]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - net/core/dev.c
net: core: check dev_valid_name in __dev_alloc_name
[mirror_ubuntu-jammy-kernel.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
f1083048 84#include <linux/sched/mm.h>
4a3e2f71 85#include <linux/mutex.h>
1da177e4
LT
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
0187bdfb 95#include <linux/ethtool.h>
1da177e4
LT
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
a7862b45 98#include <linux/bpf.h>
b5cdae32 99#include <linux/bpf_trace.h>
457c4cbc 100#include <net/net_namespace.h>
1da177e4 101#include <net/sock.h>
02d62e86 102#include <net/busy_poll.h>
1da177e4 103#include <linux/rtnetlink.h>
1da177e4 104#include <linux/stat.h>
1da177e4 105#include <net/dst.h>
fc4099f1 106#include <net/dst_metadata.h>
1da177e4 107#include <net/pkt_sched.h>
87d83093 108#include <net/pkt_cls.h>
1da177e4 109#include <net/checksum.h>
44540960 110#include <net/xfrm.h>
1da177e4
LT
111#include <linux/highmem.h>
112#include <linux/init.h>
1da177e4 113#include <linux/module.h>
1da177e4
LT
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
1da177e4 117#include <net/iw_handler.h>
1da177e4 118#include <asm/current.h>
5bdb9886 119#include <linux/audit.h>
db217334 120#include <linux/dmaengine.h>
f6a78bfc 121#include <linux/err.h>
c7fa9d18 122#include <linux/ctype.h>
723e98b7 123#include <linux/if_arp.h>
6de329e2 124#include <linux/if_vlan.h>
8f0f2223 125#include <linux/ip.h>
ad55dcaf 126#include <net/ip.h>
25cd9ba0 127#include <net/mpls.h>
8f0f2223
DM
128#include <linux/ipv6.h>
129#include <linux/in.h>
b6b2fed1
DM
130#include <linux/jhash.h>
131#include <linux/random.h>
9cbc1cb8 132#include <trace/events/napi.h>
cf66ba58 133#include <trace/events/net.h>
07dc22e7 134#include <trace/events/skb.h>
5acbbd42 135#include <linux/pci.h>
caeda9b9 136#include <linux/inetdevice.h>
c445477d 137#include <linux/cpu_rmap.h>
c5905afb 138#include <linux/static_key.h>
af12fa6e 139#include <linux/hashtable.h>
60877a32 140#include <linux/vmalloc.h>
529d0489 141#include <linux/if_macvlan.h>
e7fd2885 142#include <linux/errqueue.h>
3b47d303 143#include <linux/hrtimer.h>
e687ad60 144#include <linux/netfilter_ingress.h>
40e4e713 145#include <linux/crash_dump.h>
b72b5bf6 146#include <linux/sctp.h>
ae847f40 147#include <net/udp_tunnel.h>
6621dd29 148#include <linux/net_namespace.h>
1da177e4 149
342709ef
PE
150#include "net-sysfs.h"
151
d565b0a1
HX
152/* Instead of increasing this, you should create a hash table. */
153#define MAX_GRO_SKBS 8
154
5d38a079
HX
155/* This should be increased if a protocol with a bigger head is added. */
156#define GRO_MAX_HEAD (MAX_HEADER + 128)
157
1da177e4 158static DEFINE_SPINLOCK(ptype_lock);
62532da9 159static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161struct list_head ptype_all __read_mostly; /* Taps */
62532da9 162static struct list_head offload_base __read_mostly;
1da177e4 163
ae78dbfa 164static int netif_rx_internal(struct sk_buff *skb);
54951194 165static int call_netdevice_notifiers_info(unsigned long val,
54951194 166 struct netdev_notifier_info *info);
90b602f8 167static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 168
1da177e4 169/*
7562f876 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
171 * semaphore.
172 *
c6d14c84 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
7562f876 176 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
1da177e4 188DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
189EXPORT_SYMBOL(dev_base_lock);
190
6c557001
FW
191static DEFINE_MUTEX(ifalias_mutex);
192
af12fa6e
ET
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
52bd2d62 196static unsigned int napi_gen_id = NR_CPUS;
6180d9de 197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 198
18afa4b0 199static seqcount_t devnet_rename_seq;
c91f6df2 200
4e985ada
TG
201static inline void dev_base_seq_inc(struct net *net)
202{
643aa9cb 203 while (++net->dev_base_seq == 0)
204 ;
4e985ada
TG
205}
206
881d966b 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 208{
8387ff25 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 210
08e9897d 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
212}
213
881d966b 214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 215{
7c28bd0b 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
217}
218
e36fa2f7 219static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
220{
221#ifdef CONFIG_RPS
e36fa2f7 222 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
223#endif
224}
225
e36fa2f7 226static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
227{
228#ifdef CONFIG_RPS
e36fa2f7 229 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
230#endif
231}
232
ce286d32 233/* Device list insertion */
53759be9 234static void list_netdevice(struct net_device *dev)
ce286d32 235{
c346dca1 236 struct net *net = dev_net(dev);
ce286d32
EB
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
c6d14c84 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
ce286d32 245 write_unlock_bh(&dev_base_lock);
4e985ada
TG
246
247 dev_base_seq_inc(net);
ce286d32
EB
248}
249
fb699dfd
ED
250/* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
ce286d32
EB
253static void unlist_netdevice(struct net_device *dev)
254{
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
c6d14c84 259 list_del_rcu(&dev->dev_list);
72c9528b 260 hlist_del_rcu(&dev->name_hlist);
fb699dfd 261 hlist_del_rcu(&dev->index_hlist);
ce286d32 262 write_unlock_bh(&dev_base_lock);
4e985ada
TG
263
264 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
265}
266
1da177e4
LT
267/*
268 * Our notifier list
269 */
270
f07d5b94 271static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
272
273/*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
bea3348e 277
9958da05 278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 279EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 280
cf508b12 281#ifdef CONFIG_LOCKDEP
723e98b7 282/*
c773e847 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
284 * according to dev->type
285 */
643aa9cb 286static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 302
643aa9cb 303static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
319
320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
322
323static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324{
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332}
333
cf508b12
DM
334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
723e98b7
JP
336{
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342}
cf508b12
DM
343
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345{
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352}
723e98b7 353#else
cf508b12
DM
354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356{
357}
358static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
359{
360}
361#endif
1da177e4
LT
362
363/*******************************************************************************
eb13da1a 364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
1da177e4 368
1da177e4 369
1da177e4
LT
370/*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
c07b68e8
ED
386static inline struct list_head *ptype_head(const struct packet_type *pt)
387{
388 if (pt->type == htons(ETH_P_ALL))
7866a621 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 390 else
7866a621
SN
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
393}
394
1da177e4
LT
395/**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
4ec93edb 403 * This call does not sleep therefore it can not
1da177e4
LT
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
408void dev_add_pack(struct packet_type *pt)
409{
c07b68e8 410 struct list_head *head = ptype_head(pt);
1da177e4 411
c07b68e8
ED
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
1da177e4 415}
d1b19dff 416EXPORT_SYMBOL(dev_add_pack);
1da177e4 417
1da177e4
LT
418/**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
4ec93edb 425 * returns.
1da177e4
LT
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
431void __dev_remove_pack(struct packet_type *pt)
432{
c07b68e8 433 struct list_head *head = ptype_head(pt);
1da177e4
LT
434 struct packet_type *pt1;
435
c07b68e8 436 spin_lock(&ptype_lock);
1da177e4
LT
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
7b6cd1ce 445 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 446out:
c07b68e8 447 spin_unlock(&ptype_lock);
1da177e4 448}
d1b19dff
ED
449EXPORT_SYMBOL(__dev_remove_pack);
450
1da177e4
LT
451/**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
463void dev_remove_pack(struct packet_type *pt)
464{
465 __dev_remove_pack(pt);
4ec93edb 466
1da177e4
LT
467 synchronize_net();
468}
d1b19dff 469EXPORT_SYMBOL(dev_remove_pack);
1da177e4 470
62532da9
VY
471
472/**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
484void dev_add_offload(struct packet_offload *po)
485{
bdef7de4 486 struct packet_offload *elem;
62532da9
VY
487
488 spin_lock(&offload_lock);
bdef7de4
DM
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
494 spin_unlock(&offload_lock);
495}
496EXPORT_SYMBOL(dev_add_offload);
497
498/**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
1d143d9f 511static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
512{
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
c53aa505 516 spin_lock(&offload_lock);
62532da9
VY
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526out:
c53aa505 527 spin_unlock(&offload_lock);
62532da9 528}
62532da9
VY
529
530/**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
542void dev_remove_offload(struct packet_offload *po)
543{
544 __dev_remove_offload(po);
545
546 synchronize_net();
547}
548EXPORT_SYMBOL(dev_remove_offload);
549
1da177e4 550/******************************************************************************
eb13da1a 551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
1da177e4
LT
555
556/* Boot time configuration table */
557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559/**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
568static int netdev_boot_setup_add(char *name, struct ifmap *map)
569{
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 577 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584}
585
586/**
722c9a0c 587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
1da177e4 589 *
722c9a0c 590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
594 */
595int netdev_boot_setup_check(struct net_device *dev)
596{
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 602 !strcmp(dev->name, s[i].name)) {
722c9a0c 603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
607 return 1;
608 }
609 }
610 return 0;
611}
d1b19dff 612EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
613
614
615/**
722c9a0c 616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
1da177e4
LT
624 */
625unsigned long netdev_boot_base(const char *prefix, int unit)
626{
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
881d966b 637 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644}
645
646/*
647 * Saves at boot time configured settings for any netdevice.
648 */
649int __init netdev_boot_setup(char *str)
650{
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671}
672
673__setup("netdev=", netdev_boot_setup);
674
675/*******************************************************************************
eb13da1a 676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
1da177e4 680
a54acb3a
ND
681/**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
689int dev_get_iflink(const struct net_device *dev)
690{
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
7a66bbc9 694 return dev->ifindex;
a54acb3a
ND
695}
696EXPORT_SYMBOL(dev_get_iflink);
697
fc4099f1
PS
698/**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708{
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721}
722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
1da177e4
LT
724/**
725 * __dev_get_by_name - find a device by its name
c4ea43c5 726 * @net: the applicable net namespace
1da177e4
LT
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
881d966b 736struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 737{
0bd8d536
ED
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 740
b67bfe0d 741 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
0bd8d536 744
1da177e4
LT
745 return NULL;
746}
d1b19dff 747EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 748
72c9528b 749/**
722c9a0c 750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
759 */
760
761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762{
72c9528b
ED
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
b67bfe0d 766 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_get_by_name_rcu);
773
1da177e4
LT
774/**
775 * dev_get_by_name - find a device by its name
c4ea43c5 776 * @net: the applicable net namespace
1da177e4
LT
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
881d966b 786struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
787{
788 struct net_device *dev;
789
72c9528b
ED
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
792 if (dev)
793 dev_hold(dev);
72c9528b 794 rcu_read_unlock();
1da177e4
LT
795 return dev;
796}
d1b19dff 797EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
798
799/**
800 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 801 * @net: the applicable net namespace
1da177e4
LT
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
881d966b 811struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 812{
0bd8d536
ED
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 815
b67bfe0d 816 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
817 if (dev->ifindex == ifindex)
818 return dev;
0bd8d536 819
1da177e4
LT
820 return NULL;
821}
d1b19dff 822EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 823
fb699dfd
ED
824/**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836{
fb699dfd
ED
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
b67bfe0d 840 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845}
846EXPORT_SYMBOL(dev_get_by_index_rcu);
847
1da177e4
LT
848
849/**
850 * dev_get_by_index - find a device by its ifindex
c4ea43c5 851 * @net: the applicable net namespace
1da177e4
LT
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
881d966b 860struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
861{
862 struct net_device *dev;
863
fb699dfd
ED
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
866 if (dev)
867 dev_hold(dev);
fb699dfd 868 rcu_read_unlock();
1da177e4
LT
869 return dev;
870}
d1b19dff 871EXPORT_SYMBOL(dev_get_by_index);
1da177e4 872
90b602f8
ML
873/**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
883struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884{
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895}
896EXPORT_SYMBOL(dev_get_by_napi_id);
897
5dbe7c17
NS
898/**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 *
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
907 */
908int netdev_get_name(struct net *net, char *name, int ifindex)
909{
910 struct net_device *dev;
911 unsigned int seq;
912
913retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
920 }
921
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
927 }
928
929 return 0;
930}
931
1da177e4 932/**
941666c2 933 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 934 * @net: the applicable net namespace
1da177e4
LT
935 * @type: media type of device
936 * @ha: hardware address
937 *
938 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941666c2 941 * The returned device has not had its ref count increased
1da177e4
LT
942 * and the caller must therefore be careful about locking
943 *
1da177e4
LT
944 */
945
941666c2
ED
946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
1da177e4
LT
948{
949 struct net_device *dev;
950
941666c2 951 for_each_netdev_rcu(net, dev)
1da177e4
LT
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
954 return dev;
955
956 return NULL;
1da177e4 957}
941666c2 958EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 959
881d966b 960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
961{
962 struct net_device *dev;
963
4e9cac2b 964 ASSERT_RTNL();
881d966b 965 for_each_netdev(net, dev)
4e9cac2b 966 if (dev->type == type)
7562f876
PE
967 return dev;
968
969 return NULL;
4e9cac2b 970}
4e9cac2b
PM
971EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
881d966b 973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 974{
99fe3c39 975 struct net_device *dev, *ret = NULL;
4e9cac2b 976
99fe3c39
ED
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
983 }
984 rcu_read_unlock();
985 return ret;
1da177e4 986}
1da177e4
LT
987EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989/**
6c555490 990 * __dev_get_by_flags - find any device with given flags
c4ea43c5 991 * @net: the applicable net namespace
1da177e4
LT
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
994 *
995 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 996 * is not found or a pointer to the device. Must be called inside
6c555490 997 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
998 */
999
6c555490
WC
1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1da177e4 1002{
7562f876 1003 struct net_device *dev, *ret;
1da177e4 1004
6c555490
WC
1005 ASSERT_RTNL();
1006
7562f876 1007 ret = NULL;
6c555490 1008 for_each_netdev(net, dev) {
1da177e4 1009 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1010 ret = dev;
1da177e4
LT
1011 break;
1012 }
1013 }
7562f876 1014 return ret;
1da177e4 1015}
6c555490 1016EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1017
1018/**
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1021 *
1022 * Network device names need to be valid file names to
c7fa9d18
DM
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1da177e4 1025 */
95f050bf 1026bool dev_valid_name(const char *name)
1da177e4 1027{
c7fa9d18 1028 if (*name == '\0')
95f050bf 1029 return false;
b6fe17d6 1030 if (strlen(name) >= IFNAMSIZ)
95f050bf 1031 return false;
c7fa9d18 1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1033 return false;
c7fa9d18
DM
1034
1035 while (*name) {
a4176a93 1036 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1037 return false;
c7fa9d18
DM
1038 name++;
1039 }
95f050bf 1040 return true;
1da177e4 1041}
d1b19dff 1042EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1043
1044/**
b267b179
EB
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1da177e4 1047 * @name: name format string
b267b179 1048 * @buf: scratch buffer and result name string
1da177e4
LT
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1057 */
1058
b267b179 1059static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1060{
1061 int i = 0;
1da177e4
LT
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1064 unsigned long *inuse;
1da177e4
LT
1065 struct net_device *d;
1066
93809105
RV
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1069
51f299dd 1070 p = strchr(name, '%');
1da177e4
LT
1071 if (p) {
1072 /*
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1075 * characters.
1076 */
1077 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 return -EINVAL;
1079
1080 /* Use one page as a bit array of possible slots */
cfcabdcc 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1082 if (!inuse)
1083 return -ENOMEM;
1084
881d966b 1085 for_each_netdev(net, d) {
1da177e4
LT
1086 if (!sscanf(d->name, name, &i))
1087 continue;
1088 if (i < 0 || i >= max_netdevices)
1089 continue;
1090
1091 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1092 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1093 if (!strncmp(buf, d->name, IFNAMSIZ))
1094 set_bit(i, inuse);
1095 }
1096
1097 i = find_first_zero_bit(inuse, max_netdevices);
1098 free_page((unsigned long) inuse);
1099 }
1100
6224abda 1101 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1102 if (!__dev_get_by_name(net, buf))
1da177e4 1103 return i;
1da177e4
LT
1104
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1108 */
1109 return -ENFILE;
1110}
1111
2c88b855
RV
1112static int dev_alloc_name_ns(struct net *net,
1113 struct net_device *dev,
1114 const char *name)
1115{
1116 char buf[IFNAMSIZ];
1117 int ret;
1118
c46d7642 1119 BUG_ON(!net);
2c88b855
RV
1120 ret = __dev_alloc_name(net, name, buf);
1121 if (ret >= 0)
1122 strlcpy(dev->name, buf, IFNAMSIZ);
1123 return ret;
1124}
1125
b267b179
EB
1126/**
1127 * dev_alloc_name - allocate a name for a device
1128 * @dev: device
1129 * @name: name format string
1130 *
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1135 * duplicates.
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140int dev_alloc_name(struct net_device *dev, const char *name)
1141{
c46d7642 1142 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1143}
d1b19dff 1144EXPORT_SYMBOL(dev_alloc_name);
b267b179 1145
0ad646c8
CW
1146int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 const char *name)
828de4f6
G
1148{
1149 BUG_ON(!net);
8ce6cebc 1150
d9031024
OP
1151 if (!dev_valid_name(name))
1152 return -EINVAL;
1153
1c5cae81 1154 if (strchr(name, '%'))
828de4f6 1155 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1156 else if (__dev_get_by_name(net, name))
1157 return -EEXIST;
8ce6cebc
DL
1158 else if (dev->name != name)
1159 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1160
1161 return 0;
1162}
0ad646c8 1163EXPORT_SYMBOL(dev_get_valid_name);
1da177e4
LT
1164
1165/**
1166 * dev_change_name - change name of a device
1167 * @dev: device
1168 * @newname: name (or format string) must be at least IFNAMSIZ
1169 *
1170 * Change name of a device, can pass format strings "eth%d".
1171 * for wildcarding.
1172 */
cf04a4c7 1173int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1174{
238fa362 1175 unsigned char old_assign_type;
fcc5a03a 1176 char oldname[IFNAMSIZ];
1da177e4 1177 int err = 0;
fcc5a03a 1178 int ret;
881d966b 1179 struct net *net;
1da177e4
LT
1180
1181 ASSERT_RTNL();
c346dca1 1182 BUG_ON(!dev_net(dev));
1da177e4 1183
c346dca1 1184 net = dev_net(dev);
1da177e4
LT
1185 if (dev->flags & IFF_UP)
1186 return -EBUSY;
1187
30e6c9fa 1188 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1189
1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1191 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1192 return 0;
c91f6df2 1193 }
c8d90dca 1194
fcc5a03a
HX
1195 memcpy(oldname, dev->name, IFNAMSIZ);
1196
828de4f6 1197 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1198 if (err < 0) {
30e6c9fa 1199 write_seqcount_end(&devnet_rename_seq);
d9031024 1200 return err;
c91f6df2 1201 }
1da177e4 1202
6fe82a39
VF
1203 if (oldname[0] && !strchr(oldname, '%'))
1204 netdev_info(dev, "renamed from %s\n", oldname);
1205
238fa362
TG
1206 old_assign_type = dev->name_assign_type;
1207 dev->name_assign_type = NET_NAME_RENAMED;
1208
fcc5a03a 1209rollback:
a1b3f594
EB
1210 ret = device_rename(&dev->dev, dev->name);
1211 if (ret) {
1212 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1213 dev->name_assign_type = old_assign_type;
30e6c9fa 1214 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1215 return ret;
dcc99773 1216 }
7f988eab 1217
30e6c9fa 1218 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1219
5bb025fa
VF
1220 netdev_adjacent_rename_links(dev, oldname);
1221
7f988eab 1222 write_lock_bh(&dev_base_lock);
372b2312 1223 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1224 write_unlock_bh(&dev_base_lock);
1225
1226 synchronize_rcu();
1227
1228 write_lock_bh(&dev_base_lock);
1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1230 write_unlock_bh(&dev_base_lock);
1231
056925ab 1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1233 ret = notifier_to_errno(ret);
1234
1235 if (ret) {
91e9c07b
ED
1236 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237 if (err >= 0) {
fcc5a03a 1238 err = ret;
30e6c9fa 1239 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1240 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1241 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1242 dev->name_assign_type = old_assign_type;
1243 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1244 goto rollback;
91e9c07b 1245 } else {
7b6cd1ce 1246 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1247 dev->name, ret);
fcc5a03a
HX
1248 }
1249 }
1da177e4
LT
1250
1251 return err;
1252}
1253
0b815a1a
SH
1254/**
1255 * dev_set_alias - change ifalias of a device
1256 * @dev: device
1257 * @alias: name up to IFALIASZ
f0db275a 1258 * @len: limit of bytes to copy from info
0b815a1a
SH
1259 *
1260 * Set ifalias for a device,
1261 */
1262int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263{
6c557001 1264 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1265
1266 if (len >= IFALIASZ)
1267 return -EINVAL;
1268
6c557001
FW
1269 if (len) {
1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 if (!new_alias)
1272 return -ENOMEM;
1273
1274 memcpy(new_alias->ifalias, alias, len);
1275 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1276 }
1277
6c557001
FW
1278 mutex_lock(&ifalias_mutex);
1279 rcu_swap_protected(dev->ifalias, new_alias,
1280 mutex_is_locked(&ifalias_mutex));
1281 mutex_unlock(&ifalias_mutex);
1282
1283 if (new_alias)
1284 kfree_rcu(new_alias, rcuhead);
0b815a1a 1285
0b815a1a
SH
1286 return len;
1287}
1288
6c557001
FW
1289/**
1290 * dev_get_alias - get ifalias of a device
1291 * @dev: device
20e88320 1292 * @name: buffer to store name of ifalias
6c557001
FW
1293 * @len: size of buffer
1294 *
1295 * get ifalias for a device. Caller must make sure dev cannot go
1296 * away, e.g. rcu read lock or own a reference count to device.
1297 */
1298int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299{
1300 const struct dev_ifalias *alias;
1301 int ret = 0;
1302
1303 rcu_read_lock();
1304 alias = rcu_dereference(dev->ifalias);
1305 if (alias)
1306 ret = snprintf(name, len, "%s", alias->ifalias);
1307 rcu_read_unlock();
1308
1309 return ret;
1310}
0b815a1a 1311
d8a33ac4 1312/**
3041a069 1313 * netdev_features_change - device changes features
d8a33ac4
SH
1314 * @dev: device to cause notification
1315 *
1316 * Called to indicate a device has changed features.
1317 */
1318void netdev_features_change(struct net_device *dev)
1319{
056925ab 1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1321}
1322EXPORT_SYMBOL(netdev_features_change);
1323
1da177e4
LT
1324/**
1325 * netdev_state_change - device changes state
1326 * @dev: device to cause notification
1327 *
1328 * Called to indicate a device has changed state. This function calls
1329 * the notifier chains for netdev_chain and sends a NEWLINK message
1330 * to the routing socket.
1331 */
1332void netdev_state_change(struct net_device *dev)
1333{
1334 if (dev->flags & IFF_UP) {
51d0c047
DA
1335 struct netdev_notifier_change_info change_info = {
1336 .info.dev = dev,
1337 };
54951194 1338
51d0c047 1339 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1340 &change_info.info);
7f294054 1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1342 }
1343}
d1b19dff 1344EXPORT_SYMBOL(netdev_state_change);
1da177e4 1345
ee89bab1 1346/**
722c9a0c 1347 * netdev_notify_peers - notify network peers about existence of @dev
1348 * @dev: network device
ee89bab1
AW
1349 *
1350 * Generate traffic such that interested network peers are aware of
1351 * @dev, such as by generating a gratuitous ARP. This may be used when
1352 * a device wants to inform the rest of the network about some sort of
1353 * reconfiguration such as a failover event or virtual machine
1354 * migration.
1355 */
1356void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1357{
ee89bab1
AW
1358 rtnl_lock();
1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1361 rtnl_unlock();
c1da4ac7 1362}
ee89bab1 1363EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1364
bd380811 1365static int __dev_open(struct net_device *dev)
1da177e4 1366{
d314774c 1367 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1368 int ret;
1da177e4 1369
e46b66bc
BH
1370 ASSERT_RTNL();
1371
1da177e4
LT
1372 if (!netif_device_present(dev))
1373 return -ENODEV;
1374
ca99ca14
NH
1375 /* Block netpoll from trying to do any rx path servicing.
1376 * If we don't do this there is a chance ndo_poll_controller
1377 * or ndo_poll may be running while we open the device
1378 */
66b5552f 1379 netpoll_poll_disable(dev);
ca99ca14 1380
3b8bcfd5
JB
1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 ret = notifier_to_errno(ret);
1383 if (ret)
1384 return ret;
1385
1da177e4 1386 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1387
d314774c
SH
1388 if (ops->ndo_validate_addr)
1389 ret = ops->ndo_validate_addr(dev);
bada339b 1390
d314774c
SH
1391 if (!ret && ops->ndo_open)
1392 ret = ops->ndo_open(dev);
1da177e4 1393
66b5552f 1394 netpoll_poll_enable(dev);
ca99ca14 1395
bada339b
JG
1396 if (ret)
1397 clear_bit(__LINK_STATE_START, &dev->state);
1398 else {
1da177e4 1399 dev->flags |= IFF_UP;
4417da66 1400 dev_set_rx_mode(dev);
1da177e4 1401 dev_activate(dev);
7bf23575 1402 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1403 }
bada339b 1404
1da177e4
LT
1405 return ret;
1406}
1407
1408/**
bd380811
PM
1409 * dev_open - prepare an interface for use.
1410 * @dev: device to open
1da177e4 1411 *
bd380811
PM
1412 * Takes a device from down to up state. The device's private open
1413 * function is invoked and then the multicast lists are loaded. Finally
1414 * the device is moved into the up state and a %NETDEV_UP message is
1415 * sent to the netdev notifier chain.
1416 *
1417 * Calling this function on an active interface is a nop. On a failure
1418 * a negative errno code is returned.
1da177e4 1419 */
bd380811
PM
1420int dev_open(struct net_device *dev)
1421{
1422 int ret;
1423
bd380811
PM
1424 if (dev->flags & IFF_UP)
1425 return 0;
1426
bd380811
PM
1427 ret = __dev_open(dev);
1428 if (ret < 0)
1429 return ret;
1430
7f294054 1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1432 call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434 return ret;
1435}
1436EXPORT_SYMBOL(dev_open);
1437
7051b88a 1438static void __dev_close_many(struct list_head *head)
1da177e4 1439{
44345724 1440 struct net_device *dev;
e46b66bc 1441
bd380811 1442 ASSERT_RTNL();
9d5010db
DM
1443 might_sleep();
1444
5cde2829 1445 list_for_each_entry(dev, head, close_list) {
3f4df206 1446 /* Temporarily disable netpoll until the interface is down */
66b5552f 1447 netpoll_poll_disable(dev);
3f4df206 1448
44345724 1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1450
44345724 1451 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1452
44345724
OP
1453 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454 * can be even on different cpu. So just clear netif_running().
1455 *
1456 * dev->stop() will invoke napi_disable() on all of it's
1457 * napi_struct instances on this device.
1458 */
4e857c58 1459 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1460 }
1da177e4 1461
44345724 1462 dev_deactivate_many(head);
d8b2a4d2 1463
5cde2829 1464 list_for_each_entry(dev, head, close_list) {
44345724 1465 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1466
44345724
OP
1467 /*
1468 * Call the device specific close. This cannot fail.
1469 * Only if device is UP
1470 *
1471 * We allow it to be called even after a DETACH hot-plug
1472 * event.
1473 */
1474 if (ops->ndo_stop)
1475 ops->ndo_stop(dev);
1476
44345724 1477 dev->flags &= ~IFF_UP;
66b5552f 1478 netpoll_poll_enable(dev);
44345724 1479 }
44345724
OP
1480}
1481
7051b88a 1482static void __dev_close(struct net_device *dev)
44345724
OP
1483{
1484 LIST_HEAD(single);
1485
5cde2829 1486 list_add(&dev->close_list, &single);
7051b88a 1487 __dev_close_many(&single);
f87e6f47 1488 list_del(&single);
44345724
OP
1489}
1490
7051b88a 1491void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1492{
1493 struct net_device *dev, *tmp;
1da177e4 1494
5cde2829
EB
1495 /* Remove the devices that don't need to be closed */
1496 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1497 if (!(dev->flags & IFF_UP))
5cde2829 1498 list_del_init(&dev->close_list);
44345724
OP
1499
1500 __dev_close_many(head);
1da177e4 1501
5cde2829 1502 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1504 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1505 if (unlink)
1506 list_del_init(&dev->close_list);
44345724 1507 }
bd380811 1508}
99c4a26a 1509EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1510
1511/**
1512 * dev_close - shutdown an interface.
1513 * @dev: device to shutdown
1514 *
1515 * This function moves an active device into down state. A
1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518 * chain.
1519 */
7051b88a 1520void dev_close(struct net_device *dev)
bd380811 1521{
e14a5993
ED
1522 if (dev->flags & IFF_UP) {
1523 LIST_HEAD(single);
1da177e4 1524
5cde2829 1525 list_add(&dev->close_list, &single);
99c4a26a 1526 dev_close_many(&single, true);
e14a5993
ED
1527 list_del(&single);
1528 }
1da177e4 1529}
d1b19dff 1530EXPORT_SYMBOL(dev_close);
1da177e4
LT
1531
1532
0187bdfb
BH
1533/**
1534 * dev_disable_lro - disable Large Receive Offload on a device
1535 * @dev: device
1536 *
1537 * Disable Large Receive Offload (LRO) on a net device. Must be
1538 * called under RTNL. This is needed if received packets may be
1539 * forwarded to another interface.
1540 */
1541void dev_disable_lro(struct net_device *dev)
1542{
fbe168ba
MK
1543 struct net_device *lower_dev;
1544 struct list_head *iter;
529d0489 1545
bc5787c6
MM
1546 dev->wanted_features &= ~NETIF_F_LRO;
1547 netdev_update_features(dev);
27660515 1548
22d5969f
MM
1549 if (unlikely(dev->features & NETIF_F_LRO))
1550 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1551
1552 netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 dev_disable_lro(lower_dev);
0187bdfb
BH
1554}
1555EXPORT_SYMBOL(dev_disable_lro);
1556
351638e7
JP
1557static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1558 struct net_device *dev)
1559{
51d0c047
DA
1560 struct netdev_notifier_info info = {
1561 .dev = dev,
1562 };
351638e7 1563
351638e7
JP
1564 return nb->notifier_call(nb, val, &info);
1565}
0187bdfb 1566
881d966b
EB
1567static int dev_boot_phase = 1;
1568
1da177e4 1569/**
722c9a0c 1570 * register_netdevice_notifier - register a network notifier block
1571 * @nb: notifier
1da177e4 1572 *
722c9a0c 1573 * Register a notifier to be called when network device events occur.
1574 * The notifier passed is linked into the kernel structures and must
1575 * not be reused until it has been unregistered. A negative errno code
1576 * is returned on a failure.
1da177e4 1577 *
722c9a0c 1578 * When registered all registration and up events are replayed
1579 * to the new notifier to allow device to have a race free
1580 * view of the network device list.
1da177e4
LT
1581 */
1582
1583int register_netdevice_notifier(struct notifier_block *nb)
1584{
1585 struct net_device *dev;
fcc5a03a 1586 struct net_device *last;
881d966b 1587 struct net *net;
1da177e4
LT
1588 int err;
1589
1590 rtnl_lock();
f07d5b94 1591 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1592 if (err)
1593 goto unlock;
881d966b
EB
1594 if (dev_boot_phase)
1595 goto unlock;
1596 for_each_net(net) {
1597 for_each_netdev(net, dev) {
351638e7 1598 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1599 err = notifier_to_errno(err);
1600 if (err)
1601 goto rollback;
1602
1603 if (!(dev->flags & IFF_UP))
1604 continue;
1da177e4 1605
351638e7 1606 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1607 }
1da177e4 1608 }
fcc5a03a
HX
1609
1610unlock:
1da177e4
LT
1611 rtnl_unlock();
1612 return err;
fcc5a03a
HX
1613
1614rollback:
1615 last = dev;
881d966b
EB
1616 for_each_net(net) {
1617 for_each_netdev(net, dev) {
1618 if (dev == last)
8f891489 1619 goto outroll;
fcc5a03a 1620
881d966b 1621 if (dev->flags & IFF_UP) {
351638e7
JP
1622 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1623 dev);
1624 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1625 }
351638e7 1626 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1627 }
fcc5a03a 1628 }
c67625a1 1629
8f891489 1630outroll:
c67625a1 1631 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1632 goto unlock;
1da177e4 1633}
d1b19dff 1634EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1635
1636/**
722c9a0c 1637 * unregister_netdevice_notifier - unregister a network notifier block
1638 * @nb: notifier
1da177e4 1639 *
722c9a0c 1640 * Unregister a notifier previously registered by
1641 * register_netdevice_notifier(). The notifier is unlinked into the
1642 * kernel structures and may then be reused. A negative errno code
1643 * is returned on a failure.
7d3d43da 1644 *
722c9a0c 1645 * After unregistering unregister and down device events are synthesized
1646 * for all devices on the device list to the removed notifier to remove
1647 * the need for special case cleanup code.
1da177e4
LT
1648 */
1649
1650int unregister_netdevice_notifier(struct notifier_block *nb)
1651{
7d3d43da
EB
1652 struct net_device *dev;
1653 struct net *net;
9f514950
HX
1654 int err;
1655
1656 rtnl_lock();
f07d5b94 1657 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1658 if (err)
1659 goto unlock;
1660
1661 for_each_net(net) {
1662 for_each_netdev(net, dev) {
1663 if (dev->flags & IFF_UP) {
351638e7
JP
1664 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665 dev);
1666 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1667 }
351638e7 1668 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1669 }
1670 }
1671unlock:
9f514950
HX
1672 rtnl_unlock();
1673 return err;
1da177e4 1674}
d1b19dff 1675EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1676
351638e7
JP
1677/**
1678 * call_netdevice_notifiers_info - call all network notifier blocks
1679 * @val: value passed unmodified to notifier function
1680 * @dev: net_device pointer passed unmodified to notifier function
1681 * @info: notifier information data
1682 *
1683 * Call all network notifier blocks. Parameters and return value
1684 * are as for raw_notifier_call_chain().
1685 */
1686
1d143d9f 1687static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1688 struct netdev_notifier_info *info)
351638e7
JP
1689{
1690 ASSERT_RTNL();
351638e7
JP
1691 return raw_notifier_call_chain(&netdev_chain, val, info);
1692}
351638e7 1693
1da177e4
LT
1694/**
1695 * call_netdevice_notifiers - call all network notifier blocks
1696 * @val: value passed unmodified to notifier function
c4ea43c5 1697 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1698 *
1699 * Call all network notifier blocks. Parameters and return value
f07d5b94 1700 * are as for raw_notifier_call_chain().
1da177e4
LT
1701 */
1702
ad7379d4 1703int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1704{
51d0c047
DA
1705 struct netdev_notifier_info info = {
1706 .dev = dev,
1707 };
351638e7 1708
51d0c047 1709 return call_netdevice_notifiers_info(val, &info);
1da177e4 1710}
edf947f1 1711EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1712
1cf51900 1713#ifdef CONFIG_NET_INGRESS
4577139b
DB
1714static struct static_key ingress_needed __read_mostly;
1715
1716void net_inc_ingress_queue(void)
1717{
1718 static_key_slow_inc(&ingress_needed);
1719}
1720EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1721
1722void net_dec_ingress_queue(void)
1723{
1724 static_key_slow_dec(&ingress_needed);
1725}
1726EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1727#endif
1728
1f211a1b
DB
1729#ifdef CONFIG_NET_EGRESS
1730static struct static_key egress_needed __read_mostly;
1731
1732void net_inc_egress_queue(void)
1733{
1734 static_key_slow_inc(&egress_needed);
1735}
1736EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1737
1738void net_dec_egress_queue(void)
1739{
1740 static_key_slow_dec(&egress_needed);
1741}
1742EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1743#endif
1744
c5905afb 1745static struct static_key netstamp_needed __read_mostly;
b90e5794 1746#ifdef HAVE_JUMP_LABEL
b90e5794 1747static atomic_t netstamp_needed_deferred;
13baa00a 1748static atomic_t netstamp_wanted;
5fa8bbda 1749static void netstamp_clear(struct work_struct *work)
1da177e4 1750{
b90e5794 1751 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1752 int wanted;
b90e5794 1753
13baa00a
ED
1754 wanted = atomic_add_return(deferred, &netstamp_wanted);
1755 if (wanted > 0)
1756 static_key_enable(&netstamp_needed);
1757 else
1758 static_key_disable(&netstamp_needed);
5fa8bbda
ED
1759}
1760static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1761#endif
5fa8bbda
ED
1762
1763void net_enable_timestamp(void)
1764{
13baa00a
ED
1765#ifdef HAVE_JUMP_LABEL
1766 int wanted;
1767
1768 while (1) {
1769 wanted = atomic_read(&netstamp_wanted);
1770 if (wanted <= 0)
1771 break;
1772 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1773 return;
1774 }
1775 atomic_inc(&netstamp_needed_deferred);
1776 schedule_work(&netstamp_work);
1777#else
c5905afb 1778 static_key_slow_inc(&netstamp_needed);
13baa00a 1779#endif
1da177e4 1780}
d1b19dff 1781EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1782
1783void net_disable_timestamp(void)
1784{
b90e5794 1785#ifdef HAVE_JUMP_LABEL
13baa00a
ED
1786 int wanted;
1787
1788 while (1) {
1789 wanted = atomic_read(&netstamp_wanted);
1790 if (wanted <= 1)
1791 break;
1792 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1793 return;
1794 }
1795 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1796 schedule_work(&netstamp_work);
1797#else
c5905afb 1798 static_key_slow_dec(&netstamp_needed);
5fa8bbda 1799#endif
1da177e4 1800}
d1b19dff 1801EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1802
3b098e2d 1803static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1804{
2456e855 1805 skb->tstamp = 0;
c5905afb 1806 if (static_key_false(&netstamp_needed))
a61bbcf2 1807 __net_timestamp(skb);
1da177e4
LT
1808}
1809
588f0330 1810#define net_timestamp_check(COND, SKB) \
c5905afb 1811 if (static_key_false(&netstamp_needed)) { \
2456e855 1812 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1813 __net_timestamp(SKB); \
1814 } \
3b098e2d 1815
f4b05d27 1816bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1817{
1818 unsigned int len;
1819
1820 if (!(dev->flags & IFF_UP))
1821 return false;
1822
1823 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1824 if (skb->len <= len)
1825 return true;
1826
1827 /* if TSO is enabled, we don't care about the length as the packet
1828 * could be forwarded without being segmented before
1829 */
1830 if (skb_is_gso(skb))
1831 return true;
1832
1833 return false;
1834}
1ee481fb 1835EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1836
a0265d28
HX
1837int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1838{
4e3264d2 1839 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1840
4e3264d2
MKL
1841 if (likely(!ret)) {
1842 skb->protocol = eth_type_trans(skb, dev);
1843 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1844 }
a0265d28 1845
4e3264d2 1846 return ret;
a0265d28
HX
1847}
1848EXPORT_SYMBOL_GPL(__dev_forward_skb);
1849
44540960
AB
1850/**
1851 * dev_forward_skb - loopback an skb to another netif
1852 *
1853 * @dev: destination network device
1854 * @skb: buffer to forward
1855 *
1856 * return values:
1857 * NET_RX_SUCCESS (no congestion)
6ec82562 1858 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1859 *
1860 * dev_forward_skb can be used for injecting an skb from the
1861 * start_xmit function of one device into the receive queue
1862 * of another device.
1863 *
1864 * The receiving device may be in another namespace, so
1865 * we have to clear all information in the skb that could
1866 * impact namespace isolation.
1867 */
1868int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1869{
a0265d28 1870 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1871}
1872EXPORT_SYMBOL_GPL(dev_forward_skb);
1873
71d9dec2
CG
1874static inline int deliver_skb(struct sk_buff *skb,
1875 struct packet_type *pt_prev,
1876 struct net_device *orig_dev)
1877{
1f8b977a 1878 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 1879 return -ENOMEM;
63354797 1880 refcount_inc(&skb->users);
71d9dec2
CG
1881 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1882}
1883
7866a621
SN
1884static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1885 struct packet_type **pt,
fbcb2170
JP
1886 struct net_device *orig_dev,
1887 __be16 type,
7866a621
SN
1888 struct list_head *ptype_list)
1889{
1890 struct packet_type *ptype, *pt_prev = *pt;
1891
1892 list_for_each_entry_rcu(ptype, ptype_list, list) {
1893 if (ptype->type != type)
1894 continue;
1895 if (pt_prev)
fbcb2170 1896 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1897 pt_prev = ptype;
1898 }
1899 *pt = pt_prev;
1900}
1901
c0de08d0
EL
1902static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1903{
a3d744e9 1904 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1905 return false;
1906
1907 if (ptype->id_match)
1908 return ptype->id_match(ptype, skb->sk);
1909 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1910 return true;
1911
1912 return false;
1913}
1914
1da177e4
LT
1915/*
1916 * Support routine. Sends outgoing frames to any network
1917 * taps currently in use.
1918 */
1919
74b20582 1920void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1921{
1922 struct packet_type *ptype;
71d9dec2
CG
1923 struct sk_buff *skb2 = NULL;
1924 struct packet_type *pt_prev = NULL;
7866a621 1925 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1926
1da177e4 1927 rcu_read_lock();
7866a621
SN
1928again:
1929 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1930 /* Never send packets back to the socket
1931 * they originated from - MvS (miquels@drinkel.ow.org)
1932 */
7866a621
SN
1933 if (skb_loop_sk(ptype, skb))
1934 continue;
71d9dec2 1935
7866a621
SN
1936 if (pt_prev) {
1937 deliver_skb(skb2, pt_prev, skb->dev);
1938 pt_prev = ptype;
1939 continue;
1940 }
1da177e4 1941
7866a621
SN
1942 /* need to clone skb, done only once */
1943 skb2 = skb_clone(skb, GFP_ATOMIC);
1944 if (!skb2)
1945 goto out_unlock;
70978182 1946
7866a621 1947 net_timestamp_set(skb2);
1da177e4 1948
7866a621
SN
1949 /* skb->nh should be correctly
1950 * set by sender, so that the second statement is
1951 * just protection against buggy protocols.
1952 */
1953 skb_reset_mac_header(skb2);
1954
1955 if (skb_network_header(skb2) < skb2->data ||
1956 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1957 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1958 ntohs(skb2->protocol),
1959 dev->name);
1960 skb_reset_network_header(skb2);
1da177e4 1961 }
7866a621
SN
1962
1963 skb2->transport_header = skb2->network_header;
1964 skb2->pkt_type = PACKET_OUTGOING;
1965 pt_prev = ptype;
1966 }
1967
1968 if (ptype_list == &ptype_all) {
1969 ptype_list = &dev->ptype_all;
1970 goto again;
1da177e4 1971 }
7866a621 1972out_unlock:
581fe0ea
WB
1973 if (pt_prev) {
1974 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1975 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1976 else
1977 kfree_skb(skb2);
1978 }
1da177e4
LT
1979 rcu_read_unlock();
1980}
74b20582 1981EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1982
2c53040f
BH
1983/**
1984 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1985 * @dev: Network device
1986 * @txq: number of queues available
1987 *
1988 * If real_num_tx_queues is changed the tc mappings may no longer be
1989 * valid. To resolve this verify the tc mapping remains valid and if
1990 * not NULL the mapping. With no priorities mapping to this
1991 * offset/count pair it will no longer be used. In the worst case TC0
1992 * is invalid nothing can be done so disable priority mappings. If is
1993 * expected that drivers will fix this mapping if they can before
1994 * calling netif_set_real_num_tx_queues.
1995 */
bb134d22 1996static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1997{
1998 int i;
1999 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2000
2001 /* If TC0 is invalidated disable TC mapping */
2002 if (tc->offset + tc->count > txq) {
7b6cd1ce 2003 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2004 dev->num_tc = 0;
2005 return;
2006 }
2007
2008 /* Invalidated prio to tc mappings set to TC0 */
2009 for (i = 1; i < TC_BITMASK + 1; i++) {
2010 int q = netdev_get_prio_tc_map(dev, i);
2011
2012 tc = &dev->tc_to_txq[q];
2013 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2014 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2015 i, q);
4f57c087
JF
2016 netdev_set_prio_tc_map(dev, i, 0);
2017 }
2018 }
2019}
2020
8d059b0f
AD
2021int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2022{
2023 if (dev->num_tc) {
2024 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2025 int i;
2026
2027 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2028 if ((txq - tc->offset) < tc->count)
2029 return i;
2030 }
2031
2032 return -1;
2033 }
2034
2035 return 0;
2036}
8a5f2166 2037EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2038
537c00de
AD
2039#ifdef CONFIG_XPS
2040static DEFINE_MUTEX(xps_map_mutex);
2041#define xmap_dereference(P) \
2042 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2043
6234f874
AD
2044static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2045 int tci, u16 index)
537c00de 2046{
10cdc3f3
AD
2047 struct xps_map *map = NULL;
2048 int pos;
537c00de 2049
10cdc3f3 2050 if (dev_maps)
6234f874
AD
2051 map = xmap_dereference(dev_maps->cpu_map[tci]);
2052 if (!map)
2053 return false;
537c00de 2054
6234f874
AD
2055 for (pos = map->len; pos--;) {
2056 if (map->queues[pos] != index)
2057 continue;
2058
2059 if (map->len > 1) {
2060 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2061 break;
537c00de 2062 }
6234f874
AD
2063
2064 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2065 kfree_rcu(map, rcu);
2066 return false;
537c00de
AD
2067 }
2068
6234f874 2069 return true;
10cdc3f3
AD
2070}
2071
6234f874
AD
2072static bool remove_xps_queue_cpu(struct net_device *dev,
2073 struct xps_dev_maps *dev_maps,
2074 int cpu, u16 offset, u16 count)
2075{
184c449f
AD
2076 int num_tc = dev->num_tc ? : 1;
2077 bool active = false;
2078 int tci;
6234f874 2079
184c449f
AD
2080 for (tci = cpu * num_tc; num_tc--; tci++) {
2081 int i, j;
2082
2083 for (i = count, j = offset; i--; j++) {
2084 if (!remove_xps_queue(dev_maps, cpu, j))
2085 break;
2086 }
2087
2088 active |= i < 0;
6234f874
AD
2089 }
2090
184c449f 2091 return active;
6234f874
AD
2092}
2093
2094static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2095 u16 count)
10cdc3f3
AD
2096{
2097 struct xps_dev_maps *dev_maps;
024e9679 2098 int cpu, i;
10cdc3f3
AD
2099 bool active = false;
2100
2101 mutex_lock(&xps_map_mutex);
2102 dev_maps = xmap_dereference(dev->xps_maps);
2103
2104 if (!dev_maps)
2105 goto out_no_maps;
2106
6234f874
AD
2107 for_each_possible_cpu(cpu)
2108 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2109 offset, count);
10cdc3f3
AD
2110
2111 if (!active) {
537c00de
AD
2112 RCU_INIT_POINTER(dev->xps_maps, NULL);
2113 kfree_rcu(dev_maps, rcu);
2114 }
2115
6234f874 2116 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2117 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2118 NUMA_NO_NODE);
2119
537c00de
AD
2120out_no_maps:
2121 mutex_unlock(&xps_map_mutex);
2122}
2123
6234f874
AD
2124static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2125{
2126 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2127}
2128
01c5f864
AD
2129static struct xps_map *expand_xps_map(struct xps_map *map,
2130 int cpu, u16 index)
2131{
2132 struct xps_map *new_map;
2133 int alloc_len = XPS_MIN_MAP_ALLOC;
2134 int i, pos;
2135
2136 for (pos = 0; map && pos < map->len; pos++) {
2137 if (map->queues[pos] != index)
2138 continue;
2139 return map;
2140 }
2141
2142 /* Need to add queue to this CPU's existing map */
2143 if (map) {
2144 if (pos < map->alloc_len)
2145 return map;
2146
2147 alloc_len = map->alloc_len * 2;
2148 }
2149
2150 /* Need to allocate new map to store queue on this CPU's map */
2151 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2152 cpu_to_node(cpu));
2153 if (!new_map)
2154 return NULL;
2155
2156 for (i = 0; i < pos; i++)
2157 new_map->queues[i] = map->queues[i];
2158 new_map->alloc_len = alloc_len;
2159 new_map->len = pos;
2160
2161 return new_map;
2162}
2163
3573540c
MT
2164int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2165 u16 index)
537c00de 2166{
01c5f864 2167 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2168 int i, cpu, tci, numa_node_id = -2;
2169 int maps_sz, num_tc = 1, tc = 0;
537c00de 2170 struct xps_map *map, *new_map;
01c5f864 2171 bool active = false;
537c00de 2172
184c449f
AD
2173 if (dev->num_tc) {
2174 num_tc = dev->num_tc;
2175 tc = netdev_txq_to_tc(dev, index);
2176 if (tc < 0)
2177 return -EINVAL;
2178 }
2179
2180 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2181 if (maps_sz < L1_CACHE_BYTES)
2182 maps_sz = L1_CACHE_BYTES;
2183
537c00de
AD
2184 mutex_lock(&xps_map_mutex);
2185
2186 dev_maps = xmap_dereference(dev->xps_maps);
2187
01c5f864 2188 /* allocate memory for queue storage */
184c449f 2189 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2190 if (!new_dev_maps)
2191 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2192 if (!new_dev_maps) {
2193 mutex_unlock(&xps_map_mutex);
01c5f864 2194 return -ENOMEM;
2bb60cb9 2195 }
01c5f864 2196
184c449f
AD
2197 tci = cpu * num_tc + tc;
2198 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2199 NULL;
2200
2201 map = expand_xps_map(map, cpu, index);
2202 if (!map)
2203 goto error;
2204
184c449f 2205 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2206 }
2207
2208 if (!new_dev_maps)
2209 goto out_no_new_maps;
2210
537c00de 2211 for_each_possible_cpu(cpu) {
184c449f
AD
2212 /* copy maps belonging to foreign traffic classes */
2213 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2214 /* fill in the new device map from the old device map */
2215 map = xmap_dereference(dev_maps->cpu_map[tci]);
2216 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2217 }
2218
2219 /* We need to explicitly update tci as prevous loop
2220 * could break out early if dev_maps is NULL.
2221 */
2222 tci = cpu * num_tc + tc;
2223
01c5f864
AD
2224 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2225 /* add queue to CPU maps */
2226 int pos = 0;
2227
184c449f 2228 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2229 while ((pos < map->len) && (map->queues[pos] != index))
2230 pos++;
2231
2232 if (pos == map->len)
2233 map->queues[map->len++] = index;
537c00de 2234#ifdef CONFIG_NUMA
537c00de
AD
2235 if (numa_node_id == -2)
2236 numa_node_id = cpu_to_node(cpu);
2237 else if (numa_node_id != cpu_to_node(cpu))
2238 numa_node_id = -1;
537c00de 2239#endif
01c5f864
AD
2240 } else if (dev_maps) {
2241 /* fill in the new device map from the old device map */
184c449f
AD
2242 map = xmap_dereference(dev_maps->cpu_map[tci]);
2243 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2244 }
01c5f864 2245
184c449f
AD
2246 /* copy maps belonging to foreign traffic classes */
2247 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2248 /* fill in the new device map from the old device map */
2249 map = xmap_dereference(dev_maps->cpu_map[tci]);
2250 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2251 }
537c00de
AD
2252 }
2253
01c5f864
AD
2254 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2255
537c00de 2256 /* Cleanup old maps */
184c449f
AD
2257 if (!dev_maps)
2258 goto out_no_old_maps;
2259
2260 for_each_possible_cpu(cpu) {
2261 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2262 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2263 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2264 if (map && map != new_map)
2265 kfree_rcu(map, rcu);
2266 }
537c00de
AD
2267 }
2268
184c449f
AD
2269 kfree_rcu(dev_maps, rcu);
2270
2271out_no_old_maps:
01c5f864
AD
2272 dev_maps = new_dev_maps;
2273 active = true;
537c00de 2274
01c5f864
AD
2275out_no_new_maps:
2276 /* update Tx queue numa node */
537c00de
AD
2277 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2278 (numa_node_id >= 0) ? numa_node_id :
2279 NUMA_NO_NODE);
2280
01c5f864
AD
2281 if (!dev_maps)
2282 goto out_no_maps;
2283
2284 /* removes queue from unused CPUs */
2285 for_each_possible_cpu(cpu) {
184c449f
AD
2286 for (i = tc, tci = cpu * num_tc; i--; tci++)
2287 active |= remove_xps_queue(dev_maps, tci, index);
2288 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2289 active |= remove_xps_queue(dev_maps, tci, index);
2290 for (i = num_tc - tc, tci++; --i; tci++)
2291 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2292 }
2293
2294 /* free map if not active */
2295 if (!active) {
2296 RCU_INIT_POINTER(dev->xps_maps, NULL);
2297 kfree_rcu(dev_maps, rcu);
2298 }
2299
2300out_no_maps:
537c00de
AD
2301 mutex_unlock(&xps_map_mutex);
2302
2303 return 0;
2304error:
01c5f864
AD
2305 /* remove any maps that we added */
2306 for_each_possible_cpu(cpu) {
184c449f
AD
2307 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2308 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2309 map = dev_maps ?
2310 xmap_dereference(dev_maps->cpu_map[tci]) :
2311 NULL;
2312 if (new_map && new_map != map)
2313 kfree(new_map);
2314 }
01c5f864
AD
2315 }
2316
537c00de
AD
2317 mutex_unlock(&xps_map_mutex);
2318
537c00de
AD
2319 kfree(new_dev_maps);
2320 return -ENOMEM;
2321}
2322EXPORT_SYMBOL(netif_set_xps_queue);
2323
2324#endif
9cf1f6a8
AD
2325void netdev_reset_tc(struct net_device *dev)
2326{
6234f874
AD
2327#ifdef CONFIG_XPS
2328 netif_reset_xps_queues_gt(dev, 0);
2329#endif
9cf1f6a8
AD
2330 dev->num_tc = 0;
2331 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2332 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2333}
2334EXPORT_SYMBOL(netdev_reset_tc);
2335
2336int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2337{
2338 if (tc >= dev->num_tc)
2339 return -EINVAL;
2340
6234f874
AD
2341#ifdef CONFIG_XPS
2342 netif_reset_xps_queues(dev, offset, count);
2343#endif
9cf1f6a8
AD
2344 dev->tc_to_txq[tc].count = count;
2345 dev->tc_to_txq[tc].offset = offset;
2346 return 0;
2347}
2348EXPORT_SYMBOL(netdev_set_tc_queue);
2349
2350int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2351{
2352 if (num_tc > TC_MAX_QUEUE)
2353 return -EINVAL;
2354
6234f874
AD
2355#ifdef CONFIG_XPS
2356 netif_reset_xps_queues_gt(dev, 0);
2357#endif
9cf1f6a8
AD
2358 dev->num_tc = num_tc;
2359 return 0;
2360}
2361EXPORT_SYMBOL(netdev_set_num_tc);
2362
f0796d5c
JF
2363/*
2364 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2365 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2366 */
e6484930 2367int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2368{
1d24eb48
TH
2369 int rc;
2370
e6484930
TH
2371 if (txq < 1 || txq > dev->num_tx_queues)
2372 return -EINVAL;
f0796d5c 2373
5c56580b
BH
2374 if (dev->reg_state == NETREG_REGISTERED ||
2375 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2376 ASSERT_RTNL();
2377
1d24eb48
TH
2378 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2379 txq);
bf264145
TH
2380 if (rc)
2381 return rc;
2382
4f57c087
JF
2383 if (dev->num_tc)
2384 netif_setup_tc(dev, txq);
2385
024e9679 2386 if (txq < dev->real_num_tx_queues) {
e6484930 2387 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2388#ifdef CONFIG_XPS
2389 netif_reset_xps_queues_gt(dev, txq);
2390#endif
2391 }
f0796d5c 2392 }
e6484930
TH
2393
2394 dev->real_num_tx_queues = txq;
2395 return 0;
f0796d5c
JF
2396}
2397EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2398
a953be53 2399#ifdef CONFIG_SYSFS
62fe0b40
BH
2400/**
2401 * netif_set_real_num_rx_queues - set actual number of RX queues used
2402 * @dev: Network device
2403 * @rxq: Actual number of RX queues
2404 *
2405 * This must be called either with the rtnl_lock held or before
2406 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2407 * negative error code. If called before registration, it always
2408 * succeeds.
62fe0b40
BH
2409 */
2410int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2411{
2412 int rc;
2413
bd25fa7b
TH
2414 if (rxq < 1 || rxq > dev->num_rx_queues)
2415 return -EINVAL;
2416
62fe0b40
BH
2417 if (dev->reg_state == NETREG_REGISTERED) {
2418 ASSERT_RTNL();
2419
62fe0b40
BH
2420 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2421 rxq);
2422 if (rc)
2423 return rc;
62fe0b40
BH
2424 }
2425
2426 dev->real_num_rx_queues = rxq;
2427 return 0;
2428}
2429EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2430#endif
2431
2c53040f
BH
2432/**
2433 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2434 *
2435 * This routine should set an upper limit on the number of RSS queues
2436 * used by default by multiqueue devices.
2437 */
a55b138b 2438int netif_get_num_default_rss_queues(void)
16917b87 2439{
40e4e713
HS
2440 return is_kdump_kernel() ?
2441 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2442}
2443EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2444
3bcb846c 2445static void __netif_reschedule(struct Qdisc *q)
56079431 2446{
def82a1d
JP
2447 struct softnet_data *sd;
2448 unsigned long flags;
56079431 2449
def82a1d 2450 local_irq_save(flags);
903ceff7 2451 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2452 q->next_sched = NULL;
2453 *sd->output_queue_tailp = q;
2454 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2455 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2456 local_irq_restore(flags);
2457}
2458
2459void __netif_schedule(struct Qdisc *q)
2460{
2461 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2462 __netif_reschedule(q);
56079431
DV
2463}
2464EXPORT_SYMBOL(__netif_schedule);
2465
e6247027
ED
2466struct dev_kfree_skb_cb {
2467 enum skb_free_reason reason;
2468};
2469
2470static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2471{
e6247027
ED
2472 return (struct dev_kfree_skb_cb *)skb->cb;
2473}
2474
46e5da40
JF
2475void netif_schedule_queue(struct netdev_queue *txq)
2476{
2477 rcu_read_lock();
2478 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2479 struct Qdisc *q = rcu_dereference(txq->qdisc);
2480
2481 __netif_schedule(q);
2482 }
2483 rcu_read_unlock();
2484}
2485EXPORT_SYMBOL(netif_schedule_queue);
2486
46e5da40
JF
2487void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2488{
2489 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2490 struct Qdisc *q;
2491
2492 rcu_read_lock();
2493 q = rcu_dereference(dev_queue->qdisc);
2494 __netif_schedule(q);
2495 rcu_read_unlock();
2496 }
2497}
2498EXPORT_SYMBOL(netif_tx_wake_queue);
2499
e6247027 2500void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2501{
e6247027 2502 unsigned long flags;
56079431 2503
9899886d
MJ
2504 if (unlikely(!skb))
2505 return;
2506
63354797 2507 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2508 smp_rmb();
63354797
RE
2509 refcount_set(&skb->users, 0);
2510 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2511 return;
bea3348e 2512 }
e6247027
ED
2513 get_kfree_skb_cb(skb)->reason = reason;
2514 local_irq_save(flags);
2515 skb->next = __this_cpu_read(softnet_data.completion_queue);
2516 __this_cpu_write(softnet_data.completion_queue, skb);
2517 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2518 local_irq_restore(flags);
56079431 2519}
e6247027 2520EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2521
e6247027 2522void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2523{
2524 if (in_irq() || irqs_disabled())
e6247027 2525 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2526 else
2527 dev_kfree_skb(skb);
2528}
e6247027 2529EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2530
2531
bea3348e
SH
2532/**
2533 * netif_device_detach - mark device as removed
2534 * @dev: network device
2535 *
2536 * Mark device as removed from system and therefore no longer available.
2537 */
56079431
DV
2538void netif_device_detach(struct net_device *dev)
2539{
2540 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2541 netif_running(dev)) {
d543103a 2542 netif_tx_stop_all_queues(dev);
56079431
DV
2543 }
2544}
2545EXPORT_SYMBOL(netif_device_detach);
2546
bea3348e
SH
2547/**
2548 * netif_device_attach - mark device as attached
2549 * @dev: network device
2550 *
2551 * Mark device as attached from system and restart if needed.
2552 */
56079431
DV
2553void netif_device_attach(struct net_device *dev)
2554{
2555 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2556 netif_running(dev)) {
d543103a 2557 netif_tx_wake_all_queues(dev);
4ec93edb 2558 __netdev_watchdog_up(dev);
56079431
DV
2559 }
2560}
2561EXPORT_SYMBOL(netif_device_attach);
2562
5605c762
JP
2563/*
2564 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2565 * to be used as a distribution range.
2566 */
2567u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2568 unsigned int num_tx_queues)
2569{
2570 u32 hash;
2571 u16 qoffset = 0;
2572 u16 qcount = num_tx_queues;
2573
2574 if (skb_rx_queue_recorded(skb)) {
2575 hash = skb_get_rx_queue(skb);
2576 while (unlikely(hash >= num_tx_queues))
2577 hash -= num_tx_queues;
2578 return hash;
2579 }
2580
2581 if (dev->num_tc) {
2582 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
f4563a75 2583
5605c762
JP
2584 qoffset = dev->tc_to_txq[tc].offset;
2585 qcount = dev->tc_to_txq[tc].count;
2586 }
2587
2588 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2589}
2590EXPORT_SYMBOL(__skb_tx_hash);
2591
36c92474
BH
2592static void skb_warn_bad_offload(const struct sk_buff *skb)
2593{
84d15ae5 2594 static const netdev_features_t null_features;
36c92474 2595 struct net_device *dev = skb->dev;
88ad4175 2596 const char *name = "";
36c92474 2597
c846ad9b
BG
2598 if (!net_ratelimit())
2599 return;
2600
88ad4175
BM
2601 if (dev) {
2602 if (dev->dev.parent)
2603 name = dev_driver_string(dev->dev.parent);
2604 else
2605 name = netdev_name(dev);
2606 }
36c92474
BH
2607 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2608 "gso_type=%d ip_summed=%d\n",
88ad4175 2609 name, dev ? &dev->features : &null_features,
65e9d2fa 2610 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2611 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2612 skb_shinfo(skb)->gso_type, skb->ip_summed);
2613}
2614
1da177e4
LT
2615/*
2616 * Invalidate hardware checksum when packet is to be mangled, and
2617 * complete checksum manually on outgoing path.
2618 */
84fa7933 2619int skb_checksum_help(struct sk_buff *skb)
1da177e4 2620{
d3bc23e7 2621 __wsum csum;
663ead3b 2622 int ret = 0, offset;
1da177e4 2623
84fa7933 2624 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2625 goto out_set_summed;
2626
2627 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2628 skb_warn_bad_offload(skb);
2629 return -EINVAL;
1da177e4
LT
2630 }
2631
cef401de
ED
2632 /* Before computing a checksum, we should make sure no frag could
2633 * be modified by an external entity : checksum could be wrong.
2634 */
2635 if (skb_has_shared_frag(skb)) {
2636 ret = __skb_linearize(skb);
2637 if (ret)
2638 goto out;
2639 }
2640
55508d60 2641 offset = skb_checksum_start_offset(skb);
a030847e
HX
2642 BUG_ON(offset >= skb_headlen(skb));
2643 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2644
2645 offset += skb->csum_offset;
2646 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2647
2648 if (skb_cloned(skb) &&
2649 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2650 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2651 if (ret)
2652 goto out;
2653 }
2654
4f2e4ad5 2655 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2656out_set_summed:
1da177e4 2657 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2658out:
1da177e4
LT
2659 return ret;
2660}
d1b19dff 2661EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2662
b72b5bf6
DC
2663int skb_crc32c_csum_help(struct sk_buff *skb)
2664{
2665 __le32 crc32c_csum;
2666 int ret = 0, offset, start;
2667
2668 if (skb->ip_summed != CHECKSUM_PARTIAL)
2669 goto out;
2670
2671 if (unlikely(skb_is_gso(skb)))
2672 goto out;
2673
2674 /* Before computing a checksum, we should make sure no frag could
2675 * be modified by an external entity : checksum could be wrong.
2676 */
2677 if (unlikely(skb_has_shared_frag(skb))) {
2678 ret = __skb_linearize(skb);
2679 if (ret)
2680 goto out;
2681 }
2682 start = skb_checksum_start_offset(skb);
2683 offset = start + offsetof(struct sctphdr, checksum);
2684 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2685 ret = -EINVAL;
2686 goto out;
2687 }
2688 if (skb_cloned(skb) &&
2689 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2690 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2691 if (ret)
2692 goto out;
2693 }
2694 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2695 skb->len - start, ~(__u32)0,
2696 crc32c_csum_stub));
2697 *(__le32 *)(skb->data + offset) = crc32c_csum;
2698 skb->ip_summed = CHECKSUM_NONE;
dba00306 2699 skb->csum_not_inet = 0;
b72b5bf6
DC
2700out:
2701 return ret;
2702}
2703
53d6471c 2704__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2705{
252e3346 2706 __be16 type = skb->protocol;
f6a78bfc 2707
19acc327
PS
2708 /* Tunnel gso handlers can set protocol to ethernet. */
2709 if (type == htons(ETH_P_TEB)) {
2710 struct ethhdr *eth;
2711
2712 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2713 return 0;
2714
2715 eth = (struct ethhdr *)skb_mac_header(skb);
2716 type = eth->h_proto;
2717 }
2718
d4bcef3f 2719 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2720}
2721
2722/**
2723 * skb_mac_gso_segment - mac layer segmentation handler.
2724 * @skb: buffer to segment
2725 * @features: features for the output path (see dev->features)
2726 */
2727struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2728 netdev_features_t features)
2729{
2730 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2731 struct packet_offload *ptype;
53d6471c
VY
2732 int vlan_depth = skb->mac_len;
2733 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2734
2735 if (unlikely(!type))
2736 return ERR_PTR(-EINVAL);
2737
53d6471c 2738 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2739
2740 rcu_read_lock();
22061d80 2741 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2742 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2743 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2744 break;
2745 }
2746 }
2747 rcu_read_unlock();
2748
98e399f8 2749 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2750
f6a78bfc
HX
2751 return segs;
2752}
05e8ef4a
PS
2753EXPORT_SYMBOL(skb_mac_gso_segment);
2754
2755
2756/* openvswitch calls this on rx path, so we need a different check.
2757 */
2758static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2759{
2760 if (tx_path)
93991221 2761 return skb->ip_summed != CHECKSUM_PARTIAL;
6e7bc478
ED
2762
2763 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2764}
2765
2766/**
2767 * __skb_gso_segment - Perform segmentation on skb.
2768 * @skb: buffer to segment
2769 * @features: features for the output path (see dev->features)
2770 * @tx_path: whether it is called in TX path
2771 *
2772 * This function segments the given skb and returns a list of segments.
2773 *
2774 * It may return NULL if the skb requires no segmentation. This is
2775 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2776 *
2777 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2778 */
2779struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2780 netdev_features_t features, bool tx_path)
2781{
b2504a5d
ED
2782 struct sk_buff *segs;
2783
05e8ef4a
PS
2784 if (unlikely(skb_needs_check(skb, tx_path))) {
2785 int err;
2786
b2504a5d 2787 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2788 err = skb_cow_head(skb, 0);
2789 if (err < 0)
05e8ef4a
PS
2790 return ERR_PTR(err);
2791 }
2792
802ab55a
AD
2793 /* Only report GSO partial support if it will enable us to
2794 * support segmentation on this frame without needing additional
2795 * work.
2796 */
2797 if (features & NETIF_F_GSO_PARTIAL) {
2798 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2799 struct net_device *dev = skb->dev;
2800
2801 partial_features |= dev->features & dev->gso_partial_features;
2802 if (!skb_gso_ok(skb, features | partial_features))
2803 features &= ~NETIF_F_GSO_PARTIAL;
2804 }
2805
9207f9d4
KK
2806 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2807 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2808
68c33163 2809 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2810 SKB_GSO_CB(skb)->encap_level = 0;
2811
05e8ef4a
PS
2812 skb_reset_mac_header(skb);
2813 skb_reset_mac_len(skb);
2814
b2504a5d
ED
2815 segs = skb_mac_gso_segment(skb, features);
2816
2817 if (unlikely(skb_needs_check(skb, tx_path)))
2818 skb_warn_bad_offload(skb);
2819
2820 return segs;
05e8ef4a 2821}
12b0004d 2822EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2823
fb286bb2
HX
2824/* Take action when hardware reception checksum errors are detected. */
2825#ifdef CONFIG_BUG
2826void netdev_rx_csum_fault(struct net_device *dev)
2827{
2828 if (net_ratelimit()) {
7b6cd1ce 2829 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2830 dump_stack();
2831 }
2832}
2833EXPORT_SYMBOL(netdev_rx_csum_fault);
2834#endif
2835
1da177e4
LT
2836/* Actually, we should eliminate this check as soon as we know, that:
2837 * 1. IOMMU is present and allows to map all the memory.
2838 * 2. No high memory really exists on this machine.
2839 */
2840
c1e756bf 2841static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2842{
3d3a8533 2843#ifdef CONFIG_HIGHMEM
1da177e4 2844 int i;
f4563a75 2845
5acbbd42 2846 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2847 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2848 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 2849
ea2ab693 2850 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2851 return 1;
ea2ab693 2852 }
5acbbd42 2853 }
1da177e4 2854
5acbbd42
FT
2855 if (PCI_DMA_BUS_IS_PHYS) {
2856 struct device *pdev = dev->dev.parent;
1da177e4 2857
9092c658
ED
2858 if (!pdev)
2859 return 0;
5acbbd42 2860 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2861 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2862 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
f4563a75 2863
5acbbd42
FT
2864 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2865 return 1;
2866 }
2867 }
3d3a8533 2868#endif
1da177e4
LT
2869 return 0;
2870}
1da177e4 2871
3b392ddb
SH
2872/* If MPLS offload request, verify we are testing hardware MPLS features
2873 * instead of standard features for the netdev.
2874 */
d0edc7bf 2875#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2876static netdev_features_t net_mpls_features(struct sk_buff *skb,
2877 netdev_features_t features,
2878 __be16 type)
2879{
25cd9ba0 2880 if (eth_p_mpls(type))
3b392ddb
SH
2881 features &= skb->dev->mpls_features;
2882
2883 return features;
2884}
2885#else
2886static netdev_features_t net_mpls_features(struct sk_buff *skb,
2887 netdev_features_t features,
2888 __be16 type)
2889{
2890 return features;
2891}
2892#endif
2893
c8f44aff 2894static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2895 netdev_features_t features)
f01a5236 2896{
53d6471c 2897 int tmp;
3b392ddb
SH
2898 __be16 type;
2899
2900 type = skb_network_protocol(skb, &tmp);
2901 features = net_mpls_features(skb, features, type);
53d6471c 2902
c0d680e5 2903 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2904 !can_checksum_protocol(features, type)) {
996e8021 2905 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2906 }
7be2c82c
ED
2907 if (illegal_highdma(skb->dev, skb))
2908 features &= ~NETIF_F_SG;
f01a5236
JG
2909
2910 return features;
2911}
2912
e38f3025
TM
2913netdev_features_t passthru_features_check(struct sk_buff *skb,
2914 struct net_device *dev,
2915 netdev_features_t features)
2916{
2917 return features;
2918}
2919EXPORT_SYMBOL(passthru_features_check);
2920
8cb65d00
TM
2921static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2922 struct net_device *dev,
2923 netdev_features_t features)
2924{
2925 return vlan_features_check(skb, features);
2926}
2927
cbc53e08
AD
2928static netdev_features_t gso_features_check(const struct sk_buff *skb,
2929 struct net_device *dev,
2930 netdev_features_t features)
2931{
2932 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2933
2934 if (gso_segs > dev->gso_max_segs)
2935 return features & ~NETIF_F_GSO_MASK;
2936
802ab55a
AD
2937 /* Support for GSO partial features requires software
2938 * intervention before we can actually process the packets
2939 * so we need to strip support for any partial features now
2940 * and we can pull them back in after we have partially
2941 * segmented the frame.
2942 */
2943 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2944 features &= ~dev->gso_partial_features;
2945
2946 /* Make sure to clear the IPv4 ID mangling feature if the
2947 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2948 */
2949 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2950 struct iphdr *iph = skb->encapsulation ?
2951 inner_ip_hdr(skb) : ip_hdr(skb);
2952
2953 if (!(iph->frag_off & htons(IP_DF)))
2954 features &= ~NETIF_F_TSO_MANGLEID;
2955 }
2956
2957 return features;
2958}
2959
c1e756bf 2960netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2961{
5f35227e 2962 struct net_device *dev = skb->dev;
fcbeb976 2963 netdev_features_t features = dev->features;
58e998c6 2964
cbc53e08
AD
2965 if (skb_is_gso(skb))
2966 features = gso_features_check(skb, dev, features);
30b678d8 2967
5f35227e
JG
2968 /* If encapsulation offload request, verify we are testing
2969 * hardware encapsulation features instead of standard
2970 * features for the netdev
2971 */
2972 if (skb->encapsulation)
2973 features &= dev->hw_enc_features;
2974
f5a7fb88
TM
2975 if (skb_vlan_tagged(skb))
2976 features = netdev_intersect_features(features,
2977 dev->vlan_features |
2978 NETIF_F_HW_VLAN_CTAG_TX |
2979 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2980
5f35227e
JG
2981 if (dev->netdev_ops->ndo_features_check)
2982 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2983 features);
8cb65d00
TM
2984 else
2985 features &= dflt_features_check(skb, dev, features);
5f35227e 2986
c1e756bf 2987 return harmonize_features(skb, features);
58e998c6 2988}
c1e756bf 2989EXPORT_SYMBOL(netif_skb_features);
58e998c6 2990
2ea25513 2991static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2992 struct netdev_queue *txq, bool more)
f6a78bfc 2993{
2ea25513
DM
2994 unsigned int len;
2995 int rc;
00829823 2996
7866a621 2997 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2998 dev_queue_xmit_nit(skb, dev);
fc741216 2999
2ea25513
DM
3000 len = skb->len;
3001 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3002 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3003 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3004
2ea25513
DM
3005 return rc;
3006}
7b9c6090 3007
8dcda22a
DM
3008struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3009 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3010{
3011 struct sk_buff *skb = first;
3012 int rc = NETDEV_TX_OK;
7b9c6090 3013
7f2e870f
DM
3014 while (skb) {
3015 struct sk_buff *next = skb->next;
fc70fb64 3016
7f2e870f 3017 skb->next = NULL;
95f6b3dd 3018 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3019 if (unlikely(!dev_xmit_complete(rc))) {
3020 skb->next = next;
3021 goto out;
3022 }
6afff0ca 3023
7f2e870f
DM
3024 skb = next;
3025 if (netif_xmit_stopped(txq) && skb) {
3026 rc = NETDEV_TX_BUSY;
3027 break;
9ccb8975 3028 }
7f2e870f 3029 }
9ccb8975 3030
7f2e870f
DM
3031out:
3032 *ret = rc;
3033 return skb;
3034}
b40863c6 3035
1ff0dc94
ED
3036static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3037 netdev_features_t features)
f6a78bfc 3038{
df8a39de 3039 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3040 !vlan_hw_offload_capable(features, skb->vlan_proto))
3041 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3042 return skb;
3043}
f6a78bfc 3044
43c26a1a
DC
3045int skb_csum_hwoffload_help(struct sk_buff *skb,
3046 const netdev_features_t features)
3047{
3048 if (unlikely(skb->csum_not_inet))
3049 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3050 skb_crc32c_csum_help(skb);
3051
3052 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3053}
3054EXPORT_SYMBOL(skb_csum_hwoffload_help);
3055
55a93b3e 3056static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
3057{
3058 netdev_features_t features;
f6a78bfc 3059
eae3f88e
DM
3060 features = netif_skb_features(skb);
3061 skb = validate_xmit_vlan(skb, features);
3062 if (unlikely(!skb))
3063 goto out_null;
7b9c6090 3064
8b86a61d 3065 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3066 struct sk_buff *segs;
3067
3068 segs = skb_gso_segment(skb, features);
cecda693 3069 if (IS_ERR(segs)) {
af6dabc9 3070 goto out_kfree_skb;
cecda693
JW
3071 } else if (segs) {
3072 consume_skb(skb);
3073 skb = segs;
f6a78bfc 3074 }
eae3f88e
DM
3075 } else {
3076 if (skb_needs_linearize(skb, features) &&
3077 __skb_linearize(skb))
3078 goto out_kfree_skb;
4ec93edb 3079
f6e27114
SK
3080 if (validate_xmit_xfrm(skb, features))
3081 goto out_kfree_skb;
3082
eae3f88e
DM
3083 /* If packet is not checksummed and device does not
3084 * support checksumming for this protocol, complete
3085 * checksumming here.
3086 */
3087 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3088 if (skb->encapsulation)
3089 skb_set_inner_transport_header(skb,
3090 skb_checksum_start_offset(skb));
3091 else
3092 skb_set_transport_header(skb,
3093 skb_checksum_start_offset(skb));
43c26a1a 3094 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3095 goto out_kfree_skb;
7b9c6090 3096 }
0c772159 3097 }
7b9c6090 3098
eae3f88e 3099 return skb;
fc70fb64 3100
f6a78bfc
HX
3101out_kfree_skb:
3102 kfree_skb(skb);
eae3f88e 3103out_null:
d21fd63e 3104 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3105 return NULL;
3106}
6afff0ca 3107
55a93b3e
ED
3108struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3109{
3110 struct sk_buff *next, *head = NULL, *tail;
3111
bec3cfdc 3112 for (; skb != NULL; skb = next) {
55a93b3e
ED
3113 next = skb->next;
3114 skb->next = NULL;
bec3cfdc
ED
3115
3116 /* in case skb wont be segmented, point to itself */
3117 skb->prev = skb;
3118
55a93b3e 3119 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3120 if (!skb)
3121 continue;
55a93b3e 3122
bec3cfdc
ED
3123 if (!head)
3124 head = skb;
3125 else
3126 tail->next = skb;
3127 /* If skb was segmented, skb->prev points to
3128 * the last segment. If not, it still contains skb.
3129 */
3130 tail = skb->prev;
55a93b3e
ED
3131 }
3132 return head;
f6a78bfc 3133}
104ba78c 3134EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3135
1def9238
ED
3136static void qdisc_pkt_len_init(struct sk_buff *skb)
3137{
3138 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3139
3140 qdisc_skb_cb(skb)->pkt_len = skb->len;
3141
3142 /* To get more precise estimation of bytes sent on wire,
3143 * we add to pkt_len the headers size of all segments
3144 */
3145 if (shinfo->gso_size) {
757b8b1d 3146 unsigned int hdr_len;
15e5a030 3147 u16 gso_segs = shinfo->gso_segs;
1def9238 3148
757b8b1d
ED
3149 /* mac layer + network layer */
3150 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3151
3152 /* + transport layer */
1def9238
ED
3153 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3154 hdr_len += tcp_hdrlen(skb);
3155 else
3156 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3157
3158 if (shinfo->gso_type & SKB_GSO_DODGY)
3159 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3160 shinfo->gso_size);
3161
3162 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3163 }
3164}
3165
bbd8a0d3
KK
3166static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3167 struct net_device *dev,
3168 struct netdev_queue *txq)
3169{
3170 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3171 struct sk_buff *to_free = NULL;
a2da570d 3172 bool contended;
bbd8a0d3
KK
3173 int rc;
3174
a2da570d 3175 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3176 /*
3177 * Heuristic to force contended enqueues to serialize on a
3178 * separate lock before trying to get qdisc main lock.
f9eb8aea 3179 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3180 * often and dequeue packets faster.
79640a4c 3181 */
a2da570d 3182 contended = qdisc_is_running(q);
79640a4c
ED
3183 if (unlikely(contended))
3184 spin_lock(&q->busylock);
3185
bbd8a0d3
KK
3186 spin_lock(root_lock);
3187 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3188 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3189 rc = NET_XMIT_DROP;
3190 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3191 qdisc_run_begin(q)) {
bbd8a0d3
KK
3192 /*
3193 * This is a work-conserving queue; there are no old skbs
3194 * waiting to be sent out; and the qdisc is not running -
3195 * xmit the skb directly.
3196 */
bfe0d029 3197
bfe0d029
ED
3198 qdisc_bstats_update(q, skb);
3199
55a93b3e 3200 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3201 if (unlikely(contended)) {
3202 spin_unlock(&q->busylock);
3203 contended = false;
3204 }
bbd8a0d3 3205 __qdisc_run(q);
79640a4c 3206 } else
bc135b23 3207 qdisc_run_end(q);
bbd8a0d3
KK
3208
3209 rc = NET_XMIT_SUCCESS;
3210 } else {
520ac30f 3211 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3212 if (qdisc_run_begin(q)) {
3213 if (unlikely(contended)) {
3214 spin_unlock(&q->busylock);
3215 contended = false;
3216 }
3217 __qdisc_run(q);
3218 }
bbd8a0d3
KK
3219 }
3220 spin_unlock(root_lock);
520ac30f
ED
3221 if (unlikely(to_free))
3222 kfree_skb_list(to_free);
79640a4c
ED
3223 if (unlikely(contended))
3224 spin_unlock(&q->busylock);
bbd8a0d3
KK
3225 return rc;
3226}
3227
86f8515f 3228#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3229static void skb_update_prio(struct sk_buff *skb)
3230{
6977a79d 3231 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3232
91c68ce2 3233 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3234 unsigned int prioidx =
3235 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3236
3237 if (prioidx < map->priomap_len)
3238 skb->priority = map->priomap[prioidx];
3239 }
5bc1421e
NH
3240}
3241#else
3242#define skb_update_prio(skb)
3243#endif
3244
f60e5990 3245DEFINE_PER_CPU(int, xmit_recursion);
3246EXPORT_SYMBOL(xmit_recursion);
3247
95603e22
MM
3248/**
3249 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3250 * @net: network namespace this loopback is happening in
3251 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3252 * @skb: buffer to transmit
3253 */
0c4b51f0 3254int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3255{
3256 skb_reset_mac_header(skb);
3257 __skb_pull(skb, skb_network_offset(skb));
3258 skb->pkt_type = PACKET_LOOPBACK;
3259 skb->ip_summed = CHECKSUM_UNNECESSARY;
3260 WARN_ON(!skb_dst(skb));
3261 skb_dst_force(skb);
3262 netif_rx_ni(skb);
3263 return 0;
3264}
3265EXPORT_SYMBOL(dev_loopback_xmit);
3266
1f211a1b
DB
3267#ifdef CONFIG_NET_EGRESS
3268static struct sk_buff *
3269sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3270{
46209401 3271 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3272 struct tcf_result cl_res;
3273
46209401 3274 if (!miniq)
1f211a1b
DB
3275 return skb;
3276
8dc07fdb 3277 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3278 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3279
46209401 3280 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3281 case TC_ACT_OK:
3282 case TC_ACT_RECLASSIFY:
3283 skb->tc_index = TC_H_MIN(cl_res.classid);
3284 break;
3285 case TC_ACT_SHOT:
46209401 3286 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3287 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3288 kfree_skb(skb);
3289 return NULL;
1f211a1b
DB
3290 case TC_ACT_STOLEN:
3291 case TC_ACT_QUEUED:
e25ea21f 3292 case TC_ACT_TRAP:
1f211a1b 3293 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3294 consume_skb(skb);
1f211a1b
DB
3295 return NULL;
3296 case TC_ACT_REDIRECT:
3297 /* No need to push/pop skb's mac_header here on egress! */
3298 skb_do_redirect(skb);
3299 *ret = NET_XMIT_SUCCESS;
3300 return NULL;
3301 default:
3302 break;
3303 }
3304
3305 return skb;
3306}
3307#endif /* CONFIG_NET_EGRESS */
3308
638b2a69
JP
3309static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3310{
3311#ifdef CONFIG_XPS
3312 struct xps_dev_maps *dev_maps;
3313 struct xps_map *map;
3314 int queue_index = -1;
3315
3316 rcu_read_lock();
3317 dev_maps = rcu_dereference(dev->xps_maps);
3318 if (dev_maps) {
184c449f
AD
3319 unsigned int tci = skb->sender_cpu - 1;
3320
3321 if (dev->num_tc) {
3322 tci *= dev->num_tc;
3323 tci += netdev_get_prio_tc_map(dev, skb->priority);
3324 }
3325
3326 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3327 if (map) {
3328 if (map->len == 1)
3329 queue_index = map->queues[0];
3330 else
3331 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3332 map->len)];
3333 if (unlikely(queue_index >= dev->real_num_tx_queues))
3334 queue_index = -1;
3335 }
3336 }
3337 rcu_read_unlock();
3338
3339 return queue_index;
3340#else
3341 return -1;
3342#endif
3343}
3344
3345static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3346{
3347 struct sock *sk = skb->sk;
3348 int queue_index = sk_tx_queue_get(sk);
3349
3350 if (queue_index < 0 || skb->ooo_okay ||
3351 queue_index >= dev->real_num_tx_queues) {
3352 int new_index = get_xps_queue(dev, skb);
f4563a75 3353
638b2a69
JP
3354 if (new_index < 0)
3355 new_index = skb_tx_hash(dev, skb);
3356
3357 if (queue_index != new_index && sk &&
004a5d01 3358 sk_fullsock(sk) &&
638b2a69
JP
3359 rcu_access_pointer(sk->sk_dst_cache))
3360 sk_tx_queue_set(sk, new_index);
3361
3362 queue_index = new_index;
3363 }
3364
3365 return queue_index;
3366}
3367
3368struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3369 struct sk_buff *skb,
3370 void *accel_priv)
3371{
3372 int queue_index = 0;
3373
3374#ifdef CONFIG_XPS
52bd2d62
ED
3375 u32 sender_cpu = skb->sender_cpu - 1;
3376
3377 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3378 skb->sender_cpu = raw_smp_processor_id() + 1;
3379#endif
3380
3381 if (dev->real_num_tx_queues != 1) {
3382 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3383
638b2a69
JP
3384 if (ops->ndo_select_queue)
3385 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3386 __netdev_pick_tx);
3387 else
3388 queue_index = __netdev_pick_tx(dev, skb);
3389
3390 if (!accel_priv)
3391 queue_index = netdev_cap_txqueue(dev, queue_index);
3392 }
3393
3394 skb_set_queue_mapping(skb, queue_index);
3395 return netdev_get_tx_queue(dev, queue_index);
3396}
3397
d29f749e 3398/**
9d08dd3d 3399 * __dev_queue_xmit - transmit a buffer
d29f749e 3400 * @skb: buffer to transmit
9d08dd3d 3401 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3402 *
3403 * Queue a buffer for transmission to a network device. The caller must
3404 * have set the device and priority and built the buffer before calling
3405 * this function. The function can be called from an interrupt.
3406 *
3407 * A negative errno code is returned on a failure. A success does not
3408 * guarantee the frame will be transmitted as it may be dropped due
3409 * to congestion or traffic shaping.
3410 *
3411 * -----------------------------------------------------------------------------------
3412 * I notice this method can also return errors from the queue disciplines,
3413 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3414 * be positive.
3415 *
3416 * Regardless of the return value, the skb is consumed, so it is currently
3417 * difficult to retry a send to this method. (You can bump the ref count
3418 * before sending to hold a reference for retry if you are careful.)
3419 *
3420 * When calling this method, interrupts MUST be enabled. This is because
3421 * the BH enable code must have IRQs enabled so that it will not deadlock.
3422 * --BLG
3423 */
0a59f3a9 3424static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3425{
3426 struct net_device *dev = skb->dev;
dc2b4847 3427 struct netdev_queue *txq;
1da177e4
LT
3428 struct Qdisc *q;
3429 int rc = -ENOMEM;
3430
6d1ccff6
ED
3431 skb_reset_mac_header(skb);
3432
e7fd2885
WB
3433 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3434 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3435
4ec93edb
YH
3436 /* Disable soft irqs for various locks below. Also
3437 * stops preemption for RCU.
1da177e4 3438 */
4ec93edb 3439 rcu_read_lock_bh();
1da177e4 3440
5bc1421e
NH
3441 skb_update_prio(skb);
3442
1f211a1b
DB
3443 qdisc_pkt_len_init(skb);
3444#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3445 skb->tc_at_ingress = 0;
1f211a1b
DB
3446# ifdef CONFIG_NET_EGRESS
3447 if (static_key_false(&egress_needed)) {
3448 skb = sch_handle_egress(skb, &rc, dev);
3449 if (!skb)
3450 goto out;
3451 }
3452# endif
3453#endif
02875878
ED
3454 /* If device/qdisc don't need skb->dst, release it right now while
3455 * its hot in this cpu cache.
3456 */
3457 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3458 skb_dst_drop(skb);
3459 else
3460 skb_dst_force(skb);
3461
f663dd9a 3462 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3463 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3464
cf66ba58 3465 trace_net_dev_queue(skb);
1da177e4 3466 if (q->enqueue) {
bbd8a0d3 3467 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3468 goto out;
1da177e4
LT
3469 }
3470
3471 /* The device has no queue. Common case for software devices:
eb13da1a 3472 * loopback, all the sorts of tunnels...
1da177e4 3473
eb13da1a 3474 * Really, it is unlikely that netif_tx_lock protection is necessary
3475 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3476 * counters.)
3477 * However, it is possible, that they rely on protection
3478 * made by us here.
1da177e4 3479
eb13da1a 3480 * Check this and shot the lock. It is not prone from deadlocks.
3481 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3482 */
3483 if (dev->flags & IFF_UP) {
3484 int cpu = smp_processor_id(); /* ok because BHs are off */
3485
c773e847 3486 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3487 if (unlikely(__this_cpu_read(xmit_recursion) >
3488 XMIT_RECURSION_LIMIT))
745e20f1
ED
3489 goto recursion_alert;
3490
1f59533f
JDB
3491 skb = validate_xmit_skb(skb, dev);
3492 if (!skb)
d21fd63e 3493 goto out;
1f59533f 3494
c773e847 3495 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3496
73466498 3497 if (!netif_xmit_stopped(txq)) {
745e20f1 3498 __this_cpu_inc(xmit_recursion);
ce93718f 3499 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3500 __this_cpu_dec(xmit_recursion);
572a9d7b 3501 if (dev_xmit_complete(rc)) {
c773e847 3502 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3503 goto out;
3504 }
3505 }
c773e847 3506 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3507 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3508 dev->name);
1da177e4
LT
3509 } else {
3510 /* Recursion is detected! It is possible,
745e20f1
ED
3511 * unfortunately
3512 */
3513recursion_alert:
e87cc472
JP
3514 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3515 dev->name);
1da177e4
LT
3516 }
3517 }
3518
3519 rc = -ENETDOWN;
d4828d85 3520 rcu_read_unlock_bh();
1da177e4 3521
015f0688 3522 atomic_long_inc(&dev->tx_dropped);
1f59533f 3523 kfree_skb_list(skb);
1da177e4
LT
3524 return rc;
3525out:
d4828d85 3526 rcu_read_unlock_bh();
1da177e4
LT
3527 return rc;
3528}
f663dd9a 3529
2b4aa3ce 3530int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3531{
3532 return __dev_queue_xmit(skb, NULL);
3533}
2b4aa3ce 3534EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3535
f663dd9a
JW
3536int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3537{
3538 return __dev_queue_xmit(skb, accel_priv);
3539}
3540EXPORT_SYMBOL(dev_queue_xmit_accel);
3541
1da177e4 3542
eb13da1a 3543/*************************************************************************
3544 * Receiver routines
3545 *************************************************************************/
1da177e4 3546
6b2bedc3 3547int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3548EXPORT_SYMBOL(netdev_max_backlog);
3549
3b098e2d 3550int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3551int netdev_budget __read_mostly = 300;
7acf8a1e 3552unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3553int weight_p __read_mostly = 64; /* old backlog weight */
3554int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3555int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3556int dev_rx_weight __read_mostly = 64;
3557int dev_tx_weight __read_mostly = 64;
1da177e4 3558
eecfd7c4
ED
3559/* Called with irq disabled */
3560static inline void ____napi_schedule(struct softnet_data *sd,
3561 struct napi_struct *napi)
3562{
3563 list_add_tail(&napi->poll_list, &sd->poll_list);
3564 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3565}
3566
bfb564e7
KK
3567#ifdef CONFIG_RPS
3568
3569/* One global table that all flow-based protocols share. */
6e3f7faf 3570struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3571EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3572u32 rps_cpu_mask __read_mostly;
3573EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3574
c5905afb 3575struct static_key rps_needed __read_mostly;
3df97ba8 3576EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3577struct static_key rfs_needed __read_mostly;
3578EXPORT_SYMBOL(rfs_needed);
adc9300e 3579
c445477d
BH
3580static struct rps_dev_flow *
3581set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3582 struct rps_dev_flow *rflow, u16 next_cpu)
3583{
a31196b0 3584 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3585#ifdef CONFIG_RFS_ACCEL
3586 struct netdev_rx_queue *rxqueue;
3587 struct rps_dev_flow_table *flow_table;
3588 struct rps_dev_flow *old_rflow;
3589 u32 flow_id;
3590 u16 rxq_index;
3591 int rc;
3592
3593 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3594 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3595 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3596 goto out;
3597 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3598 if (rxq_index == skb_get_rx_queue(skb))
3599 goto out;
3600
3601 rxqueue = dev->_rx + rxq_index;
3602 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3603 if (!flow_table)
3604 goto out;
61b905da 3605 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3606 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3607 rxq_index, flow_id);
3608 if (rc < 0)
3609 goto out;
3610 old_rflow = rflow;
3611 rflow = &flow_table->flows[flow_id];
c445477d
BH
3612 rflow->filter = rc;
3613 if (old_rflow->filter == rflow->filter)
3614 old_rflow->filter = RPS_NO_FILTER;
3615 out:
3616#endif
3617 rflow->last_qtail =
09994d1b 3618 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3619 }
3620
09994d1b 3621 rflow->cpu = next_cpu;
c445477d
BH
3622 return rflow;
3623}
3624
bfb564e7
KK
3625/*
3626 * get_rps_cpu is called from netif_receive_skb and returns the target
3627 * CPU from the RPS map of the receiving queue for a given skb.
3628 * rcu_read_lock must be held on entry.
3629 */
3630static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3631 struct rps_dev_flow **rflowp)
3632{
567e4b79
ED
3633 const struct rps_sock_flow_table *sock_flow_table;
3634 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3635 struct rps_dev_flow_table *flow_table;
567e4b79 3636 struct rps_map *map;
bfb564e7 3637 int cpu = -1;
567e4b79 3638 u32 tcpu;
61b905da 3639 u32 hash;
bfb564e7
KK
3640
3641 if (skb_rx_queue_recorded(skb)) {
3642 u16 index = skb_get_rx_queue(skb);
567e4b79 3643
62fe0b40
BH
3644 if (unlikely(index >= dev->real_num_rx_queues)) {
3645 WARN_ONCE(dev->real_num_rx_queues > 1,
3646 "%s received packet on queue %u, but number "
3647 "of RX queues is %u\n",
3648 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3649 goto done;
3650 }
567e4b79
ED
3651 rxqueue += index;
3652 }
bfb564e7 3653
567e4b79
ED
3654 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3655
3656 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3657 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3658 if (!flow_table && !map)
bfb564e7
KK
3659 goto done;
3660
2d47b459 3661 skb_reset_network_header(skb);
61b905da
TH
3662 hash = skb_get_hash(skb);
3663 if (!hash)
bfb564e7
KK
3664 goto done;
3665
fec5e652
TH
3666 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3667 if (flow_table && sock_flow_table) {
fec5e652 3668 struct rps_dev_flow *rflow;
567e4b79
ED
3669 u32 next_cpu;
3670 u32 ident;
3671
3672 /* First check into global flow table if there is a match */
3673 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3674 if ((ident ^ hash) & ~rps_cpu_mask)
3675 goto try_rps;
fec5e652 3676
567e4b79
ED
3677 next_cpu = ident & rps_cpu_mask;
3678
3679 /* OK, now we know there is a match,
3680 * we can look at the local (per receive queue) flow table
3681 */
61b905da 3682 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3683 tcpu = rflow->cpu;
3684
fec5e652
TH
3685 /*
3686 * If the desired CPU (where last recvmsg was done) is
3687 * different from current CPU (one in the rx-queue flow
3688 * table entry), switch if one of the following holds:
a31196b0 3689 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3690 * - Current CPU is offline.
3691 * - The current CPU's queue tail has advanced beyond the
3692 * last packet that was enqueued using this table entry.
3693 * This guarantees that all previous packets for the flow
3694 * have been dequeued, thus preserving in order delivery.
3695 */
3696 if (unlikely(tcpu != next_cpu) &&
a31196b0 3697 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3698 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3699 rflow->last_qtail)) >= 0)) {
3700 tcpu = next_cpu;
c445477d 3701 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3702 }
c445477d 3703
a31196b0 3704 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3705 *rflowp = rflow;
3706 cpu = tcpu;
3707 goto done;
3708 }
3709 }
3710
567e4b79
ED
3711try_rps:
3712
0a9627f2 3713 if (map) {
8fc54f68 3714 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3715 if (cpu_online(tcpu)) {
3716 cpu = tcpu;
3717 goto done;
3718 }
3719 }
3720
3721done:
0a9627f2
TH
3722 return cpu;
3723}
3724
c445477d
BH
3725#ifdef CONFIG_RFS_ACCEL
3726
3727/**
3728 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3729 * @dev: Device on which the filter was set
3730 * @rxq_index: RX queue index
3731 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3732 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3733 *
3734 * Drivers that implement ndo_rx_flow_steer() should periodically call
3735 * this function for each installed filter and remove the filters for
3736 * which it returns %true.
3737 */
3738bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3739 u32 flow_id, u16 filter_id)
3740{
3741 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3742 struct rps_dev_flow_table *flow_table;
3743 struct rps_dev_flow *rflow;
3744 bool expire = true;
a31196b0 3745 unsigned int cpu;
c445477d
BH
3746
3747 rcu_read_lock();
3748 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3749 if (flow_table && flow_id <= flow_table->mask) {
3750 rflow = &flow_table->flows[flow_id];
3751 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3752 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3753 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3754 rflow->last_qtail) <
3755 (int)(10 * flow_table->mask)))
3756 expire = false;
3757 }
3758 rcu_read_unlock();
3759 return expire;
3760}
3761EXPORT_SYMBOL(rps_may_expire_flow);
3762
3763#endif /* CONFIG_RFS_ACCEL */
3764
0a9627f2 3765/* Called from hardirq (IPI) context */
e36fa2f7 3766static void rps_trigger_softirq(void *data)
0a9627f2 3767{
e36fa2f7
ED
3768 struct softnet_data *sd = data;
3769
eecfd7c4 3770 ____napi_schedule(sd, &sd->backlog);
dee42870 3771 sd->received_rps++;
0a9627f2 3772}
e36fa2f7 3773
fec5e652 3774#endif /* CONFIG_RPS */
0a9627f2 3775
e36fa2f7
ED
3776/*
3777 * Check if this softnet_data structure is another cpu one
3778 * If yes, queue it to our IPI list and return 1
3779 * If no, return 0
3780 */
3781static int rps_ipi_queued(struct softnet_data *sd)
3782{
3783#ifdef CONFIG_RPS
903ceff7 3784 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3785
3786 if (sd != mysd) {
3787 sd->rps_ipi_next = mysd->rps_ipi_list;
3788 mysd->rps_ipi_list = sd;
3789
3790 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3791 return 1;
3792 }
3793#endif /* CONFIG_RPS */
3794 return 0;
3795}
3796
99bbc707
WB
3797#ifdef CONFIG_NET_FLOW_LIMIT
3798int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3799#endif
3800
3801static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3802{
3803#ifdef CONFIG_NET_FLOW_LIMIT
3804 struct sd_flow_limit *fl;
3805 struct softnet_data *sd;
3806 unsigned int old_flow, new_flow;
3807
3808 if (qlen < (netdev_max_backlog >> 1))
3809 return false;
3810
903ceff7 3811 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3812
3813 rcu_read_lock();
3814 fl = rcu_dereference(sd->flow_limit);
3815 if (fl) {
3958afa1 3816 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3817 old_flow = fl->history[fl->history_head];
3818 fl->history[fl->history_head] = new_flow;
3819
3820 fl->history_head++;
3821 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3822
3823 if (likely(fl->buckets[old_flow]))
3824 fl->buckets[old_flow]--;
3825
3826 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3827 fl->count++;
3828 rcu_read_unlock();
3829 return true;
3830 }
3831 }
3832 rcu_read_unlock();
3833#endif
3834 return false;
3835}
3836
0a9627f2
TH
3837/*
3838 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3839 * queue (may be a remote CPU queue).
3840 */
fec5e652
TH
3841static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3842 unsigned int *qtail)
0a9627f2 3843{
e36fa2f7 3844 struct softnet_data *sd;
0a9627f2 3845 unsigned long flags;
99bbc707 3846 unsigned int qlen;
0a9627f2 3847
e36fa2f7 3848 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3849
3850 local_irq_save(flags);
0a9627f2 3851
e36fa2f7 3852 rps_lock(sd);
e9e4dd32
JA
3853 if (!netif_running(skb->dev))
3854 goto drop;
99bbc707
WB
3855 qlen = skb_queue_len(&sd->input_pkt_queue);
3856 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3857 if (qlen) {
0a9627f2 3858enqueue:
e36fa2f7 3859 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3860 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3861 rps_unlock(sd);
152102c7 3862 local_irq_restore(flags);
0a9627f2
TH
3863 return NET_RX_SUCCESS;
3864 }
3865
ebda37c2
ED
3866 /* Schedule NAPI for backlog device
3867 * We can use non atomic operation since we own the queue lock
3868 */
3869 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3870 if (!rps_ipi_queued(sd))
eecfd7c4 3871 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3872 }
3873 goto enqueue;
3874 }
3875
e9e4dd32 3876drop:
dee42870 3877 sd->dropped++;
e36fa2f7 3878 rps_unlock(sd);
0a9627f2 3879
0a9627f2
TH
3880 local_irq_restore(flags);
3881
caf586e5 3882 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3883 kfree_skb(skb);
3884 return NET_RX_DROP;
3885}
1da177e4 3886
d4455169
JF
3887static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3888 struct bpf_prog *xdp_prog)
3889{
de8f3a83 3890 u32 metalen, act = XDP_DROP;
d4455169 3891 struct xdp_buff xdp;
d4455169
JF
3892 void *orig_data;
3893 int hlen, off;
3894 u32 mac_len;
3895
3896 /* Reinjected packets coming from act_mirred or similar should
3897 * not get XDP generic processing.
3898 */
3899 if (skb_cloned(skb))
3900 return XDP_PASS;
3901
de8f3a83
DB
3902 /* XDP packets must be linear and must have sufficient headroom
3903 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3904 * native XDP provides, thus we need to do it here as well.
3905 */
3906 if (skb_is_nonlinear(skb) ||
3907 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3908 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3909 int troom = skb->tail + skb->data_len - skb->end;
3910
3911 /* In case we have to go down the path and also linearize,
3912 * then lets do the pskb_expand_head() work just once here.
3913 */
3914 if (pskb_expand_head(skb,
3915 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3916 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3917 goto do_drop;
3918 if (troom > 0 && __skb_linearize(skb))
3919 goto do_drop;
3920 }
d4455169
JF
3921
3922 /* The XDP program wants to see the packet starting at the MAC
3923 * header.
3924 */
3925 mac_len = skb->data - skb_mac_header(skb);
3926 hlen = skb_headlen(skb) + mac_len;
3927 xdp.data = skb->data - mac_len;
de8f3a83 3928 xdp.data_meta = xdp.data;
d4455169
JF
3929 xdp.data_end = xdp.data + hlen;
3930 xdp.data_hard_start = skb->data - skb_headroom(skb);
3931 orig_data = xdp.data;
3932
3933 act = bpf_prog_run_xdp(xdp_prog, &xdp);
3934
3935 off = xdp.data - orig_data;
3936 if (off > 0)
3937 __skb_pull(skb, off);
3938 else if (off < 0)
3939 __skb_push(skb, -off);
92dd5452 3940 skb->mac_header += off;
d4455169
JF
3941
3942 switch (act) {
6103aa96 3943 case XDP_REDIRECT:
d4455169
JF
3944 case XDP_TX:
3945 __skb_push(skb, mac_len);
de8f3a83 3946 break;
d4455169 3947 case XDP_PASS:
de8f3a83
DB
3948 metalen = xdp.data - xdp.data_meta;
3949 if (metalen)
3950 skb_metadata_set(skb, metalen);
d4455169 3951 break;
d4455169
JF
3952 default:
3953 bpf_warn_invalid_xdp_action(act);
3954 /* fall through */
3955 case XDP_ABORTED:
3956 trace_xdp_exception(skb->dev, xdp_prog, act);
3957 /* fall through */
3958 case XDP_DROP:
3959 do_drop:
3960 kfree_skb(skb);
3961 break;
3962 }
3963
3964 return act;
3965}
3966
3967/* When doing generic XDP we have to bypass the qdisc layer and the
3968 * network taps in order to match in-driver-XDP behavior.
3969 */
7c497478 3970void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
3971{
3972 struct net_device *dev = skb->dev;
3973 struct netdev_queue *txq;
3974 bool free_skb = true;
3975 int cpu, rc;
3976
3977 txq = netdev_pick_tx(dev, skb, NULL);
3978 cpu = smp_processor_id();
3979 HARD_TX_LOCK(dev, txq, cpu);
3980 if (!netif_xmit_stopped(txq)) {
3981 rc = netdev_start_xmit(skb, dev, txq, 0);
3982 if (dev_xmit_complete(rc))
3983 free_skb = false;
3984 }
3985 HARD_TX_UNLOCK(dev, txq);
3986 if (free_skb) {
3987 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3988 kfree_skb(skb);
3989 }
3990}
7c497478 3991EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169
JF
3992
3993static struct static_key generic_xdp_needed __read_mostly;
3994
7c497478 3995int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 3996{
d4455169
JF
3997 if (xdp_prog) {
3998 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
6103aa96 3999 int err;
d4455169
JF
4000
4001 if (act != XDP_PASS) {
6103aa96
JF
4002 switch (act) {
4003 case XDP_REDIRECT:
2facaad6
JDB
4004 err = xdp_do_generic_redirect(skb->dev, skb,
4005 xdp_prog);
6103aa96
JF
4006 if (err)
4007 goto out_redir;
4008 /* fallthru to submit skb */
4009 case XDP_TX:
d4455169 4010 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4011 break;
4012 }
d4455169
JF
4013 return XDP_DROP;
4014 }
4015 }
4016 return XDP_PASS;
6103aa96 4017out_redir:
6103aa96
JF
4018 kfree_skb(skb);
4019 return XDP_DROP;
d4455169 4020}
7c497478 4021EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4022
ae78dbfa 4023static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4024{
b0e28f1e 4025 int ret;
1da177e4 4026
588f0330 4027 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4028
cf66ba58 4029 trace_netif_rx(skb);
d4455169
JF
4030
4031 if (static_key_false(&generic_xdp_needed)) {
bbbe211c
JF
4032 int ret;
4033
4034 preempt_disable();
4035 rcu_read_lock();
4036 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4037 rcu_read_unlock();
4038 preempt_enable();
d4455169 4039
6103aa96
JF
4040 /* Consider XDP consuming the packet a success from
4041 * the netdev point of view we do not want to count
4042 * this as an error.
4043 */
d4455169 4044 if (ret != XDP_PASS)
6103aa96 4045 return NET_RX_SUCCESS;
d4455169
JF
4046 }
4047
df334545 4048#ifdef CONFIG_RPS
c5905afb 4049 if (static_key_false(&rps_needed)) {
fec5e652 4050 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4051 int cpu;
4052
cece1945 4053 preempt_disable();
b0e28f1e 4054 rcu_read_lock();
fec5e652
TH
4055
4056 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4057 if (cpu < 0)
4058 cpu = smp_processor_id();
fec5e652
TH
4059
4060 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4061
b0e28f1e 4062 rcu_read_unlock();
cece1945 4063 preempt_enable();
adc9300e
ED
4064 } else
4065#endif
fec5e652
TH
4066 {
4067 unsigned int qtail;
f4563a75 4068
fec5e652
TH
4069 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4070 put_cpu();
4071 }
b0e28f1e 4072 return ret;
1da177e4 4073}
ae78dbfa
BH
4074
4075/**
4076 * netif_rx - post buffer to the network code
4077 * @skb: buffer to post
4078 *
4079 * This function receives a packet from a device driver and queues it for
4080 * the upper (protocol) levels to process. It always succeeds. The buffer
4081 * may be dropped during processing for congestion control or by the
4082 * protocol layers.
4083 *
4084 * return values:
4085 * NET_RX_SUCCESS (no congestion)
4086 * NET_RX_DROP (packet was dropped)
4087 *
4088 */
4089
4090int netif_rx(struct sk_buff *skb)
4091{
4092 trace_netif_rx_entry(skb);
4093
4094 return netif_rx_internal(skb);
4095}
d1b19dff 4096EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4097
4098int netif_rx_ni(struct sk_buff *skb)
4099{
4100 int err;
4101
ae78dbfa
BH
4102 trace_netif_rx_ni_entry(skb);
4103
1da177e4 4104 preempt_disable();
ae78dbfa 4105 err = netif_rx_internal(skb);
1da177e4
LT
4106 if (local_softirq_pending())
4107 do_softirq();
4108 preempt_enable();
4109
4110 return err;
4111}
1da177e4
LT
4112EXPORT_SYMBOL(netif_rx_ni);
4113
0766f788 4114static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4115{
903ceff7 4116 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4117
4118 if (sd->completion_queue) {
4119 struct sk_buff *clist;
4120
4121 local_irq_disable();
4122 clist = sd->completion_queue;
4123 sd->completion_queue = NULL;
4124 local_irq_enable();
4125
4126 while (clist) {
4127 struct sk_buff *skb = clist;
f4563a75 4128
1da177e4
LT
4129 clist = clist->next;
4130
63354797 4131 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4132 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4133 trace_consume_skb(skb);
4134 else
4135 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4136
4137 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4138 __kfree_skb(skb);
4139 else
4140 __kfree_skb_defer(skb);
1da177e4 4141 }
15fad714
JDB
4142
4143 __kfree_skb_flush();
1da177e4
LT
4144 }
4145
4146 if (sd->output_queue) {
37437bb2 4147 struct Qdisc *head;
1da177e4
LT
4148
4149 local_irq_disable();
4150 head = sd->output_queue;
4151 sd->output_queue = NULL;
a9cbd588 4152 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4153 local_irq_enable();
4154
4155 while (head) {
37437bb2
DM
4156 struct Qdisc *q = head;
4157 spinlock_t *root_lock;
4158
1da177e4
LT
4159 head = head->next_sched;
4160
5fb66229 4161 root_lock = qdisc_lock(q);
3bcb846c
ED
4162 spin_lock(root_lock);
4163 /* We need to make sure head->next_sched is read
4164 * before clearing __QDISC_STATE_SCHED
4165 */
4166 smp_mb__before_atomic();
4167 clear_bit(__QDISC_STATE_SCHED, &q->state);
4168 qdisc_run(q);
4169 spin_unlock(root_lock);
1da177e4
LT
4170 }
4171 }
4172}
4173
181402a5 4174#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4175/* This hook is defined here for ATM LANE */
4176int (*br_fdb_test_addr_hook)(struct net_device *dev,
4177 unsigned char *addr) __read_mostly;
4fb019a0 4178EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4179#endif
1da177e4 4180
1f211a1b
DB
4181static inline struct sk_buff *
4182sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4183 struct net_device *orig_dev)
f697c3e8 4184{
e7582bab 4185#ifdef CONFIG_NET_CLS_ACT
46209401 4186 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4187 struct tcf_result cl_res;
24824a09 4188
c9e99fd0
DB
4189 /* If there's at least one ingress present somewhere (so
4190 * we get here via enabled static key), remaining devices
4191 * that are not configured with an ingress qdisc will bail
d2788d34 4192 * out here.
c9e99fd0 4193 */
46209401 4194 if (!miniq)
4577139b 4195 return skb;
46209401 4196
f697c3e8
HX
4197 if (*pt_prev) {
4198 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4199 *pt_prev = NULL;
1da177e4
LT
4200 }
4201
3365495c 4202 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4203 skb->tc_at_ingress = 1;
46209401 4204 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4205
46209401 4206 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
4207 case TC_ACT_OK:
4208 case TC_ACT_RECLASSIFY:
4209 skb->tc_index = TC_H_MIN(cl_res.classid);
4210 break;
4211 case TC_ACT_SHOT:
46209401 4212 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4213 kfree_skb(skb);
4214 return NULL;
d2788d34
DB
4215 case TC_ACT_STOLEN:
4216 case TC_ACT_QUEUED:
e25ea21f 4217 case TC_ACT_TRAP:
8a3a4c6e 4218 consume_skb(skb);
d2788d34 4219 return NULL;
27b29f63
AS
4220 case TC_ACT_REDIRECT:
4221 /* skb_mac_header check was done by cls/act_bpf, so
4222 * we can safely push the L2 header back before
4223 * redirecting to another netdev
4224 */
4225 __skb_push(skb, skb->mac_len);
4226 skb_do_redirect(skb);
4227 return NULL;
d2788d34
DB
4228 default:
4229 break;
f697c3e8 4230 }
e7582bab 4231#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4232 return skb;
4233}
1da177e4 4234
24b27fc4
MB
4235/**
4236 * netdev_is_rx_handler_busy - check if receive handler is registered
4237 * @dev: device to check
4238 *
4239 * Check if a receive handler is already registered for a given device.
4240 * Return true if there one.
4241 *
4242 * The caller must hold the rtnl_mutex.
4243 */
4244bool netdev_is_rx_handler_busy(struct net_device *dev)
4245{
4246 ASSERT_RTNL();
4247 return dev && rtnl_dereference(dev->rx_handler);
4248}
4249EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4250
ab95bfe0
JP
4251/**
4252 * netdev_rx_handler_register - register receive handler
4253 * @dev: device to register a handler for
4254 * @rx_handler: receive handler to register
93e2c32b 4255 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4256 *
e227867f 4257 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4258 * called from __netif_receive_skb. A negative errno code is returned
4259 * on a failure.
4260 *
4261 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4262 *
4263 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4264 */
4265int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4266 rx_handler_func_t *rx_handler,
4267 void *rx_handler_data)
ab95bfe0 4268{
1b7cd004 4269 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4270 return -EBUSY;
4271
00cfec37 4272 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4273 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4274 rcu_assign_pointer(dev->rx_handler, rx_handler);
4275
4276 return 0;
4277}
4278EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4279
4280/**
4281 * netdev_rx_handler_unregister - unregister receive handler
4282 * @dev: device to unregister a handler from
4283 *
166ec369 4284 * Unregister a receive handler from a device.
ab95bfe0
JP
4285 *
4286 * The caller must hold the rtnl_mutex.
4287 */
4288void netdev_rx_handler_unregister(struct net_device *dev)
4289{
4290
4291 ASSERT_RTNL();
a9b3cd7f 4292 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4293 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4294 * section has a guarantee to see a non NULL rx_handler_data
4295 * as well.
4296 */
4297 synchronize_net();
a9b3cd7f 4298 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4299}
4300EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4301
b4b9e355
MG
4302/*
4303 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4304 * the special handling of PFMEMALLOC skbs.
4305 */
4306static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4307{
4308 switch (skb->protocol) {
2b8837ae
JP
4309 case htons(ETH_P_ARP):
4310 case htons(ETH_P_IP):
4311 case htons(ETH_P_IPV6):
4312 case htons(ETH_P_8021Q):
4313 case htons(ETH_P_8021AD):
b4b9e355
MG
4314 return true;
4315 default:
4316 return false;
4317 }
4318}
4319
e687ad60
PN
4320static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4321 int *ret, struct net_device *orig_dev)
4322{
e7582bab 4323#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4324 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4325 int ingress_retval;
4326
e687ad60
PN
4327 if (*pt_prev) {
4328 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4329 *pt_prev = NULL;
4330 }
4331
2c1e2703
AC
4332 rcu_read_lock();
4333 ingress_retval = nf_hook_ingress(skb);
4334 rcu_read_unlock();
4335 return ingress_retval;
e687ad60 4336 }
e7582bab 4337#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4338 return 0;
4339}
e687ad60 4340
9754e293 4341static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4342{
4343 struct packet_type *ptype, *pt_prev;
ab95bfe0 4344 rx_handler_func_t *rx_handler;
f2ccd8fa 4345 struct net_device *orig_dev;
8a4eb573 4346 bool deliver_exact = false;
1da177e4 4347 int ret = NET_RX_DROP;
252e3346 4348 __be16 type;
1da177e4 4349
588f0330 4350 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4351
cf66ba58 4352 trace_netif_receive_skb(skb);
9b22ea56 4353
cc9bd5ce 4354 orig_dev = skb->dev;
8f903c70 4355
c1d2bbe1 4356 skb_reset_network_header(skb);
fda55eca
ED
4357 if (!skb_transport_header_was_set(skb))
4358 skb_reset_transport_header(skb);
0b5c9db1 4359 skb_reset_mac_len(skb);
1da177e4
LT
4360
4361 pt_prev = NULL;
4362
63d8ea7f 4363another_round:
b6858177 4364 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4365
4366 __this_cpu_inc(softnet_data.processed);
4367
8ad227ff
PM
4368 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4369 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4370 skb = skb_vlan_untag(skb);
bcc6d479 4371 if (unlikely(!skb))
2c17d27c 4372 goto out;
bcc6d479
JP
4373 }
4374
e7246e12
WB
4375 if (skb_skip_tc_classify(skb))
4376 goto skip_classify;
1da177e4 4377
9754e293 4378 if (pfmemalloc)
b4b9e355
MG
4379 goto skip_taps;
4380
1da177e4 4381 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4382 if (pt_prev)
4383 ret = deliver_skb(skb, pt_prev, orig_dev);
4384 pt_prev = ptype;
4385 }
4386
4387 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4388 if (pt_prev)
4389 ret = deliver_skb(skb, pt_prev, orig_dev);
4390 pt_prev = ptype;
1da177e4
LT
4391 }
4392
b4b9e355 4393skip_taps:
1cf51900 4394#ifdef CONFIG_NET_INGRESS
4577139b 4395 if (static_key_false(&ingress_needed)) {
1f211a1b 4396 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4397 if (!skb)
2c17d27c 4398 goto out;
e687ad60
PN
4399
4400 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4401 goto out;
4577139b 4402 }
1cf51900 4403#endif
a5135bcf 4404 skb_reset_tc(skb);
e7246e12 4405skip_classify:
9754e293 4406 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4407 goto drop;
4408
df8a39de 4409 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4410 if (pt_prev) {
4411 ret = deliver_skb(skb, pt_prev, orig_dev);
4412 pt_prev = NULL;
4413 }
48cc32d3 4414 if (vlan_do_receive(&skb))
2425717b
JF
4415 goto another_round;
4416 else if (unlikely(!skb))
2c17d27c 4417 goto out;
2425717b
JF
4418 }
4419
48cc32d3 4420 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4421 if (rx_handler) {
4422 if (pt_prev) {
4423 ret = deliver_skb(skb, pt_prev, orig_dev);
4424 pt_prev = NULL;
4425 }
8a4eb573
JP
4426 switch (rx_handler(&skb)) {
4427 case RX_HANDLER_CONSUMED:
3bc1b1ad 4428 ret = NET_RX_SUCCESS;
2c17d27c 4429 goto out;
8a4eb573 4430 case RX_HANDLER_ANOTHER:
63d8ea7f 4431 goto another_round;
8a4eb573
JP
4432 case RX_HANDLER_EXACT:
4433 deliver_exact = true;
4434 case RX_HANDLER_PASS:
4435 break;
4436 default:
4437 BUG();
4438 }
ab95bfe0 4439 }
1da177e4 4440
df8a39de
JP
4441 if (unlikely(skb_vlan_tag_present(skb))) {
4442 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4443 skb->pkt_type = PACKET_OTHERHOST;
4444 /* Note: we might in the future use prio bits
4445 * and set skb->priority like in vlan_do_receive()
4446 * For the time being, just ignore Priority Code Point
4447 */
4448 skb->vlan_tci = 0;
4449 }
48cc32d3 4450
7866a621
SN
4451 type = skb->protocol;
4452
63d8ea7f 4453 /* deliver only exact match when indicated */
7866a621
SN
4454 if (likely(!deliver_exact)) {
4455 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4456 &ptype_base[ntohs(type) &
4457 PTYPE_HASH_MASK]);
4458 }
1f3c8804 4459
7866a621
SN
4460 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4461 &orig_dev->ptype_specific);
4462
4463 if (unlikely(skb->dev != orig_dev)) {
4464 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4465 &skb->dev->ptype_specific);
1da177e4
LT
4466 }
4467
4468 if (pt_prev) {
1f8b977a 4469 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 4470 goto drop;
1080e512
MT
4471 else
4472 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4473 } else {
b4b9e355 4474drop:
6e7333d3
JW
4475 if (!deliver_exact)
4476 atomic_long_inc(&skb->dev->rx_dropped);
4477 else
4478 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4479 kfree_skb(skb);
4480 /* Jamal, now you will not able to escape explaining
4481 * me how you were going to use this. :-)
4482 */
4483 ret = NET_RX_DROP;
4484 }
4485
2c17d27c 4486out:
9754e293
DM
4487 return ret;
4488}
4489
1c601d82
JDB
4490/**
4491 * netif_receive_skb_core - special purpose version of netif_receive_skb
4492 * @skb: buffer to process
4493 *
4494 * More direct receive version of netif_receive_skb(). It should
4495 * only be used by callers that have a need to skip RPS and Generic XDP.
4496 * Caller must also take care of handling if (page_is_)pfmemalloc.
4497 *
4498 * This function may only be called from softirq context and interrupts
4499 * should be enabled.
4500 *
4501 * Return values (usually ignored):
4502 * NET_RX_SUCCESS: no congestion
4503 * NET_RX_DROP: packet was dropped
4504 */
4505int netif_receive_skb_core(struct sk_buff *skb)
4506{
4507 int ret;
4508
4509 rcu_read_lock();
4510 ret = __netif_receive_skb_core(skb, false);
4511 rcu_read_unlock();
4512
4513 return ret;
4514}
4515EXPORT_SYMBOL(netif_receive_skb_core);
4516
9754e293
DM
4517static int __netif_receive_skb(struct sk_buff *skb)
4518{
4519 int ret;
4520
4521 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 4522 unsigned int noreclaim_flag;
9754e293
DM
4523
4524 /*
4525 * PFMEMALLOC skbs are special, they should
4526 * - be delivered to SOCK_MEMALLOC sockets only
4527 * - stay away from userspace
4528 * - have bounded memory usage
4529 *
4530 * Use PF_MEMALLOC as this saves us from propagating the allocation
4531 * context down to all allocation sites.
4532 */
f1083048 4533 noreclaim_flag = memalloc_noreclaim_save();
9754e293 4534 ret = __netif_receive_skb_core(skb, true);
f1083048 4535 memalloc_noreclaim_restore(noreclaim_flag);
9754e293
DM
4536 } else
4537 ret = __netif_receive_skb_core(skb, false);
4538
1da177e4
LT
4539 return ret;
4540}
0a9627f2 4541
f4e63525 4542static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 4543{
58038695 4544 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
4545 struct bpf_prog *new = xdp->prog;
4546 int ret = 0;
4547
4548 switch (xdp->command) {
58038695 4549 case XDP_SETUP_PROG:
b5cdae32
DM
4550 rcu_assign_pointer(dev->xdp_prog, new);
4551 if (old)
4552 bpf_prog_put(old);
4553
4554 if (old && !new) {
4555 static_key_slow_dec(&generic_xdp_needed);
4556 } else if (new && !old) {
4557 static_key_slow_inc(&generic_xdp_needed);
4558 dev_disable_lro(dev);
4559 }
4560 break;
b5cdae32
DM
4561
4562 case XDP_QUERY_PROG:
58038695
MKL
4563 xdp->prog_attached = !!old;
4564 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
4565 break;
4566
4567 default:
4568 ret = -EINVAL;
4569 break;
4570 }
4571
4572 return ret;
4573}
4574
ae78dbfa 4575static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4576{
2c17d27c
JA
4577 int ret;
4578
588f0330 4579 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4580
c1f19b51
RC
4581 if (skb_defer_rx_timestamp(skb))
4582 return NET_RX_SUCCESS;
4583
b5cdae32 4584 if (static_key_false(&generic_xdp_needed)) {
bbbe211c 4585 int ret;
b5cdae32 4586
bbbe211c
JF
4587 preempt_disable();
4588 rcu_read_lock();
4589 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4590 rcu_read_unlock();
4591 preempt_enable();
4592
4593 if (ret != XDP_PASS)
d4455169 4594 return NET_RX_DROP;
b5cdae32
DM
4595 }
4596
bbbe211c 4597 rcu_read_lock();
df334545 4598#ifdef CONFIG_RPS
c5905afb 4599 if (static_key_false(&rps_needed)) {
3b098e2d 4600 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4601 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4602
3b098e2d
ED
4603 if (cpu >= 0) {
4604 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4605 rcu_read_unlock();
adc9300e 4606 return ret;
3b098e2d 4607 }
fec5e652 4608 }
1e94d72f 4609#endif
2c17d27c
JA
4610 ret = __netif_receive_skb(skb);
4611 rcu_read_unlock();
4612 return ret;
0a9627f2 4613}
ae78dbfa
BH
4614
4615/**
4616 * netif_receive_skb - process receive buffer from network
4617 * @skb: buffer to process
4618 *
4619 * netif_receive_skb() is the main receive data processing function.
4620 * It always succeeds. The buffer may be dropped during processing
4621 * for congestion control or by the protocol layers.
4622 *
4623 * This function may only be called from softirq context and interrupts
4624 * should be enabled.
4625 *
4626 * Return values (usually ignored):
4627 * NET_RX_SUCCESS: no congestion
4628 * NET_RX_DROP: packet was dropped
4629 */
04eb4489 4630int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4631{
4632 trace_netif_receive_skb_entry(skb);
4633
4634 return netif_receive_skb_internal(skb);
4635}
04eb4489 4636EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4637
41852497 4638DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4639
4640/* Network device is going away, flush any packets still pending */
4641static void flush_backlog(struct work_struct *work)
6e583ce5 4642{
6e583ce5 4643 struct sk_buff *skb, *tmp;
145dd5f9
PA
4644 struct softnet_data *sd;
4645
4646 local_bh_disable();
4647 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4648
145dd5f9 4649 local_irq_disable();
e36fa2f7 4650 rps_lock(sd);
6e7676c1 4651 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4652 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4653 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4654 kfree_skb(skb);
76cc8b13 4655 input_queue_head_incr(sd);
6e583ce5 4656 }
6e7676c1 4657 }
e36fa2f7 4658 rps_unlock(sd);
145dd5f9 4659 local_irq_enable();
6e7676c1
CG
4660
4661 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4662 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4663 __skb_unlink(skb, &sd->process_queue);
4664 kfree_skb(skb);
76cc8b13 4665 input_queue_head_incr(sd);
6e7676c1
CG
4666 }
4667 }
145dd5f9
PA
4668 local_bh_enable();
4669}
4670
41852497 4671static void flush_all_backlogs(void)
145dd5f9
PA
4672{
4673 unsigned int cpu;
4674
4675 get_online_cpus();
4676
41852497
ED
4677 for_each_online_cpu(cpu)
4678 queue_work_on(cpu, system_highpri_wq,
4679 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4680
4681 for_each_online_cpu(cpu)
41852497 4682 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4683
4684 put_online_cpus();
6e583ce5
SH
4685}
4686
d565b0a1
HX
4687static int napi_gro_complete(struct sk_buff *skb)
4688{
22061d80 4689 struct packet_offload *ptype;
d565b0a1 4690 __be16 type = skb->protocol;
22061d80 4691 struct list_head *head = &offload_base;
d565b0a1
HX
4692 int err = -ENOENT;
4693
c3c7c254
ED
4694 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4695
fc59f9a3
HX
4696 if (NAPI_GRO_CB(skb)->count == 1) {
4697 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4698 goto out;
fc59f9a3 4699 }
d565b0a1
HX
4700
4701 rcu_read_lock();
4702 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4703 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4704 continue;
4705
299603e8 4706 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4707 break;
4708 }
4709 rcu_read_unlock();
4710
4711 if (err) {
4712 WARN_ON(&ptype->list == head);
4713 kfree_skb(skb);
4714 return NET_RX_SUCCESS;
4715 }
4716
4717out:
ae78dbfa 4718 return netif_receive_skb_internal(skb);
d565b0a1
HX
4719}
4720
2e71a6f8
ED
4721/* napi->gro_list contains packets ordered by age.
4722 * youngest packets at the head of it.
4723 * Complete skbs in reverse order to reduce latencies.
4724 */
4725void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4726{
2e71a6f8 4727 struct sk_buff *skb, *prev = NULL;
d565b0a1 4728
2e71a6f8
ED
4729 /* scan list and build reverse chain */
4730 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4731 skb->prev = prev;
4732 prev = skb;
4733 }
4734
4735 for (skb = prev; skb; skb = prev) {
d565b0a1 4736 skb->next = NULL;
2e71a6f8
ED
4737
4738 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4739 return;
4740
4741 prev = skb->prev;
d565b0a1 4742 napi_gro_complete(skb);
2e71a6f8 4743 napi->gro_count--;
d565b0a1
HX
4744 }
4745
4746 napi->gro_list = NULL;
4747}
86cac58b 4748EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4749
89c5fa33
ED
4750static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4751{
4752 struct sk_buff *p;
4753 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4754 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4755
4756 for (p = napi->gro_list; p; p = p->next) {
4757 unsigned long diffs;
4758
0b4cec8c
TH
4759 NAPI_GRO_CB(p)->flush = 0;
4760
4761 if (hash != skb_get_hash_raw(p)) {
4762 NAPI_GRO_CB(p)->same_flow = 0;
4763 continue;
4764 }
4765
89c5fa33
ED
4766 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4767 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4768 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 4769 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
4770 if (maclen == ETH_HLEN)
4771 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4772 skb_mac_header(skb));
89c5fa33
ED
4773 else if (!diffs)
4774 diffs = memcmp(skb_mac_header(p),
a50e233c 4775 skb_mac_header(skb),
89c5fa33
ED
4776 maclen);
4777 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4778 }
4779}
4780
299603e8
JC
4781static void skb_gro_reset_offset(struct sk_buff *skb)
4782{
4783 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4784 const skb_frag_t *frag0 = &pinfo->frags[0];
4785
4786 NAPI_GRO_CB(skb)->data_offset = 0;
4787 NAPI_GRO_CB(skb)->frag0 = NULL;
4788 NAPI_GRO_CB(skb)->frag0_len = 0;
4789
4790 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4791 pinfo->nr_frags &&
4792 !PageHighMem(skb_frag_page(frag0))) {
4793 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4794 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4795 skb_frag_size(frag0),
4796 skb->end - skb->tail);
89c5fa33
ED
4797 }
4798}
4799
a50e233c
ED
4800static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4801{
4802 struct skb_shared_info *pinfo = skb_shinfo(skb);
4803
4804 BUG_ON(skb->end - skb->tail < grow);
4805
4806 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4807
4808 skb->data_len -= grow;
4809 skb->tail += grow;
4810
4811 pinfo->frags[0].page_offset += grow;
4812 skb_frag_size_sub(&pinfo->frags[0], grow);
4813
4814 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4815 skb_frag_unref(skb, 0);
4816 memmove(pinfo->frags, pinfo->frags + 1,
4817 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4818 }
4819}
4820
bb728820 4821static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4822{
4823 struct sk_buff **pp = NULL;
22061d80 4824 struct packet_offload *ptype;
d565b0a1 4825 __be16 type = skb->protocol;
22061d80 4826 struct list_head *head = &offload_base;
0da2afd5 4827 int same_flow;
5b252f0c 4828 enum gro_result ret;
a50e233c 4829 int grow;
d565b0a1 4830
b5cdae32 4831 if (netif_elide_gro(skb->dev))
d565b0a1
HX
4832 goto normal;
4833
89c5fa33
ED
4834 gro_list_prepare(napi, skb);
4835
d565b0a1
HX
4836 rcu_read_lock();
4837 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4838 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4839 continue;
4840
86911732 4841 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4842 skb_reset_mac_len(skb);
d565b0a1 4843 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4844 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4845 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4846 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4847 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4848 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4849 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4850 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4851
662880f4
TH
4852 /* Setup for GRO checksum validation */
4853 switch (skb->ip_summed) {
4854 case CHECKSUM_COMPLETE:
4855 NAPI_GRO_CB(skb)->csum = skb->csum;
4856 NAPI_GRO_CB(skb)->csum_valid = 1;
4857 NAPI_GRO_CB(skb)->csum_cnt = 0;
4858 break;
4859 case CHECKSUM_UNNECESSARY:
4860 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4861 NAPI_GRO_CB(skb)->csum_valid = 0;
4862 break;
4863 default:
4864 NAPI_GRO_CB(skb)->csum_cnt = 0;
4865 NAPI_GRO_CB(skb)->csum_valid = 0;
4866 }
d565b0a1 4867
f191a1d1 4868 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4869 break;
4870 }
4871 rcu_read_unlock();
4872
4873 if (&ptype->list == head)
4874 goto normal;
4875
25393d3f
SK
4876 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4877 ret = GRO_CONSUMED;
4878 goto ok;
4879 }
4880
0da2afd5 4881 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4882 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4883
d565b0a1
HX
4884 if (pp) {
4885 struct sk_buff *nskb = *pp;
4886
4887 *pp = nskb->next;
4888 nskb->next = NULL;
4889 napi_gro_complete(nskb);
4ae5544f 4890 napi->gro_count--;
d565b0a1
HX
4891 }
4892
0da2afd5 4893 if (same_flow)
d565b0a1
HX
4894 goto ok;
4895
600adc18 4896 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4897 goto normal;
d565b0a1 4898
600adc18
ED
4899 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4900 struct sk_buff *nskb = napi->gro_list;
4901
4902 /* locate the end of the list to select the 'oldest' flow */
4903 while (nskb->next) {
4904 pp = &nskb->next;
4905 nskb = *pp;
4906 }
4907 *pp = NULL;
4908 nskb->next = NULL;
4909 napi_gro_complete(nskb);
4910 } else {
4911 napi->gro_count++;
4912 }
d565b0a1 4913 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4914 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4915 NAPI_GRO_CB(skb)->last = skb;
86911732 4916 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4917 skb->next = napi->gro_list;
4918 napi->gro_list = skb;
5d0d9be8 4919 ret = GRO_HELD;
d565b0a1 4920
ad0f9904 4921pull:
a50e233c
ED
4922 grow = skb_gro_offset(skb) - skb_headlen(skb);
4923 if (grow > 0)
4924 gro_pull_from_frag0(skb, grow);
d565b0a1 4925ok:
5d0d9be8 4926 return ret;
d565b0a1
HX
4927
4928normal:
ad0f9904
HX
4929 ret = GRO_NORMAL;
4930 goto pull;
5d38a079 4931}
96e93eab 4932
bf5a755f
JC
4933struct packet_offload *gro_find_receive_by_type(__be16 type)
4934{
4935 struct list_head *offload_head = &offload_base;
4936 struct packet_offload *ptype;
4937
4938 list_for_each_entry_rcu(ptype, offload_head, list) {
4939 if (ptype->type != type || !ptype->callbacks.gro_receive)
4940 continue;
4941 return ptype;
4942 }
4943 return NULL;
4944}
e27a2f83 4945EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4946
4947struct packet_offload *gro_find_complete_by_type(__be16 type)
4948{
4949 struct list_head *offload_head = &offload_base;
4950 struct packet_offload *ptype;
4951
4952 list_for_each_entry_rcu(ptype, offload_head, list) {
4953 if (ptype->type != type || !ptype->callbacks.gro_complete)
4954 continue;
4955 return ptype;
4956 }
4957 return NULL;
4958}
e27a2f83 4959EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4960
e44699d2
MK
4961static void napi_skb_free_stolen_head(struct sk_buff *skb)
4962{
4963 skb_dst_drop(skb);
4964 secpath_reset(skb);
4965 kmem_cache_free(skbuff_head_cache, skb);
4966}
4967
bb728820 4968static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4969{
5d0d9be8
HX
4970 switch (ret) {
4971 case GRO_NORMAL:
ae78dbfa 4972 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4973 ret = GRO_DROP;
4974 break;
5d38a079 4975
5d0d9be8 4976 case GRO_DROP:
5d38a079
HX
4977 kfree_skb(skb);
4978 break;
5b252f0c 4979
daa86548 4980 case GRO_MERGED_FREE:
e44699d2
MK
4981 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4982 napi_skb_free_stolen_head(skb);
4983 else
d7e8883c 4984 __kfree_skb(skb);
daa86548
ED
4985 break;
4986
5b252f0c
BH
4987 case GRO_HELD:
4988 case GRO_MERGED:
25393d3f 4989 case GRO_CONSUMED:
5b252f0c 4990 break;
5d38a079
HX
4991 }
4992
c7c4b3b6 4993 return ret;
5d0d9be8 4994}
5d0d9be8 4995
c7c4b3b6 4996gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4997{
93f93a44 4998 skb_mark_napi_id(skb, napi);
ae78dbfa 4999 trace_napi_gro_receive_entry(skb);
86911732 5000
a50e233c
ED
5001 skb_gro_reset_offset(skb);
5002
89c5fa33 5003 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
5004}
5005EXPORT_SYMBOL(napi_gro_receive);
5006
d0c2b0d2 5007static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 5008{
93a35f59
ED
5009 if (unlikely(skb->pfmemalloc)) {
5010 consume_skb(skb);
5011 return;
5012 }
96e93eab 5013 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
5014 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5015 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 5016 skb->vlan_tci = 0;
66c46d74 5017 skb->dev = napi->dev;
6d152e23 5018 skb->skb_iif = 0;
c3caf119
JC
5019 skb->encapsulation = 0;
5020 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 5021 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 5022 secpath_reset(skb);
96e93eab
HX
5023
5024 napi->skb = skb;
5025}
96e93eab 5026
76620aaf 5027struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5028{
5d38a079 5029 struct sk_buff *skb = napi->skb;
5d38a079
HX
5030
5031 if (!skb) {
fd11a83d 5032 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5033 if (skb) {
5034 napi->skb = skb;
5035 skb_mark_napi_id(skb, napi);
5036 }
80595d59 5037 }
96e93eab
HX
5038 return skb;
5039}
76620aaf 5040EXPORT_SYMBOL(napi_get_frags);
96e93eab 5041
a50e233c
ED
5042static gro_result_t napi_frags_finish(struct napi_struct *napi,
5043 struct sk_buff *skb,
5044 gro_result_t ret)
96e93eab 5045{
5d0d9be8
HX
5046 switch (ret) {
5047 case GRO_NORMAL:
a50e233c
ED
5048 case GRO_HELD:
5049 __skb_push(skb, ETH_HLEN);
5050 skb->protocol = eth_type_trans(skb, skb->dev);
5051 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 5052 ret = GRO_DROP;
86911732 5053 break;
5d38a079 5054
5d0d9be8 5055 case GRO_DROP:
5d0d9be8
HX
5056 napi_reuse_skb(napi, skb);
5057 break;
5b252f0c 5058
e44699d2
MK
5059 case GRO_MERGED_FREE:
5060 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5061 napi_skb_free_stolen_head(skb);
5062 else
5063 napi_reuse_skb(napi, skb);
5064 break;
5065
5b252f0c 5066 case GRO_MERGED:
25393d3f 5067 case GRO_CONSUMED:
5b252f0c 5068 break;
5d0d9be8 5069 }
5d38a079 5070
c7c4b3b6 5071 return ret;
5d38a079 5072}
5d0d9be8 5073
a50e233c
ED
5074/* Upper GRO stack assumes network header starts at gro_offset=0
5075 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5076 * We copy ethernet header into skb->data to have a common layout.
5077 */
4adb9c4a 5078static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5079{
5080 struct sk_buff *skb = napi->skb;
a50e233c
ED
5081 const struct ethhdr *eth;
5082 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5083
5084 napi->skb = NULL;
5085
a50e233c
ED
5086 skb_reset_mac_header(skb);
5087 skb_gro_reset_offset(skb);
5088
5089 eth = skb_gro_header_fast(skb, 0);
5090 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5091 eth = skb_gro_header_slow(skb, hlen, 0);
5092 if (unlikely(!eth)) {
4da46ceb
AC
5093 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5094 __func__, napi->dev->name);
a50e233c
ED
5095 napi_reuse_skb(napi, skb);
5096 return NULL;
5097 }
5098 } else {
5099 gro_pull_from_frag0(skb, hlen);
5100 NAPI_GRO_CB(skb)->frag0 += hlen;
5101 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5102 }
a50e233c
ED
5103 __skb_pull(skb, hlen);
5104
5105 /*
5106 * This works because the only protocols we care about don't require
5107 * special handling.
5108 * We'll fix it up properly in napi_frags_finish()
5109 */
5110 skb->protocol = eth->h_proto;
76620aaf 5111
76620aaf
HX
5112 return skb;
5113}
76620aaf 5114
c7c4b3b6 5115gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5116{
76620aaf 5117 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5118
5119 if (!skb)
c7c4b3b6 5120 return GRO_DROP;
5d0d9be8 5121
ae78dbfa
BH
5122 trace_napi_gro_frags_entry(skb);
5123
89c5fa33 5124 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 5125}
5d38a079
HX
5126EXPORT_SYMBOL(napi_gro_frags);
5127
573e8fca
TH
5128/* Compute the checksum from gro_offset and return the folded value
5129 * after adding in any pseudo checksum.
5130 */
5131__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5132{
5133 __wsum wsum;
5134 __sum16 sum;
5135
5136 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5137
5138 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5139 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5140 if (likely(!sum)) {
5141 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5142 !skb->csum_complete_sw)
5143 netdev_rx_csum_fault(skb->dev);
5144 }
5145
5146 NAPI_GRO_CB(skb)->csum = wsum;
5147 NAPI_GRO_CB(skb)->csum_valid = 1;
5148
5149 return sum;
5150}
5151EXPORT_SYMBOL(__skb_gro_checksum_complete);
5152
773fc8f6 5153static void net_rps_send_ipi(struct softnet_data *remsd)
5154{
5155#ifdef CONFIG_RPS
5156 while (remsd) {
5157 struct softnet_data *next = remsd->rps_ipi_next;
5158
5159 if (cpu_online(remsd->cpu))
5160 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5161 remsd = next;
5162 }
5163#endif
5164}
5165
e326bed2 5166/*
855abcf0 5167 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5168 * Note: called with local irq disabled, but exits with local irq enabled.
5169 */
5170static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5171{
5172#ifdef CONFIG_RPS
5173 struct softnet_data *remsd = sd->rps_ipi_list;
5174
5175 if (remsd) {
5176 sd->rps_ipi_list = NULL;
5177
5178 local_irq_enable();
5179
5180 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5181 net_rps_send_ipi(remsd);
e326bed2
ED
5182 } else
5183#endif
5184 local_irq_enable();
5185}
5186
d75b1ade
ED
5187static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5188{
5189#ifdef CONFIG_RPS
5190 return sd->rps_ipi_list != NULL;
5191#else
5192 return false;
5193#endif
5194}
5195
bea3348e 5196static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5197{
eecfd7c4 5198 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5199 bool again = true;
5200 int work = 0;
1da177e4 5201
e326bed2
ED
5202 /* Check if we have pending ipi, its better to send them now,
5203 * not waiting net_rx_action() end.
5204 */
d75b1ade 5205 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5206 local_irq_disable();
5207 net_rps_action_and_irq_enable(sd);
5208 }
d75b1ade 5209
3d48b53f 5210 napi->weight = dev_rx_weight;
145dd5f9 5211 while (again) {
1da177e4 5212 struct sk_buff *skb;
6e7676c1
CG
5213
5214 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5215 rcu_read_lock();
6e7676c1 5216 __netif_receive_skb(skb);
2c17d27c 5217 rcu_read_unlock();
76cc8b13 5218 input_queue_head_incr(sd);
145dd5f9 5219 if (++work >= quota)
76cc8b13 5220 return work;
145dd5f9 5221
6e7676c1 5222 }
1da177e4 5223
145dd5f9 5224 local_irq_disable();
e36fa2f7 5225 rps_lock(sd);
11ef7a89 5226 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5227 /*
5228 * Inline a custom version of __napi_complete().
5229 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5230 * and NAPI_STATE_SCHED is the only possible flag set
5231 * on backlog.
5232 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5233 * and we dont need an smp_mb() memory barrier.
5234 */
eecfd7c4 5235 napi->state = 0;
145dd5f9
PA
5236 again = false;
5237 } else {
5238 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5239 &sd->process_queue);
bea3348e 5240 }
e36fa2f7 5241 rps_unlock(sd);
145dd5f9 5242 local_irq_enable();
6e7676c1 5243 }
1da177e4 5244
bea3348e
SH
5245 return work;
5246}
1da177e4 5247
bea3348e
SH
5248/**
5249 * __napi_schedule - schedule for receive
c4ea43c5 5250 * @n: entry to schedule
bea3348e 5251 *
bc9ad166
ED
5252 * The entry's receive function will be scheduled to run.
5253 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5254 */
b5606c2d 5255void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5256{
5257 unsigned long flags;
1da177e4 5258
bea3348e 5259 local_irq_save(flags);
903ceff7 5260 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5261 local_irq_restore(flags);
1da177e4 5262}
bea3348e
SH
5263EXPORT_SYMBOL(__napi_schedule);
5264
39e6c820
ED
5265/**
5266 * napi_schedule_prep - check if napi can be scheduled
5267 * @n: napi context
5268 *
5269 * Test if NAPI routine is already running, and if not mark
5270 * it as running. This is used as a condition variable
5271 * insure only one NAPI poll instance runs. We also make
5272 * sure there is no pending NAPI disable.
5273 */
5274bool napi_schedule_prep(struct napi_struct *n)
5275{
5276 unsigned long val, new;
5277
5278 do {
5279 val = READ_ONCE(n->state);
5280 if (unlikely(val & NAPIF_STATE_DISABLE))
5281 return false;
5282 new = val | NAPIF_STATE_SCHED;
5283
5284 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5285 * This was suggested by Alexander Duyck, as compiler
5286 * emits better code than :
5287 * if (val & NAPIF_STATE_SCHED)
5288 * new |= NAPIF_STATE_MISSED;
5289 */
5290 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5291 NAPIF_STATE_MISSED;
5292 } while (cmpxchg(&n->state, val, new) != val);
5293
5294 return !(val & NAPIF_STATE_SCHED);
5295}
5296EXPORT_SYMBOL(napi_schedule_prep);
5297
bc9ad166
ED
5298/**
5299 * __napi_schedule_irqoff - schedule for receive
5300 * @n: entry to schedule
5301 *
5302 * Variant of __napi_schedule() assuming hard irqs are masked
5303 */
5304void __napi_schedule_irqoff(struct napi_struct *n)
5305{
5306 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5307}
5308EXPORT_SYMBOL(__napi_schedule_irqoff);
5309
364b6055 5310bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 5311{
39e6c820 5312 unsigned long flags, val, new;
d565b0a1
HX
5313
5314 /*
217f6974
ED
5315 * 1) Don't let napi dequeue from the cpu poll list
5316 * just in case its running on a different cpu.
5317 * 2) If we are busy polling, do nothing here, we have
5318 * the guarantee we will be called later.
d565b0a1 5319 */
217f6974
ED
5320 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5321 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 5322 return false;
d565b0a1 5323
3b47d303
ED
5324 if (n->gro_list) {
5325 unsigned long timeout = 0;
d75b1ade 5326
3b47d303
ED
5327 if (work_done)
5328 timeout = n->dev->gro_flush_timeout;
5329
5330 if (timeout)
5331 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5332 HRTIMER_MODE_REL_PINNED);
5333 else
5334 napi_gro_flush(n, false);
5335 }
02c1602e 5336 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
5337 /* If n->poll_list is not empty, we need to mask irqs */
5338 local_irq_save(flags);
02c1602e 5339 list_del_init(&n->poll_list);
d75b1ade
ED
5340 local_irq_restore(flags);
5341 }
39e6c820
ED
5342
5343 do {
5344 val = READ_ONCE(n->state);
5345
5346 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5347
5348 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5349
5350 /* If STATE_MISSED was set, leave STATE_SCHED set,
5351 * because we will call napi->poll() one more time.
5352 * This C code was suggested by Alexander Duyck to help gcc.
5353 */
5354 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5355 NAPIF_STATE_SCHED;
5356 } while (cmpxchg(&n->state, val, new) != val);
5357
5358 if (unlikely(val & NAPIF_STATE_MISSED)) {
5359 __napi_schedule(n);
5360 return false;
5361 }
5362
364b6055 5363 return true;
d565b0a1 5364}
3b47d303 5365EXPORT_SYMBOL(napi_complete_done);
d565b0a1 5366
af12fa6e 5367/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 5368static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
5369{
5370 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5371 struct napi_struct *napi;
5372
5373 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5374 if (napi->napi_id == napi_id)
5375 return napi;
5376
5377 return NULL;
5378}
02d62e86
ED
5379
5380#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 5381
ce6aea93 5382#define BUSY_POLL_BUDGET 8
217f6974
ED
5383
5384static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5385{
5386 int rc;
5387
39e6c820
ED
5388 /* Busy polling means there is a high chance device driver hard irq
5389 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5390 * set in napi_schedule_prep().
5391 * Since we are about to call napi->poll() once more, we can safely
5392 * clear NAPI_STATE_MISSED.
5393 *
5394 * Note: x86 could use a single "lock and ..." instruction
5395 * to perform these two clear_bit()
5396 */
5397 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
5398 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5399
5400 local_bh_disable();
5401
5402 /* All we really want here is to re-enable device interrupts.
5403 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5404 */
5405 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1e22391e 5406 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974
ED
5407 netpoll_poll_unlock(have_poll_lock);
5408 if (rc == BUSY_POLL_BUDGET)
5409 __napi_schedule(napi);
5410 local_bh_enable();
217f6974
ED
5411}
5412
7db6b048
SS
5413void napi_busy_loop(unsigned int napi_id,
5414 bool (*loop_end)(void *, unsigned long),
5415 void *loop_end_arg)
02d62e86 5416{
7db6b048 5417 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 5418 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 5419 void *have_poll_lock = NULL;
02d62e86 5420 struct napi_struct *napi;
217f6974
ED
5421
5422restart:
217f6974 5423 napi_poll = NULL;
02d62e86 5424
2a028ecb 5425 rcu_read_lock();
02d62e86 5426
545cd5e5 5427 napi = napi_by_id(napi_id);
02d62e86
ED
5428 if (!napi)
5429 goto out;
5430
217f6974
ED
5431 preempt_disable();
5432 for (;;) {
2b5cd0df
AD
5433 int work = 0;
5434
2a028ecb 5435 local_bh_disable();
217f6974
ED
5436 if (!napi_poll) {
5437 unsigned long val = READ_ONCE(napi->state);
5438
5439 /* If multiple threads are competing for this napi,
5440 * we avoid dirtying napi->state as much as we can.
5441 */
5442 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5443 NAPIF_STATE_IN_BUSY_POLL))
5444 goto count;
5445 if (cmpxchg(&napi->state, val,
5446 val | NAPIF_STATE_IN_BUSY_POLL |
5447 NAPIF_STATE_SCHED) != val)
5448 goto count;
5449 have_poll_lock = netpoll_poll_lock(napi);
5450 napi_poll = napi->poll;
5451 }
2b5cd0df
AD
5452 work = napi_poll(napi, BUSY_POLL_BUDGET);
5453 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 5454count:
2b5cd0df 5455 if (work > 0)
7db6b048 5456 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 5457 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 5458 local_bh_enable();
02d62e86 5459
7db6b048 5460 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 5461 break;
02d62e86 5462
217f6974
ED
5463 if (unlikely(need_resched())) {
5464 if (napi_poll)
5465 busy_poll_stop(napi, have_poll_lock);
5466 preempt_enable();
5467 rcu_read_unlock();
5468 cond_resched();
7db6b048 5469 if (loop_end(loop_end_arg, start_time))
2b5cd0df 5470 return;
217f6974
ED
5471 goto restart;
5472 }
6cdf89b1 5473 cpu_relax();
217f6974
ED
5474 }
5475 if (napi_poll)
5476 busy_poll_stop(napi, have_poll_lock);
5477 preempt_enable();
02d62e86 5478out:
2a028ecb 5479 rcu_read_unlock();
02d62e86 5480}
7db6b048 5481EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
5482
5483#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5484
149d6ad8 5485static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5486{
d64b5e85
ED
5487 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5488 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5489 return;
af12fa6e 5490
52bd2d62 5491 spin_lock(&napi_hash_lock);
af12fa6e 5492
545cd5e5 5493 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 5494 do {
545cd5e5
AD
5495 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5496 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
5497 } while (napi_by_id(napi_gen_id));
5498 napi->napi_id = napi_gen_id;
af12fa6e 5499
52bd2d62
ED
5500 hlist_add_head_rcu(&napi->napi_hash_node,
5501 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5502
52bd2d62 5503 spin_unlock(&napi_hash_lock);
af12fa6e 5504}
af12fa6e
ET
5505
5506/* Warning : caller is responsible to make sure rcu grace period
5507 * is respected before freeing memory containing @napi
5508 */
34cbe27e 5509bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5510{
34cbe27e
ED
5511 bool rcu_sync_needed = false;
5512
af12fa6e
ET
5513 spin_lock(&napi_hash_lock);
5514
34cbe27e
ED
5515 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5516 rcu_sync_needed = true;
af12fa6e 5517 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5518 }
af12fa6e 5519 spin_unlock(&napi_hash_lock);
34cbe27e 5520 return rcu_sync_needed;
af12fa6e
ET
5521}
5522EXPORT_SYMBOL_GPL(napi_hash_del);
5523
3b47d303
ED
5524static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5525{
5526 struct napi_struct *napi;
5527
5528 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
5529
5530 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5531 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5532 */
5533 if (napi->gro_list && !napi_disable_pending(napi) &&
5534 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5535 __napi_schedule_irqoff(napi);
3b47d303
ED
5536
5537 return HRTIMER_NORESTART;
5538}
5539
d565b0a1
HX
5540void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5541 int (*poll)(struct napi_struct *, int), int weight)
5542{
5543 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5544 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5545 napi->timer.function = napi_watchdog;
4ae5544f 5546 napi->gro_count = 0;
d565b0a1 5547 napi->gro_list = NULL;
5d38a079 5548 napi->skb = NULL;
d565b0a1 5549 napi->poll = poll;
82dc3c63
ED
5550 if (weight > NAPI_POLL_WEIGHT)
5551 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5552 weight, dev->name);
d565b0a1
HX
5553 napi->weight = weight;
5554 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5555 napi->dev = dev;
5d38a079 5556#ifdef CONFIG_NETPOLL
d565b0a1
HX
5557 napi->poll_owner = -1;
5558#endif
5559 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5560 napi_hash_add(napi);
d565b0a1
HX
5561}
5562EXPORT_SYMBOL(netif_napi_add);
5563
3b47d303
ED
5564void napi_disable(struct napi_struct *n)
5565{
5566 might_sleep();
5567 set_bit(NAPI_STATE_DISABLE, &n->state);
5568
5569 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5570 msleep(1);
2d8bff12
NH
5571 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5572 msleep(1);
3b47d303
ED
5573
5574 hrtimer_cancel(&n->timer);
5575
5576 clear_bit(NAPI_STATE_DISABLE, &n->state);
5577}
5578EXPORT_SYMBOL(napi_disable);
5579
93d05d4a 5580/* Must be called in process context */
d565b0a1
HX
5581void netif_napi_del(struct napi_struct *napi)
5582{
93d05d4a
ED
5583 might_sleep();
5584 if (napi_hash_del(napi))
5585 synchronize_net();
d7b06636 5586 list_del_init(&napi->dev_list);
76620aaf 5587 napi_free_frags(napi);
d565b0a1 5588
289dccbe 5589 kfree_skb_list(napi->gro_list);
d565b0a1 5590 napi->gro_list = NULL;
4ae5544f 5591 napi->gro_count = 0;
d565b0a1
HX
5592}
5593EXPORT_SYMBOL(netif_napi_del);
5594
726ce70e
HX
5595static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5596{
5597 void *have;
5598 int work, weight;
5599
5600 list_del_init(&n->poll_list);
5601
5602 have = netpoll_poll_lock(n);
5603
5604 weight = n->weight;
5605
5606 /* This NAPI_STATE_SCHED test is for avoiding a race
5607 * with netpoll's poll_napi(). Only the entity which
5608 * obtains the lock and sees NAPI_STATE_SCHED set will
5609 * actually make the ->poll() call. Therefore we avoid
5610 * accidentally calling ->poll() when NAPI is not scheduled.
5611 */
5612 work = 0;
5613 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5614 work = n->poll(n, weight);
1db19db7 5615 trace_napi_poll(n, work, weight);
726ce70e
HX
5616 }
5617
5618 WARN_ON_ONCE(work > weight);
5619
5620 if (likely(work < weight))
5621 goto out_unlock;
5622
5623 /* Drivers must not modify the NAPI state if they
5624 * consume the entire weight. In such cases this code
5625 * still "owns" the NAPI instance and therefore can
5626 * move the instance around on the list at-will.
5627 */
5628 if (unlikely(napi_disable_pending(n))) {
5629 napi_complete(n);
5630 goto out_unlock;
5631 }
5632
5633 if (n->gro_list) {
5634 /* flush too old packets
5635 * If HZ < 1000, flush all packets.
5636 */
5637 napi_gro_flush(n, HZ >= 1000);
5638 }
5639
001ce546
HX
5640 /* Some drivers may have called napi_schedule
5641 * prior to exhausting their budget.
5642 */
5643 if (unlikely(!list_empty(&n->poll_list))) {
5644 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5645 n->dev ? n->dev->name : "backlog");
5646 goto out_unlock;
5647 }
5648
726ce70e
HX
5649 list_add_tail(&n->poll_list, repoll);
5650
5651out_unlock:
5652 netpoll_poll_unlock(have);
5653
5654 return work;
5655}
5656
0766f788 5657static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5658{
903ceff7 5659 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
5660 unsigned long time_limit = jiffies +
5661 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 5662 int budget = netdev_budget;
d75b1ade
ED
5663 LIST_HEAD(list);
5664 LIST_HEAD(repoll);
53fb95d3 5665
1da177e4 5666 local_irq_disable();
d75b1ade
ED
5667 list_splice_init(&sd->poll_list, &list);
5668 local_irq_enable();
1da177e4 5669
ceb8d5bf 5670 for (;;) {
bea3348e 5671 struct napi_struct *n;
1da177e4 5672
ceb8d5bf
HX
5673 if (list_empty(&list)) {
5674 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5675 goto out;
ceb8d5bf
HX
5676 break;
5677 }
5678
6bd373eb
HX
5679 n = list_first_entry(&list, struct napi_struct, poll_list);
5680 budget -= napi_poll(n, &repoll);
5681
d75b1ade 5682 /* If softirq window is exhausted then punt.
24f8b238
SH
5683 * Allow this to run for 2 jiffies since which will allow
5684 * an average latency of 1.5/HZ.
bea3348e 5685 */
ceb8d5bf
HX
5686 if (unlikely(budget <= 0 ||
5687 time_after_eq(jiffies, time_limit))) {
5688 sd->time_squeeze++;
5689 break;
5690 }
1da177e4 5691 }
d75b1ade 5692
d75b1ade
ED
5693 local_irq_disable();
5694
5695 list_splice_tail_init(&sd->poll_list, &list);
5696 list_splice_tail(&repoll, &list);
5697 list_splice(&list, &sd->poll_list);
5698 if (!list_empty(&sd->poll_list))
5699 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5700
e326bed2 5701 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5702out:
5703 __kfree_skb_flush();
1da177e4
LT
5704}
5705
aa9d8560 5706struct netdev_adjacent {
9ff162a8 5707 struct net_device *dev;
5d261913
VF
5708
5709 /* upper master flag, there can only be one master device per list */
9ff162a8 5710 bool master;
5d261913 5711
5d261913
VF
5712 /* counter for the number of times this device was added to us */
5713 u16 ref_nr;
5714
402dae96
VF
5715 /* private field for the users */
5716 void *private;
5717
9ff162a8
JP
5718 struct list_head list;
5719 struct rcu_head rcu;
9ff162a8
JP
5720};
5721
6ea29da1 5722static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5723 struct list_head *adj_list)
9ff162a8 5724{
5d261913 5725 struct netdev_adjacent *adj;
5d261913 5726
2f268f12 5727 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5728 if (adj->dev == adj_dev)
5729 return adj;
9ff162a8
JP
5730 }
5731 return NULL;
5732}
5733
f1170fd4
DA
5734static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5735{
5736 struct net_device *dev = data;
5737
5738 return upper_dev == dev;
5739}
5740
9ff162a8
JP
5741/**
5742 * netdev_has_upper_dev - Check if device is linked to an upper device
5743 * @dev: device
5744 * @upper_dev: upper device to check
5745 *
5746 * Find out if a device is linked to specified upper device and return true
5747 * in case it is. Note that this checks only immediate upper device,
5748 * not through a complete stack of devices. The caller must hold the RTNL lock.
5749 */
5750bool netdev_has_upper_dev(struct net_device *dev,
5751 struct net_device *upper_dev)
5752{
5753 ASSERT_RTNL();
5754
f1170fd4
DA
5755 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5756 upper_dev);
9ff162a8
JP
5757}
5758EXPORT_SYMBOL(netdev_has_upper_dev);
5759
1a3f060c
DA
5760/**
5761 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5762 * @dev: device
5763 * @upper_dev: upper device to check
5764 *
5765 * Find out if a device is linked to specified upper device and return true
5766 * in case it is. Note that this checks the entire upper device chain.
5767 * The caller must hold rcu lock.
5768 */
5769
1a3f060c
DA
5770bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5771 struct net_device *upper_dev)
5772{
5773 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5774 upper_dev);
5775}
5776EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5777
9ff162a8
JP
5778/**
5779 * netdev_has_any_upper_dev - Check if device is linked to some device
5780 * @dev: device
5781 *
5782 * Find out if a device is linked to an upper device and return true in case
5783 * it is. The caller must hold the RTNL lock.
5784 */
25cc72a3 5785bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5786{
5787 ASSERT_RTNL();
5788
f1170fd4 5789 return !list_empty(&dev->adj_list.upper);
9ff162a8 5790}
25cc72a3 5791EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
5792
5793/**
5794 * netdev_master_upper_dev_get - Get master upper device
5795 * @dev: device
5796 *
5797 * Find a master upper device and return pointer to it or NULL in case
5798 * it's not there. The caller must hold the RTNL lock.
5799 */
5800struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5801{
aa9d8560 5802 struct netdev_adjacent *upper;
9ff162a8
JP
5803
5804 ASSERT_RTNL();
5805
2f268f12 5806 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5807 return NULL;
5808
2f268f12 5809 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5810 struct netdev_adjacent, list);
9ff162a8
JP
5811 if (likely(upper->master))
5812 return upper->dev;
5813 return NULL;
5814}
5815EXPORT_SYMBOL(netdev_master_upper_dev_get);
5816
0f524a80
DA
5817/**
5818 * netdev_has_any_lower_dev - Check if device is linked to some device
5819 * @dev: device
5820 *
5821 * Find out if a device is linked to a lower device and return true in case
5822 * it is. The caller must hold the RTNL lock.
5823 */
5824static bool netdev_has_any_lower_dev(struct net_device *dev)
5825{
5826 ASSERT_RTNL();
5827
5828 return !list_empty(&dev->adj_list.lower);
5829}
5830
b6ccba4c
VF
5831void *netdev_adjacent_get_private(struct list_head *adj_list)
5832{
5833 struct netdev_adjacent *adj;
5834
5835 adj = list_entry(adj_list, struct netdev_adjacent, list);
5836
5837 return adj->private;
5838}
5839EXPORT_SYMBOL(netdev_adjacent_get_private);
5840
44a40855
VY
5841/**
5842 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5843 * @dev: device
5844 * @iter: list_head ** of the current position
5845 *
5846 * Gets the next device from the dev's upper list, starting from iter
5847 * position. The caller must hold RCU read lock.
5848 */
5849struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5850 struct list_head **iter)
5851{
5852 struct netdev_adjacent *upper;
5853
5854 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5855
5856 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5857
5858 if (&upper->list == &dev->adj_list.upper)
5859 return NULL;
5860
5861 *iter = &upper->list;
5862
5863 return upper->dev;
5864}
5865EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5866
1a3f060c
DA
5867static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5868 struct list_head **iter)
5869{
5870 struct netdev_adjacent *upper;
5871
5872 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5873
5874 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5875
5876 if (&upper->list == &dev->adj_list.upper)
5877 return NULL;
5878
5879 *iter = &upper->list;
5880
5881 return upper->dev;
5882}
5883
5884int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5885 int (*fn)(struct net_device *dev,
5886 void *data),
5887 void *data)
5888{
5889 struct net_device *udev;
5890 struct list_head *iter;
5891 int ret;
5892
5893 for (iter = &dev->adj_list.upper,
5894 udev = netdev_next_upper_dev_rcu(dev, &iter);
5895 udev;
5896 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5897 /* first is the upper device itself */
5898 ret = fn(udev, data);
5899 if (ret)
5900 return ret;
5901
5902 /* then look at all of its upper devices */
5903 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5904 if (ret)
5905 return ret;
5906 }
5907
5908 return 0;
5909}
5910EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5911
31088a11
VF
5912/**
5913 * netdev_lower_get_next_private - Get the next ->private from the
5914 * lower neighbour list
5915 * @dev: device
5916 * @iter: list_head ** of the current position
5917 *
5918 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5919 * list, starting from iter position. The caller must hold either hold the
5920 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5921 * list will remain unchanged.
31088a11
VF
5922 */
5923void *netdev_lower_get_next_private(struct net_device *dev,
5924 struct list_head **iter)
5925{
5926 struct netdev_adjacent *lower;
5927
5928 lower = list_entry(*iter, struct netdev_adjacent, list);
5929
5930 if (&lower->list == &dev->adj_list.lower)
5931 return NULL;
5932
6859e7df 5933 *iter = lower->list.next;
31088a11
VF
5934
5935 return lower->private;
5936}
5937EXPORT_SYMBOL(netdev_lower_get_next_private);
5938
5939/**
5940 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5941 * lower neighbour list, RCU
5942 * variant
5943 * @dev: device
5944 * @iter: list_head ** of the current position
5945 *
5946 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5947 * list, starting from iter position. The caller must hold RCU read lock.
5948 */
5949void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5950 struct list_head **iter)
5951{
5952 struct netdev_adjacent *lower;
5953
5954 WARN_ON_ONCE(!rcu_read_lock_held());
5955
5956 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5957
5958 if (&lower->list == &dev->adj_list.lower)
5959 return NULL;
5960
6859e7df 5961 *iter = &lower->list;
31088a11
VF
5962
5963 return lower->private;
5964}
5965EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5966
4085ebe8
VY
5967/**
5968 * netdev_lower_get_next - Get the next device from the lower neighbour
5969 * list
5970 * @dev: device
5971 * @iter: list_head ** of the current position
5972 *
5973 * Gets the next netdev_adjacent from the dev's lower neighbour
5974 * list, starting from iter position. The caller must hold RTNL lock or
5975 * its own locking that guarantees that the neighbour lower
b469139e 5976 * list will remain unchanged.
4085ebe8
VY
5977 */
5978void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5979{
5980 struct netdev_adjacent *lower;
5981
cfdd28be 5982 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5983
5984 if (&lower->list == &dev->adj_list.lower)
5985 return NULL;
5986
cfdd28be 5987 *iter = lower->list.next;
4085ebe8
VY
5988
5989 return lower->dev;
5990}
5991EXPORT_SYMBOL(netdev_lower_get_next);
5992
1a3f060c
DA
5993static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5994 struct list_head **iter)
5995{
5996 struct netdev_adjacent *lower;
5997
46b5ab1a 5998 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5999
6000 if (&lower->list == &dev->adj_list.lower)
6001 return NULL;
6002
46b5ab1a 6003 *iter = &lower->list;
1a3f060c
DA
6004
6005 return lower->dev;
6006}
6007
6008int netdev_walk_all_lower_dev(struct net_device *dev,
6009 int (*fn)(struct net_device *dev,
6010 void *data),
6011 void *data)
6012{
6013 struct net_device *ldev;
6014 struct list_head *iter;
6015 int ret;
6016
6017 for (iter = &dev->adj_list.lower,
6018 ldev = netdev_next_lower_dev(dev, &iter);
6019 ldev;
6020 ldev = netdev_next_lower_dev(dev, &iter)) {
6021 /* first is the lower device itself */
6022 ret = fn(ldev, data);
6023 if (ret)
6024 return ret;
6025
6026 /* then look at all of its lower devices */
6027 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6028 if (ret)
6029 return ret;
6030 }
6031
6032 return 0;
6033}
6034EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6035
1a3f060c
DA
6036static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6037 struct list_head **iter)
6038{
6039 struct netdev_adjacent *lower;
6040
6041 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6042 if (&lower->list == &dev->adj_list.lower)
6043 return NULL;
6044
6045 *iter = &lower->list;
6046
6047 return lower->dev;
6048}
6049
6050int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6051 int (*fn)(struct net_device *dev,
6052 void *data),
6053 void *data)
6054{
6055 struct net_device *ldev;
6056 struct list_head *iter;
6057 int ret;
6058
6059 for (iter = &dev->adj_list.lower,
6060 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6061 ldev;
6062 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6063 /* first is the lower device itself */
6064 ret = fn(ldev, data);
6065 if (ret)
6066 return ret;
6067
6068 /* then look at all of its lower devices */
6069 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6070 if (ret)
6071 return ret;
6072 }
6073
6074 return 0;
6075}
6076EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6077
e001bfad 6078/**
6079 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6080 * lower neighbour list, RCU
6081 * variant
6082 * @dev: device
6083 *
6084 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6085 * list. The caller must hold RCU read lock.
6086 */
6087void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6088{
6089 struct netdev_adjacent *lower;
6090
6091 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6092 struct netdev_adjacent, list);
6093 if (lower)
6094 return lower->private;
6095 return NULL;
6096}
6097EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6098
9ff162a8
JP
6099/**
6100 * netdev_master_upper_dev_get_rcu - Get master upper device
6101 * @dev: device
6102 *
6103 * Find a master upper device and return pointer to it or NULL in case
6104 * it's not there. The caller must hold the RCU read lock.
6105 */
6106struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6107{
aa9d8560 6108 struct netdev_adjacent *upper;
9ff162a8 6109
2f268f12 6110 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 6111 struct netdev_adjacent, list);
9ff162a8
JP
6112 if (upper && likely(upper->master))
6113 return upper->dev;
6114 return NULL;
6115}
6116EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6117
0a59f3a9 6118static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
6119 struct net_device *adj_dev,
6120 struct list_head *dev_list)
6121{
6122 char linkname[IFNAMSIZ+7];
f4563a75 6123
3ee32707
VF
6124 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6125 "upper_%s" : "lower_%s", adj_dev->name);
6126 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6127 linkname);
6128}
0a59f3a9 6129static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
6130 char *name,
6131 struct list_head *dev_list)
6132{
6133 char linkname[IFNAMSIZ+7];
f4563a75 6134
3ee32707
VF
6135 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6136 "upper_%s" : "lower_%s", name);
6137 sysfs_remove_link(&(dev->dev.kobj), linkname);
6138}
6139
7ce64c79
AF
6140static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6141 struct net_device *adj_dev,
6142 struct list_head *dev_list)
6143{
6144 return (dev_list == &dev->adj_list.upper ||
6145 dev_list == &dev->adj_list.lower) &&
6146 net_eq(dev_net(dev), dev_net(adj_dev));
6147}
3ee32707 6148
5d261913
VF
6149static int __netdev_adjacent_dev_insert(struct net_device *dev,
6150 struct net_device *adj_dev,
7863c054 6151 struct list_head *dev_list,
402dae96 6152 void *private, bool master)
5d261913
VF
6153{
6154 struct netdev_adjacent *adj;
842d67a7 6155 int ret;
5d261913 6156
6ea29da1 6157 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6158
6159 if (adj) {
790510d9 6160 adj->ref_nr += 1;
67b62f98
DA
6161 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6162 dev->name, adj_dev->name, adj->ref_nr);
6163
5d261913
VF
6164 return 0;
6165 }
6166
6167 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6168 if (!adj)
6169 return -ENOMEM;
6170
6171 adj->dev = adj_dev;
6172 adj->master = master;
790510d9 6173 adj->ref_nr = 1;
402dae96 6174 adj->private = private;
5d261913 6175 dev_hold(adj_dev);
2f268f12 6176
67b62f98
DA
6177 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6178 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 6179
7ce64c79 6180 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 6181 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
6182 if (ret)
6183 goto free_adj;
6184 }
6185
7863c054 6186 /* Ensure that master link is always the first item in list. */
842d67a7
VF
6187 if (master) {
6188 ret = sysfs_create_link(&(dev->dev.kobj),
6189 &(adj_dev->dev.kobj), "master");
6190 if (ret)
5831d66e 6191 goto remove_symlinks;
842d67a7 6192
7863c054 6193 list_add_rcu(&adj->list, dev_list);
842d67a7 6194 } else {
7863c054 6195 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 6196 }
5d261913
VF
6197
6198 return 0;
842d67a7 6199
5831d66e 6200remove_symlinks:
7ce64c79 6201 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6202 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6203free_adj:
6204 kfree(adj);
974daef7 6205 dev_put(adj_dev);
842d67a7
VF
6206
6207 return ret;
5d261913
VF
6208}
6209
1d143d9f 6210static void __netdev_adjacent_dev_remove(struct net_device *dev,
6211 struct net_device *adj_dev,
93409033 6212 u16 ref_nr,
1d143d9f 6213 struct list_head *dev_list)
5d261913
VF
6214{
6215 struct netdev_adjacent *adj;
6216
67b62f98
DA
6217 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6218 dev->name, adj_dev->name, ref_nr);
6219
6ea29da1 6220 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6221
2f268f12 6222 if (!adj) {
67b62f98 6223 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 6224 dev->name, adj_dev->name);
67b62f98
DA
6225 WARN_ON(1);
6226 return;
2f268f12 6227 }
5d261913 6228
93409033 6229 if (adj->ref_nr > ref_nr) {
67b62f98
DA
6230 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6231 dev->name, adj_dev->name, ref_nr,
6232 adj->ref_nr - ref_nr);
93409033 6233 adj->ref_nr -= ref_nr;
5d261913
VF
6234 return;
6235 }
6236
842d67a7
VF
6237 if (adj->master)
6238 sysfs_remove_link(&(dev->dev.kobj), "master");
6239
7ce64c79 6240 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6241 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 6242
5d261913 6243 list_del_rcu(&adj->list);
67b62f98 6244 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 6245 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
6246 dev_put(adj_dev);
6247 kfree_rcu(adj, rcu);
6248}
6249
1d143d9f 6250static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6251 struct net_device *upper_dev,
6252 struct list_head *up_list,
6253 struct list_head *down_list,
6254 void *private, bool master)
5d261913
VF
6255{
6256 int ret;
6257
790510d9 6258 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 6259 private, master);
5d261913
VF
6260 if (ret)
6261 return ret;
6262
790510d9 6263 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 6264 private, false);
5d261913 6265 if (ret) {
790510d9 6266 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
6267 return ret;
6268 }
6269
6270 return 0;
6271}
6272
1d143d9f 6273static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6274 struct net_device *upper_dev,
93409033 6275 u16 ref_nr,
1d143d9f 6276 struct list_head *up_list,
6277 struct list_head *down_list)
5d261913 6278{
93409033
AC
6279 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6280 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
6281}
6282
1d143d9f 6283static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6284 struct net_device *upper_dev,
6285 void *private, bool master)
2f268f12 6286{
f1170fd4
DA
6287 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6288 &dev->adj_list.upper,
6289 &upper_dev->adj_list.lower,
6290 private, master);
5d261913
VF
6291}
6292
1d143d9f 6293static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6294 struct net_device *upper_dev)
2f268f12 6295{
93409033 6296 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
6297 &dev->adj_list.upper,
6298 &upper_dev->adj_list.lower);
6299}
5d261913 6300
9ff162a8 6301static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 6302 struct net_device *upper_dev, bool master,
42ab19ee
DA
6303 void *upper_priv, void *upper_info,
6304 struct netlink_ext_ack *extack)
9ff162a8 6305{
51d0c047
DA
6306 struct netdev_notifier_changeupper_info changeupper_info = {
6307 .info = {
6308 .dev = dev,
42ab19ee 6309 .extack = extack,
51d0c047
DA
6310 },
6311 .upper_dev = upper_dev,
6312 .master = master,
6313 .linking = true,
6314 .upper_info = upper_info,
6315 };
5d261913 6316 int ret = 0;
9ff162a8
JP
6317
6318 ASSERT_RTNL();
6319
6320 if (dev == upper_dev)
6321 return -EBUSY;
6322
6323 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 6324 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
6325 return -EBUSY;
6326
f1170fd4 6327 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
6328 return -EEXIST;
6329
6330 if (master && netdev_master_upper_dev_get(dev))
6331 return -EBUSY;
6332
51d0c047 6333 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
6334 &changeupper_info.info);
6335 ret = notifier_to_errno(ret);
6336 if (ret)
6337 return ret;
6338
6dffb044 6339 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 6340 master);
5d261913
VF
6341 if (ret)
6342 return ret;
9ff162a8 6343
51d0c047 6344 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
6345 &changeupper_info.info);
6346 ret = notifier_to_errno(ret);
6347 if (ret)
f1170fd4 6348 goto rollback;
b03804e7 6349
9ff162a8 6350 return 0;
5d261913 6351
f1170fd4 6352rollback:
2f268f12 6353 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
6354
6355 return ret;
9ff162a8
JP
6356}
6357
6358/**
6359 * netdev_upper_dev_link - Add a link to the upper device
6360 * @dev: device
6361 * @upper_dev: new upper device
6362 *
6363 * Adds a link to device which is upper to this one. The caller must hold
6364 * the RTNL lock. On a failure a negative errno code is returned.
6365 * On success the reference counts are adjusted and the function
6366 * returns zero.
6367 */
6368int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
6369 struct net_device *upper_dev,
6370 struct netlink_ext_ack *extack)
9ff162a8 6371{
42ab19ee
DA
6372 return __netdev_upper_dev_link(dev, upper_dev, false,
6373 NULL, NULL, extack);
9ff162a8
JP
6374}
6375EXPORT_SYMBOL(netdev_upper_dev_link);
6376
6377/**
6378 * netdev_master_upper_dev_link - Add a master link to the upper device
6379 * @dev: device
6380 * @upper_dev: new upper device
6dffb044 6381 * @upper_priv: upper device private
29bf24af 6382 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
6383 *
6384 * Adds a link to device which is upper to this one. In this case, only
6385 * one master upper device can be linked, although other non-master devices
6386 * might be linked as well. The caller must hold the RTNL lock.
6387 * On a failure a negative errno code is returned. On success the reference
6388 * counts are adjusted and the function returns zero.
6389 */
6390int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 6391 struct net_device *upper_dev,
42ab19ee
DA
6392 void *upper_priv, void *upper_info,
6393 struct netlink_ext_ack *extack)
9ff162a8 6394{
29bf24af 6395 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 6396 upper_priv, upper_info, extack);
9ff162a8
JP
6397}
6398EXPORT_SYMBOL(netdev_master_upper_dev_link);
6399
6400/**
6401 * netdev_upper_dev_unlink - Removes a link to upper device
6402 * @dev: device
6403 * @upper_dev: new upper device
6404 *
6405 * Removes a link to device which is upper to this one. The caller must hold
6406 * the RTNL lock.
6407 */
6408void netdev_upper_dev_unlink(struct net_device *dev,
6409 struct net_device *upper_dev)
6410{
51d0c047
DA
6411 struct netdev_notifier_changeupper_info changeupper_info = {
6412 .info = {
6413 .dev = dev,
6414 },
6415 .upper_dev = upper_dev,
6416 .linking = false,
6417 };
f4563a75 6418
9ff162a8
JP
6419 ASSERT_RTNL();
6420
0e4ead9d 6421 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 6422
51d0c047 6423 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
6424 &changeupper_info.info);
6425
2f268f12 6426 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 6427
51d0c047 6428 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 6429 &changeupper_info.info);
9ff162a8
JP
6430}
6431EXPORT_SYMBOL(netdev_upper_dev_unlink);
6432
61bd3857
MS
6433/**
6434 * netdev_bonding_info_change - Dispatch event about slave change
6435 * @dev: device
4a26e453 6436 * @bonding_info: info to dispatch
61bd3857
MS
6437 *
6438 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6439 * The caller must hold the RTNL lock.
6440 */
6441void netdev_bonding_info_change(struct net_device *dev,
6442 struct netdev_bonding_info *bonding_info)
6443{
51d0c047
DA
6444 struct netdev_notifier_bonding_info info = {
6445 .info.dev = dev,
6446 };
61bd3857
MS
6447
6448 memcpy(&info.bonding_info, bonding_info,
6449 sizeof(struct netdev_bonding_info));
51d0c047 6450 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
6451 &info.info);
6452}
6453EXPORT_SYMBOL(netdev_bonding_info_change);
6454
2ce1ee17 6455static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6456{
6457 struct netdev_adjacent *iter;
6458
6459 struct net *net = dev_net(dev);
6460
6461 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6462 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6463 continue;
6464 netdev_adjacent_sysfs_add(iter->dev, dev,
6465 &iter->dev->adj_list.lower);
6466 netdev_adjacent_sysfs_add(dev, iter->dev,
6467 &dev->adj_list.upper);
6468 }
6469
6470 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6471 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6472 continue;
6473 netdev_adjacent_sysfs_add(iter->dev, dev,
6474 &iter->dev->adj_list.upper);
6475 netdev_adjacent_sysfs_add(dev, iter->dev,
6476 &dev->adj_list.lower);
6477 }
6478}
6479
2ce1ee17 6480static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6481{
6482 struct netdev_adjacent *iter;
6483
6484 struct net *net = dev_net(dev);
6485
6486 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6487 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6488 continue;
6489 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6490 &iter->dev->adj_list.lower);
6491 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6492 &dev->adj_list.upper);
6493 }
6494
6495 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6496 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6497 continue;
6498 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6499 &iter->dev->adj_list.upper);
6500 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6501 &dev->adj_list.lower);
6502 }
6503}
6504
5bb025fa 6505void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6506{
5bb025fa 6507 struct netdev_adjacent *iter;
402dae96 6508
4c75431a
AF
6509 struct net *net = dev_net(dev);
6510
5bb025fa 6511 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6512 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6513 continue;
5bb025fa
VF
6514 netdev_adjacent_sysfs_del(iter->dev, oldname,
6515 &iter->dev->adj_list.lower);
6516 netdev_adjacent_sysfs_add(iter->dev, dev,
6517 &iter->dev->adj_list.lower);
6518 }
402dae96 6519
5bb025fa 6520 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6521 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6522 continue;
5bb025fa
VF
6523 netdev_adjacent_sysfs_del(iter->dev, oldname,
6524 &iter->dev->adj_list.upper);
6525 netdev_adjacent_sysfs_add(iter->dev, dev,
6526 &iter->dev->adj_list.upper);
6527 }
402dae96 6528}
402dae96
VF
6529
6530void *netdev_lower_dev_get_private(struct net_device *dev,
6531 struct net_device *lower_dev)
6532{
6533 struct netdev_adjacent *lower;
6534
6535 if (!lower_dev)
6536 return NULL;
6ea29da1 6537 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6538 if (!lower)
6539 return NULL;
6540
6541 return lower->private;
6542}
6543EXPORT_SYMBOL(netdev_lower_dev_get_private);
6544
4085ebe8 6545
952fcfd0 6546int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6547{
6548 struct net_device *lower = NULL;
6549 struct list_head *iter;
6550 int max_nest = -1;
6551 int nest;
6552
6553 ASSERT_RTNL();
6554
6555 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6556 nest = dev_get_nest_level(lower);
4085ebe8
VY
6557 if (max_nest < nest)
6558 max_nest = nest;
6559 }
6560
952fcfd0 6561 return max_nest + 1;
4085ebe8
VY
6562}
6563EXPORT_SYMBOL(dev_get_nest_level);
6564
04d48266
JP
6565/**
6566 * netdev_lower_change - Dispatch event about lower device state change
6567 * @lower_dev: device
6568 * @lower_state_info: state to dispatch
6569 *
6570 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6571 * The caller must hold the RTNL lock.
6572 */
6573void netdev_lower_state_changed(struct net_device *lower_dev,
6574 void *lower_state_info)
6575{
51d0c047
DA
6576 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6577 .info.dev = lower_dev,
6578 };
04d48266
JP
6579
6580 ASSERT_RTNL();
6581 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 6582 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
6583 &changelowerstate_info.info);
6584}
6585EXPORT_SYMBOL(netdev_lower_state_changed);
6586
b6c40d68
PM
6587static void dev_change_rx_flags(struct net_device *dev, int flags)
6588{
d314774c
SH
6589 const struct net_device_ops *ops = dev->netdev_ops;
6590
d2615bf4 6591 if (ops->ndo_change_rx_flags)
d314774c 6592 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6593}
6594
991fb3f7 6595static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6596{
b536db93 6597 unsigned int old_flags = dev->flags;
d04a48b0
EB
6598 kuid_t uid;
6599 kgid_t gid;
1da177e4 6600
24023451
PM
6601 ASSERT_RTNL();
6602
dad9b335
WC
6603 dev->flags |= IFF_PROMISC;
6604 dev->promiscuity += inc;
6605 if (dev->promiscuity == 0) {
6606 /*
6607 * Avoid overflow.
6608 * If inc causes overflow, untouch promisc and return error.
6609 */
6610 if (inc < 0)
6611 dev->flags &= ~IFF_PROMISC;
6612 else {
6613 dev->promiscuity -= inc;
7b6cd1ce
JP
6614 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6615 dev->name);
dad9b335
WC
6616 return -EOVERFLOW;
6617 }
6618 }
52609c0b 6619 if (dev->flags != old_flags) {
7b6cd1ce
JP
6620 pr_info("device %s %s promiscuous mode\n",
6621 dev->name,
6622 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6623 if (audit_enabled) {
6624 current_uid_gid(&uid, &gid);
7759db82
KHK
6625 audit_log(current->audit_context, GFP_ATOMIC,
6626 AUDIT_ANOM_PROMISCUOUS,
6627 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6628 dev->name, (dev->flags & IFF_PROMISC),
6629 (old_flags & IFF_PROMISC),
e1760bd5 6630 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6631 from_kuid(&init_user_ns, uid),
6632 from_kgid(&init_user_ns, gid),
7759db82 6633 audit_get_sessionid(current));
8192b0c4 6634 }
24023451 6635
b6c40d68 6636 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6637 }
991fb3f7
ND
6638 if (notify)
6639 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6640 return 0;
1da177e4
LT
6641}
6642
4417da66
PM
6643/**
6644 * dev_set_promiscuity - update promiscuity count on a device
6645 * @dev: device
6646 * @inc: modifier
6647 *
6648 * Add or remove promiscuity from a device. While the count in the device
6649 * remains above zero the interface remains promiscuous. Once it hits zero
6650 * the device reverts back to normal filtering operation. A negative inc
6651 * value is used to drop promiscuity on the device.
dad9b335 6652 * Return 0 if successful or a negative errno code on error.
4417da66 6653 */
dad9b335 6654int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6655{
b536db93 6656 unsigned int old_flags = dev->flags;
dad9b335 6657 int err;
4417da66 6658
991fb3f7 6659 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6660 if (err < 0)
dad9b335 6661 return err;
4417da66
PM
6662 if (dev->flags != old_flags)
6663 dev_set_rx_mode(dev);
dad9b335 6664 return err;
4417da66 6665}
d1b19dff 6666EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6667
991fb3f7 6668static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6669{
991fb3f7 6670 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6671
24023451
PM
6672 ASSERT_RTNL();
6673
1da177e4 6674 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6675 dev->allmulti += inc;
6676 if (dev->allmulti == 0) {
6677 /*
6678 * Avoid overflow.
6679 * If inc causes overflow, untouch allmulti and return error.
6680 */
6681 if (inc < 0)
6682 dev->flags &= ~IFF_ALLMULTI;
6683 else {
6684 dev->allmulti -= inc;
7b6cd1ce
JP
6685 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6686 dev->name);
dad9b335
WC
6687 return -EOVERFLOW;
6688 }
6689 }
24023451 6690 if (dev->flags ^ old_flags) {
b6c40d68 6691 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6692 dev_set_rx_mode(dev);
991fb3f7
ND
6693 if (notify)
6694 __dev_notify_flags(dev, old_flags,
6695 dev->gflags ^ old_gflags);
24023451 6696 }
dad9b335 6697 return 0;
4417da66 6698}
991fb3f7
ND
6699
6700/**
6701 * dev_set_allmulti - update allmulti count on a device
6702 * @dev: device
6703 * @inc: modifier
6704 *
6705 * Add or remove reception of all multicast frames to a device. While the
6706 * count in the device remains above zero the interface remains listening
6707 * to all interfaces. Once it hits zero the device reverts back to normal
6708 * filtering operation. A negative @inc value is used to drop the counter
6709 * when releasing a resource needing all multicasts.
6710 * Return 0 if successful or a negative errno code on error.
6711 */
6712
6713int dev_set_allmulti(struct net_device *dev, int inc)
6714{
6715 return __dev_set_allmulti(dev, inc, true);
6716}
d1b19dff 6717EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6718
6719/*
6720 * Upload unicast and multicast address lists to device and
6721 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6722 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6723 * are present.
6724 */
6725void __dev_set_rx_mode(struct net_device *dev)
6726{
d314774c
SH
6727 const struct net_device_ops *ops = dev->netdev_ops;
6728
4417da66
PM
6729 /* dev_open will call this function so the list will stay sane. */
6730 if (!(dev->flags&IFF_UP))
6731 return;
6732
6733 if (!netif_device_present(dev))
40b77c94 6734 return;
4417da66 6735
01789349 6736 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6737 /* Unicast addresses changes may only happen under the rtnl,
6738 * therefore calling __dev_set_promiscuity here is safe.
6739 */
32e7bfc4 6740 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6741 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6742 dev->uc_promisc = true;
32e7bfc4 6743 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6744 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6745 dev->uc_promisc = false;
4417da66 6746 }
4417da66 6747 }
01789349
JP
6748
6749 if (ops->ndo_set_rx_mode)
6750 ops->ndo_set_rx_mode(dev);
4417da66
PM
6751}
6752
6753void dev_set_rx_mode(struct net_device *dev)
6754{
b9e40857 6755 netif_addr_lock_bh(dev);
4417da66 6756 __dev_set_rx_mode(dev);
b9e40857 6757 netif_addr_unlock_bh(dev);
1da177e4
LT
6758}
6759
f0db275a
SH
6760/**
6761 * dev_get_flags - get flags reported to userspace
6762 * @dev: device
6763 *
6764 * Get the combination of flag bits exported through APIs to userspace.
6765 */
95c96174 6766unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6767{
95c96174 6768 unsigned int flags;
1da177e4
LT
6769
6770 flags = (dev->flags & ~(IFF_PROMISC |
6771 IFF_ALLMULTI |
b00055aa
SR
6772 IFF_RUNNING |
6773 IFF_LOWER_UP |
6774 IFF_DORMANT)) |
1da177e4
LT
6775 (dev->gflags & (IFF_PROMISC |
6776 IFF_ALLMULTI));
6777
b00055aa
SR
6778 if (netif_running(dev)) {
6779 if (netif_oper_up(dev))
6780 flags |= IFF_RUNNING;
6781 if (netif_carrier_ok(dev))
6782 flags |= IFF_LOWER_UP;
6783 if (netif_dormant(dev))
6784 flags |= IFF_DORMANT;
6785 }
1da177e4
LT
6786
6787 return flags;
6788}
d1b19dff 6789EXPORT_SYMBOL(dev_get_flags);
1da177e4 6790
bd380811 6791int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6792{
b536db93 6793 unsigned int old_flags = dev->flags;
bd380811 6794 int ret;
1da177e4 6795
24023451
PM
6796 ASSERT_RTNL();
6797
1da177e4
LT
6798 /*
6799 * Set the flags on our device.
6800 */
6801
6802 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6803 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6804 IFF_AUTOMEDIA)) |
6805 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6806 IFF_ALLMULTI));
6807
6808 /*
6809 * Load in the correct multicast list now the flags have changed.
6810 */
6811
b6c40d68
PM
6812 if ((old_flags ^ flags) & IFF_MULTICAST)
6813 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6814
4417da66 6815 dev_set_rx_mode(dev);
1da177e4
LT
6816
6817 /*
6818 * Have we downed the interface. We handle IFF_UP ourselves
6819 * according to user attempts to set it, rather than blindly
6820 * setting it.
6821 */
6822
6823 ret = 0;
7051b88a 6824 if ((old_flags ^ flags) & IFF_UP) {
6825 if (old_flags & IFF_UP)
6826 __dev_close(dev);
6827 else
6828 ret = __dev_open(dev);
6829 }
1da177e4 6830
1da177e4 6831 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6832 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6833 unsigned int old_flags = dev->flags;
d1b19dff 6834
1da177e4 6835 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6836
6837 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6838 if (dev->flags != old_flags)
6839 dev_set_rx_mode(dev);
1da177e4
LT
6840 }
6841
6842 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 6843 * is important. Some (broken) drivers set IFF_PROMISC, when
6844 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
6845 */
6846 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6847 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6848
1da177e4 6849 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6850 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6851 }
6852
bd380811
PM
6853 return ret;
6854}
6855
a528c219
ND
6856void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6857 unsigned int gchanges)
bd380811
PM
6858{
6859 unsigned int changes = dev->flags ^ old_flags;
6860
a528c219 6861 if (gchanges)
7f294054 6862 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6863
bd380811
PM
6864 if (changes & IFF_UP) {
6865 if (dev->flags & IFF_UP)
6866 call_netdevice_notifiers(NETDEV_UP, dev);
6867 else
6868 call_netdevice_notifiers(NETDEV_DOWN, dev);
6869 }
6870
6871 if (dev->flags & IFF_UP &&
be9efd36 6872 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
6873 struct netdev_notifier_change_info change_info = {
6874 .info = {
6875 .dev = dev,
6876 },
6877 .flags_changed = changes,
6878 };
6879
6880 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 6881 }
bd380811
PM
6882}
6883
6884/**
6885 * dev_change_flags - change device settings
6886 * @dev: device
6887 * @flags: device state flags
6888 *
6889 * Change settings on device based state flags. The flags are
6890 * in the userspace exported format.
6891 */
b536db93 6892int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6893{
b536db93 6894 int ret;
991fb3f7 6895 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6896
6897 ret = __dev_change_flags(dev, flags);
6898 if (ret < 0)
6899 return ret;
6900
991fb3f7 6901 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6902 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6903 return ret;
6904}
d1b19dff 6905EXPORT_SYMBOL(dev_change_flags);
1da177e4 6906
f51048c3 6907int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
6908{
6909 const struct net_device_ops *ops = dev->netdev_ops;
6910
6911 if (ops->ndo_change_mtu)
6912 return ops->ndo_change_mtu(dev, new_mtu);
6913
6914 dev->mtu = new_mtu;
6915 return 0;
6916}
f51048c3 6917EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 6918
f0db275a
SH
6919/**
6920 * dev_set_mtu - Change maximum transfer unit
6921 * @dev: device
6922 * @new_mtu: new transfer unit
6923 *
6924 * Change the maximum transfer size of the network device.
6925 */
1da177e4
LT
6926int dev_set_mtu(struct net_device *dev, int new_mtu)
6927{
2315dc91 6928 int err, orig_mtu;
1da177e4
LT
6929
6930 if (new_mtu == dev->mtu)
6931 return 0;
6932
61e84623
JW
6933 /* MTU must be positive, and in range */
6934 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6935 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6936 dev->name, new_mtu, dev->min_mtu);
1da177e4 6937 return -EINVAL;
61e84623
JW
6938 }
6939
6940 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6941 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6942 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6943 return -EINVAL;
6944 }
1da177e4
LT
6945
6946 if (!netif_device_present(dev))
6947 return -ENODEV;
6948
1d486bfb
VF
6949 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6950 err = notifier_to_errno(err);
6951 if (err)
6952 return err;
d314774c 6953
2315dc91
VF
6954 orig_mtu = dev->mtu;
6955 err = __dev_set_mtu(dev, new_mtu);
d314774c 6956
2315dc91
VF
6957 if (!err) {
6958 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6959 err = notifier_to_errno(err);
6960 if (err) {
6961 /* setting mtu back and notifying everyone again,
6962 * so that they have a chance to revert changes.
6963 */
6964 __dev_set_mtu(dev, orig_mtu);
6965 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6966 }
6967 }
1da177e4
LT
6968 return err;
6969}
d1b19dff 6970EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6971
cbda10fa
VD
6972/**
6973 * dev_set_group - Change group this device belongs to
6974 * @dev: device
6975 * @new_group: group this device should belong to
6976 */
6977void dev_set_group(struct net_device *dev, int new_group)
6978{
6979 dev->group = new_group;
6980}
6981EXPORT_SYMBOL(dev_set_group);
6982
f0db275a
SH
6983/**
6984 * dev_set_mac_address - Change Media Access Control Address
6985 * @dev: device
6986 * @sa: new address
6987 *
6988 * Change the hardware (MAC) address of the device
6989 */
1da177e4
LT
6990int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6991{
d314774c 6992 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6993 int err;
6994
d314774c 6995 if (!ops->ndo_set_mac_address)
1da177e4
LT
6996 return -EOPNOTSUPP;
6997 if (sa->sa_family != dev->type)
6998 return -EINVAL;
6999 if (!netif_device_present(dev))
7000 return -ENODEV;
d314774c 7001 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
7002 if (err)
7003 return err;
fbdeca2d 7004 dev->addr_assign_type = NET_ADDR_SET;
f6521516 7005 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 7006 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 7007 return 0;
1da177e4 7008}
d1b19dff 7009EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 7010
4bf84c35
JP
7011/**
7012 * dev_change_carrier - Change device carrier
7013 * @dev: device
691b3b7e 7014 * @new_carrier: new value
4bf84c35
JP
7015 *
7016 * Change device carrier
7017 */
7018int dev_change_carrier(struct net_device *dev, bool new_carrier)
7019{
7020 const struct net_device_ops *ops = dev->netdev_ops;
7021
7022 if (!ops->ndo_change_carrier)
7023 return -EOPNOTSUPP;
7024 if (!netif_device_present(dev))
7025 return -ENODEV;
7026 return ops->ndo_change_carrier(dev, new_carrier);
7027}
7028EXPORT_SYMBOL(dev_change_carrier);
7029
66b52b0d
JP
7030/**
7031 * dev_get_phys_port_id - Get device physical port ID
7032 * @dev: device
7033 * @ppid: port ID
7034 *
7035 * Get device physical port ID
7036 */
7037int dev_get_phys_port_id(struct net_device *dev,
02637fce 7038 struct netdev_phys_item_id *ppid)
66b52b0d
JP
7039{
7040 const struct net_device_ops *ops = dev->netdev_ops;
7041
7042 if (!ops->ndo_get_phys_port_id)
7043 return -EOPNOTSUPP;
7044 return ops->ndo_get_phys_port_id(dev, ppid);
7045}
7046EXPORT_SYMBOL(dev_get_phys_port_id);
7047
db24a904
DA
7048/**
7049 * dev_get_phys_port_name - Get device physical port name
7050 * @dev: device
7051 * @name: port name
ed49e650 7052 * @len: limit of bytes to copy to name
db24a904
DA
7053 *
7054 * Get device physical port name
7055 */
7056int dev_get_phys_port_name(struct net_device *dev,
7057 char *name, size_t len)
7058{
7059 const struct net_device_ops *ops = dev->netdev_ops;
7060
7061 if (!ops->ndo_get_phys_port_name)
7062 return -EOPNOTSUPP;
7063 return ops->ndo_get_phys_port_name(dev, name, len);
7064}
7065EXPORT_SYMBOL(dev_get_phys_port_name);
7066
d746d707
AK
7067/**
7068 * dev_change_proto_down - update protocol port state information
7069 * @dev: device
7070 * @proto_down: new value
7071 *
7072 * This info can be used by switch drivers to set the phys state of the
7073 * port.
7074 */
7075int dev_change_proto_down(struct net_device *dev, bool proto_down)
7076{
7077 const struct net_device_ops *ops = dev->netdev_ops;
7078
7079 if (!ops->ndo_change_proto_down)
7080 return -EOPNOTSUPP;
7081 if (!netif_device_present(dev))
7082 return -ENODEV;
7083 return ops->ndo_change_proto_down(dev, proto_down);
7084}
7085EXPORT_SYMBOL(dev_change_proto_down);
7086
f4e63525 7087u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op, u32 *prog_id)
d67b9cd2 7088{
f4e63525 7089 struct netdev_bpf xdp;
d67b9cd2
DB
7090
7091 memset(&xdp, 0, sizeof(xdp));
7092 xdp.command = XDP_QUERY_PROG;
7093
7094 /* Query must always succeed. */
f4e63525 7095 WARN_ON(bpf_op(dev, &xdp) < 0);
58038695
MKL
7096 if (prog_id)
7097 *prog_id = xdp.prog_id;
7098
d67b9cd2
DB
7099 return xdp.prog_attached;
7100}
7101
f4e63525 7102static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
32d60277 7103 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
7104 struct bpf_prog *prog)
7105{
f4e63525 7106 struct netdev_bpf xdp;
d67b9cd2
DB
7107
7108 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
7109 if (flags & XDP_FLAGS_HW_MODE)
7110 xdp.command = XDP_SETUP_PROG_HW;
7111 else
7112 xdp.command = XDP_SETUP_PROG;
d67b9cd2 7113 xdp.extack = extack;
32d60277 7114 xdp.flags = flags;
d67b9cd2
DB
7115 xdp.prog = prog;
7116
f4e63525 7117 return bpf_op(dev, &xdp);
d67b9cd2
DB
7118}
7119
a7862b45
BB
7120/**
7121 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7122 * @dev: device
b5d60989 7123 * @extack: netlink extended ack
a7862b45 7124 * @fd: new program fd or negative value to clear
85de8576 7125 * @flags: xdp-related flags
a7862b45
BB
7126 *
7127 * Set or clear a bpf program for a device
7128 */
ddf9f970
JK
7129int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7130 int fd, u32 flags)
a7862b45
BB
7131{
7132 const struct net_device_ops *ops = dev->netdev_ops;
7133 struct bpf_prog *prog = NULL;
f4e63525 7134 bpf_op_t bpf_op, bpf_chk;
a7862b45
BB
7135 int err;
7136
85de8576
DB
7137 ASSERT_RTNL();
7138
f4e63525
JK
7139 bpf_op = bpf_chk = ops->ndo_bpf;
7140 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
0489df9a 7141 return -EOPNOTSUPP;
f4e63525
JK
7142 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7143 bpf_op = generic_xdp_install;
7144 if (bpf_op == bpf_chk)
7145 bpf_chk = generic_xdp_install;
b5cdae32 7146
a7862b45 7147 if (fd >= 0) {
f4e63525 7148 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk, NULL))
d67b9cd2
DB
7149 return -EEXIST;
7150 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
f4e63525 7151 __dev_xdp_attached(dev, bpf_op, NULL))
d67b9cd2 7152 return -EBUSY;
85de8576 7153
248f346f
JK
7154 if (bpf_op == ops->ndo_bpf)
7155 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7156 dev);
7157 else
7158 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
a7862b45
BB
7159 if (IS_ERR(prog))
7160 return PTR_ERR(prog);
7161 }
7162
f4e63525 7163 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
a7862b45
BB
7164 if (err < 0 && prog)
7165 bpf_prog_put(prog);
7166
7167 return err;
7168}
a7862b45 7169
1da177e4
LT
7170/**
7171 * dev_new_index - allocate an ifindex
c4ea43c5 7172 * @net: the applicable net namespace
1da177e4
LT
7173 *
7174 * Returns a suitable unique value for a new device interface
7175 * number. The caller must hold the rtnl semaphore or the
7176 * dev_base_lock to be sure it remains unique.
7177 */
881d966b 7178static int dev_new_index(struct net *net)
1da177e4 7179{
aa79e66e 7180 int ifindex = net->ifindex;
f4563a75 7181
1da177e4
LT
7182 for (;;) {
7183 if (++ifindex <= 0)
7184 ifindex = 1;
881d966b 7185 if (!__dev_get_by_index(net, ifindex))
aa79e66e 7186 return net->ifindex = ifindex;
1da177e4
LT
7187 }
7188}
7189
1da177e4 7190/* Delayed registration/unregisteration */
3b5b34fd 7191static LIST_HEAD(net_todo_list);
200b916f 7192DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 7193
6f05f629 7194static void net_set_todo(struct net_device *dev)
1da177e4 7195{
1da177e4 7196 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 7197 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
7198}
7199
9b5e383c 7200static void rollback_registered_many(struct list_head *head)
93ee31f1 7201{
e93737b0 7202 struct net_device *dev, *tmp;
5cde2829 7203 LIST_HEAD(close_head);
9b5e383c 7204
93ee31f1
DL
7205 BUG_ON(dev_boot_phase);
7206 ASSERT_RTNL();
7207
e93737b0 7208 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 7209 /* Some devices call without registering
e93737b0
KK
7210 * for initialization unwind. Remove those
7211 * devices and proceed with the remaining.
9b5e383c
ED
7212 */
7213 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
7214 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7215 dev->name, dev);
93ee31f1 7216
9b5e383c 7217 WARN_ON(1);
e93737b0
KK
7218 list_del(&dev->unreg_list);
7219 continue;
9b5e383c 7220 }
449f4544 7221 dev->dismantle = true;
9b5e383c 7222 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 7223 }
93ee31f1 7224
44345724 7225 /* If device is running, close it first. */
5cde2829
EB
7226 list_for_each_entry(dev, head, unreg_list)
7227 list_add_tail(&dev->close_list, &close_head);
99c4a26a 7228 dev_close_many(&close_head, true);
93ee31f1 7229
44345724 7230 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
7231 /* And unlink it from device chain. */
7232 unlist_netdevice(dev);
93ee31f1 7233
9b5e383c
ED
7234 dev->reg_state = NETREG_UNREGISTERING;
7235 }
41852497 7236 flush_all_backlogs();
93ee31f1
DL
7237
7238 synchronize_net();
7239
9b5e383c 7240 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
7241 struct sk_buff *skb = NULL;
7242
9b5e383c
ED
7243 /* Shutdown queueing discipline. */
7244 dev_shutdown(dev);
93ee31f1
DL
7245
7246
9b5e383c 7247 /* Notify protocols, that we are about to destroy
eb13da1a 7248 * this device. They should clean all the things.
7249 */
9b5e383c 7250 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 7251
395eea6c
MB
7252 if (!dev->rtnl_link_ops ||
7253 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 7254 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
6621dd29 7255 GFP_KERNEL, NULL);
395eea6c 7256
9b5e383c
ED
7257 /*
7258 * Flush the unicast and multicast chains
7259 */
a748ee24 7260 dev_uc_flush(dev);
22bedad3 7261 dev_mc_flush(dev);
93ee31f1 7262
9b5e383c
ED
7263 if (dev->netdev_ops->ndo_uninit)
7264 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 7265
395eea6c
MB
7266 if (skb)
7267 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 7268
9ff162a8
JP
7269 /* Notifier chain MUST detach us all upper devices. */
7270 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 7271 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 7272
9b5e383c
ED
7273 /* Remove entries from kobject tree */
7274 netdev_unregister_kobject(dev);
024e9679
AD
7275#ifdef CONFIG_XPS
7276 /* Remove XPS queueing entries */
7277 netif_reset_xps_queues_gt(dev, 0);
7278#endif
9b5e383c 7279 }
93ee31f1 7280
850a545b 7281 synchronize_net();
395264d5 7282
a5ee1551 7283 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
7284 dev_put(dev);
7285}
7286
7287static void rollback_registered(struct net_device *dev)
7288{
7289 LIST_HEAD(single);
7290
7291 list_add(&dev->unreg_list, &single);
7292 rollback_registered_many(&single);
ceaaec98 7293 list_del(&single);
93ee31f1
DL
7294}
7295
fd867d51
JW
7296static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7297 struct net_device *upper, netdev_features_t features)
7298{
7299 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7300 netdev_features_t feature;
5ba3f7d6 7301 int feature_bit;
fd867d51 7302
5ba3f7d6
JW
7303 for_each_netdev_feature(&upper_disables, feature_bit) {
7304 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7305 if (!(upper->wanted_features & feature)
7306 && (features & feature)) {
7307 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7308 &feature, upper->name);
7309 features &= ~feature;
7310 }
7311 }
7312
7313 return features;
7314}
7315
7316static void netdev_sync_lower_features(struct net_device *upper,
7317 struct net_device *lower, netdev_features_t features)
7318{
7319 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7320 netdev_features_t feature;
5ba3f7d6 7321 int feature_bit;
fd867d51 7322
5ba3f7d6
JW
7323 for_each_netdev_feature(&upper_disables, feature_bit) {
7324 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7325 if (!(features & feature) && (lower->features & feature)) {
7326 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7327 &feature, lower->name);
7328 lower->wanted_features &= ~feature;
7329 netdev_update_features(lower);
7330
7331 if (unlikely(lower->features & feature))
7332 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7333 &feature, lower->name);
7334 }
7335 }
7336}
7337
c8f44aff
MM
7338static netdev_features_t netdev_fix_features(struct net_device *dev,
7339 netdev_features_t features)
b63365a2 7340{
57422dc5
MM
7341 /* Fix illegal checksum combinations */
7342 if ((features & NETIF_F_HW_CSUM) &&
7343 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 7344 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
7345 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7346 }
7347
b63365a2 7348 /* TSO requires that SG is present as well. */
ea2d3688 7349 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 7350 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 7351 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
7352 }
7353
ec5f0615
PS
7354 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7355 !(features & NETIF_F_IP_CSUM)) {
7356 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7357 features &= ~NETIF_F_TSO;
7358 features &= ~NETIF_F_TSO_ECN;
7359 }
7360
7361 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7362 !(features & NETIF_F_IPV6_CSUM)) {
7363 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7364 features &= ~NETIF_F_TSO6;
7365 }
7366
b1dc497b
AD
7367 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7368 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7369 features &= ~NETIF_F_TSO_MANGLEID;
7370
31d8b9e0
BH
7371 /* TSO ECN requires that TSO is present as well. */
7372 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7373 features &= ~NETIF_F_TSO_ECN;
7374
212b573f
MM
7375 /* Software GSO depends on SG. */
7376 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 7377 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
7378 features &= ~NETIF_F_GSO;
7379 }
7380
802ab55a
AD
7381 /* GSO partial features require GSO partial be set */
7382 if ((features & dev->gso_partial_features) &&
7383 !(features & NETIF_F_GSO_PARTIAL)) {
7384 netdev_dbg(dev,
7385 "Dropping partially supported GSO features since no GSO partial.\n");
7386 features &= ~dev->gso_partial_features;
7387 }
7388
b63365a2
HX
7389 return features;
7390}
b63365a2 7391
6cb6a27c 7392int __netdev_update_features(struct net_device *dev)
5455c699 7393{
fd867d51 7394 struct net_device *upper, *lower;
c8f44aff 7395 netdev_features_t features;
fd867d51 7396 struct list_head *iter;
e7868a85 7397 int err = -1;
5455c699 7398
87267485
MM
7399 ASSERT_RTNL();
7400
5455c699
MM
7401 features = netdev_get_wanted_features(dev);
7402
7403 if (dev->netdev_ops->ndo_fix_features)
7404 features = dev->netdev_ops->ndo_fix_features(dev, features);
7405
7406 /* driver might be less strict about feature dependencies */
7407 features = netdev_fix_features(dev, features);
7408
fd867d51
JW
7409 /* some features can't be enabled if they're off an an upper device */
7410 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7411 features = netdev_sync_upper_features(dev, upper, features);
7412
5455c699 7413 if (dev->features == features)
e7868a85 7414 goto sync_lower;
5455c699 7415
c8f44aff
MM
7416 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7417 &dev->features, &features);
5455c699
MM
7418
7419 if (dev->netdev_ops->ndo_set_features)
7420 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
7421 else
7422 err = 0;
5455c699 7423
6cb6a27c 7424 if (unlikely(err < 0)) {
5455c699 7425 netdev_err(dev,
c8f44aff
MM
7426 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7427 err, &features, &dev->features);
17b85d29
NA
7428 /* return non-0 since some features might have changed and
7429 * it's better to fire a spurious notification than miss it
7430 */
7431 return -1;
6cb6a27c
MM
7432 }
7433
e7868a85 7434sync_lower:
fd867d51
JW
7435 /* some features must be disabled on lower devices when disabled
7436 * on an upper device (think: bonding master or bridge)
7437 */
7438 netdev_for_each_lower_dev(dev, lower, iter)
7439 netdev_sync_lower_features(dev, lower, features);
7440
ae847f40
SD
7441 if (!err) {
7442 netdev_features_t diff = features ^ dev->features;
7443
7444 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7445 /* udp_tunnel_{get,drop}_rx_info both need
7446 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7447 * device, or they won't do anything.
7448 * Thus we need to update dev->features
7449 * *before* calling udp_tunnel_get_rx_info,
7450 * but *after* calling udp_tunnel_drop_rx_info.
7451 */
7452 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7453 dev->features = features;
7454 udp_tunnel_get_rx_info(dev);
7455 } else {
7456 udp_tunnel_drop_rx_info(dev);
7457 }
7458 }
7459
6cb6a27c 7460 dev->features = features;
ae847f40 7461 }
6cb6a27c 7462
e7868a85 7463 return err < 0 ? 0 : 1;
6cb6a27c
MM
7464}
7465
afe12cc8
MM
7466/**
7467 * netdev_update_features - recalculate device features
7468 * @dev: the device to check
7469 *
7470 * Recalculate dev->features set and send notifications if it
7471 * has changed. Should be called after driver or hardware dependent
7472 * conditions might have changed that influence the features.
7473 */
6cb6a27c
MM
7474void netdev_update_features(struct net_device *dev)
7475{
7476 if (__netdev_update_features(dev))
7477 netdev_features_change(dev);
5455c699
MM
7478}
7479EXPORT_SYMBOL(netdev_update_features);
7480
afe12cc8
MM
7481/**
7482 * netdev_change_features - recalculate device features
7483 * @dev: the device to check
7484 *
7485 * Recalculate dev->features set and send notifications even
7486 * if they have not changed. Should be called instead of
7487 * netdev_update_features() if also dev->vlan_features might
7488 * have changed to allow the changes to be propagated to stacked
7489 * VLAN devices.
7490 */
7491void netdev_change_features(struct net_device *dev)
7492{
7493 __netdev_update_features(dev);
7494 netdev_features_change(dev);
7495}
7496EXPORT_SYMBOL(netdev_change_features);
7497
fc4a7489
PM
7498/**
7499 * netif_stacked_transfer_operstate - transfer operstate
7500 * @rootdev: the root or lower level device to transfer state from
7501 * @dev: the device to transfer operstate to
7502 *
7503 * Transfer operational state from root to device. This is normally
7504 * called when a stacking relationship exists between the root
7505 * device and the device(a leaf device).
7506 */
7507void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7508 struct net_device *dev)
7509{
7510 if (rootdev->operstate == IF_OPER_DORMANT)
7511 netif_dormant_on(dev);
7512 else
7513 netif_dormant_off(dev);
7514
0575c86b
ZS
7515 if (netif_carrier_ok(rootdev))
7516 netif_carrier_on(dev);
7517 else
7518 netif_carrier_off(dev);
fc4a7489
PM
7519}
7520EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7521
a953be53 7522#ifdef CONFIG_SYSFS
1b4bf461
ED
7523static int netif_alloc_rx_queues(struct net_device *dev)
7524{
1b4bf461 7525 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7526 struct netdev_rx_queue *rx;
10595902 7527 size_t sz = count * sizeof(*rx);
1b4bf461 7528
bd25fa7b 7529 BUG_ON(count < 1);
1b4bf461 7530
dcda9b04 7531 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7532 if (!rx)
7533 return -ENOMEM;
7534
bd25fa7b
TH
7535 dev->_rx = rx;
7536
bd25fa7b 7537 for (i = 0; i < count; i++)
fe822240 7538 rx[i].dev = dev;
1b4bf461
ED
7539 return 0;
7540}
bf264145 7541#endif
1b4bf461 7542
aa942104
CG
7543static void netdev_init_one_queue(struct net_device *dev,
7544 struct netdev_queue *queue, void *_unused)
7545{
7546 /* Initialize queue lock */
7547 spin_lock_init(&queue->_xmit_lock);
7548 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7549 queue->xmit_lock_owner = -1;
b236da69 7550 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7551 queue->dev = dev;
114cf580
TH
7552#ifdef CONFIG_BQL
7553 dql_init(&queue->dql, HZ);
7554#endif
aa942104
CG
7555}
7556
60877a32
ED
7557static void netif_free_tx_queues(struct net_device *dev)
7558{
4cb28970 7559 kvfree(dev->_tx);
60877a32
ED
7560}
7561
e6484930
TH
7562static int netif_alloc_netdev_queues(struct net_device *dev)
7563{
7564 unsigned int count = dev->num_tx_queues;
7565 struct netdev_queue *tx;
60877a32 7566 size_t sz = count * sizeof(*tx);
e6484930 7567
d339727c
ED
7568 if (count < 1 || count > 0xffff)
7569 return -EINVAL;
62b5942a 7570
dcda9b04 7571 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7572 if (!tx)
7573 return -ENOMEM;
7574
e6484930 7575 dev->_tx = tx;
1d24eb48 7576
e6484930
TH
7577 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7578 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7579
7580 return 0;
e6484930
TH
7581}
7582
a2029240
DV
7583void netif_tx_stop_all_queues(struct net_device *dev)
7584{
7585 unsigned int i;
7586
7587 for (i = 0; i < dev->num_tx_queues; i++) {
7588 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 7589
a2029240
DV
7590 netif_tx_stop_queue(txq);
7591 }
7592}
7593EXPORT_SYMBOL(netif_tx_stop_all_queues);
7594
1da177e4
LT
7595/**
7596 * register_netdevice - register a network device
7597 * @dev: device to register
7598 *
7599 * Take a completed network device structure and add it to the kernel
7600 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7601 * chain. 0 is returned on success. A negative errno code is returned
7602 * on a failure to set up the device, or if the name is a duplicate.
7603 *
7604 * Callers must hold the rtnl semaphore. You may want
7605 * register_netdev() instead of this.
7606 *
7607 * BUGS:
7608 * The locking appears insufficient to guarantee two parallel registers
7609 * will not get the same name.
7610 */
7611
7612int register_netdevice(struct net_device *dev)
7613{
1da177e4 7614 int ret;
d314774c 7615 struct net *net = dev_net(dev);
1da177e4
LT
7616
7617 BUG_ON(dev_boot_phase);
7618 ASSERT_RTNL();
7619
b17a7c17
SH
7620 might_sleep();
7621
1da177e4
LT
7622 /* When net_device's are persistent, this will be fatal. */
7623 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7624 BUG_ON(!net);
1da177e4 7625
f1f28aa3 7626 spin_lock_init(&dev->addr_list_lock);
cf508b12 7627 netdev_set_addr_lockdep_class(dev);
1da177e4 7628
828de4f6 7629 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7630 if (ret < 0)
7631 goto out;
7632
1da177e4 7633 /* Init, if this function is available */
d314774c
SH
7634 if (dev->netdev_ops->ndo_init) {
7635 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7636 if (ret) {
7637 if (ret > 0)
7638 ret = -EIO;
90833aa4 7639 goto out;
1da177e4
LT
7640 }
7641 }
4ec93edb 7642
f646968f
PM
7643 if (((dev->hw_features | dev->features) &
7644 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7645 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7646 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7647 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7648 ret = -EINVAL;
7649 goto err_uninit;
7650 }
7651
9c7dafbf
PE
7652 ret = -EBUSY;
7653 if (!dev->ifindex)
7654 dev->ifindex = dev_new_index(net);
7655 else if (__dev_get_by_index(net, dev->ifindex))
7656 goto err_uninit;
7657
5455c699
MM
7658 /* Transfer changeable features to wanted_features and enable
7659 * software offloads (GSO and GRO).
7660 */
7661 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f 7662 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
7663
7664 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7665 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7666 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7667 }
7668
14d1232f 7669 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7670
cbc53e08 7671 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7672 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7673
7f348a60
AD
7674 /* If IPv4 TCP segmentation offload is supported we should also
7675 * allow the device to enable segmenting the frame with the option
7676 * of ignoring a static IP ID value. This doesn't enable the
7677 * feature itself but allows the user to enable it later.
7678 */
cbc53e08
AD
7679 if (dev->hw_features & NETIF_F_TSO)
7680 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7681 if (dev->vlan_features & NETIF_F_TSO)
7682 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7683 if (dev->mpls_features & NETIF_F_TSO)
7684 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7685 if (dev->hw_enc_features & NETIF_F_TSO)
7686 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7687
1180e7d6 7688 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7689 */
1180e7d6 7690 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7691
ee579677
PS
7692 /* Make NETIF_F_SG inheritable to tunnel devices.
7693 */
802ab55a 7694 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7695
0d89d203
SH
7696 /* Make NETIF_F_SG inheritable to MPLS.
7697 */
7698 dev->mpls_features |= NETIF_F_SG;
7699
7ffbe3fd
JB
7700 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7701 ret = notifier_to_errno(ret);
7702 if (ret)
7703 goto err_uninit;
7704
8b41d188 7705 ret = netdev_register_kobject(dev);
b17a7c17 7706 if (ret)
7ce1b0ed 7707 goto err_uninit;
b17a7c17
SH
7708 dev->reg_state = NETREG_REGISTERED;
7709
6cb6a27c 7710 __netdev_update_features(dev);
8e9b59b2 7711
1da177e4
LT
7712 /*
7713 * Default initial state at registry is that the
7714 * device is present.
7715 */
7716
7717 set_bit(__LINK_STATE_PRESENT, &dev->state);
7718
8f4cccbb
BH
7719 linkwatch_init_dev(dev);
7720
1da177e4 7721 dev_init_scheduler(dev);
1da177e4 7722 dev_hold(dev);
ce286d32 7723 list_netdevice(dev);
7bf23575 7724 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7725
948b337e
JP
7726 /* If the device has permanent device address, driver should
7727 * set dev_addr and also addr_assign_type should be set to
7728 * NET_ADDR_PERM (default value).
7729 */
7730 if (dev->addr_assign_type == NET_ADDR_PERM)
7731 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7732
1da177e4 7733 /* Notify protocols, that a new device appeared. */
056925ab 7734 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7735 ret = notifier_to_errno(ret);
93ee31f1
DL
7736 if (ret) {
7737 rollback_registered(dev);
7738 dev->reg_state = NETREG_UNREGISTERED;
7739 }
d90a909e
EB
7740 /*
7741 * Prevent userspace races by waiting until the network
7742 * device is fully setup before sending notifications.
7743 */
a2835763
PM
7744 if (!dev->rtnl_link_ops ||
7745 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7746 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7747
7748out:
7749 return ret;
7ce1b0ed
HX
7750
7751err_uninit:
d314774c
SH
7752 if (dev->netdev_ops->ndo_uninit)
7753 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
7754 if (dev->priv_destructor)
7755 dev->priv_destructor(dev);
7ce1b0ed 7756 goto out;
1da177e4 7757}
d1b19dff 7758EXPORT_SYMBOL(register_netdevice);
1da177e4 7759
937f1ba5
BH
7760/**
7761 * init_dummy_netdev - init a dummy network device for NAPI
7762 * @dev: device to init
7763 *
7764 * This takes a network device structure and initialize the minimum
7765 * amount of fields so it can be used to schedule NAPI polls without
7766 * registering a full blown interface. This is to be used by drivers
7767 * that need to tie several hardware interfaces to a single NAPI
7768 * poll scheduler due to HW limitations.
7769 */
7770int init_dummy_netdev(struct net_device *dev)
7771{
7772 /* Clear everything. Note we don't initialize spinlocks
7773 * are they aren't supposed to be taken by any of the
7774 * NAPI code and this dummy netdev is supposed to be
7775 * only ever used for NAPI polls
7776 */
7777 memset(dev, 0, sizeof(struct net_device));
7778
7779 /* make sure we BUG if trying to hit standard
7780 * register/unregister code path
7781 */
7782 dev->reg_state = NETREG_DUMMY;
7783
937f1ba5
BH
7784 /* NAPI wants this */
7785 INIT_LIST_HEAD(&dev->napi_list);
7786
7787 /* a dummy interface is started by default */
7788 set_bit(__LINK_STATE_PRESENT, &dev->state);
7789 set_bit(__LINK_STATE_START, &dev->state);
7790
29b4433d
ED
7791 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7792 * because users of this 'device' dont need to change
7793 * its refcount.
7794 */
7795
937f1ba5
BH
7796 return 0;
7797}
7798EXPORT_SYMBOL_GPL(init_dummy_netdev);
7799
7800
1da177e4
LT
7801/**
7802 * register_netdev - register a network device
7803 * @dev: device to register
7804 *
7805 * Take a completed network device structure and add it to the kernel
7806 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7807 * chain. 0 is returned on success. A negative errno code is returned
7808 * on a failure to set up the device, or if the name is a duplicate.
7809 *
38b4da38 7810 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7811 * and expands the device name if you passed a format string to
7812 * alloc_netdev.
7813 */
7814int register_netdev(struct net_device *dev)
7815{
7816 int err;
7817
7818 rtnl_lock();
1da177e4 7819 err = register_netdevice(dev);
1da177e4
LT
7820 rtnl_unlock();
7821 return err;
7822}
7823EXPORT_SYMBOL(register_netdev);
7824
29b4433d
ED
7825int netdev_refcnt_read(const struct net_device *dev)
7826{
7827 int i, refcnt = 0;
7828
7829 for_each_possible_cpu(i)
7830 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7831 return refcnt;
7832}
7833EXPORT_SYMBOL(netdev_refcnt_read);
7834
2c53040f 7835/**
1da177e4 7836 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7837 * @dev: target net_device
1da177e4
LT
7838 *
7839 * This is called when unregistering network devices.
7840 *
7841 * Any protocol or device that holds a reference should register
7842 * for netdevice notification, and cleanup and put back the
7843 * reference if they receive an UNREGISTER event.
7844 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7845 * call dev_put.
1da177e4
LT
7846 */
7847static void netdev_wait_allrefs(struct net_device *dev)
7848{
7849 unsigned long rebroadcast_time, warning_time;
29b4433d 7850 int refcnt;
1da177e4 7851
e014debe
ED
7852 linkwatch_forget_dev(dev);
7853
1da177e4 7854 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7855 refcnt = netdev_refcnt_read(dev);
7856
7857 while (refcnt != 0) {
1da177e4 7858 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7859 rtnl_lock();
1da177e4
LT
7860
7861 /* Rebroadcast unregister notification */
056925ab 7862 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7863
748e2d93 7864 __rtnl_unlock();
0115e8e3 7865 rcu_barrier();
748e2d93
ED
7866 rtnl_lock();
7867
0115e8e3 7868 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7869 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7870 &dev->state)) {
7871 /* We must not have linkwatch events
7872 * pending on unregister. If this
7873 * happens, we simply run the queue
7874 * unscheduled, resulting in a noop
7875 * for this device.
7876 */
7877 linkwatch_run_queue();
7878 }
7879
6756ae4b 7880 __rtnl_unlock();
1da177e4
LT
7881
7882 rebroadcast_time = jiffies;
7883 }
7884
7885 msleep(250);
7886
29b4433d
ED
7887 refcnt = netdev_refcnt_read(dev);
7888
1da177e4 7889 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7890 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7891 dev->name, refcnt);
1da177e4
LT
7892 warning_time = jiffies;
7893 }
7894 }
7895}
7896
7897/* The sequence is:
7898 *
7899 * rtnl_lock();
7900 * ...
7901 * register_netdevice(x1);
7902 * register_netdevice(x2);
7903 * ...
7904 * unregister_netdevice(y1);
7905 * unregister_netdevice(y2);
7906 * ...
7907 * rtnl_unlock();
7908 * free_netdev(y1);
7909 * free_netdev(y2);
7910 *
58ec3b4d 7911 * We are invoked by rtnl_unlock().
1da177e4 7912 * This allows us to deal with problems:
b17a7c17 7913 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7914 * without deadlocking with linkwatch via keventd.
7915 * 2) Since we run with the RTNL semaphore not held, we can sleep
7916 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7917 *
7918 * We must not return until all unregister events added during
7919 * the interval the lock was held have been completed.
1da177e4 7920 */
1da177e4
LT
7921void netdev_run_todo(void)
7922{
626ab0e6 7923 struct list_head list;
1da177e4 7924
1da177e4 7925 /* Snapshot list, allow later requests */
626ab0e6 7926 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7927
7928 __rtnl_unlock();
626ab0e6 7929
0115e8e3
ED
7930
7931 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7932 if (!list_empty(&list))
7933 rcu_barrier();
7934
1da177e4
LT
7935 while (!list_empty(&list)) {
7936 struct net_device *dev
e5e26d75 7937 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7938 list_del(&dev->todo_list);
7939
748e2d93 7940 rtnl_lock();
0115e8e3 7941 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7942 __rtnl_unlock();
0115e8e3 7943
b17a7c17 7944 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7945 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7946 dev->name, dev->reg_state);
7947 dump_stack();
7948 continue;
7949 }
1da177e4 7950
b17a7c17 7951 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7952
b17a7c17 7953 netdev_wait_allrefs(dev);
1da177e4 7954
b17a7c17 7955 /* paranoia */
29b4433d 7956 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7957 BUG_ON(!list_empty(&dev->ptype_all));
7958 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7959 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7960 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7961 WARN_ON(dev->dn_ptr);
1da177e4 7962
cf124db5
DM
7963 if (dev->priv_destructor)
7964 dev->priv_destructor(dev);
7965 if (dev->needs_free_netdev)
7966 free_netdev(dev);
9093bbb2 7967
50624c93
EB
7968 /* Report a network device has been unregistered */
7969 rtnl_lock();
7970 dev_net(dev)->dev_unreg_count--;
7971 __rtnl_unlock();
7972 wake_up(&netdev_unregistering_wq);
7973
9093bbb2
SH
7974 /* Free network device */
7975 kobject_put(&dev->dev.kobj);
1da177e4 7976 }
1da177e4
LT
7977}
7978
9256645a
JW
7979/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7980 * all the same fields in the same order as net_device_stats, with only
7981 * the type differing, but rtnl_link_stats64 may have additional fields
7982 * at the end for newer counters.
3cfde79c 7983 */
77a1abf5
ED
7984void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7985 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7986{
7987#if BITS_PER_LONG == 64
9256645a 7988 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 7989 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
7990 /* zero out counters that only exist in rtnl_link_stats64 */
7991 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7992 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7993#else
9256645a 7994 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7995 const unsigned long *src = (const unsigned long *)netdev_stats;
7996 u64 *dst = (u64 *)stats64;
7997
9256645a 7998 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7999 for (i = 0; i < n; i++)
8000 dst[i] = src[i];
9256645a
JW
8001 /* zero out counters that only exist in rtnl_link_stats64 */
8002 memset((char *)stats64 + n * sizeof(u64), 0,
8003 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
8004#endif
8005}
77a1abf5 8006EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 8007
eeda3fd6
SH
8008/**
8009 * dev_get_stats - get network device statistics
8010 * @dev: device to get statistics from
28172739 8011 * @storage: place to store stats
eeda3fd6 8012 *
d7753516
BH
8013 * Get network statistics from device. Return @storage.
8014 * The device driver may provide its own method by setting
8015 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8016 * otherwise the internal statistics structure is used.
eeda3fd6 8017 */
d7753516
BH
8018struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8019 struct rtnl_link_stats64 *storage)
7004bf25 8020{
eeda3fd6
SH
8021 const struct net_device_ops *ops = dev->netdev_ops;
8022
28172739
ED
8023 if (ops->ndo_get_stats64) {
8024 memset(storage, 0, sizeof(*storage));
caf586e5
ED
8025 ops->ndo_get_stats64(dev, storage);
8026 } else if (ops->ndo_get_stats) {
3cfde79c 8027 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
8028 } else {
8029 netdev_stats_to_stats64(storage, &dev->stats);
28172739 8030 }
6f64ec74
ED
8031 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8032 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8033 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 8034 return storage;
c45d286e 8035}
eeda3fd6 8036EXPORT_SYMBOL(dev_get_stats);
c45d286e 8037
24824a09 8038struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 8039{
24824a09 8040 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 8041
24824a09
ED
8042#ifdef CONFIG_NET_CLS_ACT
8043 if (queue)
8044 return queue;
8045 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8046 if (!queue)
8047 return NULL;
8048 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 8049 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
8050 queue->qdisc_sleeping = &noop_qdisc;
8051 rcu_assign_pointer(dev->ingress_queue, queue);
8052#endif
8053 return queue;
bb949fbd
DM
8054}
8055
2c60db03
ED
8056static const struct ethtool_ops default_ethtool_ops;
8057
d07d7507
SG
8058void netdev_set_default_ethtool_ops(struct net_device *dev,
8059 const struct ethtool_ops *ops)
8060{
8061 if (dev->ethtool_ops == &default_ethtool_ops)
8062 dev->ethtool_ops = ops;
8063}
8064EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8065
74d332c1
ED
8066void netdev_freemem(struct net_device *dev)
8067{
8068 char *addr = (char *)dev - dev->padded;
8069
4cb28970 8070 kvfree(addr);
74d332c1
ED
8071}
8072
1da177e4 8073/**
722c9a0c 8074 * alloc_netdev_mqs - allocate network device
8075 * @sizeof_priv: size of private data to allocate space for
8076 * @name: device name format string
8077 * @name_assign_type: origin of device name
8078 * @setup: callback to initialize device
8079 * @txqs: the number of TX subqueues to allocate
8080 * @rxqs: the number of RX subqueues to allocate
8081 *
8082 * Allocates a struct net_device with private data area for driver use
8083 * and performs basic initialization. Also allocates subqueue structs
8084 * for each queue on the device.
1da177e4 8085 */
36909ea4 8086struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 8087 unsigned char name_assign_type,
36909ea4
TH
8088 void (*setup)(struct net_device *),
8089 unsigned int txqs, unsigned int rxqs)
1da177e4 8090{
1da177e4 8091 struct net_device *dev;
52a59bd5 8092 unsigned int alloc_size;
1ce8e7b5 8093 struct net_device *p;
1da177e4 8094
b6fe17d6
SH
8095 BUG_ON(strlen(name) >= sizeof(dev->name));
8096
36909ea4 8097 if (txqs < 1) {
7b6cd1ce 8098 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
8099 return NULL;
8100 }
8101
a953be53 8102#ifdef CONFIG_SYSFS
36909ea4 8103 if (rxqs < 1) {
7b6cd1ce 8104 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
8105 return NULL;
8106 }
8107#endif
8108
fd2ea0a7 8109 alloc_size = sizeof(struct net_device);
d1643d24
AD
8110 if (sizeof_priv) {
8111 /* ensure 32-byte alignment of private area */
1ce8e7b5 8112 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
8113 alloc_size += sizeof_priv;
8114 }
8115 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 8116 alloc_size += NETDEV_ALIGN - 1;
1da177e4 8117
dcda9b04 8118 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 8119 if (!p)
1da177e4 8120 return NULL;
1da177e4 8121
1ce8e7b5 8122 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 8123 dev->padded = (char *)dev - (char *)p;
ab9c73cc 8124
29b4433d
ED
8125 dev->pcpu_refcnt = alloc_percpu(int);
8126 if (!dev->pcpu_refcnt)
74d332c1 8127 goto free_dev;
ab9c73cc 8128
ab9c73cc 8129 if (dev_addr_init(dev))
29b4433d 8130 goto free_pcpu;
ab9c73cc 8131
22bedad3 8132 dev_mc_init(dev);
a748ee24 8133 dev_uc_init(dev);
ccffad25 8134
c346dca1 8135 dev_net_set(dev, &init_net);
1da177e4 8136
8d3bdbd5 8137 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 8138 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 8139
8d3bdbd5
DM
8140 INIT_LIST_HEAD(&dev->napi_list);
8141 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 8142 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 8143 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
8144 INIT_LIST_HEAD(&dev->adj_list.upper);
8145 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
8146 INIT_LIST_HEAD(&dev->ptype_all);
8147 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
8148#ifdef CONFIG_NET_SCHED
8149 hash_init(dev->qdisc_hash);
8150#endif
02875878 8151 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
8152 setup(dev);
8153
a813104d 8154 if (!dev->tx_queue_len) {
f84bb1ea 8155 dev->priv_flags |= IFF_NO_QUEUE;
11597084 8156 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 8157 }
906470c1 8158
36909ea4
TH
8159 dev->num_tx_queues = txqs;
8160 dev->real_num_tx_queues = txqs;
ed9af2e8 8161 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 8162 goto free_all;
e8a0464c 8163
a953be53 8164#ifdef CONFIG_SYSFS
36909ea4
TH
8165 dev->num_rx_queues = rxqs;
8166 dev->real_num_rx_queues = rxqs;
fe822240 8167 if (netif_alloc_rx_queues(dev))
8d3bdbd5 8168 goto free_all;
df334545 8169#endif
0a9627f2 8170
1da177e4 8171 strcpy(dev->name, name);
c835a677 8172 dev->name_assign_type = name_assign_type;
cbda10fa 8173 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
8174 if (!dev->ethtool_ops)
8175 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
8176
8177 nf_hook_ingress_init(dev);
8178
1da177e4 8179 return dev;
ab9c73cc 8180
8d3bdbd5
DM
8181free_all:
8182 free_netdev(dev);
8183 return NULL;
8184
29b4433d
ED
8185free_pcpu:
8186 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
8187free_dev:
8188 netdev_freemem(dev);
ab9c73cc 8189 return NULL;
1da177e4 8190}
36909ea4 8191EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
8192
8193/**
722c9a0c 8194 * free_netdev - free network device
8195 * @dev: device
1da177e4 8196 *
722c9a0c 8197 * This function does the last stage of destroying an allocated device
8198 * interface. The reference to the device object is released. If this
8199 * is the last reference then it will be freed.Must be called in process
8200 * context.
1da177e4
LT
8201 */
8202void free_netdev(struct net_device *dev)
8203{
d565b0a1 8204 struct napi_struct *p, *n;
b5cdae32 8205 struct bpf_prog *prog;
d565b0a1 8206
93d05d4a 8207 might_sleep();
60877a32 8208 netif_free_tx_queues(dev);
a953be53 8209#ifdef CONFIG_SYSFS
10595902 8210 kvfree(dev->_rx);
fe822240 8211#endif
e8a0464c 8212
33d480ce 8213 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 8214
f001fde5
JP
8215 /* Flush device addresses */
8216 dev_addr_flush(dev);
8217
d565b0a1
HX
8218 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8219 netif_napi_del(p);
8220
29b4433d
ED
8221 free_percpu(dev->pcpu_refcnt);
8222 dev->pcpu_refcnt = NULL;
8223
b5cdae32
DM
8224 prog = rcu_dereference_protected(dev->xdp_prog, 1);
8225 if (prog) {
8226 bpf_prog_put(prog);
8227 static_key_slow_dec(&generic_xdp_needed);
8228 }
8229
3041a069 8230 /* Compatibility with error handling in drivers */
1da177e4 8231 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 8232 netdev_freemem(dev);
1da177e4
LT
8233 return;
8234 }
8235
8236 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8237 dev->reg_state = NETREG_RELEASED;
8238
43cb76d9
GKH
8239 /* will free via device release */
8240 put_device(&dev->dev);
1da177e4 8241}
d1b19dff 8242EXPORT_SYMBOL(free_netdev);
4ec93edb 8243
f0db275a
SH
8244/**
8245 * synchronize_net - Synchronize with packet receive processing
8246 *
8247 * Wait for packets currently being received to be done.
8248 * Does not block later packets from starting.
8249 */
4ec93edb 8250void synchronize_net(void)
1da177e4
LT
8251{
8252 might_sleep();
be3fc413
ED
8253 if (rtnl_is_locked())
8254 synchronize_rcu_expedited();
8255 else
8256 synchronize_rcu();
1da177e4 8257}
d1b19dff 8258EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
8259
8260/**
44a0873d 8261 * unregister_netdevice_queue - remove device from the kernel
1da177e4 8262 * @dev: device
44a0873d 8263 * @head: list
6ebfbc06 8264 *
1da177e4 8265 * This function shuts down a device interface and removes it
d59b54b1 8266 * from the kernel tables.
44a0873d 8267 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
8268 *
8269 * Callers must hold the rtnl semaphore. You may want
8270 * unregister_netdev() instead of this.
8271 */
8272
44a0873d 8273void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 8274{
a6620712
HX
8275 ASSERT_RTNL();
8276
44a0873d 8277 if (head) {
9fdce099 8278 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
8279 } else {
8280 rollback_registered(dev);
8281 /* Finish processing unregister after unlock */
8282 net_set_todo(dev);
8283 }
1da177e4 8284}
44a0873d 8285EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 8286
9b5e383c
ED
8287/**
8288 * unregister_netdevice_many - unregister many devices
8289 * @head: list of devices
87757a91
ED
8290 *
8291 * Note: As most callers use a stack allocated list_head,
8292 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
8293 */
8294void unregister_netdevice_many(struct list_head *head)
8295{
8296 struct net_device *dev;
8297
8298 if (!list_empty(head)) {
8299 rollback_registered_many(head);
8300 list_for_each_entry(dev, head, unreg_list)
8301 net_set_todo(dev);
87757a91 8302 list_del(head);
9b5e383c
ED
8303 }
8304}
63c8099d 8305EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 8306
1da177e4
LT
8307/**
8308 * unregister_netdev - remove device from the kernel
8309 * @dev: device
8310 *
8311 * This function shuts down a device interface and removes it
d59b54b1 8312 * from the kernel tables.
1da177e4
LT
8313 *
8314 * This is just a wrapper for unregister_netdevice that takes
8315 * the rtnl semaphore. In general you want to use this and not
8316 * unregister_netdevice.
8317 */
8318void unregister_netdev(struct net_device *dev)
8319{
8320 rtnl_lock();
8321 unregister_netdevice(dev);
8322 rtnl_unlock();
8323}
1da177e4
LT
8324EXPORT_SYMBOL(unregister_netdev);
8325
ce286d32
EB
8326/**
8327 * dev_change_net_namespace - move device to different nethost namespace
8328 * @dev: device
8329 * @net: network namespace
8330 * @pat: If not NULL name pattern to try if the current device name
8331 * is already taken in the destination network namespace.
8332 *
8333 * This function shuts down a device interface and moves it
8334 * to a new network namespace. On success 0 is returned, on
8335 * a failure a netagive errno code is returned.
8336 *
8337 * Callers must hold the rtnl semaphore.
8338 */
8339
8340int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8341{
6621dd29 8342 int err, new_nsid;
ce286d32
EB
8343
8344 ASSERT_RTNL();
8345
8346 /* Don't allow namespace local devices to be moved. */
8347 err = -EINVAL;
8348 if (dev->features & NETIF_F_NETNS_LOCAL)
8349 goto out;
8350
8351 /* Ensure the device has been registrered */
ce286d32
EB
8352 if (dev->reg_state != NETREG_REGISTERED)
8353 goto out;
8354
8355 /* Get out if there is nothing todo */
8356 err = 0;
878628fb 8357 if (net_eq(dev_net(dev), net))
ce286d32
EB
8358 goto out;
8359
8360 /* Pick the destination device name, and ensure
8361 * we can use it in the destination network namespace.
8362 */
8363 err = -EEXIST;
d9031024 8364 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
8365 /* We get here if we can't use the current device name */
8366 if (!pat)
8367 goto out;
828de4f6 8368 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
8369 goto out;
8370 }
8371
8372 /*
8373 * And now a mini version of register_netdevice unregister_netdevice.
8374 */
8375
8376 /* If device is running close it first. */
9b772652 8377 dev_close(dev);
ce286d32
EB
8378
8379 /* And unlink it from device chain */
8380 err = -ENODEV;
8381 unlist_netdevice(dev);
8382
8383 synchronize_net();
8384
8385 /* Shutdown queueing discipline. */
8386 dev_shutdown(dev);
8387
8388 /* Notify protocols, that we are about to destroy
eb13da1a 8389 * this device. They should clean all the things.
8390 *
8391 * Note that dev->reg_state stays at NETREG_REGISTERED.
8392 * This is wanted because this way 8021q and macvlan know
8393 * the device is just moving and can keep their slaves up.
8394 */
ce286d32 8395 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
8396 rcu_barrier();
8397 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6621dd29
ND
8398 if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8399 new_nsid = peernet2id_alloc(dev_net(dev), net);
8400 else
8401 new_nsid = peernet2id(dev_net(dev), net);
8402 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
ce286d32
EB
8403
8404 /*
8405 * Flush the unicast and multicast chains
8406 */
a748ee24 8407 dev_uc_flush(dev);
22bedad3 8408 dev_mc_flush(dev);
ce286d32 8409
4e66ae2e
SH
8410 /* Send a netdev-removed uevent to the old namespace */
8411 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 8412 netdev_adjacent_del_links(dev);
4e66ae2e 8413
ce286d32 8414 /* Actually switch the network namespace */
c346dca1 8415 dev_net_set(dev, net);
ce286d32 8416
ce286d32 8417 /* If there is an ifindex conflict assign a new one */
7a66bbc9 8418 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 8419 dev->ifindex = dev_new_index(net);
ce286d32 8420
4e66ae2e
SH
8421 /* Send a netdev-add uevent to the new namespace */
8422 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 8423 netdev_adjacent_add_links(dev);
4e66ae2e 8424
8b41d188 8425 /* Fixup kobjects */
a1b3f594 8426 err = device_rename(&dev->dev, dev->name);
8b41d188 8427 WARN_ON(err);
ce286d32
EB
8428
8429 /* Add the device back in the hashes */
8430 list_netdevice(dev);
8431
8432 /* Notify protocols, that a new device appeared. */
8433 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8434
d90a909e
EB
8435 /*
8436 * Prevent userspace races by waiting until the network
8437 * device is fully setup before sending notifications.
8438 */
7f294054 8439 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 8440
ce286d32
EB
8441 synchronize_net();
8442 err = 0;
8443out:
8444 return err;
8445}
463d0183 8446EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 8447
f0bf90de 8448static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
8449{
8450 struct sk_buff **list_skb;
1da177e4 8451 struct sk_buff *skb;
f0bf90de 8452 unsigned int cpu;
97d8b6e3 8453 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 8454
1da177e4
LT
8455 local_irq_disable();
8456 cpu = smp_processor_id();
8457 sd = &per_cpu(softnet_data, cpu);
8458 oldsd = &per_cpu(softnet_data, oldcpu);
8459
8460 /* Find end of our completion_queue. */
8461 list_skb = &sd->completion_queue;
8462 while (*list_skb)
8463 list_skb = &(*list_skb)->next;
8464 /* Append completion queue from offline CPU. */
8465 *list_skb = oldsd->completion_queue;
8466 oldsd->completion_queue = NULL;
8467
1da177e4 8468 /* Append output queue from offline CPU. */
a9cbd588
CG
8469 if (oldsd->output_queue) {
8470 *sd->output_queue_tailp = oldsd->output_queue;
8471 sd->output_queue_tailp = oldsd->output_queue_tailp;
8472 oldsd->output_queue = NULL;
8473 oldsd->output_queue_tailp = &oldsd->output_queue;
8474 }
ac64da0b
ED
8475 /* Append NAPI poll list from offline CPU, with one exception :
8476 * process_backlog() must be called by cpu owning percpu backlog.
8477 * We properly handle process_queue & input_pkt_queue later.
8478 */
8479 while (!list_empty(&oldsd->poll_list)) {
8480 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8481 struct napi_struct,
8482 poll_list);
8483
8484 list_del_init(&napi->poll_list);
8485 if (napi->poll == process_backlog)
8486 napi->state = 0;
8487 else
8488 ____napi_schedule(sd, napi);
264524d5 8489 }
1da177e4
LT
8490
8491 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8492 local_irq_enable();
8493
773fc8f6 8494#ifdef CONFIG_RPS
8495 remsd = oldsd->rps_ipi_list;
8496 oldsd->rps_ipi_list = NULL;
8497#endif
8498 /* send out pending IPI's on offline CPU */
8499 net_rps_send_ipi(remsd);
8500
1da177e4 8501 /* Process offline CPU's input_pkt_queue */
76cc8b13 8502 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8503 netif_rx_ni(skb);
76cc8b13 8504 input_queue_head_incr(oldsd);
fec5e652 8505 }
ac64da0b 8506 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8507 netif_rx_ni(skb);
76cc8b13
TH
8508 input_queue_head_incr(oldsd);
8509 }
1da177e4 8510
f0bf90de 8511 return 0;
1da177e4 8512}
1da177e4 8513
7f353bf2 8514/**
b63365a2
HX
8515 * netdev_increment_features - increment feature set by one
8516 * @all: current feature set
8517 * @one: new feature set
8518 * @mask: mask feature set
7f353bf2
HX
8519 *
8520 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8521 * @one to the master device with current feature set @all. Will not
8522 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8523 */
c8f44aff
MM
8524netdev_features_t netdev_increment_features(netdev_features_t all,
8525 netdev_features_t one, netdev_features_t mask)
b63365a2 8526{
c8cd0989 8527 if (mask & NETIF_F_HW_CSUM)
a188222b 8528 mask |= NETIF_F_CSUM_MASK;
1742f183 8529 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8530
a188222b 8531 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8532 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8533
1742f183 8534 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8535 if (all & NETIF_F_HW_CSUM)
8536 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8537
8538 return all;
8539}
b63365a2 8540EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8541
430f03cd 8542static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8543{
8544 int i;
8545 struct hlist_head *hash;
8546
8547 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8548 if (hash != NULL)
8549 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8550 INIT_HLIST_HEAD(&hash[i]);
8551
8552 return hash;
8553}
8554
881d966b 8555/* Initialize per network namespace state */
4665079c 8556static int __net_init netdev_init(struct net *net)
881d966b 8557{
734b6541
RM
8558 if (net != &init_net)
8559 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8560
30d97d35
PE
8561 net->dev_name_head = netdev_create_hash();
8562 if (net->dev_name_head == NULL)
8563 goto err_name;
881d966b 8564
30d97d35
PE
8565 net->dev_index_head = netdev_create_hash();
8566 if (net->dev_index_head == NULL)
8567 goto err_idx;
881d966b
EB
8568
8569 return 0;
30d97d35
PE
8570
8571err_idx:
8572 kfree(net->dev_name_head);
8573err_name:
8574 return -ENOMEM;
881d966b
EB
8575}
8576
f0db275a
SH
8577/**
8578 * netdev_drivername - network driver for the device
8579 * @dev: network device
f0db275a
SH
8580 *
8581 * Determine network driver for device.
8582 */
3019de12 8583const char *netdev_drivername(const struct net_device *dev)
6579e57b 8584{
cf04a4c7
SH
8585 const struct device_driver *driver;
8586 const struct device *parent;
3019de12 8587 const char *empty = "";
6579e57b
AV
8588
8589 parent = dev->dev.parent;
6579e57b 8590 if (!parent)
3019de12 8591 return empty;
6579e57b
AV
8592
8593 driver = parent->driver;
8594 if (driver && driver->name)
3019de12
DM
8595 return driver->name;
8596 return empty;
6579e57b
AV
8597}
8598
6ea754eb
JP
8599static void __netdev_printk(const char *level, const struct net_device *dev,
8600 struct va_format *vaf)
256df2f3 8601{
b004ff49 8602 if (dev && dev->dev.parent) {
6ea754eb
JP
8603 dev_printk_emit(level[1] - '0',
8604 dev->dev.parent,
8605 "%s %s %s%s: %pV",
8606 dev_driver_string(dev->dev.parent),
8607 dev_name(dev->dev.parent),
8608 netdev_name(dev), netdev_reg_state(dev),
8609 vaf);
b004ff49 8610 } else if (dev) {
6ea754eb
JP
8611 printk("%s%s%s: %pV",
8612 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8613 } else {
6ea754eb 8614 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8615 }
256df2f3
JP
8616}
8617
6ea754eb
JP
8618void netdev_printk(const char *level, const struct net_device *dev,
8619 const char *format, ...)
256df2f3
JP
8620{
8621 struct va_format vaf;
8622 va_list args;
256df2f3
JP
8623
8624 va_start(args, format);
8625
8626 vaf.fmt = format;
8627 vaf.va = &args;
8628
6ea754eb 8629 __netdev_printk(level, dev, &vaf);
b004ff49 8630
256df2f3 8631 va_end(args);
256df2f3
JP
8632}
8633EXPORT_SYMBOL(netdev_printk);
8634
8635#define define_netdev_printk_level(func, level) \
6ea754eb 8636void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8637{ \
256df2f3
JP
8638 struct va_format vaf; \
8639 va_list args; \
8640 \
8641 va_start(args, fmt); \
8642 \
8643 vaf.fmt = fmt; \
8644 vaf.va = &args; \
8645 \
6ea754eb 8646 __netdev_printk(level, dev, &vaf); \
b004ff49 8647 \
256df2f3 8648 va_end(args); \
256df2f3
JP
8649} \
8650EXPORT_SYMBOL(func);
8651
8652define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8653define_netdev_printk_level(netdev_alert, KERN_ALERT);
8654define_netdev_printk_level(netdev_crit, KERN_CRIT);
8655define_netdev_printk_level(netdev_err, KERN_ERR);
8656define_netdev_printk_level(netdev_warn, KERN_WARNING);
8657define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8658define_netdev_printk_level(netdev_info, KERN_INFO);
8659
4665079c 8660static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8661{
8662 kfree(net->dev_name_head);
8663 kfree(net->dev_index_head);
ee21b18b
VA
8664 if (net != &init_net)
8665 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
8666}
8667
022cbae6 8668static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8669 .init = netdev_init,
8670 .exit = netdev_exit,
8671};
8672
4665079c 8673static void __net_exit default_device_exit(struct net *net)
ce286d32 8674{
e008b5fc 8675 struct net_device *dev, *aux;
ce286d32 8676 /*
e008b5fc 8677 * Push all migratable network devices back to the
ce286d32
EB
8678 * initial network namespace
8679 */
8680 rtnl_lock();
e008b5fc 8681 for_each_netdev_safe(net, dev, aux) {
ce286d32 8682 int err;
aca51397 8683 char fb_name[IFNAMSIZ];
ce286d32
EB
8684
8685 /* Ignore unmoveable devices (i.e. loopback) */
8686 if (dev->features & NETIF_F_NETNS_LOCAL)
8687 continue;
8688
e008b5fc
EB
8689 /* Leave virtual devices for the generic cleanup */
8690 if (dev->rtnl_link_ops)
8691 continue;
d0c082ce 8692
25985edc 8693 /* Push remaining network devices to init_net */
aca51397
PE
8694 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8695 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8696 if (err) {
7b6cd1ce
JP
8697 pr_emerg("%s: failed to move %s to init_net: %d\n",
8698 __func__, dev->name, err);
aca51397 8699 BUG();
ce286d32
EB
8700 }
8701 }
8702 rtnl_unlock();
8703}
8704
50624c93
EB
8705static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8706{
8707 /* Return with the rtnl_lock held when there are no network
8708 * devices unregistering in any network namespace in net_list.
8709 */
8710 struct net *net;
8711 bool unregistering;
ff960a73 8712 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8713
ff960a73 8714 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8715 for (;;) {
50624c93
EB
8716 unregistering = false;
8717 rtnl_lock();
8718 list_for_each_entry(net, net_list, exit_list) {
8719 if (net->dev_unreg_count > 0) {
8720 unregistering = true;
8721 break;
8722 }
8723 }
8724 if (!unregistering)
8725 break;
8726 __rtnl_unlock();
ff960a73
PZ
8727
8728 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8729 }
ff960a73 8730 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8731}
8732
04dc7f6b
EB
8733static void __net_exit default_device_exit_batch(struct list_head *net_list)
8734{
8735 /* At exit all network devices most be removed from a network
b595076a 8736 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8737 * Do this across as many network namespaces as possible to
8738 * improve batching efficiency.
8739 */
8740 struct net_device *dev;
8741 struct net *net;
8742 LIST_HEAD(dev_kill_list);
8743
50624c93
EB
8744 /* To prevent network device cleanup code from dereferencing
8745 * loopback devices or network devices that have been freed
8746 * wait here for all pending unregistrations to complete,
8747 * before unregistring the loopback device and allowing the
8748 * network namespace be freed.
8749 *
8750 * The netdev todo list containing all network devices
8751 * unregistrations that happen in default_device_exit_batch
8752 * will run in the rtnl_unlock() at the end of
8753 * default_device_exit_batch.
8754 */
8755 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8756 list_for_each_entry(net, net_list, exit_list) {
8757 for_each_netdev_reverse(net, dev) {
b0ab2fab 8758 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8759 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8760 else
8761 unregister_netdevice_queue(dev, &dev_kill_list);
8762 }
8763 }
8764 unregister_netdevice_many(&dev_kill_list);
8765 rtnl_unlock();
8766}
8767
022cbae6 8768static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8769 .exit = default_device_exit,
04dc7f6b 8770 .exit_batch = default_device_exit_batch,
ce286d32
EB
8771};
8772
1da177e4
LT
8773/*
8774 * Initialize the DEV module. At boot time this walks the device list and
8775 * unhooks any devices that fail to initialise (normally hardware not
8776 * present) and leaves us with a valid list of present and active devices.
8777 *
8778 */
8779
8780/*
8781 * This is called single threaded during boot, so no need
8782 * to take the rtnl semaphore.
8783 */
8784static int __init net_dev_init(void)
8785{
8786 int i, rc = -ENOMEM;
8787
8788 BUG_ON(!dev_boot_phase);
8789
1da177e4
LT
8790 if (dev_proc_init())
8791 goto out;
8792
8b41d188 8793 if (netdev_kobject_init())
1da177e4
LT
8794 goto out;
8795
8796 INIT_LIST_HEAD(&ptype_all);
82d8a867 8797 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8798 INIT_LIST_HEAD(&ptype_base[i]);
8799
62532da9
VY
8800 INIT_LIST_HEAD(&offload_base);
8801
881d966b
EB
8802 if (register_pernet_subsys(&netdev_net_ops))
8803 goto out;
1da177e4
LT
8804
8805 /*
8806 * Initialise the packet receive queues.
8807 */
8808
6f912042 8809 for_each_possible_cpu(i) {
41852497 8810 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8811 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8812
41852497
ED
8813 INIT_WORK(flush, flush_backlog);
8814
e36fa2f7 8815 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8816 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8817 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8818 sd->output_queue_tailp = &sd->output_queue;
df334545 8819#ifdef CONFIG_RPS
e36fa2f7
ED
8820 sd->csd.func = rps_trigger_softirq;
8821 sd->csd.info = sd;
e36fa2f7 8822 sd->cpu = i;
1e94d72f 8823#endif
0a9627f2 8824
e36fa2f7
ED
8825 sd->backlog.poll = process_backlog;
8826 sd->backlog.weight = weight_p;
1da177e4
LT
8827 }
8828
1da177e4
LT
8829 dev_boot_phase = 0;
8830
505d4f73
EB
8831 /* The loopback device is special if any other network devices
8832 * is present in a network namespace the loopback device must
8833 * be present. Since we now dynamically allocate and free the
8834 * loopback device ensure this invariant is maintained by
8835 * keeping the loopback device as the first device on the
8836 * list of network devices. Ensuring the loopback devices
8837 * is the first device that appears and the last network device
8838 * that disappears.
8839 */
8840 if (register_pernet_device(&loopback_net_ops))
8841 goto out;
8842
8843 if (register_pernet_device(&default_device_ops))
8844 goto out;
8845
962cf36c
CM
8846 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8847 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8848
f0bf90de
SAS
8849 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8850 NULL, dev_cpu_dead);
8851 WARN_ON(rc < 0);
1da177e4
LT
8852 rc = 0;
8853out:
8854 return rc;
8855}
8856
8857subsys_initcall(net_dev_init);