL;
8170 if (dev->features & NETIF_F_NETNS_LOCAL)
8171 goto out;
8172
8173 /* Ensure the device has been registrered */
ce286d32
EB
8174 if (dev->reg_state != NETREG_REGISTERED)
8175 goto out;
8176
8177 /* Get out if there is nothing todo */
8178 err = 0;
878628fb 8179 if (net_eq(dev_net(dev), net))
ce286d32
EB
8180 goto out;
8181
8182 /* Pick the destination device name, and ensure
8183 * we can use it in the destination network namespace.
8184 */
8185 err = -EEXIST;
d9031024 8186 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
8187 /* We get here if we can't use the current device name */
8188 if (!pat)
8189 goto out;
828de4f6 8190 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
8191 goto out;
8192 }
8193
8194 /*
8195 * And now a mini version of register_netdevice unregister_netdevice.
8196 */
8197
8198 /* If device is running close it first. */
9b772652 8199 dev_close(dev);
ce286d32
EB
8200
8201 /* And unlink it from device chain */
8202 err = -ENODEV;
8203 unlist_netdevice(dev);
8204
8205 synchronize_net();
8206
8207 /* Shutdown queueing discipline. */
8208 dev_shutdown(dev);
8209
8210 /* Notify protocols, that we are about to destroy
eb13da1a 8211 * this device. They should clean all the things.
8212 *
8213 * Note that dev->reg_state stays at NETREG_REGISTERED.
8214 * This is wanted because this way 8021q and macvlan know
8215 * the device is just moving and can keep their slaves up.
8216 */
ce286d32 8217 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
8218 rcu_barrier();
8219 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 8220 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
8221
8222 /*
8223 * Flush the unicast and multicast chains
8224 */
a748ee24 8225 dev_uc_flush(dev);
22bedad3 8226 dev_mc_flush(dev);
ce286d32 8227
4e66ae2e
SH
8228 /* Send a netdev-removed uevent to the old namespace */
8229 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 8230 netdev_adjacent_del_links(dev);
4e66ae2e 8231
ce286d32 8232 /* Actually switch the network namespace */
c346dca1 8233 dev_net_set(dev, net);
ce286d32 8234
ce286d32 8235 /* If there is an ifindex conflict assign a new one */
7a66bbc9 8236 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 8237 dev->ifindex = dev_new_index(net);
ce286d32 8238
4e66ae2e
SH
8239 /* Send a netdev-add uevent to the new namespace */
8240 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 8241 netdev_adjacent_add_links(dev);
4e66ae2e 8242
8b41d188 8243 /* Fixup kobjects */
a1b3f594 8244 err = device_rename(&dev->dev, dev->name);
8b41d188 8245 WARN_ON(err);
ce286d32
EB
8246
8247 /* Add the device back in the hashes */
8248 list_netdevice(dev);
8249
8250 /* Notify protocols, that a new device appeared. */
8251 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8252
d90a909e
EB
8253 /*
8254 * Prevent userspace races by waiting until the network
8255 * device is fully setup before sending notifications.
8256 */
7f294054 8257 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 8258
ce286d32
EB
8259 synchronize_net();
8260 err = 0;
8261out:
8262 return err;
8263}
463d0183 8264EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 8265
f0bf90de 8266static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
8267{
8268 struct sk_buff **list_skb;
1da177e4 8269 struct sk_buff *skb;
f0bf90de 8270 unsigned int cpu;
1da177e4
LT
8271 struct softnet_data *sd, *oldsd;
8272
1da177e4
LT
8273 local_irq_disable();
8274 cpu = smp_processor_id();
8275 sd = &per_cpu(softnet_data, cpu);
8276 oldsd = &per_cpu(softnet_data, oldcpu);
8277
8278 /* Find end of our completion_queue. */
8279 list_skb = &sd->completion_queue;
8280 while (*list_skb)
8281 list_skb = &(*list_skb)->next;
8282 /* Append completion queue from offline CPU. */
8283 *list_skb = oldsd->completion_queue;
8284 oldsd->completion_queue = NULL;
8285
1da177e4 8286 /* Append output queue from offline CPU. */
a9cbd588
CG
8287 if (oldsd->output_queue) {
8288 *sd->output_queue_tailp = oldsd->output_queue;
8289 sd->output_queue_tailp = oldsd->output_queue_tailp;
8290 oldsd->output_queue = NULL;
8291 oldsd->output_queue_tailp = &oldsd->output_queue;
8292 }
ac64da0b
ED
8293 /* Append NAPI poll list from offline CPU, with one exception :
8294 * process_backlog() must be called by cpu owning percpu backlog.
8295 * We properly handle process_queue & input_pkt_queue later.
8296 */
8297 while (!list_empty(&oldsd->poll_list)) {
8298 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8299 struct napi_struct,
8300 poll_list);
8301
8302 list_del_init(&napi->poll_list);
8303 if (napi->poll == process_backlog)
8304 napi->state = 0;
8305 else
8306 ____napi_schedule(sd, napi);
264524d5 8307 }
1da177e4
LT
8308
8309 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8310 local_irq_enable();
8311
8312 /* Process offline CPU's input_pkt_queue */
76cc8b13 8313 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8314 netif_rx_ni(skb);
76cc8b13 8315 input_queue_head_incr(oldsd);
fec5e652 8316 }
ac64da0b 8317 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8318 netif_rx_ni(skb);
76cc8b13
TH
8319 input_queue_head_incr(oldsd);
8320 }
1da177e4 8321
f0bf90de 8322 return 0;
1da177e4 8323}
1da177e4 8324
7f353bf2 8325/**
b63365a2
HX
8326 * netdev_increment_features - increment feature set by one
8327 * @all: current feature set
8328 * @one: new feature set
8329 * @mask: mask feature set
7f353bf2
HX
8330 *
8331 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8332 * @one to the master device with current feature set @all. Will not
8333 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8334 */
c8f44aff
MM
8335netdev_features_t netdev_increment_features(netdev_features_t all,
8336 netdev_features_t one, netdev_features_t mask)
b63365a2 8337{
c8cd0989 8338 if (mask & NETIF_F_HW_CSUM)
a188222b 8339 mask |= NETIF_F_CSUM_MASK;
1742f183 8340 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8341
a188222b 8342 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8343 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8344
1742f183 8345 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8346 if (all & NETIF_F_HW_CSUM)
8347 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8348
8349 return all;
8350}
b63365a2 8351EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8352
430f03cd 8353static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8354{
8355 int i;
8356 struct hlist_head *hash;
8357
8358 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8359 if (hash != NULL)
8360 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8361 INIT_HLIST_HEAD(&hash[i]);
8362
8363 return hash;
8364}
8365
881d966b 8366/* Initialize per network namespace state */
4665079c 8367static int __net_init netdev_init(struct net *net)
881d966b 8368{
734b6541
RM
8369 if (net != &init_net)
8370 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8371
30d97d35
PE
8372 net->dev_name_head = netdev_create_hash();
8373 if (net->dev_name_head == NULL)
8374 goto err_name;
881d966b 8375
30d97d35
PE
8376 net->dev_index_head = netdev_create_hash();
8377 if (net->dev_index_head == NULL)
8378 goto err_idx;
881d966b
EB
8379
8380 return 0;
30d97d35
PE
8381
8382err_idx:
8383 kfree(net->dev_name_head);
8384err_name:
8385 return -ENOMEM;
881d966b
EB
8386}
8387
f0db275a
SH
8388/**
8389 * netdev_drivername - network driver for the device
8390 * @dev: network device
f0db275a
SH
8391 *
8392 * Determine network driver for device.
8393 */
3019de12 8394const char *netdev_drivername(const struct net_device *dev)
6579e57b 8395{
cf04a4c7
SH
8396 const struct device_driver *driver;
8397 const struct device *parent;
3019de12 8398 const char *empty = "";
6579e57b
AV
8399
8400 parent = dev->dev.parent;
6579e57b 8401 if (!parent)
3019de12 8402 return empty;
6579e57b
AV
8403
8404 driver = parent->driver;
8405 if (driver && driver->name)
3019de12
DM
8406 return driver->name;
8407 return empty;
6579e57b
AV
8408}
8409
6ea754eb
JP
8410static void __netdev_printk(const char *level, const struct net_device *dev,
8411 struct va_format *vaf)
256df2f3 8412{
b004ff49 8413 if (dev && dev->dev.parent) {
6ea754eb
JP
8414 dev_printk_emit(level[1] - '0',
8415 dev->dev.parent,
8416 "%s %s %s%s: %pV",
8417 dev_driver_string(dev->dev.parent),
8418 dev_name(dev->dev.parent),
8419 netdev_name(dev), netdev_reg_state(dev),
8420 vaf);
b004ff49 8421 } else if (dev) {
6ea754eb
JP
8422 printk("%s%s%s: %pV",
8423 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8424 } else {
6ea754eb 8425 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8426 }
256df2f3
JP
8427}
8428
6ea754eb
JP
8429void netdev_printk(const char *level, const struct net_device *dev,
8430 const char *format, ...)
256df2f3
JP
8431{
8432 struct va_format vaf;
8433 va_list args;
256df2f3
JP
8434
8435 va_start(args, format);
8436
8437 vaf.fmt = format;
8438 vaf.va = &args;
8439
6ea754eb 8440 __netdev_printk(level, dev, &vaf);
b004ff49 8441
256df2f3 8442 va_end(args);
256df2f3
JP
8443}
8444EXPORT_SYMBOL(netdev_printk);
8445
8446#define define_netdev_printk_level(func, level) \
6ea754eb 8447void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8448{ \
256df2f3
JP
8449 struct va_format vaf; \
8450 va_list args; \
8451 \
8452 va_start(args, fmt); \
8453 \
8454 vaf.fmt = fmt; \
8455 vaf.va = &args; \
8456 \
6ea754eb 8457 __netdev_printk(level, dev, &vaf); \
b004ff49 8458 \
256df2f3 8459 va_end(args); \
256df2f3
JP
8460} \
8461EXPORT_SYMBOL(func);
8462
8463define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8464define_netdev_printk_level(netdev_alert, KERN_ALERT);
8465define_netdev_printk_level(netdev_crit, KERN_CRIT);
8466define_netdev_printk_level(netdev_err, KERN_ERR);
8467define_netdev_printk_level(netdev_warn, KERN_WARNING);
8468define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8469define_netdev_printk_level(netdev_info, KERN_INFO);
8470
4665079c 8471static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8472{
8473 kfree(net->dev_name_head);
8474 kfree(net->dev_index_head);
8475}
8476
022cbae6 8477static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8478 .init = netdev_init,
8479 .exit = netdev_exit,
8480};
8481
4665079c 8482static void __net_exit default_device_exit(struct net *net)
ce286d32 8483{
e008b5fc 8484 struct net_device *dev, *aux;
ce286d32 8485 /*
e008b5fc 8486 * Push all migratable network devices back to the
ce286d32
EB
8487 * initial network namespace
8488 */
8489 rtnl_lock();
e008b5fc 8490 for_each_netdev_safe(net, dev, aux) {
ce286d32 8491 int err;
aca51397 8492 char fb_name[IFNAMSIZ];
ce286d32
EB
8493
8494 /* Ignore unmoveable devices (i.e. loopback) */
8495 if (dev->features & NETIF_F_NETNS_LOCAL)
8496 continue;
8497
e008b5fc
EB
8498 /* Leave virtual devices for the generic cleanup */
8499 if (dev->rtnl_link_ops)
8500 continue;
d0c082ce 8501
25985edc 8502 /* Push remaining network devices to init_net */
aca51397
PE
8503 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8504 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8505 if (err) {
7b6cd1ce
JP
8506 pr_emerg("%s: failed to move %s to init_net: %d\n",
8507 __func__, dev->name, err);
aca51397 8508 BUG();
ce286d32
EB
8509 }
8510 }
8511 rtnl_unlock();
8512}
8513
50624c93
EB
8514static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8515{
8516 /* Return with the rtnl_lock held when there are no network
8517 * devices unregistering in any network namespace in net_list.
8518 */
8519 struct net *net;
8520 bool unregistering;
ff960a73 8521 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8522
ff960a73 8523 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8524 for (;;) {
50624c93
EB
8525 unregistering = false;
8526 rtnl_lock();
8527 list_for_each_entry(net, net_list, exit_list) {
8528 if (net->dev_unreg_count > 0) {
8529 unregistering = true;
8530 break;
8531 }
8532 }
8533 if (!unregistering)
8534 break;
8535 __rtnl_unlock();
ff960a73
PZ
8536
8537 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8538 }
ff960a73 8539 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8540}
8541
04dc7f6b
EB
8542static void __net_exit default_device_exit_batch(struct list_head *net_list)
8543{
8544 /* At exit all network devices most be removed from a network
b595076a 8545 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8546 * Do this across as many network namespaces as possible to
8547 * improve batching efficiency.
8548 */
8549 struct net_device *dev;
8550 struct net *net;
8551 LIST_HEAD(dev_kill_list);
8552
50624c93
EB
8553 /* To prevent network device cleanup code from dereferencing
8554 * loopback devices or network devices that have been freed
8555 * wait here for all pending unregistrations to complete,
8556 * before unregistring the loopback device and allowing the
8557 * network namespace be freed.
8558 *
8559 * The netdev todo list containing all network devices
8560 * unregistrations that happen in default_device_exit_batch
8561 * will run in the rtnl_unlock() at the end of
8562 * default_device_exit_batch.
8563 */
8564 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8565 list_for_each_entry(net, net_list, exit_list) {
8566 for_each_netdev_reverse(net, dev) {
b0ab2fab 8567 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8568 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8569 else
8570 unregister_netdevice_queue(dev, &dev_kill_list);
8571 }
8572 }
8573 unregister_netdevice_many(&dev_kill_list);
8574 rtnl_unlock();
8575}
8576
022cbae6 8577static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8578 .exit = default_device_exit,
04dc7f6b 8579 .exit_batch = default_device_exit_batch,
ce286d32
EB
8580};
8581
1da177e4
LT
8582/*
8583 * Initialize the DEV module. At boot time this walks the device list and
8584 * unhooks any devices that fail to initialise (normally hardware not
8585 * present) and leaves us with a valid list of present and active devices.
8586 *
8587 */
8588
8589/*
8590 * This is called single threaded during boot, so no need
8591 * to take the rtnl semaphore.
8592 */
8593static int __init net_dev_init(void)
8594{
8595 int i, rc = -ENOMEM;
8596
8597 BUG_ON(!dev_boot_phase);
8598
1da177e4
LT
8599 if (dev_proc_init())
8600 goto out;
8601
8b41d188 8602 if (netdev_kobject_init())
1da177e4
LT
8603 goto out;
8604
8605 INIT_LIST_HEAD(&ptype_all);
82d8a867 8606 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8607 INIT_LIST_HEAD(&ptype_base[i]);
8608
62532da9
VY
8609 INIT_LIST_HEAD(&offload_base);
8610
881d966b
EB
8611 if (register_pernet_subsys(&netdev_net_ops))
8612 goto out;
1da177e4
LT
8613
8614 /*
8615 * Initialise the packet receive queues.
8616 */
8617
6f912042 8618 for_each_possible_cpu(i) {
41852497 8619 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8620 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8621
41852497
ED
8622 INIT_WORK(flush, flush_backlog);
8623
e36fa2f7 8624 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8625 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8626 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8627 sd->output_queue_tailp = &sd->output_queue;
df334545 8628#ifdef CONFIG_RPS
e36fa2f7
ED
8629 sd->csd.func = rps_trigger_softirq;
8630 sd->csd.info = sd;
e36fa2f7 8631 sd->cpu = i;
1e94d72f 8632#endif
0a9627f2 8633
e36fa2f7
ED
8634 sd->backlog.poll = process_backlog;
8635 sd->backlog.weight = weight_p;
1da177e4
LT
8636 }
8637
1da177e4
LT
8638 dev_boot_phase = 0;
8639
505d4f73
EB
8640 /* The loopback device is special if any other network devices
8641 * is present in a network namespace the loopback device must
8642 * be present. Since we now dynamically allocate and free the
8643 * loopback device ensure this invariant is maintained by
8644 * keeping the loopback device as the first device on the
8645 * list of network devices. Ensuring the loopback devices
8646 * is the first device that appears and the last network device
8647 * that disappears.
8648 */
8649 if (register_pernet_device(&loopback_net_ops))
8650 goto out;
8651
8652 if (register_pernet_device(&default_device_ops))
8653 goto out;
8654
962cf36c
CM
8655 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8656 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8657
f0bf90de
SAS
8658 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8659 NULL, dev_cpu_dead);
8660 WARN_ON(rc < 0);
f38a9eb1 8661 dst_subsys_init();
1da177e4
LT
8662 rc = 0;
8663out:
8664 return rc;
8665}
8666
8667subsys_initcall(net_dev_init);