]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - net/core/dev.c
Merge branch 'ppp-rtnetlink'
[mirror_ubuntu-jammy-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4 98#include <net/sock.h>
02d62e86 99#include <net/busy_poll.h>
1da177e4 100#include <linux/rtnetlink.h>
1da177e4 101#include <linux/stat.h>
1da177e4 102#include <net/dst.h>
fc4099f1 103#include <net/dst_metadata.h>
1da177e4
LT
104#include <net/pkt_sched.h>
105#include <net/checksum.h>
44540960 106#include <net/xfrm.h>
1da177e4
LT
107#include <linux/highmem.h>
108#include <linux/init.h>
1da177e4 109#include <linux/module.h>
1da177e4
LT
110#include <linux/netpoll.h>
111#include <linux/rcupdate.h>
112#include <linux/delay.h>
1da177e4 113#include <net/iw_handler.h>
1da177e4 114#include <asm/current.h>
5bdb9886 115#include <linux/audit.h>
db217334 116#include <linux/dmaengine.h>
f6a78bfc 117#include <linux/err.h>
c7fa9d18 118#include <linux/ctype.h>
723e98b7 119#include <linux/if_arp.h>
6de329e2 120#include <linux/if_vlan.h>
8f0f2223 121#include <linux/ip.h>
ad55dcaf 122#include <net/ip.h>
25cd9ba0 123#include <net/mpls.h>
8f0f2223
DM
124#include <linux/ipv6.h>
125#include <linux/in.h>
b6b2fed1
DM
126#include <linux/jhash.h>
127#include <linux/random.h>
9cbc1cb8 128#include <trace/events/napi.h>
cf66ba58 129#include <trace/events/net.h>
07dc22e7 130#include <trace/events/skb.h>
5acbbd42 131#include <linux/pci.h>
caeda9b9 132#include <linux/inetdevice.h>
c445477d 133#include <linux/cpu_rmap.h>
c5905afb 134#include <linux/static_key.h>
af12fa6e 135#include <linux/hashtable.h>
60877a32 136#include <linux/vmalloc.h>
529d0489 137#include <linux/if_macvlan.h>
e7fd2885 138#include <linux/errqueue.h>
3b47d303 139#include <linux/hrtimer.h>
e687ad60 140#include <linux/netfilter_ingress.h>
6ae23ad3 141#include <linux/sctp.h>
1da177e4 142
342709ef
PE
143#include "net-sysfs.h"
144
d565b0a1
HX
145/* Instead of increasing this, you should create a hash table. */
146#define MAX_GRO_SKBS 8
147
5d38a079
HX
148/* This should be increased if a protocol with a bigger head is added. */
149#define GRO_MAX_HEAD (MAX_HEADER + 128)
150
1da177e4 151static DEFINE_SPINLOCK(ptype_lock);
62532da9 152static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
153struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154struct list_head ptype_all __read_mostly; /* Taps */
62532da9 155static struct list_head offload_base __read_mostly;
1da177e4 156
ae78dbfa 157static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
158static int call_netdevice_notifiers_info(unsigned long val,
159 struct net_device *dev,
160 struct netdev_notifier_info *info);
ae78dbfa 161
1da177e4 162/*
7562f876 163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
164 * semaphore.
165 *
c6d14c84 166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
167 *
168 * Writers must hold the rtnl semaphore while they loop through the
7562f876 169 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
170 * actual updates. This allows pure readers to access the list even
171 * while a writer is preparing to update it.
172 *
173 * To put it another way, dev_base_lock is held for writing only to
174 * protect against pure readers; the rtnl semaphore provides the
175 * protection against other writers.
176 *
177 * See, for example usages, register_netdevice() and
178 * unregister_netdevice(), which must be called with the rtnl
179 * semaphore held.
180 */
1da177e4 181DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
182EXPORT_SYMBOL(dev_base_lock);
183
af12fa6e
ET
184/* protects napi_hash addition/deletion and napi_gen_id */
185static DEFINE_SPINLOCK(napi_hash_lock);
186
52bd2d62 187static unsigned int napi_gen_id = NR_CPUS;
6180d9de 188static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 189
18afa4b0 190static seqcount_t devnet_rename_seq;
c91f6df2 191
4e985ada
TG
192static inline void dev_base_seq_inc(struct net *net)
193{
194 while (++net->dev_base_seq == 0);
195}
196
881d966b 197static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 198{
95c96174
ED
199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
08e9897d 201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
202}
203
881d966b 204static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 205{
7c28bd0b 206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
207}
208
e36fa2f7 209static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
210{
211#ifdef CONFIG_RPS
e36fa2f7 212 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
213#endif
214}
215
e36fa2f7 216static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
217{
218#ifdef CONFIG_RPS
e36fa2f7 219 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
220#endif
221}
222
ce286d32 223/* Device list insertion */
53759be9 224static void list_netdevice(struct net_device *dev)
ce286d32 225{
c346dca1 226 struct net *net = dev_net(dev);
ce286d32
EB
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
c6d14c84 231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
ce286d32 235 write_unlock_bh(&dev_base_lock);
4e985ada
TG
236
237 dev_base_seq_inc(net);
ce286d32
EB
238}
239
fb699dfd
ED
240/* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
ce286d32
EB
243static void unlist_netdevice(struct net_device *dev)
244{
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
c6d14c84 249 list_del_rcu(&dev->dev_list);
72c9528b 250 hlist_del_rcu(&dev->name_hlist);
fb699dfd 251 hlist_del_rcu(&dev->index_hlist);
ce286d32 252 write_unlock_bh(&dev_base_lock);
4e985ada
TG
253
254 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
255}
256
1da177e4
LT
257/*
258 * Our notifier list
259 */
260
f07d5b94 261static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
262
263/*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
bea3348e 267
9958da05 268DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 269EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 270
cf508b12 271#ifdef CONFIG_LOCKDEP
723e98b7 272/*
c773e847 273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
274 * according to dev->type
275 */
276static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 292
36cbd3dc 293static const char *const netdev_lock_name[] =
723e98b7
JP
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
309
310static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 311static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
312
313static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314{
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322}
323
cf508b12
DM
324static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
723e98b7
JP
326{
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332}
cf508b12
DM
333
334static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335{
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342}
723e98b7 343#else
cf508b12
DM
344static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346{
347}
348static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
349{
350}
351#endif
1da177e4
LT
352
353/*******************************************************************************
354
355 Protocol management and registration routines
356
357*******************************************************************************/
358
1da177e4
LT
359/*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
c07b68e8
ED
375static inline struct list_head *ptype_head(const struct packet_type *pt)
376{
377 if (pt->type == htons(ETH_P_ALL))
7866a621 378 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 379 else
7866a621
SN
380 return pt->dev ? &pt->dev->ptype_specific :
381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
382}
383
1da177e4
LT
384/**
385 * dev_add_pack - add packet handler
386 * @pt: packet type declaration
387 *
388 * Add a protocol handler to the networking stack. The passed &packet_type
389 * is linked into kernel lists and may not be freed until it has been
390 * removed from the kernel lists.
391 *
4ec93edb 392 * This call does not sleep therefore it can not
1da177e4
LT
393 * guarantee all CPU's that are in middle of receiving packets
394 * will see the new packet type (until the next received packet).
395 */
396
397void dev_add_pack(struct packet_type *pt)
398{
c07b68e8 399 struct list_head *head = ptype_head(pt);
1da177e4 400
c07b68e8
ED
401 spin_lock(&ptype_lock);
402 list_add_rcu(&pt->list, head);
403 spin_unlock(&ptype_lock);
1da177e4 404}
d1b19dff 405EXPORT_SYMBOL(dev_add_pack);
1da177e4 406
1da177e4
LT
407/**
408 * __dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
410 *
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
4ec93edb 414 * returns.
1da177e4
LT
415 *
416 * The packet type might still be in use by receivers
417 * and must not be freed until after all the CPU's have gone
418 * through a quiescent state.
419 */
420void __dev_remove_pack(struct packet_type *pt)
421{
c07b68e8 422 struct list_head *head = ptype_head(pt);
1da177e4
LT
423 struct packet_type *pt1;
424
c07b68e8 425 spin_lock(&ptype_lock);
1da177e4
LT
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
7b6cd1ce 434 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 435out:
c07b68e8 436 spin_unlock(&ptype_lock);
1da177e4 437}
d1b19dff
ED
438EXPORT_SYMBOL(__dev_remove_pack);
439
1da177e4
LT
440/**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452void dev_remove_pack(struct packet_type *pt)
453{
454 __dev_remove_pack(pt);
4ec93edb 455
1da177e4
LT
456 synchronize_net();
457}
d1b19dff 458EXPORT_SYMBOL(dev_remove_pack);
1da177e4 459
62532da9
VY
460
461/**
462 * dev_add_offload - register offload handlers
463 * @po: protocol offload declaration
464 *
465 * Add protocol offload handlers to the networking stack. The passed
466 * &proto_offload is linked into kernel lists and may not be freed until
467 * it has been removed from the kernel lists.
468 *
469 * This call does not sleep therefore it can not
470 * guarantee all CPU's that are in middle of receiving packets
471 * will see the new offload handlers (until the next received packet).
472 */
473void dev_add_offload(struct packet_offload *po)
474{
bdef7de4 475 struct packet_offload *elem;
62532da9
VY
476
477 spin_lock(&offload_lock);
bdef7de4
DM
478 list_for_each_entry(elem, &offload_base, list) {
479 if (po->priority < elem->priority)
480 break;
481 }
482 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
483 spin_unlock(&offload_lock);
484}
485EXPORT_SYMBOL(dev_add_offload);
486
487/**
488 * __dev_remove_offload - remove offload handler
489 * @po: packet offload declaration
490 *
491 * Remove a protocol offload handler that was previously added to the
492 * kernel offload handlers by dev_add_offload(). The passed &offload_type
493 * is removed from the kernel lists and can be freed or reused once this
494 * function returns.
495 *
496 * The packet type might still be in use by receivers
497 * and must not be freed until after all the CPU's have gone
498 * through a quiescent state.
499 */
1d143d9f 500static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
501{
502 struct list_head *head = &offload_base;
503 struct packet_offload *po1;
504
c53aa505 505 spin_lock(&offload_lock);
62532da9
VY
506
507 list_for_each_entry(po1, head, list) {
508 if (po == po1) {
509 list_del_rcu(&po->list);
510 goto out;
511 }
512 }
513
514 pr_warn("dev_remove_offload: %p not found\n", po);
515out:
c53aa505 516 spin_unlock(&offload_lock);
62532da9 517}
62532da9
VY
518
519/**
520 * dev_remove_offload - remove packet offload handler
521 * @po: packet offload declaration
522 *
523 * Remove a packet offload handler that was previously added to the kernel
524 * offload handlers by dev_add_offload(). The passed &offload_type is
525 * removed from the kernel lists and can be freed or reused once this
526 * function returns.
527 *
528 * This call sleeps to guarantee that no CPU is looking at the packet
529 * type after return.
530 */
531void dev_remove_offload(struct packet_offload *po)
532{
533 __dev_remove_offload(po);
534
535 synchronize_net();
536}
537EXPORT_SYMBOL(dev_remove_offload);
538
1da177e4
LT
539/******************************************************************************
540
541 Device Boot-time Settings Routines
542
543*******************************************************************************/
544
545/* Boot time configuration table */
546static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548/**
549 * netdev_boot_setup_add - add new setup entry
550 * @name: name of the device
551 * @map: configured settings for the device
552 *
553 * Adds new setup entry to the dev_boot_setup list. The function
554 * returns 0 on error and 1 on success. This is a generic routine to
555 * all netdevices.
556 */
557static int netdev_boot_setup_add(char *name, struct ifmap *map)
558{
559 struct netdev_boot_setup *s;
560 int i;
561
562 s = dev_boot_setup;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 566 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
567 memcpy(&s[i].map, map, sizeof(s[i].map));
568 break;
569 }
570 }
571
572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573}
574
575/**
576 * netdev_boot_setup_check - check boot time settings
577 * @dev: the netdevice
578 *
579 * Check boot time settings for the device.
580 * The found settings are set for the device to be used
581 * later in the device probing.
582 * Returns 0 if no settings found, 1 if they are.
583 */
584int netdev_boot_setup_check(struct net_device *dev)
585{
586 struct netdev_boot_setup *s = dev_boot_setup;
587 int i;
588
589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 591 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
592 dev->irq = s[i].map.irq;
593 dev->base_addr = s[i].map.base_addr;
594 dev->mem_start = s[i].map.mem_start;
595 dev->mem_end = s[i].map.mem_end;
596 return 1;
597 }
598 }
599 return 0;
600}
d1b19dff 601EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
602
603
604/**
605 * netdev_boot_base - get address from boot time settings
606 * @prefix: prefix for network device
607 * @unit: id for network device
608 *
609 * Check boot time settings for the base address of device.
610 * The found settings are set for the device to be used
611 * later in the device probing.
612 * Returns 0 if no settings found.
613 */
614unsigned long netdev_boot_base(const char *prefix, int unit)
615{
616 const struct netdev_boot_setup *s = dev_boot_setup;
617 char name[IFNAMSIZ];
618 int i;
619
620 sprintf(name, "%s%d", prefix, unit);
621
622 /*
623 * If device already registered then return base of 1
624 * to indicate not to probe for this interface
625 */
881d966b 626 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
627 return 1;
628
629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 if (!strcmp(name, s[i].name))
631 return s[i].map.base_addr;
632 return 0;
633}
634
635/*
636 * Saves at boot time configured settings for any netdevice.
637 */
638int __init netdev_boot_setup(char *str)
639{
640 int ints[5];
641 struct ifmap map;
642
643 str = get_options(str, ARRAY_SIZE(ints), ints);
644 if (!str || !*str)
645 return 0;
646
647 /* Save settings */
648 memset(&map, 0, sizeof(map));
649 if (ints[0] > 0)
650 map.irq = ints[1];
651 if (ints[0] > 1)
652 map.base_addr = ints[2];
653 if (ints[0] > 2)
654 map.mem_start = ints[3];
655 if (ints[0] > 3)
656 map.mem_end = ints[4];
657
658 /* Add new entry to the list */
659 return netdev_boot_setup_add(str, &map);
660}
661
662__setup("netdev=", netdev_boot_setup);
663
664/*******************************************************************************
665
666 Device Interface Subroutines
667
668*******************************************************************************/
669
a54acb3a
ND
670/**
671 * dev_get_iflink - get 'iflink' value of a interface
672 * @dev: targeted interface
673 *
674 * Indicates the ifindex the interface is linked to.
675 * Physical interfaces have the same 'ifindex' and 'iflink' values.
676 */
677
678int dev_get_iflink(const struct net_device *dev)
679{
680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 return dev->netdev_ops->ndo_get_iflink(dev);
682
7a66bbc9 683 return dev->ifindex;
a54acb3a
ND
684}
685EXPORT_SYMBOL(dev_get_iflink);
686
fc4099f1
PS
687/**
688 * dev_fill_metadata_dst - Retrieve tunnel egress information.
689 * @dev: targeted interface
690 * @skb: The packet.
691 *
692 * For better visibility of tunnel traffic OVS needs to retrieve
693 * egress tunnel information for a packet. Following API allows
694 * user to get this info.
695 */
696int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697{
698 struct ip_tunnel_info *info;
699
700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
701 return -EINVAL;
702
703 info = skb_tunnel_info_unclone(skb);
704 if (!info)
705 return -ENOMEM;
706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 return -EINVAL;
708
709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710}
711EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
1da177e4
LT
713/**
714 * __dev_get_by_name - find a device by its name
c4ea43c5 715 * @net: the applicable net namespace
1da177e4
LT
716 * @name: name to find
717 *
718 * Find an interface by name. Must be called under RTNL semaphore
719 * or @dev_base_lock. If the name is found a pointer to the device
720 * is returned. If the name is not found then %NULL is returned. The
721 * reference counters are not incremented so the caller must be
722 * careful with locks.
723 */
724
881d966b 725struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 726{
0bd8d536
ED
727 struct net_device *dev;
728 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 729
b67bfe0d 730 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
731 if (!strncmp(dev->name, name, IFNAMSIZ))
732 return dev;
0bd8d536 733
1da177e4
LT
734 return NULL;
735}
d1b19dff 736EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 737
72c9528b
ED
738/**
739 * dev_get_by_name_rcu - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
742 *
743 * Find an interface by name.
744 * If the name is found a pointer to the device is returned.
745 * If the name is not found then %NULL is returned.
746 * The reference counters are not incremented so the caller must be
747 * careful with locks. The caller must hold RCU lock.
748 */
749
750struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751{
72c9528b
ED
752 struct net_device *dev;
753 struct hlist_head *head = dev_name_hash(net, name);
754
b67bfe0d 755 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
756 if (!strncmp(dev->name, name, IFNAMSIZ))
757 return dev;
758
759 return NULL;
760}
761EXPORT_SYMBOL(dev_get_by_name_rcu);
762
1da177e4
LT
763/**
764 * dev_get_by_name - find a device by its name
c4ea43c5 765 * @net: the applicable net namespace
1da177e4
LT
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
881d966b 775struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
776{
777 struct net_device *dev;
778
72c9528b
ED
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
781 if (dev)
782 dev_hold(dev);
72c9528b 783 rcu_read_unlock();
1da177e4
LT
784 return dev;
785}
d1b19dff 786EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
787
788/**
789 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 790 * @net: the applicable net namespace
1da177e4
LT
791 * @ifindex: index of device
792 *
793 * Search for an interface by index. Returns %NULL if the device
794 * is not found or a pointer to the device. The device has not
795 * had its reference counter increased so the caller must be careful
796 * about locking. The caller must hold either the RTNL semaphore
797 * or @dev_base_lock.
798 */
799
881d966b 800struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 801{
0bd8d536
ED
802 struct net_device *dev;
803 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 804
b67bfe0d 805 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
806 if (dev->ifindex == ifindex)
807 return dev;
0bd8d536 808
1da177e4
LT
809 return NULL;
810}
d1b19dff 811EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 812
fb699dfd
ED
813/**
814 * dev_get_by_index_rcu - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
817 *
818 * Search for an interface by index. Returns %NULL if the device
819 * is not found or a pointer to the device. The device has not
820 * had its reference counter increased so the caller must be careful
821 * about locking. The caller must hold RCU lock.
822 */
823
824struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825{
fb699dfd
ED
826 struct net_device *dev;
827 struct hlist_head *head = dev_index_hash(net, ifindex);
828
b67bfe0d 829 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
830 if (dev->ifindex == ifindex)
831 return dev;
832
833 return NULL;
834}
835EXPORT_SYMBOL(dev_get_by_index_rcu);
836
1da177e4
LT
837
838/**
839 * dev_get_by_index - find a device by its ifindex
c4ea43c5 840 * @net: the applicable net namespace
1da177e4
LT
841 * @ifindex: index of device
842 *
843 * Search for an interface by index. Returns NULL if the device
844 * is not found or a pointer to the device. The device returned has
845 * had a reference added and the pointer is safe until the user calls
846 * dev_put to indicate they have finished with it.
847 */
848
881d966b 849struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
850{
851 struct net_device *dev;
852
fb699dfd
ED
853 rcu_read_lock();
854 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
855 if (dev)
856 dev_hold(dev);
fb699dfd 857 rcu_read_unlock();
1da177e4
LT
858 return dev;
859}
d1b19dff 860EXPORT_SYMBOL(dev_get_by_index);
1da177e4 861
5dbe7c17
NS
862/**
863 * netdev_get_name - get a netdevice name, knowing its ifindex.
864 * @net: network namespace
865 * @name: a pointer to the buffer where the name will be stored.
866 * @ifindex: the ifindex of the interface to get the name from.
867 *
868 * The use of raw_seqcount_begin() and cond_resched() before
869 * retrying is required as we want to give the writers a chance
870 * to complete when CONFIG_PREEMPT is not set.
871 */
872int netdev_get_name(struct net *net, char *name, int ifindex)
873{
874 struct net_device *dev;
875 unsigned int seq;
876
877retry:
878 seq = raw_seqcount_begin(&devnet_rename_seq);
879 rcu_read_lock();
880 dev = dev_get_by_index_rcu(net, ifindex);
881 if (!dev) {
882 rcu_read_unlock();
883 return -ENODEV;
884 }
885
886 strcpy(name, dev->name);
887 rcu_read_unlock();
888 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 cond_resched();
890 goto retry;
891 }
892
893 return 0;
894}
895
1da177e4 896/**
941666c2 897 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 898 * @net: the applicable net namespace
1da177e4
LT
899 * @type: media type of device
900 * @ha: hardware address
901 *
902 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
903 * is not found or a pointer to the device.
904 * The caller must hold RCU or RTNL.
941666c2 905 * The returned device has not had its ref count increased
1da177e4
LT
906 * and the caller must therefore be careful about locking
907 *
1da177e4
LT
908 */
909
941666c2
ED
910struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 const char *ha)
1da177e4
LT
912{
913 struct net_device *dev;
914
941666c2 915 for_each_netdev_rcu(net, dev)
1da177e4
LT
916 if (dev->type == type &&
917 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
918 return dev;
919
920 return NULL;
1da177e4 921}
941666c2 922EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 923
881d966b 924struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
925{
926 struct net_device *dev;
927
4e9cac2b 928 ASSERT_RTNL();
881d966b 929 for_each_netdev(net, dev)
4e9cac2b 930 if (dev->type == type)
7562f876
PE
931 return dev;
932
933 return NULL;
4e9cac2b 934}
4e9cac2b
PM
935EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
881d966b 937struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 938{
99fe3c39 939 struct net_device *dev, *ret = NULL;
4e9cac2b 940
99fe3c39
ED
941 rcu_read_lock();
942 for_each_netdev_rcu(net, dev)
943 if (dev->type == type) {
944 dev_hold(dev);
945 ret = dev;
946 break;
947 }
948 rcu_read_unlock();
949 return ret;
1da177e4 950}
1da177e4
LT
951EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953/**
6c555490 954 * __dev_get_by_flags - find any device with given flags
c4ea43c5 955 * @net: the applicable net namespace
1da177e4
LT
956 * @if_flags: IFF_* values
957 * @mask: bitmask of bits in if_flags to check
958 *
959 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 960 * is not found or a pointer to the device. Must be called inside
6c555490 961 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
962 */
963
6c555490
WC
964struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 unsigned short mask)
1da177e4 966{
7562f876 967 struct net_device *dev, *ret;
1da177e4 968
6c555490
WC
969 ASSERT_RTNL();
970
7562f876 971 ret = NULL;
6c555490 972 for_each_netdev(net, dev) {
1da177e4 973 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 974 ret = dev;
1da177e4
LT
975 break;
976 }
977 }
7562f876 978 return ret;
1da177e4 979}
6c555490 980EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
981
982/**
983 * dev_valid_name - check if name is okay for network device
984 * @name: name string
985 *
986 * Network device names need to be valid file names to
c7fa9d18
DM
987 * to allow sysfs to work. We also disallow any kind of
988 * whitespace.
1da177e4 989 */
95f050bf 990bool dev_valid_name(const char *name)
1da177e4 991{
c7fa9d18 992 if (*name == '\0')
95f050bf 993 return false;
b6fe17d6 994 if (strlen(name) >= IFNAMSIZ)
95f050bf 995 return false;
c7fa9d18 996 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 997 return false;
c7fa9d18
DM
998
999 while (*name) {
a4176a93 1000 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1001 return false;
c7fa9d18
DM
1002 name++;
1003 }
95f050bf 1004 return true;
1da177e4 1005}
d1b19dff 1006EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1007
1008/**
b267b179
EB
1009 * __dev_alloc_name - allocate a name for a device
1010 * @net: network namespace to allocate the device name in
1da177e4 1011 * @name: name format string
b267b179 1012 * @buf: scratch buffer and result name string
1da177e4
LT
1013 *
1014 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1015 * id. It scans list of devices to build up a free map, then chooses
1016 * the first empty slot. The caller must hold the dev_base or rtnl lock
1017 * while allocating the name and adding the device in order to avoid
1018 * duplicates.
1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1021 */
1022
b267b179 1023static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1024{
1025 int i = 0;
1da177e4
LT
1026 const char *p;
1027 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1028 unsigned long *inuse;
1da177e4
LT
1029 struct net_device *d;
1030
1031 p = strnchr(name, IFNAMSIZ-1, '%');
1032 if (p) {
1033 /*
1034 * Verify the string as this thing may have come from
1035 * the user. There must be either one "%d" and no other "%"
1036 * characters.
1037 */
1038 if (p[1] != 'd' || strchr(p + 2, '%'))
1039 return -EINVAL;
1040
1041 /* Use one page as a bit array of possible slots */
cfcabdcc 1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1043 if (!inuse)
1044 return -ENOMEM;
1045
881d966b 1046 for_each_netdev(net, d) {
1da177e4
LT
1047 if (!sscanf(d->name, name, &i))
1048 continue;
1049 if (i < 0 || i >= max_netdevices)
1050 continue;
1051
1052 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1053 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1054 if (!strncmp(buf, d->name, IFNAMSIZ))
1055 set_bit(i, inuse);
1056 }
1057
1058 i = find_first_zero_bit(inuse, max_netdevices);
1059 free_page((unsigned long) inuse);
1060 }
1061
d9031024
OP
1062 if (buf != name)
1063 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1064 if (!__dev_get_by_name(net, buf))
1da177e4 1065 return i;
1da177e4
LT
1066
1067 /* It is possible to run out of possible slots
1068 * when the name is long and there isn't enough space left
1069 * for the digits, or if all bits are used.
1070 */
1071 return -ENFILE;
1072}
1073
b267b179
EB
1074/**
1075 * dev_alloc_name - allocate a name for a device
1076 * @dev: device
1077 * @name: name format string
1078 *
1079 * Passed a format string - eg "lt%d" it will try and find a suitable
1080 * id. It scans list of devices to build up a free map, then chooses
1081 * the first empty slot. The caller must hold the dev_base or rtnl lock
1082 * while allocating the name and adding the device in order to avoid
1083 * duplicates.
1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 * Returns the number of the unit assigned or a negative errno code.
1086 */
1087
1088int dev_alloc_name(struct net_device *dev, const char *name)
1089{
1090 char buf[IFNAMSIZ];
1091 struct net *net;
1092 int ret;
1093
c346dca1
YH
1094 BUG_ON(!dev_net(dev));
1095 net = dev_net(dev);
b267b179
EB
1096 ret = __dev_alloc_name(net, name, buf);
1097 if (ret >= 0)
1098 strlcpy(dev->name, buf, IFNAMSIZ);
1099 return ret;
1100}
d1b19dff 1101EXPORT_SYMBOL(dev_alloc_name);
b267b179 1102
828de4f6
G
1103static int dev_alloc_name_ns(struct net *net,
1104 struct net_device *dev,
1105 const char *name)
d9031024 1106{
828de4f6
G
1107 char buf[IFNAMSIZ];
1108 int ret;
8ce6cebc 1109
828de4f6
G
1110 ret = __dev_alloc_name(net, name, buf);
1111 if (ret >= 0)
1112 strlcpy(dev->name, buf, IFNAMSIZ);
1113 return ret;
1114}
1115
1116static int dev_get_valid_name(struct net *net,
1117 struct net_device *dev,
1118 const char *name)
1119{
1120 BUG_ON(!net);
8ce6cebc 1121
d9031024
OP
1122 if (!dev_valid_name(name))
1123 return -EINVAL;
1124
1c5cae81 1125 if (strchr(name, '%'))
828de4f6 1126 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1127 else if (__dev_get_by_name(net, name))
1128 return -EEXIST;
8ce6cebc
DL
1129 else if (dev->name != name)
1130 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1131
1132 return 0;
1133}
1da177e4
LT
1134
1135/**
1136 * dev_change_name - change name of a device
1137 * @dev: device
1138 * @newname: name (or format string) must be at least IFNAMSIZ
1139 *
1140 * Change name of a device, can pass format strings "eth%d".
1141 * for wildcarding.
1142 */
cf04a4c7 1143int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1144{
238fa362 1145 unsigned char old_assign_type;
fcc5a03a 1146 char oldname[IFNAMSIZ];
1da177e4 1147 int err = 0;
fcc5a03a 1148 int ret;
881d966b 1149 struct net *net;
1da177e4
LT
1150
1151 ASSERT_RTNL();
c346dca1 1152 BUG_ON(!dev_net(dev));
1da177e4 1153
c346dca1 1154 net = dev_net(dev);
1da177e4
LT
1155 if (dev->flags & IFF_UP)
1156 return -EBUSY;
1157
30e6c9fa 1158 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1159
1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1161 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1162 return 0;
c91f6df2 1163 }
c8d90dca 1164
fcc5a03a
HX
1165 memcpy(oldname, dev->name, IFNAMSIZ);
1166
828de4f6 1167 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1168 if (err < 0) {
30e6c9fa 1169 write_seqcount_end(&devnet_rename_seq);
d9031024 1170 return err;
c91f6df2 1171 }
1da177e4 1172
6fe82a39
VF
1173 if (oldname[0] && !strchr(oldname, '%'))
1174 netdev_info(dev, "renamed from %s\n", oldname);
1175
238fa362
TG
1176 old_assign_type = dev->name_assign_type;
1177 dev->name_assign_type = NET_NAME_RENAMED;
1178
fcc5a03a 1179rollback:
a1b3f594
EB
1180 ret = device_rename(&dev->dev, dev->name);
1181 if (ret) {
1182 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1183 dev->name_assign_type = old_assign_type;
30e6c9fa 1184 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1185 return ret;
dcc99773 1186 }
7f988eab 1187
30e6c9fa 1188 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1189
5bb025fa
VF
1190 netdev_adjacent_rename_links(dev, oldname);
1191
7f988eab 1192 write_lock_bh(&dev_base_lock);
372b2312 1193 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1194 write_unlock_bh(&dev_base_lock);
1195
1196 synchronize_rcu();
1197
1198 write_lock_bh(&dev_base_lock);
1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1200 write_unlock_bh(&dev_base_lock);
1201
056925ab 1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1203 ret = notifier_to_errno(ret);
1204
1205 if (ret) {
91e9c07b
ED
1206 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207 if (err >= 0) {
fcc5a03a 1208 err = ret;
30e6c9fa 1209 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1210 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1211 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1212 dev->name_assign_type = old_assign_type;
1213 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1214 goto rollback;
91e9c07b 1215 } else {
7b6cd1ce 1216 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1217 dev->name, ret);
fcc5a03a
HX
1218 }
1219 }
1da177e4
LT
1220
1221 return err;
1222}
1223
0b815a1a
SH
1224/**
1225 * dev_set_alias - change ifalias of a device
1226 * @dev: device
1227 * @alias: name up to IFALIASZ
f0db275a 1228 * @len: limit of bytes to copy from info
0b815a1a
SH
1229 *
1230 * Set ifalias for a device,
1231 */
1232int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233{
7364e445
AK
1234 char *new_ifalias;
1235
0b815a1a
SH
1236 ASSERT_RTNL();
1237
1238 if (len >= IFALIASZ)
1239 return -EINVAL;
1240
96ca4a2c 1241 if (!len) {
388dfc2d
SK
1242 kfree(dev->ifalias);
1243 dev->ifalias = NULL;
96ca4a2c
OH
1244 return 0;
1245 }
1246
7364e445
AK
1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 if (!new_ifalias)
0b815a1a 1249 return -ENOMEM;
7364e445 1250 dev->ifalias = new_ifalias;
0b815a1a
SH
1251
1252 strlcpy(dev->ifalias, alias, len+1);
1253 return len;
1254}
1255
1256
d8a33ac4 1257/**
3041a069 1258 * netdev_features_change - device changes features
d8a33ac4
SH
1259 * @dev: device to cause notification
1260 *
1261 * Called to indicate a device has changed features.
1262 */
1263void netdev_features_change(struct net_device *dev)
1264{
056925ab 1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1266}
1267EXPORT_SYMBOL(netdev_features_change);
1268
1da177e4
LT
1269/**
1270 * netdev_state_change - device changes state
1271 * @dev: device to cause notification
1272 *
1273 * Called to indicate a device has changed state. This function calls
1274 * the notifier chains for netdev_chain and sends a NEWLINK message
1275 * to the routing socket.
1276 */
1277void netdev_state_change(struct net_device *dev)
1278{
1279 if (dev->flags & IFF_UP) {
54951194
LP
1280 struct netdev_notifier_change_info change_info;
1281
1282 change_info.flags_changed = 0;
1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 &change_info.info);
7f294054 1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1286 }
1287}
d1b19dff 1288EXPORT_SYMBOL(netdev_state_change);
1da177e4 1289
ee89bab1
AW
1290/**
1291 * netdev_notify_peers - notify network peers about existence of @dev
1292 * @dev: network device
1293 *
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1298 * migration.
1299 */
1300void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1301{
ee89bab1
AW
1302 rtnl_lock();
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 rtnl_unlock();
c1da4ac7 1305}
ee89bab1 1306EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1307
bd380811 1308static int __dev_open(struct net_device *dev)
1da177e4 1309{
d314774c 1310 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1311 int ret;
1da177e4 1312
e46b66bc
BH
1313 ASSERT_RTNL();
1314
1da177e4
LT
1315 if (!netif_device_present(dev))
1316 return -ENODEV;
1317
ca99ca14
NH
1318 /* Block netpoll from trying to do any rx path servicing.
1319 * If we don't do this there is a chance ndo_poll_controller
1320 * or ndo_poll may be running while we open the device
1321 */
66b5552f 1322 netpoll_poll_disable(dev);
ca99ca14 1323
3b8bcfd5
JB
1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 ret = notifier_to_errno(ret);
1326 if (ret)
1327 return ret;
1328
1da177e4 1329 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1330
d314774c
SH
1331 if (ops->ndo_validate_addr)
1332 ret = ops->ndo_validate_addr(dev);
bada339b 1333
d314774c
SH
1334 if (!ret && ops->ndo_open)
1335 ret = ops->ndo_open(dev);
1da177e4 1336
66b5552f 1337 netpoll_poll_enable(dev);
ca99ca14 1338
bada339b
JG
1339 if (ret)
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341 else {
1da177e4 1342 dev->flags |= IFF_UP;
4417da66 1343 dev_set_rx_mode(dev);
1da177e4 1344 dev_activate(dev);
7bf23575 1345 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1346 }
bada339b 1347
1da177e4
LT
1348 return ret;
1349}
1350
1351/**
bd380811
PM
1352 * dev_open - prepare an interface for use.
1353 * @dev: device to open
1da177e4 1354 *
bd380811
PM
1355 * Takes a device from down to up state. The device's private open
1356 * function is invoked and then the multicast lists are loaded. Finally
1357 * the device is moved into the up state and a %NETDEV_UP message is
1358 * sent to the netdev notifier chain.
1359 *
1360 * Calling this function on an active interface is a nop. On a failure
1361 * a negative errno code is returned.
1da177e4 1362 */
bd380811
PM
1363int dev_open(struct net_device *dev)
1364{
1365 int ret;
1366
bd380811
PM
1367 if (dev->flags & IFF_UP)
1368 return 0;
1369
bd380811
PM
1370 ret = __dev_open(dev);
1371 if (ret < 0)
1372 return ret;
1373
7f294054 1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1375 call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377 return ret;
1378}
1379EXPORT_SYMBOL(dev_open);
1380
44345724 1381static int __dev_close_many(struct list_head *head)
1da177e4 1382{
44345724 1383 struct net_device *dev;
e46b66bc 1384
bd380811 1385 ASSERT_RTNL();
9d5010db
DM
1386 might_sleep();
1387
5cde2829 1388 list_for_each_entry(dev, head, close_list) {
3f4df206 1389 /* Temporarily disable netpoll until the interface is down */
66b5552f 1390 netpoll_poll_disable(dev);
3f4df206 1391
44345724 1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1393
44345724 1394 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1395
44345724
OP
1396 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397 * can be even on different cpu. So just clear netif_running().
1398 *
1399 * dev->stop() will invoke napi_disable() on all of it's
1400 * napi_struct instances on this device.
1401 */
4e857c58 1402 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1403 }
1da177e4 1404
44345724 1405 dev_deactivate_many(head);
d8b2a4d2 1406
5cde2829 1407 list_for_each_entry(dev, head, close_list) {
44345724 1408 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1409
44345724
OP
1410 /*
1411 * Call the device specific close. This cannot fail.
1412 * Only if device is UP
1413 *
1414 * We allow it to be called even after a DETACH hot-plug
1415 * event.
1416 */
1417 if (ops->ndo_stop)
1418 ops->ndo_stop(dev);
1419
44345724 1420 dev->flags &= ~IFF_UP;
66b5552f 1421 netpoll_poll_enable(dev);
44345724
OP
1422 }
1423
1424 return 0;
1425}
1426
1427static int __dev_close(struct net_device *dev)
1428{
f87e6f47 1429 int retval;
44345724
OP
1430 LIST_HEAD(single);
1431
5cde2829 1432 list_add(&dev->close_list, &single);
f87e6f47
LT
1433 retval = __dev_close_many(&single);
1434 list_del(&single);
ca99ca14 1435
f87e6f47 1436 return retval;
44345724
OP
1437}
1438
99c4a26a 1439int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1440{
1441 struct net_device *dev, *tmp;
1da177e4 1442
5cde2829
EB
1443 /* Remove the devices that don't need to be closed */
1444 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1445 if (!(dev->flags & IFF_UP))
5cde2829 1446 list_del_init(&dev->close_list);
44345724
OP
1447
1448 __dev_close_many(head);
1da177e4 1449
5cde2829 1450 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1452 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1453 if (unlink)
1454 list_del_init(&dev->close_list);
44345724 1455 }
bd380811
PM
1456
1457 return 0;
1458}
99c4a26a 1459EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1460
1461/**
1462 * dev_close - shutdown an interface.
1463 * @dev: device to shutdown
1464 *
1465 * This function moves an active device into down state. A
1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468 * chain.
1469 */
1470int dev_close(struct net_device *dev)
1471{
e14a5993
ED
1472 if (dev->flags & IFF_UP) {
1473 LIST_HEAD(single);
1da177e4 1474
5cde2829 1475 list_add(&dev->close_list, &single);
99c4a26a 1476 dev_close_many(&single, true);
e14a5993
ED
1477 list_del(&single);
1478 }
da6e378b 1479 return 0;
1da177e4 1480}
d1b19dff 1481EXPORT_SYMBOL(dev_close);
1da177e4
LT
1482
1483
0187bdfb
BH
1484/**
1485 * dev_disable_lro - disable Large Receive Offload on a device
1486 * @dev: device
1487 *
1488 * Disable Large Receive Offload (LRO) on a net device. Must be
1489 * called under RTNL. This is needed if received packets may be
1490 * forwarded to another interface.
1491 */
1492void dev_disable_lro(struct net_device *dev)
1493{
fbe168ba
MK
1494 struct net_device *lower_dev;
1495 struct list_head *iter;
529d0489 1496
bc5787c6
MM
1497 dev->wanted_features &= ~NETIF_F_LRO;
1498 netdev_update_features(dev);
27660515 1499
22d5969f
MM
1500 if (unlikely(dev->features & NETIF_F_LRO))
1501 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1502
1503 netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 dev_disable_lro(lower_dev);
0187bdfb
BH
1505}
1506EXPORT_SYMBOL(dev_disable_lro);
1507
351638e7
JP
1508static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 struct net_device *dev)
1510{
1511 struct netdev_notifier_info info;
1512
1513 netdev_notifier_info_init(&info, dev);
1514 return nb->notifier_call(nb, val, &info);
1515}
0187bdfb 1516
881d966b
EB
1517static int dev_boot_phase = 1;
1518
1da177e4
LT
1519/**
1520 * register_netdevice_notifier - register a network notifier block
1521 * @nb: notifier
1522 *
1523 * Register a notifier to be called when network device events occur.
1524 * The notifier passed is linked into the kernel structures and must
1525 * not be reused until it has been unregistered. A negative errno code
1526 * is returned on a failure.
1527 *
1528 * When registered all registration and up events are replayed
4ec93edb 1529 * to the new notifier to allow device to have a race free
1da177e4
LT
1530 * view of the network device list.
1531 */
1532
1533int register_netdevice_notifier(struct notifier_block *nb)
1534{
1535 struct net_device *dev;
fcc5a03a 1536 struct net_device *last;
881d966b 1537 struct net *net;
1da177e4
LT
1538 int err;
1539
1540 rtnl_lock();
f07d5b94 1541 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1542 if (err)
1543 goto unlock;
881d966b
EB
1544 if (dev_boot_phase)
1545 goto unlock;
1546 for_each_net(net) {
1547 for_each_netdev(net, dev) {
351638e7 1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1549 err = notifier_to_errno(err);
1550 if (err)
1551 goto rollback;
1552
1553 if (!(dev->flags & IFF_UP))
1554 continue;
1da177e4 1555
351638e7 1556 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1557 }
1da177e4 1558 }
fcc5a03a
HX
1559
1560unlock:
1da177e4
LT
1561 rtnl_unlock();
1562 return err;
fcc5a03a
HX
1563
1564rollback:
1565 last = dev;
881d966b
EB
1566 for_each_net(net) {
1567 for_each_netdev(net, dev) {
1568 if (dev == last)
8f891489 1569 goto outroll;
fcc5a03a 1570
881d966b 1571 if (dev->flags & IFF_UP) {
351638e7
JP
1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 dev);
1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1575 }
351638e7 1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1577 }
fcc5a03a 1578 }
c67625a1 1579
8f891489 1580outroll:
c67625a1 1581 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1582 goto unlock;
1da177e4 1583}
d1b19dff 1584EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1585
1586/**
1587 * unregister_netdevice_notifier - unregister a network notifier block
1588 * @nb: notifier
1589 *
1590 * Unregister a notifier previously registered by
1591 * register_netdevice_notifier(). The notifier is unlinked into the
1592 * kernel structures and may then be reused. A negative errno code
1593 * is returned on a failure.
7d3d43da
EB
1594 *
1595 * After unregistering unregister and down device events are synthesized
1596 * for all devices on the device list to the removed notifier to remove
1597 * the need for special case cleanup code.
1da177e4
LT
1598 */
1599
1600int unregister_netdevice_notifier(struct notifier_block *nb)
1601{
7d3d43da
EB
1602 struct net_device *dev;
1603 struct net *net;
9f514950
HX
1604 int err;
1605
1606 rtnl_lock();
f07d5b94 1607 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1608 if (err)
1609 goto unlock;
1610
1611 for_each_net(net) {
1612 for_each_netdev(net, dev) {
1613 if (dev->flags & IFF_UP) {
351638e7
JP
1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 dev);
1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1617 }
351638e7 1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1619 }
1620 }
1621unlock:
9f514950
HX
1622 rtnl_unlock();
1623 return err;
1da177e4 1624}
d1b19dff 1625EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1626
351638e7
JP
1627/**
1628 * call_netdevice_notifiers_info - call all network notifier blocks
1629 * @val: value passed unmodified to notifier function
1630 * @dev: net_device pointer passed unmodified to notifier function
1631 * @info: notifier information data
1632 *
1633 * Call all network notifier blocks. Parameters and return value
1634 * are as for raw_notifier_call_chain().
1635 */
1636
1d143d9f 1637static int call_netdevice_notifiers_info(unsigned long val,
1638 struct net_device *dev,
1639 struct netdev_notifier_info *info)
351638e7
JP
1640{
1641 ASSERT_RTNL();
1642 netdev_notifier_info_init(info, dev);
1643 return raw_notifier_call_chain(&netdev_chain, val, info);
1644}
351638e7 1645
1da177e4
LT
1646/**
1647 * call_netdevice_notifiers - call all network notifier blocks
1648 * @val: value passed unmodified to notifier function
c4ea43c5 1649 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1650 *
1651 * Call all network notifier blocks. Parameters and return value
f07d5b94 1652 * are as for raw_notifier_call_chain().
1da177e4
LT
1653 */
1654
ad7379d4 1655int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1656{
351638e7
JP
1657 struct netdev_notifier_info info;
1658
1659 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1660}
edf947f1 1661EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1662
1cf51900 1663#ifdef CONFIG_NET_INGRESS
4577139b
DB
1664static struct static_key ingress_needed __read_mostly;
1665
1666void net_inc_ingress_queue(void)
1667{
1668 static_key_slow_inc(&ingress_needed);
1669}
1670EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672void net_dec_ingress_queue(void)
1673{
1674 static_key_slow_dec(&ingress_needed);
1675}
1676EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677#endif
1678
1f211a1b
DB
1679#ifdef CONFIG_NET_EGRESS
1680static struct static_key egress_needed __read_mostly;
1681
1682void net_inc_egress_queue(void)
1683{
1684 static_key_slow_inc(&egress_needed);
1685}
1686EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688void net_dec_egress_queue(void)
1689{
1690 static_key_slow_dec(&egress_needed);
1691}
1692EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693#endif
1694
c5905afb 1695static struct static_key netstamp_needed __read_mostly;
b90e5794 1696#ifdef HAVE_JUMP_LABEL
c5905afb 1697/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1698 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1699 * static_key_slow_dec() calls.
b90e5794
ED
1700 */
1701static atomic_t netstamp_needed_deferred;
1702#endif
1da177e4
LT
1703
1704void net_enable_timestamp(void)
1705{
b90e5794
ED
1706#ifdef HAVE_JUMP_LABEL
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709 if (deferred) {
1710 while (--deferred)
c5905afb 1711 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1712 return;
1713 }
1714#endif
c5905afb 1715 static_key_slow_inc(&netstamp_needed);
1da177e4 1716}
d1b19dff 1717EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1718
1719void net_disable_timestamp(void)
1720{
b90e5794
ED
1721#ifdef HAVE_JUMP_LABEL
1722 if (in_interrupt()) {
1723 atomic_inc(&netstamp_needed_deferred);
1724 return;
1725 }
1726#endif
c5905afb 1727 static_key_slow_dec(&netstamp_needed);
1da177e4 1728}
d1b19dff 1729EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1730
3b098e2d 1731static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1732{
588f0330 1733 skb->tstamp.tv64 = 0;
c5905afb 1734 if (static_key_false(&netstamp_needed))
a61bbcf2 1735 __net_timestamp(skb);
1da177e4
LT
1736}
1737
588f0330 1738#define net_timestamp_check(COND, SKB) \
c5905afb 1739 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1740 if ((COND) && !(SKB)->tstamp.tv64) \
1741 __net_timestamp(SKB); \
1742 } \
3b098e2d 1743
1ee481fb 1744bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1745{
1746 unsigned int len;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return false;
1750
1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 if (skb->len <= len)
1753 return true;
1754
1755 /* if TSO is enabled, we don't care about the length as the packet
1756 * could be forwarded without being segmented before
1757 */
1758 if (skb_is_gso(skb))
1759 return true;
1760
1761 return false;
1762}
1ee481fb 1763EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1764
a0265d28
HX
1765int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766{
bbbf2df0
WB
1767 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1769 atomic_long_inc(&dev->rx_dropped);
1770 kfree_skb(skb);
1771 return NET_RX_DROP;
1772 }
1773
1774 skb_scrub_packet(skb, true);
08b4b8ea 1775 skb->priority = 0;
a0265d28 1776 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1778
1779 return 0;
1780}
1781EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
44540960
AB
1783/**
1784 * dev_forward_skb - loopback an skb to another netif
1785 *
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1788 *
1789 * return values:
1790 * NET_RX_SUCCESS (no congestion)
6ec82562 1791 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1792 *
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1796 *
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1800 */
1801int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802{
a0265d28 1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1804}
1805EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
71d9dec2
CG
1807static inline int deliver_skb(struct sk_buff *skb,
1808 struct packet_type *pt_prev,
1809 struct net_device *orig_dev)
1810{
1080e512
MT
1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 return -ENOMEM;
71d9dec2
CG
1813 atomic_inc(&skb->users);
1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815}
1816
7866a621
SN
1817static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 struct packet_type **pt,
fbcb2170
JP
1819 struct net_device *orig_dev,
1820 __be16 type,
7866a621
SN
1821 struct list_head *ptype_list)
1822{
1823 struct packet_type *ptype, *pt_prev = *pt;
1824
1825 list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 if (ptype->type != type)
1827 continue;
1828 if (pt_prev)
fbcb2170 1829 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1830 pt_prev = ptype;
1831 }
1832 *pt = pt_prev;
1833}
1834
c0de08d0
EL
1835static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836{
a3d744e9 1837 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1838 return false;
1839
1840 if (ptype->id_match)
1841 return ptype->id_match(ptype, skb->sk);
1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 return true;
1844
1845 return false;
1846}
1847
1da177e4
LT
1848/*
1849 * Support routine. Sends outgoing frames to any network
1850 * taps currently in use.
1851 */
1852
f6a78bfc 1853static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1854{
1855 struct packet_type *ptype;
71d9dec2
CG
1856 struct sk_buff *skb2 = NULL;
1857 struct packet_type *pt_prev = NULL;
7866a621 1858 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1859
1da177e4 1860 rcu_read_lock();
7866a621
SN
1861again:
1862 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1863 /* Never send packets back to the socket
1864 * they originated from - MvS (miquels@drinkel.ow.org)
1865 */
7866a621
SN
1866 if (skb_loop_sk(ptype, skb))
1867 continue;
71d9dec2 1868
7866a621
SN
1869 if (pt_prev) {
1870 deliver_skb(skb2, pt_prev, skb->dev);
1871 pt_prev = ptype;
1872 continue;
1873 }
1da177e4 1874
7866a621
SN
1875 /* need to clone skb, done only once */
1876 skb2 = skb_clone(skb, GFP_ATOMIC);
1877 if (!skb2)
1878 goto out_unlock;
70978182 1879
7866a621 1880 net_timestamp_set(skb2);
1da177e4 1881
7866a621
SN
1882 /* skb->nh should be correctly
1883 * set by sender, so that the second statement is
1884 * just protection against buggy protocols.
1885 */
1886 skb_reset_mac_header(skb2);
1887
1888 if (skb_network_header(skb2) < skb2->data ||
1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 ntohs(skb2->protocol),
1892 dev->name);
1893 skb_reset_network_header(skb2);
1da177e4 1894 }
7866a621
SN
1895
1896 skb2->transport_header = skb2->network_header;
1897 skb2->pkt_type = PACKET_OUTGOING;
1898 pt_prev = ptype;
1899 }
1900
1901 if (ptype_list == &ptype_all) {
1902 ptype_list = &dev->ptype_all;
1903 goto again;
1da177e4 1904 }
7866a621 1905out_unlock:
71d9dec2
CG
1906 if (pt_prev)
1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1908 rcu_read_unlock();
1909}
1910
2c53040f
BH
1911/**
1912 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1913 * @dev: Network device
1914 * @txq: number of queues available
1915 *
1916 * If real_num_tx_queues is changed the tc mappings may no longer be
1917 * valid. To resolve this verify the tc mapping remains valid and if
1918 * not NULL the mapping. With no priorities mapping to this
1919 * offset/count pair it will no longer be used. In the worst case TC0
1920 * is invalid nothing can be done so disable priority mappings. If is
1921 * expected that drivers will fix this mapping if they can before
1922 * calling netif_set_real_num_tx_queues.
1923 */
bb134d22 1924static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1925{
1926 int i;
1927 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928
1929 /* If TC0 is invalidated disable TC mapping */
1930 if (tc->offset + tc->count > txq) {
7b6cd1ce 1931 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1932 dev->num_tc = 0;
1933 return;
1934 }
1935
1936 /* Invalidated prio to tc mappings set to TC0 */
1937 for (i = 1; i < TC_BITMASK + 1; i++) {
1938 int q = netdev_get_prio_tc_map(dev, i);
1939
1940 tc = &dev->tc_to_txq[q];
1941 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1942 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943 i, q);
4f57c087
JF
1944 netdev_set_prio_tc_map(dev, i, 0);
1945 }
1946 }
1947}
1948
537c00de
AD
1949#ifdef CONFIG_XPS
1950static DEFINE_MUTEX(xps_map_mutex);
1951#define xmap_dereference(P) \
1952 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953
10cdc3f3
AD
1954static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955 int cpu, u16 index)
537c00de 1956{
10cdc3f3
AD
1957 struct xps_map *map = NULL;
1958 int pos;
537c00de 1959
10cdc3f3
AD
1960 if (dev_maps)
1961 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1962
10cdc3f3
AD
1963 for (pos = 0; map && pos < map->len; pos++) {
1964 if (map->queues[pos] == index) {
537c00de
AD
1965 if (map->len > 1) {
1966 map->queues[pos] = map->queues[--map->len];
1967 } else {
10cdc3f3 1968 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1969 kfree_rcu(map, rcu);
1970 map = NULL;
1971 }
10cdc3f3 1972 break;
537c00de 1973 }
537c00de
AD
1974 }
1975
10cdc3f3
AD
1976 return map;
1977}
1978
024e9679 1979static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1980{
1981 struct xps_dev_maps *dev_maps;
024e9679 1982 int cpu, i;
10cdc3f3
AD
1983 bool active = false;
1984
1985 mutex_lock(&xps_map_mutex);
1986 dev_maps = xmap_dereference(dev->xps_maps);
1987
1988 if (!dev_maps)
1989 goto out_no_maps;
1990
1991 for_each_possible_cpu(cpu) {
024e9679
AD
1992 for (i = index; i < dev->num_tx_queues; i++) {
1993 if (!remove_xps_queue(dev_maps, cpu, i))
1994 break;
1995 }
1996 if (i == dev->num_tx_queues)
10cdc3f3
AD
1997 active = true;
1998 }
1999
2000 if (!active) {
537c00de
AD
2001 RCU_INIT_POINTER(dev->xps_maps, NULL);
2002 kfree_rcu(dev_maps, rcu);
2003 }
2004
024e9679
AD
2005 for (i = index; i < dev->num_tx_queues; i++)
2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007 NUMA_NO_NODE);
2008
537c00de
AD
2009out_no_maps:
2010 mutex_unlock(&xps_map_mutex);
2011}
2012
01c5f864
AD
2013static struct xps_map *expand_xps_map(struct xps_map *map,
2014 int cpu, u16 index)
2015{
2016 struct xps_map *new_map;
2017 int alloc_len = XPS_MIN_MAP_ALLOC;
2018 int i, pos;
2019
2020 for (pos = 0; map && pos < map->len; pos++) {
2021 if (map->queues[pos] != index)
2022 continue;
2023 return map;
2024 }
2025
2026 /* Need to add queue to this CPU's existing map */
2027 if (map) {
2028 if (pos < map->alloc_len)
2029 return map;
2030
2031 alloc_len = map->alloc_len * 2;
2032 }
2033
2034 /* Need to allocate new map to store queue on this CPU's map */
2035 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036 cpu_to_node(cpu));
2037 if (!new_map)
2038 return NULL;
2039
2040 for (i = 0; i < pos; i++)
2041 new_map->queues[i] = map->queues[i];
2042 new_map->alloc_len = alloc_len;
2043 new_map->len = pos;
2044
2045 return new_map;
2046}
2047
3573540c
MT
2048int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049 u16 index)
537c00de 2050{
01c5f864 2051 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2052 struct xps_map *map, *new_map;
537c00de 2053 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2054 int cpu, numa_node_id = -2;
2055 bool active = false;
537c00de
AD
2056
2057 mutex_lock(&xps_map_mutex);
2058
2059 dev_maps = xmap_dereference(dev->xps_maps);
2060
01c5f864
AD
2061 /* allocate memory for queue storage */
2062 for_each_online_cpu(cpu) {
2063 if (!cpumask_test_cpu(cpu, mask))
2064 continue;
2065
2066 if (!new_dev_maps)
2067 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2068 if (!new_dev_maps) {
2069 mutex_unlock(&xps_map_mutex);
01c5f864 2070 return -ENOMEM;
2bb60cb9 2071 }
01c5f864
AD
2072
2073 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074 NULL;
2075
2076 map = expand_xps_map(map, cpu, index);
2077 if (!map)
2078 goto error;
2079
2080 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081 }
2082
2083 if (!new_dev_maps)
2084 goto out_no_new_maps;
2085
537c00de 2086 for_each_possible_cpu(cpu) {
01c5f864
AD
2087 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088 /* add queue to CPU maps */
2089 int pos = 0;
2090
2091 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092 while ((pos < map->len) && (map->queues[pos] != index))
2093 pos++;
2094
2095 if (pos == map->len)
2096 map->queues[map->len++] = index;
537c00de 2097#ifdef CONFIG_NUMA
537c00de
AD
2098 if (numa_node_id == -2)
2099 numa_node_id = cpu_to_node(cpu);
2100 else if (numa_node_id != cpu_to_node(cpu))
2101 numa_node_id = -1;
537c00de 2102#endif
01c5f864
AD
2103 } else if (dev_maps) {
2104 /* fill in the new device map from the old device map */
2105 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2107 }
01c5f864 2108
537c00de
AD
2109 }
2110
01c5f864
AD
2111 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112
537c00de 2113 /* Cleanup old maps */
01c5f864
AD
2114 if (dev_maps) {
2115 for_each_possible_cpu(cpu) {
2116 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118 if (map && map != new_map)
2119 kfree_rcu(map, rcu);
2120 }
537c00de 2121
01c5f864 2122 kfree_rcu(dev_maps, rcu);
537c00de
AD
2123 }
2124
01c5f864
AD
2125 dev_maps = new_dev_maps;
2126 active = true;
537c00de 2127
01c5f864
AD
2128out_no_new_maps:
2129 /* update Tx queue numa node */
537c00de
AD
2130 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131 (numa_node_id >= 0) ? numa_node_id :
2132 NUMA_NO_NODE);
2133
01c5f864
AD
2134 if (!dev_maps)
2135 goto out_no_maps;
2136
2137 /* removes queue from unused CPUs */
2138 for_each_possible_cpu(cpu) {
2139 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140 continue;
2141
2142 if (remove_xps_queue(dev_maps, cpu, index))
2143 active = true;
2144 }
2145
2146 /* free map if not active */
2147 if (!active) {
2148 RCU_INIT_POINTER(dev->xps_maps, NULL);
2149 kfree_rcu(dev_maps, rcu);
2150 }
2151
2152out_no_maps:
537c00de
AD
2153 mutex_unlock(&xps_map_mutex);
2154
2155 return 0;
2156error:
01c5f864
AD
2157 /* remove any maps that we added */
2158 for_each_possible_cpu(cpu) {
2159 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161 NULL;
2162 if (new_map && new_map != map)
2163 kfree(new_map);
2164 }
2165
537c00de
AD
2166 mutex_unlock(&xps_map_mutex);
2167
537c00de
AD
2168 kfree(new_dev_maps);
2169 return -ENOMEM;
2170}
2171EXPORT_SYMBOL(netif_set_xps_queue);
2172
2173#endif
f0796d5c
JF
2174/*
2175 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177 */
e6484930 2178int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2179{
1d24eb48
TH
2180 int rc;
2181
e6484930
TH
2182 if (txq < 1 || txq > dev->num_tx_queues)
2183 return -EINVAL;
f0796d5c 2184
5c56580b
BH
2185 if (dev->reg_state == NETREG_REGISTERED ||
2186 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2187 ASSERT_RTNL();
2188
1d24eb48
TH
2189 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190 txq);
bf264145
TH
2191 if (rc)
2192 return rc;
2193
4f57c087
JF
2194 if (dev->num_tc)
2195 netif_setup_tc(dev, txq);
2196
024e9679 2197 if (txq < dev->real_num_tx_queues) {
e6484930 2198 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2199#ifdef CONFIG_XPS
2200 netif_reset_xps_queues_gt(dev, txq);
2201#endif
2202 }
f0796d5c 2203 }
e6484930
TH
2204
2205 dev->real_num_tx_queues = txq;
2206 return 0;
f0796d5c
JF
2207}
2208EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2209
a953be53 2210#ifdef CONFIG_SYSFS
62fe0b40
BH
2211/**
2212 * netif_set_real_num_rx_queues - set actual number of RX queues used
2213 * @dev: Network device
2214 * @rxq: Actual number of RX queues
2215 *
2216 * This must be called either with the rtnl_lock held or before
2217 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2218 * negative error code. If called before registration, it always
2219 * succeeds.
62fe0b40
BH
2220 */
2221int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222{
2223 int rc;
2224
bd25fa7b
TH
2225 if (rxq < 1 || rxq > dev->num_rx_queues)
2226 return -EINVAL;
2227
62fe0b40
BH
2228 if (dev->reg_state == NETREG_REGISTERED) {
2229 ASSERT_RTNL();
2230
62fe0b40
BH
2231 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232 rxq);
2233 if (rc)
2234 return rc;
62fe0b40
BH
2235 }
2236
2237 dev->real_num_rx_queues = rxq;
2238 return 0;
2239}
2240EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241#endif
2242
2c53040f
BH
2243/**
2244 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2245 *
2246 * This routine should set an upper limit on the number of RSS queues
2247 * used by default by multiqueue devices.
2248 */
a55b138b 2249int netif_get_num_default_rss_queues(void)
16917b87
YM
2250{
2251 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2252}
2253EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254
def82a1d 2255static inline void __netif_reschedule(struct Qdisc *q)
56079431 2256{
def82a1d
JP
2257 struct softnet_data *sd;
2258 unsigned long flags;
56079431 2259
def82a1d 2260 local_irq_save(flags);
903ceff7 2261 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2262 q->next_sched = NULL;
2263 *sd->output_queue_tailp = q;
2264 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2265 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266 local_irq_restore(flags);
2267}
2268
2269void __netif_schedule(struct Qdisc *q)
2270{
2271 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272 __netif_reschedule(q);
56079431
DV
2273}
2274EXPORT_SYMBOL(__netif_schedule);
2275
e6247027
ED
2276struct dev_kfree_skb_cb {
2277 enum skb_free_reason reason;
2278};
2279
2280static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2281{
e6247027
ED
2282 return (struct dev_kfree_skb_cb *)skb->cb;
2283}
2284
46e5da40
JF
2285void netif_schedule_queue(struct netdev_queue *txq)
2286{
2287 rcu_read_lock();
2288 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289 struct Qdisc *q = rcu_dereference(txq->qdisc);
2290
2291 __netif_schedule(q);
2292 }
2293 rcu_read_unlock();
2294}
2295EXPORT_SYMBOL(netif_schedule_queue);
2296
2297/**
2298 * netif_wake_subqueue - allow sending packets on subqueue
2299 * @dev: network device
2300 * @queue_index: sub queue index
2301 *
2302 * Resume individual transmit queue of a device with multiple transmit queues.
2303 */
2304void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305{
2306 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307
2308 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309 struct Qdisc *q;
2310
2311 rcu_read_lock();
2312 q = rcu_dereference(txq->qdisc);
2313 __netif_schedule(q);
2314 rcu_read_unlock();
2315 }
2316}
2317EXPORT_SYMBOL(netif_wake_subqueue);
2318
2319void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320{
2321 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322 struct Qdisc *q;
2323
2324 rcu_read_lock();
2325 q = rcu_dereference(dev_queue->qdisc);
2326 __netif_schedule(q);
2327 rcu_read_unlock();
2328 }
2329}
2330EXPORT_SYMBOL(netif_tx_wake_queue);
2331
e6247027 2332void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2333{
e6247027 2334 unsigned long flags;
56079431 2335
e6247027
ED
2336 if (likely(atomic_read(&skb->users) == 1)) {
2337 smp_rmb();
2338 atomic_set(&skb->users, 0);
2339 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2340 return;
bea3348e 2341 }
e6247027
ED
2342 get_kfree_skb_cb(skb)->reason = reason;
2343 local_irq_save(flags);
2344 skb->next = __this_cpu_read(softnet_data.completion_queue);
2345 __this_cpu_write(softnet_data.completion_queue, skb);
2346 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347 local_irq_restore(flags);
56079431 2348}
e6247027 2349EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2350
e6247027 2351void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2352{
2353 if (in_irq() || irqs_disabled())
e6247027 2354 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2355 else
2356 dev_kfree_skb(skb);
2357}
e6247027 2358EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2359
2360
bea3348e
SH
2361/**
2362 * netif_device_detach - mark device as removed
2363 * @dev: network device
2364 *
2365 * Mark device as removed from system and therefore no longer available.
2366 */
56079431
DV
2367void netif_device_detach(struct net_device *dev)
2368{
2369 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370 netif_running(dev)) {
d543103a 2371 netif_tx_stop_all_queues(dev);
56079431
DV
2372 }
2373}
2374EXPORT_SYMBOL(netif_device_detach);
2375
bea3348e
SH
2376/**
2377 * netif_device_attach - mark device as attached
2378 * @dev: network device
2379 *
2380 * Mark device as attached from system and restart if needed.
2381 */
56079431
DV
2382void netif_device_attach(struct net_device *dev)
2383{
2384 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385 netif_running(dev)) {
d543103a 2386 netif_tx_wake_all_queues(dev);
4ec93edb 2387 __netdev_watchdog_up(dev);
56079431
DV
2388 }
2389}
2390EXPORT_SYMBOL(netif_device_attach);
2391
5605c762
JP
2392/*
2393 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394 * to be used as a distribution range.
2395 */
2396u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397 unsigned int num_tx_queues)
2398{
2399 u32 hash;
2400 u16 qoffset = 0;
2401 u16 qcount = num_tx_queues;
2402
2403 if (skb_rx_queue_recorded(skb)) {
2404 hash = skb_get_rx_queue(skb);
2405 while (unlikely(hash >= num_tx_queues))
2406 hash -= num_tx_queues;
2407 return hash;
2408 }
2409
2410 if (dev->num_tc) {
2411 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412 qoffset = dev->tc_to_txq[tc].offset;
2413 qcount = dev->tc_to_txq[tc].count;
2414 }
2415
2416 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417}
2418EXPORT_SYMBOL(__skb_tx_hash);
2419
36c92474
BH
2420static void skb_warn_bad_offload(const struct sk_buff *skb)
2421{
65e9d2fa 2422 static const netdev_features_t null_features = 0;
36c92474 2423 struct net_device *dev = skb->dev;
88ad4175 2424 const char *name = "";
36c92474 2425
c846ad9b
BG
2426 if (!net_ratelimit())
2427 return;
2428
88ad4175
BM
2429 if (dev) {
2430 if (dev->dev.parent)
2431 name = dev_driver_string(dev->dev.parent);
2432 else
2433 name = netdev_name(dev);
2434 }
36c92474
BH
2435 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436 "gso_type=%d ip_summed=%d\n",
88ad4175 2437 name, dev ? &dev->features : &null_features,
65e9d2fa 2438 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2439 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440 skb_shinfo(skb)->gso_type, skb->ip_summed);
2441}
2442
1da177e4
LT
2443/*
2444 * Invalidate hardware checksum when packet is to be mangled, and
2445 * complete checksum manually on outgoing path.
2446 */
84fa7933 2447int skb_checksum_help(struct sk_buff *skb)
1da177e4 2448{
d3bc23e7 2449 __wsum csum;
663ead3b 2450 int ret = 0, offset;
1da177e4 2451
84fa7933 2452 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2453 goto out_set_summed;
2454
2455 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2456 skb_warn_bad_offload(skb);
2457 return -EINVAL;
1da177e4
LT
2458 }
2459
cef401de
ED
2460 /* Before computing a checksum, we should make sure no frag could
2461 * be modified by an external entity : checksum could be wrong.
2462 */
2463 if (skb_has_shared_frag(skb)) {
2464 ret = __skb_linearize(skb);
2465 if (ret)
2466 goto out;
2467 }
2468
55508d60 2469 offset = skb_checksum_start_offset(skb);
a030847e
HX
2470 BUG_ON(offset >= skb_headlen(skb));
2471 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472
2473 offset += skb->csum_offset;
2474 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475
2476 if (skb_cloned(skb) &&
2477 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2478 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479 if (ret)
2480 goto out;
2481 }
2482
a030847e 2483 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2484out_set_summed:
1da177e4 2485 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2486out:
1da177e4
LT
2487 return ret;
2488}
d1b19dff 2489EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2490
6ae23ad3
TH
2491/* skb_csum_offload_check - Driver helper function to determine if a device
2492 * with limited checksum offload capabilities is able to offload the checksum
2493 * for a given packet.
2494 *
2495 * Arguments:
2496 * skb - sk_buff for the packet in question
2497 * spec - contains the description of what device can offload
2498 * csum_encapped - returns true if the checksum being offloaded is
2499 * encpasulated. That is it is checksum for the transport header
2500 * in the inner headers.
2501 * checksum_help - when set indicates that helper function should
2502 * call skb_checksum_help if offload checks fail
2503 *
2504 * Returns:
2505 * true: Packet has passed the checksum checks and should be offloadable to
2506 * the device (a driver may still need to check for additional
2507 * restrictions of its device)
2508 * false: Checksum is not offloadable. If checksum_help was set then
2509 * skb_checksum_help was called to resolve checksum for non-GSO
2510 * packets and when IP protocol is not SCTP
2511 */
2512bool __skb_csum_offload_chk(struct sk_buff *skb,
2513 const struct skb_csum_offl_spec *spec,
2514 bool *csum_encapped,
2515 bool csum_help)
2516{
2517 struct iphdr *iph;
2518 struct ipv6hdr *ipv6;
2519 void *nhdr;
2520 int protocol;
2521 u8 ip_proto;
2522
2523 if (skb->protocol == htons(ETH_P_8021Q) ||
2524 skb->protocol == htons(ETH_P_8021AD)) {
2525 if (!spec->vlan_okay)
2526 goto need_help;
2527 }
2528
2529 /* We check whether the checksum refers to a transport layer checksum in
2530 * the outermost header or an encapsulated transport layer checksum that
2531 * corresponds to the inner headers of the skb. If the checksum is for
2532 * something else in the packet we need help.
2533 */
2534 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535 /* Non-encapsulated checksum */
2536 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537 nhdr = skb_network_header(skb);
2538 *csum_encapped = false;
2539 if (spec->no_not_encapped)
2540 goto need_help;
2541 } else if (skb->encapsulation && spec->encap_okay &&
2542 skb_checksum_start_offset(skb) ==
2543 skb_inner_transport_offset(skb)) {
2544 /* Encapsulated checksum */
2545 *csum_encapped = true;
2546 switch (skb->inner_protocol_type) {
2547 case ENCAP_TYPE_ETHER:
2548 protocol = eproto_to_ipproto(skb->inner_protocol);
2549 break;
2550 case ENCAP_TYPE_IPPROTO:
2551 protocol = skb->inner_protocol;
2552 break;
2553 }
2554 nhdr = skb_inner_network_header(skb);
2555 } else {
2556 goto need_help;
2557 }
2558
2559 switch (protocol) {
2560 case IPPROTO_IP:
2561 if (!spec->ipv4_okay)
2562 goto need_help;
2563 iph = nhdr;
2564 ip_proto = iph->protocol;
2565 if (iph->ihl != 5 && !spec->ip_options_okay)
2566 goto need_help;
2567 break;
2568 case IPPROTO_IPV6:
2569 if (!spec->ipv6_okay)
2570 goto need_help;
2571 if (spec->no_encapped_ipv6 && *csum_encapped)
2572 goto need_help;
2573 ipv6 = nhdr;
2574 nhdr += sizeof(*ipv6);
2575 ip_proto = ipv6->nexthdr;
2576 break;
2577 default:
2578 goto need_help;
2579 }
2580
2581ip_proto_again:
2582 switch (ip_proto) {
2583 case IPPROTO_TCP:
2584 if (!spec->tcp_okay ||
2585 skb->csum_offset != offsetof(struct tcphdr, check))
2586 goto need_help;
2587 break;
2588 case IPPROTO_UDP:
2589 if (!spec->udp_okay ||
2590 skb->csum_offset != offsetof(struct udphdr, check))
2591 goto need_help;
2592 break;
2593 case IPPROTO_SCTP:
2594 if (!spec->sctp_okay ||
2595 skb->csum_offset != offsetof(struct sctphdr, checksum))
2596 goto cant_help;
2597 break;
2598 case NEXTHDR_HOP:
2599 case NEXTHDR_ROUTING:
2600 case NEXTHDR_DEST: {
2601 u8 *opthdr = nhdr;
2602
2603 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604 goto need_help;
2605
2606 ip_proto = opthdr[0];
2607 nhdr += (opthdr[1] + 1) << 3;
2608
2609 goto ip_proto_again;
2610 }
2611 default:
2612 goto need_help;
2613 }
2614
2615 /* Passed the tests for offloading checksum */
2616 return true;
2617
2618need_help:
2619 if (csum_help && !skb_shinfo(skb)->gso_size)
2620 skb_checksum_help(skb);
2621cant_help:
2622 return false;
2623}
2624EXPORT_SYMBOL(__skb_csum_offload_chk);
2625
53d6471c 2626__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2627{
252e3346 2628 __be16 type = skb->protocol;
f6a78bfc 2629
19acc327
PS
2630 /* Tunnel gso handlers can set protocol to ethernet. */
2631 if (type == htons(ETH_P_TEB)) {
2632 struct ethhdr *eth;
2633
2634 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635 return 0;
2636
2637 eth = (struct ethhdr *)skb_mac_header(skb);
2638 type = eth->h_proto;
2639 }
2640
d4bcef3f 2641 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2642}
2643
2644/**
2645 * skb_mac_gso_segment - mac layer segmentation handler.
2646 * @skb: buffer to segment
2647 * @features: features for the output path (see dev->features)
2648 */
2649struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650 netdev_features_t features)
2651{
2652 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653 struct packet_offload *ptype;
53d6471c
VY
2654 int vlan_depth = skb->mac_len;
2655 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2656
2657 if (unlikely(!type))
2658 return ERR_PTR(-EINVAL);
2659
53d6471c 2660 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2661
2662 rcu_read_lock();
22061d80 2663 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2664 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2665 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2666 break;
2667 }
2668 }
2669 rcu_read_unlock();
2670
98e399f8 2671 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2672
f6a78bfc
HX
2673 return segs;
2674}
05e8ef4a
PS
2675EXPORT_SYMBOL(skb_mac_gso_segment);
2676
2677
2678/* openvswitch calls this on rx path, so we need a different check.
2679 */
2680static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681{
2682 if (tx_path)
2683 return skb->ip_summed != CHECKSUM_PARTIAL;
2684 else
2685 return skb->ip_summed == CHECKSUM_NONE;
2686}
2687
2688/**
2689 * __skb_gso_segment - Perform segmentation on skb.
2690 * @skb: buffer to segment
2691 * @features: features for the output path (see dev->features)
2692 * @tx_path: whether it is called in TX path
2693 *
2694 * This function segments the given skb and returns a list of segments.
2695 *
2696 * It may return NULL if the skb requires no segmentation. This is
2697 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2698 *
2699 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2700 */
2701struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702 netdev_features_t features, bool tx_path)
2703{
2704 if (unlikely(skb_needs_check(skb, tx_path))) {
2705 int err;
2706
2707 skb_warn_bad_offload(skb);
2708
a40e0a66 2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
05e8ef4a
PS
2711 return ERR_PTR(err);
2712 }
2713
802ab55a
AD
2714 /* Only report GSO partial support if it will enable us to
2715 * support segmentation on this frame without needing additional
2716 * work.
2717 */
2718 if (features & NETIF_F_GSO_PARTIAL) {
2719 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2720 struct net_device *dev = skb->dev;
2721
2722 partial_features |= dev->features & dev->gso_partial_features;
2723 if (!skb_gso_ok(skb, features | partial_features))
2724 features &= ~NETIF_F_GSO_PARTIAL;
2725 }
2726
9207f9d4
KK
2727 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2728 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2729
68c33163 2730 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2731 SKB_GSO_CB(skb)->encap_level = 0;
2732
05e8ef4a
PS
2733 skb_reset_mac_header(skb);
2734 skb_reset_mac_len(skb);
2735
2736 return skb_mac_gso_segment(skb, features);
2737}
12b0004d 2738EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2739
fb286bb2
HX
2740/* Take action when hardware reception checksum errors are detected. */
2741#ifdef CONFIG_BUG
2742void netdev_rx_csum_fault(struct net_device *dev)
2743{
2744 if (net_ratelimit()) {
7b6cd1ce 2745 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2746 dump_stack();
2747 }
2748}
2749EXPORT_SYMBOL(netdev_rx_csum_fault);
2750#endif
2751
1da177e4
LT
2752/* Actually, we should eliminate this check as soon as we know, that:
2753 * 1. IOMMU is present and allows to map all the memory.
2754 * 2. No high memory really exists on this machine.
2755 */
2756
c1e756bf 2757static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2758{
3d3a8533 2759#ifdef CONFIG_HIGHMEM
1da177e4 2760 int i;
5acbbd42 2761 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2762 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2763 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2764 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2765 return 1;
ea2ab693 2766 }
5acbbd42 2767 }
1da177e4 2768
5acbbd42
FT
2769 if (PCI_DMA_BUS_IS_PHYS) {
2770 struct device *pdev = dev->dev.parent;
1da177e4 2771
9092c658
ED
2772 if (!pdev)
2773 return 0;
5acbbd42 2774 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2775 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2776 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2777 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2778 return 1;
2779 }
2780 }
3d3a8533 2781#endif
1da177e4
LT
2782 return 0;
2783}
1da177e4 2784
3b392ddb
SH
2785/* If MPLS offload request, verify we are testing hardware MPLS features
2786 * instead of standard features for the netdev.
2787 */
d0edc7bf 2788#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2789static netdev_features_t net_mpls_features(struct sk_buff *skb,
2790 netdev_features_t features,
2791 __be16 type)
2792{
25cd9ba0 2793 if (eth_p_mpls(type))
3b392ddb
SH
2794 features &= skb->dev->mpls_features;
2795
2796 return features;
2797}
2798#else
2799static netdev_features_t net_mpls_features(struct sk_buff *skb,
2800 netdev_features_t features,
2801 __be16 type)
2802{
2803 return features;
2804}
2805#endif
2806
c8f44aff 2807static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2808 netdev_features_t features)
f01a5236 2809{
53d6471c 2810 int tmp;
3b392ddb
SH
2811 __be16 type;
2812
2813 type = skb_network_protocol(skb, &tmp);
2814 features = net_mpls_features(skb, features, type);
53d6471c 2815
c0d680e5 2816 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2817 !can_checksum_protocol(features, type)) {
a188222b 2818 features &= ~NETIF_F_CSUM_MASK;
c1e756bf 2819 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2820 features &= ~NETIF_F_SG;
2821 }
2822
2823 return features;
2824}
2825
e38f3025
TM
2826netdev_features_t passthru_features_check(struct sk_buff *skb,
2827 struct net_device *dev,
2828 netdev_features_t features)
2829{
2830 return features;
2831}
2832EXPORT_SYMBOL(passthru_features_check);
2833
8cb65d00
TM
2834static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2835 struct net_device *dev,
2836 netdev_features_t features)
2837{
2838 return vlan_features_check(skb, features);
2839}
2840
cbc53e08
AD
2841static netdev_features_t gso_features_check(const struct sk_buff *skb,
2842 struct net_device *dev,
2843 netdev_features_t features)
2844{
2845 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2846
2847 if (gso_segs > dev->gso_max_segs)
2848 return features & ~NETIF_F_GSO_MASK;
2849
802ab55a
AD
2850 /* Support for GSO partial features requires software
2851 * intervention before we can actually process the packets
2852 * so we need to strip support for any partial features now
2853 * and we can pull them back in after we have partially
2854 * segmented the frame.
2855 */
2856 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2857 features &= ~dev->gso_partial_features;
2858
2859 /* Make sure to clear the IPv4 ID mangling feature if the
2860 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2861 */
2862 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2863 struct iphdr *iph = skb->encapsulation ?
2864 inner_ip_hdr(skb) : ip_hdr(skb);
2865
2866 if (!(iph->frag_off & htons(IP_DF)))
2867 features &= ~NETIF_F_TSO_MANGLEID;
2868 }
2869
2870 return features;
2871}
2872
c1e756bf 2873netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2874{
5f35227e 2875 struct net_device *dev = skb->dev;
fcbeb976 2876 netdev_features_t features = dev->features;
58e998c6 2877
cbc53e08
AD
2878 if (skb_is_gso(skb))
2879 features = gso_features_check(skb, dev, features);
30b678d8 2880
5f35227e
JG
2881 /* If encapsulation offload request, verify we are testing
2882 * hardware encapsulation features instead of standard
2883 * features for the netdev
2884 */
2885 if (skb->encapsulation)
2886 features &= dev->hw_enc_features;
2887
f5a7fb88
TM
2888 if (skb_vlan_tagged(skb))
2889 features = netdev_intersect_features(features,
2890 dev->vlan_features |
2891 NETIF_F_HW_VLAN_CTAG_TX |
2892 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2893
5f35227e
JG
2894 if (dev->netdev_ops->ndo_features_check)
2895 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2896 features);
8cb65d00
TM
2897 else
2898 features &= dflt_features_check(skb, dev, features);
5f35227e 2899
c1e756bf 2900 return harmonize_features(skb, features);
58e998c6 2901}
c1e756bf 2902EXPORT_SYMBOL(netif_skb_features);
58e998c6 2903
2ea25513 2904static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2905 struct netdev_queue *txq, bool more)
f6a78bfc 2906{
2ea25513
DM
2907 unsigned int len;
2908 int rc;
00829823 2909
7866a621 2910 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2911 dev_queue_xmit_nit(skb, dev);
fc741216 2912
2ea25513
DM
2913 len = skb->len;
2914 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2915 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2916 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2917
2ea25513
DM
2918 return rc;
2919}
7b9c6090 2920
8dcda22a
DM
2921struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2922 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2923{
2924 struct sk_buff *skb = first;
2925 int rc = NETDEV_TX_OK;
7b9c6090 2926
7f2e870f
DM
2927 while (skb) {
2928 struct sk_buff *next = skb->next;
fc70fb64 2929
7f2e870f 2930 skb->next = NULL;
95f6b3dd 2931 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2932 if (unlikely(!dev_xmit_complete(rc))) {
2933 skb->next = next;
2934 goto out;
2935 }
6afff0ca 2936
7f2e870f
DM
2937 skb = next;
2938 if (netif_xmit_stopped(txq) && skb) {
2939 rc = NETDEV_TX_BUSY;
2940 break;
9ccb8975 2941 }
7f2e870f 2942 }
9ccb8975 2943
7f2e870f
DM
2944out:
2945 *ret = rc;
2946 return skb;
2947}
b40863c6 2948
1ff0dc94
ED
2949static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2950 netdev_features_t features)
f6a78bfc 2951{
df8a39de 2952 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2953 !vlan_hw_offload_capable(features, skb->vlan_proto))
2954 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2955 return skb;
2956}
f6a78bfc 2957
55a93b3e 2958static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2959{
2960 netdev_features_t features;
f6a78bfc 2961
eae3f88e
DM
2962 features = netif_skb_features(skb);
2963 skb = validate_xmit_vlan(skb, features);
2964 if (unlikely(!skb))
2965 goto out_null;
7b9c6090 2966
8b86a61d 2967 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2968 struct sk_buff *segs;
2969
2970 segs = skb_gso_segment(skb, features);
cecda693 2971 if (IS_ERR(segs)) {
af6dabc9 2972 goto out_kfree_skb;
cecda693
JW
2973 } else if (segs) {
2974 consume_skb(skb);
2975 skb = segs;
f6a78bfc 2976 }
eae3f88e
DM
2977 } else {
2978 if (skb_needs_linearize(skb, features) &&
2979 __skb_linearize(skb))
2980 goto out_kfree_skb;
4ec93edb 2981
eae3f88e
DM
2982 /* If packet is not checksummed and device does not
2983 * support checksumming for this protocol, complete
2984 * checksumming here.
2985 */
2986 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2987 if (skb->encapsulation)
2988 skb_set_inner_transport_header(skb,
2989 skb_checksum_start_offset(skb));
2990 else
2991 skb_set_transport_header(skb,
2992 skb_checksum_start_offset(skb));
a188222b 2993 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2994 skb_checksum_help(skb))
2995 goto out_kfree_skb;
7b9c6090 2996 }
0c772159 2997 }
7b9c6090 2998
eae3f88e 2999 return skb;
fc70fb64 3000
f6a78bfc
HX
3001out_kfree_skb:
3002 kfree_skb(skb);
eae3f88e 3003out_null:
d21fd63e 3004 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3005 return NULL;
3006}
6afff0ca 3007
55a93b3e
ED
3008struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3009{
3010 struct sk_buff *next, *head = NULL, *tail;
3011
bec3cfdc 3012 for (; skb != NULL; skb = next) {
55a93b3e
ED
3013 next = skb->next;
3014 skb->next = NULL;
bec3cfdc
ED
3015
3016 /* in case skb wont be segmented, point to itself */
3017 skb->prev = skb;
3018
55a93b3e 3019 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3020 if (!skb)
3021 continue;
55a93b3e 3022
bec3cfdc
ED
3023 if (!head)
3024 head = skb;
3025 else
3026 tail->next = skb;
3027 /* If skb was segmented, skb->prev points to
3028 * the last segment. If not, it still contains skb.
3029 */
3030 tail = skb->prev;
55a93b3e
ED
3031 }
3032 return head;
f6a78bfc
HX
3033}
3034
1def9238
ED
3035static void qdisc_pkt_len_init(struct sk_buff *skb)
3036{
3037 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3038
3039 qdisc_skb_cb(skb)->pkt_len = skb->len;
3040
3041 /* To get more precise estimation of bytes sent on wire,
3042 * we add to pkt_len the headers size of all segments
3043 */
3044 if (shinfo->gso_size) {
757b8b1d 3045 unsigned int hdr_len;
15e5a030 3046 u16 gso_segs = shinfo->gso_segs;
1def9238 3047
757b8b1d
ED
3048 /* mac layer + network layer */
3049 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3050
3051 /* + transport layer */
1def9238
ED
3052 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3053 hdr_len += tcp_hdrlen(skb);
3054 else
3055 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3056
3057 if (shinfo->gso_type & SKB_GSO_DODGY)
3058 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3059 shinfo->gso_size);
3060
3061 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3062 }
3063}
3064
bbd8a0d3
KK
3065static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3066 struct net_device *dev,
3067 struct netdev_queue *txq)
3068{
3069 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 3070 bool contended;
bbd8a0d3
KK
3071 int rc;
3072
a2da570d 3073 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3074 /*
3075 * Heuristic to force contended enqueues to serialize on a
3076 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
3077 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3078 * often and dequeue packets faster.
79640a4c 3079 */
a2da570d 3080 contended = qdisc_is_running(q);
79640a4c
ED
3081 if (unlikely(contended))
3082 spin_lock(&q->busylock);
3083
bbd8a0d3
KK
3084 spin_lock(root_lock);
3085 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3086 kfree_skb(skb);
3087 rc = NET_XMIT_DROP;
3088 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3089 qdisc_run_begin(q)) {
bbd8a0d3
KK
3090 /*
3091 * This is a work-conserving queue; there are no old skbs
3092 * waiting to be sent out; and the qdisc is not running -
3093 * xmit the skb directly.
3094 */
bfe0d029 3095
bfe0d029
ED
3096 qdisc_bstats_update(q, skb);
3097
55a93b3e 3098 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3099 if (unlikely(contended)) {
3100 spin_unlock(&q->busylock);
3101 contended = false;
3102 }
bbd8a0d3 3103 __qdisc_run(q);
79640a4c 3104 } else
bc135b23 3105 qdisc_run_end(q);
bbd8a0d3
KK
3106
3107 rc = NET_XMIT_SUCCESS;
3108 } else {
a2da570d 3109 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
3110 if (qdisc_run_begin(q)) {
3111 if (unlikely(contended)) {
3112 spin_unlock(&q->busylock);
3113 contended = false;
3114 }
3115 __qdisc_run(q);
3116 }
bbd8a0d3
KK
3117 }
3118 spin_unlock(root_lock);
79640a4c
ED
3119 if (unlikely(contended))
3120 spin_unlock(&q->busylock);
bbd8a0d3
KK
3121 return rc;
3122}
3123
86f8515f 3124#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3125static void skb_update_prio(struct sk_buff *skb)
3126{
6977a79d 3127 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3128
91c68ce2 3129 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3130 unsigned int prioidx =
3131 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3132
3133 if (prioidx < map->priomap_len)
3134 skb->priority = map->priomap[prioidx];
3135 }
5bc1421e
NH
3136}
3137#else
3138#define skb_update_prio(skb)
3139#endif
3140
f60e5990 3141DEFINE_PER_CPU(int, xmit_recursion);
3142EXPORT_SYMBOL(xmit_recursion);
3143
11a766ce 3144#define RECURSION_LIMIT 10
745e20f1 3145
95603e22
MM
3146/**
3147 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3148 * @net: network namespace this loopback is happening in
3149 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3150 * @skb: buffer to transmit
3151 */
0c4b51f0 3152int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3153{
3154 skb_reset_mac_header(skb);
3155 __skb_pull(skb, skb_network_offset(skb));
3156 skb->pkt_type = PACKET_LOOPBACK;
3157 skb->ip_summed = CHECKSUM_UNNECESSARY;
3158 WARN_ON(!skb_dst(skb));
3159 skb_dst_force(skb);
3160 netif_rx_ni(skb);
3161 return 0;
3162}
3163EXPORT_SYMBOL(dev_loopback_xmit);
3164
1f211a1b
DB
3165#ifdef CONFIG_NET_EGRESS
3166static struct sk_buff *
3167sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3168{
3169 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3170 struct tcf_result cl_res;
3171
3172 if (!cl)
3173 return skb;
3174
3175 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3176 * earlier by the caller.
3177 */
3178 qdisc_bstats_cpu_update(cl->q, skb);
3179
3180 switch (tc_classify(skb, cl, &cl_res, false)) {
3181 case TC_ACT_OK:
3182 case TC_ACT_RECLASSIFY:
3183 skb->tc_index = TC_H_MIN(cl_res.classid);
3184 break;
3185 case TC_ACT_SHOT:
3186 qdisc_qstats_cpu_drop(cl->q);
3187 *ret = NET_XMIT_DROP;
3188 goto drop;
3189 case TC_ACT_STOLEN:
3190 case TC_ACT_QUEUED:
3191 *ret = NET_XMIT_SUCCESS;
3192drop:
3193 kfree_skb(skb);
3194 return NULL;
3195 case TC_ACT_REDIRECT:
3196 /* No need to push/pop skb's mac_header here on egress! */
3197 skb_do_redirect(skb);
3198 *ret = NET_XMIT_SUCCESS;
3199 return NULL;
3200 default:
3201 break;
3202 }
3203
3204 return skb;
3205}
3206#endif /* CONFIG_NET_EGRESS */
3207
638b2a69
JP
3208static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3209{
3210#ifdef CONFIG_XPS
3211 struct xps_dev_maps *dev_maps;
3212 struct xps_map *map;
3213 int queue_index = -1;
3214
3215 rcu_read_lock();
3216 dev_maps = rcu_dereference(dev->xps_maps);
3217 if (dev_maps) {
3218 map = rcu_dereference(
3219 dev_maps->cpu_map[skb->sender_cpu - 1]);
3220 if (map) {
3221 if (map->len == 1)
3222 queue_index = map->queues[0];
3223 else
3224 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3225 map->len)];
3226 if (unlikely(queue_index >= dev->real_num_tx_queues))
3227 queue_index = -1;
3228 }
3229 }
3230 rcu_read_unlock();
3231
3232 return queue_index;
3233#else
3234 return -1;
3235#endif
3236}
3237
3238static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3239{
3240 struct sock *sk = skb->sk;
3241 int queue_index = sk_tx_queue_get(sk);
3242
3243 if (queue_index < 0 || skb->ooo_okay ||
3244 queue_index >= dev->real_num_tx_queues) {
3245 int new_index = get_xps_queue(dev, skb);
3246 if (new_index < 0)
3247 new_index = skb_tx_hash(dev, skb);
3248
3249 if (queue_index != new_index && sk &&
004a5d01 3250 sk_fullsock(sk) &&
638b2a69
JP
3251 rcu_access_pointer(sk->sk_dst_cache))
3252 sk_tx_queue_set(sk, new_index);
3253
3254 queue_index = new_index;
3255 }
3256
3257 return queue_index;
3258}
3259
3260struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3261 struct sk_buff *skb,
3262 void *accel_priv)
3263{
3264 int queue_index = 0;
3265
3266#ifdef CONFIG_XPS
52bd2d62
ED
3267 u32 sender_cpu = skb->sender_cpu - 1;
3268
3269 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3270 skb->sender_cpu = raw_smp_processor_id() + 1;
3271#endif
3272
3273 if (dev->real_num_tx_queues != 1) {
3274 const struct net_device_ops *ops = dev->netdev_ops;
3275 if (ops->ndo_select_queue)
3276 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3277 __netdev_pick_tx);
3278 else
3279 queue_index = __netdev_pick_tx(dev, skb);
3280
3281 if (!accel_priv)
3282 queue_index = netdev_cap_txqueue(dev, queue_index);
3283 }
3284
3285 skb_set_queue_mapping(skb, queue_index);
3286 return netdev_get_tx_queue(dev, queue_index);
3287}
3288
d29f749e 3289/**
9d08dd3d 3290 * __dev_queue_xmit - transmit a buffer
d29f749e 3291 * @skb: buffer to transmit
9d08dd3d 3292 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3293 *
3294 * Queue a buffer for transmission to a network device. The caller must
3295 * have set the device and priority and built the buffer before calling
3296 * this function. The function can be called from an interrupt.
3297 *
3298 * A negative errno code is returned on a failure. A success does not
3299 * guarantee the frame will be transmitted as it may be dropped due
3300 * to congestion or traffic shaping.
3301 *
3302 * -----------------------------------------------------------------------------------
3303 * I notice this method can also return errors from the queue disciplines,
3304 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3305 * be positive.
3306 *
3307 * Regardless of the return value, the skb is consumed, so it is currently
3308 * difficult to retry a send to this method. (You can bump the ref count
3309 * before sending to hold a reference for retry if you are careful.)
3310 *
3311 * When calling this method, interrupts MUST be enabled. This is because
3312 * the BH enable code must have IRQs enabled so that it will not deadlock.
3313 * --BLG
3314 */
0a59f3a9 3315static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3316{
3317 struct net_device *dev = skb->dev;
dc2b4847 3318 struct netdev_queue *txq;
1da177e4
LT
3319 struct Qdisc *q;
3320 int rc = -ENOMEM;
3321
6d1ccff6
ED
3322 skb_reset_mac_header(skb);
3323
e7fd2885
WB
3324 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3325 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3326
4ec93edb
YH
3327 /* Disable soft irqs for various locks below. Also
3328 * stops preemption for RCU.
1da177e4 3329 */
4ec93edb 3330 rcu_read_lock_bh();
1da177e4 3331
5bc1421e
NH
3332 skb_update_prio(skb);
3333
1f211a1b
DB
3334 qdisc_pkt_len_init(skb);
3335#ifdef CONFIG_NET_CLS_ACT
3336 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3337# ifdef CONFIG_NET_EGRESS
3338 if (static_key_false(&egress_needed)) {
3339 skb = sch_handle_egress(skb, &rc, dev);
3340 if (!skb)
3341 goto out;
3342 }
3343# endif
3344#endif
02875878
ED
3345 /* If device/qdisc don't need skb->dst, release it right now while
3346 * its hot in this cpu cache.
3347 */
3348 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3349 skb_dst_drop(skb);
3350 else
3351 skb_dst_force(skb);
3352
0c4f691f
SF
3353#ifdef CONFIG_NET_SWITCHDEV
3354 /* Don't forward if offload device already forwarded */
3355 if (skb->offload_fwd_mark &&
3356 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3357 consume_skb(skb);
3358 rc = NET_XMIT_SUCCESS;
3359 goto out;
3360 }
3361#endif
3362
f663dd9a 3363 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3364 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3365
cf66ba58 3366 trace_net_dev_queue(skb);
1da177e4 3367 if (q->enqueue) {
bbd8a0d3 3368 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3369 goto out;
1da177e4
LT
3370 }
3371
3372 /* The device has no queue. Common case for software devices:
3373 loopback, all the sorts of tunnels...
3374
932ff279
HX
3375 Really, it is unlikely that netif_tx_lock protection is necessary
3376 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3377 counters.)
3378 However, it is possible, that they rely on protection
3379 made by us here.
3380
3381 Check this and shot the lock. It is not prone from deadlocks.
3382 Either shot noqueue qdisc, it is even simpler 8)
3383 */
3384 if (dev->flags & IFF_UP) {
3385 int cpu = smp_processor_id(); /* ok because BHs are off */
3386
c773e847 3387 if (txq->xmit_lock_owner != cpu) {
1da177e4 3388
745e20f1
ED
3389 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3390 goto recursion_alert;
3391
1f59533f
JDB
3392 skb = validate_xmit_skb(skb, dev);
3393 if (!skb)
d21fd63e 3394 goto out;
1f59533f 3395
c773e847 3396 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3397
73466498 3398 if (!netif_xmit_stopped(txq)) {
745e20f1 3399 __this_cpu_inc(xmit_recursion);
ce93718f 3400 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3401 __this_cpu_dec(xmit_recursion);
572a9d7b 3402 if (dev_xmit_complete(rc)) {
c773e847 3403 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3404 goto out;
3405 }
3406 }
c773e847 3407 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3408 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3409 dev->name);
1da177e4
LT
3410 } else {
3411 /* Recursion is detected! It is possible,
745e20f1
ED
3412 * unfortunately
3413 */
3414recursion_alert:
e87cc472
JP
3415 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3416 dev->name);
1da177e4
LT
3417 }
3418 }
3419
3420 rc = -ENETDOWN;
d4828d85 3421 rcu_read_unlock_bh();
1da177e4 3422
015f0688 3423 atomic_long_inc(&dev->tx_dropped);
1f59533f 3424 kfree_skb_list(skb);
1da177e4
LT
3425 return rc;
3426out:
d4828d85 3427 rcu_read_unlock_bh();
1da177e4
LT
3428 return rc;
3429}
f663dd9a 3430
2b4aa3ce 3431int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3432{
3433 return __dev_queue_xmit(skb, NULL);
3434}
2b4aa3ce 3435EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3436
f663dd9a
JW
3437int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3438{
3439 return __dev_queue_xmit(skb, accel_priv);
3440}
3441EXPORT_SYMBOL(dev_queue_xmit_accel);
3442
1da177e4
LT
3443
3444/*=======================================================================
3445 Receiver routines
3446 =======================================================================*/
3447
6b2bedc3 3448int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3449EXPORT_SYMBOL(netdev_max_backlog);
3450
3b098e2d 3451int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3452int netdev_budget __read_mostly = 300;
3453int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3454
eecfd7c4
ED
3455/* Called with irq disabled */
3456static inline void ____napi_schedule(struct softnet_data *sd,
3457 struct napi_struct *napi)
3458{
3459 list_add_tail(&napi->poll_list, &sd->poll_list);
3460 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3461}
3462
bfb564e7
KK
3463#ifdef CONFIG_RPS
3464
3465/* One global table that all flow-based protocols share. */
6e3f7faf 3466struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3467EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3468u32 rps_cpu_mask __read_mostly;
3469EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3470
c5905afb 3471struct static_key rps_needed __read_mostly;
3df97ba8 3472EXPORT_SYMBOL(rps_needed);
adc9300e 3473
c445477d
BH
3474static struct rps_dev_flow *
3475set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3476 struct rps_dev_flow *rflow, u16 next_cpu)
3477{
a31196b0 3478 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3479#ifdef CONFIG_RFS_ACCEL
3480 struct netdev_rx_queue *rxqueue;
3481 struct rps_dev_flow_table *flow_table;
3482 struct rps_dev_flow *old_rflow;
3483 u32 flow_id;
3484 u16 rxq_index;
3485 int rc;
3486
3487 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3488 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3489 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3490 goto out;
3491 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3492 if (rxq_index == skb_get_rx_queue(skb))
3493 goto out;
3494
3495 rxqueue = dev->_rx + rxq_index;
3496 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3497 if (!flow_table)
3498 goto out;
61b905da 3499 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3500 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3501 rxq_index, flow_id);
3502 if (rc < 0)
3503 goto out;
3504 old_rflow = rflow;
3505 rflow = &flow_table->flows[flow_id];
c445477d
BH
3506 rflow->filter = rc;
3507 if (old_rflow->filter == rflow->filter)
3508 old_rflow->filter = RPS_NO_FILTER;
3509 out:
3510#endif
3511 rflow->last_qtail =
09994d1b 3512 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3513 }
3514
09994d1b 3515 rflow->cpu = next_cpu;
c445477d
BH
3516 return rflow;
3517}
3518
bfb564e7
KK
3519/*
3520 * get_rps_cpu is called from netif_receive_skb and returns the target
3521 * CPU from the RPS map of the receiving queue for a given skb.
3522 * rcu_read_lock must be held on entry.
3523 */
3524static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3525 struct rps_dev_flow **rflowp)
3526{
567e4b79
ED
3527 const struct rps_sock_flow_table *sock_flow_table;
3528 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3529 struct rps_dev_flow_table *flow_table;
567e4b79 3530 struct rps_map *map;
bfb564e7 3531 int cpu = -1;
567e4b79 3532 u32 tcpu;
61b905da 3533 u32 hash;
bfb564e7
KK
3534
3535 if (skb_rx_queue_recorded(skb)) {
3536 u16 index = skb_get_rx_queue(skb);
567e4b79 3537
62fe0b40
BH
3538 if (unlikely(index >= dev->real_num_rx_queues)) {
3539 WARN_ONCE(dev->real_num_rx_queues > 1,
3540 "%s received packet on queue %u, but number "
3541 "of RX queues is %u\n",
3542 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3543 goto done;
3544 }
567e4b79
ED
3545 rxqueue += index;
3546 }
bfb564e7 3547
567e4b79
ED
3548 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3549
3550 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3551 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3552 if (!flow_table && !map)
bfb564e7
KK
3553 goto done;
3554
2d47b459 3555 skb_reset_network_header(skb);
61b905da
TH
3556 hash = skb_get_hash(skb);
3557 if (!hash)
bfb564e7
KK
3558 goto done;
3559
fec5e652
TH
3560 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3561 if (flow_table && sock_flow_table) {
fec5e652 3562 struct rps_dev_flow *rflow;
567e4b79
ED
3563 u32 next_cpu;
3564 u32 ident;
3565
3566 /* First check into global flow table if there is a match */
3567 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3568 if ((ident ^ hash) & ~rps_cpu_mask)
3569 goto try_rps;
fec5e652 3570
567e4b79
ED
3571 next_cpu = ident & rps_cpu_mask;
3572
3573 /* OK, now we know there is a match,
3574 * we can look at the local (per receive queue) flow table
3575 */
61b905da 3576 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3577 tcpu = rflow->cpu;
3578
fec5e652
TH
3579 /*
3580 * If the desired CPU (where last recvmsg was done) is
3581 * different from current CPU (one in the rx-queue flow
3582 * table entry), switch if one of the following holds:
a31196b0 3583 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3584 * - Current CPU is offline.
3585 * - The current CPU's queue tail has advanced beyond the
3586 * last packet that was enqueued using this table entry.
3587 * This guarantees that all previous packets for the flow
3588 * have been dequeued, thus preserving in order delivery.
3589 */
3590 if (unlikely(tcpu != next_cpu) &&
a31196b0 3591 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3592 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3593 rflow->last_qtail)) >= 0)) {
3594 tcpu = next_cpu;
c445477d 3595 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3596 }
c445477d 3597
a31196b0 3598 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3599 *rflowp = rflow;
3600 cpu = tcpu;
3601 goto done;
3602 }
3603 }
3604
567e4b79
ED
3605try_rps:
3606
0a9627f2 3607 if (map) {
8fc54f68 3608 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3609 if (cpu_online(tcpu)) {
3610 cpu = tcpu;
3611 goto done;
3612 }
3613 }
3614
3615done:
0a9627f2
TH
3616 return cpu;
3617}
3618
c445477d
BH
3619#ifdef CONFIG_RFS_ACCEL
3620
3621/**
3622 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3623 * @dev: Device on which the filter was set
3624 * @rxq_index: RX queue index
3625 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3626 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3627 *
3628 * Drivers that implement ndo_rx_flow_steer() should periodically call
3629 * this function for each installed filter and remove the filters for
3630 * which it returns %true.
3631 */
3632bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3633 u32 flow_id, u16 filter_id)
3634{
3635 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3636 struct rps_dev_flow_table *flow_table;
3637 struct rps_dev_flow *rflow;
3638 bool expire = true;
a31196b0 3639 unsigned int cpu;
c445477d
BH
3640
3641 rcu_read_lock();
3642 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3643 if (flow_table && flow_id <= flow_table->mask) {
3644 rflow = &flow_table->flows[flow_id];
3645 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3646 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3647 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3648 rflow->last_qtail) <
3649 (int)(10 * flow_table->mask)))
3650 expire = false;
3651 }
3652 rcu_read_unlock();
3653 return expire;
3654}
3655EXPORT_SYMBOL(rps_may_expire_flow);
3656
3657#endif /* CONFIG_RFS_ACCEL */
3658
0a9627f2 3659/* Called from hardirq (IPI) context */
e36fa2f7 3660static void rps_trigger_softirq(void *data)
0a9627f2 3661{
e36fa2f7
ED
3662 struct softnet_data *sd = data;
3663
eecfd7c4 3664 ____napi_schedule(sd, &sd->backlog);
dee42870 3665 sd->received_rps++;
0a9627f2 3666}
e36fa2f7 3667
fec5e652 3668#endif /* CONFIG_RPS */
0a9627f2 3669
e36fa2f7
ED
3670/*
3671 * Check if this softnet_data structure is another cpu one
3672 * If yes, queue it to our IPI list and return 1
3673 * If no, return 0
3674 */
3675static int rps_ipi_queued(struct softnet_data *sd)
3676{
3677#ifdef CONFIG_RPS
903ceff7 3678 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3679
3680 if (sd != mysd) {
3681 sd->rps_ipi_next = mysd->rps_ipi_list;
3682 mysd->rps_ipi_list = sd;
3683
3684 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3685 return 1;
3686 }
3687#endif /* CONFIG_RPS */
3688 return 0;
3689}
3690
99bbc707
WB
3691#ifdef CONFIG_NET_FLOW_LIMIT
3692int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3693#endif
3694
3695static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3696{
3697#ifdef CONFIG_NET_FLOW_LIMIT
3698 struct sd_flow_limit *fl;
3699 struct softnet_data *sd;
3700 unsigned int old_flow, new_flow;
3701
3702 if (qlen < (netdev_max_backlog >> 1))
3703 return false;
3704
903ceff7 3705 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3706
3707 rcu_read_lock();
3708 fl = rcu_dereference(sd->flow_limit);
3709 if (fl) {
3958afa1 3710 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3711 old_flow = fl->history[fl->history_head];
3712 fl->history[fl->history_head] = new_flow;
3713
3714 fl->history_head++;
3715 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3716
3717 if (likely(fl->buckets[old_flow]))
3718 fl->buckets[old_flow]--;
3719
3720 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3721 fl->count++;
3722 rcu_read_unlock();
3723 return true;
3724 }
3725 }
3726 rcu_read_unlock();
3727#endif
3728 return false;
3729}
3730
0a9627f2
TH
3731/*
3732 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3733 * queue (may be a remote CPU queue).
3734 */
fec5e652
TH
3735static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3736 unsigned int *qtail)
0a9627f2 3737{
e36fa2f7 3738 struct softnet_data *sd;
0a9627f2 3739 unsigned long flags;
99bbc707 3740 unsigned int qlen;
0a9627f2 3741
e36fa2f7 3742 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3743
3744 local_irq_save(flags);
0a9627f2 3745
e36fa2f7 3746 rps_lock(sd);
e9e4dd32
JA
3747 if (!netif_running(skb->dev))
3748 goto drop;
99bbc707
WB
3749 qlen = skb_queue_len(&sd->input_pkt_queue);
3750 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3751 if (qlen) {
0a9627f2 3752enqueue:
e36fa2f7 3753 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3754 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3755 rps_unlock(sd);
152102c7 3756 local_irq_restore(flags);
0a9627f2
TH
3757 return NET_RX_SUCCESS;
3758 }
3759
ebda37c2
ED
3760 /* Schedule NAPI for backlog device
3761 * We can use non atomic operation since we own the queue lock
3762 */
3763 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3764 if (!rps_ipi_queued(sd))
eecfd7c4 3765 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3766 }
3767 goto enqueue;
3768 }
3769
e9e4dd32 3770drop:
dee42870 3771 sd->dropped++;
e36fa2f7 3772 rps_unlock(sd);
0a9627f2 3773
0a9627f2
TH
3774 local_irq_restore(flags);
3775
caf586e5 3776 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3777 kfree_skb(skb);
3778 return NET_RX_DROP;
3779}
1da177e4 3780
ae78dbfa 3781static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3782{
b0e28f1e 3783 int ret;
1da177e4 3784
588f0330 3785 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3786
cf66ba58 3787 trace_netif_rx(skb);
df334545 3788#ifdef CONFIG_RPS
c5905afb 3789 if (static_key_false(&rps_needed)) {
fec5e652 3790 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3791 int cpu;
3792
cece1945 3793 preempt_disable();
b0e28f1e 3794 rcu_read_lock();
fec5e652
TH
3795
3796 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3797 if (cpu < 0)
3798 cpu = smp_processor_id();
fec5e652
TH
3799
3800 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3801
b0e28f1e 3802 rcu_read_unlock();
cece1945 3803 preempt_enable();
adc9300e
ED
3804 } else
3805#endif
fec5e652
TH
3806 {
3807 unsigned int qtail;
3808 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3809 put_cpu();
3810 }
b0e28f1e 3811 return ret;
1da177e4 3812}
ae78dbfa
BH
3813
3814/**
3815 * netif_rx - post buffer to the network code
3816 * @skb: buffer to post
3817 *
3818 * This function receives a packet from a device driver and queues it for
3819 * the upper (protocol) levels to process. It always succeeds. The buffer
3820 * may be dropped during processing for congestion control or by the
3821 * protocol layers.
3822 *
3823 * return values:
3824 * NET_RX_SUCCESS (no congestion)
3825 * NET_RX_DROP (packet was dropped)
3826 *
3827 */
3828
3829int netif_rx(struct sk_buff *skb)
3830{
3831 trace_netif_rx_entry(skb);
3832
3833 return netif_rx_internal(skb);
3834}
d1b19dff 3835EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3836
3837int netif_rx_ni(struct sk_buff *skb)
3838{
3839 int err;
3840
ae78dbfa
BH
3841 trace_netif_rx_ni_entry(skb);
3842
1da177e4 3843 preempt_disable();
ae78dbfa 3844 err = netif_rx_internal(skb);
1da177e4
LT
3845 if (local_softirq_pending())
3846 do_softirq();
3847 preempt_enable();
3848
3849 return err;
3850}
1da177e4
LT
3851EXPORT_SYMBOL(netif_rx_ni);
3852
1da177e4
LT
3853static void net_tx_action(struct softirq_action *h)
3854{
903ceff7 3855 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3856
3857 if (sd->completion_queue) {
3858 struct sk_buff *clist;
3859
3860 local_irq_disable();
3861 clist = sd->completion_queue;
3862 sd->completion_queue = NULL;
3863 local_irq_enable();
3864
3865 while (clist) {
3866 struct sk_buff *skb = clist;
3867 clist = clist->next;
3868
547b792c 3869 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3870 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3871 trace_consume_skb(skb);
3872 else
3873 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3874
3875 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3876 __kfree_skb(skb);
3877 else
3878 __kfree_skb_defer(skb);
1da177e4 3879 }
15fad714
JDB
3880
3881 __kfree_skb_flush();
1da177e4
LT
3882 }
3883
3884 if (sd->output_queue) {
37437bb2 3885 struct Qdisc *head;
1da177e4
LT
3886
3887 local_irq_disable();
3888 head = sd->output_queue;
3889 sd->output_queue = NULL;
a9cbd588 3890 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3891 local_irq_enable();
3892
3893 while (head) {
37437bb2
DM
3894 struct Qdisc *q = head;
3895 spinlock_t *root_lock;
3896
1da177e4
LT
3897 head = head->next_sched;
3898
5fb66229 3899 root_lock = qdisc_lock(q);
37437bb2 3900 if (spin_trylock(root_lock)) {
4e857c58 3901 smp_mb__before_atomic();
def82a1d
JP
3902 clear_bit(__QDISC_STATE_SCHED,
3903 &q->state);
37437bb2
DM
3904 qdisc_run(q);
3905 spin_unlock(root_lock);
1da177e4 3906 } else {
195648bb 3907 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3908 &q->state)) {
195648bb 3909 __netif_reschedule(q);
e8a83e10 3910 } else {
4e857c58 3911 smp_mb__before_atomic();
e8a83e10
JP
3912 clear_bit(__QDISC_STATE_SCHED,
3913 &q->state);
3914 }
1da177e4
LT
3915 }
3916 }
3917 }
3918}
3919
ab95bfe0
JP
3920#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3921 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3922/* This hook is defined here for ATM LANE */
3923int (*br_fdb_test_addr_hook)(struct net_device *dev,
3924 unsigned char *addr) __read_mostly;
4fb019a0 3925EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3926#endif
1da177e4 3927
1f211a1b
DB
3928static inline struct sk_buff *
3929sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3930 struct net_device *orig_dev)
f697c3e8 3931{
e7582bab 3932#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3933 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3934 struct tcf_result cl_res;
24824a09 3935
c9e99fd0
DB
3936 /* If there's at least one ingress present somewhere (so
3937 * we get here via enabled static key), remaining devices
3938 * that are not configured with an ingress qdisc will bail
d2788d34 3939 * out here.
c9e99fd0 3940 */
d2788d34 3941 if (!cl)
4577139b 3942 return skb;
f697c3e8
HX
3943 if (*pt_prev) {
3944 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3945 *pt_prev = NULL;
1da177e4
LT
3946 }
3947
3365495c 3948 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3949 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3950 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3951
3b3ae880 3952 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3953 case TC_ACT_OK:
3954 case TC_ACT_RECLASSIFY:
3955 skb->tc_index = TC_H_MIN(cl_res.classid);
3956 break;
3957 case TC_ACT_SHOT:
24ea591d 3958 qdisc_qstats_cpu_drop(cl->q);
d2788d34
DB
3959 case TC_ACT_STOLEN:
3960 case TC_ACT_QUEUED:
3961 kfree_skb(skb);
3962 return NULL;
27b29f63
AS
3963 case TC_ACT_REDIRECT:
3964 /* skb_mac_header check was done by cls/act_bpf, so
3965 * we can safely push the L2 header back before
3966 * redirecting to another netdev
3967 */
3968 __skb_push(skb, skb->mac_len);
3969 skb_do_redirect(skb);
3970 return NULL;
d2788d34
DB
3971 default:
3972 break;
f697c3e8 3973 }
e7582bab 3974#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3975 return skb;
3976}
1da177e4 3977
ab95bfe0
JP
3978/**
3979 * netdev_rx_handler_register - register receive handler
3980 * @dev: device to register a handler for
3981 * @rx_handler: receive handler to register
93e2c32b 3982 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3983 *
e227867f 3984 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3985 * called from __netif_receive_skb. A negative errno code is returned
3986 * on a failure.
3987 *
3988 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3989 *
3990 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3991 */
3992int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3993 rx_handler_func_t *rx_handler,
3994 void *rx_handler_data)
ab95bfe0
JP
3995{
3996 ASSERT_RTNL();
3997
3998 if (dev->rx_handler)
3999 return -EBUSY;
4000
00cfec37 4001 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4002 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4003 rcu_assign_pointer(dev->rx_handler, rx_handler);
4004
4005 return 0;
4006}
4007EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4008
4009/**
4010 * netdev_rx_handler_unregister - unregister receive handler
4011 * @dev: device to unregister a handler from
4012 *
166ec369 4013 * Unregister a receive handler from a device.
ab95bfe0
JP
4014 *
4015 * The caller must hold the rtnl_mutex.
4016 */
4017void netdev_rx_handler_unregister(struct net_device *dev)
4018{
4019
4020 ASSERT_RTNL();
a9b3cd7f 4021 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4022 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4023 * section has a guarantee to see a non NULL rx_handler_data
4024 * as well.
4025 */
4026 synchronize_net();
a9b3cd7f 4027 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4028}
4029EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4030
b4b9e355
MG
4031/*
4032 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4033 * the special handling of PFMEMALLOC skbs.
4034 */
4035static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4036{
4037 switch (skb->protocol) {
2b8837ae
JP
4038 case htons(ETH_P_ARP):
4039 case htons(ETH_P_IP):
4040 case htons(ETH_P_IPV6):
4041 case htons(ETH_P_8021Q):
4042 case htons(ETH_P_8021AD):
b4b9e355
MG
4043 return true;
4044 default:
4045 return false;
4046 }
4047}
4048
e687ad60
PN
4049static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4050 int *ret, struct net_device *orig_dev)
4051{
e7582bab 4052#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
4053 if (nf_hook_ingress_active(skb)) {
4054 if (*pt_prev) {
4055 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4056 *pt_prev = NULL;
4057 }
4058
4059 return nf_hook_ingress(skb);
4060 }
e7582bab 4061#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4062 return 0;
4063}
e687ad60 4064
9754e293 4065static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4066{
4067 struct packet_type *ptype, *pt_prev;
ab95bfe0 4068 rx_handler_func_t *rx_handler;
f2ccd8fa 4069 struct net_device *orig_dev;
8a4eb573 4070 bool deliver_exact = false;
1da177e4 4071 int ret = NET_RX_DROP;
252e3346 4072 __be16 type;
1da177e4 4073
588f0330 4074 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4075
cf66ba58 4076 trace_netif_receive_skb(skb);
9b22ea56 4077
cc9bd5ce 4078 orig_dev = skb->dev;
8f903c70 4079
c1d2bbe1 4080 skb_reset_network_header(skb);
fda55eca
ED
4081 if (!skb_transport_header_was_set(skb))
4082 skb_reset_transport_header(skb);
0b5c9db1 4083 skb_reset_mac_len(skb);
1da177e4
LT
4084
4085 pt_prev = NULL;
4086
63d8ea7f 4087another_round:
b6858177 4088 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4089
4090 __this_cpu_inc(softnet_data.processed);
4091
8ad227ff
PM
4092 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4093 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4094 skb = skb_vlan_untag(skb);
bcc6d479 4095 if (unlikely(!skb))
2c17d27c 4096 goto out;
bcc6d479
JP
4097 }
4098
1da177e4
LT
4099#ifdef CONFIG_NET_CLS_ACT
4100 if (skb->tc_verd & TC_NCLS) {
4101 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4102 goto ncls;
4103 }
4104#endif
4105
9754e293 4106 if (pfmemalloc)
b4b9e355
MG
4107 goto skip_taps;
4108
1da177e4 4109 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4110 if (pt_prev)
4111 ret = deliver_skb(skb, pt_prev, orig_dev);
4112 pt_prev = ptype;
4113 }
4114
4115 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4116 if (pt_prev)
4117 ret = deliver_skb(skb, pt_prev, orig_dev);
4118 pt_prev = ptype;
1da177e4
LT
4119 }
4120
b4b9e355 4121skip_taps:
1cf51900 4122#ifdef CONFIG_NET_INGRESS
4577139b 4123 if (static_key_false(&ingress_needed)) {
1f211a1b 4124 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4125 if (!skb)
2c17d27c 4126 goto out;
e687ad60
PN
4127
4128 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4129 goto out;
4577139b 4130 }
1cf51900
PN
4131#endif
4132#ifdef CONFIG_NET_CLS_ACT
4577139b 4133 skb->tc_verd = 0;
1da177e4
LT
4134ncls:
4135#endif
9754e293 4136 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4137 goto drop;
4138
df8a39de 4139 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4140 if (pt_prev) {
4141 ret = deliver_skb(skb, pt_prev, orig_dev);
4142 pt_prev = NULL;
4143 }
48cc32d3 4144 if (vlan_do_receive(&skb))
2425717b
JF
4145 goto another_round;
4146 else if (unlikely(!skb))
2c17d27c 4147 goto out;
2425717b
JF
4148 }
4149
48cc32d3 4150 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4151 if (rx_handler) {
4152 if (pt_prev) {
4153 ret = deliver_skb(skb, pt_prev, orig_dev);
4154 pt_prev = NULL;
4155 }
8a4eb573
JP
4156 switch (rx_handler(&skb)) {
4157 case RX_HANDLER_CONSUMED:
3bc1b1ad 4158 ret = NET_RX_SUCCESS;
2c17d27c 4159 goto out;
8a4eb573 4160 case RX_HANDLER_ANOTHER:
63d8ea7f 4161 goto another_round;
8a4eb573
JP
4162 case RX_HANDLER_EXACT:
4163 deliver_exact = true;
4164 case RX_HANDLER_PASS:
4165 break;
4166 default:
4167 BUG();
4168 }
ab95bfe0 4169 }
1da177e4 4170
df8a39de
JP
4171 if (unlikely(skb_vlan_tag_present(skb))) {
4172 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4173 skb->pkt_type = PACKET_OTHERHOST;
4174 /* Note: we might in the future use prio bits
4175 * and set skb->priority like in vlan_do_receive()
4176 * For the time being, just ignore Priority Code Point
4177 */
4178 skb->vlan_tci = 0;
4179 }
48cc32d3 4180
7866a621
SN
4181 type = skb->protocol;
4182
63d8ea7f 4183 /* deliver only exact match when indicated */
7866a621
SN
4184 if (likely(!deliver_exact)) {
4185 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4186 &ptype_base[ntohs(type) &
4187 PTYPE_HASH_MASK]);
4188 }
1f3c8804 4189
7866a621
SN
4190 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4191 &orig_dev->ptype_specific);
4192
4193 if (unlikely(skb->dev != orig_dev)) {
4194 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4195 &skb->dev->ptype_specific);
1da177e4
LT
4196 }
4197
4198 if (pt_prev) {
1080e512 4199 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4200 goto drop;
1080e512
MT
4201 else
4202 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4203 } else {
b4b9e355 4204drop:
6e7333d3
JW
4205 if (!deliver_exact)
4206 atomic_long_inc(&skb->dev->rx_dropped);
4207 else
4208 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4209 kfree_skb(skb);
4210 /* Jamal, now you will not able to escape explaining
4211 * me how you were going to use this. :-)
4212 */
4213 ret = NET_RX_DROP;
4214 }
4215
2c17d27c 4216out:
9754e293
DM
4217 return ret;
4218}
4219
4220static int __netif_receive_skb(struct sk_buff *skb)
4221{
4222 int ret;
4223
4224 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4225 unsigned long pflags = current->flags;
4226
4227 /*
4228 * PFMEMALLOC skbs are special, they should
4229 * - be delivered to SOCK_MEMALLOC sockets only
4230 * - stay away from userspace
4231 * - have bounded memory usage
4232 *
4233 * Use PF_MEMALLOC as this saves us from propagating the allocation
4234 * context down to all allocation sites.
4235 */
4236 current->flags |= PF_MEMALLOC;
4237 ret = __netif_receive_skb_core(skb, true);
4238 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4239 } else
4240 ret = __netif_receive_skb_core(skb, false);
4241
1da177e4
LT
4242 return ret;
4243}
0a9627f2 4244
ae78dbfa 4245static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4246{
2c17d27c
JA
4247 int ret;
4248
588f0330 4249 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4250
c1f19b51
RC
4251 if (skb_defer_rx_timestamp(skb))
4252 return NET_RX_SUCCESS;
4253
2c17d27c
JA
4254 rcu_read_lock();
4255
df334545 4256#ifdef CONFIG_RPS
c5905afb 4257 if (static_key_false(&rps_needed)) {
3b098e2d 4258 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4259 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4260
3b098e2d
ED
4261 if (cpu >= 0) {
4262 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4263 rcu_read_unlock();
adc9300e 4264 return ret;
3b098e2d 4265 }
fec5e652 4266 }
1e94d72f 4267#endif
2c17d27c
JA
4268 ret = __netif_receive_skb(skb);
4269 rcu_read_unlock();
4270 return ret;
0a9627f2 4271}
ae78dbfa
BH
4272
4273/**
4274 * netif_receive_skb - process receive buffer from network
4275 * @skb: buffer to process
4276 *
4277 * netif_receive_skb() is the main receive data processing function.
4278 * It always succeeds. The buffer may be dropped during processing
4279 * for congestion control or by the protocol layers.
4280 *
4281 * This function may only be called from softirq context and interrupts
4282 * should be enabled.
4283 *
4284 * Return values (usually ignored):
4285 * NET_RX_SUCCESS: no congestion
4286 * NET_RX_DROP: packet was dropped
4287 */
04eb4489 4288int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4289{
4290 trace_netif_receive_skb_entry(skb);
4291
4292 return netif_receive_skb_internal(skb);
4293}
04eb4489 4294EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4295
88751275
ED
4296/* Network device is going away, flush any packets still pending
4297 * Called with irqs disabled.
4298 */
152102c7 4299static void flush_backlog(void *arg)
6e583ce5 4300{
152102c7 4301 struct net_device *dev = arg;
903ceff7 4302 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
4303 struct sk_buff *skb, *tmp;
4304
e36fa2f7 4305 rps_lock(sd);
6e7676c1 4306 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 4307 if (skb->dev == dev) {
e36fa2f7 4308 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4309 kfree_skb(skb);
76cc8b13 4310 input_queue_head_incr(sd);
6e583ce5 4311 }
6e7676c1 4312 }
e36fa2f7 4313 rps_unlock(sd);
6e7676c1
CG
4314
4315 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4316 if (skb->dev == dev) {
4317 __skb_unlink(skb, &sd->process_queue);
4318 kfree_skb(skb);
76cc8b13 4319 input_queue_head_incr(sd);
6e7676c1
CG
4320 }
4321 }
6e583ce5
SH
4322}
4323
d565b0a1
HX
4324static int napi_gro_complete(struct sk_buff *skb)
4325{
22061d80 4326 struct packet_offload *ptype;
d565b0a1 4327 __be16 type = skb->protocol;
22061d80 4328 struct list_head *head = &offload_base;
d565b0a1
HX
4329 int err = -ENOENT;
4330
c3c7c254
ED
4331 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4332
fc59f9a3
HX
4333 if (NAPI_GRO_CB(skb)->count == 1) {
4334 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4335 goto out;
fc59f9a3 4336 }
d565b0a1
HX
4337
4338 rcu_read_lock();
4339 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4340 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4341 continue;
4342
299603e8 4343 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4344 break;
4345 }
4346 rcu_read_unlock();
4347
4348 if (err) {
4349 WARN_ON(&ptype->list == head);
4350 kfree_skb(skb);
4351 return NET_RX_SUCCESS;
4352 }
4353
4354out:
ae78dbfa 4355 return netif_receive_skb_internal(skb);
d565b0a1
HX
4356}
4357
2e71a6f8
ED
4358/* napi->gro_list contains packets ordered by age.
4359 * youngest packets at the head of it.
4360 * Complete skbs in reverse order to reduce latencies.
4361 */
4362void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4363{
2e71a6f8 4364 struct sk_buff *skb, *prev = NULL;
d565b0a1 4365
2e71a6f8
ED
4366 /* scan list and build reverse chain */
4367 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4368 skb->prev = prev;
4369 prev = skb;
4370 }
4371
4372 for (skb = prev; skb; skb = prev) {
d565b0a1 4373 skb->next = NULL;
2e71a6f8
ED
4374
4375 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4376 return;
4377
4378 prev = skb->prev;
d565b0a1 4379 napi_gro_complete(skb);
2e71a6f8 4380 napi->gro_count--;
d565b0a1
HX
4381 }
4382
4383 napi->gro_list = NULL;
4384}
86cac58b 4385EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4386
89c5fa33
ED
4387static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4388{
4389 struct sk_buff *p;
4390 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4391 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4392
4393 for (p = napi->gro_list; p; p = p->next) {
4394 unsigned long diffs;
4395
0b4cec8c
TH
4396 NAPI_GRO_CB(p)->flush = 0;
4397
4398 if (hash != skb_get_hash_raw(p)) {
4399 NAPI_GRO_CB(p)->same_flow = 0;
4400 continue;
4401 }
4402
89c5fa33
ED
4403 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4404 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4405 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4406 if (maclen == ETH_HLEN)
4407 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4408 skb_mac_header(skb));
89c5fa33
ED
4409 else if (!diffs)
4410 diffs = memcmp(skb_mac_header(p),
a50e233c 4411 skb_mac_header(skb),
89c5fa33
ED
4412 maclen);
4413 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4414 }
4415}
4416
299603e8
JC
4417static void skb_gro_reset_offset(struct sk_buff *skb)
4418{
4419 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4420 const skb_frag_t *frag0 = &pinfo->frags[0];
4421
4422 NAPI_GRO_CB(skb)->data_offset = 0;
4423 NAPI_GRO_CB(skb)->frag0 = NULL;
4424 NAPI_GRO_CB(skb)->frag0_len = 0;
4425
4426 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4427 pinfo->nr_frags &&
4428 !PageHighMem(skb_frag_page(frag0))) {
4429 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4430 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4431 }
4432}
4433
a50e233c
ED
4434static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4435{
4436 struct skb_shared_info *pinfo = skb_shinfo(skb);
4437
4438 BUG_ON(skb->end - skb->tail < grow);
4439
4440 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4441
4442 skb->data_len -= grow;
4443 skb->tail += grow;
4444
4445 pinfo->frags[0].page_offset += grow;
4446 skb_frag_size_sub(&pinfo->frags[0], grow);
4447
4448 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4449 skb_frag_unref(skb, 0);
4450 memmove(pinfo->frags, pinfo->frags + 1,
4451 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4452 }
4453}
4454
bb728820 4455static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4456{
4457 struct sk_buff **pp = NULL;
22061d80 4458 struct packet_offload *ptype;
d565b0a1 4459 __be16 type = skb->protocol;
22061d80 4460 struct list_head *head = &offload_base;
0da2afd5 4461 int same_flow;
5b252f0c 4462 enum gro_result ret;
a50e233c 4463 int grow;
d565b0a1 4464
9c62a68d 4465 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4466 goto normal;
4467
5a212329 4468 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4469 goto normal;
4470
89c5fa33
ED
4471 gro_list_prepare(napi, skb);
4472
d565b0a1
HX
4473 rcu_read_lock();
4474 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4475 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4476 continue;
4477
86911732 4478 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4479 skb_reset_mac_len(skb);
d565b0a1
HX
4480 NAPI_GRO_CB(skb)->same_flow = 0;
4481 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4482 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4483 NAPI_GRO_CB(skb)->encap_mark = 0;
a0ca153f 4484 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4485 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4486 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4487
662880f4
TH
4488 /* Setup for GRO checksum validation */
4489 switch (skb->ip_summed) {
4490 case CHECKSUM_COMPLETE:
4491 NAPI_GRO_CB(skb)->csum = skb->csum;
4492 NAPI_GRO_CB(skb)->csum_valid = 1;
4493 NAPI_GRO_CB(skb)->csum_cnt = 0;
4494 break;
4495 case CHECKSUM_UNNECESSARY:
4496 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4497 NAPI_GRO_CB(skb)->csum_valid = 0;
4498 break;
4499 default:
4500 NAPI_GRO_CB(skb)->csum_cnt = 0;
4501 NAPI_GRO_CB(skb)->csum_valid = 0;
4502 }
d565b0a1 4503
f191a1d1 4504 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4505 break;
4506 }
4507 rcu_read_unlock();
4508
4509 if (&ptype->list == head)
4510 goto normal;
4511
0da2afd5 4512 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4513 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4514
d565b0a1
HX
4515 if (pp) {
4516 struct sk_buff *nskb = *pp;
4517
4518 *pp = nskb->next;
4519 nskb->next = NULL;
4520 napi_gro_complete(nskb);
4ae5544f 4521 napi->gro_count--;
d565b0a1
HX
4522 }
4523
0da2afd5 4524 if (same_flow)
d565b0a1
HX
4525 goto ok;
4526
600adc18 4527 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4528 goto normal;
d565b0a1 4529
600adc18
ED
4530 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4531 struct sk_buff *nskb = napi->gro_list;
4532
4533 /* locate the end of the list to select the 'oldest' flow */
4534 while (nskb->next) {
4535 pp = &nskb->next;
4536 nskb = *pp;
4537 }
4538 *pp = NULL;
4539 nskb->next = NULL;
4540 napi_gro_complete(nskb);
4541 } else {
4542 napi->gro_count++;
4543 }
d565b0a1 4544 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4545 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4546 NAPI_GRO_CB(skb)->last = skb;
86911732 4547 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4548 skb->next = napi->gro_list;
4549 napi->gro_list = skb;
5d0d9be8 4550 ret = GRO_HELD;
d565b0a1 4551
ad0f9904 4552pull:
a50e233c
ED
4553 grow = skb_gro_offset(skb) - skb_headlen(skb);
4554 if (grow > 0)
4555 gro_pull_from_frag0(skb, grow);
d565b0a1 4556ok:
5d0d9be8 4557 return ret;
d565b0a1
HX
4558
4559normal:
ad0f9904
HX
4560 ret = GRO_NORMAL;
4561 goto pull;
5d38a079 4562}
96e93eab 4563
bf5a755f
JC
4564struct packet_offload *gro_find_receive_by_type(__be16 type)
4565{
4566 struct list_head *offload_head = &offload_base;
4567 struct packet_offload *ptype;
4568
4569 list_for_each_entry_rcu(ptype, offload_head, list) {
4570 if (ptype->type != type || !ptype->callbacks.gro_receive)
4571 continue;
4572 return ptype;
4573 }
4574 return NULL;
4575}
e27a2f83 4576EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4577
4578struct packet_offload *gro_find_complete_by_type(__be16 type)
4579{
4580 struct list_head *offload_head = &offload_base;
4581 struct packet_offload *ptype;
4582
4583 list_for_each_entry_rcu(ptype, offload_head, list) {
4584 if (ptype->type != type || !ptype->callbacks.gro_complete)
4585 continue;
4586 return ptype;
4587 }
4588 return NULL;
4589}
e27a2f83 4590EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4591
bb728820 4592static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4593{
5d0d9be8
HX
4594 switch (ret) {
4595 case GRO_NORMAL:
ae78dbfa 4596 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4597 ret = GRO_DROP;
4598 break;
5d38a079 4599
5d0d9be8 4600 case GRO_DROP:
5d38a079
HX
4601 kfree_skb(skb);
4602 break;
5b252f0c 4603
daa86548 4604 case GRO_MERGED_FREE:
ce87fc6c
JG
4605 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4606 skb_dst_drop(skb);
d7e8883c 4607 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4608 } else {
d7e8883c 4609 __kfree_skb(skb);
ce87fc6c 4610 }
daa86548
ED
4611 break;
4612
5b252f0c
BH
4613 case GRO_HELD:
4614 case GRO_MERGED:
4615 break;
5d38a079
HX
4616 }
4617
c7c4b3b6 4618 return ret;
5d0d9be8 4619}
5d0d9be8 4620
c7c4b3b6 4621gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4622{
93f93a44 4623 skb_mark_napi_id(skb, napi);
ae78dbfa 4624 trace_napi_gro_receive_entry(skb);
86911732 4625
a50e233c
ED
4626 skb_gro_reset_offset(skb);
4627
89c5fa33 4628 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4629}
4630EXPORT_SYMBOL(napi_gro_receive);
4631
d0c2b0d2 4632static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4633{
93a35f59
ED
4634 if (unlikely(skb->pfmemalloc)) {
4635 consume_skb(skb);
4636 return;
4637 }
96e93eab 4638 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4639 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4640 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4641 skb->vlan_tci = 0;
66c46d74 4642 skb->dev = napi->dev;
6d152e23 4643 skb->skb_iif = 0;
c3caf119
JC
4644 skb->encapsulation = 0;
4645 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4646 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4647
4648 napi->skb = skb;
4649}
96e93eab 4650
76620aaf 4651struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4652{
5d38a079 4653 struct sk_buff *skb = napi->skb;
5d38a079
HX
4654
4655 if (!skb) {
fd11a83d 4656 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4657 if (skb) {
4658 napi->skb = skb;
4659 skb_mark_napi_id(skb, napi);
4660 }
80595d59 4661 }
96e93eab
HX
4662 return skb;
4663}
76620aaf 4664EXPORT_SYMBOL(napi_get_frags);
96e93eab 4665
a50e233c
ED
4666static gro_result_t napi_frags_finish(struct napi_struct *napi,
4667 struct sk_buff *skb,
4668 gro_result_t ret)
96e93eab 4669{
5d0d9be8
HX
4670 switch (ret) {
4671 case GRO_NORMAL:
a50e233c
ED
4672 case GRO_HELD:
4673 __skb_push(skb, ETH_HLEN);
4674 skb->protocol = eth_type_trans(skb, skb->dev);
4675 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4676 ret = GRO_DROP;
86911732 4677 break;
5d38a079 4678
5d0d9be8 4679 case GRO_DROP:
5d0d9be8
HX
4680 case GRO_MERGED_FREE:
4681 napi_reuse_skb(napi, skb);
4682 break;
5b252f0c
BH
4683
4684 case GRO_MERGED:
4685 break;
5d0d9be8 4686 }
5d38a079 4687
c7c4b3b6 4688 return ret;
5d38a079 4689}
5d0d9be8 4690
a50e233c
ED
4691/* Upper GRO stack assumes network header starts at gro_offset=0
4692 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4693 * We copy ethernet header into skb->data to have a common layout.
4694 */
4adb9c4a 4695static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4696{
4697 struct sk_buff *skb = napi->skb;
a50e233c
ED
4698 const struct ethhdr *eth;
4699 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4700
4701 napi->skb = NULL;
4702
a50e233c
ED
4703 skb_reset_mac_header(skb);
4704 skb_gro_reset_offset(skb);
4705
4706 eth = skb_gro_header_fast(skb, 0);
4707 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4708 eth = skb_gro_header_slow(skb, hlen, 0);
4709 if (unlikely(!eth)) {
4da46ceb
AC
4710 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4711 __func__, napi->dev->name);
a50e233c
ED
4712 napi_reuse_skb(napi, skb);
4713 return NULL;
4714 }
4715 } else {
4716 gro_pull_from_frag0(skb, hlen);
4717 NAPI_GRO_CB(skb)->frag0 += hlen;
4718 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4719 }
a50e233c
ED
4720 __skb_pull(skb, hlen);
4721
4722 /*
4723 * This works because the only protocols we care about don't require
4724 * special handling.
4725 * We'll fix it up properly in napi_frags_finish()
4726 */
4727 skb->protocol = eth->h_proto;
76620aaf 4728
76620aaf
HX
4729 return skb;
4730}
76620aaf 4731
c7c4b3b6 4732gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4733{
76620aaf 4734 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4735
4736 if (!skb)
c7c4b3b6 4737 return GRO_DROP;
5d0d9be8 4738
ae78dbfa
BH
4739 trace_napi_gro_frags_entry(skb);
4740
89c5fa33 4741 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4742}
5d38a079
HX
4743EXPORT_SYMBOL(napi_gro_frags);
4744
573e8fca
TH
4745/* Compute the checksum from gro_offset and return the folded value
4746 * after adding in any pseudo checksum.
4747 */
4748__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4749{
4750 __wsum wsum;
4751 __sum16 sum;
4752
4753 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4754
4755 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4756 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4757 if (likely(!sum)) {
4758 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4759 !skb->csum_complete_sw)
4760 netdev_rx_csum_fault(skb->dev);
4761 }
4762
4763 NAPI_GRO_CB(skb)->csum = wsum;
4764 NAPI_GRO_CB(skb)->csum_valid = 1;
4765
4766 return sum;
4767}
4768EXPORT_SYMBOL(__skb_gro_checksum_complete);
4769
e326bed2 4770/*
855abcf0 4771 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4772 * Note: called with local irq disabled, but exits with local irq enabled.
4773 */
4774static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4775{
4776#ifdef CONFIG_RPS
4777 struct softnet_data *remsd = sd->rps_ipi_list;
4778
4779 if (remsd) {
4780 sd->rps_ipi_list = NULL;
4781
4782 local_irq_enable();
4783
4784 /* Send pending IPI's to kick RPS processing on remote cpus. */
4785 while (remsd) {
4786 struct softnet_data *next = remsd->rps_ipi_next;
4787
4788 if (cpu_online(remsd->cpu))
c46fff2a 4789 smp_call_function_single_async(remsd->cpu,
fce8ad15 4790 &remsd->csd);
e326bed2
ED
4791 remsd = next;
4792 }
4793 } else
4794#endif
4795 local_irq_enable();
4796}
4797
d75b1ade
ED
4798static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4799{
4800#ifdef CONFIG_RPS
4801 return sd->rps_ipi_list != NULL;
4802#else
4803 return false;
4804#endif
4805}
4806
bea3348e 4807static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4808{
4809 int work = 0;
eecfd7c4 4810 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4811
e326bed2
ED
4812 /* Check if we have pending ipi, its better to send them now,
4813 * not waiting net_rx_action() end.
4814 */
d75b1ade 4815 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4816 local_irq_disable();
4817 net_rps_action_and_irq_enable(sd);
4818 }
d75b1ade 4819
bea3348e 4820 napi->weight = weight_p;
6e7676c1 4821 local_irq_disable();
11ef7a89 4822 while (1) {
1da177e4 4823 struct sk_buff *skb;
6e7676c1
CG
4824
4825 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4826 rcu_read_lock();
6e7676c1
CG
4827 local_irq_enable();
4828 __netif_receive_skb(skb);
2c17d27c 4829 rcu_read_unlock();
6e7676c1 4830 local_irq_disable();
76cc8b13
TH
4831 input_queue_head_incr(sd);
4832 if (++work >= quota) {
4833 local_irq_enable();
4834 return work;
4835 }
6e7676c1 4836 }
1da177e4 4837
e36fa2f7 4838 rps_lock(sd);
11ef7a89 4839 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4840 /*
4841 * Inline a custom version of __napi_complete().
4842 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4843 * and NAPI_STATE_SCHED is the only possible flag set
4844 * on backlog.
4845 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4846 * and we dont need an smp_mb() memory barrier.
4847 */
eecfd7c4 4848 napi->state = 0;
11ef7a89 4849 rps_unlock(sd);
eecfd7c4 4850
11ef7a89 4851 break;
bea3348e 4852 }
11ef7a89
TH
4853
4854 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4855 &sd->process_queue);
e36fa2f7 4856 rps_unlock(sd);
6e7676c1
CG
4857 }
4858 local_irq_enable();
1da177e4 4859
bea3348e
SH
4860 return work;
4861}
1da177e4 4862
bea3348e
SH
4863/**
4864 * __napi_schedule - schedule for receive
c4ea43c5 4865 * @n: entry to schedule
bea3348e 4866 *
bc9ad166
ED
4867 * The entry's receive function will be scheduled to run.
4868 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4869 */
b5606c2d 4870void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4871{
4872 unsigned long flags;
1da177e4 4873
bea3348e 4874 local_irq_save(flags);
903ceff7 4875 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4876 local_irq_restore(flags);
1da177e4 4877}
bea3348e
SH
4878EXPORT_SYMBOL(__napi_schedule);
4879
bc9ad166
ED
4880/**
4881 * __napi_schedule_irqoff - schedule for receive
4882 * @n: entry to schedule
4883 *
4884 * Variant of __napi_schedule() assuming hard irqs are masked
4885 */
4886void __napi_schedule_irqoff(struct napi_struct *n)
4887{
4888 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4889}
4890EXPORT_SYMBOL(__napi_schedule_irqoff);
4891
d565b0a1
HX
4892void __napi_complete(struct napi_struct *n)
4893{
4894 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4895
d75b1ade 4896 list_del_init(&n->poll_list);
4e857c58 4897 smp_mb__before_atomic();
d565b0a1
HX
4898 clear_bit(NAPI_STATE_SCHED, &n->state);
4899}
4900EXPORT_SYMBOL(__napi_complete);
4901
3b47d303 4902void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4903{
4904 unsigned long flags;
4905
4906 /*
4907 * don't let napi dequeue from the cpu poll list
4908 * just in case its running on a different cpu
4909 */
4910 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4911 return;
4912
3b47d303
ED
4913 if (n->gro_list) {
4914 unsigned long timeout = 0;
d75b1ade 4915
3b47d303
ED
4916 if (work_done)
4917 timeout = n->dev->gro_flush_timeout;
4918
4919 if (timeout)
4920 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4921 HRTIMER_MODE_REL_PINNED);
4922 else
4923 napi_gro_flush(n, false);
4924 }
d75b1ade
ED
4925 if (likely(list_empty(&n->poll_list))) {
4926 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4927 } else {
4928 /* If n->poll_list is not empty, we need to mask irqs */
4929 local_irq_save(flags);
4930 __napi_complete(n);
4931 local_irq_restore(flags);
4932 }
d565b0a1 4933}
3b47d303 4934EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4935
af12fa6e 4936/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4937static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4938{
4939 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4940 struct napi_struct *napi;
4941
4942 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4943 if (napi->napi_id == napi_id)
4944 return napi;
4945
4946 return NULL;
4947}
02d62e86
ED
4948
4949#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4950#define BUSY_POLL_BUDGET 8
02d62e86
ED
4951bool sk_busy_loop(struct sock *sk, int nonblock)
4952{
4953 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4954 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4955 struct napi_struct *napi;
4956 int rc = false;
4957
2a028ecb 4958 rcu_read_lock();
02d62e86
ED
4959
4960 napi = napi_by_id(sk->sk_napi_id);
4961 if (!napi)
4962 goto out;
4963
ce6aea93
ED
4964 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4965 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4966
4967 do {
ce6aea93 4968 rc = 0;
2a028ecb 4969 local_bh_disable();
ce6aea93
ED
4970 if (busy_poll) {
4971 rc = busy_poll(napi);
4972 } else if (napi_schedule_prep(napi)) {
4973 void *have = netpoll_poll_lock(napi);
4974
4975 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4976 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4977 trace_napi_poll(napi);
4978 if (rc == BUSY_POLL_BUDGET) {
4979 napi_complete_done(napi, rc);
4980 napi_schedule(napi);
4981 }
4982 }
4983 netpoll_poll_unlock(have);
4984 }
2a028ecb 4985 if (rc > 0)
02a1d6e7
ED
4986 __NET_ADD_STATS(sock_net(sk),
4987 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 4988 local_bh_enable();
02d62e86
ED
4989
4990 if (rc == LL_FLUSH_FAILED)
4991 break; /* permanent failure */
4992
02d62e86 4993 cpu_relax();
02d62e86
ED
4994 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4995 !need_resched() && !busy_loop_timeout(end_time));
4996
4997 rc = !skb_queue_empty(&sk->sk_receive_queue);
4998out:
2a028ecb 4999 rcu_read_unlock();
02d62e86
ED
5000 return rc;
5001}
5002EXPORT_SYMBOL(sk_busy_loop);
5003
5004#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
5005
5006void napi_hash_add(struct napi_struct *napi)
5007{
d64b5e85
ED
5008 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5009 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5010 return;
af12fa6e 5011
52bd2d62 5012 spin_lock(&napi_hash_lock);
af12fa6e 5013
52bd2d62
ED
5014 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5015 do {
5016 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5017 napi_gen_id = NR_CPUS + 1;
5018 } while (napi_by_id(napi_gen_id));
5019 napi->napi_id = napi_gen_id;
af12fa6e 5020
52bd2d62
ED
5021 hlist_add_head_rcu(&napi->napi_hash_node,
5022 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5023
52bd2d62 5024 spin_unlock(&napi_hash_lock);
af12fa6e
ET
5025}
5026EXPORT_SYMBOL_GPL(napi_hash_add);
5027
5028/* Warning : caller is responsible to make sure rcu grace period
5029 * is respected before freeing memory containing @napi
5030 */
34cbe27e 5031bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5032{
34cbe27e
ED
5033 bool rcu_sync_needed = false;
5034
af12fa6e
ET
5035 spin_lock(&napi_hash_lock);
5036
34cbe27e
ED
5037 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5038 rcu_sync_needed = true;
af12fa6e 5039 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5040 }
af12fa6e 5041 spin_unlock(&napi_hash_lock);
34cbe27e 5042 return rcu_sync_needed;
af12fa6e
ET
5043}
5044EXPORT_SYMBOL_GPL(napi_hash_del);
5045
3b47d303
ED
5046static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5047{
5048 struct napi_struct *napi;
5049
5050 napi = container_of(timer, struct napi_struct, timer);
5051 if (napi->gro_list)
5052 napi_schedule(napi);
5053
5054 return HRTIMER_NORESTART;
5055}
5056
d565b0a1
HX
5057void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5058 int (*poll)(struct napi_struct *, int), int weight)
5059{
5060 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5061 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5062 napi->timer.function = napi_watchdog;
4ae5544f 5063 napi->gro_count = 0;
d565b0a1 5064 napi->gro_list = NULL;
5d38a079 5065 napi->skb = NULL;
d565b0a1 5066 napi->poll = poll;
82dc3c63
ED
5067 if (weight > NAPI_POLL_WEIGHT)
5068 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5069 weight, dev->name);
d565b0a1
HX
5070 napi->weight = weight;
5071 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5072 napi->dev = dev;
5d38a079 5073#ifdef CONFIG_NETPOLL
d565b0a1
HX
5074 spin_lock_init(&napi->poll_lock);
5075 napi->poll_owner = -1;
5076#endif
5077 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5078 napi_hash_add(napi);
d565b0a1
HX
5079}
5080EXPORT_SYMBOL(netif_napi_add);
5081
3b47d303
ED
5082void napi_disable(struct napi_struct *n)
5083{
5084 might_sleep();
5085 set_bit(NAPI_STATE_DISABLE, &n->state);
5086
5087 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5088 msleep(1);
2d8bff12
NH
5089 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5090 msleep(1);
3b47d303
ED
5091
5092 hrtimer_cancel(&n->timer);
5093
5094 clear_bit(NAPI_STATE_DISABLE, &n->state);
5095}
5096EXPORT_SYMBOL(napi_disable);
5097
93d05d4a 5098/* Must be called in process context */
d565b0a1
HX
5099void netif_napi_del(struct napi_struct *napi)
5100{
93d05d4a
ED
5101 might_sleep();
5102 if (napi_hash_del(napi))
5103 synchronize_net();
d7b06636 5104 list_del_init(&napi->dev_list);
76620aaf 5105 napi_free_frags(napi);
d565b0a1 5106
289dccbe 5107 kfree_skb_list(napi->gro_list);
d565b0a1 5108 napi->gro_list = NULL;
4ae5544f 5109 napi->gro_count = 0;
d565b0a1
HX
5110}
5111EXPORT_SYMBOL(netif_napi_del);
5112
726ce70e
HX
5113static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5114{
5115 void *have;
5116 int work, weight;
5117
5118 list_del_init(&n->poll_list);
5119
5120 have = netpoll_poll_lock(n);
5121
5122 weight = n->weight;
5123
5124 /* This NAPI_STATE_SCHED test is for avoiding a race
5125 * with netpoll's poll_napi(). Only the entity which
5126 * obtains the lock and sees NAPI_STATE_SCHED set will
5127 * actually make the ->poll() call. Therefore we avoid
5128 * accidentally calling ->poll() when NAPI is not scheduled.
5129 */
5130 work = 0;
5131 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5132 work = n->poll(n, weight);
5133 trace_napi_poll(n);
5134 }
5135
5136 WARN_ON_ONCE(work > weight);
5137
5138 if (likely(work < weight))
5139 goto out_unlock;
5140
5141 /* Drivers must not modify the NAPI state if they
5142 * consume the entire weight. In such cases this code
5143 * still "owns" the NAPI instance and therefore can
5144 * move the instance around on the list at-will.
5145 */
5146 if (unlikely(napi_disable_pending(n))) {
5147 napi_complete(n);
5148 goto out_unlock;
5149 }
5150
5151 if (n->gro_list) {
5152 /* flush too old packets
5153 * If HZ < 1000, flush all packets.
5154 */
5155 napi_gro_flush(n, HZ >= 1000);
5156 }
5157
001ce546
HX
5158 /* Some drivers may have called napi_schedule
5159 * prior to exhausting their budget.
5160 */
5161 if (unlikely(!list_empty(&n->poll_list))) {
5162 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5163 n->dev ? n->dev->name : "backlog");
5164 goto out_unlock;
5165 }
5166
726ce70e
HX
5167 list_add_tail(&n->poll_list, repoll);
5168
5169out_unlock:
5170 netpoll_poll_unlock(have);
5171
5172 return work;
5173}
5174
1da177e4
LT
5175static void net_rx_action(struct softirq_action *h)
5176{
903ceff7 5177 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5178 unsigned long time_limit = jiffies + 2;
51b0bded 5179 int budget = netdev_budget;
d75b1ade
ED
5180 LIST_HEAD(list);
5181 LIST_HEAD(repoll);
53fb95d3 5182
1da177e4 5183 local_irq_disable();
d75b1ade
ED
5184 list_splice_init(&sd->poll_list, &list);
5185 local_irq_enable();
1da177e4 5186
ceb8d5bf 5187 for (;;) {
bea3348e 5188 struct napi_struct *n;
1da177e4 5189
ceb8d5bf
HX
5190 if (list_empty(&list)) {
5191 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5192 return;
5193 break;
5194 }
5195
6bd373eb
HX
5196 n = list_first_entry(&list, struct napi_struct, poll_list);
5197 budget -= napi_poll(n, &repoll);
5198
d75b1ade 5199 /* If softirq window is exhausted then punt.
24f8b238
SH
5200 * Allow this to run for 2 jiffies since which will allow
5201 * an average latency of 1.5/HZ.
bea3348e 5202 */
ceb8d5bf
HX
5203 if (unlikely(budget <= 0 ||
5204 time_after_eq(jiffies, time_limit))) {
5205 sd->time_squeeze++;
5206 break;
5207 }
1da177e4 5208 }
d75b1ade 5209
795bb1c0 5210 __kfree_skb_flush();
d75b1ade
ED
5211 local_irq_disable();
5212
5213 list_splice_tail_init(&sd->poll_list, &list);
5214 list_splice_tail(&repoll, &list);
5215 list_splice(&list, &sd->poll_list);
5216 if (!list_empty(&sd->poll_list))
5217 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5218
e326bed2 5219 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5220}
5221
aa9d8560 5222struct netdev_adjacent {
9ff162a8 5223 struct net_device *dev;
5d261913
VF
5224
5225 /* upper master flag, there can only be one master device per list */
9ff162a8 5226 bool master;
5d261913 5227
5d261913
VF
5228 /* counter for the number of times this device was added to us */
5229 u16 ref_nr;
5230
402dae96
VF
5231 /* private field for the users */
5232 void *private;
5233
9ff162a8
JP
5234 struct list_head list;
5235 struct rcu_head rcu;
9ff162a8
JP
5236};
5237
6ea29da1 5238static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5239 struct list_head *adj_list)
9ff162a8 5240{
5d261913 5241 struct netdev_adjacent *adj;
5d261913 5242
2f268f12 5243 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5244 if (adj->dev == adj_dev)
5245 return adj;
9ff162a8
JP
5246 }
5247 return NULL;
5248}
5249
5250/**
5251 * netdev_has_upper_dev - Check if device is linked to an upper device
5252 * @dev: device
5253 * @upper_dev: upper device to check
5254 *
5255 * Find out if a device is linked to specified upper device and return true
5256 * in case it is. Note that this checks only immediate upper device,
5257 * not through a complete stack of devices. The caller must hold the RTNL lock.
5258 */
5259bool netdev_has_upper_dev(struct net_device *dev,
5260 struct net_device *upper_dev)
5261{
5262 ASSERT_RTNL();
5263
6ea29da1 5264 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
5265}
5266EXPORT_SYMBOL(netdev_has_upper_dev);
5267
5268/**
5269 * netdev_has_any_upper_dev - Check if device is linked to some device
5270 * @dev: device
5271 *
5272 * Find out if a device is linked to an upper device and return true in case
5273 * it is. The caller must hold the RTNL lock.
5274 */
1d143d9f 5275static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5276{
5277 ASSERT_RTNL();
5278
2f268f12 5279 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 5280}
9ff162a8
JP
5281
5282/**
5283 * netdev_master_upper_dev_get - Get master upper device
5284 * @dev: device
5285 *
5286 * Find a master upper device and return pointer to it or NULL in case
5287 * it's not there. The caller must hold the RTNL lock.
5288 */
5289struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5290{
aa9d8560 5291 struct netdev_adjacent *upper;
9ff162a8
JP
5292
5293 ASSERT_RTNL();
5294
2f268f12 5295 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5296 return NULL;
5297
2f268f12 5298 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5299 struct netdev_adjacent, list);
9ff162a8
JP
5300 if (likely(upper->master))
5301 return upper->dev;
5302 return NULL;
5303}
5304EXPORT_SYMBOL(netdev_master_upper_dev_get);
5305
b6ccba4c
VF
5306void *netdev_adjacent_get_private(struct list_head *adj_list)
5307{
5308 struct netdev_adjacent *adj;
5309
5310 adj = list_entry(adj_list, struct netdev_adjacent, list);
5311
5312 return adj->private;
5313}
5314EXPORT_SYMBOL(netdev_adjacent_get_private);
5315
44a40855
VY
5316/**
5317 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5318 * @dev: device
5319 * @iter: list_head ** of the current position
5320 *
5321 * Gets the next device from the dev's upper list, starting from iter
5322 * position. The caller must hold RCU read lock.
5323 */
5324struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5325 struct list_head **iter)
5326{
5327 struct netdev_adjacent *upper;
5328
5329 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5330
5331 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5332
5333 if (&upper->list == &dev->adj_list.upper)
5334 return NULL;
5335
5336 *iter = &upper->list;
5337
5338 return upper->dev;
5339}
5340EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5341
31088a11
VF
5342/**
5343 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5344 * @dev: device
5345 * @iter: list_head ** of the current position
5346 *
5347 * Gets the next device from the dev's upper list, starting from iter
5348 * position. The caller must hold RCU read lock.
5349 */
2f268f12
VF
5350struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5351 struct list_head **iter)
48311f46
VF
5352{
5353 struct netdev_adjacent *upper;
5354
85328240 5355 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5356
5357 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5358
2f268f12 5359 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5360 return NULL;
5361
5362 *iter = &upper->list;
5363
5364 return upper->dev;
5365}
2f268f12 5366EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5367
31088a11
VF
5368/**
5369 * netdev_lower_get_next_private - Get the next ->private from the
5370 * lower neighbour list
5371 * @dev: device
5372 * @iter: list_head ** of the current position
5373 *
5374 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5375 * list, starting from iter position. The caller must hold either hold the
5376 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5377 * list will remain unchanged.
31088a11
VF
5378 */
5379void *netdev_lower_get_next_private(struct net_device *dev,
5380 struct list_head **iter)
5381{
5382 struct netdev_adjacent *lower;
5383
5384 lower = list_entry(*iter, struct netdev_adjacent, list);
5385
5386 if (&lower->list == &dev->adj_list.lower)
5387 return NULL;
5388
6859e7df 5389 *iter = lower->list.next;
31088a11
VF
5390
5391 return lower->private;
5392}
5393EXPORT_SYMBOL(netdev_lower_get_next_private);
5394
5395/**
5396 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5397 * lower neighbour list, RCU
5398 * variant
5399 * @dev: device
5400 * @iter: list_head ** of the current position
5401 *
5402 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5403 * list, starting from iter position. The caller must hold RCU read lock.
5404 */
5405void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5406 struct list_head **iter)
5407{
5408 struct netdev_adjacent *lower;
5409
5410 WARN_ON_ONCE(!rcu_read_lock_held());
5411
5412 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5413
5414 if (&lower->list == &dev->adj_list.lower)
5415 return NULL;
5416
6859e7df 5417 *iter = &lower->list;
31088a11
VF
5418
5419 return lower->private;
5420}
5421EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5422
4085ebe8
VY
5423/**
5424 * netdev_lower_get_next - Get the next device from the lower neighbour
5425 * list
5426 * @dev: device
5427 * @iter: list_head ** of the current position
5428 *
5429 * Gets the next netdev_adjacent from the dev's lower neighbour
5430 * list, starting from iter position. The caller must hold RTNL lock or
5431 * its own locking that guarantees that the neighbour lower
b469139e 5432 * list will remain unchanged.
4085ebe8
VY
5433 */
5434void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5435{
5436 struct netdev_adjacent *lower;
5437
cfdd28be 5438 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5439
5440 if (&lower->list == &dev->adj_list.lower)
5441 return NULL;
5442
cfdd28be 5443 *iter = lower->list.next;
4085ebe8
VY
5444
5445 return lower->dev;
5446}
5447EXPORT_SYMBOL(netdev_lower_get_next);
5448
e001bfad 5449/**
5450 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5451 * lower neighbour list, RCU
5452 * variant
5453 * @dev: device
5454 *
5455 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5456 * list. The caller must hold RCU read lock.
5457 */
5458void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5459{
5460 struct netdev_adjacent *lower;
5461
5462 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5463 struct netdev_adjacent, list);
5464 if (lower)
5465 return lower->private;
5466 return NULL;
5467}
5468EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5469
9ff162a8
JP
5470/**
5471 * netdev_master_upper_dev_get_rcu - Get master upper device
5472 * @dev: device
5473 *
5474 * Find a master upper device and return pointer to it or NULL in case
5475 * it's not there. The caller must hold the RCU read lock.
5476 */
5477struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5478{
aa9d8560 5479 struct netdev_adjacent *upper;
9ff162a8 5480
2f268f12 5481 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5482 struct netdev_adjacent, list);
9ff162a8
JP
5483 if (upper && likely(upper->master))
5484 return upper->dev;
5485 return NULL;
5486}
5487EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5488
0a59f3a9 5489static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5490 struct net_device *adj_dev,
5491 struct list_head *dev_list)
5492{
5493 char linkname[IFNAMSIZ+7];
5494 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5495 "upper_%s" : "lower_%s", adj_dev->name);
5496 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5497 linkname);
5498}
0a59f3a9 5499static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5500 char *name,
5501 struct list_head *dev_list)
5502{
5503 char linkname[IFNAMSIZ+7];
5504 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5505 "upper_%s" : "lower_%s", name);
5506 sysfs_remove_link(&(dev->dev.kobj), linkname);
5507}
5508
7ce64c79
AF
5509static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5510 struct net_device *adj_dev,
5511 struct list_head *dev_list)
5512{
5513 return (dev_list == &dev->adj_list.upper ||
5514 dev_list == &dev->adj_list.lower) &&
5515 net_eq(dev_net(dev), dev_net(adj_dev));
5516}
3ee32707 5517
5d261913
VF
5518static int __netdev_adjacent_dev_insert(struct net_device *dev,
5519 struct net_device *adj_dev,
7863c054 5520 struct list_head *dev_list,
402dae96 5521 void *private, bool master)
5d261913
VF
5522{
5523 struct netdev_adjacent *adj;
842d67a7 5524 int ret;
5d261913 5525
6ea29da1 5526 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5527
5528 if (adj) {
5d261913
VF
5529 adj->ref_nr++;
5530 return 0;
5531 }
5532
5533 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5534 if (!adj)
5535 return -ENOMEM;
5536
5537 adj->dev = adj_dev;
5538 adj->master = master;
5d261913 5539 adj->ref_nr = 1;
402dae96 5540 adj->private = private;
5d261913 5541 dev_hold(adj_dev);
2f268f12
VF
5542
5543 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5544 adj_dev->name, dev->name, adj_dev->name);
5d261913 5545
7ce64c79 5546 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5547 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5548 if (ret)
5549 goto free_adj;
5550 }
5551
7863c054 5552 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5553 if (master) {
5554 ret = sysfs_create_link(&(dev->dev.kobj),
5555 &(adj_dev->dev.kobj), "master");
5556 if (ret)
5831d66e 5557 goto remove_symlinks;
842d67a7 5558
7863c054 5559 list_add_rcu(&adj->list, dev_list);
842d67a7 5560 } else {
7863c054 5561 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5562 }
5d261913
VF
5563
5564 return 0;
842d67a7 5565
5831d66e 5566remove_symlinks:
7ce64c79 5567 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5568 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5569free_adj:
5570 kfree(adj);
974daef7 5571 dev_put(adj_dev);
842d67a7
VF
5572
5573 return ret;
5d261913
VF
5574}
5575
1d143d9f 5576static void __netdev_adjacent_dev_remove(struct net_device *dev,
5577 struct net_device *adj_dev,
5578 struct list_head *dev_list)
5d261913
VF
5579{
5580 struct netdev_adjacent *adj;
5581
6ea29da1 5582 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5583
2f268f12
VF
5584 if (!adj) {
5585 pr_err("tried to remove device %s from %s\n",
5586 dev->name, adj_dev->name);
5d261913 5587 BUG();
2f268f12 5588 }
5d261913
VF
5589
5590 if (adj->ref_nr > 1) {
2f268f12
VF
5591 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5592 adj->ref_nr-1);
5d261913
VF
5593 adj->ref_nr--;
5594 return;
5595 }
5596
842d67a7
VF
5597 if (adj->master)
5598 sysfs_remove_link(&(dev->dev.kobj), "master");
5599
7ce64c79 5600 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5601 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5602
5d261913 5603 list_del_rcu(&adj->list);
2f268f12
VF
5604 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5605 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5606 dev_put(adj_dev);
5607 kfree_rcu(adj, rcu);
5608}
5609
1d143d9f 5610static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5611 struct net_device *upper_dev,
5612 struct list_head *up_list,
5613 struct list_head *down_list,
5614 void *private, bool master)
5d261913
VF
5615{
5616 int ret;
5617
402dae96
VF
5618 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5619 master);
5d261913
VF
5620 if (ret)
5621 return ret;
5622
402dae96
VF
5623 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5624 false);
5d261913 5625 if (ret) {
2f268f12 5626 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5627 return ret;
5628 }
5629
5630 return 0;
5631}
5632
1d143d9f 5633static int __netdev_adjacent_dev_link(struct net_device *dev,
5634 struct net_device *upper_dev)
5d261913 5635{
2f268f12
VF
5636 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5637 &dev->all_adj_list.upper,
5638 &upper_dev->all_adj_list.lower,
402dae96 5639 NULL, false);
5d261913
VF
5640}
5641
1d143d9f 5642static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5643 struct net_device *upper_dev,
5644 struct list_head *up_list,
5645 struct list_head *down_list)
5d261913 5646{
2f268f12
VF
5647 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5648 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5649}
5650
1d143d9f 5651static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5652 struct net_device *upper_dev)
5d261913 5653{
2f268f12
VF
5654 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5655 &dev->all_adj_list.upper,
5656 &upper_dev->all_adj_list.lower);
5657}
5658
1d143d9f 5659static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5660 struct net_device *upper_dev,
5661 void *private, bool master)
2f268f12
VF
5662{
5663 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5664
5665 if (ret)
5666 return ret;
5667
5668 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5669 &dev->adj_list.upper,
5670 &upper_dev->adj_list.lower,
402dae96 5671 private, master);
2f268f12
VF
5672 if (ret) {
5673 __netdev_adjacent_dev_unlink(dev, upper_dev);
5674 return ret;
5675 }
5676
5677 return 0;
5d261913
VF
5678}
5679
1d143d9f 5680static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5681 struct net_device *upper_dev)
2f268f12
VF
5682{
5683 __netdev_adjacent_dev_unlink(dev, upper_dev);
5684 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5685 &dev->adj_list.upper,
5686 &upper_dev->adj_list.lower);
5687}
5d261913 5688
9ff162a8 5689static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5690 struct net_device *upper_dev, bool master,
29bf24af 5691 void *upper_priv, void *upper_info)
9ff162a8 5692{
0e4ead9d 5693 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5694 struct netdev_adjacent *i, *j, *to_i, *to_j;
5695 int ret = 0;
9ff162a8
JP
5696
5697 ASSERT_RTNL();
5698
5699 if (dev == upper_dev)
5700 return -EBUSY;
5701
5702 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5703 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5704 return -EBUSY;
5705
6ea29da1 5706 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5707 return -EEXIST;
5708
5709 if (master && netdev_master_upper_dev_get(dev))
5710 return -EBUSY;
5711
0e4ead9d
JP
5712 changeupper_info.upper_dev = upper_dev;
5713 changeupper_info.master = master;
5714 changeupper_info.linking = true;
29bf24af 5715 changeupper_info.upper_info = upper_info;
0e4ead9d 5716
573c7ba0
JP
5717 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5718 &changeupper_info.info);
5719 ret = notifier_to_errno(ret);
5720 if (ret)
5721 return ret;
5722
6dffb044 5723 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5724 master);
5d261913
VF
5725 if (ret)
5726 return ret;
9ff162a8 5727
5d261913 5728 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5729 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5730 * versa, and don't forget the devices itself. All of these
5731 * links are non-neighbours.
5732 */
2f268f12
VF
5733 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5734 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5735 pr_debug("Interlinking %s with %s, non-neighbour\n",
5736 i->dev->name, j->dev->name);
5d261913
VF
5737 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5738 if (ret)
5739 goto rollback_mesh;
5740 }
5741 }
5742
5743 /* add dev to every upper_dev's upper device */
2f268f12
VF
5744 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5745 pr_debug("linking %s's upper device %s with %s\n",
5746 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5747 ret = __netdev_adjacent_dev_link(dev, i->dev);
5748 if (ret)
5749 goto rollback_upper_mesh;
5750 }
5751
5752 /* add upper_dev to every dev's lower device */
2f268f12
VF
5753 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5754 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5755 i->dev->name, upper_dev->name);
5d261913
VF
5756 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5757 if (ret)
5758 goto rollback_lower_mesh;
5759 }
9ff162a8 5760
b03804e7
IS
5761 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5762 &changeupper_info.info);
5763 ret = notifier_to_errno(ret);
5764 if (ret)
5765 goto rollback_lower_mesh;
5766
9ff162a8 5767 return 0;
5d261913
VF
5768
5769rollback_lower_mesh:
5770 to_i = i;
2f268f12 5771 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5772 if (i == to_i)
5773 break;
5774 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5775 }
5776
5777 i = NULL;
5778
5779rollback_upper_mesh:
5780 to_i = i;
2f268f12 5781 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5782 if (i == to_i)
5783 break;
5784 __netdev_adjacent_dev_unlink(dev, i->dev);
5785 }
5786
5787 i = j = NULL;
5788
5789rollback_mesh:
5790 to_i = i;
5791 to_j = j;
2f268f12
VF
5792 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5793 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5794 if (i == to_i && j == to_j)
5795 break;
5796 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5797 }
5798 if (i == to_i)
5799 break;
5800 }
5801
2f268f12 5802 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5803
5804 return ret;
9ff162a8
JP
5805}
5806
5807/**
5808 * netdev_upper_dev_link - Add a link to the upper device
5809 * @dev: device
5810 * @upper_dev: new upper device
5811 *
5812 * Adds a link to device which is upper to this one. The caller must hold
5813 * the RTNL lock. On a failure a negative errno code is returned.
5814 * On success the reference counts are adjusted and the function
5815 * returns zero.
5816 */
5817int netdev_upper_dev_link(struct net_device *dev,
5818 struct net_device *upper_dev)
5819{
29bf24af 5820 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5821}
5822EXPORT_SYMBOL(netdev_upper_dev_link);
5823
5824/**
5825 * netdev_master_upper_dev_link - Add a master link to the upper device
5826 * @dev: device
5827 * @upper_dev: new upper device
6dffb044 5828 * @upper_priv: upper device private
29bf24af 5829 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5830 *
5831 * Adds a link to device which is upper to this one. In this case, only
5832 * one master upper device can be linked, although other non-master devices
5833 * might be linked as well. The caller must hold the RTNL lock.
5834 * On a failure a negative errno code is returned. On success the reference
5835 * counts are adjusted and the function returns zero.
5836 */
5837int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5838 struct net_device *upper_dev,
29bf24af 5839 void *upper_priv, void *upper_info)
9ff162a8 5840{
29bf24af
JP
5841 return __netdev_upper_dev_link(dev, upper_dev, true,
5842 upper_priv, upper_info);
9ff162a8
JP
5843}
5844EXPORT_SYMBOL(netdev_master_upper_dev_link);
5845
5846/**
5847 * netdev_upper_dev_unlink - Removes a link to upper device
5848 * @dev: device
5849 * @upper_dev: new upper device
5850 *
5851 * Removes a link to device which is upper to this one. The caller must hold
5852 * the RTNL lock.
5853 */
5854void netdev_upper_dev_unlink(struct net_device *dev,
5855 struct net_device *upper_dev)
5856{
0e4ead9d 5857 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5858 struct netdev_adjacent *i, *j;
9ff162a8
JP
5859 ASSERT_RTNL();
5860
0e4ead9d
JP
5861 changeupper_info.upper_dev = upper_dev;
5862 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5863 changeupper_info.linking = false;
5864
573c7ba0
JP
5865 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5866 &changeupper_info.info);
5867
2f268f12 5868 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5869
5870 /* Here is the tricky part. We must remove all dev's lower
5871 * devices from all upper_dev's upper devices and vice
5872 * versa, to maintain the graph relationship.
5873 */
2f268f12
VF
5874 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5875 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5876 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5877
5878 /* remove also the devices itself from lower/upper device
5879 * list
5880 */
2f268f12 5881 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5882 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5883
2f268f12 5884 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5885 __netdev_adjacent_dev_unlink(dev, i->dev);
5886
0e4ead9d
JP
5887 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5888 &changeupper_info.info);
9ff162a8
JP
5889}
5890EXPORT_SYMBOL(netdev_upper_dev_unlink);
5891
61bd3857
MS
5892/**
5893 * netdev_bonding_info_change - Dispatch event about slave change
5894 * @dev: device
4a26e453 5895 * @bonding_info: info to dispatch
61bd3857
MS
5896 *
5897 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5898 * The caller must hold the RTNL lock.
5899 */
5900void netdev_bonding_info_change(struct net_device *dev,
5901 struct netdev_bonding_info *bonding_info)
5902{
5903 struct netdev_notifier_bonding_info info;
5904
5905 memcpy(&info.bonding_info, bonding_info,
5906 sizeof(struct netdev_bonding_info));
5907 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5908 &info.info);
5909}
5910EXPORT_SYMBOL(netdev_bonding_info_change);
5911
2ce1ee17 5912static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5913{
5914 struct netdev_adjacent *iter;
5915
5916 struct net *net = dev_net(dev);
5917
5918 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5919 if (!net_eq(net,dev_net(iter->dev)))
5920 continue;
5921 netdev_adjacent_sysfs_add(iter->dev, dev,
5922 &iter->dev->adj_list.lower);
5923 netdev_adjacent_sysfs_add(dev, iter->dev,
5924 &dev->adj_list.upper);
5925 }
5926
5927 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5928 if (!net_eq(net,dev_net(iter->dev)))
5929 continue;
5930 netdev_adjacent_sysfs_add(iter->dev, dev,
5931 &iter->dev->adj_list.upper);
5932 netdev_adjacent_sysfs_add(dev, iter->dev,
5933 &dev->adj_list.lower);
5934 }
5935}
5936
2ce1ee17 5937static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5938{
5939 struct netdev_adjacent *iter;
5940
5941 struct net *net = dev_net(dev);
5942
5943 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5944 if (!net_eq(net,dev_net(iter->dev)))
5945 continue;
5946 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5947 &iter->dev->adj_list.lower);
5948 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5949 &dev->adj_list.upper);
5950 }
5951
5952 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5953 if (!net_eq(net,dev_net(iter->dev)))
5954 continue;
5955 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5956 &iter->dev->adj_list.upper);
5957 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5958 &dev->adj_list.lower);
5959 }
5960}
5961
5bb025fa 5962void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5963{
5bb025fa 5964 struct netdev_adjacent *iter;
402dae96 5965
4c75431a
AF
5966 struct net *net = dev_net(dev);
5967
5bb025fa 5968 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5969 if (!net_eq(net,dev_net(iter->dev)))
5970 continue;
5bb025fa
VF
5971 netdev_adjacent_sysfs_del(iter->dev, oldname,
5972 &iter->dev->adj_list.lower);
5973 netdev_adjacent_sysfs_add(iter->dev, dev,
5974 &iter->dev->adj_list.lower);
5975 }
402dae96 5976
5bb025fa 5977 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5978 if (!net_eq(net,dev_net(iter->dev)))
5979 continue;
5bb025fa
VF
5980 netdev_adjacent_sysfs_del(iter->dev, oldname,
5981 &iter->dev->adj_list.upper);
5982 netdev_adjacent_sysfs_add(iter->dev, dev,
5983 &iter->dev->adj_list.upper);
5984 }
402dae96 5985}
402dae96
VF
5986
5987void *netdev_lower_dev_get_private(struct net_device *dev,
5988 struct net_device *lower_dev)
5989{
5990 struct netdev_adjacent *lower;
5991
5992 if (!lower_dev)
5993 return NULL;
6ea29da1 5994 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
5995 if (!lower)
5996 return NULL;
5997
5998 return lower->private;
5999}
6000EXPORT_SYMBOL(netdev_lower_dev_get_private);
6001
4085ebe8
VY
6002
6003int dev_get_nest_level(struct net_device *dev,
b618aaa9 6004 bool (*type_check)(const struct net_device *dev))
4085ebe8
VY
6005{
6006 struct net_device *lower = NULL;
6007 struct list_head *iter;
6008 int max_nest = -1;
6009 int nest;
6010
6011 ASSERT_RTNL();
6012
6013 netdev_for_each_lower_dev(dev, lower, iter) {
6014 nest = dev_get_nest_level(lower, type_check);
6015 if (max_nest < nest)
6016 max_nest = nest;
6017 }
6018
6019 if (type_check(dev))
6020 max_nest++;
6021
6022 return max_nest;
6023}
6024EXPORT_SYMBOL(dev_get_nest_level);
6025
04d48266
JP
6026/**
6027 * netdev_lower_change - Dispatch event about lower device state change
6028 * @lower_dev: device
6029 * @lower_state_info: state to dispatch
6030 *
6031 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6032 * The caller must hold the RTNL lock.
6033 */
6034void netdev_lower_state_changed(struct net_device *lower_dev,
6035 void *lower_state_info)
6036{
6037 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6038
6039 ASSERT_RTNL();
6040 changelowerstate_info.lower_state_info = lower_state_info;
6041 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6042 &changelowerstate_info.info);
6043}
6044EXPORT_SYMBOL(netdev_lower_state_changed);
6045
b6c40d68
PM
6046static void dev_change_rx_flags(struct net_device *dev, int flags)
6047{
d314774c
SH
6048 const struct net_device_ops *ops = dev->netdev_ops;
6049
d2615bf4 6050 if (ops->ndo_change_rx_flags)
d314774c 6051 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6052}
6053
991fb3f7 6054static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6055{
b536db93 6056 unsigned int old_flags = dev->flags;
d04a48b0
EB
6057 kuid_t uid;
6058 kgid_t gid;
1da177e4 6059
24023451
PM
6060 ASSERT_RTNL();
6061
dad9b335
WC
6062 dev->flags |= IFF_PROMISC;
6063 dev->promiscuity += inc;
6064 if (dev->promiscuity == 0) {
6065 /*
6066 * Avoid overflow.
6067 * If inc causes overflow, untouch promisc and return error.
6068 */
6069 if (inc < 0)
6070 dev->flags &= ~IFF_PROMISC;
6071 else {
6072 dev->promiscuity -= inc;
7b6cd1ce
JP
6073 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6074 dev->name);
dad9b335
WC
6075 return -EOVERFLOW;
6076 }
6077 }
52609c0b 6078 if (dev->flags != old_flags) {
7b6cd1ce
JP
6079 pr_info("device %s %s promiscuous mode\n",
6080 dev->name,
6081 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6082 if (audit_enabled) {
6083 current_uid_gid(&uid, &gid);
7759db82
KHK
6084 audit_log(current->audit_context, GFP_ATOMIC,
6085 AUDIT_ANOM_PROMISCUOUS,
6086 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6087 dev->name, (dev->flags & IFF_PROMISC),
6088 (old_flags & IFF_PROMISC),
e1760bd5 6089 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6090 from_kuid(&init_user_ns, uid),
6091 from_kgid(&init_user_ns, gid),
7759db82 6092 audit_get_sessionid(current));
8192b0c4 6093 }
24023451 6094
b6c40d68 6095 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6096 }
991fb3f7
ND
6097 if (notify)
6098 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6099 return 0;
1da177e4
LT
6100}
6101
4417da66
PM
6102/**
6103 * dev_set_promiscuity - update promiscuity count on a device
6104 * @dev: device
6105 * @inc: modifier
6106 *
6107 * Add or remove promiscuity from a device. While the count in the device
6108 * remains above zero the interface remains promiscuous. Once it hits zero
6109 * the device reverts back to normal filtering operation. A negative inc
6110 * value is used to drop promiscuity on the device.
dad9b335 6111 * Return 0 if successful or a negative errno code on error.
4417da66 6112 */
dad9b335 6113int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6114{
b536db93 6115 unsigned int old_flags = dev->flags;
dad9b335 6116 int err;
4417da66 6117
991fb3f7 6118 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6119 if (err < 0)
dad9b335 6120 return err;
4417da66
PM
6121 if (dev->flags != old_flags)
6122 dev_set_rx_mode(dev);
dad9b335 6123 return err;
4417da66 6124}
d1b19dff 6125EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6126
991fb3f7 6127static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6128{
991fb3f7 6129 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6130
24023451
PM
6131 ASSERT_RTNL();
6132
1da177e4 6133 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6134 dev->allmulti += inc;
6135 if (dev->allmulti == 0) {
6136 /*
6137 * Avoid overflow.
6138 * If inc causes overflow, untouch allmulti and return error.
6139 */
6140 if (inc < 0)
6141 dev->flags &= ~IFF_ALLMULTI;
6142 else {
6143 dev->allmulti -= inc;
7b6cd1ce
JP
6144 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6145 dev->name);
dad9b335
WC
6146 return -EOVERFLOW;
6147 }
6148 }
24023451 6149 if (dev->flags ^ old_flags) {
b6c40d68 6150 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6151 dev_set_rx_mode(dev);
991fb3f7
ND
6152 if (notify)
6153 __dev_notify_flags(dev, old_flags,
6154 dev->gflags ^ old_gflags);
24023451 6155 }
dad9b335 6156 return 0;
4417da66 6157}
991fb3f7
ND
6158
6159/**
6160 * dev_set_allmulti - update allmulti count on a device
6161 * @dev: device
6162 * @inc: modifier
6163 *
6164 * Add or remove reception of all multicast frames to a device. While the
6165 * count in the device remains above zero the interface remains listening
6166 * to all interfaces. Once it hits zero the device reverts back to normal
6167 * filtering operation. A negative @inc value is used to drop the counter
6168 * when releasing a resource needing all multicasts.
6169 * Return 0 if successful or a negative errno code on error.
6170 */
6171
6172int dev_set_allmulti(struct net_device *dev, int inc)
6173{
6174 return __dev_set_allmulti(dev, inc, true);
6175}
d1b19dff 6176EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6177
6178/*
6179 * Upload unicast and multicast address lists to device and
6180 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6181 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6182 * are present.
6183 */
6184void __dev_set_rx_mode(struct net_device *dev)
6185{
d314774c
SH
6186 const struct net_device_ops *ops = dev->netdev_ops;
6187
4417da66
PM
6188 /* dev_open will call this function so the list will stay sane. */
6189 if (!(dev->flags&IFF_UP))
6190 return;
6191
6192 if (!netif_device_present(dev))
40b77c94 6193 return;
4417da66 6194
01789349 6195 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6196 /* Unicast addresses changes may only happen under the rtnl,
6197 * therefore calling __dev_set_promiscuity here is safe.
6198 */
32e7bfc4 6199 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6200 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6201 dev->uc_promisc = true;
32e7bfc4 6202 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6203 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6204 dev->uc_promisc = false;
4417da66 6205 }
4417da66 6206 }
01789349
JP
6207
6208 if (ops->ndo_set_rx_mode)
6209 ops->ndo_set_rx_mode(dev);
4417da66
PM
6210}
6211
6212void dev_set_rx_mode(struct net_device *dev)
6213{
b9e40857 6214 netif_addr_lock_bh(dev);
4417da66 6215 __dev_set_rx_mode(dev);
b9e40857 6216 netif_addr_unlock_bh(dev);
1da177e4
LT
6217}
6218
f0db275a
SH
6219/**
6220 * dev_get_flags - get flags reported to userspace
6221 * @dev: device
6222 *
6223 * Get the combination of flag bits exported through APIs to userspace.
6224 */
95c96174 6225unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6226{
95c96174 6227 unsigned int flags;
1da177e4
LT
6228
6229 flags = (dev->flags & ~(IFF_PROMISC |
6230 IFF_ALLMULTI |
b00055aa
SR
6231 IFF_RUNNING |
6232 IFF_LOWER_UP |
6233 IFF_DORMANT)) |
1da177e4
LT
6234 (dev->gflags & (IFF_PROMISC |
6235 IFF_ALLMULTI));
6236
b00055aa
SR
6237 if (netif_running(dev)) {
6238 if (netif_oper_up(dev))
6239 flags |= IFF_RUNNING;
6240 if (netif_carrier_ok(dev))
6241 flags |= IFF_LOWER_UP;
6242 if (netif_dormant(dev))
6243 flags |= IFF_DORMANT;
6244 }
1da177e4
LT
6245
6246 return flags;
6247}
d1b19dff 6248EXPORT_SYMBOL(dev_get_flags);
1da177e4 6249
bd380811 6250int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6251{
b536db93 6252 unsigned int old_flags = dev->flags;
bd380811 6253 int ret;
1da177e4 6254
24023451
PM
6255 ASSERT_RTNL();
6256
1da177e4
LT
6257 /*
6258 * Set the flags on our device.
6259 */
6260
6261 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6262 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6263 IFF_AUTOMEDIA)) |
6264 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6265 IFF_ALLMULTI));
6266
6267 /*
6268 * Load in the correct multicast list now the flags have changed.
6269 */
6270
b6c40d68
PM
6271 if ((old_flags ^ flags) & IFF_MULTICAST)
6272 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6273
4417da66 6274 dev_set_rx_mode(dev);
1da177e4
LT
6275
6276 /*
6277 * Have we downed the interface. We handle IFF_UP ourselves
6278 * according to user attempts to set it, rather than blindly
6279 * setting it.
6280 */
6281
6282 ret = 0;
d215d10f 6283 if ((old_flags ^ flags) & IFF_UP)
bd380811 6284 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6285
1da177e4 6286 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6287 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6288 unsigned int old_flags = dev->flags;
d1b19dff 6289
1da177e4 6290 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6291
6292 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6293 if (dev->flags != old_flags)
6294 dev_set_rx_mode(dev);
1da177e4
LT
6295 }
6296
6297 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6298 is important. Some (broken) drivers set IFF_PROMISC, when
6299 IFF_ALLMULTI is requested not asking us and not reporting.
6300 */
6301 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6302 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6303
1da177e4 6304 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6305 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6306 }
6307
bd380811
PM
6308 return ret;
6309}
6310
a528c219
ND
6311void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6312 unsigned int gchanges)
bd380811
PM
6313{
6314 unsigned int changes = dev->flags ^ old_flags;
6315
a528c219 6316 if (gchanges)
7f294054 6317 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6318
bd380811
PM
6319 if (changes & IFF_UP) {
6320 if (dev->flags & IFF_UP)
6321 call_netdevice_notifiers(NETDEV_UP, dev);
6322 else
6323 call_netdevice_notifiers(NETDEV_DOWN, dev);
6324 }
6325
6326 if (dev->flags & IFF_UP &&
be9efd36
JP
6327 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6328 struct netdev_notifier_change_info change_info;
6329
6330 change_info.flags_changed = changes;
6331 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6332 &change_info.info);
6333 }
bd380811
PM
6334}
6335
6336/**
6337 * dev_change_flags - change device settings
6338 * @dev: device
6339 * @flags: device state flags
6340 *
6341 * Change settings on device based state flags. The flags are
6342 * in the userspace exported format.
6343 */
b536db93 6344int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6345{
b536db93 6346 int ret;
991fb3f7 6347 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6348
6349 ret = __dev_change_flags(dev, flags);
6350 if (ret < 0)
6351 return ret;
6352
991fb3f7 6353 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6354 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6355 return ret;
6356}
d1b19dff 6357EXPORT_SYMBOL(dev_change_flags);
1da177e4 6358
2315dc91
VF
6359static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6360{
6361 const struct net_device_ops *ops = dev->netdev_ops;
6362
6363 if (ops->ndo_change_mtu)
6364 return ops->ndo_change_mtu(dev, new_mtu);
6365
6366 dev->mtu = new_mtu;
6367 return 0;
6368}
6369
f0db275a
SH
6370/**
6371 * dev_set_mtu - Change maximum transfer unit
6372 * @dev: device
6373 * @new_mtu: new transfer unit
6374 *
6375 * Change the maximum transfer size of the network device.
6376 */
1da177e4
LT
6377int dev_set_mtu(struct net_device *dev, int new_mtu)
6378{
2315dc91 6379 int err, orig_mtu;
1da177e4
LT
6380
6381 if (new_mtu == dev->mtu)
6382 return 0;
6383
6384 /* MTU must be positive. */
6385 if (new_mtu < 0)
6386 return -EINVAL;
6387
6388 if (!netif_device_present(dev))
6389 return -ENODEV;
6390
1d486bfb
VF
6391 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6392 err = notifier_to_errno(err);
6393 if (err)
6394 return err;
d314774c 6395
2315dc91
VF
6396 orig_mtu = dev->mtu;
6397 err = __dev_set_mtu(dev, new_mtu);
d314774c 6398
2315dc91
VF
6399 if (!err) {
6400 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6401 err = notifier_to_errno(err);
6402 if (err) {
6403 /* setting mtu back and notifying everyone again,
6404 * so that they have a chance to revert changes.
6405 */
6406 __dev_set_mtu(dev, orig_mtu);
6407 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6408 }
6409 }
1da177e4
LT
6410 return err;
6411}
d1b19dff 6412EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6413
cbda10fa
VD
6414/**
6415 * dev_set_group - Change group this device belongs to
6416 * @dev: device
6417 * @new_group: group this device should belong to
6418 */
6419void dev_set_group(struct net_device *dev, int new_group)
6420{
6421 dev->group = new_group;
6422}
6423EXPORT_SYMBOL(dev_set_group);
6424
f0db275a
SH
6425/**
6426 * dev_set_mac_address - Change Media Access Control Address
6427 * @dev: device
6428 * @sa: new address
6429 *
6430 * Change the hardware (MAC) address of the device
6431 */
1da177e4
LT
6432int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6433{
d314774c 6434 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6435 int err;
6436
d314774c 6437 if (!ops->ndo_set_mac_address)
1da177e4
LT
6438 return -EOPNOTSUPP;
6439 if (sa->sa_family != dev->type)
6440 return -EINVAL;
6441 if (!netif_device_present(dev))
6442 return -ENODEV;
d314774c 6443 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6444 if (err)
6445 return err;
fbdeca2d 6446 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6447 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6448 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6449 return 0;
1da177e4 6450}
d1b19dff 6451EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6452
4bf84c35
JP
6453/**
6454 * dev_change_carrier - Change device carrier
6455 * @dev: device
691b3b7e 6456 * @new_carrier: new value
4bf84c35
JP
6457 *
6458 * Change device carrier
6459 */
6460int dev_change_carrier(struct net_device *dev, bool new_carrier)
6461{
6462 const struct net_device_ops *ops = dev->netdev_ops;
6463
6464 if (!ops->ndo_change_carrier)
6465 return -EOPNOTSUPP;
6466 if (!netif_device_present(dev))
6467 return -ENODEV;
6468 return ops->ndo_change_carrier(dev, new_carrier);
6469}
6470EXPORT_SYMBOL(dev_change_carrier);
6471
66b52b0d
JP
6472/**
6473 * dev_get_phys_port_id - Get device physical port ID
6474 * @dev: device
6475 * @ppid: port ID
6476 *
6477 * Get device physical port ID
6478 */
6479int dev_get_phys_port_id(struct net_device *dev,
02637fce 6480 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6481{
6482 const struct net_device_ops *ops = dev->netdev_ops;
6483
6484 if (!ops->ndo_get_phys_port_id)
6485 return -EOPNOTSUPP;
6486 return ops->ndo_get_phys_port_id(dev, ppid);
6487}
6488EXPORT_SYMBOL(dev_get_phys_port_id);
6489
db24a904
DA
6490/**
6491 * dev_get_phys_port_name - Get device physical port name
6492 * @dev: device
6493 * @name: port name
ed49e650 6494 * @len: limit of bytes to copy to name
db24a904
DA
6495 *
6496 * Get device physical port name
6497 */
6498int dev_get_phys_port_name(struct net_device *dev,
6499 char *name, size_t len)
6500{
6501 const struct net_device_ops *ops = dev->netdev_ops;
6502
6503 if (!ops->ndo_get_phys_port_name)
6504 return -EOPNOTSUPP;
6505 return ops->ndo_get_phys_port_name(dev, name, len);
6506}
6507EXPORT_SYMBOL(dev_get_phys_port_name);
6508
d746d707
AK
6509/**
6510 * dev_change_proto_down - update protocol port state information
6511 * @dev: device
6512 * @proto_down: new value
6513 *
6514 * This info can be used by switch drivers to set the phys state of the
6515 * port.
6516 */
6517int dev_change_proto_down(struct net_device *dev, bool proto_down)
6518{
6519 const struct net_device_ops *ops = dev->netdev_ops;
6520
6521 if (!ops->ndo_change_proto_down)
6522 return -EOPNOTSUPP;
6523 if (!netif_device_present(dev))
6524 return -ENODEV;
6525 return ops->ndo_change_proto_down(dev, proto_down);
6526}
6527EXPORT_SYMBOL(dev_change_proto_down);
6528
1da177e4
LT
6529/**
6530 * dev_new_index - allocate an ifindex
c4ea43c5 6531 * @net: the applicable net namespace
1da177e4
LT
6532 *
6533 * Returns a suitable unique value for a new device interface
6534 * number. The caller must hold the rtnl semaphore or the
6535 * dev_base_lock to be sure it remains unique.
6536 */
881d966b 6537static int dev_new_index(struct net *net)
1da177e4 6538{
aa79e66e 6539 int ifindex = net->ifindex;
1da177e4
LT
6540 for (;;) {
6541 if (++ifindex <= 0)
6542 ifindex = 1;
881d966b 6543 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6544 return net->ifindex = ifindex;
1da177e4
LT
6545 }
6546}
6547
1da177e4 6548/* Delayed registration/unregisteration */
3b5b34fd 6549static LIST_HEAD(net_todo_list);
200b916f 6550DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6551
6f05f629 6552static void net_set_todo(struct net_device *dev)
1da177e4 6553{
1da177e4 6554 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6555 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6556}
6557
9b5e383c 6558static void rollback_registered_many(struct list_head *head)
93ee31f1 6559{
e93737b0 6560 struct net_device *dev, *tmp;
5cde2829 6561 LIST_HEAD(close_head);
9b5e383c 6562
93ee31f1
DL
6563 BUG_ON(dev_boot_phase);
6564 ASSERT_RTNL();
6565
e93737b0 6566 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6567 /* Some devices call without registering
e93737b0
KK
6568 * for initialization unwind. Remove those
6569 * devices and proceed with the remaining.
9b5e383c
ED
6570 */
6571 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6572 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6573 dev->name, dev);
93ee31f1 6574
9b5e383c 6575 WARN_ON(1);
e93737b0
KK
6576 list_del(&dev->unreg_list);
6577 continue;
9b5e383c 6578 }
449f4544 6579 dev->dismantle = true;
9b5e383c 6580 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6581 }
93ee31f1 6582
44345724 6583 /* If device is running, close it first. */
5cde2829
EB
6584 list_for_each_entry(dev, head, unreg_list)
6585 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6586 dev_close_many(&close_head, true);
93ee31f1 6587
44345724 6588 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6589 /* And unlink it from device chain. */
6590 unlist_netdevice(dev);
93ee31f1 6591
9b5e383c 6592 dev->reg_state = NETREG_UNREGISTERING;
e9e4dd32 6593 on_each_cpu(flush_backlog, dev, 1);
9b5e383c 6594 }
93ee31f1
DL
6595
6596 synchronize_net();
6597
9b5e383c 6598 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6599 struct sk_buff *skb = NULL;
6600
9b5e383c
ED
6601 /* Shutdown queueing discipline. */
6602 dev_shutdown(dev);
93ee31f1
DL
6603
6604
9b5e383c
ED
6605 /* Notify protocols, that we are about to destroy
6606 this device. They should clean all the things.
6607 */
6608 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6609
395eea6c
MB
6610 if (!dev->rtnl_link_ops ||
6611 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6612 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6613 GFP_KERNEL);
6614
9b5e383c
ED
6615 /*
6616 * Flush the unicast and multicast chains
6617 */
a748ee24 6618 dev_uc_flush(dev);
22bedad3 6619 dev_mc_flush(dev);
93ee31f1 6620
9b5e383c
ED
6621 if (dev->netdev_ops->ndo_uninit)
6622 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6623
395eea6c
MB
6624 if (skb)
6625 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6626
9ff162a8
JP
6627 /* Notifier chain MUST detach us all upper devices. */
6628 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6629
9b5e383c
ED
6630 /* Remove entries from kobject tree */
6631 netdev_unregister_kobject(dev);
024e9679
AD
6632#ifdef CONFIG_XPS
6633 /* Remove XPS queueing entries */
6634 netif_reset_xps_queues_gt(dev, 0);
6635#endif
9b5e383c 6636 }
93ee31f1 6637
850a545b 6638 synchronize_net();
395264d5 6639
a5ee1551 6640 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6641 dev_put(dev);
6642}
6643
6644static void rollback_registered(struct net_device *dev)
6645{
6646 LIST_HEAD(single);
6647
6648 list_add(&dev->unreg_list, &single);
6649 rollback_registered_many(&single);
ceaaec98 6650 list_del(&single);
93ee31f1
DL
6651}
6652
fd867d51
JW
6653static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6654 struct net_device *upper, netdev_features_t features)
6655{
6656 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6657 netdev_features_t feature;
5ba3f7d6 6658 int feature_bit;
fd867d51 6659
5ba3f7d6
JW
6660 for_each_netdev_feature(&upper_disables, feature_bit) {
6661 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6662 if (!(upper->wanted_features & feature)
6663 && (features & feature)) {
6664 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6665 &feature, upper->name);
6666 features &= ~feature;
6667 }
6668 }
6669
6670 return features;
6671}
6672
6673static void netdev_sync_lower_features(struct net_device *upper,
6674 struct net_device *lower, netdev_features_t features)
6675{
6676 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6677 netdev_features_t feature;
5ba3f7d6 6678 int feature_bit;
fd867d51 6679
5ba3f7d6
JW
6680 for_each_netdev_feature(&upper_disables, feature_bit) {
6681 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6682 if (!(features & feature) && (lower->features & feature)) {
6683 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6684 &feature, lower->name);
6685 lower->wanted_features &= ~feature;
6686 netdev_update_features(lower);
6687
6688 if (unlikely(lower->features & feature))
6689 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6690 &feature, lower->name);
6691 }
6692 }
6693}
6694
c8f44aff
MM
6695static netdev_features_t netdev_fix_features(struct net_device *dev,
6696 netdev_features_t features)
b63365a2 6697{
57422dc5
MM
6698 /* Fix illegal checksum combinations */
6699 if ((features & NETIF_F_HW_CSUM) &&
6700 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6701 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6702 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6703 }
6704
b63365a2 6705 /* TSO requires that SG is present as well. */
ea2d3688 6706 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6707 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6708 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6709 }
6710
ec5f0615
PS
6711 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6712 !(features & NETIF_F_IP_CSUM)) {
6713 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6714 features &= ~NETIF_F_TSO;
6715 features &= ~NETIF_F_TSO_ECN;
6716 }
6717
6718 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6719 !(features & NETIF_F_IPV6_CSUM)) {
6720 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6721 features &= ~NETIF_F_TSO6;
6722 }
6723
31d8b9e0
BH
6724 /* TSO ECN requires that TSO is present as well. */
6725 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6726 features &= ~NETIF_F_TSO_ECN;
6727
212b573f
MM
6728 /* Software GSO depends on SG. */
6729 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6730 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6731 features &= ~NETIF_F_GSO;
6732 }
6733
acd1130e 6734 /* UFO needs SG and checksumming */
b63365a2 6735 if (features & NETIF_F_UFO) {
79032644 6736 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6737 if (!(features & NETIF_F_HW_CSUM) &&
6738 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6739 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6740 netdev_dbg(dev,
acd1130e 6741 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6742 features &= ~NETIF_F_UFO;
6743 }
6744
6745 if (!(features & NETIF_F_SG)) {
6f404e44 6746 netdev_dbg(dev,
acd1130e 6747 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6748 features &= ~NETIF_F_UFO;
6749 }
6750 }
6751
802ab55a
AD
6752 /* GSO partial features require GSO partial be set */
6753 if ((features & dev->gso_partial_features) &&
6754 !(features & NETIF_F_GSO_PARTIAL)) {
6755 netdev_dbg(dev,
6756 "Dropping partially supported GSO features since no GSO partial.\n");
6757 features &= ~dev->gso_partial_features;
6758 }
6759
d0290214
JP
6760#ifdef CONFIG_NET_RX_BUSY_POLL
6761 if (dev->netdev_ops->ndo_busy_poll)
6762 features |= NETIF_F_BUSY_POLL;
6763 else
6764#endif
6765 features &= ~NETIF_F_BUSY_POLL;
6766
b63365a2
HX
6767 return features;
6768}
b63365a2 6769
6cb6a27c 6770int __netdev_update_features(struct net_device *dev)
5455c699 6771{
fd867d51 6772 struct net_device *upper, *lower;
c8f44aff 6773 netdev_features_t features;
fd867d51 6774 struct list_head *iter;
e7868a85 6775 int err = -1;
5455c699 6776
87267485
MM
6777 ASSERT_RTNL();
6778
5455c699
MM
6779 features = netdev_get_wanted_features(dev);
6780
6781 if (dev->netdev_ops->ndo_fix_features)
6782 features = dev->netdev_ops->ndo_fix_features(dev, features);
6783
6784 /* driver might be less strict about feature dependencies */
6785 features = netdev_fix_features(dev, features);
6786
fd867d51
JW
6787 /* some features can't be enabled if they're off an an upper device */
6788 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6789 features = netdev_sync_upper_features(dev, upper, features);
6790
5455c699 6791 if (dev->features == features)
e7868a85 6792 goto sync_lower;
5455c699 6793
c8f44aff
MM
6794 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6795 &dev->features, &features);
5455c699
MM
6796
6797 if (dev->netdev_ops->ndo_set_features)
6798 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6799 else
6800 err = 0;
5455c699 6801
6cb6a27c 6802 if (unlikely(err < 0)) {
5455c699 6803 netdev_err(dev,
c8f44aff
MM
6804 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6805 err, &features, &dev->features);
17b85d29
NA
6806 /* return non-0 since some features might have changed and
6807 * it's better to fire a spurious notification than miss it
6808 */
6809 return -1;
6cb6a27c
MM
6810 }
6811
e7868a85 6812sync_lower:
fd867d51
JW
6813 /* some features must be disabled on lower devices when disabled
6814 * on an upper device (think: bonding master or bridge)
6815 */
6816 netdev_for_each_lower_dev(dev, lower, iter)
6817 netdev_sync_lower_features(dev, lower, features);
6818
6cb6a27c
MM
6819 if (!err)
6820 dev->features = features;
6821
e7868a85 6822 return err < 0 ? 0 : 1;
6cb6a27c
MM
6823}
6824
afe12cc8
MM
6825/**
6826 * netdev_update_features - recalculate device features
6827 * @dev: the device to check
6828 *
6829 * Recalculate dev->features set and send notifications if it
6830 * has changed. Should be called after driver or hardware dependent
6831 * conditions might have changed that influence the features.
6832 */
6cb6a27c
MM
6833void netdev_update_features(struct net_device *dev)
6834{
6835 if (__netdev_update_features(dev))
6836 netdev_features_change(dev);
5455c699
MM
6837}
6838EXPORT_SYMBOL(netdev_update_features);
6839
afe12cc8
MM
6840/**
6841 * netdev_change_features - recalculate device features
6842 * @dev: the device to check
6843 *
6844 * Recalculate dev->features set and send notifications even
6845 * if they have not changed. Should be called instead of
6846 * netdev_update_features() if also dev->vlan_features might
6847 * have changed to allow the changes to be propagated to stacked
6848 * VLAN devices.
6849 */
6850void netdev_change_features(struct net_device *dev)
6851{
6852 __netdev_update_features(dev);
6853 netdev_features_change(dev);
6854}
6855EXPORT_SYMBOL(netdev_change_features);
6856
fc4a7489
PM
6857/**
6858 * netif_stacked_transfer_operstate - transfer operstate
6859 * @rootdev: the root or lower level device to transfer state from
6860 * @dev: the device to transfer operstate to
6861 *
6862 * Transfer operational state from root to device. This is normally
6863 * called when a stacking relationship exists between the root
6864 * device and the device(a leaf device).
6865 */
6866void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6867 struct net_device *dev)
6868{
6869 if (rootdev->operstate == IF_OPER_DORMANT)
6870 netif_dormant_on(dev);
6871 else
6872 netif_dormant_off(dev);
6873
6874 if (netif_carrier_ok(rootdev)) {
6875 if (!netif_carrier_ok(dev))
6876 netif_carrier_on(dev);
6877 } else {
6878 if (netif_carrier_ok(dev))
6879 netif_carrier_off(dev);
6880 }
6881}
6882EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6883
a953be53 6884#ifdef CONFIG_SYSFS
1b4bf461
ED
6885static int netif_alloc_rx_queues(struct net_device *dev)
6886{
1b4bf461 6887 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6888 struct netdev_rx_queue *rx;
10595902 6889 size_t sz = count * sizeof(*rx);
1b4bf461 6890
bd25fa7b 6891 BUG_ON(count < 1);
1b4bf461 6892
10595902
PG
6893 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6894 if (!rx) {
6895 rx = vzalloc(sz);
6896 if (!rx)
6897 return -ENOMEM;
6898 }
bd25fa7b
TH
6899 dev->_rx = rx;
6900
bd25fa7b 6901 for (i = 0; i < count; i++)
fe822240 6902 rx[i].dev = dev;
1b4bf461
ED
6903 return 0;
6904}
bf264145 6905#endif
1b4bf461 6906
aa942104
CG
6907static void netdev_init_one_queue(struct net_device *dev,
6908 struct netdev_queue *queue, void *_unused)
6909{
6910 /* Initialize queue lock */
6911 spin_lock_init(&queue->_xmit_lock);
6912 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6913 queue->xmit_lock_owner = -1;
b236da69 6914 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6915 queue->dev = dev;
114cf580
TH
6916#ifdef CONFIG_BQL
6917 dql_init(&queue->dql, HZ);
6918#endif
aa942104
CG
6919}
6920
60877a32
ED
6921static void netif_free_tx_queues(struct net_device *dev)
6922{
4cb28970 6923 kvfree(dev->_tx);
60877a32
ED
6924}
6925
e6484930
TH
6926static int netif_alloc_netdev_queues(struct net_device *dev)
6927{
6928 unsigned int count = dev->num_tx_queues;
6929 struct netdev_queue *tx;
60877a32 6930 size_t sz = count * sizeof(*tx);
e6484930 6931
d339727c
ED
6932 if (count < 1 || count > 0xffff)
6933 return -EINVAL;
62b5942a 6934
60877a32
ED
6935 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6936 if (!tx) {
6937 tx = vzalloc(sz);
6938 if (!tx)
6939 return -ENOMEM;
6940 }
e6484930 6941 dev->_tx = tx;
1d24eb48 6942
e6484930
TH
6943 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6944 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6945
6946 return 0;
e6484930
TH
6947}
6948
a2029240
DV
6949void netif_tx_stop_all_queues(struct net_device *dev)
6950{
6951 unsigned int i;
6952
6953 for (i = 0; i < dev->num_tx_queues; i++) {
6954 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6955 netif_tx_stop_queue(txq);
6956 }
6957}
6958EXPORT_SYMBOL(netif_tx_stop_all_queues);
6959
1da177e4
LT
6960/**
6961 * register_netdevice - register a network device
6962 * @dev: device to register
6963 *
6964 * Take a completed network device structure and add it to the kernel
6965 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6966 * chain. 0 is returned on success. A negative errno code is returned
6967 * on a failure to set up the device, or if the name is a duplicate.
6968 *
6969 * Callers must hold the rtnl semaphore. You may want
6970 * register_netdev() instead of this.
6971 *
6972 * BUGS:
6973 * The locking appears insufficient to guarantee two parallel registers
6974 * will not get the same name.
6975 */
6976
6977int register_netdevice(struct net_device *dev)
6978{
1da177e4 6979 int ret;
d314774c 6980 struct net *net = dev_net(dev);
1da177e4
LT
6981
6982 BUG_ON(dev_boot_phase);
6983 ASSERT_RTNL();
6984
b17a7c17
SH
6985 might_sleep();
6986
1da177e4
LT
6987 /* When net_device's are persistent, this will be fatal. */
6988 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6989 BUG_ON(!net);
1da177e4 6990
f1f28aa3 6991 spin_lock_init(&dev->addr_list_lock);
cf508b12 6992 netdev_set_addr_lockdep_class(dev);
1da177e4 6993
828de4f6 6994 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6995 if (ret < 0)
6996 goto out;
6997
1da177e4 6998 /* Init, if this function is available */
d314774c
SH
6999 if (dev->netdev_ops->ndo_init) {
7000 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7001 if (ret) {
7002 if (ret > 0)
7003 ret = -EIO;
90833aa4 7004 goto out;
1da177e4
LT
7005 }
7006 }
4ec93edb 7007
f646968f
PM
7008 if (((dev->hw_features | dev->features) &
7009 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7010 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7011 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7012 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7013 ret = -EINVAL;
7014 goto err_uninit;
7015 }
7016
9c7dafbf
PE
7017 ret = -EBUSY;
7018 if (!dev->ifindex)
7019 dev->ifindex = dev_new_index(net);
7020 else if (__dev_get_by_index(net, dev->ifindex))
7021 goto err_uninit;
7022
5455c699
MM
7023 /* Transfer changeable features to wanted_features and enable
7024 * software offloads (GSO and GRO).
7025 */
7026 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7027 dev->features |= NETIF_F_SOFT_FEATURES;
7028 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7029
cbc53e08 7030 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7031 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7032
7f348a60
AD
7033 /* If IPv4 TCP segmentation offload is supported we should also
7034 * allow the device to enable segmenting the frame with the option
7035 * of ignoring a static IP ID value. This doesn't enable the
7036 * feature itself but allows the user to enable it later.
7037 */
cbc53e08
AD
7038 if (dev->hw_features & NETIF_F_TSO)
7039 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7040 if (dev->vlan_features & NETIF_F_TSO)
7041 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7042 if (dev->mpls_features & NETIF_F_TSO)
7043 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7044 if (dev->hw_enc_features & NETIF_F_TSO)
7045 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7046
1180e7d6 7047 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7048 */
1180e7d6 7049 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7050
ee579677
PS
7051 /* Make NETIF_F_SG inheritable to tunnel devices.
7052 */
802ab55a 7053 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7054
0d89d203
SH
7055 /* Make NETIF_F_SG inheritable to MPLS.
7056 */
7057 dev->mpls_features |= NETIF_F_SG;
7058
7ffbe3fd
JB
7059 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7060 ret = notifier_to_errno(ret);
7061 if (ret)
7062 goto err_uninit;
7063
8b41d188 7064 ret = netdev_register_kobject(dev);
b17a7c17 7065 if (ret)
7ce1b0ed 7066 goto err_uninit;
b17a7c17
SH
7067 dev->reg_state = NETREG_REGISTERED;
7068
6cb6a27c 7069 __netdev_update_features(dev);
8e9b59b2 7070
1da177e4
LT
7071 /*
7072 * Default initial state at registry is that the
7073 * device is present.
7074 */
7075
7076 set_bit(__LINK_STATE_PRESENT, &dev->state);
7077
8f4cccbb
BH
7078 linkwatch_init_dev(dev);
7079
1da177e4 7080 dev_init_scheduler(dev);
1da177e4 7081 dev_hold(dev);
ce286d32 7082 list_netdevice(dev);
7bf23575 7083 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7084
948b337e
JP
7085 /* If the device has permanent device address, driver should
7086 * set dev_addr and also addr_assign_type should be set to
7087 * NET_ADDR_PERM (default value).
7088 */
7089 if (dev->addr_assign_type == NET_ADDR_PERM)
7090 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7091
1da177e4 7092 /* Notify protocols, that a new device appeared. */
056925ab 7093 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7094 ret = notifier_to_errno(ret);
93ee31f1
DL
7095 if (ret) {
7096 rollback_registered(dev);
7097 dev->reg_state = NETREG_UNREGISTERED;
7098 }
d90a909e
EB
7099 /*
7100 * Prevent userspace races by waiting until the network
7101 * device is fully setup before sending notifications.
7102 */
a2835763
PM
7103 if (!dev->rtnl_link_ops ||
7104 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7105 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7106
7107out:
7108 return ret;
7ce1b0ed
HX
7109
7110err_uninit:
d314774c
SH
7111 if (dev->netdev_ops->ndo_uninit)
7112 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7113 goto out;
1da177e4 7114}
d1b19dff 7115EXPORT_SYMBOL(register_netdevice);
1da177e4 7116
937f1ba5
BH
7117/**
7118 * init_dummy_netdev - init a dummy network device for NAPI
7119 * @dev: device to init
7120 *
7121 * This takes a network device structure and initialize the minimum
7122 * amount of fields so it can be used to schedule NAPI polls without
7123 * registering a full blown interface. This is to be used by drivers
7124 * that need to tie several hardware interfaces to a single NAPI
7125 * poll scheduler due to HW limitations.
7126 */
7127int init_dummy_netdev(struct net_device *dev)
7128{
7129 /* Clear everything. Note we don't initialize spinlocks
7130 * are they aren't supposed to be taken by any of the
7131 * NAPI code and this dummy netdev is supposed to be
7132 * only ever used for NAPI polls
7133 */
7134 memset(dev, 0, sizeof(struct net_device));
7135
7136 /* make sure we BUG if trying to hit standard
7137 * register/unregister code path
7138 */
7139 dev->reg_state = NETREG_DUMMY;
7140
937f1ba5
BH
7141 /* NAPI wants this */
7142 INIT_LIST_HEAD(&dev->napi_list);
7143
7144 /* a dummy interface is started by default */
7145 set_bit(__LINK_STATE_PRESENT, &dev->state);
7146 set_bit(__LINK_STATE_START, &dev->state);
7147
29b4433d
ED
7148 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7149 * because users of this 'device' dont need to change
7150 * its refcount.
7151 */
7152
937f1ba5
BH
7153 return 0;
7154}
7155EXPORT_SYMBOL_GPL(init_dummy_netdev);
7156
7157
1da177e4
LT
7158/**
7159 * register_netdev - register a network device
7160 * @dev: device to register
7161 *
7162 * Take a completed network device structure and add it to the kernel
7163 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7164 * chain. 0 is returned on success. A negative errno code is returned
7165 * on a failure to set up the device, or if the name is a duplicate.
7166 *
38b4da38 7167 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7168 * and expands the device name if you passed a format string to
7169 * alloc_netdev.
7170 */
7171int register_netdev(struct net_device *dev)
7172{
7173 int err;
7174
7175 rtnl_lock();
1da177e4 7176 err = register_netdevice(dev);
1da177e4
LT
7177 rtnl_unlock();
7178 return err;
7179}
7180EXPORT_SYMBOL(register_netdev);
7181
29b4433d
ED
7182int netdev_refcnt_read(const struct net_device *dev)
7183{
7184 int i, refcnt = 0;
7185
7186 for_each_possible_cpu(i)
7187 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7188 return refcnt;
7189}
7190EXPORT_SYMBOL(netdev_refcnt_read);
7191
2c53040f 7192/**
1da177e4 7193 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7194 * @dev: target net_device
1da177e4
LT
7195 *
7196 * This is called when unregistering network devices.
7197 *
7198 * Any protocol or device that holds a reference should register
7199 * for netdevice notification, and cleanup and put back the
7200 * reference if they receive an UNREGISTER event.
7201 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7202 * call dev_put.
1da177e4
LT
7203 */
7204static void netdev_wait_allrefs(struct net_device *dev)
7205{
7206 unsigned long rebroadcast_time, warning_time;
29b4433d 7207 int refcnt;
1da177e4 7208
e014debe
ED
7209 linkwatch_forget_dev(dev);
7210
1da177e4 7211 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7212 refcnt = netdev_refcnt_read(dev);
7213
7214 while (refcnt != 0) {
1da177e4 7215 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7216 rtnl_lock();
1da177e4
LT
7217
7218 /* Rebroadcast unregister notification */
056925ab 7219 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7220
748e2d93 7221 __rtnl_unlock();
0115e8e3 7222 rcu_barrier();
748e2d93
ED
7223 rtnl_lock();
7224
0115e8e3 7225 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7226 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7227 &dev->state)) {
7228 /* We must not have linkwatch events
7229 * pending on unregister. If this
7230 * happens, we simply run the queue
7231 * unscheduled, resulting in a noop
7232 * for this device.
7233 */
7234 linkwatch_run_queue();
7235 }
7236
6756ae4b 7237 __rtnl_unlock();
1da177e4
LT
7238
7239 rebroadcast_time = jiffies;
7240 }
7241
7242 msleep(250);
7243
29b4433d
ED
7244 refcnt = netdev_refcnt_read(dev);
7245
1da177e4 7246 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7247 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7248 dev->name, refcnt);
1da177e4
LT
7249 warning_time = jiffies;
7250 }
7251 }
7252}
7253
7254/* The sequence is:
7255 *
7256 * rtnl_lock();
7257 * ...
7258 * register_netdevice(x1);
7259 * register_netdevice(x2);
7260 * ...
7261 * unregister_netdevice(y1);
7262 * unregister_netdevice(y2);
7263 * ...
7264 * rtnl_unlock();
7265 * free_netdev(y1);
7266 * free_netdev(y2);
7267 *
58ec3b4d 7268 * We are invoked by rtnl_unlock().
1da177e4 7269 * This allows us to deal with problems:
b17a7c17 7270 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7271 * without deadlocking with linkwatch via keventd.
7272 * 2) Since we run with the RTNL semaphore not held, we can sleep
7273 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7274 *
7275 * We must not return until all unregister events added during
7276 * the interval the lock was held have been completed.
1da177e4 7277 */
1da177e4
LT
7278void netdev_run_todo(void)
7279{
626ab0e6 7280 struct list_head list;
1da177e4 7281
1da177e4 7282 /* Snapshot list, allow later requests */
626ab0e6 7283 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7284
7285 __rtnl_unlock();
626ab0e6 7286
0115e8e3
ED
7287
7288 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7289 if (!list_empty(&list))
7290 rcu_barrier();
7291
1da177e4
LT
7292 while (!list_empty(&list)) {
7293 struct net_device *dev
e5e26d75 7294 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7295 list_del(&dev->todo_list);
7296
748e2d93 7297 rtnl_lock();
0115e8e3 7298 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7299 __rtnl_unlock();
0115e8e3 7300
b17a7c17 7301 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7302 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7303 dev->name, dev->reg_state);
7304 dump_stack();
7305 continue;
7306 }
1da177e4 7307
b17a7c17 7308 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7309
b17a7c17 7310 netdev_wait_allrefs(dev);
1da177e4 7311
b17a7c17 7312 /* paranoia */
29b4433d 7313 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7314 BUG_ON(!list_empty(&dev->ptype_all));
7315 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7316 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7317 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7318 WARN_ON(dev->dn_ptr);
1da177e4 7319
b17a7c17
SH
7320 if (dev->destructor)
7321 dev->destructor(dev);
9093bbb2 7322
50624c93
EB
7323 /* Report a network device has been unregistered */
7324 rtnl_lock();
7325 dev_net(dev)->dev_unreg_count--;
7326 __rtnl_unlock();
7327 wake_up(&netdev_unregistering_wq);
7328
9093bbb2
SH
7329 /* Free network device */
7330 kobject_put(&dev->dev.kobj);
1da177e4 7331 }
1da177e4
LT
7332}
7333
9256645a
JW
7334/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7335 * all the same fields in the same order as net_device_stats, with only
7336 * the type differing, but rtnl_link_stats64 may have additional fields
7337 * at the end for newer counters.
3cfde79c 7338 */
77a1abf5
ED
7339void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7340 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7341{
7342#if BITS_PER_LONG == 64
9256645a 7343 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7344 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7345 /* zero out counters that only exist in rtnl_link_stats64 */
7346 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7347 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7348#else
9256645a 7349 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7350 const unsigned long *src = (const unsigned long *)netdev_stats;
7351 u64 *dst = (u64 *)stats64;
7352
9256645a 7353 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7354 for (i = 0; i < n; i++)
7355 dst[i] = src[i];
9256645a
JW
7356 /* zero out counters that only exist in rtnl_link_stats64 */
7357 memset((char *)stats64 + n * sizeof(u64), 0,
7358 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7359#endif
7360}
77a1abf5 7361EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7362
eeda3fd6
SH
7363/**
7364 * dev_get_stats - get network device statistics
7365 * @dev: device to get statistics from
28172739 7366 * @storage: place to store stats
eeda3fd6 7367 *
d7753516
BH
7368 * Get network statistics from device. Return @storage.
7369 * The device driver may provide its own method by setting
7370 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7371 * otherwise the internal statistics structure is used.
eeda3fd6 7372 */
d7753516
BH
7373struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7374 struct rtnl_link_stats64 *storage)
7004bf25 7375{
eeda3fd6
SH
7376 const struct net_device_ops *ops = dev->netdev_ops;
7377
28172739
ED
7378 if (ops->ndo_get_stats64) {
7379 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7380 ops->ndo_get_stats64(dev, storage);
7381 } else if (ops->ndo_get_stats) {
3cfde79c 7382 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7383 } else {
7384 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7385 }
caf586e5 7386 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7387 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7388 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7389 return storage;
c45d286e 7390}
eeda3fd6 7391EXPORT_SYMBOL(dev_get_stats);
c45d286e 7392
24824a09 7393struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7394{
24824a09 7395 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7396
24824a09
ED
7397#ifdef CONFIG_NET_CLS_ACT
7398 if (queue)
7399 return queue;
7400 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7401 if (!queue)
7402 return NULL;
7403 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7404 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7405 queue->qdisc_sleeping = &noop_qdisc;
7406 rcu_assign_pointer(dev->ingress_queue, queue);
7407#endif
7408 return queue;
bb949fbd
DM
7409}
7410
2c60db03
ED
7411static const struct ethtool_ops default_ethtool_ops;
7412
d07d7507
SG
7413void netdev_set_default_ethtool_ops(struct net_device *dev,
7414 const struct ethtool_ops *ops)
7415{
7416 if (dev->ethtool_ops == &default_ethtool_ops)
7417 dev->ethtool_ops = ops;
7418}
7419EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7420
74d332c1
ED
7421void netdev_freemem(struct net_device *dev)
7422{
7423 char *addr = (char *)dev - dev->padded;
7424
4cb28970 7425 kvfree(addr);
74d332c1
ED
7426}
7427
1da177e4 7428/**
36909ea4 7429 * alloc_netdev_mqs - allocate network device
c835a677
TG
7430 * @sizeof_priv: size of private data to allocate space for
7431 * @name: device name format string
7432 * @name_assign_type: origin of device name
7433 * @setup: callback to initialize device
7434 * @txqs: the number of TX subqueues to allocate
7435 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7436 *
7437 * Allocates a struct net_device with private data area for driver use
90e51adf 7438 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7439 * for each queue on the device.
1da177e4 7440 */
36909ea4 7441struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7442 unsigned char name_assign_type,
36909ea4
TH
7443 void (*setup)(struct net_device *),
7444 unsigned int txqs, unsigned int rxqs)
1da177e4 7445{
1da177e4 7446 struct net_device *dev;
7943986c 7447 size_t alloc_size;
1ce8e7b5 7448 struct net_device *p;
1da177e4 7449
b6fe17d6
SH
7450 BUG_ON(strlen(name) >= sizeof(dev->name));
7451
36909ea4 7452 if (txqs < 1) {
7b6cd1ce 7453 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7454 return NULL;
7455 }
7456
a953be53 7457#ifdef CONFIG_SYSFS
36909ea4 7458 if (rxqs < 1) {
7b6cd1ce 7459 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7460 return NULL;
7461 }
7462#endif
7463
fd2ea0a7 7464 alloc_size = sizeof(struct net_device);
d1643d24
AD
7465 if (sizeof_priv) {
7466 /* ensure 32-byte alignment of private area */
1ce8e7b5 7467 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7468 alloc_size += sizeof_priv;
7469 }
7470 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7471 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7472
74d332c1
ED
7473 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7474 if (!p)
7475 p = vzalloc(alloc_size);
62b5942a 7476 if (!p)
1da177e4 7477 return NULL;
1da177e4 7478
1ce8e7b5 7479 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7480 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7481
29b4433d
ED
7482 dev->pcpu_refcnt = alloc_percpu(int);
7483 if (!dev->pcpu_refcnt)
74d332c1 7484 goto free_dev;
ab9c73cc 7485
ab9c73cc 7486 if (dev_addr_init(dev))
29b4433d 7487 goto free_pcpu;
ab9c73cc 7488
22bedad3 7489 dev_mc_init(dev);
a748ee24 7490 dev_uc_init(dev);
ccffad25 7491
c346dca1 7492 dev_net_set(dev, &init_net);
1da177e4 7493
8d3bdbd5 7494 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7495 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7496
8d3bdbd5
DM
7497 INIT_LIST_HEAD(&dev->napi_list);
7498 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7499 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7500 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7501 INIT_LIST_HEAD(&dev->adj_list.upper);
7502 INIT_LIST_HEAD(&dev->adj_list.lower);
7503 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7504 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7505 INIT_LIST_HEAD(&dev->ptype_all);
7506 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 7507 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7508 setup(dev);
7509
a813104d 7510 if (!dev->tx_queue_len) {
f84bb1ea 7511 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7512 dev->tx_queue_len = 1;
7513 }
906470c1 7514
36909ea4
TH
7515 dev->num_tx_queues = txqs;
7516 dev->real_num_tx_queues = txqs;
ed9af2e8 7517 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7518 goto free_all;
e8a0464c 7519
a953be53 7520#ifdef CONFIG_SYSFS
36909ea4
TH
7521 dev->num_rx_queues = rxqs;
7522 dev->real_num_rx_queues = rxqs;
fe822240 7523 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7524 goto free_all;
df334545 7525#endif
0a9627f2 7526
1da177e4 7527 strcpy(dev->name, name);
c835a677 7528 dev->name_assign_type = name_assign_type;
cbda10fa 7529 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7530 if (!dev->ethtool_ops)
7531 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7532
7533 nf_hook_ingress_init(dev);
7534
1da177e4 7535 return dev;
ab9c73cc 7536
8d3bdbd5
DM
7537free_all:
7538 free_netdev(dev);
7539 return NULL;
7540
29b4433d
ED
7541free_pcpu:
7542 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7543free_dev:
7544 netdev_freemem(dev);
ab9c73cc 7545 return NULL;
1da177e4 7546}
36909ea4 7547EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7548
7549/**
7550 * free_netdev - free network device
7551 * @dev: device
7552 *
4ec93edb
YH
7553 * This function does the last stage of destroying an allocated device
7554 * interface. The reference to the device object is released.
1da177e4 7555 * If this is the last reference then it will be freed.
93d05d4a 7556 * Must be called in process context.
1da177e4
LT
7557 */
7558void free_netdev(struct net_device *dev)
7559{
d565b0a1
HX
7560 struct napi_struct *p, *n;
7561
93d05d4a 7562 might_sleep();
60877a32 7563 netif_free_tx_queues(dev);
a953be53 7564#ifdef CONFIG_SYSFS
10595902 7565 kvfree(dev->_rx);
fe822240 7566#endif
e8a0464c 7567
33d480ce 7568 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7569
f001fde5
JP
7570 /* Flush device addresses */
7571 dev_addr_flush(dev);
7572
d565b0a1
HX
7573 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7574 netif_napi_del(p);
7575
29b4433d
ED
7576 free_percpu(dev->pcpu_refcnt);
7577 dev->pcpu_refcnt = NULL;
7578
3041a069 7579 /* Compatibility with error handling in drivers */
1da177e4 7580 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7581 netdev_freemem(dev);
1da177e4
LT
7582 return;
7583 }
7584
7585 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7586 dev->reg_state = NETREG_RELEASED;
7587
43cb76d9
GKH
7588 /* will free via device release */
7589 put_device(&dev->dev);
1da177e4 7590}
d1b19dff 7591EXPORT_SYMBOL(free_netdev);
4ec93edb 7592
f0db275a
SH
7593/**
7594 * synchronize_net - Synchronize with packet receive processing
7595 *
7596 * Wait for packets currently being received to be done.
7597 * Does not block later packets from starting.
7598 */
4ec93edb 7599void synchronize_net(void)
1da177e4
LT
7600{
7601 might_sleep();
be3fc413
ED
7602 if (rtnl_is_locked())
7603 synchronize_rcu_expedited();
7604 else
7605 synchronize_rcu();
1da177e4 7606}
d1b19dff 7607EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7608
7609/**
44a0873d 7610 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7611 * @dev: device
44a0873d 7612 * @head: list
6ebfbc06 7613 *
1da177e4 7614 * This function shuts down a device interface and removes it
d59b54b1 7615 * from the kernel tables.
44a0873d 7616 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7617 *
7618 * Callers must hold the rtnl semaphore. You may want
7619 * unregister_netdev() instead of this.
7620 */
7621
44a0873d 7622void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7623{
a6620712
HX
7624 ASSERT_RTNL();
7625
44a0873d 7626 if (head) {
9fdce099 7627 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7628 } else {
7629 rollback_registered(dev);
7630 /* Finish processing unregister after unlock */
7631 net_set_todo(dev);
7632 }
1da177e4 7633}
44a0873d 7634EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7635
9b5e383c
ED
7636/**
7637 * unregister_netdevice_many - unregister many devices
7638 * @head: list of devices
87757a91
ED
7639 *
7640 * Note: As most callers use a stack allocated list_head,
7641 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7642 */
7643void unregister_netdevice_many(struct list_head *head)
7644{
7645 struct net_device *dev;
7646
7647 if (!list_empty(head)) {
7648 rollback_registered_many(head);
7649 list_for_each_entry(dev, head, unreg_list)
7650 net_set_todo(dev);
87757a91 7651 list_del(head);
9b5e383c
ED
7652 }
7653}
63c8099d 7654EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7655
1da177e4
LT
7656/**
7657 * unregister_netdev - remove device from the kernel
7658 * @dev: device
7659 *
7660 * This function shuts down a device interface and removes it
d59b54b1 7661 * from the kernel tables.
1da177e4
LT
7662 *
7663 * This is just a wrapper for unregister_netdevice that takes
7664 * the rtnl semaphore. In general you want to use this and not
7665 * unregister_netdevice.
7666 */
7667void unregister_netdev(struct net_device *dev)
7668{
7669 rtnl_lock();
7670 unregister_netdevice(dev);
7671 rtnl_unlock();
7672}
1da177e4
LT
7673EXPORT_SYMBOL(unregister_netdev);
7674
ce286d32
EB
7675/**
7676 * dev_change_net_namespace - move device to different nethost namespace
7677 * @dev: device
7678 * @net: network namespace
7679 * @pat: If not NULL name pattern to try if the current device name
7680 * is already taken in the destination network namespace.
7681 *
7682 * This function shuts down a device interface and moves it
7683 * to a new network namespace. On success 0 is returned, on
7684 * a failure a netagive errno code is returned.
7685 *
7686 * Callers must hold the rtnl semaphore.
7687 */
7688
7689int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7690{
ce286d32
EB
7691 int err;
7692
7693 ASSERT_RTNL();
7694
7695 /* Don't allow namespace local devices to be moved. */
7696 err = -EINVAL;
7697 if (dev->features & NETIF_F_NETNS_LOCAL)
7698 goto out;
7699
7700 /* Ensure the device has been registrered */
ce286d32
EB
7701 if (dev->reg_state != NETREG_REGISTERED)
7702 goto out;
7703
7704 /* Get out if there is nothing todo */
7705 err = 0;
878628fb 7706 if (net_eq(dev_net(dev), net))
ce286d32
EB
7707 goto out;
7708
7709 /* Pick the destination device name, and ensure
7710 * we can use it in the destination network namespace.
7711 */
7712 err = -EEXIST;
d9031024 7713 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7714 /* We get here if we can't use the current device name */
7715 if (!pat)
7716 goto out;
828de4f6 7717 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7718 goto out;
7719 }
7720
7721 /*
7722 * And now a mini version of register_netdevice unregister_netdevice.
7723 */
7724
7725 /* If device is running close it first. */
9b772652 7726 dev_close(dev);
ce286d32
EB
7727
7728 /* And unlink it from device chain */
7729 err = -ENODEV;
7730 unlist_netdevice(dev);
7731
7732 synchronize_net();
7733
7734 /* Shutdown queueing discipline. */
7735 dev_shutdown(dev);
7736
7737 /* Notify protocols, that we are about to destroy
7738 this device. They should clean all the things.
3b27e105
DL
7739
7740 Note that dev->reg_state stays at NETREG_REGISTERED.
7741 This is wanted because this way 8021q and macvlan know
7742 the device is just moving and can keep their slaves up.
ce286d32
EB
7743 */
7744 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7745 rcu_barrier();
7746 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7747 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7748
7749 /*
7750 * Flush the unicast and multicast chains
7751 */
a748ee24 7752 dev_uc_flush(dev);
22bedad3 7753 dev_mc_flush(dev);
ce286d32 7754
4e66ae2e
SH
7755 /* Send a netdev-removed uevent to the old namespace */
7756 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7757 netdev_adjacent_del_links(dev);
4e66ae2e 7758
ce286d32 7759 /* Actually switch the network namespace */
c346dca1 7760 dev_net_set(dev, net);
ce286d32 7761
ce286d32 7762 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7763 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7764 dev->ifindex = dev_new_index(net);
ce286d32 7765
4e66ae2e
SH
7766 /* Send a netdev-add uevent to the new namespace */
7767 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7768 netdev_adjacent_add_links(dev);
4e66ae2e 7769
8b41d188 7770 /* Fixup kobjects */
a1b3f594 7771 err = device_rename(&dev->dev, dev->name);
8b41d188 7772 WARN_ON(err);
ce286d32
EB
7773
7774 /* Add the device back in the hashes */
7775 list_netdevice(dev);
7776
7777 /* Notify protocols, that a new device appeared. */
7778 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7779
d90a909e
EB
7780 /*
7781 * Prevent userspace races by waiting until the network
7782 * device is fully setup before sending notifications.
7783 */
7f294054 7784 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7785
ce286d32
EB
7786 synchronize_net();
7787 err = 0;
7788out:
7789 return err;
7790}
463d0183 7791EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7792
1da177e4
LT
7793static int dev_cpu_callback(struct notifier_block *nfb,
7794 unsigned long action,
7795 void *ocpu)
7796{
7797 struct sk_buff **list_skb;
1da177e4
LT
7798 struct sk_buff *skb;
7799 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7800 struct softnet_data *sd, *oldsd;
7801
8bb78442 7802 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7803 return NOTIFY_OK;
7804
7805 local_irq_disable();
7806 cpu = smp_processor_id();
7807 sd = &per_cpu(softnet_data, cpu);
7808 oldsd = &per_cpu(softnet_data, oldcpu);
7809
7810 /* Find end of our completion_queue. */
7811 list_skb = &sd->completion_queue;
7812 while (*list_skb)
7813 list_skb = &(*list_skb)->next;
7814 /* Append completion queue from offline CPU. */
7815 *list_skb = oldsd->completion_queue;
7816 oldsd->completion_queue = NULL;
7817
1da177e4 7818 /* Append output queue from offline CPU. */
a9cbd588
CG
7819 if (oldsd->output_queue) {
7820 *sd->output_queue_tailp = oldsd->output_queue;
7821 sd->output_queue_tailp = oldsd->output_queue_tailp;
7822 oldsd->output_queue = NULL;
7823 oldsd->output_queue_tailp = &oldsd->output_queue;
7824 }
ac64da0b
ED
7825 /* Append NAPI poll list from offline CPU, with one exception :
7826 * process_backlog() must be called by cpu owning percpu backlog.
7827 * We properly handle process_queue & input_pkt_queue later.
7828 */
7829 while (!list_empty(&oldsd->poll_list)) {
7830 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7831 struct napi_struct,
7832 poll_list);
7833
7834 list_del_init(&napi->poll_list);
7835 if (napi->poll == process_backlog)
7836 napi->state = 0;
7837 else
7838 ____napi_schedule(sd, napi);
264524d5 7839 }
1da177e4
LT
7840
7841 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7842 local_irq_enable();
7843
7844 /* Process offline CPU's input_pkt_queue */
76cc8b13 7845 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7846 netif_rx_ni(skb);
76cc8b13 7847 input_queue_head_incr(oldsd);
fec5e652 7848 }
ac64da0b 7849 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7850 netif_rx_ni(skb);
76cc8b13
TH
7851 input_queue_head_incr(oldsd);
7852 }
1da177e4
LT
7853
7854 return NOTIFY_OK;
7855}
1da177e4
LT
7856
7857
7f353bf2 7858/**
b63365a2
HX
7859 * netdev_increment_features - increment feature set by one
7860 * @all: current feature set
7861 * @one: new feature set
7862 * @mask: mask feature set
7f353bf2
HX
7863 *
7864 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7865 * @one to the master device with current feature set @all. Will not
7866 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7867 */
c8f44aff
MM
7868netdev_features_t netdev_increment_features(netdev_features_t all,
7869 netdev_features_t one, netdev_features_t mask)
b63365a2 7870{
c8cd0989 7871 if (mask & NETIF_F_HW_CSUM)
a188222b 7872 mask |= NETIF_F_CSUM_MASK;
1742f183 7873 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7874
a188222b 7875 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 7876 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7877
1742f183 7878 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
7879 if (all & NETIF_F_HW_CSUM)
7880 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
7881
7882 return all;
7883}
b63365a2 7884EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7885
430f03cd 7886static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7887{
7888 int i;
7889 struct hlist_head *hash;
7890
7891 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7892 if (hash != NULL)
7893 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7894 INIT_HLIST_HEAD(&hash[i]);
7895
7896 return hash;
7897}
7898
881d966b 7899/* Initialize per network namespace state */
4665079c 7900static int __net_init netdev_init(struct net *net)
881d966b 7901{
734b6541
RM
7902 if (net != &init_net)
7903 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7904
30d97d35
PE
7905 net->dev_name_head = netdev_create_hash();
7906 if (net->dev_name_head == NULL)
7907 goto err_name;
881d966b 7908
30d97d35
PE
7909 net->dev_index_head = netdev_create_hash();
7910 if (net->dev_index_head == NULL)
7911 goto err_idx;
881d966b
EB
7912
7913 return 0;
30d97d35
PE
7914
7915err_idx:
7916 kfree(net->dev_name_head);
7917err_name:
7918 return -ENOMEM;
881d966b
EB
7919}
7920
f0db275a
SH
7921/**
7922 * netdev_drivername - network driver for the device
7923 * @dev: network device
f0db275a
SH
7924 *
7925 * Determine network driver for device.
7926 */
3019de12 7927const char *netdev_drivername(const struct net_device *dev)
6579e57b 7928{
cf04a4c7
SH
7929 const struct device_driver *driver;
7930 const struct device *parent;
3019de12 7931 const char *empty = "";
6579e57b
AV
7932
7933 parent = dev->dev.parent;
6579e57b 7934 if (!parent)
3019de12 7935 return empty;
6579e57b
AV
7936
7937 driver = parent->driver;
7938 if (driver && driver->name)
3019de12
DM
7939 return driver->name;
7940 return empty;
6579e57b
AV
7941}
7942
6ea754eb
JP
7943static void __netdev_printk(const char *level, const struct net_device *dev,
7944 struct va_format *vaf)
256df2f3 7945{
b004ff49 7946 if (dev && dev->dev.parent) {
6ea754eb
JP
7947 dev_printk_emit(level[1] - '0',
7948 dev->dev.parent,
7949 "%s %s %s%s: %pV",
7950 dev_driver_string(dev->dev.parent),
7951 dev_name(dev->dev.parent),
7952 netdev_name(dev), netdev_reg_state(dev),
7953 vaf);
b004ff49 7954 } else if (dev) {
6ea754eb
JP
7955 printk("%s%s%s: %pV",
7956 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7957 } else {
6ea754eb 7958 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7959 }
256df2f3
JP
7960}
7961
6ea754eb
JP
7962void netdev_printk(const char *level, const struct net_device *dev,
7963 const char *format, ...)
256df2f3
JP
7964{
7965 struct va_format vaf;
7966 va_list args;
256df2f3
JP
7967
7968 va_start(args, format);
7969
7970 vaf.fmt = format;
7971 vaf.va = &args;
7972
6ea754eb 7973 __netdev_printk(level, dev, &vaf);
b004ff49 7974
256df2f3 7975 va_end(args);
256df2f3
JP
7976}
7977EXPORT_SYMBOL(netdev_printk);
7978
7979#define define_netdev_printk_level(func, level) \
6ea754eb 7980void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7981{ \
256df2f3
JP
7982 struct va_format vaf; \
7983 va_list args; \
7984 \
7985 va_start(args, fmt); \
7986 \
7987 vaf.fmt = fmt; \
7988 vaf.va = &args; \
7989 \
6ea754eb 7990 __netdev_printk(level, dev, &vaf); \
b004ff49 7991 \
256df2f3 7992 va_end(args); \
256df2f3
JP
7993} \
7994EXPORT_SYMBOL(func);
7995
7996define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7997define_netdev_printk_level(netdev_alert, KERN_ALERT);
7998define_netdev_printk_level(netdev_crit, KERN_CRIT);
7999define_netdev_printk_level(netdev_err, KERN_ERR);
8000define_netdev_printk_level(netdev_warn, KERN_WARNING);
8001define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8002define_netdev_printk_level(netdev_info, KERN_INFO);
8003
4665079c 8004static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8005{
8006 kfree(net->dev_name_head);
8007 kfree(net->dev_index_head);
8008}
8009
022cbae6 8010static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8011 .init = netdev_init,
8012 .exit = netdev_exit,
8013};
8014
4665079c 8015static void __net_exit default_device_exit(struct net *net)
ce286d32 8016{
e008b5fc 8017 struct net_device *dev, *aux;
ce286d32 8018 /*
e008b5fc 8019 * Push all migratable network devices back to the
ce286d32
EB
8020 * initial network namespace
8021 */
8022 rtnl_lock();
e008b5fc 8023 for_each_netdev_safe(net, dev, aux) {
ce286d32 8024 int err;
aca51397 8025 char fb_name[IFNAMSIZ];
ce286d32
EB
8026
8027 /* Ignore unmoveable devices (i.e. loopback) */
8028 if (dev->features & NETIF_F_NETNS_LOCAL)
8029 continue;
8030
e008b5fc
EB
8031 /* Leave virtual devices for the generic cleanup */
8032 if (dev->rtnl_link_ops)
8033 continue;
d0c082ce 8034
25985edc 8035 /* Push remaining network devices to init_net */
aca51397
PE
8036 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8037 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8038 if (err) {
7b6cd1ce
JP
8039 pr_emerg("%s: failed to move %s to init_net: %d\n",
8040 __func__, dev->name, err);
aca51397 8041 BUG();
ce286d32
EB
8042 }
8043 }
8044 rtnl_unlock();
8045}
8046
50624c93
EB
8047static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8048{
8049 /* Return with the rtnl_lock held when there are no network
8050 * devices unregistering in any network namespace in net_list.
8051 */
8052 struct net *net;
8053 bool unregistering;
ff960a73 8054 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8055
ff960a73 8056 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8057 for (;;) {
50624c93
EB
8058 unregistering = false;
8059 rtnl_lock();
8060 list_for_each_entry(net, net_list, exit_list) {
8061 if (net->dev_unreg_count > 0) {
8062 unregistering = true;
8063 break;
8064 }
8065 }
8066 if (!unregistering)
8067 break;
8068 __rtnl_unlock();
ff960a73
PZ
8069
8070 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8071 }
ff960a73 8072 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8073}
8074
04dc7f6b
EB
8075static void __net_exit default_device_exit_batch(struct list_head *net_list)
8076{
8077 /* At exit all network devices most be removed from a network
b595076a 8078 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8079 * Do this across as many network namespaces as possible to
8080 * improve batching efficiency.
8081 */
8082 struct net_device *dev;
8083 struct net *net;
8084 LIST_HEAD(dev_kill_list);
8085
50624c93
EB
8086 /* To prevent network device cleanup code from dereferencing
8087 * loopback devices or network devices that have been freed
8088 * wait here for all pending unregistrations to complete,
8089 * before unregistring the loopback device and allowing the
8090 * network namespace be freed.
8091 *
8092 * The netdev todo list containing all network devices
8093 * unregistrations that happen in default_device_exit_batch
8094 * will run in the rtnl_unlock() at the end of
8095 * default_device_exit_batch.
8096 */
8097 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8098 list_for_each_entry(net, net_list, exit_list) {
8099 for_each_netdev_reverse(net, dev) {
b0ab2fab 8100 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8101 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8102 else
8103 unregister_netdevice_queue(dev, &dev_kill_list);
8104 }
8105 }
8106 unregister_netdevice_many(&dev_kill_list);
8107 rtnl_unlock();
8108}
8109
022cbae6 8110static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8111 .exit = default_device_exit,
04dc7f6b 8112 .exit_batch = default_device_exit_batch,
ce286d32
EB
8113};
8114
1da177e4
LT
8115/*
8116 * Initialize the DEV module. At boot time this walks the device list and
8117 * unhooks any devices that fail to initialise (normally hardware not
8118 * present) and leaves us with a valid list of present and active devices.
8119 *
8120 */
8121
8122/*
8123 * This is called single threaded during boot, so no need
8124 * to take the rtnl semaphore.
8125 */
8126static int __init net_dev_init(void)
8127{
8128 int i, rc = -ENOMEM;
8129
8130 BUG_ON(!dev_boot_phase);
8131
1da177e4
LT
8132 if (dev_proc_init())
8133 goto out;
8134
8b41d188 8135 if (netdev_kobject_init())
1da177e4
LT
8136 goto out;
8137
8138 INIT_LIST_HEAD(&ptype_all);
82d8a867 8139 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8140 INIT_LIST_HEAD(&ptype_base[i]);
8141
62532da9
VY
8142 INIT_LIST_HEAD(&offload_base);
8143
881d966b
EB
8144 if (register_pernet_subsys(&netdev_net_ops))
8145 goto out;
1da177e4
LT
8146
8147 /*
8148 * Initialise the packet receive queues.
8149 */
8150
6f912042 8151 for_each_possible_cpu(i) {
e36fa2f7 8152 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8153
e36fa2f7 8154 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8155 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8156 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8157 sd->output_queue_tailp = &sd->output_queue;
df334545 8158#ifdef CONFIG_RPS
e36fa2f7
ED
8159 sd->csd.func = rps_trigger_softirq;
8160 sd->csd.info = sd;
e36fa2f7 8161 sd->cpu = i;
1e94d72f 8162#endif
0a9627f2 8163
e36fa2f7
ED
8164 sd->backlog.poll = process_backlog;
8165 sd->backlog.weight = weight_p;
1da177e4
LT
8166 }
8167
1da177e4
LT
8168 dev_boot_phase = 0;
8169
505d4f73
EB
8170 /* The loopback device is special if any other network devices
8171 * is present in a network namespace the loopback device must
8172 * be present. Since we now dynamically allocate and free the
8173 * loopback device ensure this invariant is maintained by
8174 * keeping the loopback device as the first device on the
8175 * list of network devices. Ensuring the loopback devices
8176 * is the first device that appears and the last network device
8177 * that disappears.
8178 */
8179 if (register_pernet_device(&loopback_net_ops))
8180 goto out;
8181
8182 if (register_pernet_device(&default_device_ops))
8183 goto out;
8184
962cf36c
CM
8185 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8186 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8187
8188 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8189 dst_subsys_init();
1da177e4
LT
8190 rc = 0;
8191out:
8192 return rc;
8193}
8194
8195subsys_initcall(net_dev_init);