]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - net/core/dev.c
net: sched: Introduce ingress classification function
[mirror_ubuntu-jammy-kernel.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
1da177e4
LT
82#include <linux/string.h>
83#include <linux/mm.h>
84#include <linux/socket.h>
85#include <linux/sockios.h>
86#include <linux/errno.h>
87#include <linux/interrupt.h>
88#include <linux/if_ether.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
0187bdfb 91#include <linux/ethtool.h>
1da177e4 92#include <linux/skbuff.h>
a7862b45 93#include <linux/bpf.h>
b5cdae32 94#include <linux/bpf_trace.h>
457c4cbc 95#include <net/net_namespace.h>
1da177e4 96#include <net/sock.h>
02d62e86 97#include <net/busy_poll.h>
1da177e4 98#include <linux/rtnetlink.h>
1da177e4 99#include <linux/stat.h>
1da177e4 100#include <net/dst.h>
fc4099f1 101#include <net/dst_metadata.h>
1da177e4 102#include <net/pkt_sched.h>
87d83093 103#include <net/pkt_cls.h>
1da177e4 104#include <net/checksum.h>
44540960 105#include <net/xfrm.h>
1da177e4
LT
106#include <linux/highmem.h>
107#include <linux/init.h>
1da177e4 108#include <linux/module.h>
1da177e4
LT
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
1da177e4 112#include <net/iw_handler.h>
1da177e4 113#include <asm/current.h>
5bdb9886 114#include <linux/audit.h>
db217334 115#include <linux/dmaengine.h>
f6a78bfc 116#include <linux/err.h>
c7fa9d18 117#include <linux/ctype.h>
723e98b7 118#include <linux/if_arp.h>
6de329e2 119#include <linux/if_vlan.h>
8f0f2223 120#include <linux/ip.h>
ad55dcaf 121#include <net/ip.h>
25cd9ba0 122#include <net/mpls.h>
8f0f2223
DM
123#include <linux/ipv6.h>
124#include <linux/in.h>
b6b2fed1
DM
125#include <linux/jhash.h>
126#include <linux/random.h>
9cbc1cb8 127#include <trace/events/napi.h>
cf66ba58 128#include <trace/events/net.h>
07dc22e7 129#include <trace/events/skb.h>
caeda9b9 130#include <linux/inetdevice.h>
c445477d 131#include <linux/cpu_rmap.h>
c5905afb 132#include <linux/static_key.h>
af12fa6e 133#include <linux/hashtable.h>
60877a32 134#include <linux/vmalloc.h>
529d0489 135#include <linux/if_macvlan.h>
e7fd2885 136#include <linux/errqueue.h>
3b47d303 137#include <linux/hrtimer.h>
e687ad60 138#include <linux/netfilter_ingress.h>
40e4e713 139#include <linux/crash_dump.h>
b72b5bf6 140#include <linux/sctp.h>
ae847f40 141#include <net/udp_tunnel.h>
6621dd29 142#include <linux/net_namespace.h>
aaa5d90b 143#include <linux/indirect_call_wrapper.h>
af3836df 144#include <net/devlink.h>
1da177e4 145
342709ef
PE
146#include "net-sysfs.h"
147
d565b0a1 148#define MAX_GRO_SKBS 8
5343da4c 149#define MAX_NEST_DEV 8
d565b0a1 150
5d38a079
HX
151/* This should be increased if a protocol with a bigger head is added. */
152#define GRO_MAX_HEAD (MAX_HEADER + 128)
153
1da177e4 154static DEFINE_SPINLOCK(ptype_lock);
62532da9 155static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
156struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157struct list_head ptype_all __read_mostly; /* Taps */
62532da9 158static struct list_head offload_base __read_mostly;
1da177e4 159
ae78dbfa 160static int netif_rx_internal(struct sk_buff *skb);
54951194 161static int call_netdevice_notifiers_info(unsigned long val,
54951194 162 struct netdev_notifier_info *info);
26372605
PM
163static int call_netdevice_notifiers_extack(unsigned long val,
164 struct net_device *dev,
165 struct netlink_ext_ack *extack);
90b602f8 166static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 167
1da177e4 168/*
7562f876 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
170 * semaphore.
171 *
c6d14c84 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
173 *
174 * Writers must hold the rtnl semaphore while they loop through the
7562f876 175 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
178 *
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
182 *
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
185 * semaphore held.
186 */
1da177e4 187DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
188EXPORT_SYMBOL(dev_base_lock);
189
6c557001
FW
190static DEFINE_MUTEX(ifalias_mutex);
191
af12fa6e
ET
192/* protects napi_hash addition/deletion and napi_gen_id */
193static DEFINE_SPINLOCK(napi_hash_lock);
194
52bd2d62 195static unsigned int napi_gen_id = NR_CPUS;
6180d9de 196static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 197
18afa4b0 198static seqcount_t devnet_rename_seq;
c91f6df2 199
4e985ada
TG
200static inline void dev_base_seq_inc(struct net *net)
201{
643aa9cb 202 while (++net->dev_base_seq == 0)
203 ;
4e985ada
TG
204}
205
881d966b 206static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 207{
8387ff25 208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 209
08e9897d 210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
211}
212
881d966b 213static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 214{
7c28bd0b 215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
216}
217
e36fa2f7 218static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
219{
220#ifdef CONFIG_RPS
e36fa2f7 221 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
222#endif
223}
224
e36fa2f7 225static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
226{
227#ifdef CONFIG_RPS
e36fa2f7 228 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
229#endif
230}
231
ff927412
JP
232static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
233 const char *name)
234{
235 struct netdev_name_node *name_node;
236
237 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
238 if (!name_node)
239 return NULL;
240 INIT_HLIST_NODE(&name_node->hlist);
241 name_node->dev = dev;
242 name_node->name = name;
243 return name_node;
244}
245
246static struct netdev_name_node *
247netdev_name_node_head_alloc(struct net_device *dev)
248{
36fbf1e5
JP
249 struct netdev_name_node *name_node;
250
251 name_node = netdev_name_node_alloc(dev, dev->name);
252 if (!name_node)
253 return NULL;
254 INIT_LIST_HEAD(&name_node->list);
255 return name_node;
ff927412
JP
256}
257
258static void netdev_name_node_free(struct netdev_name_node *name_node)
259{
260 kfree(name_node);
261}
262
263static void netdev_name_node_add(struct net *net,
264 struct netdev_name_node *name_node)
265{
266 hlist_add_head_rcu(&name_node->hlist,
267 dev_name_hash(net, name_node->name));
268}
269
270static void netdev_name_node_del(struct netdev_name_node *name_node)
271{
272 hlist_del_rcu(&name_node->hlist);
273}
274
275static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
276 const char *name)
277{
278 struct hlist_head *head = dev_name_hash(net, name);
279 struct netdev_name_node *name_node;
280
281 hlist_for_each_entry(name_node, head, hlist)
282 if (!strcmp(name_node->name, name))
283 return name_node;
284 return NULL;
285}
286
287static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
288 const char *name)
289{
290 struct hlist_head *head = dev_name_hash(net, name);
291 struct netdev_name_node *name_node;
292
293 hlist_for_each_entry_rcu(name_node, head, hlist)
294 if (!strcmp(name_node->name, name))
295 return name_node;
296 return NULL;
297}
298
36fbf1e5
JP
299int netdev_name_node_alt_create(struct net_device *dev, const char *name)
300{
301 struct netdev_name_node *name_node;
302 struct net *net = dev_net(dev);
303
304 name_node = netdev_name_node_lookup(net, name);
305 if (name_node)
306 return -EEXIST;
307 name_node = netdev_name_node_alloc(dev, name);
308 if (!name_node)
309 return -ENOMEM;
310 netdev_name_node_add(net, name_node);
311 /* The node that holds dev->name acts as a head of per-device list. */
312 list_add_tail(&name_node->list, &dev->name_node->list);
313
314 return 0;
315}
316EXPORT_SYMBOL(netdev_name_node_alt_create);
317
318static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
319{
320 list_del(&name_node->list);
321 netdev_name_node_del(name_node);
322 kfree(name_node->name);
323 netdev_name_node_free(name_node);
324}
325
326int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
327{
328 struct netdev_name_node *name_node;
329 struct net *net = dev_net(dev);
330
331 name_node = netdev_name_node_lookup(net, name);
332 if (!name_node)
333 return -ENOENT;
334 __netdev_name_node_alt_destroy(name_node);
335
336 return 0;
337}
338EXPORT_SYMBOL(netdev_name_node_alt_destroy);
339
340static void netdev_name_node_alt_flush(struct net_device *dev)
341{
342 struct netdev_name_node *name_node, *tmp;
343
344 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
345 __netdev_name_node_alt_destroy(name_node);
346}
347
ce286d32 348/* Device list insertion */
53759be9 349static void list_netdevice(struct net_device *dev)
ce286d32 350{
c346dca1 351 struct net *net = dev_net(dev);
ce286d32
EB
352
353 ASSERT_RTNL();
354
355 write_lock_bh(&dev_base_lock);
c6d14c84 356 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 357 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
358 hlist_add_head_rcu(&dev->index_hlist,
359 dev_index_hash(net, dev->ifindex));
ce286d32 360 write_unlock_bh(&dev_base_lock);
4e985ada
TG
361
362 dev_base_seq_inc(net);
ce286d32
EB
363}
364
fb699dfd
ED
365/* Device list removal
366 * caller must respect a RCU grace period before freeing/reusing dev
367 */
ce286d32
EB
368static void unlist_netdevice(struct net_device *dev)
369{
370 ASSERT_RTNL();
371
372 /* Unlink dev from the device chain */
373 write_lock_bh(&dev_base_lock);
c6d14c84 374 list_del_rcu(&dev->dev_list);
ff927412 375 netdev_name_node_del(dev->name_node);
fb699dfd 376 hlist_del_rcu(&dev->index_hlist);
ce286d32 377 write_unlock_bh(&dev_base_lock);
4e985ada
TG
378
379 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
380}
381
1da177e4
LT
382/*
383 * Our notifier list
384 */
385
f07d5b94 386static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
387
388/*
389 * Device drivers call our routines to queue packets here. We empty the
390 * queue in the local softnet handler.
391 */
bea3348e 392
9958da05 393DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 394EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 395
1da177e4 396/*******************************************************************************
eb13da1a 397 *
398 * Protocol management and registration routines
399 *
400 *******************************************************************************/
1da177e4 401
1da177e4 402
1da177e4
LT
403/*
404 * Add a protocol ID to the list. Now that the input handler is
405 * smarter we can dispense with all the messy stuff that used to be
406 * here.
407 *
408 * BEWARE!!! Protocol handlers, mangling input packets,
409 * MUST BE last in hash buckets and checking protocol handlers
410 * MUST start from promiscuous ptype_all chain in net_bh.
411 * It is true now, do not change it.
412 * Explanation follows: if protocol handler, mangling packet, will
413 * be the first on list, it is not able to sense, that packet
414 * is cloned and should be copied-on-write, so that it will
415 * change it and subsequent readers will get broken packet.
416 * --ANK (980803)
417 */
418
c07b68e8
ED
419static inline struct list_head *ptype_head(const struct packet_type *pt)
420{
421 if (pt->type == htons(ETH_P_ALL))
7866a621 422 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 423 else
7866a621
SN
424 return pt->dev ? &pt->dev->ptype_specific :
425 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
426}
427
1da177e4
LT
428/**
429 * dev_add_pack - add packet handler
430 * @pt: packet type declaration
431 *
432 * Add a protocol handler to the networking stack. The passed &packet_type
433 * is linked into kernel lists and may not be freed until it has been
434 * removed from the kernel lists.
435 *
4ec93edb 436 * This call does not sleep therefore it can not
1da177e4
LT
437 * guarantee all CPU's that are in middle of receiving packets
438 * will see the new packet type (until the next received packet).
439 */
440
441void dev_add_pack(struct packet_type *pt)
442{
c07b68e8 443 struct list_head *head = ptype_head(pt);
1da177e4 444
c07b68e8
ED
445 spin_lock(&ptype_lock);
446 list_add_rcu(&pt->list, head);
447 spin_unlock(&ptype_lock);
1da177e4 448}
d1b19dff 449EXPORT_SYMBOL(dev_add_pack);
1da177e4 450
1da177e4
LT
451/**
452 * __dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
4ec93edb 458 * returns.
1da177e4
LT
459 *
460 * The packet type might still be in use by receivers
461 * and must not be freed until after all the CPU's have gone
462 * through a quiescent state.
463 */
464void __dev_remove_pack(struct packet_type *pt)
465{
c07b68e8 466 struct list_head *head = ptype_head(pt);
1da177e4
LT
467 struct packet_type *pt1;
468
c07b68e8 469 spin_lock(&ptype_lock);
1da177e4
LT
470
471 list_for_each_entry(pt1, head, list) {
472 if (pt == pt1) {
473 list_del_rcu(&pt->list);
474 goto out;
475 }
476 }
477
7b6cd1ce 478 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 479out:
c07b68e8 480 spin_unlock(&ptype_lock);
1da177e4 481}
d1b19dff
ED
482EXPORT_SYMBOL(__dev_remove_pack);
483
1da177e4
LT
484/**
485 * dev_remove_pack - remove packet handler
486 * @pt: packet type declaration
487 *
488 * Remove a protocol handler that was previously added to the kernel
489 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
490 * from the kernel lists and can be freed or reused once this function
491 * returns.
492 *
493 * This call sleeps to guarantee that no CPU is looking at the packet
494 * type after return.
495 */
496void dev_remove_pack(struct packet_type *pt)
497{
498 __dev_remove_pack(pt);
4ec93edb 499
1da177e4
LT
500 synchronize_net();
501}
d1b19dff 502EXPORT_SYMBOL(dev_remove_pack);
1da177e4 503
62532da9
VY
504
505/**
506 * dev_add_offload - register offload handlers
507 * @po: protocol offload declaration
508 *
509 * Add protocol offload handlers to the networking stack. The passed
510 * &proto_offload is linked into kernel lists and may not be freed until
511 * it has been removed from the kernel lists.
512 *
513 * This call does not sleep therefore it can not
514 * guarantee all CPU's that are in middle of receiving packets
515 * will see the new offload handlers (until the next received packet).
516 */
517void dev_add_offload(struct packet_offload *po)
518{
bdef7de4 519 struct packet_offload *elem;
62532da9
VY
520
521 spin_lock(&offload_lock);
bdef7de4
DM
522 list_for_each_entry(elem, &offload_base, list) {
523 if (po->priority < elem->priority)
524 break;
525 }
526 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
527 spin_unlock(&offload_lock);
528}
529EXPORT_SYMBOL(dev_add_offload);
530
531/**
532 * __dev_remove_offload - remove offload handler
533 * @po: packet offload declaration
534 *
535 * Remove a protocol offload handler that was previously added to the
536 * kernel offload handlers by dev_add_offload(). The passed &offload_type
537 * is removed from the kernel lists and can be freed or reused once this
538 * function returns.
539 *
540 * The packet type might still be in use by receivers
541 * and must not be freed until after all the CPU's have gone
542 * through a quiescent state.
543 */
1d143d9f 544static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
545{
546 struct list_head *head = &offload_base;
547 struct packet_offload *po1;
548
c53aa505 549 spin_lock(&offload_lock);
62532da9
VY
550
551 list_for_each_entry(po1, head, list) {
552 if (po == po1) {
553 list_del_rcu(&po->list);
554 goto out;
555 }
556 }
557
558 pr_warn("dev_remove_offload: %p not found\n", po);
559out:
c53aa505 560 spin_unlock(&offload_lock);
62532da9 561}
62532da9
VY
562
563/**
564 * dev_remove_offload - remove packet offload handler
565 * @po: packet offload declaration
566 *
567 * Remove a packet offload handler that was previously added to the kernel
568 * offload handlers by dev_add_offload(). The passed &offload_type is
569 * removed from the kernel lists and can be freed or reused once this
570 * function returns.
571 *
572 * This call sleeps to guarantee that no CPU is looking at the packet
573 * type after return.
574 */
575void dev_remove_offload(struct packet_offload *po)
576{
577 __dev_remove_offload(po);
578
579 synchronize_net();
580}
581EXPORT_SYMBOL(dev_remove_offload);
582
1da177e4 583/******************************************************************************
eb13da1a 584 *
585 * Device Boot-time Settings Routines
586 *
587 ******************************************************************************/
1da177e4
LT
588
589/* Boot time configuration table */
590static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
591
592/**
593 * netdev_boot_setup_add - add new setup entry
594 * @name: name of the device
595 * @map: configured settings for the device
596 *
597 * Adds new setup entry to the dev_boot_setup list. The function
598 * returns 0 on error and 1 on success. This is a generic routine to
599 * all netdevices.
600 */
601static int netdev_boot_setup_add(char *name, struct ifmap *map)
602{
603 struct netdev_boot_setup *s;
604 int i;
605
606 s = dev_boot_setup;
607 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
608 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
609 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 610 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
611 memcpy(&s[i].map, map, sizeof(s[i].map));
612 break;
613 }
614 }
615
616 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
617}
618
619/**
722c9a0c 620 * netdev_boot_setup_check - check boot time settings
621 * @dev: the netdevice
1da177e4 622 *
722c9a0c 623 * Check boot time settings for the device.
624 * The found settings are set for the device to be used
625 * later in the device probing.
626 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
627 */
628int netdev_boot_setup_check(struct net_device *dev)
629{
630 struct netdev_boot_setup *s = dev_boot_setup;
631 int i;
632
633 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
634 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 635 !strcmp(dev->name, s[i].name)) {
722c9a0c 636 dev->irq = s[i].map.irq;
637 dev->base_addr = s[i].map.base_addr;
638 dev->mem_start = s[i].map.mem_start;
639 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
640 return 1;
641 }
642 }
643 return 0;
644}
d1b19dff 645EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
646
647
648/**
722c9a0c 649 * netdev_boot_base - get address from boot time settings
650 * @prefix: prefix for network device
651 * @unit: id for network device
652 *
653 * Check boot time settings for the base address of device.
654 * The found settings are set for the device to be used
655 * later in the device probing.
656 * Returns 0 if no settings found.
1da177e4
LT
657 */
658unsigned long netdev_boot_base(const char *prefix, int unit)
659{
660 const struct netdev_boot_setup *s = dev_boot_setup;
661 char name[IFNAMSIZ];
662 int i;
663
664 sprintf(name, "%s%d", prefix, unit);
665
666 /*
667 * If device already registered then return base of 1
668 * to indicate not to probe for this interface
669 */
881d966b 670 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
671 return 1;
672
673 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
674 if (!strcmp(name, s[i].name))
675 return s[i].map.base_addr;
676 return 0;
677}
678
679/*
680 * Saves at boot time configured settings for any netdevice.
681 */
682int __init netdev_boot_setup(char *str)
683{
684 int ints[5];
685 struct ifmap map;
686
687 str = get_options(str, ARRAY_SIZE(ints), ints);
688 if (!str || !*str)
689 return 0;
690
691 /* Save settings */
692 memset(&map, 0, sizeof(map));
693 if (ints[0] > 0)
694 map.irq = ints[1];
695 if (ints[0] > 1)
696 map.base_addr = ints[2];
697 if (ints[0] > 2)
698 map.mem_start = ints[3];
699 if (ints[0] > 3)
700 map.mem_end = ints[4];
701
702 /* Add new entry to the list */
703 return netdev_boot_setup_add(str, &map);
704}
705
706__setup("netdev=", netdev_boot_setup);
707
708/*******************************************************************************
eb13da1a 709 *
710 * Device Interface Subroutines
711 *
712 *******************************************************************************/
1da177e4 713
a54acb3a
ND
714/**
715 * dev_get_iflink - get 'iflink' value of a interface
716 * @dev: targeted interface
717 *
718 * Indicates the ifindex the interface is linked to.
719 * Physical interfaces have the same 'ifindex' and 'iflink' values.
720 */
721
722int dev_get_iflink(const struct net_device *dev)
723{
724 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
725 return dev->netdev_ops->ndo_get_iflink(dev);
726
7a66bbc9 727 return dev->ifindex;
a54acb3a
ND
728}
729EXPORT_SYMBOL(dev_get_iflink);
730
fc4099f1
PS
731/**
732 * dev_fill_metadata_dst - Retrieve tunnel egress information.
733 * @dev: targeted interface
734 * @skb: The packet.
735 *
736 * For better visibility of tunnel traffic OVS needs to retrieve
737 * egress tunnel information for a packet. Following API allows
738 * user to get this info.
739 */
740int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
741{
742 struct ip_tunnel_info *info;
743
744 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
745 return -EINVAL;
746
747 info = skb_tunnel_info_unclone(skb);
748 if (!info)
749 return -ENOMEM;
750 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
751 return -EINVAL;
752
753 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
754}
755EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
756
1da177e4
LT
757/**
758 * __dev_get_by_name - find a device by its name
c4ea43c5 759 * @net: the applicable net namespace
1da177e4
LT
760 * @name: name to find
761 *
762 * Find an interface by name. Must be called under RTNL semaphore
763 * or @dev_base_lock. If the name is found a pointer to the device
764 * is returned. If the name is not found then %NULL is returned. The
765 * reference counters are not incremented so the caller must be
766 * careful with locks.
767 */
768
881d966b 769struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 770{
ff927412 771 struct netdev_name_node *node_name;
1da177e4 772
ff927412
JP
773 node_name = netdev_name_node_lookup(net, name);
774 return node_name ? node_name->dev : NULL;
1da177e4 775}
d1b19dff 776EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 777
72c9528b 778/**
722c9a0c 779 * dev_get_by_name_rcu - find a device by its name
780 * @net: the applicable net namespace
781 * @name: name to find
782 *
783 * Find an interface by name.
784 * If the name is found a pointer to the device is returned.
785 * If the name is not found then %NULL is returned.
786 * The reference counters are not incremented so the caller must be
787 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
788 */
789
790struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
791{
ff927412 792 struct netdev_name_node *node_name;
72c9528b 793
ff927412
JP
794 node_name = netdev_name_node_lookup_rcu(net, name);
795 return node_name ? node_name->dev : NULL;
72c9528b
ED
796}
797EXPORT_SYMBOL(dev_get_by_name_rcu);
798
1da177e4
LT
799/**
800 * dev_get_by_name - find a device by its name
c4ea43c5 801 * @net: the applicable net namespace
1da177e4
LT
802 * @name: name to find
803 *
804 * Find an interface by name. This can be called from any
805 * context and does its own locking. The returned handle has
806 * the usage count incremented and the caller must use dev_put() to
807 * release it when it is no longer needed. %NULL is returned if no
808 * matching device is found.
809 */
810
881d966b 811struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
812{
813 struct net_device *dev;
814
72c9528b
ED
815 rcu_read_lock();
816 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
817 if (dev)
818 dev_hold(dev);
72c9528b 819 rcu_read_unlock();
1da177e4
LT
820 return dev;
821}
d1b19dff 822EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
823
824/**
825 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 826 * @net: the applicable net namespace
1da177e4
LT
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold either the RTNL semaphore
833 * or @dev_base_lock.
834 */
835
881d966b 836struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 837{
0bd8d536
ED
838 struct net_device *dev;
839 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 840
b67bfe0d 841 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
842 if (dev->ifindex == ifindex)
843 return dev;
0bd8d536 844
1da177e4
LT
845 return NULL;
846}
d1b19dff 847EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 848
fb699dfd
ED
849/**
850 * dev_get_by_index_rcu - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns %NULL if the device
855 * is not found or a pointer to the device. The device has not
856 * had its reference counter increased so the caller must be careful
857 * about locking. The caller must hold RCU lock.
858 */
859
860struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
861{
fb699dfd
ED
862 struct net_device *dev;
863 struct hlist_head *head = dev_index_hash(net, ifindex);
864
b67bfe0d 865 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
866 if (dev->ifindex == ifindex)
867 return dev;
868
869 return NULL;
870}
871EXPORT_SYMBOL(dev_get_by_index_rcu);
872
1da177e4
LT
873
874/**
875 * dev_get_by_index - find a device by its ifindex
c4ea43c5 876 * @net: the applicable net namespace
1da177e4
LT
877 * @ifindex: index of device
878 *
879 * Search for an interface by index. Returns NULL if the device
880 * is not found or a pointer to the device. The device returned has
881 * had a reference added and the pointer is safe until the user calls
882 * dev_put to indicate they have finished with it.
883 */
884
881d966b 885struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
886{
887 struct net_device *dev;
888
fb699dfd
ED
889 rcu_read_lock();
890 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
891 if (dev)
892 dev_hold(dev);
fb699dfd 893 rcu_read_unlock();
1da177e4
LT
894 return dev;
895}
d1b19dff 896EXPORT_SYMBOL(dev_get_by_index);
1da177e4 897
90b602f8
ML
898/**
899 * dev_get_by_napi_id - find a device by napi_id
900 * @napi_id: ID of the NAPI struct
901 *
902 * Search for an interface by NAPI ID. Returns %NULL if the device
903 * is not found or a pointer to the device. The device has not had
904 * its reference counter increased so the caller must be careful
905 * about locking. The caller must hold RCU lock.
906 */
907
908struct net_device *dev_get_by_napi_id(unsigned int napi_id)
909{
910 struct napi_struct *napi;
911
912 WARN_ON_ONCE(!rcu_read_lock_held());
913
914 if (napi_id < MIN_NAPI_ID)
915 return NULL;
916
917 napi = napi_by_id(napi_id);
918
919 return napi ? napi->dev : NULL;
920}
921EXPORT_SYMBOL(dev_get_by_napi_id);
922
5dbe7c17
NS
923/**
924 * netdev_get_name - get a netdevice name, knowing its ifindex.
925 * @net: network namespace
926 * @name: a pointer to the buffer where the name will be stored.
927 * @ifindex: the ifindex of the interface to get the name from.
928 *
929 * The use of raw_seqcount_begin() and cond_resched() before
930 * retrying is required as we want to give the writers a chance
2da2b32f 931 * to complete when CONFIG_PREEMPTION is not set.
5dbe7c17
NS
932 */
933int netdev_get_name(struct net *net, char *name, int ifindex)
934{
935 struct net_device *dev;
936 unsigned int seq;
937
938retry:
939 seq = raw_seqcount_begin(&devnet_rename_seq);
940 rcu_read_lock();
941 dev = dev_get_by_index_rcu(net, ifindex);
942 if (!dev) {
943 rcu_read_unlock();
944 return -ENODEV;
945 }
946
947 strcpy(name, dev->name);
948 rcu_read_unlock();
949 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
950 cond_resched();
951 goto retry;
952 }
953
954 return 0;
955}
956
1da177e4 957/**
941666c2 958 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 959 * @net: the applicable net namespace
1da177e4
LT
960 * @type: media type of device
961 * @ha: hardware address
962 *
963 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
964 * is not found or a pointer to the device.
965 * The caller must hold RCU or RTNL.
941666c2 966 * The returned device has not had its ref count increased
1da177e4
LT
967 * and the caller must therefore be careful about locking
968 *
1da177e4
LT
969 */
970
941666c2
ED
971struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 const char *ha)
1da177e4
LT
973{
974 struct net_device *dev;
975
941666c2 976 for_each_netdev_rcu(net, dev)
1da177e4
LT
977 if (dev->type == type &&
978 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
979 return dev;
980
981 return NULL;
1da177e4 982}
941666c2 983EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 984
881d966b 985struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
986{
987 struct net_device *dev;
988
4e9cac2b 989 ASSERT_RTNL();
881d966b 990 for_each_netdev(net, dev)
4e9cac2b 991 if (dev->type == type)
7562f876
PE
992 return dev;
993
994 return NULL;
4e9cac2b 995}
4e9cac2b
PM
996EXPORT_SYMBOL(__dev_getfirstbyhwtype);
997
881d966b 998struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 999{
99fe3c39 1000 struct net_device *dev, *ret = NULL;
4e9cac2b 1001
99fe3c39
ED
1002 rcu_read_lock();
1003 for_each_netdev_rcu(net, dev)
1004 if (dev->type == type) {
1005 dev_hold(dev);
1006 ret = dev;
1007 break;
1008 }
1009 rcu_read_unlock();
1010 return ret;
1da177e4 1011}
1da177e4
LT
1012EXPORT_SYMBOL(dev_getfirstbyhwtype);
1013
1014/**
6c555490 1015 * __dev_get_by_flags - find any device with given flags
c4ea43c5 1016 * @net: the applicable net namespace
1da177e4
LT
1017 * @if_flags: IFF_* values
1018 * @mask: bitmask of bits in if_flags to check
1019 *
1020 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 1021 * is not found or a pointer to the device. Must be called inside
6c555490 1022 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1023 */
1024
6c555490
WC
1025struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1026 unsigned short mask)
1da177e4 1027{
7562f876 1028 struct net_device *dev, *ret;
1da177e4 1029
6c555490
WC
1030 ASSERT_RTNL();
1031
7562f876 1032 ret = NULL;
6c555490 1033 for_each_netdev(net, dev) {
1da177e4 1034 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1035 ret = dev;
1da177e4
LT
1036 break;
1037 }
1038 }
7562f876 1039 return ret;
1da177e4 1040}
6c555490 1041EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1042
1043/**
1044 * dev_valid_name - check if name is okay for network device
1045 * @name: name string
1046 *
1047 * Network device names need to be valid file names to
c7fa9d18
DM
1048 * to allow sysfs to work. We also disallow any kind of
1049 * whitespace.
1da177e4 1050 */
95f050bf 1051bool dev_valid_name(const char *name)
1da177e4 1052{
c7fa9d18 1053 if (*name == '\0')
95f050bf 1054 return false;
a9d48205 1055 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1056 return false;
c7fa9d18 1057 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1058 return false;
c7fa9d18
DM
1059
1060 while (*name) {
a4176a93 1061 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1062 return false;
c7fa9d18
DM
1063 name++;
1064 }
95f050bf 1065 return true;
1da177e4 1066}
d1b19dff 1067EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1068
1069/**
b267b179
EB
1070 * __dev_alloc_name - allocate a name for a device
1071 * @net: network namespace to allocate the device name in
1da177e4 1072 * @name: name format string
b267b179 1073 * @buf: scratch buffer and result name string
1da177e4
LT
1074 *
1075 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1076 * id. It scans list of devices to build up a free map, then chooses
1077 * the first empty slot. The caller must hold the dev_base or rtnl lock
1078 * while allocating the name and adding the device in order to avoid
1079 * duplicates.
1080 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1081 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1082 */
1083
b267b179 1084static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1085{
1086 int i = 0;
1da177e4
LT
1087 const char *p;
1088 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1089 unsigned long *inuse;
1da177e4
LT
1090 struct net_device *d;
1091
93809105
RV
1092 if (!dev_valid_name(name))
1093 return -EINVAL;
1094
51f299dd 1095 p = strchr(name, '%');
1da177e4
LT
1096 if (p) {
1097 /*
1098 * Verify the string as this thing may have come from
1099 * the user. There must be either one "%d" and no other "%"
1100 * characters.
1101 */
1102 if (p[1] != 'd' || strchr(p + 2, '%'))
1103 return -EINVAL;
1104
1105 /* Use one page as a bit array of possible slots */
cfcabdcc 1106 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1107 if (!inuse)
1108 return -ENOMEM;
1109
881d966b 1110 for_each_netdev(net, d) {
1da177e4
LT
1111 if (!sscanf(d->name, name, &i))
1112 continue;
1113 if (i < 0 || i >= max_netdevices)
1114 continue;
1115
1116 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1117 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1118 if (!strncmp(buf, d->name, IFNAMSIZ))
1119 set_bit(i, inuse);
1120 }
1121
1122 i = find_first_zero_bit(inuse, max_netdevices);
1123 free_page((unsigned long) inuse);
1124 }
1125
6224abda 1126 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1127 if (!__dev_get_by_name(net, buf))
1da177e4 1128 return i;
1da177e4
LT
1129
1130 /* It is possible to run out of possible slots
1131 * when the name is long and there isn't enough space left
1132 * for the digits, or if all bits are used.
1133 */
029b6d14 1134 return -ENFILE;
1da177e4
LT
1135}
1136
2c88b855
RV
1137static int dev_alloc_name_ns(struct net *net,
1138 struct net_device *dev,
1139 const char *name)
1140{
1141 char buf[IFNAMSIZ];
1142 int ret;
1143
c46d7642 1144 BUG_ON(!net);
2c88b855
RV
1145 ret = __dev_alloc_name(net, name, buf);
1146 if (ret >= 0)
1147 strlcpy(dev->name, buf, IFNAMSIZ);
1148 return ret;
1da177e4
LT
1149}
1150
b267b179
EB
1151/**
1152 * dev_alloc_name - allocate a name for a device
1153 * @dev: device
1154 * @name: name format string
1155 *
1156 * Passed a format string - eg "lt%d" it will try and find a suitable
1157 * id. It scans list of devices to build up a free map, then chooses
1158 * the first empty slot. The caller must hold the dev_base or rtnl lock
1159 * while allocating the name and adding the device in order to avoid
1160 * duplicates.
1161 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1162 * Returns the number of the unit assigned or a negative errno code.
1163 */
1164
1165int dev_alloc_name(struct net_device *dev, const char *name)
1166{
c46d7642 1167 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1168}
d1b19dff 1169EXPORT_SYMBOL(dev_alloc_name);
b267b179 1170
bacb7e18
ED
1171static int dev_get_valid_name(struct net *net, struct net_device *dev,
1172 const char *name)
828de4f6 1173{
55a5ec9b
DM
1174 BUG_ON(!net);
1175
1176 if (!dev_valid_name(name))
1177 return -EINVAL;
1178
1179 if (strchr(name, '%'))
1180 return dev_alloc_name_ns(net, dev, name);
1181 else if (__dev_get_by_name(net, name))
1182 return -EEXIST;
1183 else if (dev->name != name)
1184 strlcpy(dev->name, name, IFNAMSIZ);
1185
1186 return 0;
d9031024 1187}
1da177e4
LT
1188
1189/**
1190 * dev_change_name - change name of a device
1191 * @dev: device
1192 * @newname: name (or format string) must be at least IFNAMSIZ
1193 *
1194 * Change name of a device, can pass format strings "eth%d".
1195 * for wildcarding.
1196 */
cf04a4c7 1197int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1198{
238fa362 1199 unsigned char old_assign_type;
fcc5a03a 1200 char oldname[IFNAMSIZ];
1da177e4 1201 int err = 0;
fcc5a03a 1202 int ret;
881d966b 1203 struct net *net;
1da177e4
LT
1204
1205 ASSERT_RTNL();
c346dca1 1206 BUG_ON(!dev_net(dev));
1da177e4 1207
c346dca1 1208 net = dev_net(dev);
8065a779
SWL
1209
1210 /* Some auto-enslaved devices e.g. failover slaves are
1211 * special, as userspace might rename the device after
1212 * the interface had been brought up and running since
1213 * the point kernel initiated auto-enslavement. Allow
1214 * live name change even when these slave devices are
1215 * up and running.
1216 *
1217 * Typically, users of these auto-enslaving devices
1218 * don't actually care about slave name change, as
1219 * they are supposed to operate on master interface
1220 * directly.
1221 */
1222 if (dev->flags & IFF_UP &&
1223 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1224 return -EBUSY;
1225
30e6c9fa 1226 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1227
1228 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1229 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1230 return 0;
c91f6df2 1231 }
c8d90dca 1232
fcc5a03a
HX
1233 memcpy(oldname, dev->name, IFNAMSIZ);
1234
828de4f6 1235 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1236 if (err < 0) {
30e6c9fa 1237 write_seqcount_end(&devnet_rename_seq);
d9031024 1238 return err;
c91f6df2 1239 }
1da177e4 1240
6fe82a39
VF
1241 if (oldname[0] && !strchr(oldname, '%'))
1242 netdev_info(dev, "renamed from %s\n", oldname);
1243
238fa362
TG
1244 old_assign_type = dev->name_assign_type;
1245 dev->name_assign_type = NET_NAME_RENAMED;
1246
fcc5a03a 1247rollback:
a1b3f594
EB
1248 ret = device_rename(&dev->dev, dev->name);
1249 if (ret) {
1250 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1251 dev->name_assign_type = old_assign_type;
30e6c9fa 1252 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1253 return ret;
dcc99773 1254 }
7f988eab 1255
30e6c9fa 1256 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1257
5bb025fa
VF
1258 netdev_adjacent_rename_links(dev, oldname);
1259
7f988eab 1260 write_lock_bh(&dev_base_lock);
ff927412 1261 netdev_name_node_del(dev->name_node);
72c9528b
ED
1262 write_unlock_bh(&dev_base_lock);
1263
1264 synchronize_rcu();
1265
1266 write_lock_bh(&dev_base_lock);
ff927412 1267 netdev_name_node_add(net, dev->name_node);
7f988eab
HX
1268 write_unlock_bh(&dev_base_lock);
1269
056925ab 1270 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1271 ret = notifier_to_errno(ret);
1272
1273 if (ret) {
91e9c07b
ED
1274 /* err >= 0 after dev_alloc_name() or stores the first errno */
1275 if (err >= 0) {
fcc5a03a 1276 err = ret;
30e6c9fa 1277 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1278 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1279 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1280 dev->name_assign_type = old_assign_type;
1281 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1282 goto rollback;
91e9c07b 1283 } else {
7b6cd1ce 1284 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1285 dev->name, ret);
fcc5a03a
HX
1286 }
1287 }
1da177e4
LT
1288
1289 return err;
1290}
1291
0b815a1a
SH
1292/**
1293 * dev_set_alias - change ifalias of a device
1294 * @dev: device
1295 * @alias: name up to IFALIASZ
f0db275a 1296 * @len: limit of bytes to copy from info
0b815a1a
SH
1297 *
1298 * Set ifalias for a device,
1299 */
1300int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301{
6c557001 1302 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1303
1304 if (len >= IFALIASZ)
1305 return -EINVAL;
1306
6c557001
FW
1307 if (len) {
1308 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309 if (!new_alias)
1310 return -ENOMEM;
1311
1312 memcpy(new_alias->ifalias, alias, len);
1313 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1314 }
1315
6c557001 1316 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1317 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1319 mutex_unlock(&ifalias_mutex);
1320
1321 if (new_alias)
1322 kfree_rcu(new_alias, rcuhead);
0b815a1a 1323
0b815a1a
SH
1324 return len;
1325}
0fe554a4 1326EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1327
6c557001
FW
1328/**
1329 * dev_get_alias - get ifalias of a device
1330 * @dev: device
20e88320 1331 * @name: buffer to store name of ifalias
6c557001
FW
1332 * @len: size of buffer
1333 *
1334 * get ifalias for a device. Caller must make sure dev cannot go
1335 * away, e.g. rcu read lock or own a reference count to device.
1336 */
1337int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338{
1339 const struct dev_ifalias *alias;
1340 int ret = 0;
1341
1342 rcu_read_lock();
1343 alias = rcu_dereference(dev->ifalias);
1344 if (alias)
1345 ret = snprintf(name, len, "%s", alias->ifalias);
1346 rcu_read_unlock();
1347
1348 return ret;
1349}
0b815a1a 1350
d8a33ac4 1351/**
3041a069 1352 * netdev_features_change - device changes features
d8a33ac4
SH
1353 * @dev: device to cause notification
1354 *
1355 * Called to indicate a device has changed features.
1356 */
1357void netdev_features_change(struct net_device *dev)
1358{
056925ab 1359 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1360}
1361EXPORT_SYMBOL(netdev_features_change);
1362
1da177e4
LT
1363/**
1364 * netdev_state_change - device changes state
1365 * @dev: device to cause notification
1366 *
1367 * Called to indicate a device has changed state. This function calls
1368 * the notifier chains for netdev_chain and sends a NEWLINK message
1369 * to the routing socket.
1370 */
1371void netdev_state_change(struct net_device *dev)
1372{
1373 if (dev->flags & IFF_UP) {
51d0c047
DA
1374 struct netdev_notifier_change_info change_info = {
1375 .info.dev = dev,
1376 };
54951194 1377
51d0c047 1378 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1379 &change_info.info);
7f294054 1380 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1381 }
1382}
d1b19dff 1383EXPORT_SYMBOL(netdev_state_change);
1da177e4 1384
ee89bab1 1385/**
722c9a0c 1386 * netdev_notify_peers - notify network peers about existence of @dev
1387 * @dev: network device
ee89bab1
AW
1388 *
1389 * Generate traffic such that interested network peers are aware of
1390 * @dev, such as by generating a gratuitous ARP. This may be used when
1391 * a device wants to inform the rest of the network about some sort of
1392 * reconfiguration such as a failover event or virtual machine
1393 * migration.
1394 */
1395void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1396{
ee89bab1
AW
1397 rtnl_lock();
1398 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1399 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1400 rtnl_unlock();
c1da4ac7 1401}
ee89bab1 1402EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1403
40c900aa 1404static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1405{
d314774c 1406 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1407 int ret;
1da177e4 1408
e46b66bc
BH
1409 ASSERT_RTNL();
1410
1da177e4
LT
1411 if (!netif_device_present(dev))
1412 return -ENODEV;
1413
ca99ca14
NH
1414 /* Block netpoll from trying to do any rx path servicing.
1415 * If we don't do this there is a chance ndo_poll_controller
1416 * or ndo_poll may be running while we open the device
1417 */
66b5552f 1418 netpoll_poll_disable(dev);
ca99ca14 1419
40c900aa 1420 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1421 ret = notifier_to_errno(ret);
1422 if (ret)
1423 return ret;
1424
1da177e4 1425 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1426
d314774c
SH
1427 if (ops->ndo_validate_addr)
1428 ret = ops->ndo_validate_addr(dev);
bada339b 1429
d314774c
SH
1430 if (!ret && ops->ndo_open)
1431 ret = ops->ndo_open(dev);
1da177e4 1432
66b5552f 1433 netpoll_poll_enable(dev);
ca99ca14 1434
bada339b
JG
1435 if (ret)
1436 clear_bit(__LINK_STATE_START, &dev->state);
1437 else {
1da177e4 1438 dev->flags |= IFF_UP;
4417da66 1439 dev_set_rx_mode(dev);
1da177e4 1440 dev_activate(dev);
7bf23575 1441 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1442 }
bada339b 1443
1da177e4
LT
1444 return ret;
1445}
1446
1447/**
bd380811 1448 * dev_open - prepare an interface for use.
00f54e68
PM
1449 * @dev: device to open
1450 * @extack: netlink extended ack
1da177e4 1451 *
bd380811
PM
1452 * Takes a device from down to up state. The device's private open
1453 * function is invoked and then the multicast lists are loaded. Finally
1454 * the device is moved into the up state and a %NETDEV_UP message is
1455 * sent to the netdev notifier chain.
1456 *
1457 * Calling this function on an active interface is a nop. On a failure
1458 * a negative errno code is returned.
1da177e4 1459 */
00f54e68 1460int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1461{
1462 int ret;
1463
bd380811
PM
1464 if (dev->flags & IFF_UP)
1465 return 0;
1466
40c900aa 1467 ret = __dev_open(dev, extack);
bd380811
PM
1468 if (ret < 0)
1469 return ret;
1470
7f294054 1471 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1472 call_netdevice_notifiers(NETDEV_UP, dev);
1473
1474 return ret;
1475}
1476EXPORT_SYMBOL(dev_open);
1477
7051b88a 1478static void __dev_close_many(struct list_head *head)
1da177e4 1479{
44345724 1480 struct net_device *dev;
e46b66bc 1481
bd380811 1482 ASSERT_RTNL();
9d5010db
DM
1483 might_sleep();
1484
5cde2829 1485 list_for_each_entry(dev, head, close_list) {
3f4df206 1486 /* Temporarily disable netpoll until the interface is down */
66b5552f 1487 netpoll_poll_disable(dev);
3f4df206 1488
44345724 1489 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1490
44345724 1491 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1492
44345724
OP
1493 /* Synchronize to scheduled poll. We cannot touch poll list, it
1494 * can be even on different cpu. So just clear netif_running().
1495 *
1496 * dev->stop() will invoke napi_disable() on all of it's
1497 * napi_struct instances on this device.
1498 */
4e857c58 1499 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1500 }
1da177e4 1501
44345724 1502 dev_deactivate_many(head);
d8b2a4d2 1503
5cde2829 1504 list_for_each_entry(dev, head, close_list) {
44345724 1505 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1506
44345724
OP
1507 /*
1508 * Call the device specific close. This cannot fail.
1509 * Only if device is UP
1510 *
1511 * We allow it to be called even after a DETACH hot-plug
1512 * event.
1513 */
1514 if (ops->ndo_stop)
1515 ops->ndo_stop(dev);
1516
44345724 1517 dev->flags &= ~IFF_UP;
66b5552f 1518 netpoll_poll_enable(dev);
44345724 1519 }
44345724
OP
1520}
1521
7051b88a 1522static void __dev_close(struct net_device *dev)
44345724
OP
1523{
1524 LIST_HEAD(single);
1525
5cde2829 1526 list_add(&dev->close_list, &single);
7051b88a 1527 __dev_close_many(&single);
f87e6f47 1528 list_del(&single);
44345724
OP
1529}
1530
7051b88a 1531void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1532{
1533 struct net_device *dev, *tmp;
1da177e4 1534
5cde2829
EB
1535 /* Remove the devices that don't need to be closed */
1536 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1537 if (!(dev->flags & IFF_UP))
5cde2829 1538 list_del_init(&dev->close_list);
44345724
OP
1539
1540 __dev_close_many(head);
1da177e4 1541
5cde2829 1542 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1543 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1544 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1545 if (unlink)
1546 list_del_init(&dev->close_list);
44345724 1547 }
bd380811 1548}
99c4a26a 1549EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1550
1551/**
1552 * dev_close - shutdown an interface.
1553 * @dev: device to shutdown
1554 *
1555 * This function moves an active device into down state. A
1556 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1557 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1558 * chain.
1559 */
7051b88a 1560void dev_close(struct net_device *dev)
bd380811 1561{
e14a5993
ED
1562 if (dev->flags & IFF_UP) {
1563 LIST_HEAD(single);
1da177e4 1564
5cde2829 1565 list_add(&dev->close_list, &single);
99c4a26a 1566 dev_close_many(&single, true);
e14a5993
ED
1567 list_del(&single);
1568 }
1da177e4 1569}
d1b19dff 1570EXPORT_SYMBOL(dev_close);
1da177e4
LT
1571
1572
0187bdfb
BH
1573/**
1574 * dev_disable_lro - disable Large Receive Offload on a device
1575 * @dev: device
1576 *
1577 * Disable Large Receive Offload (LRO) on a net device. Must be
1578 * called under RTNL. This is needed if received packets may be
1579 * forwarded to another interface.
1580 */
1581void dev_disable_lro(struct net_device *dev)
1582{
fbe168ba
MK
1583 struct net_device *lower_dev;
1584 struct list_head *iter;
529d0489 1585
bc5787c6
MM
1586 dev->wanted_features &= ~NETIF_F_LRO;
1587 netdev_update_features(dev);
27660515 1588
22d5969f
MM
1589 if (unlikely(dev->features & NETIF_F_LRO))
1590 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1591
1592 netdev_for_each_lower_dev(dev, lower_dev, iter)
1593 dev_disable_lro(lower_dev);
0187bdfb
BH
1594}
1595EXPORT_SYMBOL(dev_disable_lro);
1596
56f5aa77
MC
1597/**
1598 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1599 * @dev: device
1600 *
1601 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1602 * called under RTNL. This is needed if Generic XDP is installed on
1603 * the device.
1604 */
1605static void dev_disable_gro_hw(struct net_device *dev)
1606{
1607 dev->wanted_features &= ~NETIF_F_GRO_HW;
1608 netdev_update_features(dev);
1609
1610 if (unlikely(dev->features & NETIF_F_GRO_HW))
1611 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1612}
1613
ede2762d
KT
1614const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1615{
1616#define N(val) \
1617 case NETDEV_##val: \
1618 return "NETDEV_" __stringify(val);
1619 switch (cmd) {
1620 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1621 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1622 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1623 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1624 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1625 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1626 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1627 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1628 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1629 N(PRE_CHANGEADDR)
3f5ecd8a 1630 }
ede2762d
KT
1631#undef N
1632 return "UNKNOWN_NETDEV_EVENT";
1633}
1634EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1635
351638e7
JP
1636static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1637 struct net_device *dev)
1638{
51d0c047
DA
1639 struct netdev_notifier_info info = {
1640 .dev = dev,
1641 };
351638e7 1642
351638e7
JP
1643 return nb->notifier_call(nb, val, &info);
1644}
0187bdfb 1645
afa0df59
JP
1646static int call_netdevice_register_notifiers(struct notifier_block *nb,
1647 struct net_device *dev)
1648{
1649 int err;
1650
1651 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1652 err = notifier_to_errno(err);
1653 if (err)
1654 return err;
1655
1656 if (!(dev->flags & IFF_UP))
1657 return 0;
1658
1659 call_netdevice_notifier(nb, NETDEV_UP, dev);
1660 return 0;
1661}
1662
1663static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1664 struct net_device *dev)
1665{
1666 if (dev->flags & IFF_UP) {
1667 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1668 dev);
1669 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1670 }
1671 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1672}
1673
1674static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1675 struct net *net)
1676{
1677 struct net_device *dev;
1678 int err;
1679
1680 for_each_netdev(net, dev) {
1681 err = call_netdevice_register_notifiers(nb, dev);
1682 if (err)
1683 goto rollback;
1684 }
1685 return 0;
1686
1687rollback:
1688 for_each_netdev_continue_reverse(net, dev)
1689 call_netdevice_unregister_notifiers(nb, dev);
1690 return err;
1691}
1692
1693static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1694 struct net *net)
1695{
1696 struct net_device *dev;
1697
1698 for_each_netdev(net, dev)
1699 call_netdevice_unregister_notifiers(nb, dev);
1700}
1701
881d966b
EB
1702static int dev_boot_phase = 1;
1703
1da177e4 1704/**
722c9a0c 1705 * register_netdevice_notifier - register a network notifier block
1706 * @nb: notifier
1da177e4 1707 *
722c9a0c 1708 * Register a notifier to be called when network device events occur.
1709 * The notifier passed is linked into the kernel structures and must
1710 * not be reused until it has been unregistered. A negative errno code
1711 * is returned on a failure.
1da177e4 1712 *
722c9a0c 1713 * When registered all registration and up events are replayed
1714 * to the new notifier to allow device to have a race free
1715 * view of the network device list.
1da177e4
LT
1716 */
1717
1718int register_netdevice_notifier(struct notifier_block *nb)
1719{
881d966b 1720 struct net *net;
1da177e4
LT
1721 int err;
1722
328fbe74
KT
1723 /* Close race with setup_net() and cleanup_net() */
1724 down_write(&pernet_ops_rwsem);
1da177e4 1725 rtnl_lock();
f07d5b94 1726 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1727 if (err)
1728 goto unlock;
881d966b
EB
1729 if (dev_boot_phase)
1730 goto unlock;
1731 for_each_net(net) {
afa0df59
JP
1732 err = call_netdevice_register_net_notifiers(nb, net);
1733 if (err)
1734 goto rollback;
1da177e4 1735 }
fcc5a03a
HX
1736
1737unlock:
1da177e4 1738 rtnl_unlock();
328fbe74 1739 up_write(&pernet_ops_rwsem);
1da177e4 1740 return err;
fcc5a03a
HX
1741
1742rollback:
afa0df59
JP
1743 for_each_net_continue_reverse(net)
1744 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1745
1746 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1747 goto unlock;
1da177e4 1748}
d1b19dff 1749EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1750
1751/**
722c9a0c 1752 * unregister_netdevice_notifier - unregister a network notifier block
1753 * @nb: notifier
1da177e4 1754 *
722c9a0c 1755 * Unregister a notifier previously registered by
1756 * register_netdevice_notifier(). The notifier is unlinked into the
1757 * kernel structures and may then be reused. A negative errno code
1758 * is returned on a failure.
7d3d43da 1759 *
722c9a0c 1760 * After unregistering unregister and down device events are synthesized
1761 * for all devices on the device list to the removed notifier to remove
1762 * the need for special case cleanup code.
1da177e4
LT
1763 */
1764
1765int unregister_netdevice_notifier(struct notifier_block *nb)
1766{
7d3d43da 1767 struct net *net;
9f514950
HX
1768 int err;
1769
328fbe74
KT
1770 /* Close race with setup_net() and cleanup_net() */
1771 down_write(&pernet_ops_rwsem);
9f514950 1772 rtnl_lock();
f07d5b94 1773 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1774 if (err)
1775 goto unlock;
1776
48b3a137
JP
1777 for_each_net(net)
1778 call_netdevice_unregister_net_notifiers(nb, net);
1779
7d3d43da 1780unlock:
9f514950 1781 rtnl_unlock();
328fbe74 1782 up_write(&pernet_ops_rwsem);
9f514950 1783 return err;
1da177e4 1784}
d1b19dff 1785EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1786
1f637703
JP
1787static int __register_netdevice_notifier_net(struct net *net,
1788 struct notifier_block *nb,
1789 bool ignore_call_fail)
1790{
1791 int err;
1792
1793 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1794 if (err)
1795 return err;
1796 if (dev_boot_phase)
1797 return 0;
1798
1799 err = call_netdevice_register_net_notifiers(nb, net);
1800 if (err && !ignore_call_fail)
1801 goto chain_unregister;
1802
1803 return 0;
1804
1805chain_unregister:
1806 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1807 return err;
1808}
1809
1810static int __unregister_netdevice_notifier_net(struct net *net,
1811 struct notifier_block *nb)
1812{
1813 int err;
1814
1815 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1816 if (err)
1817 return err;
1818
1819 call_netdevice_unregister_net_notifiers(nb, net);
1820 return 0;
1821}
1822
a30c7b42
JP
1823/**
1824 * register_netdevice_notifier_net - register a per-netns network notifier block
1825 * @net: network namespace
1826 * @nb: notifier
1827 *
1828 * Register a notifier to be called when network device events occur.
1829 * The notifier passed is linked into the kernel structures and must
1830 * not be reused until it has been unregistered. A negative errno code
1831 * is returned on a failure.
1832 *
1833 * When registered all registration and up events are replayed
1834 * to the new notifier to allow device to have a race free
1835 * view of the network device list.
1836 */
1837
1838int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1839{
1840 int err;
1841
1842 rtnl_lock();
1f637703 1843 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
1844 rtnl_unlock();
1845 return err;
a30c7b42
JP
1846}
1847EXPORT_SYMBOL(register_netdevice_notifier_net);
1848
1849/**
1850 * unregister_netdevice_notifier_net - unregister a per-netns
1851 * network notifier block
1852 * @net: network namespace
1853 * @nb: notifier
1854 *
1855 * Unregister a notifier previously registered by
1856 * register_netdevice_notifier(). The notifier is unlinked into the
1857 * kernel structures and may then be reused. A negative errno code
1858 * is returned on a failure.
1859 *
1860 * After unregistering unregister and down device events are synthesized
1861 * for all devices on the device list to the removed notifier to remove
1862 * the need for special case cleanup code.
1863 */
1864
1865int unregister_netdevice_notifier_net(struct net *net,
1866 struct notifier_block *nb)
1867{
1868 int err;
1869
1870 rtnl_lock();
1f637703 1871 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
1872 rtnl_unlock();
1873 return err;
1874}
1875EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 1876
93642e14
JP
1877int register_netdevice_notifier_dev_net(struct net_device *dev,
1878 struct notifier_block *nb,
1879 struct netdev_net_notifier *nn)
1880{
1881 int err;
a30c7b42 1882
93642e14
JP
1883 rtnl_lock();
1884 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1885 if (!err) {
1886 nn->nb = nb;
1887 list_add(&nn->list, &dev->net_notifier_list);
1888 }
a30c7b42
JP
1889 rtnl_unlock();
1890 return err;
1891}
93642e14
JP
1892EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1893
1894int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1895 struct notifier_block *nb,
1896 struct netdev_net_notifier *nn)
1897{
1898 int err;
1899
1900 rtnl_lock();
1901 list_del(&nn->list);
1902 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1903 rtnl_unlock();
1904 return err;
1905}
1906EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1907
1908static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1909 struct net *net)
1910{
1911 struct netdev_net_notifier *nn;
1912
1913 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1914 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1915 __register_netdevice_notifier_net(net, nn->nb, true);
1916 }
1917}
a30c7b42 1918
351638e7
JP
1919/**
1920 * call_netdevice_notifiers_info - call all network notifier blocks
1921 * @val: value passed unmodified to notifier function
351638e7
JP
1922 * @info: notifier information data
1923 *
1924 * Call all network notifier blocks. Parameters and return value
1925 * are as for raw_notifier_call_chain().
1926 */
1927
1d143d9f 1928static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1929 struct netdev_notifier_info *info)
351638e7 1930{
a30c7b42
JP
1931 struct net *net = dev_net(info->dev);
1932 int ret;
1933
351638e7 1934 ASSERT_RTNL();
a30c7b42
JP
1935
1936 /* Run per-netns notifier block chain first, then run the global one.
1937 * Hopefully, one day, the global one is going to be removed after
1938 * all notifier block registrators get converted to be per-netns.
1939 */
1940 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1941 if (ret & NOTIFY_STOP_MASK)
1942 return ret;
351638e7
JP
1943 return raw_notifier_call_chain(&netdev_chain, val, info);
1944}
351638e7 1945
26372605
PM
1946static int call_netdevice_notifiers_extack(unsigned long val,
1947 struct net_device *dev,
1948 struct netlink_ext_ack *extack)
1949{
1950 struct netdev_notifier_info info = {
1951 .dev = dev,
1952 .extack = extack,
1953 };
1954
1955 return call_netdevice_notifiers_info(val, &info);
1956}
1957
1da177e4
LT
1958/**
1959 * call_netdevice_notifiers - call all network notifier blocks
1960 * @val: value passed unmodified to notifier function
c4ea43c5 1961 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1962 *
1963 * Call all network notifier blocks. Parameters and return value
f07d5b94 1964 * are as for raw_notifier_call_chain().
1da177e4
LT
1965 */
1966
ad7379d4 1967int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1968{
26372605 1969 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 1970}
edf947f1 1971EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1972
af7d6cce
SD
1973/**
1974 * call_netdevice_notifiers_mtu - call all network notifier blocks
1975 * @val: value passed unmodified to notifier function
1976 * @dev: net_device pointer passed unmodified to notifier function
1977 * @arg: additional u32 argument passed to the notifier function
1978 *
1979 * Call all network notifier blocks. Parameters and return value
1980 * are as for raw_notifier_call_chain().
1981 */
1982static int call_netdevice_notifiers_mtu(unsigned long val,
1983 struct net_device *dev, u32 arg)
1984{
1985 struct netdev_notifier_info_ext info = {
1986 .info.dev = dev,
1987 .ext.mtu = arg,
1988 };
1989
1990 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1991
1992 return call_netdevice_notifiers_info(val, &info.info);
1993}
1994
1cf51900 1995#ifdef CONFIG_NET_INGRESS
aabf6772 1996static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
1997
1998void net_inc_ingress_queue(void)
1999{
aabf6772 2000 static_branch_inc(&ingress_needed_key);
4577139b
DB
2001}
2002EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2003
2004void net_dec_ingress_queue(void)
2005{
aabf6772 2006 static_branch_dec(&ingress_needed_key);
4577139b
DB
2007}
2008EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2009#endif
2010
1f211a1b 2011#ifdef CONFIG_NET_EGRESS
aabf6772 2012static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2013
2014void net_inc_egress_queue(void)
2015{
aabf6772 2016 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2017}
2018EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2019
2020void net_dec_egress_queue(void)
2021{
aabf6772 2022 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2023}
2024EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2025#endif
2026
39e83922 2027static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 2028#ifdef CONFIG_JUMP_LABEL
b90e5794 2029static atomic_t netstamp_needed_deferred;
13baa00a 2030static atomic_t netstamp_wanted;
5fa8bbda 2031static void netstamp_clear(struct work_struct *work)
1da177e4 2032{
b90e5794 2033 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2034 int wanted;
b90e5794 2035
13baa00a
ED
2036 wanted = atomic_add_return(deferred, &netstamp_wanted);
2037 if (wanted > 0)
39e83922 2038 static_branch_enable(&netstamp_needed_key);
13baa00a 2039 else
39e83922 2040 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2041}
2042static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2043#endif
5fa8bbda
ED
2044
2045void net_enable_timestamp(void)
2046{
e9666d10 2047#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2048 int wanted;
2049
2050 while (1) {
2051 wanted = atomic_read(&netstamp_wanted);
2052 if (wanted <= 0)
2053 break;
2054 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2055 return;
2056 }
2057 atomic_inc(&netstamp_needed_deferred);
2058 schedule_work(&netstamp_work);
2059#else
39e83922 2060 static_branch_inc(&netstamp_needed_key);
13baa00a 2061#endif
1da177e4 2062}
d1b19dff 2063EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2064
2065void net_disable_timestamp(void)
2066{
e9666d10 2067#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2068 int wanted;
2069
2070 while (1) {
2071 wanted = atomic_read(&netstamp_wanted);
2072 if (wanted <= 1)
2073 break;
2074 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2075 return;
2076 }
2077 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2078 schedule_work(&netstamp_work);
2079#else
39e83922 2080 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2081#endif
1da177e4 2082}
d1b19dff 2083EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2084
3b098e2d 2085static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2086{
2456e855 2087 skb->tstamp = 0;
39e83922 2088 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 2089 __net_timestamp(skb);
1da177e4
LT
2090}
2091
39e83922
DB
2092#define net_timestamp_check(COND, SKB) \
2093 if (static_branch_unlikely(&netstamp_needed_key)) { \
2094 if ((COND) && !(SKB)->tstamp) \
2095 __net_timestamp(SKB); \
2096 } \
3b098e2d 2097
f4b05d27 2098bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
2099{
2100 unsigned int len;
2101
2102 if (!(dev->flags & IFF_UP))
2103 return false;
2104
2105 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2106 if (skb->len <= len)
2107 return true;
2108
2109 /* if TSO is enabled, we don't care about the length as the packet
2110 * could be forwarded without being segmented before
2111 */
2112 if (skb_is_gso(skb))
2113 return true;
2114
2115 return false;
2116}
1ee481fb 2117EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2118
a0265d28
HX
2119int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2120{
4e3264d2 2121 int ret = ____dev_forward_skb(dev, skb);
a0265d28 2122
4e3264d2
MKL
2123 if (likely(!ret)) {
2124 skb->protocol = eth_type_trans(skb, dev);
2125 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2126 }
a0265d28 2127
4e3264d2 2128 return ret;
a0265d28
HX
2129}
2130EXPORT_SYMBOL_GPL(__dev_forward_skb);
2131
44540960
AB
2132/**
2133 * dev_forward_skb - loopback an skb to another netif
2134 *
2135 * @dev: destination network device
2136 * @skb: buffer to forward
2137 *
2138 * return values:
2139 * NET_RX_SUCCESS (no congestion)
6ec82562 2140 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2141 *
2142 * dev_forward_skb can be used for injecting an skb from the
2143 * start_xmit function of one device into the receive queue
2144 * of another device.
2145 *
2146 * The receiving device may be in another namespace, so
2147 * we have to clear all information in the skb that could
2148 * impact namespace isolation.
2149 */
2150int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2151{
a0265d28 2152 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2153}
2154EXPORT_SYMBOL_GPL(dev_forward_skb);
2155
71d9dec2
CG
2156static inline int deliver_skb(struct sk_buff *skb,
2157 struct packet_type *pt_prev,
2158 struct net_device *orig_dev)
2159{
1f8b977a 2160 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2161 return -ENOMEM;
63354797 2162 refcount_inc(&skb->users);
71d9dec2
CG
2163 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2164}
2165
7866a621
SN
2166static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2167 struct packet_type **pt,
fbcb2170
JP
2168 struct net_device *orig_dev,
2169 __be16 type,
7866a621
SN
2170 struct list_head *ptype_list)
2171{
2172 struct packet_type *ptype, *pt_prev = *pt;
2173
2174 list_for_each_entry_rcu(ptype, ptype_list, list) {
2175 if (ptype->type != type)
2176 continue;
2177 if (pt_prev)
fbcb2170 2178 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2179 pt_prev = ptype;
2180 }
2181 *pt = pt_prev;
2182}
2183
c0de08d0
EL
2184static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2185{
a3d744e9 2186 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2187 return false;
2188
2189 if (ptype->id_match)
2190 return ptype->id_match(ptype, skb->sk);
2191 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2192 return true;
2193
2194 return false;
2195}
2196
9f9a742d
MR
2197/**
2198 * dev_nit_active - return true if any network interface taps are in use
2199 *
2200 * @dev: network device to check for the presence of taps
2201 */
2202bool dev_nit_active(struct net_device *dev)
2203{
2204 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2205}
2206EXPORT_SYMBOL_GPL(dev_nit_active);
2207
1da177e4
LT
2208/*
2209 * Support routine. Sends outgoing frames to any network
2210 * taps currently in use.
2211 */
2212
74b20582 2213void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2214{
2215 struct packet_type *ptype;
71d9dec2
CG
2216 struct sk_buff *skb2 = NULL;
2217 struct packet_type *pt_prev = NULL;
7866a621 2218 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2219
1da177e4 2220 rcu_read_lock();
7866a621
SN
2221again:
2222 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2223 if (ptype->ignore_outgoing)
2224 continue;
2225
1da177e4
LT
2226 /* Never send packets back to the socket
2227 * they originated from - MvS (miquels@drinkel.ow.org)
2228 */
7866a621
SN
2229 if (skb_loop_sk(ptype, skb))
2230 continue;
71d9dec2 2231
7866a621
SN
2232 if (pt_prev) {
2233 deliver_skb(skb2, pt_prev, skb->dev);
2234 pt_prev = ptype;
2235 continue;
2236 }
1da177e4 2237
7866a621
SN
2238 /* need to clone skb, done only once */
2239 skb2 = skb_clone(skb, GFP_ATOMIC);
2240 if (!skb2)
2241 goto out_unlock;
70978182 2242
7866a621 2243 net_timestamp_set(skb2);
1da177e4 2244
7866a621
SN
2245 /* skb->nh should be correctly
2246 * set by sender, so that the second statement is
2247 * just protection against buggy protocols.
2248 */
2249 skb_reset_mac_header(skb2);
2250
2251 if (skb_network_header(skb2) < skb2->data ||
2252 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2253 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2254 ntohs(skb2->protocol),
2255 dev->name);
2256 skb_reset_network_header(skb2);
1da177e4 2257 }
7866a621
SN
2258
2259 skb2->transport_header = skb2->network_header;
2260 skb2->pkt_type = PACKET_OUTGOING;
2261 pt_prev = ptype;
2262 }
2263
2264 if (ptype_list == &ptype_all) {
2265 ptype_list = &dev->ptype_all;
2266 goto again;
1da177e4 2267 }
7866a621 2268out_unlock:
581fe0ea
WB
2269 if (pt_prev) {
2270 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2271 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2272 else
2273 kfree_skb(skb2);
2274 }
1da177e4
LT
2275 rcu_read_unlock();
2276}
74b20582 2277EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2278
2c53040f
BH
2279/**
2280 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2281 * @dev: Network device
2282 * @txq: number of queues available
2283 *
2284 * If real_num_tx_queues is changed the tc mappings may no longer be
2285 * valid. To resolve this verify the tc mapping remains valid and if
2286 * not NULL the mapping. With no priorities mapping to this
2287 * offset/count pair it will no longer be used. In the worst case TC0
2288 * is invalid nothing can be done so disable priority mappings. If is
2289 * expected that drivers will fix this mapping if they can before
2290 * calling netif_set_real_num_tx_queues.
2291 */
bb134d22 2292static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2293{
2294 int i;
2295 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2296
2297 /* If TC0 is invalidated disable TC mapping */
2298 if (tc->offset + tc->count > txq) {
7b6cd1ce 2299 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2300 dev->num_tc = 0;
2301 return;
2302 }
2303
2304 /* Invalidated prio to tc mappings set to TC0 */
2305 for (i = 1; i < TC_BITMASK + 1; i++) {
2306 int q = netdev_get_prio_tc_map(dev, i);
2307
2308 tc = &dev->tc_to_txq[q];
2309 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2310 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2311 i, q);
4f57c087
JF
2312 netdev_set_prio_tc_map(dev, i, 0);
2313 }
2314 }
2315}
2316
8d059b0f
AD
2317int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2318{
2319 if (dev->num_tc) {
2320 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2321 int i;
2322
ffcfe25b 2323 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2324 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2325 if ((txq - tc->offset) < tc->count)
2326 return i;
2327 }
2328
ffcfe25b 2329 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2330 return -1;
2331 }
2332
2333 return 0;
2334}
8a5f2166 2335EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2336
537c00de 2337#ifdef CONFIG_XPS
04157469
AN
2338struct static_key xps_needed __read_mostly;
2339EXPORT_SYMBOL(xps_needed);
2340struct static_key xps_rxqs_needed __read_mostly;
2341EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2342static DEFINE_MUTEX(xps_map_mutex);
2343#define xmap_dereference(P) \
2344 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2345
6234f874
AD
2346static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2347 int tci, u16 index)
537c00de 2348{
10cdc3f3
AD
2349 struct xps_map *map = NULL;
2350 int pos;
537c00de 2351
10cdc3f3 2352 if (dev_maps)
80d19669 2353 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2354 if (!map)
2355 return false;
537c00de 2356
6234f874
AD
2357 for (pos = map->len; pos--;) {
2358 if (map->queues[pos] != index)
2359 continue;
2360
2361 if (map->len > 1) {
2362 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2363 break;
537c00de 2364 }
6234f874 2365
80d19669 2366 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2367 kfree_rcu(map, rcu);
2368 return false;
537c00de
AD
2369 }
2370
6234f874 2371 return true;
10cdc3f3
AD
2372}
2373
6234f874
AD
2374static bool remove_xps_queue_cpu(struct net_device *dev,
2375 struct xps_dev_maps *dev_maps,
2376 int cpu, u16 offset, u16 count)
2377{
184c449f
AD
2378 int num_tc = dev->num_tc ? : 1;
2379 bool active = false;
2380 int tci;
6234f874 2381
184c449f
AD
2382 for (tci = cpu * num_tc; num_tc--; tci++) {
2383 int i, j;
2384
2385 for (i = count, j = offset; i--; j++) {
6358d49a 2386 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2387 break;
2388 }
2389
2390 active |= i < 0;
6234f874
AD
2391 }
2392
184c449f 2393 return active;
6234f874
AD
2394}
2395
867d0ad4
SD
2396static void reset_xps_maps(struct net_device *dev,
2397 struct xps_dev_maps *dev_maps,
2398 bool is_rxqs_map)
2399{
2400 if (is_rxqs_map) {
2401 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2402 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2403 } else {
2404 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2405 }
2406 static_key_slow_dec_cpuslocked(&xps_needed);
2407 kfree_rcu(dev_maps, rcu);
2408}
2409
80d19669
AN
2410static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2411 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2412 u16 offset, u16 count, bool is_rxqs_map)
2413{
2414 bool active = false;
2415 int i, j;
2416
2417 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2418 j < nr_ids;)
2419 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2420 count);
867d0ad4
SD
2421 if (!active)
2422 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2423
f28c020f
SD
2424 if (!is_rxqs_map) {
2425 for (i = offset + (count - 1); count--; i--) {
2426 netdev_queue_numa_node_write(
2427 netdev_get_tx_queue(dev, i),
2428 NUMA_NO_NODE);
80d19669 2429 }
80d19669
AN
2430 }
2431}
2432
6234f874
AD
2433static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2434 u16 count)
10cdc3f3 2435{
80d19669 2436 const unsigned long *possible_mask = NULL;
10cdc3f3 2437 struct xps_dev_maps *dev_maps;
80d19669 2438 unsigned int nr_ids;
10cdc3f3 2439
04157469
AN
2440 if (!static_key_false(&xps_needed))
2441 return;
10cdc3f3 2442
4d99f660 2443 cpus_read_lock();
04157469 2444 mutex_lock(&xps_map_mutex);
10cdc3f3 2445
04157469
AN
2446 if (static_key_false(&xps_rxqs_needed)) {
2447 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2448 if (dev_maps) {
2449 nr_ids = dev->num_rx_queues;
2450 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2451 offset, count, true);
2452 }
537c00de
AD
2453 }
2454
80d19669
AN
2455 dev_maps = xmap_dereference(dev->xps_cpus_map);
2456 if (!dev_maps)
2457 goto out_no_maps;
2458
2459 if (num_possible_cpus() > 1)
2460 possible_mask = cpumask_bits(cpu_possible_mask);
2461 nr_ids = nr_cpu_ids;
2462 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2463 false);
024e9679 2464
537c00de
AD
2465out_no_maps:
2466 mutex_unlock(&xps_map_mutex);
4d99f660 2467 cpus_read_unlock();
537c00de
AD
2468}
2469
6234f874
AD
2470static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2471{
2472 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2473}
2474
80d19669
AN
2475static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2476 u16 index, bool is_rxqs_map)
01c5f864
AD
2477{
2478 struct xps_map *new_map;
2479 int alloc_len = XPS_MIN_MAP_ALLOC;
2480 int i, pos;
2481
2482 for (pos = 0; map && pos < map->len; pos++) {
2483 if (map->queues[pos] != index)
2484 continue;
2485 return map;
2486 }
2487
80d19669 2488 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2489 if (map) {
2490 if (pos < map->alloc_len)
2491 return map;
2492
2493 alloc_len = map->alloc_len * 2;
2494 }
2495
80d19669
AN
2496 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2497 * map
2498 */
2499 if (is_rxqs_map)
2500 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2501 else
2502 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2503 cpu_to_node(attr_index));
01c5f864
AD
2504 if (!new_map)
2505 return NULL;
2506
2507 for (i = 0; i < pos; i++)
2508 new_map->queues[i] = map->queues[i];
2509 new_map->alloc_len = alloc_len;
2510 new_map->len = pos;
2511
2512 return new_map;
2513}
2514
4d99f660 2515/* Must be called under cpus_read_lock */
80d19669
AN
2516int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2517 u16 index, bool is_rxqs_map)
537c00de 2518{
80d19669 2519 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2520 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2521 int i, j, tci, numa_node_id = -2;
184c449f 2522 int maps_sz, num_tc = 1, tc = 0;
537c00de 2523 struct xps_map *map, *new_map;
01c5f864 2524 bool active = false;
80d19669 2525 unsigned int nr_ids;
537c00de 2526
184c449f 2527 if (dev->num_tc) {
ffcfe25b 2528 /* Do not allow XPS on subordinate device directly */
184c449f 2529 num_tc = dev->num_tc;
ffcfe25b
AD
2530 if (num_tc < 0)
2531 return -EINVAL;
2532
2533 /* If queue belongs to subordinate dev use its map */
2534 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2535
184c449f
AD
2536 tc = netdev_txq_to_tc(dev, index);
2537 if (tc < 0)
2538 return -EINVAL;
2539 }
2540
537c00de 2541 mutex_lock(&xps_map_mutex);
80d19669
AN
2542 if (is_rxqs_map) {
2543 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2544 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2545 nr_ids = dev->num_rx_queues;
2546 } else {
2547 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2548 if (num_possible_cpus() > 1) {
2549 online_mask = cpumask_bits(cpu_online_mask);
2550 possible_mask = cpumask_bits(cpu_possible_mask);
2551 }
2552 dev_maps = xmap_dereference(dev->xps_cpus_map);
2553 nr_ids = nr_cpu_ids;
2554 }
537c00de 2555
80d19669
AN
2556 if (maps_sz < L1_CACHE_BYTES)
2557 maps_sz = L1_CACHE_BYTES;
537c00de 2558
01c5f864 2559 /* allocate memory for queue storage */
80d19669
AN
2560 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2561 j < nr_ids;) {
01c5f864
AD
2562 if (!new_dev_maps)
2563 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2564 if (!new_dev_maps) {
2565 mutex_unlock(&xps_map_mutex);
01c5f864 2566 return -ENOMEM;
2bb60cb9 2567 }
01c5f864 2568
80d19669
AN
2569 tci = j * num_tc + tc;
2570 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2571 NULL;
2572
80d19669 2573 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2574 if (!map)
2575 goto error;
2576
80d19669 2577 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2578 }
2579
2580 if (!new_dev_maps)
2581 goto out_no_new_maps;
2582
867d0ad4
SD
2583 if (!dev_maps) {
2584 /* Increment static keys at most once per type */
2585 static_key_slow_inc_cpuslocked(&xps_needed);
2586 if (is_rxqs_map)
2587 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2588 }
04157469 2589
80d19669
AN
2590 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2591 j < nr_ids;) {
184c449f 2592 /* copy maps belonging to foreign traffic classes */
80d19669 2593 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2594 /* fill in the new device map from the old device map */
80d19669
AN
2595 map = xmap_dereference(dev_maps->attr_map[tci]);
2596 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2597 }
2598
2599 /* We need to explicitly update tci as prevous loop
2600 * could break out early if dev_maps is NULL.
2601 */
80d19669 2602 tci = j * num_tc + tc;
184c449f 2603
80d19669
AN
2604 if (netif_attr_test_mask(j, mask, nr_ids) &&
2605 netif_attr_test_online(j, online_mask, nr_ids)) {
2606 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2607 int pos = 0;
2608
80d19669 2609 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2610 while ((pos < map->len) && (map->queues[pos] != index))
2611 pos++;
2612
2613 if (pos == map->len)
2614 map->queues[map->len++] = index;
537c00de 2615#ifdef CONFIG_NUMA
80d19669
AN
2616 if (!is_rxqs_map) {
2617 if (numa_node_id == -2)
2618 numa_node_id = cpu_to_node(j);
2619 else if (numa_node_id != cpu_to_node(j))
2620 numa_node_id = -1;
2621 }
537c00de 2622#endif
01c5f864
AD
2623 } else if (dev_maps) {
2624 /* fill in the new device map from the old device map */
80d19669
AN
2625 map = xmap_dereference(dev_maps->attr_map[tci]);
2626 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2627 }
01c5f864 2628
184c449f
AD
2629 /* copy maps belonging to foreign traffic classes */
2630 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2631 /* fill in the new device map from the old device map */
80d19669
AN
2632 map = xmap_dereference(dev_maps->attr_map[tci]);
2633 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2634 }
537c00de
AD
2635 }
2636
80d19669
AN
2637 if (is_rxqs_map)
2638 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2639 else
2640 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2641
537c00de 2642 /* Cleanup old maps */
184c449f
AD
2643 if (!dev_maps)
2644 goto out_no_old_maps;
2645
80d19669
AN
2646 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2647 j < nr_ids;) {
2648 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2649 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2650 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2651 if (map && map != new_map)
2652 kfree_rcu(map, rcu);
2653 }
537c00de
AD
2654 }
2655
184c449f
AD
2656 kfree_rcu(dev_maps, rcu);
2657
2658out_no_old_maps:
01c5f864
AD
2659 dev_maps = new_dev_maps;
2660 active = true;
537c00de 2661
01c5f864 2662out_no_new_maps:
80d19669
AN
2663 if (!is_rxqs_map) {
2664 /* update Tx queue numa node */
2665 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2666 (numa_node_id >= 0) ?
2667 numa_node_id : NUMA_NO_NODE);
2668 }
537c00de 2669
01c5f864
AD
2670 if (!dev_maps)
2671 goto out_no_maps;
2672
80d19669
AN
2673 /* removes tx-queue from unused CPUs/rx-queues */
2674 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2675 j < nr_ids;) {
2676 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2677 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2678 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2679 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2680 active |= remove_xps_queue(dev_maps, tci, index);
2681 for (i = num_tc - tc, tci++; --i; tci++)
2682 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2683 }
2684
2685 /* free map if not active */
867d0ad4
SD
2686 if (!active)
2687 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2688
2689out_no_maps:
537c00de
AD
2690 mutex_unlock(&xps_map_mutex);
2691
2692 return 0;
2693error:
01c5f864 2694 /* remove any maps that we added */
80d19669
AN
2695 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2696 j < nr_ids;) {
2697 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2698 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2699 map = dev_maps ?
80d19669 2700 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2701 NULL;
2702 if (new_map && new_map != map)
2703 kfree(new_map);
2704 }
01c5f864
AD
2705 }
2706
537c00de
AD
2707 mutex_unlock(&xps_map_mutex);
2708
537c00de
AD
2709 kfree(new_dev_maps);
2710 return -ENOMEM;
2711}
4d99f660 2712EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2713
2714int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2715 u16 index)
2716{
4d99f660
AV
2717 int ret;
2718
2719 cpus_read_lock();
2720 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2721 cpus_read_unlock();
2722
2723 return ret;
80d19669 2724}
537c00de
AD
2725EXPORT_SYMBOL(netif_set_xps_queue);
2726
2727#endif
ffcfe25b
AD
2728static void netdev_unbind_all_sb_channels(struct net_device *dev)
2729{
2730 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2731
2732 /* Unbind any subordinate channels */
2733 while (txq-- != &dev->_tx[0]) {
2734 if (txq->sb_dev)
2735 netdev_unbind_sb_channel(dev, txq->sb_dev);
2736 }
2737}
2738
9cf1f6a8
AD
2739void netdev_reset_tc(struct net_device *dev)
2740{
6234f874
AD
2741#ifdef CONFIG_XPS
2742 netif_reset_xps_queues_gt(dev, 0);
2743#endif
ffcfe25b
AD
2744 netdev_unbind_all_sb_channels(dev);
2745
2746 /* Reset TC configuration of device */
9cf1f6a8
AD
2747 dev->num_tc = 0;
2748 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2749 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2750}
2751EXPORT_SYMBOL(netdev_reset_tc);
2752
2753int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2754{
2755 if (tc >= dev->num_tc)
2756 return -EINVAL;
2757
6234f874
AD
2758#ifdef CONFIG_XPS
2759 netif_reset_xps_queues(dev, offset, count);
2760#endif
9cf1f6a8
AD
2761 dev->tc_to_txq[tc].count = count;
2762 dev->tc_to_txq[tc].offset = offset;
2763 return 0;
2764}
2765EXPORT_SYMBOL(netdev_set_tc_queue);
2766
2767int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2768{
2769 if (num_tc > TC_MAX_QUEUE)
2770 return -EINVAL;
2771
6234f874
AD
2772#ifdef CONFIG_XPS
2773 netif_reset_xps_queues_gt(dev, 0);
2774#endif
ffcfe25b
AD
2775 netdev_unbind_all_sb_channels(dev);
2776
9cf1f6a8
AD
2777 dev->num_tc = num_tc;
2778 return 0;
2779}
2780EXPORT_SYMBOL(netdev_set_num_tc);
2781
ffcfe25b
AD
2782void netdev_unbind_sb_channel(struct net_device *dev,
2783 struct net_device *sb_dev)
2784{
2785 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2786
2787#ifdef CONFIG_XPS
2788 netif_reset_xps_queues_gt(sb_dev, 0);
2789#endif
2790 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2791 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2792
2793 while (txq-- != &dev->_tx[0]) {
2794 if (txq->sb_dev == sb_dev)
2795 txq->sb_dev = NULL;
2796 }
2797}
2798EXPORT_SYMBOL(netdev_unbind_sb_channel);
2799
2800int netdev_bind_sb_channel_queue(struct net_device *dev,
2801 struct net_device *sb_dev,
2802 u8 tc, u16 count, u16 offset)
2803{
2804 /* Make certain the sb_dev and dev are already configured */
2805 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2806 return -EINVAL;
2807
2808 /* We cannot hand out queues we don't have */
2809 if ((offset + count) > dev->real_num_tx_queues)
2810 return -EINVAL;
2811
2812 /* Record the mapping */
2813 sb_dev->tc_to_txq[tc].count = count;
2814 sb_dev->tc_to_txq[tc].offset = offset;
2815
2816 /* Provide a way for Tx queue to find the tc_to_txq map or
2817 * XPS map for itself.
2818 */
2819 while (count--)
2820 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2821
2822 return 0;
2823}
2824EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2825
2826int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2827{
2828 /* Do not use a multiqueue device to represent a subordinate channel */
2829 if (netif_is_multiqueue(dev))
2830 return -ENODEV;
2831
2832 /* We allow channels 1 - 32767 to be used for subordinate channels.
2833 * Channel 0 is meant to be "native" mode and used only to represent
2834 * the main root device. We allow writing 0 to reset the device back
2835 * to normal mode after being used as a subordinate channel.
2836 */
2837 if (channel > S16_MAX)
2838 return -EINVAL;
2839
2840 dev->num_tc = -channel;
2841
2842 return 0;
2843}
2844EXPORT_SYMBOL(netdev_set_sb_channel);
2845
f0796d5c
JF
2846/*
2847 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2848 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2849 */
e6484930 2850int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2851{
ac5b7019 2852 bool disabling;
1d24eb48
TH
2853 int rc;
2854
ac5b7019
JK
2855 disabling = txq < dev->real_num_tx_queues;
2856
e6484930
TH
2857 if (txq < 1 || txq > dev->num_tx_queues)
2858 return -EINVAL;
f0796d5c 2859
5c56580b
BH
2860 if (dev->reg_state == NETREG_REGISTERED ||
2861 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2862 ASSERT_RTNL();
2863
1d24eb48
TH
2864 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2865 txq);
bf264145
TH
2866 if (rc)
2867 return rc;
2868
4f57c087
JF
2869 if (dev->num_tc)
2870 netif_setup_tc(dev, txq);
2871
ac5b7019
JK
2872 dev->real_num_tx_queues = txq;
2873
2874 if (disabling) {
2875 synchronize_net();
e6484930 2876 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2877#ifdef CONFIG_XPS
2878 netif_reset_xps_queues_gt(dev, txq);
2879#endif
2880 }
ac5b7019
JK
2881 } else {
2882 dev->real_num_tx_queues = txq;
f0796d5c 2883 }
e6484930 2884
e6484930 2885 return 0;
f0796d5c
JF
2886}
2887EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2888
a953be53 2889#ifdef CONFIG_SYSFS
62fe0b40
BH
2890/**
2891 * netif_set_real_num_rx_queues - set actual number of RX queues used
2892 * @dev: Network device
2893 * @rxq: Actual number of RX queues
2894 *
2895 * This must be called either with the rtnl_lock held or before
2896 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2897 * negative error code. If called before registration, it always
2898 * succeeds.
62fe0b40
BH
2899 */
2900int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2901{
2902 int rc;
2903
bd25fa7b
TH
2904 if (rxq < 1 || rxq > dev->num_rx_queues)
2905 return -EINVAL;
2906
62fe0b40
BH
2907 if (dev->reg_state == NETREG_REGISTERED) {
2908 ASSERT_RTNL();
2909
62fe0b40
BH
2910 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2911 rxq);
2912 if (rc)
2913 return rc;
62fe0b40
BH
2914 }
2915
2916 dev->real_num_rx_queues = rxq;
2917 return 0;
2918}
2919EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2920#endif
2921
2c53040f
BH
2922/**
2923 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2924 *
2925 * This routine should set an upper limit on the number of RSS queues
2926 * used by default by multiqueue devices.
2927 */
a55b138b 2928int netif_get_num_default_rss_queues(void)
16917b87 2929{
40e4e713
HS
2930 return is_kdump_kernel() ?
2931 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2932}
2933EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2934
3bcb846c 2935static void __netif_reschedule(struct Qdisc *q)
56079431 2936{
def82a1d
JP
2937 struct softnet_data *sd;
2938 unsigned long flags;
56079431 2939
def82a1d 2940 local_irq_save(flags);
903ceff7 2941 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2942 q->next_sched = NULL;
2943 *sd->output_queue_tailp = q;
2944 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2945 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2946 local_irq_restore(flags);
2947}
2948
2949void __netif_schedule(struct Qdisc *q)
2950{
2951 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2952 __netif_reschedule(q);
56079431
DV
2953}
2954EXPORT_SYMBOL(__netif_schedule);
2955
e6247027
ED
2956struct dev_kfree_skb_cb {
2957 enum skb_free_reason reason;
2958};
2959
2960static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2961{
e6247027
ED
2962 return (struct dev_kfree_skb_cb *)skb->cb;
2963}
2964
46e5da40
JF
2965void netif_schedule_queue(struct netdev_queue *txq)
2966{
2967 rcu_read_lock();
5be5515a 2968 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
2969 struct Qdisc *q = rcu_dereference(txq->qdisc);
2970
2971 __netif_schedule(q);
2972 }
2973 rcu_read_unlock();
2974}
2975EXPORT_SYMBOL(netif_schedule_queue);
2976
46e5da40
JF
2977void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2978{
2979 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2980 struct Qdisc *q;
2981
2982 rcu_read_lock();
2983 q = rcu_dereference(dev_queue->qdisc);
2984 __netif_schedule(q);
2985 rcu_read_unlock();
2986 }
2987}
2988EXPORT_SYMBOL(netif_tx_wake_queue);
2989
e6247027 2990void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2991{
e6247027 2992 unsigned long flags;
56079431 2993
9899886d
MJ
2994 if (unlikely(!skb))
2995 return;
2996
63354797 2997 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2998 smp_rmb();
63354797
RE
2999 refcount_set(&skb->users, 0);
3000 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3001 return;
bea3348e 3002 }
e6247027
ED
3003 get_kfree_skb_cb(skb)->reason = reason;
3004 local_irq_save(flags);
3005 skb->next = __this_cpu_read(softnet_data.completion_queue);
3006 __this_cpu_write(softnet_data.completion_queue, skb);
3007 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3008 local_irq_restore(flags);
56079431 3009}
e6247027 3010EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3011
e6247027 3012void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
3013{
3014 if (in_irq() || irqs_disabled())
e6247027 3015 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3016 else
3017 dev_kfree_skb(skb);
3018}
e6247027 3019EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3020
3021
bea3348e
SH
3022/**
3023 * netif_device_detach - mark device as removed
3024 * @dev: network device
3025 *
3026 * Mark device as removed from system and therefore no longer available.
3027 */
56079431
DV
3028void netif_device_detach(struct net_device *dev)
3029{
3030 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3031 netif_running(dev)) {
d543103a 3032 netif_tx_stop_all_queues(dev);
56079431
DV
3033 }
3034}
3035EXPORT_SYMBOL(netif_device_detach);
3036
bea3348e
SH
3037/**
3038 * netif_device_attach - mark device as attached
3039 * @dev: network device
3040 *
3041 * Mark device as attached from system and restart if needed.
3042 */
56079431
DV
3043void netif_device_attach(struct net_device *dev)
3044{
3045 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3046 netif_running(dev)) {
d543103a 3047 netif_tx_wake_all_queues(dev);
4ec93edb 3048 __netdev_watchdog_up(dev);
56079431
DV
3049 }
3050}
3051EXPORT_SYMBOL(netif_device_attach);
3052
5605c762
JP
3053/*
3054 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3055 * to be used as a distribution range.
3056 */
eadec877
AD
3057static u16 skb_tx_hash(const struct net_device *dev,
3058 const struct net_device *sb_dev,
3059 struct sk_buff *skb)
5605c762
JP
3060{
3061 u32 hash;
3062 u16 qoffset = 0;
1b837d48 3063 u16 qcount = dev->real_num_tx_queues;
5605c762 3064
eadec877
AD
3065 if (dev->num_tc) {
3066 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3067
3068 qoffset = sb_dev->tc_to_txq[tc].offset;
3069 qcount = sb_dev->tc_to_txq[tc].count;
3070 }
3071
5605c762
JP
3072 if (skb_rx_queue_recorded(skb)) {
3073 hash = skb_get_rx_queue(skb);
1b837d48
AD
3074 while (unlikely(hash >= qcount))
3075 hash -= qcount;
eadec877 3076 return hash + qoffset;
5605c762
JP
3077 }
3078
3079 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3080}
5605c762 3081
36c92474
BH
3082static void skb_warn_bad_offload(const struct sk_buff *skb)
3083{
84d15ae5 3084 static const netdev_features_t null_features;
36c92474 3085 struct net_device *dev = skb->dev;
88ad4175 3086 const char *name = "";
36c92474 3087
c846ad9b
BG
3088 if (!net_ratelimit())
3089 return;
3090
88ad4175
BM
3091 if (dev) {
3092 if (dev->dev.parent)
3093 name = dev_driver_string(dev->dev.parent);
3094 else
3095 name = netdev_name(dev);
3096 }
6413139d
WB
3097 skb_dump(KERN_WARNING, skb, false);
3098 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3099 name, dev ? &dev->features : &null_features,
6413139d 3100 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3101}
3102
1da177e4
LT
3103/*
3104 * Invalidate hardware checksum when packet is to be mangled, and
3105 * complete checksum manually on outgoing path.
3106 */
84fa7933 3107int skb_checksum_help(struct sk_buff *skb)
1da177e4 3108{
d3bc23e7 3109 __wsum csum;
663ead3b 3110 int ret = 0, offset;
1da177e4 3111
84fa7933 3112 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3113 goto out_set_summed;
3114
3115 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
3116 skb_warn_bad_offload(skb);
3117 return -EINVAL;
1da177e4
LT
3118 }
3119
cef401de
ED
3120 /* Before computing a checksum, we should make sure no frag could
3121 * be modified by an external entity : checksum could be wrong.
3122 */
3123 if (skb_has_shared_frag(skb)) {
3124 ret = __skb_linearize(skb);
3125 if (ret)
3126 goto out;
3127 }
3128
55508d60 3129 offset = skb_checksum_start_offset(skb);
a030847e
HX
3130 BUG_ON(offset >= skb_headlen(skb));
3131 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3132
3133 offset += skb->csum_offset;
3134 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3135
8211fbfa
HK
3136 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3137 if (ret)
3138 goto out;
1da177e4 3139
4f2e4ad5 3140 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3141out_set_summed:
1da177e4 3142 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3143out:
1da177e4
LT
3144 return ret;
3145}
d1b19dff 3146EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3147
b72b5bf6
DC
3148int skb_crc32c_csum_help(struct sk_buff *skb)
3149{
3150 __le32 crc32c_csum;
3151 int ret = 0, offset, start;
3152
3153 if (skb->ip_summed != CHECKSUM_PARTIAL)
3154 goto out;
3155
3156 if (unlikely(skb_is_gso(skb)))
3157 goto out;
3158
3159 /* Before computing a checksum, we should make sure no frag could
3160 * be modified by an external entity : checksum could be wrong.
3161 */
3162 if (unlikely(skb_has_shared_frag(skb))) {
3163 ret = __skb_linearize(skb);
3164 if (ret)
3165 goto out;
3166 }
3167 start = skb_checksum_start_offset(skb);
3168 offset = start + offsetof(struct sctphdr, checksum);
3169 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3170 ret = -EINVAL;
3171 goto out;
3172 }
8211fbfa
HK
3173
3174 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3175 if (ret)
3176 goto out;
3177
b72b5bf6
DC
3178 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3179 skb->len - start, ~(__u32)0,
3180 crc32c_csum_stub));
3181 *(__le32 *)(skb->data + offset) = crc32c_csum;
3182 skb->ip_summed = CHECKSUM_NONE;
dba00306 3183 skb->csum_not_inet = 0;
b72b5bf6
DC
3184out:
3185 return ret;
3186}
3187
53d6471c 3188__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3189{
252e3346 3190 __be16 type = skb->protocol;
f6a78bfc 3191
19acc327
PS
3192 /* Tunnel gso handlers can set protocol to ethernet. */
3193 if (type == htons(ETH_P_TEB)) {
3194 struct ethhdr *eth;
3195
3196 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3197 return 0;
3198
1dfe82eb 3199 eth = (struct ethhdr *)skb->data;
19acc327
PS
3200 type = eth->h_proto;
3201 }
3202
d4bcef3f 3203 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3204}
3205
3206/**
3207 * skb_mac_gso_segment - mac layer segmentation handler.
3208 * @skb: buffer to segment
3209 * @features: features for the output path (see dev->features)
3210 */
3211struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3212 netdev_features_t features)
3213{
3214 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3215 struct packet_offload *ptype;
53d6471c
VY
3216 int vlan_depth = skb->mac_len;
3217 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3218
3219 if (unlikely(!type))
3220 return ERR_PTR(-EINVAL);
3221
53d6471c 3222 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3223
3224 rcu_read_lock();
22061d80 3225 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3226 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3227 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3228 break;
3229 }
3230 }
3231 rcu_read_unlock();
3232
98e399f8 3233 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3234
f6a78bfc
HX
3235 return segs;
3236}
05e8ef4a
PS
3237EXPORT_SYMBOL(skb_mac_gso_segment);
3238
3239
3240/* openvswitch calls this on rx path, so we need a different check.
3241 */
3242static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3243{
3244 if (tx_path)
0c19f846
WB
3245 return skb->ip_summed != CHECKSUM_PARTIAL &&
3246 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3247
3248 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3249}
3250
3251/**
3252 * __skb_gso_segment - Perform segmentation on skb.
3253 * @skb: buffer to segment
3254 * @features: features for the output path (see dev->features)
3255 * @tx_path: whether it is called in TX path
3256 *
3257 * This function segments the given skb and returns a list of segments.
3258 *
3259 * It may return NULL if the skb requires no segmentation. This is
3260 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
3261 *
3262 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3263 */
3264struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3265 netdev_features_t features, bool tx_path)
3266{
b2504a5d
ED
3267 struct sk_buff *segs;
3268
05e8ef4a
PS
3269 if (unlikely(skb_needs_check(skb, tx_path))) {
3270 int err;
3271
b2504a5d 3272 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3273 err = skb_cow_head(skb, 0);
3274 if (err < 0)
05e8ef4a
PS
3275 return ERR_PTR(err);
3276 }
3277
802ab55a
AD
3278 /* Only report GSO partial support if it will enable us to
3279 * support segmentation on this frame without needing additional
3280 * work.
3281 */
3282 if (features & NETIF_F_GSO_PARTIAL) {
3283 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3284 struct net_device *dev = skb->dev;
3285
3286 partial_features |= dev->features & dev->gso_partial_features;
3287 if (!skb_gso_ok(skb, features | partial_features))
3288 features &= ~NETIF_F_GSO_PARTIAL;
3289 }
3290
9207f9d4
KK
3291 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3292 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3293
68c33163 3294 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3295 SKB_GSO_CB(skb)->encap_level = 0;
3296
05e8ef4a
PS
3297 skb_reset_mac_header(skb);
3298 skb_reset_mac_len(skb);
3299
b2504a5d
ED
3300 segs = skb_mac_gso_segment(skb, features);
3301
3a1296a3 3302 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3303 skb_warn_bad_offload(skb);
3304
3305 return segs;
05e8ef4a 3306}
12b0004d 3307EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3308
fb286bb2
HX
3309/* Take action when hardware reception checksum errors are detected. */
3310#ifdef CONFIG_BUG
7fe50ac8 3311void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3312{
3313 if (net_ratelimit()) {
7b6cd1ce 3314 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
6413139d 3315 skb_dump(KERN_ERR, skb, true);
fb286bb2
HX
3316 dump_stack();
3317 }
3318}
3319EXPORT_SYMBOL(netdev_rx_csum_fault);
3320#endif
3321
ab74cfeb 3322/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3323static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3324{
3d3a8533 3325#ifdef CONFIG_HIGHMEM
1da177e4 3326 int i;
f4563a75 3327
5acbbd42 3328 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3329 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3330 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3331
ea2ab693 3332 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3333 return 1;
ea2ab693 3334 }
5acbbd42 3335 }
3d3a8533 3336#endif
1da177e4
LT
3337 return 0;
3338}
1da177e4 3339
3b392ddb
SH
3340/* If MPLS offload request, verify we are testing hardware MPLS features
3341 * instead of standard features for the netdev.
3342 */
d0edc7bf 3343#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3344static netdev_features_t net_mpls_features(struct sk_buff *skb,
3345 netdev_features_t features,
3346 __be16 type)
3347{
25cd9ba0 3348 if (eth_p_mpls(type))
3b392ddb
SH
3349 features &= skb->dev->mpls_features;
3350
3351 return features;
3352}
3353#else
3354static netdev_features_t net_mpls_features(struct sk_buff *skb,
3355 netdev_features_t features,
3356 __be16 type)
3357{
3358 return features;
3359}
3360#endif
3361
c8f44aff 3362static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3363 netdev_features_t features)
f01a5236 3364{
53d6471c 3365 int tmp;
3b392ddb
SH
3366 __be16 type;
3367
3368 type = skb_network_protocol(skb, &tmp);
3369 features = net_mpls_features(skb, features, type);
53d6471c 3370
c0d680e5 3371 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3372 !can_checksum_protocol(features, type)) {
996e8021 3373 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3374 }
7be2c82c
ED
3375 if (illegal_highdma(skb->dev, skb))
3376 features &= ~NETIF_F_SG;
f01a5236
JG
3377
3378 return features;
3379}
3380
e38f3025
TM
3381netdev_features_t passthru_features_check(struct sk_buff *skb,
3382 struct net_device *dev,
3383 netdev_features_t features)
3384{
3385 return features;
3386}
3387EXPORT_SYMBOL(passthru_features_check);
3388
7ce23672 3389static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3390 struct net_device *dev,
3391 netdev_features_t features)
3392{
3393 return vlan_features_check(skb, features);
3394}
3395
cbc53e08
AD
3396static netdev_features_t gso_features_check(const struct sk_buff *skb,
3397 struct net_device *dev,
3398 netdev_features_t features)
3399{
3400 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3401
3402 if (gso_segs > dev->gso_max_segs)
3403 return features & ~NETIF_F_GSO_MASK;
3404
802ab55a
AD
3405 /* Support for GSO partial features requires software
3406 * intervention before we can actually process the packets
3407 * so we need to strip support for any partial features now
3408 * and we can pull them back in after we have partially
3409 * segmented the frame.
3410 */
3411 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3412 features &= ~dev->gso_partial_features;
3413
3414 /* Make sure to clear the IPv4 ID mangling feature if the
3415 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3416 */
3417 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3418 struct iphdr *iph = skb->encapsulation ?
3419 inner_ip_hdr(skb) : ip_hdr(skb);
3420
3421 if (!(iph->frag_off & htons(IP_DF)))
3422 features &= ~NETIF_F_TSO_MANGLEID;
3423 }
3424
3425 return features;
3426}
3427
c1e756bf 3428netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3429{
5f35227e 3430 struct net_device *dev = skb->dev;
fcbeb976 3431 netdev_features_t features = dev->features;
58e998c6 3432
cbc53e08
AD
3433 if (skb_is_gso(skb))
3434 features = gso_features_check(skb, dev, features);
30b678d8 3435
5f35227e
JG
3436 /* If encapsulation offload request, verify we are testing
3437 * hardware encapsulation features instead of standard
3438 * features for the netdev
3439 */
3440 if (skb->encapsulation)
3441 features &= dev->hw_enc_features;
3442
f5a7fb88
TM
3443 if (skb_vlan_tagged(skb))
3444 features = netdev_intersect_features(features,
3445 dev->vlan_features |
3446 NETIF_F_HW_VLAN_CTAG_TX |
3447 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3448
5f35227e
JG
3449 if (dev->netdev_ops->ndo_features_check)
3450 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3451 features);
8cb65d00
TM
3452 else
3453 features &= dflt_features_check(skb, dev, features);
5f35227e 3454
c1e756bf 3455 return harmonize_features(skb, features);
58e998c6 3456}
c1e756bf 3457EXPORT_SYMBOL(netif_skb_features);
58e998c6 3458
2ea25513 3459static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3460 struct netdev_queue *txq, bool more)
f6a78bfc 3461{
2ea25513
DM
3462 unsigned int len;
3463 int rc;
00829823 3464
9f9a742d 3465 if (dev_nit_active(dev))
2ea25513 3466 dev_queue_xmit_nit(skb, dev);
fc741216 3467
2ea25513
DM
3468 len = skb->len;
3469 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3470 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3471 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3472
2ea25513
DM
3473 return rc;
3474}
7b9c6090 3475
8dcda22a
DM
3476struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3477 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3478{
3479 struct sk_buff *skb = first;
3480 int rc = NETDEV_TX_OK;
7b9c6090 3481
7f2e870f
DM
3482 while (skb) {
3483 struct sk_buff *next = skb->next;
fc70fb64 3484
a8305bff 3485 skb_mark_not_on_list(skb);
95f6b3dd 3486 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3487 if (unlikely(!dev_xmit_complete(rc))) {
3488 skb->next = next;
3489 goto out;
3490 }
6afff0ca 3491
7f2e870f 3492 skb = next;
fe60faa5 3493 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3494 rc = NETDEV_TX_BUSY;
3495 break;
9ccb8975 3496 }
7f2e870f 3497 }
9ccb8975 3498
7f2e870f
DM
3499out:
3500 *ret = rc;
3501 return skb;
3502}
b40863c6 3503
1ff0dc94
ED
3504static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3505 netdev_features_t features)
f6a78bfc 3506{
df8a39de 3507 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3508 !vlan_hw_offload_capable(features, skb->vlan_proto))
3509 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3510 return skb;
3511}
f6a78bfc 3512
43c26a1a
DC
3513int skb_csum_hwoffload_help(struct sk_buff *skb,
3514 const netdev_features_t features)
3515{
3516 if (unlikely(skb->csum_not_inet))
3517 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3518 skb_crc32c_csum_help(skb);
3519
3520 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3521}
3522EXPORT_SYMBOL(skb_csum_hwoffload_help);
3523
f53c7239 3524static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3525{
3526 netdev_features_t features;
f6a78bfc 3527
eae3f88e
DM
3528 features = netif_skb_features(skb);
3529 skb = validate_xmit_vlan(skb, features);
3530 if (unlikely(!skb))
3531 goto out_null;
7b9c6090 3532
ebf4e808
IL
3533 skb = sk_validate_xmit_skb(skb, dev);
3534 if (unlikely(!skb))
3535 goto out_null;
3536
8b86a61d 3537 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3538 struct sk_buff *segs;
3539
3540 segs = skb_gso_segment(skb, features);
cecda693 3541 if (IS_ERR(segs)) {
af6dabc9 3542 goto out_kfree_skb;
cecda693
JW
3543 } else if (segs) {
3544 consume_skb(skb);
3545 skb = segs;
f6a78bfc 3546 }
eae3f88e
DM
3547 } else {
3548 if (skb_needs_linearize(skb, features) &&
3549 __skb_linearize(skb))
3550 goto out_kfree_skb;
4ec93edb 3551
eae3f88e
DM
3552 /* If packet is not checksummed and device does not
3553 * support checksumming for this protocol, complete
3554 * checksumming here.
3555 */
3556 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3557 if (skb->encapsulation)
3558 skb_set_inner_transport_header(skb,
3559 skb_checksum_start_offset(skb));
3560 else
3561 skb_set_transport_header(skb,
3562 skb_checksum_start_offset(skb));
43c26a1a 3563 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3564 goto out_kfree_skb;
7b9c6090 3565 }
0c772159 3566 }
7b9c6090 3567
f53c7239 3568 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3569
eae3f88e 3570 return skb;
fc70fb64 3571
f6a78bfc
HX
3572out_kfree_skb:
3573 kfree_skb(skb);
eae3f88e 3574out_null:
d21fd63e 3575 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3576 return NULL;
3577}
6afff0ca 3578
f53c7239 3579struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3580{
3581 struct sk_buff *next, *head = NULL, *tail;
3582
bec3cfdc 3583 for (; skb != NULL; skb = next) {
55a93b3e 3584 next = skb->next;
a8305bff 3585 skb_mark_not_on_list(skb);
bec3cfdc
ED
3586
3587 /* in case skb wont be segmented, point to itself */
3588 skb->prev = skb;
3589
f53c7239 3590 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3591 if (!skb)
3592 continue;
55a93b3e 3593
bec3cfdc
ED
3594 if (!head)
3595 head = skb;
3596 else
3597 tail->next = skb;
3598 /* If skb was segmented, skb->prev points to
3599 * the last segment. If not, it still contains skb.
3600 */
3601 tail = skb->prev;
55a93b3e
ED
3602 }
3603 return head;
f6a78bfc 3604}
104ba78c 3605EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3606
1def9238
ED
3607static void qdisc_pkt_len_init(struct sk_buff *skb)
3608{
3609 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3610
3611 qdisc_skb_cb(skb)->pkt_len = skb->len;
3612
3613 /* To get more precise estimation of bytes sent on wire,
3614 * we add to pkt_len the headers size of all segments
3615 */
a0dce875 3616 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3617 unsigned int hdr_len;
15e5a030 3618 u16 gso_segs = shinfo->gso_segs;
1def9238 3619
757b8b1d
ED
3620 /* mac layer + network layer */
3621 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3622
3623 /* + transport layer */
7c68d1a6
ED
3624 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3625 const struct tcphdr *th;
3626 struct tcphdr _tcphdr;
3627
3628 th = skb_header_pointer(skb, skb_transport_offset(skb),
3629 sizeof(_tcphdr), &_tcphdr);
3630 if (likely(th))
3631 hdr_len += __tcp_hdrlen(th);
3632 } else {
3633 struct udphdr _udphdr;
3634
3635 if (skb_header_pointer(skb, skb_transport_offset(skb),
3636 sizeof(_udphdr), &_udphdr))
3637 hdr_len += sizeof(struct udphdr);
3638 }
15e5a030
JW
3639
3640 if (shinfo->gso_type & SKB_GSO_DODGY)
3641 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3642 shinfo->gso_size);
3643
3644 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3645 }
3646}
3647
bbd8a0d3
KK
3648static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3649 struct net_device *dev,
3650 struct netdev_queue *txq)
3651{
3652 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3653 struct sk_buff *to_free = NULL;
a2da570d 3654 bool contended;
bbd8a0d3
KK
3655 int rc;
3656
a2da570d 3657 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3658
3659 if (q->flags & TCQ_F_NOLOCK) {
90b2be27 3660 if ((q->flags & TCQ_F_CAN_BYPASS) && READ_ONCE(q->empty) &&
d518d2ed
PA
3661 qdisc_run_begin(q)) {
3662 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3663 &q->state))) {
3664 __qdisc_drop(skb, &to_free);
3665 rc = NET_XMIT_DROP;
3666 goto end_run;
3667 }
ba27b4cd
PA
3668 qdisc_bstats_cpu_update(q, skb);
3669
d518d2ed 3670 rc = NET_XMIT_SUCCESS;
ba27b4cd
PA
3671 if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3672 __qdisc_run(q);
3673
d518d2ed 3674end_run:
ba27b4cd 3675 qdisc_run_end(q);
6b3ba914
JF
3676 } else {
3677 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
32f7b44d 3678 qdisc_run(q);
6b3ba914
JF
3679 }
3680
3681 if (unlikely(to_free))
3682 kfree_skb_list(to_free);
3683 return rc;
3684 }
3685
79640a4c
ED
3686 /*
3687 * Heuristic to force contended enqueues to serialize on a
3688 * separate lock before trying to get qdisc main lock.
f9eb8aea 3689 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3690 * often and dequeue packets faster.
79640a4c 3691 */
a2da570d 3692 contended = qdisc_is_running(q);
79640a4c
ED
3693 if (unlikely(contended))
3694 spin_lock(&q->busylock);
3695
bbd8a0d3
KK
3696 spin_lock(root_lock);
3697 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3698 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3699 rc = NET_XMIT_DROP;
3700 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3701 qdisc_run_begin(q)) {
bbd8a0d3
KK
3702 /*
3703 * This is a work-conserving queue; there are no old skbs
3704 * waiting to be sent out; and the qdisc is not running -
3705 * xmit the skb directly.
3706 */
bfe0d029 3707
bfe0d029
ED
3708 qdisc_bstats_update(q, skb);
3709
55a93b3e 3710 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3711 if (unlikely(contended)) {
3712 spin_unlock(&q->busylock);
3713 contended = false;
3714 }
bbd8a0d3 3715 __qdisc_run(q);
6c148184 3716 }
bbd8a0d3 3717
6c148184 3718 qdisc_run_end(q);
bbd8a0d3
KK
3719 rc = NET_XMIT_SUCCESS;
3720 } else {
520ac30f 3721 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3722 if (qdisc_run_begin(q)) {
3723 if (unlikely(contended)) {
3724 spin_unlock(&q->busylock);
3725 contended = false;
3726 }
3727 __qdisc_run(q);
6c148184 3728 qdisc_run_end(q);
79640a4c 3729 }
bbd8a0d3
KK
3730 }
3731 spin_unlock(root_lock);
520ac30f
ED
3732 if (unlikely(to_free))
3733 kfree_skb_list(to_free);
79640a4c
ED
3734 if (unlikely(contended))
3735 spin_unlock(&q->busylock);
bbd8a0d3
KK
3736 return rc;
3737}
3738
86f8515f 3739#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3740static void skb_update_prio(struct sk_buff *skb)
3741{
4dcb31d4
ED
3742 const struct netprio_map *map;
3743 const struct sock *sk;
3744 unsigned int prioidx;
5bc1421e 3745
4dcb31d4
ED
3746 if (skb->priority)
3747 return;
3748 map = rcu_dereference_bh(skb->dev->priomap);
3749 if (!map)
3750 return;
3751 sk = skb_to_full_sk(skb);
3752 if (!sk)
3753 return;
91c68ce2 3754
4dcb31d4
ED
3755 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3756
3757 if (prioidx < map->priomap_len)
3758 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3759}
3760#else
3761#define skb_update_prio(skb)
3762#endif
3763
95603e22
MM
3764/**
3765 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3766 * @net: network namespace this loopback is happening in
3767 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3768 * @skb: buffer to transmit
3769 */
0c4b51f0 3770int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3771{
3772 skb_reset_mac_header(skb);
3773 __skb_pull(skb, skb_network_offset(skb));
3774 skb->pkt_type = PACKET_LOOPBACK;
3775 skb->ip_summed = CHECKSUM_UNNECESSARY;
3776 WARN_ON(!skb_dst(skb));
3777 skb_dst_force(skb);
3778 netif_rx_ni(skb);
3779 return 0;
3780}
3781EXPORT_SYMBOL(dev_loopback_xmit);
3782
1f211a1b
DB
3783#ifdef CONFIG_NET_EGRESS
3784static struct sk_buff *
3785sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3786{
46209401 3787 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3788 struct tcf_result cl_res;
3789
46209401 3790 if (!miniq)
1f211a1b
DB
3791 return skb;
3792
8dc07fdb 3793 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3794 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3795
46209401 3796 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3797 case TC_ACT_OK:
3798 case TC_ACT_RECLASSIFY:
3799 skb->tc_index = TC_H_MIN(cl_res.classid);
3800 break;
3801 case TC_ACT_SHOT:
46209401 3802 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3803 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3804 kfree_skb(skb);
3805 return NULL;
1f211a1b
DB
3806 case TC_ACT_STOLEN:
3807 case TC_ACT_QUEUED:
e25ea21f 3808 case TC_ACT_TRAP:
1f211a1b 3809 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3810 consume_skb(skb);
1f211a1b
DB
3811 return NULL;
3812 case TC_ACT_REDIRECT:
3813 /* No need to push/pop skb's mac_header here on egress! */
3814 skb_do_redirect(skb);
3815 *ret = NET_XMIT_SUCCESS;
3816 return NULL;
3817 default:
3818 break;
3819 }
3820
3821 return skb;
3822}
3823#endif /* CONFIG_NET_EGRESS */
3824
fc9bab24
AN
3825#ifdef CONFIG_XPS
3826static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3827 struct xps_dev_maps *dev_maps, unsigned int tci)
3828{
3829 struct xps_map *map;
3830 int queue_index = -1;
3831
3832 if (dev->num_tc) {
3833 tci *= dev->num_tc;
3834 tci += netdev_get_prio_tc_map(dev, skb->priority);
3835 }
3836
3837 map = rcu_dereference(dev_maps->attr_map[tci]);
3838 if (map) {
3839 if (map->len == 1)
3840 queue_index = map->queues[0];
3841 else
3842 queue_index = map->queues[reciprocal_scale(
3843 skb_get_hash(skb), map->len)];
3844 if (unlikely(queue_index >= dev->real_num_tx_queues))
3845 queue_index = -1;
3846 }
3847 return queue_index;
3848}
3849#endif
3850
eadec877
AD
3851static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3852 struct sk_buff *skb)
638b2a69
JP
3853{
3854#ifdef CONFIG_XPS
3855 struct xps_dev_maps *dev_maps;
fc9bab24 3856 struct sock *sk = skb->sk;
638b2a69
JP
3857 int queue_index = -1;
3858
04157469
AN
3859 if (!static_key_false(&xps_needed))
3860 return -1;
3861
638b2a69 3862 rcu_read_lock();
fc9bab24
AN
3863 if (!static_key_false(&xps_rxqs_needed))
3864 goto get_cpus_map;
3865
eadec877 3866 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3867 if (dev_maps) {
fc9bab24 3868 int tci = sk_rx_queue_get(sk);
184c449f 3869
fc9bab24
AN
3870 if (tci >= 0 && tci < dev->num_rx_queues)
3871 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3872 tci);
3873 }
184c449f 3874
fc9bab24
AN
3875get_cpus_map:
3876 if (queue_index < 0) {
eadec877 3877 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3878 if (dev_maps) {
3879 unsigned int tci = skb->sender_cpu - 1;
3880
3881 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3882 tci);
638b2a69
JP
3883 }
3884 }
3885 rcu_read_unlock();
3886
3887 return queue_index;
3888#else
3889 return -1;
3890#endif
3891}
3892
a4ea8a3d 3893u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3894 struct net_device *sb_dev)
a4ea8a3d
AD
3895{
3896 return 0;
3897}
3898EXPORT_SYMBOL(dev_pick_tx_zero);
3899
3900u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 3901 struct net_device *sb_dev)
a4ea8a3d
AD
3902{
3903 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3904}
3905EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3906
b71b5837
PA
3907u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3908 struct net_device *sb_dev)
638b2a69
JP
3909{
3910 struct sock *sk = skb->sk;
3911 int queue_index = sk_tx_queue_get(sk);
3912
eadec877
AD
3913 sb_dev = sb_dev ? : dev;
3914
638b2a69
JP
3915 if (queue_index < 0 || skb->ooo_okay ||
3916 queue_index >= dev->real_num_tx_queues) {
eadec877 3917 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 3918
638b2a69 3919 if (new_index < 0)
eadec877 3920 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
3921
3922 if (queue_index != new_index && sk &&
004a5d01 3923 sk_fullsock(sk) &&
638b2a69
JP
3924 rcu_access_pointer(sk->sk_dst_cache))
3925 sk_tx_queue_set(sk, new_index);
3926
3927 queue_index = new_index;
3928 }
3929
3930 return queue_index;
3931}
b71b5837 3932EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 3933
4bd97d51
PA
3934struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3935 struct sk_buff *skb,
3936 struct net_device *sb_dev)
638b2a69
JP
3937{
3938 int queue_index = 0;
3939
3940#ifdef CONFIG_XPS
52bd2d62
ED
3941 u32 sender_cpu = skb->sender_cpu - 1;
3942
3943 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3944 skb->sender_cpu = raw_smp_processor_id() + 1;
3945#endif
3946
3947 if (dev->real_num_tx_queues != 1) {
3948 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3949
638b2a69 3950 if (ops->ndo_select_queue)
a350ecce 3951 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 3952 else
4bd97d51 3953 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 3954
d584527c 3955 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
3956 }
3957
3958 skb_set_queue_mapping(skb, queue_index);
3959 return netdev_get_tx_queue(dev, queue_index);
3960}
3961
d29f749e 3962/**
9d08dd3d 3963 * __dev_queue_xmit - transmit a buffer
d29f749e 3964 * @skb: buffer to transmit
eadec877 3965 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
3966 *
3967 * Queue a buffer for transmission to a network device. The caller must
3968 * have set the device and priority and built the buffer before calling
3969 * this function. The function can be called from an interrupt.
3970 *
3971 * A negative errno code is returned on a failure. A success does not
3972 * guarantee the frame will be transmitted as it may be dropped due
3973 * to congestion or traffic shaping.
3974 *
3975 * -----------------------------------------------------------------------------------
3976 * I notice this method can also return errors from the queue disciplines,
3977 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3978 * be positive.
3979 *
3980 * Regardless of the return value, the skb is consumed, so it is currently
3981 * difficult to retry a send to this method. (You can bump the ref count
3982 * before sending to hold a reference for retry if you are careful.)
3983 *
3984 * When calling this method, interrupts MUST be enabled. This is because
3985 * the BH enable code must have IRQs enabled so that it will not deadlock.
3986 * --BLG
3987 */
eadec877 3988static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
3989{
3990 struct net_device *dev = skb->dev;
dc2b4847 3991 struct netdev_queue *txq;
1da177e4
LT
3992 struct Qdisc *q;
3993 int rc = -ENOMEM;
f53c7239 3994 bool again = false;
1da177e4 3995
6d1ccff6
ED
3996 skb_reset_mac_header(skb);
3997
e7fd2885
WB
3998 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3999 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4000
4ec93edb
YH
4001 /* Disable soft irqs for various locks below. Also
4002 * stops preemption for RCU.
1da177e4 4003 */
4ec93edb 4004 rcu_read_lock_bh();
1da177e4 4005
5bc1421e
NH
4006 skb_update_prio(skb);
4007
1f211a1b
DB
4008 qdisc_pkt_len_init(skb);
4009#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 4010 skb->tc_at_ingress = 0;
1f211a1b 4011# ifdef CONFIG_NET_EGRESS
aabf6772 4012 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
4013 skb = sch_handle_egress(skb, &rc, dev);
4014 if (!skb)
4015 goto out;
4016 }
4017# endif
4018#endif
02875878
ED
4019 /* If device/qdisc don't need skb->dst, release it right now while
4020 * its hot in this cpu cache.
4021 */
4022 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4023 skb_dst_drop(skb);
4024 else
4025 skb_dst_force(skb);
4026
4bd97d51 4027 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4028 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4029
cf66ba58 4030 trace_net_dev_queue(skb);
1da177e4 4031 if (q->enqueue) {
bbd8a0d3 4032 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4033 goto out;
1da177e4
LT
4034 }
4035
4036 /* The device has no queue. Common case for software devices:
eb13da1a 4037 * loopback, all the sorts of tunnels...
1da177e4 4038
eb13da1a 4039 * Really, it is unlikely that netif_tx_lock protection is necessary
4040 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4041 * counters.)
4042 * However, it is possible, that they rely on protection
4043 * made by us here.
1da177e4 4044
eb13da1a 4045 * Check this and shot the lock. It is not prone from deadlocks.
4046 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4047 */
4048 if (dev->flags & IFF_UP) {
4049 int cpu = smp_processor_id(); /* ok because BHs are off */
4050
c773e847 4051 if (txq->xmit_lock_owner != cpu) {
97cdcf37 4052 if (dev_xmit_recursion())
745e20f1
ED
4053 goto recursion_alert;
4054
f53c7239 4055 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4056 if (!skb)
d21fd63e 4057 goto out;
1f59533f 4058
c773e847 4059 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4060
73466498 4061 if (!netif_xmit_stopped(txq)) {
97cdcf37 4062 dev_xmit_recursion_inc();
ce93718f 4063 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4064 dev_xmit_recursion_dec();
572a9d7b 4065 if (dev_xmit_complete(rc)) {
c773e847 4066 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4067 goto out;
4068 }
4069 }
c773e847 4070 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4071 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4072 dev->name);
1da177e4
LT
4073 } else {
4074 /* Recursion is detected! It is possible,
745e20f1
ED
4075 * unfortunately
4076 */
4077recursion_alert:
e87cc472
JP
4078 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4079 dev->name);
1da177e4
LT
4080 }
4081 }
4082
4083 rc = -ENETDOWN;
d4828d85 4084 rcu_read_unlock_bh();
1da177e4 4085
015f0688 4086 atomic_long_inc(&dev->tx_dropped);
1f59533f 4087 kfree_skb_list(skb);
1da177e4
LT
4088 return rc;
4089out:
d4828d85 4090 rcu_read_unlock_bh();
1da177e4
LT
4091 return rc;
4092}
f663dd9a 4093
2b4aa3ce 4094int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4095{
4096 return __dev_queue_xmit(skb, NULL);
4097}
2b4aa3ce 4098EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4099
eadec877 4100int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4101{
eadec877 4102 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4103}
4104EXPORT_SYMBOL(dev_queue_xmit_accel);
4105
865b03f2
MK
4106int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4107{
4108 struct net_device *dev = skb->dev;
4109 struct sk_buff *orig_skb = skb;
4110 struct netdev_queue *txq;
4111 int ret = NETDEV_TX_BUSY;
4112 bool again = false;
4113
4114 if (unlikely(!netif_running(dev) ||
4115 !netif_carrier_ok(dev)))
4116 goto drop;
4117
4118 skb = validate_xmit_skb_list(skb, dev, &again);
4119 if (skb != orig_skb)
4120 goto drop;
4121
4122 skb_set_queue_mapping(skb, queue_id);
4123 txq = skb_get_tx_queue(dev, skb);
4124
4125 local_bh_disable();
4126
4127 HARD_TX_LOCK(dev, txq, smp_processor_id());
4128 if (!netif_xmit_frozen_or_drv_stopped(txq))
4129 ret = netdev_start_xmit(skb, dev, txq, false);
4130 HARD_TX_UNLOCK(dev, txq);
4131
4132 local_bh_enable();
4133
4134 if (!dev_xmit_complete(ret))
4135 kfree_skb(skb);
4136
4137 return ret;
4138drop:
4139 atomic_long_inc(&dev->tx_dropped);
4140 kfree_skb_list(skb);
4141 return NET_XMIT_DROP;
4142}
4143EXPORT_SYMBOL(dev_direct_xmit);
1da177e4 4144
eb13da1a 4145/*************************************************************************
4146 * Receiver routines
4147 *************************************************************************/
1da177e4 4148
6b2bedc3 4149int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4150EXPORT_SYMBOL(netdev_max_backlog);
4151
3b098e2d 4152int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4153int netdev_budget __read_mostly = 300;
7acf8a1e 4154unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
4155int weight_p __read_mostly = 64; /* old backlog weight */
4156int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4157int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4158int dev_rx_weight __read_mostly = 64;
4159int dev_tx_weight __read_mostly = 64;
323ebb61
EC
4160/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4161int gro_normal_batch __read_mostly = 8;
1da177e4 4162
eecfd7c4
ED
4163/* Called with irq disabled */
4164static inline void ____napi_schedule(struct softnet_data *sd,
4165 struct napi_struct *napi)
4166{
4167 list_add_tail(&napi->poll_list, &sd->poll_list);
4168 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4169}
4170
bfb564e7
KK
4171#ifdef CONFIG_RPS
4172
4173/* One global table that all flow-based protocols share. */
6e3f7faf 4174struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4175EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4176u32 rps_cpu_mask __read_mostly;
4177EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4178
dc05360f 4179struct static_key_false rps_needed __read_mostly;
3df97ba8 4180EXPORT_SYMBOL(rps_needed);
dc05360f 4181struct static_key_false rfs_needed __read_mostly;
13bfff25 4182EXPORT_SYMBOL(rfs_needed);
adc9300e 4183
c445477d
BH
4184static struct rps_dev_flow *
4185set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4186 struct rps_dev_flow *rflow, u16 next_cpu)
4187{
a31196b0 4188 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4189#ifdef CONFIG_RFS_ACCEL
4190 struct netdev_rx_queue *rxqueue;
4191 struct rps_dev_flow_table *flow_table;
4192 struct rps_dev_flow *old_rflow;
4193 u32 flow_id;
4194 u16 rxq_index;
4195 int rc;
4196
4197 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4198 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4199 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4200 goto out;
4201 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4202 if (rxq_index == skb_get_rx_queue(skb))
4203 goto out;
4204
4205 rxqueue = dev->_rx + rxq_index;
4206 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4207 if (!flow_table)
4208 goto out;
61b905da 4209 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4210 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4211 rxq_index, flow_id);
4212 if (rc < 0)
4213 goto out;
4214 old_rflow = rflow;
4215 rflow = &flow_table->flows[flow_id];
c445477d
BH
4216 rflow->filter = rc;
4217 if (old_rflow->filter == rflow->filter)
4218 old_rflow->filter = RPS_NO_FILTER;
4219 out:
4220#endif
4221 rflow->last_qtail =
09994d1b 4222 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4223 }
4224
09994d1b 4225 rflow->cpu = next_cpu;
c445477d
BH
4226 return rflow;
4227}
4228
bfb564e7
KK
4229/*
4230 * get_rps_cpu is called from netif_receive_skb and returns the target
4231 * CPU from the RPS map of the receiving queue for a given skb.
4232 * rcu_read_lock must be held on entry.
4233 */
4234static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4235 struct rps_dev_flow **rflowp)
4236{
567e4b79
ED
4237 const struct rps_sock_flow_table *sock_flow_table;
4238 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4239 struct rps_dev_flow_table *flow_table;
567e4b79 4240 struct rps_map *map;
bfb564e7 4241 int cpu = -1;
567e4b79 4242 u32 tcpu;
61b905da 4243 u32 hash;
bfb564e7
KK
4244
4245 if (skb_rx_queue_recorded(skb)) {
4246 u16 index = skb_get_rx_queue(skb);
567e4b79 4247
62fe0b40
BH
4248 if (unlikely(index >= dev->real_num_rx_queues)) {
4249 WARN_ONCE(dev->real_num_rx_queues > 1,
4250 "%s received packet on queue %u, but number "
4251 "of RX queues is %u\n",
4252 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4253 goto done;
4254 }
567e4b79
ED
4255 rxqueue += index;
4256 }
bfb564e7 4257
567e4b79
ED
4258 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4259
4260 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4261 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4262 if (!flow_table && !map)
bfb564e7
KK
4263 goto done;
4264
2d47b459 4265 skb_reset_network_header(skb);
61b905da
TH
4266 hash = skb_get_hash(skb);
4267 if (!hash)
bfb564e7
KK
4268 goto done;
4269
fec5e652
TH
4270 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4271 if (flow_table && sock_flow_table) {
fec5e652 4272 struct rps_dev_flow *rflow;
567e4b79
ED
4273 u32 next_cpu;
4274 u32 ident;
4275
4276 /* First check into global flow table if there is a match */
4277 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4278 if ((ident ^ hash) & ~rps_cpu_mask)
4279 goto try_rps;
fec5e652 4280
567e4b79
ED
4281 next_cpu = ident & rps_cpu_mask;
4282
4283 /* OK, now we know there is a match,
4284 * we can look at the local (per receive queue) flow table
4285 */
61b905da 4286 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4287 tcpu = rflow->cpu;
4288
fec5e652
TH
4289 /*
4290 * If the desired CPU (where last recvmsg was done) is
4291 * different from current CPU (one in the rx-queue flow
4292 * table entry), switch if one of the following holds:
a31196b0 4293 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4294 * - Current CPU is offline.
4295 * - The current CPU's queue tail has advanced beyond the
4296 * last packet that was enqueued using this table entry.
4297 * This guarantees that all previous packets for the flow
4298 * have been dequeued, thus preserving in order delivery.
4299 */
4300 if (unlikely(tcpu != next_cpu) &&
a31196b0 4301 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4302 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4303 rflow->last_qtail)) >= 0)) {
4304 tcpu = next_cpu;
c445477d 4305 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4306 }
c445477d 4307
a31196b0 4308 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4309 *rflowp = rflow;
4310 cpu = tcpu;
4311 goto done;
4312 }
4313 }
4314
567e4b79
ED
4315try_rps:
4316
0a9627f2 4317 if (map) {
8fc54f68 4318 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4319 if (cpu_online(tcpu)) {
4320 cpu = tcpu;
4321 goto done;
4322 }
4323 }
4324
4325done:
0a9627f2
TH
4326 return cpu;
4327}
4328
c445477d
BH
4329#ifdef CONFIG_RFS_ACCEL
4330
4331/**
4332 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4333 * @dev: Device on which the filter was set
4334 * @rxq_index: RX queue index
4335 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4336 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4337 *
4338 * Drivers that implement ndo_rx_flow_steer() should periodically call
4339 * this function for each installed filter and remove the filters for
4340 * which it returns %true.
4341 */
4342bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4343 u32 flow_id, u16 filter_id)
4344{
4345 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4346 struct rps_dev_flow_table *flow_table;
4347 struct rps_dev_flow *rflow;
4348 bool expire = true;
a31196b0 4349 unsigned int cpu;
c445477d
BH
4350
4351 rcu_read_lock();
4352 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4353 if (flow_table && flow_id <= flow_table->mask) {
4354 rflow = &flow_table->flows[flow_id];
6aa7de05 4355 cpu = READ_ONCE(rflow->cpu);
a31196b0 4356 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4357 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4358 rflow->last_qtail) <
4359 (int)(10 * flow_table->mask)))
4360 expire = false;
4361 }
4362 rcu_read_unlock();
4363 return expire;
4364}
4365EXPORT_SYMBOL(rps_may_expire_flow);
4366
4367#endif /* CONFIG_RFS_ACCEL */
4368
0a9627f2 4369/* Called from hardirq (IPI) context */
e36fa2f7 4370static void rps_trigger_softirq(void *data)
0a9627f2 4371{
e36fa2f7
ED
4372 struct softnet_data *sd = data;
4373
eecfd7c4 4374 ____napi_schedule(sd, &sd->backlog);
dee42870 4375 sd->received_rps++;
0a9627f2 4376}
e36fa2f7 4377
fec5e652 4378#endif /* CONFIG_RPS */
0a9627f2 4379
e36fa2f7
ED
4380/*
4381 * Check if this softnet_data structure is another cpu one
4382 * If yes, queue it to our IPI list and return 1
4383 * If no, return 0
4384 */
4385static int rps_ipi_queued(struct softnet_data *sd)
4386{
4387#ifdef CONFIG_RPS
903ceff7 4388 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4389
4390 if (sd != mysd) {
4391 sd->rps_ipi_next = mysd->rps_ipi_list;
4392 mysd->rps_ipi_list = sd;
4393
4394 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4395 return 1;
4396 }
4397#endif /* CONFIG_RPS */
4398 return 0;
4399}
4400
99bbc707
WB
4401#ifdef CONFIG_NET_FLOW_LIMIT
4402int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4403#endif
4404
4405static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4406{
4407#ifdef CONFIG_NET_FLOW_LIMIT
4408 struct sd_flow_limit *fl;
4409 struct softnet_data *sd;
4410 unsigned int old_flow, new_flow;
4411
4412 if (qlen < (netdev_max_backlog >> 1))
4413 return false;
4414
903ceff7 4415 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4416
4417 rcu_read_lock();
4418 fl = rcu_dereference(sd->flow_limit);
4419 if (fl) {
3958afa1 4420 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4421 old_flow = fl->history[fl->history_head];
4422 fl->history[fl->history_head] = new_flow;
4423
4424 fl->history_head++;
4425 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4426
4427 if (likely(fl->buckets[old_flow]))
4428 fl->buckets[old_flow]--;
4429
4430 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4431 fl->count++;
4432 rcu_read_unlock();
4433 return true;
4434 }
4435 }
4436 rcu_read_unlock();
4437#endif
4438 return false;
4439}
4440
0a9627f2
TH
4441/*
4442 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4443 * queue (may be a remote CPU queue).
4444 */
fec5e652
TH
4445static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4446 unsigned int *qtail)
0a9627f2 4447{
e36fa2f7 4448 struct softnet_data *sd;
0a9627f2 4449 unsigned long flags;
99bbc707 4450 unsigned int qlen;
0a9627f2 4451
e36fa2f7 4452 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4453
4454 local_irq_save(flags);
0a9627f2 4455
e36fa2f7 4456 rps_lock(sd);
e9e4dd32
JA
4457 if (!netif_running(skb->dev))
4458 goto drop;
99bbc707
WB
4459 qlen = skb_queue_len(&sd->input_pkt_queue);
4460 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4461 if (qlen) {
0a9627f2 4462enqueue:
e36fa2f7 4463 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4464 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4465 rps_unlock(sd);
152102c7 4466 local_irq_restore(flags);
0a9627f2
TH
4467 return NET_RX_SUCCESS;
4468 }
4469
ebda37c2
ED
4470 /* Schedule NAPI for backlog device
4471 * We can use non atomic operation since we own the queue lock
4472 */
4473 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4474 if (!rps_ipi_queued(sd))
eecfd7c4 4475 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4476 }
4477 goto enqueue;
4478 }
4479
e9e4dd32 4480drop:
dee42870 4481 sd->dropped++;
e36fa2f7 4482 rps_unlock(sd);
0a9627f2 4483
0a9627f2
TH
4484 local_irq_restore(flags);
4485
caf586e5 4486 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4487 kfree_skb(skb);
4488 return NET_RX_DROP;
4489}
1da177e4 4490
e817f856
JDB
4491static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4492{
4493 struct net_device *dev = skb->dev;
4494 struct netdev_rx_queue *rxqueue;
4495
4496 rxqueue = dev->_rx;
4497
4498 if (skb_rx_queue_recorded(skb)) {
4499 u16 index = skb_get_rx_queue(skb);
4500
4501 if (unlikely(index >= dev->real_num_rx_queues)) {
4502 WARN_ONCE(dev->real_num_rx_queues > 1,
4503 "%s received packet on queue %u, but number "
4504 "of RX queues is %u\n",
4505 dev->name, index, dev->real_num_rx_queues);
4506
4507 return rxqueue; /* Return first rxqueue */
4508 }
4509 rxqueue += index;
4510 }
4511 return rxqueue;
4512}
4513
d4455169 4514static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4515 struct xdp_buff *xdp,
d4455169
JF
4516 struct bpf_prog *xdp_prog)
4517{
e817f856 4518 struct netdev_rx_queue *rxqueue;
198d83bb 4519 void *orig_data, *orig_data_end;
de8f3a83 4520 u32 metalen, act = XDP_DROP;
29724956
JDB
4521 __be16 orig_eth_type;
4522 struct ethhdr *eth;
4523 bool orig_bcast;
d4455169
JF
4524 int hlen, off;
4525 u32 mac_len;
4526
4527 /* Reinjected packets coming from act_mirred or similar should
4528 * not get XDP generic processing.
4529 */
ad1e03b2 4530 if (skb_is_tc_redirected(skb))
d4455169
JF
4531 return XDP_PASS;
4532
de8f3a83
DB
4533 /* XDP packets must be linear and must have sufficient headroom
4534 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4535 * native XDP provides, thus we need to do it here as well.
4536 */
ad1e03b2 4537 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
de8f3a83
DB
4538 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4539 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4540 int troom = skb->tail + skb->data_len - skb->end;
4541
4542 /* In case we have to go down the path and also linearize,
4543 * then lets do the pskb_expand_head() work just once here.
4544 */
4545 if (pskb_expand_head(skb,
4546 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4547 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4548 goto do_drop;
2d17d8d7 4549 if (skb_linearize(skb))
de8f3a83
DB
4550 goto do_drop;
4551 }
d4455169
JF
4552
4553 /* The XDP program wants to see the packet starting at the MAC
4554 * header.
4555 */
4556 mac_len = skb->data - skb_mac_header(skb);
4557 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4558 xdp->data = skb->data - mac_len;
4559 xdp->data_meta = xdp->data;
4560 xdp->data_end = xdp->data + hlen;
4561 xdp->data_hard_start = skb->data - skb_headroom(skb);
4562 orig_data_end = xdp->data_end;
4563 orig_data = xdp->data;
29724956
JDB
4564 eth = (struct ethhdr *)xdp->data;
4565 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4566 orig_eth_type = eth->h_proto;
d4455169 4567
e817f856 4568 rxqueue = netif_get_rxqueue(skb);
02671e23 4569 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4570
02671e23 4571 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4572
065af355 4573 /* check if bpf_xdp_adjust_head was used */
02671e23 4574 off = xdp->data - orig_data;
065af355
JDB
4575 if (off) {
4576 if (off > 0)
4577 __skb_pull(skb, off);
4578 else if (off < 0)
4579 __skb_push(skb, -off);
4580
4581 skb->mac_header += off;
4582 skb_reset_network_header(skb);
4583 }
d4455169 4584
198d83bb
NS
4585 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4586 * pckt.
4587 */
02671e23 4588 off = orig_data_end - xdp->data_end;
f7613120 4589 if (off != 0) {
02671e23 4590 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
f7613120 4591 skb->len -= off;
02671e23 4592
f7613120 4593 }
198d83bb 4594
29724956
JDB
4595 /* check if XDP changed eth hdr such SKB needs update */
4596 eth = (struct ethhdr *)xdp->data;
4597 if ((orig_eth_type != eth->h_proto) ||
4598 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4599 __skb_push(skb, ETH_HLEN);
4600 skb->protocol = eth_type_trans(skb, skb->dev);
4601 }
4602
d4455169 4603 switch (act) {
6103aa96 4604 case XDP_REDIRECT:
d4455169
JF
4605 case XDP_TX:
4606 __skb_push(skb, mac_len);
de8f3a83 4607 break;
d4455169 4608 case XDP_PASS:
02671e23 4609 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4610 if (metalen)
4611 skb_metadata_set(skb, metalen);
d4455169 4612 break;
d4455169
JF
4613 default:
4614 bpf_warn_invalid_xdp_action(act);
4615 /* fall through */
4616 case XDP_ABORTED:
4617 trace_xdp_exception(skb->dev, xdp_prog, act);
4618 /* fall through */
4619 case XDP_DROP:
4620 do_drop:
4621 kfree_skb(skb);
4622 break;
4623 }
4624
4625 return act;
4626}
4627
4628/* When doing generic XDP we have to bypass the qdisc layer and the
4629 * network taps in order to match in-driver-XDP behavior.
4630 */
7c497478 4631void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4632{
4633 struct net_device *dev = skb->dev;
4634 struct netdev_queue *txq;
4635 bool free_skb = true;
4636 int cpu, rc;
4637
4bd97d51 4638 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4639 cpu = smp_processor_id();
4640 HARD_TX_LOCK(dev, txq, cpu);
4641 if (!netif_xmit_stopped(txq)) {
4642 rc = netdev_start_xmit(skb, dev, txq, 0);
4643 if (dev_xmit_complete(rc))
4644 free_skb = false;
4645 }
4646 HARD_TX_UNLOCK(dev, txq);
4647 if (free_skb) {
4648 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4649 kfree_skb(skb);
4650 }
4651}
7c497478 4652EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169 4653
02786475 4654static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4655
7c497478 4656int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4657{
d4455169 4658 if (xdp_prog) {
02671e23
BT
4659 struct xdp_buff xdp;
4660 u32 act;
6103aa96 4661 int err;
d4455169 4662
02671e23 4663 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4664 if (act != XDP_PASS) {
6103aa96
JF
4665 switch (act) {
4666 case XDP_REDIRECT:
2facaad6 4667 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4668 &xdp, xdp_prog);
6103aa96
JF
4669 if (err)
4670 goto out_redir;
02671e23 4671 break;
6103aa96 4672 case XDP_TX:
d4455169 4673 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4674 break;
4675 }
d4455169
JF
4676 return XDP_DROP;
4677 }
4678 }
4679 return XDP_PASS;
6103aa96 4680out_redir:
6103aa96
JF
4681 kfree_skb(skb);
4682 return XDP_DROP;
d4455169 4683}
7c497478 4684EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4685
ae78dbfa 4686static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4687{
b0e28f1e 4688 int ret;
1da177e4 4689
588f0330 4690 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4691
cf66ba58 4692 trace_netif_rx(skb);
d4455169 4693
df334545 4694#ifdef CONFIG_RPS
dc05360f 4695 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4696 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4697 int cpu;
4698
cece1945 4699 preempt_disable();
b0e28f1e 4700 rcu_read_lock();
fec5e652
TH
4701
4702 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4703 if (cpu < 0)
4704 cpu = smp_processor_id();
fec5e652
TH
4705
4706 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4707
b0e28f1e 4708 rcu_read_unlock();
cece1945 4709 preempt_enable();
adc9300e
ED
4710 } else
4711#endif
fec5e652
TH
4712 {
4713 unsigned int qtail;
f4563a75 4714
fec5e652
TH
4715 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4716 put_cpu();
4717 }
b0e28f1e 4718 return ret;
1da177e4 4719}
ae78dbfa
BH
4720
4721/**
4722 * netif_rx - post buffer to the network code
4723 * @skb: buffer to post
4724 *
4725 * This function receives a packet from a device driver and queues it for
4726 * the upper (protocol) levels to process. It always succeeds. The buffer
4727 * may be dropped during processing for congestion control or by the
4728 * protocol layers.
4729 *
4730 * return values:
4731 * NET_RX_SUCCESS (no congestion)
4732 * NET_RX_DROP (packet was dropped)
4733 *
4734 */
4735
4736int netif_rx(struct sk_buff *skb)
4737{
b0e3f1bd
GB
4738 int ret;
4739
ae78dbfa
BH
4740 trace_netif_rx_entry(skb);
4741
b0e3f1bd
GB
4742 ret = netif_rx_internal(skb);
4743 trace_netif_rx_exit(ret);
4744
4745 return ret;
ae78dbfa 4746}
d1b19dff 4747EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4748
4749int netif_rx_ni(struct sk_buff *skb)
4750{
4751 int err;
4752
ae78dbfa
BH
4753 trace_netif_rx_ni_entry(skb);
4754
1da177e4 4755 preempt_disable();
ae78dbfa 4756 err = netif_rx_internal(skb);
1da177e4
LT
4757 if (local_softirq_pending())
4758 do_softirq();
4759 preempt_enable();
b0e3f1bd 4760 trace_netif_rx_ni_exit(err);
1da177e4
LT
4761
4762 return err;
4763}
1da177e4
LT
4764EXPORT_SYMBOL(netif_rx_ni);
4765
0766f788 4766static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4767{
903ceff7 4768 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4769
4770 if (sd->completion_queue) {
4771 struct sk_buff *clist;
4772
4773 local_irq_disable();
4774 clist = sd->completion_queue;
4775 sd->completion_queue = NULL;
4776 local_irq_enable();
4777
4778 while (clist) {
4779 struct sk_buff *skb = clist;
f4563a75 4780
1da177e4
LT
4781 clist = clist->next;
4782
63354797 4783 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4784 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4785 trace_consume_skb(skb);
4786 else
4787 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4788
4789 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4790 __kfree_skb(skb);
4791 else
4792 __kfree_skb_defer(skb);
1da177e4 4793 }
15fad714
JDB
4794
4795 __kfree_skb_flush();
1da177e4
LT
4796 }
4797
4798 if (sd->output_queue) {
37437bb2 4799 struct Qdisc *head;
1da177e4
LT
4800
4801 local_irq_disable();
4802 head = sd->output_queue;
4803 sd->output_queue = NULL;
a9cbd588 4804 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4805 local_irq_enable();
4806
4807 while (head) {
37437bb2 4808 struct Qdisc *q = head;
6b3ba914 4809 spinlock_t *root_lock = NULL;
37437bb2 4810
1da177e4
LT
4811 head = head->next_sched;
4812
6b3ba914
JF
4813 if (!(q->flags & TCQ_F_NOLOCK)) {
4814 root_lock = qdisc_lock(q);
4815 spin_lock(root_lock);
4816 }
3bcb846c
ED
4817 /* We need to make sure head->next_sched is read
4818 * before clearing __QDISC_STATE_SCHED
4819 */
4820 smp_mb__before_atomic();
4821 clear_bit(__QDISC_STATE_SCHED, &q->state);
4822 qdisc_run(q);
6b3ba914
JF
4823 if (root_lock)
4824 spin_unlock(root_lock);
1da177e4
LT
4825 }
4826 }
f53c7239
SK
4827
4828 xfrm_dev_backlog(sd);
1da177e4
LT
4829}
4830
181402a5 4831#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4832/* This hook is defined here for ATM LANE */
4833int (*br_fdb_test_addr_hook)(struct net_device *dev,
4834 unsigned char *addr) __read_mostly;
4fb019a0 4835EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4836#endif
1da177e4 4837
1f211a1b
DB
4838static inline struct sk_buff *
4839sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4840 struct net_device *orig_dev)
f697c3e8 4841{
e7582bab 4842#ifdef CONFIG_NET_CLS_ACT
46209401 4843 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4844 struct tcf_result cl_res;
24824a09 4845
c9e99fd0
DB
4846 /* If there's at least one ingress present somewhere (so
4847 * we get here via enabled static key), remaining devices
4848 * that are not configured with an ingress qdisc will bail
d2788d34 4849 * out here.
c9e99fd0 4850 */
46209401 4851 if (!miniq)
4577139b 4852 return skb;
46209401 4853
f697c3e8
HX
4854 if (*pt_prev) {
4855 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4856 *pt_prev = NULL;
1da177e4
LT
4857 }
4858
3365495c 4859 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4860 skb->tc_at_ingress = 1;
46209401 4861 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4862
9410c940
PB
4863 switch (tcf_classify_ingress(skb, miniq->filter_list, &cl_res,
4864 false)) {
d2788d34
DB
4865 case TC_ACT_OK:
4866 case TC_ACT_RECLASSIFY:
4867 skb->tc_index = TC_H_MIN(cl_res.classid);
4868 break;
4869 case TC_ACT_SHOT:
46209401 4870 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4871 kfree_skb(skb);
4872 return NULL;
d2788d34
DB
4873 case TC_ACT_STOLEN:
4874 case TC_ACT_QUEUED:
e25ea21f 4875 case TC_ACT_TRAP:
8a3a4c6e 4876 consume_skb(skb);
d2788d34 4877 return NULL;
27b29f63
AS
4878 case TC_ACT_REDIRECT:
4879 /* skb_mac_header check was done by cls/act_bpf, so
4880 * we can safely push the L2 header back before
4881 * redirecting to another netdev
4882 */
4883 __skb_push(skb, skb->mac_len);
4884 skb_do_redirect(skb);
4885 return NULL;
720f22fe 4886 case TC_ACT_CONSUMED:
cd11b164 4887 return NULL;
d2788d34
DB
4888 default:
4889 break;
f697c3e8 4890 }
e7582bab 4891#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4892 return skb;
4893}
1da177e4 4894
24b27fc4
MB
4895/**
4896 * netdev_is_rx_handler_busy - check if receive handler is registered
4897 * @dev: device to check
4898 *
4899 * Check if a receive handler is already registered for a given device.
4900 * Return true if there one.
4901 *
4902 * The caller must hold the rtnl_mutex.
4903 */
4904bool netdev_is_rx_handler_busy(struct net_device *dev)
4905{
4906 ASSERT_RTNL();
4907 return dev && rtnl_dereference(dev->rx_handler);
4908}
4909EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4910
ab95bfe0
JP
4911/**
4912 * netdev_rx_handler_register - register receive handler
4913 * @dev: device to register a handler for
4914 * @rx_handler: receive handler to register
93e2c32b 4915 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4916 *
e227867f 4917 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4918 * called from __netif_receive_skb. A negative errno code is returned
4919 * on a failure.
4920 *
4921 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4922 *
4923 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4924 */
4925int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4926 rx_handler_func_t *rx_handler,
4927 void *rx_handler_data)
ab95bfe0 4928{
1b7cd004 4929 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4930 return -EBUSY;
4931
f5426250
PA
4932 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4933 return -EINVAL;
4934
00cfec37 4935 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4936 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4937 rcu_assign_pointer(dev->rx_handler, rx_handler);
4938
4939 return 0;
4940}
4941EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4942
4943/**
4944 * netdev_rx_handler_unregister - unregister receive handler
4945 * @dev: device to unregister a handler from
4946 *
166ec369 4947 * Unregister a receive handler from a device.
ab95bfe0
JP
4948 *
4949 * The caller must hold the rtnl_mutex.
4950 */
4951void netdev_rx_handler_unregister(struct net_device *dev)
4952{
4953
4954 ASSERT_RTNL();
a9b3cd7f 4955 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4956 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4957 * section has a guarantee to see a non NULL rx_handler_data
4958 * as well.
4959 */
4960 synchronize_net();
a9b3cd7f 4961 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4962}
4963EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4964
b4b9e355
MG
4965/*
4966 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4967 * the special handling of PFMEMALLOC skbs.
4968 */
4969static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4970{
4971 switch (skb->protocol) {
2b8837ae
JP
4972 case htons(ETH_P_ARP):
4973 case htons(ETH_P_IP):
4974 case htons(ETH_P_IPV6):
4975 case htons(ETH_P_8021Q):
4976 case htons(ETH_P_8021AD):
b4b9e355
MG
4977 return true;
4978 default:
4979 return false;
4980 }
4981}
4982
e687ad60
PN
4983static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4984 int *ret, struct net_device *orig_dev)
4985{
4986 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4987 int ingress_retval;
4988
e687ad60
PN
4989 if (*pt_prev) {
4990 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4991 *pt_prev = NULL;
4992 }
4993
2c1e2703
AC
4994 rcu_read_lock();
4995 ingress_retval = nf_hook_ingress(skb);
4996 rcu_read_unlock();
4997 return ingress_retval;
e687ad60
PN
4998 }
4999 return 0;
5000}
e687ad60 5001
88eb1944
EC
5002static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
5003 struct packet_type **ppt_prev)
1da177e4
LT
5004{
5005 struct packet_type *ptype, *pt_prev;
ab95bfe0 5006 rx_handler_func_t *rx_handler;
f2ccd8fa 5007 struct net_device *orig_dev;
8a4eb573 5008 bool deliver_exact = false;
1da177e4 5009 int ret = NET_RX_DROP;
252e3346 5010 __be16 type;
1da177e4 5011
588f0330 5012 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5013
cf66ba58 5014 trace_netif_receive_skb(skb);
9b22ea56 5015
cc9bd5ce 5016 orig_dev = skb->dev;
8f903c70 5017
c1d2bbe1 5018 skb_reset_network_header(skb);
fda55eca
ED
5019 if (!skb_transport_header_was_set(skb))
5020 skb_reset_transport_header(skb);
0b5c9db1 5021 skb_reset_mac_len(skb);
1da177e4
LT
5022
5023 pt_prev = NULL;
5024
63d8ea7f 5025another_round:
b6858177 5026 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5027
5028 __this_cpu_inc(softnet_data.processed);
5029
458bf2f2
SH
5030 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5031 int ret2;
5032
5033 preempt_disable();
5034 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5035 preempt_enable();
5036
5037 if (ret2 != XDP_PASS)
5038 return NET_RX_DROP;
5039 skb_reset_mac_len(skb);
5040 }
5041
8ad227ff
PM
5042 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5043 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 5044 skb = skb_vlan_untag(skb);
bcc6d479 5045 if (unlikely(!skb))
2c17d27c 5046 goto out;
bcc6d479
JP
5047 }
5048
e7246e12
WB
5049 if (skb_skip_tc_classify(skb))
5050 goto skip_classify;
1da177e4 5051
9754e293 5052 if (pfmemalloc)
b4b9e355
MG
5053 goto skip_taps;
5054
1da177e4 5055 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5056 if (pt_prev)
5057 ret = deliver_skb(skb, pt_prev, orig_dev);
5058 pt_prev = ptype;
5059 }
5060
5061 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5062 if (pt_prev)
5063 ret = deliver_skb(skb, pt_prev, orig_dev);
5064 pt_prev = ptype;
1da177e4
LT
5065 }
5066
b4b9e355 5067skip_taps:
1cf51900 5068#ifdef CONFIG_NET_INGRESS
aabf6772 5069 if (static_branch_unlikely(&ingress_needed_key)) {
1f211a1b 5070 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 5071 if (!skb)
2c17d27c 5072 goto out;
e687ad60
PN
5073
5074 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5075 goto out;
4577139b 5076 }
1cf51900 5077#endif
a5135bcf 5078 skb_reset_tc(skb);
e7246e12 5079skip_classify:
9754e293 5080 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5081 goto drop;
5082
df8a39de 5083 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5084 if (pt_prev) {
5085 ret = deliver_skb(skb, pt_prev, orig_dev);
5086 pt_prev = NULL;
5087 }
48cc32d3 5088 if (vlan_do_receive(&skb))
2425717b
JF
5089 goto another_round;
5090 else if (unlikely(!skb))
2c17d27c 5091 goto out;
2425717b
JF
5092 }
5093
48cc32d3 5094 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5095 if (rx_handler) {
5096 if (pt_prev) {
5097 ret = deliver_skb(skb, pt_prev, orig_dev);
5098 pt_prev = NULL;
5099 }
8a4eb573
JP
5100 switch (rx_handler(&skb)) {
5101 case RX_HANDLER_CONSUMED:
3bc1b1ad 5102 ret = NET_RX_SUCCESS;
2c17d27c 5103 goto out;
8a4eb573 5104 case RX_HANDLER_ANOTHER:
63d8ea7f 5105 goto another_round;
8a4eb573
JP
5106 case RX_HANDLER_EXACT:
5107 deliver_exact = true;
5108 case RX_HANDLER_PASS:
5109 break;
5110 default:
5111 BUG();
5112 }
ab95bfe0 5113 }
1da177e4 5114
df8a39de 5115 if (unlikely(skb_vlan_tag_present(skb))) {
36b2f61a
GV
5116check_vlan_id:
5117 if (skb_vlan_tag_get_id(skb)) {
5118 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5119 * find vlan device.
5120 */
d4b812de 5121 skb->pkt_type = PACKET_OTHERHOST;
36b2f61a
GV
5122 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5123 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5124 /* Outer header is 802.1P with vlan 0, inner header is
5125 * 802.1Q or 802.1AD and vlan_do_receive() above could
5126 * not find vlan dev for vlan id 0.
5127 */
5128 __vlan_hwaccel_clear_tag(skb);
5129 skb = skb_vlan_untag(skb);
5130 if (unlikely(!skb))
5131 goto out;
5132 if (vlan_do_receive(&skb))
5133 /* After stripping off 802.1P header with vlan 0
5134 * vlan dev is found for inner header.
5135 */
5136 goto another_round;
5137 else if (unlikely(!skb))
5138 goto out;
5139 else
5140 /* We have stripped outer 802.1P vlan 0 header.
5141 * But could not find vlan dev.
5142 * check again for vlan id to set OTHERHOST.
5143 */
5144 goto check_vlan_id;
5145 }
d4b812de
ED
5146 /* Note: we might in the future use prio bits
5147 * and set skb->priority like in vlan_do_receive()
5148 * For the time being, just ignore Priority Code Point
5149 */
b1817524 5150 __vlan_hwaccel_clear_tag(skb);
d4b812de 5151 }
48cc32d3 5152
7866a621
SN
5153 type = skb->protocol;
5154
63d8ea7f 5155 /* deliver only exact match when indicated */
7866a621
SN
5156 if (likely(!deliver_exact)) {
5157 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5158 &ptype_base[ntohs(type) &
5159 PTYPE_HASH_MASK]);
5160 }
1f3c8804 5161
7866a621
SN
5162 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5163 &orig_dev->ptype_specific);
5164
5165 if (unlikely(skb->dev != orig_dev)) {
5166 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5167 &skb->dev->ptype_specific);
1da177e4
LT
5168 }
5169
5170 if (pt_prev) {
1f8b977a 5171 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5172 goto drop;
88eb1944 5173 *ppt_prev = pt_prev;
1da177e4 5174 } else {
b4b9e355 5175drop:
6e7333d3
JW
5176 if (!deliver_exact)
5177 atomic_long_inc(&skb->dev->rx_dropped);
5178 else
5179 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
5180 kfree_skb(skb);
5181 /* Jamal, now you will not able to escape explaining
5182 * me how you were going to use this. :-)
5183 */
5184 ret = NET_RX_DROP;
5185 }
5186
2c17d27c 5187out:
9754e293
DM
5188 return ret;
5189}
5190
88eb1944
EC
5191static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5192{
5193 struct net_device *orig_dev = skb->dev;
5194 struct packet_type *pt_prev = NULL;
5195 int ret;
5196
5197 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5198 if (pt_prev)
f5737cba
PA
5199 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5200 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5201 return ret;
5202}
5203
1c601d82
JDB
5204/**
5205 * netif_receive_skb_core - special purpose version of netif_receive_skb
5206 * @skb: buffer to process
5207 *
5208 * More direct receive version of netif_receive_skb(). It should
5209 * only be used by callers that have a need to skip RPS and Generic XDP.
5210 * Caller must also take care of handling if (page_is_)pfmemalloc.
5211 *
5212 * This function may only be called from softirq context and interrupts
5213 * should be enabled.
5214 *
5215 * Return values (usually ignored):
5216 * NET_RX_SUCCESS: no congestion
5217 * NET_RX_DROP: packet was dropped
5218 */
5219int netif_receive_skb_core(struct sk_buff *skb)
5220{
5221 int ret;
5222
5223 rcu_read_lock();
88eb1944 5224 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5225 rcu_read_unlock();
5226
5227 return ret;
5228}
5229EXPORT_SYMBOL(netif_receive_skb_core);
5230
88eb1944
EC
5231static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5232 struct packet_type *pt_prev,
5233 struct net_device *orig_dev)
4ce0017a
EC
5234{
5235 struct sk_buff *skb, *next;
5236
88eb1944
EC
5237 if (!pt_prev)
5238 return;
5239 if (list_empty(head))
5240 return;
17266ee9 5241 if (pt_prev->list_func != NULL)
fdf71426
PA
5242 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5243 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5244 else
9a5a90d1
AL
5245 list_for_each_entry_safe(skb, next, head, list) {
5246 skb_list_del_init(skb);
fdf71426 5247 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5248 }
88eb1944
EC
5249}
5250
5251static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5252{
5253 /* Fast-path assumptions:
5254 * - There is no RX handler.
5255 * - Only one packet_type matches.
5256 * If either of these fails, we will end up doing some per-packet
5257 * processing in-line, then handling the 'last ptype' for the whole
5258 * sublist. This can't cause out-of-order delivery to any single ptype,
5259 * because the 'last ptype' must be constant across the sublist, and all
5260 * other ptypes are handled per-packet.
5261 */
5262 /* Current (common) ptype of sublist */
5263 struct packet_type *pt_curr = NULL;
5264 /* Current (common) orig_dev of sublist */
5265 struct net_device *od_curr = NULL;
5266 struct list_head sublist;
5267 struct sk_buff *skb, *next;
5268
9af86f93 5269 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5270 list_for_each_entry_safe(skb, next, head, list) {
5271 struct net_device *orig_dev = skb->dev;
5272 struct packet_type *pt_prev = NULL;
5273
22f6bbb7 5274 skb_list_del_init(skb);
88eb1944 5275 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
9af86f93
EC
5276 if (!pt_prev)
5277 continue;
88eb1944
EC
5278 if (pt_curr != pt_prev || od_curr != orig_dev) {
5279 /* dispatch old sublist */
88eb1944
EC
5280 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5281 /* start new sublist */
9af86f93 5282 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5283 pt_curr = pt_prev;
5284 od_curr = orig_dev;
5285 }
9af86f93 5286 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5287 }
5288
5289 /* dispatch final sublist */
9af86f93 5290 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5291}
5292
9754e293
DM
5293static int __netif_receive_skb(struct sk_buff *skb)
5294{
5295 int ret;
5296
5297 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5298 unsigned int noreclaim_flag;
9754e293
DM
5299
5300 /*
5301 * PFMEMALLOC skbs are special, they should
5302 * - be delivered to SOCK_MEMALLOC sockets only
5303 * - stay away from userspace
5304 * - have bounded memory usage
5305 *
5306 * Use PF_MEMALLOC as this saves us from propagating the allocation
5307 * context down to all allocation sites.
5308 */
f1083048 5309 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5310 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5311 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5312 } else
88eb1944 5313 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5314
1da177e4
LT
5315 return ret;
5316}
0a9627f2 5317
4ce0017a
EC
5318static void __netif_receive_skb_list(struct list_head *head)
5319{
5320 unsigned long noreclaim_flag = 0;
5321 struct sk_buff *skb, *next;
5322 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5323
5324 list_for_each_entry_safe(skb, next, head, list) {
5325 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5326 struct list_head sublist;
5327
5328 /* Handle the previous sublist */
5329 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5330 if (!list_empty(&sublist))
5331 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5332 pfmemalloc = !pfmemalloc;
5333 /* See comments in __netif_receive_skb */
5334 if (pfmemalloc)
5335 noreclaim_flag = memalloc_noreclaim_save();
5336 else
5337 memalloc_noreclaim_restore(noreclaim_flag);
5338 }
5339 }
5340 /* Handle the remaining sublist */
b9f463d6
EC
5341 if (!list_empty(head))
5342 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5343 /* Restore pflags */
5344 if (pfmemalloc)
5345 memalloc_noreclaim_restore(noreclaim_flag);
5346}
5347
f4e63525 5348static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5349{
58038695 5350 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5351 struct bpf_prog *new = xdp->prog;
5352 int ret = 0;
5353
5354 switch (xdp->command) {
58038695 5355 case XDP_SETUP_PROG:
b5cdae32
DM
5356 rcu_assign_pointer(dev->xdp_prog, new);
5357 if (old)
5358 bpf_prog_put(old);
5359
5360 if (old && !new) {
02786475 5361 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5362 } else if (new && !old) {
02786475 5363 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5364 dev_disable_lro(dev);
56f5aa77 5365 dev_disable_gro_hw(dev);
b5cdae32
DM
5366 }
5367 break;
b5cdae32
DM
5368
5369 case XDP_QUERY_PROG:
58038695 5370 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
5371 break;
5372
5373 default:
5374 ret = -EINVAL;
5375 break;
5376 }
5377
5378 return ret;
5379}
5380
ae78dbfa 5381static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5382{
2c17d27c
JA
5383 int ret;
5384
588f0330 5385 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5386
c1f19b51
RC
5387 if (skb_defer_rx_timestamp(skb))
5388 return NET_RX_SUCCESS;
5389
bbbe211c 5390 rcu_read_lock();
df334545 5391#ifdef CONFIG_RPS
dc05360f 5392 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5393 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5394 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5395
3b098e2d
ED
5396 if (cpu >= 0) {
5397 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5398 rcu_read_unlock();
adc9300e 5399 return ret;
3b098e2d 5400 }
fec5e652 5401 }
1e94d72f 5402#endif
2c17d27c
JA
5403 ret = __netif_receive_skb(skb);
5404 rcu_read_unlock();
5405 return ret;
0a9627f2 5406}
ae78dbfa 5407
7da517a3
EC
5408static void netif_receive_skb_list_internal(struct list_head *head)
5409{
7da517a3 5410 struct sk_buff *skb, *next;
8c057efa 5411 struct list_head sublist;
7da517a3 5412
8c057efa 5413 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5414 list_for_each_entry_safe(skb, next, head, list) {
5415 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5416 skb_list_del_init(skb);
8c057efa
EC
5417 if (!skb_defer_rx_timestamp(skb))
5418 list_add_tail(&skb->list, &sublist);
7da517a3 5419 }
8c057efa 5420 list_splice_init(&sublist, head);
7da517a3 5421
7da517a3
EC
5422 rcu_read_lock();
5423#ifdef CONFIG_RPS
dc05360f 5424 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5425 list_for_each_entry_safe(skb, next, head, list) {
5426 struct rps_dev_flow voidflow, *rflow = &voidflow;
5427 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5428
5429 if (cpu >= 0) {
8c057efa 5430 /* Will be handled, remove from list */
22f6bbb7 5431 skb_list_del_init(skb);
8c057efa 5432 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5433 }
5434 }
5435 }
5436#endif
5437 __netif_receive_skb_list(head);
5438 rcu_read_unlock();
5439}
5440
ae78dbfa
BH
5441/**
5442 * netif_receive_skb - process receive buffer from network
5443 * @skb: buffer to process
5444 *
5445 * netif_receive_skb() is the main receive data processing function.
5446 * It always succeeds. The buffer may be dropped during processing
5447 * for congestion control or by the protocol layers.
5448 *
5449 * This function may only be called from softirq context and interrupts
5450 * should be enabled.
5451 *
5452 * Return values (usually ignored):
5453 * NET_RX_SUCCESS: no congestion
5454 * NET_RX_DROP: packet was dropped
5455 */
04eb4489 5456int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5457{
b0e3f1bd
GB
5458 int ret;
5459
ae78dbfa
BH
5460 trace_netif_receive_skb_entry(skb);
5461
b0e3f1bd
GB
5462 ret = netif_receive_skb_internal(skb);
5463 trace_netif_receive_skb_exit(ret);
5464
5465 return ret;
ae78dbfa 5466}
04eb4489 5467EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5468
f6ad8c1b
EC
5469/**
5470 * netif_receive_skb_list - process many receive buffers from network
5471 * @head: list of skbs to process.
5472 *
7da517a3
EC
5473 * Since return value of netif_receive_skb() is normally ignored, and
5474 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5475 *
5476 * This function may only be called from softirq context and interrupts
5477 * should be enabled.
5478 */
5479void netif_receive_skb_list(struct list_head *head)
5480{
7da517a3 5481 struct sk_buff *skb;
f6ad8c1b 5482
b9f463d6
EC
5483 if (list_empty(head))
5484 return;
b0e3f1bd
GB
5485 if (trace_netif_receive_skb_list_entry_enabled()) {
5486 list_for_each_entry(skb, head, list)
5487 trace_netif_receive_skb_list_entry(skb);
5488 }
7da517a3 5489 netif_receive_skb_list_internal(head);
b0e3f1bd 5490 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5491}
5492EXPORT_SYMBOL(netif_receive_skb_list);
5493
41852497 5494DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5495
5496/* Network device is going away, flush any packets still pending */
5497static void flush_backlog(struct work_struct *work)
6e583ce5 5498{
6e583ce5 5499 struct sk_buff *skb, *tmp;
145dd5f9
PA
5500 struct softnet_data *sd;
5501
5502 local_bh_disable();
5503 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5504
145dd5f9 5505 local_irq_disable();
e36fa2f7 5506 rps_lock(sd);
6e7676c1 5507 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5508 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5509 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 5510 kfree_skb(skb);
76cc8b13 5511 input_queue_head_incr(sd);
6e583ce5 5512 }
6e7676c1 5513 }
e36fa2f7 5514 rps_unlock(sd);
145dd5f9 5515 local_irq_enable();
6e7676c1
CG
5516
5517 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5518 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5519 __skb_unlink(skb, &sd->process_queue);
5520 kfree_skb(skb);
76cc8b13 5521 input_queue_head_incr(sd);
6e7676c1
CG
5522 }
5523 }
145dd5f9
PA
5524 local_bh_enable();
5525}
5526
41852497 5527static void flush_all_backlogs(void)
145dd5f9
PA
5528{
5529 unsigned int cpu;
5530
5531 get_online_cpus();
5532
41852497
ED
5533 for_each_online_cpu(cpu)
5534 queue_work_on(cpu, system_highpri_wq,
5535 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5536
5537 for_each_online_cpu(cpu)
41852497 5538 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5539
5540 put_online_cpus();
6e583ce5
SH
5541}
5542
c8079432
MM
5543/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5544static void gro_normal_list(struct napi_struct *napi)
5545{
5546 if (!napi->rx_count)
5547 return;
5548 netif_receive_skb_list_internal(&napi->rx_list);
5549 INIT_LIST_HEAD(&napi->rx_list);
5550 napi->rx_count = 0;
5551}
5552
5553/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5554 * pass the whole batch up to the stack.
5555 */
5556static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5557{
5558 list_add_tail(&skb->list, &napi->rx_list);
5559 if (++napi->rx_count >= gro_normal_batch)
5560 gro_normal_list(napi);
5561}
5562
aaa5d90b
PA
5563INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5564INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
c8079432 5565static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5566{
22061d80 5567 struct packet_offload *ptype;
d565b0a1 5568 __be16 type = skb->protocol;
22061d80 5569 struct list_head *head = &offload_base;
d565b0a1
HX
5570 int err = -ENOENT;
5571
c3c7c254
ED
5572 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5573
fc59f9a3
HX
5574 if (NAPI_GRO_CB(skb)->count == 1) {
5575 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5576 goto out;
fc59f9a3 5577 }
d565b0a1
HX
5578
5579 rcu_read_lock();
5580 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5581 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5582 continue;
5583
aaa5d90b
PA
5584 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5585 ipv6_gro_complete, inet_gro_complete,
5586 skb, 0);
d565b0a1
HX
5587 break;
5588 }
5589 rcu_read_unlock();
5590
5591 if (err) {
5592 WARN_ON(&ptype->list == head);
5593 kfree_skb(skb);
5594 return NET_RX_SUCCESS;
5595 }
5596
5597out:
c8079432
MM
5598 gro_normal_one(napi, skb);
5599 return NET_RX_SUCCESS;
d565b0a1
HX
5600}
5601
6312fe77 5602static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5603 bool flush_old)
d565b0a1 5604{
6312fe77 5605 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5606 struct sk_buff *skb, *p;
2e71a6f8 5607
07d78363 5608 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5609 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5610 return;
992cba7e 5611 skb_list_del_init(skb);
c8079432 5612 napi_gro_complete(napi, skb);
6312fe77 5613 napi->gro_hash[index].count--;
d565b0a1 5614 }
d9f37d01
LR
5615
5616 if (!napi->gro_hash[index].count)
5617 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5618}
07d78363 5619
6312fe77 5620/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5621 * youngest packets at the head of it.
5622 * Complete skbs in reverse order to reduce latencies.
5623 */
5624void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5625{
42519ede
ED
5626 unsigned long bitmask = napi->gro_bitmask;
5627 unsigned int i, base = ~0U;
07d78363 5628
42519ede
ED
5629 while ((i = ffs(bitmask)) != 0) {
5630 bitmask >>= i;
5631 base += i;
5632 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5633 }
07d78363 5634}
86cac58b 5635EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5636
07d78363
DM
5637static struct list_head *gro_list_prepare(struct napi_struct *napi,
5638 struct sk_buff *skb)
89c5fa33 5639{
89c5fa33 5640 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5641 u32 hash = skb_get_hash_raw(skb);
07d78363 5642 struct list_head *head;
d4546c25 5643 struct sk_buff *p;
89c5fa33 5644
6312fe77 5645 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5646 list_for_each_entry(p, head, list) {
89c5fa33
ED
5647 unsigned long diffs;
5648
0b4cec8c
TH
5649 NAPI_GRO_CB(p)->flush = 0;
5650
5651 if (hash != skb_get_hash_raw(p)) {
5652 NAPI_GRO_CB(p)->same_flow = 0;
5653 continue;
5654 }
5655
89c5fa33 5656 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5657 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5658 if (skb_vlan_tag_present(p))
fc5141cb 5659 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
ce87fc6c 5660 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5661 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5662 if (maclen == ETH_HLEN)
5663 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5664 skb_mac_header(skb));
89c5fa33
ED
5665 else if (!diffs)
5666 diffs = memcmp(skb_mac_header(p),
a50e233c 5667 skb_mac_header(skb),
89c5fa33
ED
5668 maclen);
5669 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5670 }
07d78363
DM
5671
5672 return head;
89c5fa33
ED
5673}
5674
299603e8
JC
5675static void skb_gro_reset_offset(struct sk_buff *skb)
5676{
5677 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5678 const skb_frag_t *frag0 = &pinfo->frags[0];
5679
5680 NAPI_GRO_CB(skb)->data_offset = 0;
5681 NAPI_GRO_CB(skb)->frag0 = NULL;
5682 NAPI_GRO_CB(skb)->frag0_len = 0;
5683
8aef998d 5684 if (!skb_headlen(skb) && pinfo->nr_frags &&
299603e8
JC
5685 !PageHighMem(skb_frag_page(frag0))) {
5686 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5687 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5688 skb_frag_size(frag0),
5689 skb->end - skb->tail);
89c5fa33
ED
5690 }
5691}
5692
a50e233c
ED
5693static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5694{
5695 struct skb_shared_info *pinfo = skb_shinfo(skb);
5696
5697 BUG_ON(skb->end - skb->tail < grow);
5698
5699 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5700
5701 skb->data_len -= grow;
5702 skb->tail += grow;
5703
b54c9d5b 5704 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
5705 skb_frag_size_sub(&pinfo->frags[0], grow);
5706
5707 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5708 skb_frag_unref(skb, 0);
5709 memmove(pinfo->frags, pinfo->frags + 1,
5710 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5711 }
5712}
5713
c8079432 5714static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
07d78363 5715{
6312fe77 5716 struct sk_buff *oldest;
07d78363 5717
6312fe77 5718 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5719
6312fe77 5720 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5721 * impossible.
5722 */
5723 if (WARN_ON_ONCE(!oldest))
5724 return;
5725
d9f37d01
LR
5726 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5727 * SKB to the chain.
07d78363 5728 */
ece23711 5729 skb_list_del_init(oldest);
c8079432 5730 napi_gro_complete(napi, oldest);
07d78363
DM
5731}
5732
aaa5d90b
PA
5733INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5734 struct sk_buff *));
5735INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5736 struct sk_buff *));
bb728820 5737static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5738{
6312fe77 5739 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5740 struct list_head *head = &offload_base;
22061d80 5741 struct packet_offload *ptype;
d565b0a1 5742 __be16 type = skb->protocol;
07d78363 5743 struct list_head *gro_head;
d4546c25 5744 struct sk_buff *pp = NULL;
5b252f0c 5745 enum gro_result ret;
d4546c25 5746 int same_flow;
a50e233c 5747 int grow;
d565b0a1 5748
b5cdae32 5749 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5750 goto normal;
5751
07d78363 5752 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5753
d565b0a1
HX
5754 rcu_read_lock();
5755 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5756 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5757 continue;
5758
86911732 5759 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5760 skb_reset_mac_len(skb);
d565b0a1 5761 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5762 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5763 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5764 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5765 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5766 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5767 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5768 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5769
662880f4
TH
5770 /* Setup for GRO checksum validation */
5771 switch (skb->ip_summed) {
5772 case CHECKSUM_COMPLETE:
5773 NAPI_GRO_CB(skb)->csum = skb->csum;
5774 NAPI_GRO_CB(skb)->csum_valid = 1;
5775 NAPI_GRO_CB(skb)->csum_cnt = 0;
5776 break;
5777 case CHECKSUM_UNNECESSARY:
5778 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5779 NAPI_GRO_CB(skb)->csum_valid = 0;
5780 break;
5781 default:
5782 NAPI_GRO_CB(skb)->csum_cnt = 0;
5783 NAPI_GRO_CB(skb)->csum_valid = 0;
5784 }
d565b0a1 5785
aaa5d90b
PA
5786 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5787 ipv6_gro_receive, inet_gro_receive,
5788 gro_head, skb);
d565b0a1
HX
5789 break;
5790 }
5791 rcu_read_unlock();
5792
5793 if (&ptype->list == head)
5794 goto normal;
5795
45586c70 5796 if (PTR_ERR(pp) == -EINPROGRESS) {
25393d3f
SK
5797 ret = GRO_CONSUMED;
5798 goto ok;
5799 }
5800
0da2afd5 5801 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5802 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5803
d565b0a1 5804 if (pp) {
992cba7e 5805 skb_list_del_init(pp);
c8079432 5806 napi_gro_complete(napi, pp);
6312fe77 5807 napi->gro_hash[hash].count--;
d565b0a1
HX
5808 }
5809
0da2afd5 5810 if (same_flow)
d565b0a1
HX
5811 goto ok;
5812
600adc18 5813 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5814 goto normal;
d565b0a1 5815
6312fe77 5816 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
c8079432 5817 gro_flush_oldest(napi, gro_head);
600adc18 5818 } else {
6312fe77 5819 napi->gro_hash[hash].count++;
600adc18 5820 }
d565b0a1 5821 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 5822 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 5823 NAPI_GRO_CB(skb)->last = skb;
86911732 5824 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 5825 list_add(&skb->list, gro_head);
5d0d9be8 5826 ret = GRO_HELD;
d565b0a1 5827
ad0f9904 5828pull:
a50e233c
ED
5829 grow = skb_gro_offset(skb) - skb_headlen(skb);
5830 if (grow > 0)
5831 gro_pull_from_frag0(skb, grow);
d565b0a1 5832ok:
d9f37d01
LR
5833 if (napi->gro_hash[hash].count) {
5834 if (!test_bit(hash, &napi->gro_bitmask))
5835 __set_bit(hash, &napi->gro_bitmask);
5836 } else if (test_bit(hash, &napi->gro_bitmask)) {
5837 __clear_bit(hash, &napi->gro_bitmask);
5838 }
5839
5d0d9be8 5840 return ret;
d565b0a1
HX
5841
5842normal:
ad0f9904
HX
5843 ret = GRO_NORMAL;
5844 goto pull;
5d38a079 5845}
96e93eab 5846
bf5a755f
JC
5847struct packet_offload *gro_find_receive_by_type(__be16 type)
5848{
5849 struct list_head *offload_head = &offload_base;
5850 struct packet_offload *ptype;
5851
5852 list_for_each_entry_rcu(ptype, offload_head, list) {
5853 if (ptype->type != type || !ptype->callbacks.gro_receive)
5854 continue;
5855 return ptype;
5856 }
5857 return NULL;
5858}
e27a2f83 5859EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
5860
5861struct packet_offload *gro_find_complete_by_type(__be16 type)
5862{
5863 struct list_head *offload_head = &offload_base;
5864 struct packet_offload *ptype;
5865
5866 list_for_each_entry_rcu(ptype, offload_head, list) {
5867 if (ptype->type != type || !ptype->callbacks.gro_complete)
5868 continue;
5869 return ptype;
5870 }
5871 return NULL;
5872}
e27a2f83 5873EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 5874
e44699d2
MK
5875static void napi_skb_free_stolen_head(struct sk_buff *skb)
5876{
5877 skb_dst_drop(skb);
174e2381 5878 skb_ext_put(skb);
e44699d2
MK
5879 kmem_cache_free(skbuff_head_cache, skb);
5880}
5881
6570bc79
AL
5882static gro_result_t napi_skb_finish(struct napi_struct *napi,
5883 struct sk_buff *skb,
5884 gro_result_t ret)
5d38a079 5885{
5d0d9be8
HX
5886 switch (ret) {
5887 case GRO_NORMAL:
6570bc79 5888 gro_normal_one(napi, skb);
c7c4b3b6 5889 break;
5d38a079 5890
5d0d9be8 5891 case GRO_DROP:
5d38a079
HX
5892 kfree_skb(skb);
5893 break;
5b252f0c 5894
daa86548 5895 case GRO_MERGED_FREE:
e44699d2
MK
5896 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5897 napi_skb_free_stolen_head(skb);
5898 else
d7e8883c 5899 __kfree_skb(skb);
daa86548
ED
5900 break;
5901
5b252f0c
BH
5902 case GRO_HELD:
5903 case GRO_MERGED:
25393d3f 5904 case GRO_CONSUMED:
5b252f0c 5905 break;
5d38a079
HX
5906 }
5907
c7c4b3b6 5908 return ret;
5d0d9be8 5909}
5d0d9be8 5910
c7c4b3b6 5911gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 5912{
b0e3f1bd
GB
5913 gro_result_t ret;
5914
93f93a44 5915 skb_mark_napi_id(skb, napi);
ae78dbfa 5916 trace_napi_gro_receive_entry(skb);
86911732 5917
a50e233c
ED
5918 skb_gro_reset_offset(skb);
5919
6570bc79 5920 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
b0e3f1bd
GB
5921 trace_napi_gro_receive_exit(ret);
5922
5923 return ret;
d565b0a1
HX
5924}
5925EXPORT_SYMBOL(napi_gro_receive);
5926
d0c2b0d2 5927static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 5928{
93a35f59
ED
5929 if (unlikely(skb->pfmemalloc)) {
5930 consume_skb(skb);
5931 return;
5932 }
96e93eab 5933 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
5934 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5935 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 5936 __vlan_hwaccel_clear_tag(skb);
66c46d74 5937 skb->dev = napi->dev;
6d152e23 5938 skb->skb_iif = 0;
33d9a2c7
ED
5939
5940 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5941 skb->pkt_type = PACKET_HOST;
5942
c3caf119
JC
5943 skb->encapsulation = 0;
5944 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 5945 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
174e2381 5946 skb_ext_reset(skb);
96e93eab
HX
5947
5948 napi->skb = skb;
5949}
96e93eab 5950
76620aaf 5951struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5952{
5d38a079 5953 struct sk_buff *skb = napi->skb;
5d38a079
HX
5954
5955 if (!skb) {
fd11a83d 5956 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5957 if (skb) {
5958 napi->skb = skb;
5959 skb_mark_napi_id(skb, napi);
5960 }
80595d59 5961 }
96e93eab
HX
5962 return skb;
5963}
76620aaf 5964EXPORT_SYMBOL(napi_get_frags);
96e93eab 5965
a50e233c
ED
5966static gro_result_t napi_frags_finish(struct napi_struct *napi,
5967 struct sk_buff *skb,
5968 gro_result_t ret)
96e93eab 5969{
5d0d9be8
HX
5970 switch (ret) {
5971 case GRO_NORMAL:
a50e233c
ED
5972 case GRO_HELD:
5973 __skb_push(skb, ETH_HLEN);
5974 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61
EC
5975 if (ret == GRO_NORMAL)
5976 gro_normal_one(napi, skb);
86911732 5977 break;
5d38a079 5978
5d0d9be8 5979 case GRO_DROP:
5d0d9be8
HX
5980 napi_reuse_skb(napi, skb);
5981 break;
5b252f0c 5982
e44699d2
MK
5983 case GRO_MERGED_FREE:
5984 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5985 napi_skb_free_stolen_head(skb);
5986 else
5987 napi_reuse_skb(napi, skb);
5988 break;
5989
5b252f0c 5990 case GRO_MERGED:
25393d3f 5991 case GRO_CONSUMED:
5b252f0c 5992 break;
5d0d9be8 5993 }
5d38a079 5994
c7c4b3b6 5995 return ret;
5d38a079 5996}
5d0d9be8 5997
a50e233c
ED
5998/* Upper GRO stack assumes network header starts at gro_offset=0
5999 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6000 * We copy ethernet header into skb->data to have a common layout.
6001 */
4adb9c4a 6002static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
6003{
6004 struct sk_buff *skb = napi->skb;
a50e233c
ED
6005 const struct ethhdr *eth;
6006 unsigned int hlen = sizeof(*eth);
76620aaf
HX
6007
6008 napi->skb = NULL;
6009
a50e233c
ED
6010 skb_reset_mac_header(skb);
6011 skb_gro_reset_offset(skb);
6012
a50e233c
ED
6013 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6014 eth = skb_gro_header_slow(skb, hlen, 0);
6015 if (unlikely(!eth)) {
4da46ceb
AC
6016 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6017 __func__, napi->dev->name);
a50e233c
ED
6018 napi_reuse_skb(napi, skb);
6019 return NULL;
6020 }
6021 } else {
a4270d67 6022 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
6023 gro_pull_from_frag0(skb, hlen);
6024 NAPI_GRO_CB(skb)->frag0 += hlen;
6025 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 6026 }
a50e233c
ED
6027 __skb_pull(skb, hlen);
6028
6029 /*
6030 * This works because the only protocols we care about don't require
6031 * special handling.
6032 * We'll fix it up properly in napi_frags_finish()
6033 */
6034 skb->protocol = eth->h_proto;
76620aaf 6035
76620aaf
HX
6036 return skb;
6037}
76620aaf 6038
c7c4b3b6 6039gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 6040{
b0e3f1bd 6041 gro_result_t ret;
76620aaf 6042 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
6043
6044 if (!skb)
c7c4b3b6 6045 return GRO_DROP;
5d0d9be8 6046
ae78dbfa
BH
6047 trace_napi_gro_frags_entry(skb);
6048
b0e3f1bd
GB
6049 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6050 trace_napi_gro_frags_exit(ret);
6051
6052 return ret;
5d0d9be8 6053}
5d38a079
HX
6054EXPORT_SYMBOL(napi_gro_frags);
6055
573e8fca
TH
6056/* Compute the checksum from gro_offset and return the folded value
6057 * after adding in any pseudo checksum.
6058 */
6059__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6060{
6061 __wsum wsum;
6062 __sum16 sum;
6063
6064 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6065
6066 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6067 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 6068 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
6069 if (likely(!sum)) {
6070 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6071 !skb->csum_complete_sw)
7fe50ac8 6072 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
6073 }
6074
6075 NAPI_GRO_CB(skb)->csum = wsum;
6076 NAPI_GRO_CB(skb)->csum_valid = 1;
6077
6078 return sum;
6079}
6080EXPORT_SYMBOL(__skb_gro_checksum_complete);
6081
773fc8f6 6082static void net_rps_send_ipi(struct softnet_data *remsd)
6083{
6084#ifdef CONFIG_RPS
6085 while (remsd) {
6086 struct softnet_data *next = remsd->rps_ipi_next;
6087
6088 if (cpu_online(remsd->cpu))
6089 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6090 remsd = next;
6091 }
6092#endif
6093}
6094
e326bed2 6095/*
855abcf0 6096 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
6097 * Note: called with local irq disabled, but exits with local irq enabled.
6098 */
6099static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6100{
6101#ifdef CONFIG_RPS
6102 struct softnet_data *remsd = sd->rps_ipi_list;
6103
6104 if (remsd) {
6105 sd->rps_ipi_list = NULL;
6106
6107 local_irq_enable();
6108
6109 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 6110 net_rps_send_ipi(remsd);
e326bed2
ED
6111 } else
6112#endif
6113 local_irq_enable();
6114}
6115
d75b1ade
ED
6116static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6117{
6118#ifdef CONFIG_RPS
6119 return sd->rps_ipi_list != NULL;
6120#else
6121 return false;
6122#endif
6123}
6124
bea3348e 6125static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 6126{
eecfd7c4 6127 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
6128 bool again = true;
6129 int work = 0;
1da177e4 6130
e326bed2
ED
6131 /* Check if we have pending ipi, its better to send them now,
6132 * not waiting net_rx_action() end.
6133 */
d75b1ade 6134 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
6135 local_irq_disable();
6136 net_rps_action_and_irq_enable(sd);
6137 }
d75b1ade 6138
3d48b53f 6139 napi->weight = dev_rx_weight;
145dd5f9 6140 while (again) {
1da177e4 6141 struct sk_buff *skb;
6e7676c1
CG
6142
6143 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 6144 rcu_read_lock();
6e7676c1 6145 __netif_receive_skb(skb);
2c17d27c 6146 rcu_read_unlock();
76cc8b13 6147 input_queue_head_incr(sd);
145dd5f9 6148 if (++work >= quota)
76cc8b13 6149 return work;
145dd5f9 6150
6e7676c1 6151 }
1da177e4 6152
145dd5f9 6153 local_irq_disable();
e36fa2f7 6154 rps_lock(sd);
11ef7a89 6155 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
6156 /*
6157 * Inline a custom version of __napi_complete().
6158 * only current cpu owns and manipulates this napi,
11ef7a89
TH
6159 * and NAPI_STATE_SCHED is the only possible flag set
6160 * on backlog.
6161 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
6162 * and we dont need an smp_mb() memory barrier.
6163 */
eecfd7c4 6164 napi->state = 0;
145dd5f9
PA
6165 again = false;
6166 } else {
6167 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6168 &sd->process_queue);
bea3348e 6169 }
e36fa2f7 6170 rps_unlock(sd);
145dd5f9 6171 local_irq_enable();
6e7676c1 6172 }
1da177e4 6173
bea3348e
SH
6174 return work;
6175}
1da177e4 6176
bea3348e
SH
6177/**
6178 * __napi_schedule - schedule for receive
c4ea43c5 6179 * @n: entry to schedule
bea3348e 6180 *
bc9ad166
ED
6181 * The entry's receive function will be scheduled to run.
6182 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 6183 */
b5606c2d 6184void __napi_schedule(struct napi_struct *n)
bea3348e
SH
6185{
6186 unsigned long flags;
1da177e4 6187
bea3348e 6188 local_irq_save(flags);
903ceff7 6189 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 6190 local_irq_restore(flags);
1da177e4 6191}
bea3348e
SH
6192EXPORT_SYMBOL(__napi_schedule);
6193
39e6c820
ED
6194/**
6195 * napi_schedule_prep - check if napi can be scheduled
6196 * @n: napi context
6197 *
6198 * Test if NAPI routine is already running, and if not mark
6199 * it as running. This is used as a condition variable
6200 * insure only one NAPI poll instance runs. We also make
6201 * sure there is no pending NAPI disable.
6202 */
6203bool napi_schedule_prep(struct napi_struct *n)
6204{
6205 unsigned long val, new;
6206
6207 do {
6208 val = READ_ONCE(n->state);
6209 if (unlikely(val & NAPIF_STATE_DISABLE))
6210 return false;
6211 new = val | NAPIF_STATE_SCHED;
6212
6213 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6214 * This was suggested by Alexander Duyck, as compiler
6215 * emits better code than :
6216 * if (val & NAPIF_STATE_SCHED)
6217 * new |= NAPIF_STATE_MISSED;
6218 */
6219 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6220 NAPIF_STATE_MISSED;
6221 } while (cmpxchg(&n->state, val, new) != val);
6222
6223 return !(val & NAPIF_STATE_SCHED);
6224}
6225EXPORT_SYMBOL(napi_schedule_prep);
6226
bc9ad166
ED
6227/**
6228 * __napi_schedule_irqoff - schedule for receive
6229 * @n: entry to schedule
6230 *
6231 * Variant of __napi_schedule() assuming hard irqs are masked
6232 */
6233void __napi_schedule_irqoff(struct napi_struct *n)
6234{
6235 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6236}
6237EXPORT_SYMBOL(__napi_schedule_irqoff);
6238
364b6055 6239bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6240{
39e6c820 6241 unsigned long flags, val, new;
d565b0a1
HX
6242
6243 /*
217f6974
ED
6244 * 1) Don't let napi dequeue from the cpu poll list
6245 * just in case its running on a different cpu.
6246 * 2) If we are busy polling, do nothing here, we have
6247 * the guarantee we will be called later.
d565b0a1 6248 */
217f6974
ED
6249 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6250 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6251 return false;
d565b0a1 6252
d9f37d01 6253 if (n->gro_bitmask) {
3b47d303 6254 unsigned long timeout = 0;
d75b1ade 6255
3b47d303
ED
6256 if (work_done)
6257 timeout = n->dev->gro_flush_timeout;
6258
605108ac
PA
6259 /* When the NAPI instance uses a timeout and keeps postponing
6260 * it, we need to bound somehow the time packets are kept in
6261 * the GRO layer
6262 */
6263 napi_gro_flush(n, !!timeout);
3b47d303
ED
6264 if (timeout)
6265 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6266 HRTIMER_MODE_REL_PINNED);
3b47d303 6267 }
c8079432
MM
6268
6269 gro_normal_list(n);
6270
02c1602e 6271 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6272 /* If n->poll_list is not empty, we need to mask irqs */
6273 local_irq_save(flags);
02c1602e 6274 list_del_init(&n->poll_list);
d75b1ade
ED
6275 local_irq_restore(flags);
6276 }
39e6c820
ED
6277
6278 do {
6279 val = READ_ONCE(n->state);
6280
6281 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6282
6283 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6284
6285 /* If STATE_MISSED was set, leave STATE_SCHED set,
6286 * because we will call napi->poll() one more time.
6287 * This C code was suggested by Alexander Duyck to help gcc.
6288 */
6289 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6290 NAPIF_STATE_SCHED;
6291 } while (cmpxchg(&n->state, val, new) != val);
6292
6293 if (unlikely(val & NAPIF_STATE_MISSED)) {
6294 __napi_schedule(n);
6295 return false;
6296 }
6297
364b6055 6298 return true;
d565b0a1 6299}
3b47d303 6300EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6301
af12fa6e 6302/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6303static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6304{
6305 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6306 struct napi_struct *napi;
6307
6308 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6309 if (napi->napi_id == napi_id)
6310 return napi;
6311
6312 return NULL;
6313}
02d62e86
ED
6314
6315#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6316
ce6aea93 6317#define BUSY_POLL_BUDGET 8
217f6974
ED
6318
6319static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6320{
6321 int rc;
6322
39e6c820
ED
6323 /* Busy polling means there is a high chance device driver hard irq
6324 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6325 * set in napi_schedule_prep().
6326 * Since we are about to call napi->poll() once more, we can safely
6327 * clear NAPI_STATE_MISSED.
6328 *
6329 * Note: x86 could use a single "lock and ..." instruction
6330 * to perform these two clear_bit()
6331 */
6332 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6333 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6334
6335 local_bh_disable();
6336
6337 /* All we really want here is to re-enable device interrupts.
6338 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6339 */
6340 rc = napi->poll(napi, BUSY_POLL_BUDGET);
323ebb61
EC
6341 /* We can't gro_normal_list() here, because napi->poll() might have
6342 * rearmed the napi (napi_complete_done()) in which case it could
6343 * already be running on another CPU.
6344 */
1e22391e 6345 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974 6346 netpoll_poll_unlock(have_poll_lock);
323ebb61
EC
6347 if (rc == BUSY_POLL_BUDGET) {
6348 /* As the whole budget was spent, we still own the napi so can
6349 * safely handle the rx_list.
6350 */
6351 gro_normal_list(napi);
217f6974 6352 __napi_schedule(napi);
323ebb61 6353 }
217f6974 6354 local_bh_enable();
217f6974
ED
6355}
6356
7db6b048
SS
6357void napi_busy_loop(unsigned int napi_id,
6358 bool (*loop_end)(void *, unsigned long),
6359 void *loop_end_arg)
02d62e86 6360{
7db6b048 6361 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6362 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6363 void *have_poll_lock = NULL;
02d62e86 6364 struct napi_struct *napi;
217f6974
ED
6365
6366restart:
217f6974 6367 napi_poll = NULL;
02d62e86 6368
2a028ecb 6369 rcu_read_lock();
02d62e86 6370
545cd5e5 6371 napi = napi_by_id(napi_id);
02d62e86
ED
6372 if (!napi)
6373 goto out;
6374
217f6974
ED
6375 preempt_disable();
6376 for (;;) {
2b5cd0df
AD
6377 int work = 0;
6378
2a028ecb 6379 local_bh_disable();
217f6974
ED
6380 if (!napi_poll) {
6381 unsigned long val = READ_ONCE(napi->state);
6382
6383 /* If multiple threads are competing for this napi,
6384 * we avoid dirtying napi->state as much as we can.
6385 */
6386 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6387 NAPIF_STATE_IN_BUSY_POLL))
6388 goto count;
6389 if (cmpxchg(&napi->state, val,
6390 val | NAPIF_STATE_IN_BUSY_POLL |
6391 NAPIF_STATE_SCHED) != val)
6392 goto count;
6393 have_poll_lock = netpoll_poll_lock(napi);
6394 napi_poll = napi->poll;
6395 }
2b5cd0df
AD
6396 work = napi_poll(napi, BUSY_POLL_BUDGET);
6397 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
323ebb61 6398 gro_normal_list(napi);
217f6974 6399count:
2b5cd0df 6400 if (work > 0)
7db6b048 6401 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6402 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6403 local_bh_enable();
02d62e86 6404
7db6b048 6405 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6406 break;
02d62e86 6407
217f6974
ED
6408 if (unlikely(need_resched())) {
6409 if (napi_poll)
6410 busy_poll_stop(napi, have_poll_lock);
6411 preempt_enable();
6412 rcu_read_unlock();
6413 cond_resched();
7db6b048 6414 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6415 return;
217f6974
ED
6416 goto restart;
6417 }
6cdf89b1 6418 cpu_relax();
217f6974
ED
6419 }
6420 if (napi_poll)
6421 busy_poll_stop(napi, have_poll_lock);
6422 preempt_enable();
02d62e86 6423out:
2a028ecb 6424 rcu_read_unlock();
02d62e86 6425}
7db6b048 6426EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6427
6428#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6429
149d6ad8 6430static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6431{
d64b5e85
ED
6432 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6433 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 6434 return;
af12fa6e 6435
52bd2d62 6436 spin_lock(&napi_hash_lock);
af12fa6e 6437
545cd5e5 6438 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6439 do {
545cd5e5
AD
6440 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6441 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6442 } while (napi_by_id(napi_gen_id));
6443 napi->napi_id = napi_gen_id;
af12fa6e 6444
52bd2d62
ED
6445 hlist_add_head_rcu(&napi->napi_hash_node,
6446 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6447
52bd2d62 6448 spin_unlock(&napi_hash_lock);
af12fa6e 6449}
af12fa6e
ET
6450
6451/* Warning : caller is responsible to make sure rcu grace period
6452 * is respected before freeing memory containing @napi
6453 */
34cbe27e 6454bool napi_hash_del(struct napi_struct *napi)
af12fa6e 6455{
34cbe27e
ED
6456 bool rcu_sync_needed = false;
6457
af12fa6e
ET
6458 spin_lock(&napi_hash_lock);
6459
34cbe27e
ED
6460 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6461 rcu_sync_needed = true;
af12fa6e 6462 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 6463 }
af12fa6e 6464 spin_unlock(&napi_hash_lock);
34cbe27e 6465 return rcu_sync_needed;
af12fa6e
ET
6466}
6467EXPORT_SYMBOL_GPL(napi_hash_del);
6468
3b47d303
ED
6469static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6470{
6471 struct napi_struct *napi;
6472
6473 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6474
6475 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6476 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6477 */
d9f37d01 6478 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
39e6c820
ED
6479 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6480 __napi_schedule_irqoff(napi);
3b47d303
ED
6481
6482 return HRTIMER_NORESTART;
6483}
6484
7c4ec749 6485static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6486{
07d78363
DM
6487 int i;
6488
6312fe77
LR
6489 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6490 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6491 napi->gro_hash[i].count = 0;
6492 }
7c4ec749
DM
6493 napi->gro_bitmask = 0;
6494}
6495
6496void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6497 int (*poll)(struct napi_struct *, int), int weight)
6498{
6499 INIT_LIST_HEAD(&napi->poll_list);
6500 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6501 napi->timer.function = napi_watchdog;
6502 init_gro_hash(napi);
5d38a079 6503 napi->skb = NULL;
323ebb61
EC
6504 INIT_LIST_HEAD(&napi->rx_list);
6505 napi->rx_count = 0;
d565b0a1 6506 napi->poll = poll;
82dc3c63 6507 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6508 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6509 weight);
d565b0a1
HX
6510 napi->weight = weight;
6511 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 6512 napi->dev = dev;
5d38a079 6513#ifdef CONFIG_NETPOLL
d565b0a1
HX
6514 napi->poll_owner = -1;
6515#endif
6516 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 6517 napi_hash_add(napi);
d565b0a1
HX
6518}
6519EXPORT_SYMBOL(netif_napi_add);
6520
3b47d303
ED
6521void napi_disable(struct napi_struct *n)
6522{
6523 might_sleep();
6524 set_bit(NAPI_STATE_DISABLE, &n->state);
6525
6526 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6527 msleep(1);
2d8bff12
NH
6528 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6529 msleep(1);
3b47d303
ED
6530
6531 hrtimer_cancel(&n->timer);
6532
6533 clear_bit(NAPI_STATE_DISABLE, &n->state);
6534}
6535EXPORT_SYMBOL(napi_disable);
6536
07d78363 6537static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6538{
07d78363 6539 int i;
d4546c25 6540
07d78363
DM
6541 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6542 struct sk_buff *skb, *n;
6543
6312fe77 6544 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6545 kfree_skb(skb);
6312fe77 6546 napi->gro_hash[i].count = 0;
07d78363 6547 }
d4546c25
DM
6548}
6549
93d05d4a 6550/* Must be called in process context */
d565b0a1
HX
6551void netif_napi_del(struct napi_struct *napi)
6552{
93d05d4a
ED
6553 might_sleep();
6554 if (napi_hash_del(napi))
6555 synchronize_net();
d7b06636 6556 list_del_init(&napi->dev_list);
76620aaf 6557 napi_free_frags(napi);
d565b0a1 6558
07d78363 6559 flush_gro_hash(napi);
d9f37d01 6560 napi->gro_bitmask = 0;
d565b0a1
HX
6561}
6562EXPORT_SYMBOL(netif_napi_del);
6563
726ce70e
HX
6564static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6565{
6566 void *have;
6567 int work, weight;
6568
6569 list_del_init(&n->poll_list);
6570
6571 have = netpoll_poll_lock(n);
6572
6573 weight = n->weight;
6574
6575 /* This NAPI_STATE_SCHED test is for avoiding a race
6576 * with netpoll's poll_napi(). Only the entity which
6577 * obtains the lock and sees NAPI_STATE_SCHED set will
6578 * actually make the ->poll() call. Therefore we avoid
6579 * accidentally calling ->poll() when NAPI is not scheduled.
6580 */
6581 work = 0;
6582 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6583 work = n->poll(n, weight);
1db19db7 6584 trace_napi_poll(n, work, weight);
726ce70e
HX
6585 }
6586
6587 WARN_ON_ONCE(work > weight);
6588
6589 if (likely(work < weight))
6590 goto out_unlock;
6591
6592 /* Drivers must not modify the NAPI state if they
6593 * consume the entire weight. In such cases this code
6594 * still "owns" the NAPI instance and therefore can
6595 * move the instance around on the list at-will.
6596 */
6597 if (unlikely(napi_disable_pending(n))) {
6598 napi_complete(n);
6599 goto out_unlock;
6600 }
6601
d9f37d01 6602 if (n->gro_bitmask) {
726ce70e
HX
6603 /* flush too old packets
6604 * If HZ < 1000, flush all packets.
6605 */
6606 napi_gro_flush(n, HZ >= 1000);
6607 }
6608
c8079432
MM
6609 gro_normal_list(n);
6610
001ce546
HX
6611 /* Some drivers may have called napi_schedule
6612 * prior to exhausting their budget.
6613 */
6614 if (unlikely(!list_empty(&n->poll_list))) {
6615 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6616 n->dev ? n->dev->name : "backlog");
6617 goto out_unlock;
6618 }
6619
726ce70e
HX
6620 list_add_tail(&n->poll_list, repoll);
6621
6622out_unlock:
6623 netpoll_poll_unlock(have);
6624
6625 return work;
6626}
6627
0766f788 6628static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6629{
903ceff7 6630 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6631 unsigned long time_limit = jiffies +
6632 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6633 int budget = netdev_budget;
d75b1ade
ED
6634 LIST_HEAD(list);
6635 LIST_HEAD(repoll);
53fb95d3 6636
1da177e4 6637 local_irq_disable();
d75b1ade
ED
6638 list_splice_init(&sd->poll_list, &list);
6639 local_irq_enable();
1da177e4 6640
ceb8d5bf 6641 for (;;) {
bea3348e 6642 struct napi_struct *n;
1da177e4 6643
ceb8d5bf
HX
6644 if (list_empty(&list)) {
6645 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6646 goto out;
ceb8d5bf
HX
6647 break;
6648 }
6649
6bd373eb
HX
6650 n = list_first_entry(&list, struct napi_struct, poll_list);
6651 budget -= napi_poll(n, &repoll);
6652
d75b1ade 6653 /* If softirq window is exhausted then punt.
24f8b238
SH
6654 * Allow this to run for 2 jiffies since which will allow
6655 * an average latency of 1.5/HZ.
bea3348e 6656 */
ceb8d5bf
HX
6657 if (unlikely(budget <= 0 ||
6658 time_after_eq(jiffies, time_limit))) {
6659 sd->time_squeeze++;
6660 break;
6661 }
1da177e4 6662 }
d75b1ade 6663
d75b1ade
ED
6664 local_irq_disable();
6665
6666 list_splice_tail_init(&sd->poll_list, &list);
6667 list_splice_tail(&repoll, &list);
6668 list_splice(&list, &sd->poll_list);
6669 if (!list_empty(&sd->poll_list))
6670 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6671
e326bed2 6672 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6673out:
6674 __kfree_skb_flush();
1da177e4
LT
6675}
6676
aa9d8560 6677struct netdev_adjacent {
9ff162a8 6678 struct net_device *dev;
5d261913
VF
6679
6680 /* upper master flag, there can only be one master device per list */
9ff162a8 6681 bool master;
5d261913 6682
32b6d34f
TY
6683 /* lookup ignore flag */
6684 bool ignore;
6685
5d261913
VF
6686 /* counter for the number of times this device was added to us */
6687 u16 ref_nr;
6688
402dae96
VF
6689 /* private field for the users */
6690 void *private;
6691
9ff162a8
JP
6692 struct list_head list;
6693 struct rcu_head rcu;
9ff162a8
JP
6694};
6695
6ea29da1 6696static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6697 struct list_head *adj_list)
9ff162a8 6698{
5d261913 6699 struct netdev_adjacent *adj;
5d261913 6700
2f268f12 6701 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6702 if (adj->dev == adj_dev)
6703 return adj;
9ff162a8
JP
6704 }
6705 return NULL;
6706}
6707
32b6d34f 6708static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
f1170fd4
DA
6709{
6710 struct net_device *dev = data;
6711
6712 return upper_dev == dev;
6713}
6714
9ff162a8
JP
6715/**
6716 * netdev_has_upper_dev - Check if device is linked to an upper device
6717 * @dev: device
6718 * @upper_dev: upper device to check
6719 *
6720 * Find out if a device is linked to specified upper device and return true
6721 * in case it is. Note that this checks only immediate upper device,
6722 * not through a complete stack of devices. The caller must hold the RTNL lock.
6723 */
6724bool netdev_has_upper_dev(struct net_device *dev,
6725 struct net_device *upper_dev)
6726{
6727 ASSERT_RTNL();
6728
32b6d34f 6729 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
f1170fd4 6730 upper_dev);
9ff162a8
JP
6731}
6732EXPORT_SYMBOL(netdev_has_upper_dev);
6733
1a3f060c
DA
6734/**
6735 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6736 * @dev: device
6737 * @upper_dev: upper device to check
6738 *
6739 * Find out if a device is linked to specified upper device and return true
6740 * in case it is. Note that this checks the entire upper device chain.
6741 * The caller must hold rcu lock.
6742 */
6743
1a3f060c
DA
6744bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6745 struct net_device *upper_dev)
6746{
32b6d34f 6747 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
1a3f060c
DA
6748 upper_dev);
6749}
6750EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6751
9ff162a8
JP
6752/**
6753 * netdev_has_any_upper_dev - Check if device is linked to some device
6754 * @dev: device
6755 *
6756 * Find out if a device is linked to an upper device and return true in case
6757 * it is. The caller must hold the RTNL lock.
6758 */
25cc72a3 6759bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6760{
6761 ASSERT_RTNL();
6762
f1170fd4 6763 return !list_empty(&dev->adj_list.upper);
9ff162a8 6764}
25cc72a3 6765EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6766
6767/**
6768 * netdev_master_upper_dev_get - Get master upper device
6769 * @dev: device
6770 *
6771 * Find a master upper device and return pointer to it or NULL in case
6772 * it's not there. The caller must hold the RTNL lock.
6773 */
6774struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6775{
aa9d8560 6776 struct netdev_adjacent *upper;
9ff162a8
JP
6777
6778 ASSERT_RTNL();
6779
2f268f12 6780 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6781 return NULL;
6782
2f268f12 6783 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6784 struct netdev_adjacent, list);
9ff162a8
JP
6785 if (likely(upper->master))
6786 return upper->dev;
6787 return NULL;
6788}
6789EXPORT_SYMBOL(netdev_master_upper_dev_get);
6790
32b6d34f
TY
6791static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6792{
6793 struct netdev_adjacent *upper;
6794
6795 ASSERT_RTNL();
6796
6797 if (list_empty(&dev->adj_list.upper))
6798 return NULL;
6799
6800 upper = list_first_entry(&dev->adj_list.upper,
6801 struct netdev_adjacent, list);
6802 if (likely(upper->master) && !upper->ignore)
6803 return upper->dev;
6804 return NULL;
6805}
6806
0f524a80
DA
6807/**
6808 * netdev_has_any_lower_dev - Check if device is linked to some device
6809 * @dev: device
6810 *
6811 * Find out if a device is linked to a lower device and return true in case
6812 * it is. The caller must hold the RTNL lock.
6813 */
6814static bool netdev_has_any_lower_dev(struct net_device *dev)
6815{
6816 ASSERT_RTNL();
6817
6818 return !list_empty(&dev->adj_list.lower);
6819}
6820
b6ccba4c
VF
6821void *netdev_adjacent_get_private(struct list_head *adj_list)
6822{
6823 struct netdev_adjacent *adj;
6824
6825 adj = list_entry(adj_list, struct netdev_adjacent, list);
6826
6827 return adj->private;
6828}
6829EXPORT_SYMBOL(netdev_adjacent_get_private);
6830
44a40855
VY
6831/**
6832 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6833 * @dev: device
6834 * @iter: list_head ** of the current position
6835 *
6836 * Gets the next device from the dev's upper list, starting from iter
6837 * position. The caller must hold RCU read lock.
6838 */
6839struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6840 struct list_head **iter)
6841{
6842 struct netdev_adjacent *upper;
6843
6844 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6845
6846 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6847
6848 if (&upper->list == &dev->adj_list.upper)
6849 return NULL;
6850
6851 *iter = &upper->list;
6852
6853 return upper->dev;
6854}
6855EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6856
32b6d34f
TY
6857static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6858 struct list_head **iter,
6859 bool *ignore)
5343da4c
TY
6860{
6861 struct netdev_adjacent *upper;
6862
6863 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6864
6865 if (&upper->list == &dev->adj_list.upper)
6866 return NULL;
6867
6868 *iter = &upper->list;
32b6d34f 6869 *ignore = upper->ignore;
5343da4c
TY
6870
6871 return upper->dev;
6872}
6873
1a3f060c
DA
6874static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6875 struct list_head **iter)
6876{
6877 struct netdev_adjacent *upper;
6878
6879 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6880
6881 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6882
6883 if (&upper->list == &dev->adj_list.upper)
6884 return NULL;
6885
6886 *iter = &upper->list;
6887
6888 return upper->dev;
6889}
6890
32b6d34f
TY
6891static int __netdev_walk_all_upper_dev(struct net_device *dev,
6892 int (*fn)(struct net_device *dev,
6893 void *data),
6894 void *data)
5343da4c
TY
6895{
6896 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6897 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6898 int ret, cur = 0;
32b6d34f 6899 bool ignore;
5343da4c
TY
6900
6901 now = dev;
6902 iter = &dev->adj_list.upper;
6903
6904 while (1) {
6905 if (now != dev) {
6906 ret = fn(now, data);
6907 if (ret)
6908 return ret;
6909 }
6910
6911 next = NULL;
6912 while (1) {
32b6d34f 6913 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
6914 if (!udev)
6915 break;
32b6d34f
TY
6916 if (ignore)
6917 continue;
5343da4c
TY
6918
6919 next = udev;
6920 niter = &udev->adj_list.upper;
6921 dev_stack[cur] = now;
6922 iter_stack[cur++] = iter;
6923 break;
6924 }
6925
6926 if (!next) {
6927 if (!cur)
6928 return 0;
6929 next = dev_stack[--cur];
6930 niter = iter_stack[cur];
6931 }
6932
6933 now = next;
6934 iter = niter;
6935 }
6936
6937 return 0;
6938}
6939
1a3f060c
DA
6940int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6941 int (*fn)(struct net_device *dev,
6942 void *data),
6943 void *data)
6944{
5343da4c
TY
6945 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6946 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6947 int ret, cur = 0;
1a3f060c 6948
5343da4c
TY
6949 now = dev;
6950 iter = &dev->adj_list.upper;
1a3f060c 6951
5343da4c
TY
6952 while (1) {
6953 if (now != dev) {
6954 ret = fn(now, data);
6955 if (ret)
6956 return ret;
6957 }
6958
6959 next = NULL;
6960 while (1) {
6961 udev = netdev_next_upper_dev_rcu(now, &iter);
6962 if (!udev)
6963 break;
6964
6965 next = udev;
6966 niter = &udev->adj_list.upper;
6967 dev_stack[cur] = now;
6968 iter_stack[cur++] = iter;
6969 break;
6970 }
6971
6972 if (!next) {
6973 if (!cur)
6974 return 0;
6975 next = dev_stack[--cur];
6976 niter = iter_stack[cur];
6977 }
6978
6979 now = next;
6980 iter = niter;
1a3f060c
DA
6981 }
6982
6983 return 0;
6984}
6985EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6986
32b6d34f
TY
6987static bool __netdev_has_upper_dev(struct net_device *dev,
6988 struct net_device *upper_dev)
6989{
6990 ASSERT_RTNL();
6991
6992 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6993 upper_dev);
6994}
6995
31088a11
VF
6996/**
6997 * netdev_lower_get_next_private - Get the next ->private from the
6998 * lower neighbour list
6999 * @dev: device
7000 * @iter: list_head ** of the current position
7001 *
7002 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7003 * list, starting from iter position. The caller must hold either hold the
7004 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 7005 * list will remain unchanged.
31088a11
VF
7006 */
7007void *netdev_lower_get_next_private(struct net_device *dev,
7008 struct list_head **iter)
7009{
7010 struct netdev_adjacent *lower;
7011
7012 lower = list_entry(*iter, struct netdev_adjacent, list);
7013
7014 if (&lower->list == &dev->adj_list.lower)
7015 return NULL;
7016
6859e7df 7017 *iter = lower->list.next;
31088a11
VF
7018
7019 return lower->private;
7020}
7021EXPORT_SYMBOL(netdev_lower_get_next_private);
7022
7023/**
7024 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7025 * lower neighbour list, RCU
7026 * variant
7027 * @dev: device
7028 * @iter: list_head ** of the current position
7029 *
7030 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7031 * list, starting from iter position. The caller must hold RCU read lock.
7032 */
7033void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7034 struct list_head **iter)
7035{
7036 struct netdev_adjacent *lower;
7037
7038 WARN_ON_ONCE(!rcu_read_lock_held());
7039
7040 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7041
7042 if (&lower->list == &dev->adj_list.lower)
7043 return NULL;
7044
6859e7df 7045 *iter = &lower->list;
31088a11
VF
7046
7047 return lower->private;
7048}
7049EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7050
4085ebe8
VY
7051/**
7052 * netdev_lower_get_next - Get the next device from the lower neighbour
7053 * list
7054 * @dev: device
7055 * @iter: list_head ** of the current position
7056 *
7057 * Gets the next netdev_adjacent from the dev's lower neighbour
7058 * list, starting from iter position. The caller must hold RTNL lock or
7059 * its own locking that guarantees that the neighbour lower
b469139e 7060 * list will remain unchanged.
4085ebe8
VY
7061 */
7062void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7063{
7064 struct netdev_adjacent *lower;
7065
cfdd28be 7066 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7067
7068 if (&lower->list == &dev->adj_list.lower)
7069 return NULL;
7070
cfdd28be 7071 *iter = lower->list.next;
4085ebe8
VY
7072
7073 return lower->dev;
7074}
7075EXPORT_SYMBOL(netdev_lower_get_next);
7076
1a3f060c
DA
7077static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7078 struct list_head **iter)
7079{
7080 struct netdev_adjacent *lower;
7081
46b5ab1a 7082 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7083
7084 if (&lower->list == &dev->adj_list.lower)
7085 return NULL;
7086
46b5ab1a 7087 *iter = &lower->list;
1a3f060c
DA
7088
7089 return lower->dev;
7090}
7091
32b6d34f
TY
7092static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7093 struct list_head **iter,
7094 bool *ignore)
7095{
7096 struct netdev_adjacent *lower;
7097
7098 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7099
7100 if (&lower->list == &dev->adj_list.lower)
7101 return NULL;
7102
7103 *iter = &lower->list;
7104 *ignore = lower->ignore;
7105
7106 return lower->dev;
7107}
7108
1a3f060c
DA
7109int netdev_walk_all_lower_dev(struct net_device *dev,
7110 int (*fn)(struct net_device *dev,
7111 void *data),
7112 void *data)
7113{
5343da4c
TY
7114 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7115 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7116 int ret, cur = 0;
1a3f060c 7117
5343da4c
TY
7118 now = dev;
7119 iter = &dev->adj_list.lower;
1a3f060c 7120
5343da4c
TY
7121 while (1) {
7122 if (now != dev) {
7123 ret = fn(now, data);
7124 if (ret)
7125 return ret;
7126 }
7127
7128 next = NULL;
7129 while (1) {
7130 ldev = netdev_next_lower_dev(now, &iter);
7131 if (!ldev)
7132 break;
7133
7134 next = ldev;
7135 niter = &ldev->adj_list.lower;
7136 dev_stack[cur] = now;
7137 iter_stack[cur++] = iter;
7138 break;
7139 }
7140
7141 if (!next) {
7142 if (!cur)
7143 return 0;
7144 next = dev_stack[--cur];
7145 niter = iter_stack[cur];
7146 }
7147
7148 now = next;
7149 iter = niter;
1a3f060c
DA
7150 }
7151
7152 return 0;
7153}
7154EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7155
32b6d34f
TY
7156static int __netdev_walk_all_lower_dev(struct net_device *dev,
7157 int (*fn)(struct net_device *dev,
7158 void *data),
7159 void *data)
7160{
7161 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7162 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7163 int ret, cur = 0;
7164 bool ignore;
7165
7166 now = dev;
7167 iter = &dev->adj_list.lower;
7168
7169 while (1) {
7170 if (now != dev) {
7171 ret = fn(now, data);
7172 if (ret)
7173 return ret;
7174 }
7175
7176 next = NULL;
7177 while (1) {
7178 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7179 if (!ldev)
7180 break;
7181 if (ignore)
7182 continue;
7183
7184 next = ldev;
7185 niter = &ldev->adj_list.lower;
7186 dev_stack[cur] = now;
7187 iter_stack[cur++] = iter;
7188 break;
7189 }
7190
7191 if (!next) {
7192 if (!cur)
7193 return 0;
7194 next = dev_stack[--cur];
7195 niter = iter_stack[cur];
7196 }
7197
7198 now = next;
7199 iter = niter;
7200 }
7201
7202 return 0;
7203}
7204
1a3f060c
DA
7205static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7206 struct list_head **iter)
7207{
7208 struct netdev_adjacent *lower;
7209
7210 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7211 if (&lower->list == &dev->adj_list.lower)
7212 return NULL;
7213
7214 *iter = &lower->list;
7215
7216 return lower->dev;
7217}
7218
5343da4c
TY
7219static u8 __netdev_upper_depth(struct net_device *dev)
7220{
7221 struct net_device *udev;
7222 struct list_head *iter;
7223 u8 max_depth = 0;
32b6d34f 7224 bool ignore;
5343da4c
TY
7225
7226 for (iter = &dev->adj_list.upper,
32b6d34f 7227 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7228 udev;
32b6d34f
TY
7229 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7230 if (ignore)
7231 continue;
5343da4c
TY
7232 if (max_depth < udev->upper_level)
7233 max_depth = udev->upper_level;
7234 }
7235
7236 return max_depth;
7237}
7238
7239static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7240{
7241 struct net_device *ldev;
7242 struct list_head *iter;
5343da4c 7243 u8 max_depth = 0;
32b6d34f 7244 bool ignore;
1a3f060c
DA
7245
7246 for (iter = &dev->adj_list.lower,
32b6d34f 7247 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7248 ldev;
32b6d34f
TY
7249 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7250 if (ignore)
7251 continue;
5343da4c
TY
7252 if (max_depth < ldev->lower_level)
7253 max_depth = ldev->lower_level;
7254 }
1a3f060c 7255
5343da4c
TY
7256 return max_depth;
7257}
7258
7259static int __netdev_update_upper_level(struct net_device *dev, void *data)
7260{
7261 dev->upper_level = __netdev_upper_depth(dev) + 1;
7262 return 0;
7263}
7264
7265static int __netdev_update_lower_level(struct net_device *dev, void *data)
7266{
7267 dev->lower_level = __netdev_lower_depth(dev) + 1;
7268 return 0;
7269}
7270
7271int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7272 int (*fn)(struct net_device *dev,
7273 void *data),
7274 void *data)
7275{
7276 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7277 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7278 int ret, cur = 0;
7279
7280 now = dev;
7281 iter = &dev->adj_list.lower;
7282
7283 while (1) {
7284 if (now != dev) {
7285 ret = fn(now, data);
7286 if (ret)
7287 return ret;
7288 }
7289
7290 next = NULL;
7291 while (1) {
7292 ldev = netdev_next_lower_dev_rcu(now, &iter);
7293 if (!ldev)
7294 break;
7295
7296 next = ldev;
7297 niter = &ldev->adj_list.lower;
7298 dev_stack[cur] = now;
7299 iter_stack[cur++] = iter;
7300 break;
7301 }
7302
7303 if (!next) {
7304 if (!cur)
7305 return 0;
7306 next = dev_stack[--cur];
7307 niter = iter_stack[cur];
7308 }
7309
7310 now = next;
7311 iter = niter;
1a3f060c
DA
7312 }
7313
7314 return 0;
7315}
7316EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7317
e001bfad 7318/**
7319 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7320 * lower neighbour list, RCU
7321 * variant
7322 * @dev: device
7323 *
7324 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7325 * list. The caller must hold RCU read lock.
7326 */
7327void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7328{
7329 struct netdev_adjacent *lower;
7330
7331 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7332 struct netdev_adjacent, list);
7333 if (lower)
7334 return lower->private;
7335 return NULL;
7336}
7337EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7338
9ff162a8
JP
7339/**
7340 * netdev_master_upper_dev_get_rcu - Get master upper device
7341 * @dev: device
7342 *
7343 * Find a master upper device and return pointer to it or NULL in case
7344 * it's not there. The caller must hold the RCU read lock.
7345 */
7346struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7347{
aa9d8560 7348 struct netdev_adjacent *upper;
9ff162a8 7349
2f268f12 7350 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7351 struct netdev_adjacent, list);
9ff162a8
JP
7352 if (upper && likely(upper->master))
7353 return upper->dev;
7354 return NULL;
7355}
7356EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7357
0a59f3a9 7358static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7359 struct net_device *adj_dev,
7360 struct list_head *dev_list)
7361{
7362 char linkname[IFNAMSIZ+7];
f4563a75 7363
3ee32707
VF
7364 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7365 "upper_%s" : "lower_%s", adj_dev->name);
7366 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7367 linkname);
7368}
0a59f3a9 7369static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7370 char *name,
7371 struct list_head *dev_list)
7372{
7373 char linkname[IFNAMSIZ+7];
f4563a75 7374
3ee32707
VF
7375 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7376 "upper_%s" : "lower_%s", name);
7377 sysfs_remove_link(&(dev->dev.kobj), linkname);
7378}
7379
7ce64c79
AF
7380static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7381 struct net_device *adj_dev,
7382 struct list_head *dev_list)
7383{
7384 return (dev_list == &dev->adj_list.upper ||
7385 dev_list == &dev->adj_list.lower) &&
7386 net_eq(dev_net(dev), dev_net(adj_dev));
7387}
3ee32707 7388
5d261913
VF
7389static int __netdev_adjacent_dev_insert(struct net_device *dev,
7390 struct net_device *adj_dev,
7863c054 7391 struct list_head *dev_list,
402dae96 7392 void *private, bool master)
5d261913
VF
7393{
7394 struct netdev_adjacent *adj;
842d67a7 7395 int ret;
5d261913 7396
6ea29da1 7397 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7398
7399 if (adj) {
790510d9 7400 adj->ref_nr += 1;
67b62f98
DA
7401 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7402 dev->name, adj_dev->name, adj->ref_nr);
7403
5d261913
VF
7404 return 0;
7405 }
7406
7407 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7408 if (!adj)
7409 return -ENOMEM;
7410
7411 adj->dev = adj_dev;
7412 adj->master = master;
790510d9 7413 adj->ref_nr = 1;
402dae96 7414 adj->private = private;
32b6d34f 7415 adj->ignore = false;
5d261913 7416 dev_hold(adj_dev);
2f268f12 7417
67b62f98
DA
7418 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7419 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7420
7ce64c79 7421 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7422 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7423 if (ret)
7424 goto free_adj;
7425 }
7426
7863c054 7427 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7428 if (master) {
7429 ret = sysfs_create_link(&(dev->dev.kobj),
7430 &(adj_dev->dev.kobj), "master");
7431 if (ret)
5831d66e 7432 goto remove_symlinks;
842d67a7 7433
7863c054 7434 list_add_rcu(&adj->list, dev_list);
842d67a7 7435 } else {
7863c054 7436 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7437 }
5d261913
VF
7438
7439 return 0;
842d67a7 7440
5831d66e 7441remove_symlinks:
7ce64c79 7442 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7443 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
7444free_adj:
7445 kfree(adj);
974daef7 7446 dev_put(adj_dev);
842d67a7
VF
7447
7448 return ret;
5d261913
VF
7449}
7450
1d143d9f 7451static void __netdev_adjacent_dev_remove(struct net_device *dev,
7452 struct net_device *adj_dev,
93409033 7453 u16 ref_nr,
1d143d9f 7454 struct list_head *dev_list)
5d261913
VF
7455{
7456 struct netdev_adjacent *adj;
7457
67b62f98
DA
7458 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7459 dev->name, adj_dev->name, ref_nr);
7460
6ea29da1 7461 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7462
2f268f12 7463 if (!adj) {
67b62f98 7464 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7465 dev->name, adj_dev->name);
67b62f98
DA
7466 WARN_ON(1);
7467 return;
2f268f12 7468 }
5d261913 7469
93409033 7470 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7471 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7472 dev->name, adj_dev->name, ref_nr,
7473 adj->ref_nr - ref_nr);
93409033 7474 adj->ref_nr -= ref_nr;
5d261913
VF
7475 return;
7476 }
7477
842d67a7
VF
7478 if (adj->master)
7479 sysfs_remove_link(&(dev->dev.kobj), "master");
7480
7ce64c79 7481 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7482 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7483
5d261913 7484 list_del_rcu(&adj->list);
67b62f98 7485 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7486 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
7487 dev_put(adj_dev);
7488 kfree_rcu(adj, rcu);
7489}
7490
1d143d9f 7491static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7492 struct net_device *upper_dev,
7493 struct list_head *up_list,
7494 struct list_head *down_list,
7495 void *private, bool master)
5d261913
VF
7496{
7497 int ret;
7498
790510d9 7499 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7500 private, master);
5d261913
VF
7501 if (ret)
7502 return ret;
7503
790510d9 7504 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7505 private, false);
5d261913 7506 if (ret) {
790510d9 7507 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7508 return ret;
7509 }
7510
7511 return 0;
7512}
7513
1d143d9f 7514static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7515 struct net_device *upper_dev,
93409033 7516 u16 ref_nr,
1d143d9f 7517 struct list_head *up_list,
7518 struct list_head *down_list)
5d261913 7519{
93409033
AC
7520 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7521 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7522}
7523
1d143d9f 7524static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7525 struct net_device *upper_dev,
7526 void *private, bool master)
2f268f12 7527{
f1170fd4
DA
7528 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7529 &dev->adj_list.upper,
7530 &upper_dev->adj_list.lower,
7531 private, master);
5d261913
VF
7532}
7533
1d143d9f 7534static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7535 struct net_device *upper_dev)
2f268f12 7536{
93409033 7537 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7538 &dev->adj_list.upper,
7539 &upper_dev->adj_list.lower);
7540}
5d261913 7541
9ff162a8 7542static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7543 struct net_device *upper_dev, bool master,
42ab19ee
DA
7544 void *upper_priv, void *upper_info,
7545 struct netlink_ext_ack *extack)
9ff162a8 7546{
51d0c047
DA
7547 struct netdev_notifier_changeupper_info changeupper_info = {
7548 .info = {
7549 .dev = dev,
42ab19ee 7550 .extack = extack,
51d0c047
DA
7551 },
7552 .upper_dev = upper_dev,
7553 .master = master,
7554 .linking = true,
7555 .upper_info = upper_info,
7556 };
50d629e7 7557 struct net_device *master_dev;
5d261913 7558 int ret = 0;
9ff162a8
JP
7559
7560 ASSERT_RTNL();
7561
7562 if (dev == upper_dev)
7563 return -EBUSY;
7564
7565 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 7566 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7567 return -EBUSY;
7568
5343da4c
TY
7569 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7570 return -EMLINK;
7571
50d629e7 7572 if (!master) {
32b6d34f 7573 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
7574 return -EEXIST;
7575 } else {
32b6d34f 7576 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
7577 if (master_dev)
7578 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7579 }
9ff162a8 7580
51d0c047 7581 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7582 &changeupper_info.info);
7583 ret = notifier_to_errno(ret);
7584 if (ret)
7585 return ret;
7586
6dffb044 7587 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7588 master);
5d261913
VF
7589 if (ret)
7590 return ret;
9ff162a8 7591
51d0c047 7592 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7593 &changeupper_info.info);
7594 ret = notifier_to_errno(ret);
7595 if (ret)
f1170fd4 7596 goto rollback;
b03804e7 7597
5343da4c 7598 __netdev_update_upper_level(dev, NULL);
32b6d34f 7599 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7600
7601 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7602 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7603 NULL);
5343da4c 7604
9ff162a8 7605 return 0;
5d261913 7606
f1170fd4 7607rollback:
2f268f12 7608 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7609
7610 return ret;
9ff162a8
JP
7611}
7612
7613/**
7614 * netdev_upper_dev_link - Add a link to the upper device
7615 * @dev: device
7616 * @upper_dev: new upper device
7a006d59 7617 * @extack: netlink extended ack
9ff162a8
JP
7618 *
7619 * Adds a link to device which is upper to this one. The caller must hold
7620 * the RTNL lock. On a failure a negative errno code is returned.
7621 * On success the reference counts are adjusted and the function
7622 * returns zero.
7623 */
7624int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7625 struct net_device *upper_dev,
7626 struct netlink_ext_ack *extack)
9ff162a8 7627{
42ab19ee
DA
7628 return __netdev_upper_dev_link(dev, upper_dev, false,
7629 NULL, NULL, extack);
9ff162a8
JP
7630}
7631EXPORT_SYMBOL(netdev_upper_dev_link);
7632
7633/**
7634 * netdev_master_upper_dev_link - Add a master link to the upper device
7635 * @dev: device
7636 * @upper_dev: new upper device
6dffb044 7637 * @upper_priv: upper device private
29bf24af 7638 * @upper_info: upper info to be passed down via notifier
7a006d59 7639 * @extack: netlink extended ack
9ff162a8
JP
7640 *
7641 * Adds a link to device which is upper to this one. In this case, only
7642 * one master upper device can be linked, although other non-master devices
7643 * might be linked as well. The caller must hold the RTNL lock.
7644 * On a failure a negative errno code is returned. On success the reference
7645 * counts are adjusted and the function returns zero.
7646 */
7647int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7648 struct net_device *upper_dev,
42ab19ee
DA
7649 void *upper_priv, void *upper_info,
7650 struct netlink_ext_ack *extack)
9ff162a8 7651{
29bf24af 7652 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 7653 upper_priv, upper_info, extack);
9ff162a8
JP
7654}
7655EXPORT_SYMBOL(netdev_master_upper_dev_link);
7656
7657/**
7658 * netdev_upper_dev_unlink - Removes a link to upper device
7659 * @dev: device
7660 * @upper_dev: new upper device
7661 *
7662 * Removes a link to device which is upper to this one. The caller must hold
7663 * the RTNL lock.
7664 */
7665void netdev_upper_dev_unlink(struct net_device *dev,
7666 struct net_device *upper_dev)
7667{
51d0c047
DA
7668 struct netdev_notifier_changeupper_info changeupper_info = {
7669 .info = {
7670 .dev = dev,
7671 },
7672 .upper_dev = upper_dev,
7673 .linking = false,
7674 };
f4563a75 7675
9ff162a8
JP
7676 ASSERT_RTNL();
7677
0e4ead9d 7678 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7679
51d0c047 7680 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7681 &changeupper_info.info);
7682
2f268f12 7683 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7684
51d0c047 7685 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7686 &changeupper_info.info);
5343da4c
TY
7687
7688 __netdev_update_upper_level(dev, NULL);
32b6d34f 7689 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7690
7691 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7692 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7693 NULL);
9ff162a8
JP
7694}
7695EXPORT_SYMBOL(netdev_upper_dev_unlink);
7696
32b6d34f
TY
7697static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7698 struct net_device *lower_dev,
7699 bool val)
7700{
7701 struct netdev_adjacent *adj;
7702
7703 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7704 if (adj)
7705 adj->ignore = val;
7706
7707 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7708 if (adj)
7709 adj->ignore = val;
7710}
7711
7712static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7713 struct net_device *lower_dev)
7714{
7715 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7716}
7717
7718static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7719 struct net_device *lower_dev)
7720{
7721 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7722}
7723
7724int netdev_adjacent_change_prepare(struct net_device *old_dev,
7725 struct net_device *new_dev,
7726 struct net_device *dev,
7727 struct netlink_ext_ack *extack)
7728{
7729 int err;
7730
7731 if (!new_dev)
7732 return 0;
7733
7734 if (old_dev && new_dev != old_dev)
7735 netdev_adjacent_dev_disable(dev, old_dev);
7736
7737 err = netdev_upper_dev_link(new_dev, dev, extack);
7738 if (err) {
7739 if (old_dev && new_dev != old_dev)
7740 netdev_adjacent_dev_enable(dev, old_dev);
7741 return err;
7742 }
7743
7744 return 0;
7745}
7746EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7747
7748void netdev_adjacent_change_commit(struct net_device *old_dev,
7749 struct net_device *new_dev,
7750 struct net_device *dev)
7751{
7752 if (!new_dev || !old_dev)
7753 return;
7754
7755 if (new_dev == old_dev)
7756 return;
7757
7758 netdev_adjacent_dev_enable(dev, old_dev);
7759 netdev_upper_dev_unlink(old_dev, dev);
7760}
7761EXPORT_SYMBOL(netdev_adjacent_change_commit);
7762
7763void netdev_adjacent_change_abort(struct net_device *old_dev,
7764 struct net_device *new_dev,
7765 struct net_device *dev)
7766{
7767 if (!new_dev)
7768 return;
7769
7770 if (old_dev && new_dev != old_dev)
7771 netdev_adjacent_dev_enable(dev, old_dev);
7772
7773 netdev_upper_dev_unlink(new_dev, dev);
7774}
7775EXPORT_SYMBOL(netdev_adjacent_change_abort);
7776
61bd3857
MS
7777/**
7778 * netdev_bonding_info_change - Dispatch event about slave change
7779 * @dev: device
4a26e453 7780 * @bonding_info: info to dispatch
61bd3857
MS
7781 *
7782 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7783 * The caller must hold the RTNL lock.
7784 */
7785void netdev_bonding_info_change(struct net_device *dev,
7786 struct netdev_bonding_info *bonding_info)
7787{
51d0c047
DA
7788 struct netdev_notifier_bonding_info info = {
7789 .info.dev = dev,
7790 };
61bd3857
MS
7791
7792 memcpy(&info.bonding_info, bonding_info,
7793 sizeof(struct netdev_bonding_info));
51d0c047 7794 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7795 &info.info);
7796}
7797EXPORT_SYMBOL(netdev_bonding_info_change);
7798
2ce1ee17 7799static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
7800{
7801 struct netdev_adjacent *iter;
7802
7803 struct net *net = dev_net(dev);
7804
7805 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7806 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7807 continue;
7808 netdev_adjacent_sysfs_add(iter->dev, dev,
7809 &iter->dev->adj_list.lower);
7810 netdev_adjacent_sysfs_add(dev, iter->dev,
7811 &dev->adj_list.upper);
7812 }
7813
7814 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7815 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7816 continue;
7817 netdev_adjacent_sysfs_add(iter->dev, dev,
7818 &iter->dev->adj_list.upper);
7819 netdev_adjacent_sysfs_add(dev, iter->dev,
7820 &dev->adj_list.lower);
7821 }
7822}
7823
2ce1ee17 7824static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
7825{
7826 struct netdev_adjacent *iter;
7827
7828 struct net *net = dev_net(dev);
7829
7830 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7831 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7832 continue;
7833 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7834 &iter->dev->adj_list.lower);
7835 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7836 &dev->adj_list.upper);
7837 }
7838
7839 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7840 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7841 continue;
7842 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7843 &iter->dev->adj_list.upper);
7844 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7845 &dev->adj_list.lower);
7846 }
7847}
7848
5bb025fa 7849void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 7850{
5bb025fa 7851 struct netdev_adjacent *iter;
402dae96 7852
4c75431a
AF
7853 struct net *net = dev_net(dev);
7854
5bb025fa 7855 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7856 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7857 continue;
5bb025fa
VF
7858 netdev_adjacent_sysfs_del(iter->dev, oldname,
7859 &iter->dev->adj_list.lower);
7860 netdev_adjacent_sysfs_add(iter->dev, dev,
7861 &iter->dev->adj_list.lower);
7862 }
402dae96 7863
5bb025fa 7864 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7865 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7866 continue;
5bb025fa
VF
7867 netdev_adjacent_sysfs_del(iter->dev, oldname,
7868 &iter->dev->adj_list.upper);
7869 netdev_adjacent_sysfs_add(iter->dev, dev,
7870 &iter->dev->adj_list.upper);
7871 }
402dae96 7872}
402dae96
VF
7873
7874void *netdev_lower_dev_get_private(struct net_device *dev,
7875 struct net_device *lower_dev)
7876{
7877 struct netdev_adjacent *lower;
7878
7879 if (!lower_dev)
7880 return NULL;
6ea29da1 7881 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
7882 if (!lower)
7883 return NULL;
7884
7885 return lower->private;
7886}
7887EXPORT_SYMBOL(netdev_lower_dev_get_private);
7888
4085ebe8 7889
04d48266
JP
7890/**
7891 * netdev_lower_change - Dispatch event about lower device state change
7892 * @lower_dev: device
7893 * @lower_state_info: state to dispatch
7894 *
7895 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7896 * The caller must hold the RTNL lock.
7897 */
7898void netdev_lower_state_changed(struct net_device *lower_dev,
7899 void *lower_state_info)
7900{
51d0c047
DA
7901 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7902 .info.dev = lower_dev,
7903 };
04d48266
JP
7904
7905 ASSERT_RTNL();
7906 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 7907 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
7908 &changelowerstate_info.info);
7909}
7910EXPORT_SYMBOL(netdev_lower_state_changed);
7911
b6c40d68
PM
7912static void dev_change_rx_flags(struct net_device *dev, int flags)
7913{
d314774c
SH
7914 const struct net_device_ops *ops = dev->netdev_ops;
7915
d2615bf4 7916 if (ops->ndo_change_rx_flags)
d314774c 7917 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
7918}
7919
991fb3f7 7920static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 7921{
b536db93 7922 unsigned int old_flags = dev->flags;
d04a48b0
EB
7923 kuid_t uid;
7924 kgid_t gid;
1da177e4 7925
24023451
PM
7926 ASSERT_RTNL();
7927
dad9b335
WC
7928 dev->flags |= IFF_PROMISC;
7929 dev->promiscuity += inc;
7930 if (dev->promiscuity == 0) {
7931 /*
7932 * Avoid overflow.
7933 * If inc causes overflow, untouch promisc and return error.
7934 */
7935 if (inc < 0)
7936 dev->flags &= ~IFF_PROMISC;
7937 else {
7938 dev->promiscuity -= inc;
7b6cd1ce
JP
7939 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7940 dev->name);
dad9b335
WC
7941 return -EOVERFLOW;
7942 }
7943 }
52609c0b 7944 if (dev->flags != old_flags) {
7b6cd1ce
JP
7945 pr_info("device %s %s promiscuous mode\n",
7946 dev->name,
7947 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
7948 if (audit_enabled) {
7949 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
7950 audit_log(audit_context(), GFP_ATOMIC,
7951 AUDIT_ANOM_PROMISCUOUS,
7952 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7953 dev->name, (dev->flags & IFF_PROMISC),
7954 (old_flags & IFF_PROMISC),
7955 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7956 from_kuid(&init_user_ns, uid),
7957 from_kgid(&init_user_ns, gid),
7958 audit_get_sessionid(current));
8192b0c4 7959 }
24023451 7960
b6c40d68 7961 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 7962 }
991fb3f7
ND
7963 if (notify)
7964 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 7965 return 0;
1da177e4
LT
7966}
7967
4417da66
PM
7968/**
7969 * dev_set_promiscuity - update promiscuity count on a device
7970 * @dev: device
7971 * @inc: modifier
7972 *
7973 * Add or remove promiscuity from a device. While the count in the device
7974 * remains above zero the interface remains promiscuous. Once it hits zero
7975 * the device reverts back to normal filtering operation. A negative inc
7976 * value is used to drop promiscuity on the device.
dad9b335 7977 * Return 0 if successful or a negative errno code on error.
4417da66 7978 */
dad9b335 7979int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 7980{
b536db93 7981 unsigned int old_flags = dev->flags;
dad9b335 7982 int err;
4417da66 7983
991fb3f7 7984 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 7985 if (err < 0)
dad9b335 7986 return err;
4417da66
PM
7987 if (dev->flags != old_flags)
7988 dev_set_rx_mode(dev);
dad9b335 7989 return err;
4417da66 7990}
d1b19dff 7991EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 7992
991fb3f7 7993static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 7994{
991fb3f7 7995 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 7996
24023451
PM
7997 ASSERT_RTNL();
7998
1da177e4 7999 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
8000 dev->allmulti += inc;
8001 if (dev->allmulti == 0) {
8002 /*
8003 * Avoid overflow.
8004 * If inc causes overflow, untouch allmulti and return error.
8005 */
8006 if (inc < 0)
8007 dev->flags &= ~IFF_ALLMULTI;
8008 else {
8009 dev->allmulti -= inc;
7b6cd1ce
JP
8010 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8011 dev->name);
dad9b335
WC
8012 return -EOVERFLOW;
8013 }
8014 }
24023451 8015 if (dev->flags ^ old_flags) {
b6c40d68 8016 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8017 dev_set_rx_mode(dev);
991fb3f7
ND
8018 if (notify)
8019 __dev_notify_flags(dev, old_flags,
8020 dev->gflags ^ old_gflags);
24023451 8021 }
dad9b335 8022 return 0;
4417da66 8023}
991fb3f7
ND
8024
8025/**
8026 * dev_set_allmulti - update allmulti count on a device
8027 * @dev: device
8028 * @inc: modifier
8029 *
8030 * Add or remove reception of all multicast frames to a device. While the
8031 * count in the device remains above zero the interface remains listening
8032 * to all interfaces. Once it hits zero the device reverts back to normal
8033 * filtering operation. A negative @inc value is used to drop the counter
8034 * when releasing a resource needing all multicasts.
8035 * Return 0 if successful or a negative errno code on error.
8036 */
8037
8038int dev_set_allmulti(struct net_device *dev, int inc)
8039{
8040 return __dev_set_allmulti(dev, inc, true);
8041}
d1b19dff 8042EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8043
8044/*
8045 * Upload unicast and multicast address lists to device and
8046 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8047 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8048 * are present.
8049 */
8050void __dev_set_rx_mode(struct net_device *dev)
8051{
d314774c
SH
8052 const struct net_device_ops *ops = dev->netdev_ops;
8053
4417da66
PM
8054 /* dev_open will call this function so the list will stay sane. */
8055 if (!(dev->flags&IFF_UP))
8056 return;
8057
8058 if (!netif_device_present(dev))
40b77c94 8059 return;
4417da66 8060
01789349 8061 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8062 /* Unicast addresses changes may only happen under the rtnl,
8063 * therefore calling __dev_set_promiscuity here is safe.
8064 */
32e7bfc4 8065 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8066 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8067 dev->uc_promisc = true;
32e7bfc4 8068 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8069 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8070 dev->uc_promisc = false;
4417da66 8071 }
4417da66 8072 }
01789349
JP
8073
8074 if (ops->ndo_set_rx_mode)
8075 ops->ndo_set_rx_mode(dev);
4417da66
PM
8076}
8077
8078void dev_set_rx_mode(struct net_device *dev)
8079{
b9e40857 8080 netif_addr_lock_bh(dev);
4417da66 8081 __dev_set_rx_mode(dev);
b9e40857 8082 netif_addr_unlock_bh(dev);
1da177e4
LT
8083}
8084
f0db275a
SH
8085/**
8086 * dev_get_flags - get flags reported to userspace
8087 * @dev: device
8088 *
8089 * Get the combination of flag bits exported through APIs to userspace.
8090 */
95c96174 8091unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8092{
95c96174 8093 unsigned int flags;
1da177e4
LT
8094
8095 flags = (dev->flags & ~(IFF_PROMISC |
8096 IFF_ALLMULTI |
b00055aa
SR
8097 IFF_RUNNING |
8098 IFF_LOWER_UP |
8099 IFF_DORMANT)) |
1da177e4
LT
8100 (dev->gflags & (IFF_PROMISC |
8101 IFF_ALLMULTI));
8102
b00055aa
SR
8103 if (netif_running(dev)) {
8104 if (netif_oper_up(dev))
8105 flags |= IFF_RUNNING;
8106 if (netif_carrier_ok(dev))
8107 flags |= IFF_LOWER_UP;
8108 if (netif_dormant(dev))
8109 flags |= IFF_DORMANT;
8110 }
1da177e4
LT
8111
8112 return flags;
8113}
d1b19dff 8114EXPORT_SYMBOL(dev_get_flags);
1da177e4 8115
6d040321
PM
8116int __dev_change_flags(struct net_device *dev, unsigned int flags,
8117 struct netlink_ext_ack *extack)
1da177e4 8118{
b536db93 8119 unsigned int old_flags = dev->flags;
bd380811 8120 int ret;
1da177e4 8121
24023451
PM
8122 ASSERT_RTNL();
8123
1da177e4
LT
8124 /*
8125 * Set the flags on our device.
8126 */
8127
8128 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8129 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8130 IFF_AUTOMEDIA)) |
8131 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8132 IFF_ALLMULTI));
8133
8134 /*
8135 * Load in the correct multicast list now the flags have changed.
8136 */
8137
b6c40d68
PM
8138 if ((old_flags ^ flags) & IFF_MULTICAST)
8139 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8140
4417da66 8141 dev_set_rx_mode(dev);
1da177e4
LT
8142
8143 /*
8144 * Have we downed the interface. We handle IFF_UP ourselves
8145 * according to user attempts to set it, rather than blindly
8146 * setting it.
8147 */
8148
8149 ret = 0;
7051b88a 8150 if ((old_flags ^ flags) & IFF_UP) {
8151 if (old_flags & IFF_UP)
8152 __dev_close(dev);
8153 else
40c900aa 8154 ret = __dev_open(dev, extack);
7051b88a 8155 }
1da177e4 8156
1da177e4 8157 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8158 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8159 unsigned int old_flags = dev->flags;
d1b19dff 8160
1da177e4 8161 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8162
8163 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8164 if (dev->flags != old_flags)
8165 dev_set_rx_mode(dev);
1da177e4
LT
8166 }
8167
8168 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8169 * is important. Some (broken) drivers set IFF_PROMISC, when
8170 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8171 */
8172 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8173 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8174
1da177e4 8175 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8176 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8177 }
8178
bd380811
PM
8179 return ret;
8180}
8181
a528c219
ND
8182void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8183 unsigned int gchanges)
bd380811
PM
8184{
8185 unsigned int changes = dev->flags ^ old_flags;
8186
a528c219 8187 if (gchanges)
7f294054 8188 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8189
bd380811
PM
8190 if (changes & IFF_UP) {
8191 if (dev->flags & IFF_UP)
8192 call_netdevice_notifiers(NETDEV_UP, dev);
8193 else
8194 call_netdevice_notifiers(NETDEV_DOWN, dev);
8195 }
8196
8197 if (dev->flags & IFF_UP &&
be9efd36 8198 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8199 struct netdev_notifier_change_info change_info = {
8200 .info = {
8201 .dev = dev,
8202 },
8203 .flags_changed = changes,
8204 };
be9efd36 8205
51d0c047 8206 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8207 }
bd380811
PM
8208}
8209
8210/**
8211 * dev_change_flags - change device settings
8212 * @dev: device
8213 * @flags: device state flags
567c5e13 8214 * @extack: netlink extended ack
bd380811
PM
8215 *
8216 * Change settings on device based state flags. The flags are
8217 * in the userspace exported format.
8218 */
567c5e13
PM
8219int dev_change_flags(struct net_device *dev, unsigned int flags,
8220 struct netlink_ext_ack *extack)
bd380811 8221{
b536db93 8222 int ret;
991fb3f7 8223 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8224
6d040321 8225 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8226 if (ret < 0)
8227 return ret;
8228
991fb3f7 8229 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8230 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8231 return ret;
8232}
d1b19dff 8233EXPORT_SYMBOL(dev_change_flags);
1da177e4 8234
f51048c3 8235int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8236{
8237 const struct net_device_ops *ops = dev->netdev_ops;
8238
8239 if (ops->ndo_change_mtu)
8240 return ops->ndo_change_mtu(dev, new_mtu);
8241
501a90c9
ED
8242 /* Pairs with all the lockless reads of dev->mtu in the stack */
8243 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8244 return 0;
8245}
f51048c3 8246EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8247
d836f5c6
ED
8248int dev_validate_mtu(struct net_device *dev, int new_mtu,
8249 struct netlink_ext_ack *extack)
8250{
8251 /* MTU must be positive, and in range */
8252 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8253 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8254 return -EINVAL;
8255 }
8256
8257 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8258 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8259 return -EINVAL;
8260 }
8261 return 0;
8262}
8263
f0db275a 8264/**
7a4c53be 8265 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8266 * @dev: device
8267 * @new_mtu: new transfer unit
7a4c53be 8268 * @extack: netlink extended ack
f0db275a
SH
8269 *
8270 * Change the maximum transfer size of the network device.
8271 */
7a4c53be
SH
8272int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8273 struct netlink_ext_ack *extack)
1da177e4 8274{
2315dc91 8275 int err, orig_mtu;
1da177e4
LT
8276
8277 if (new_mtu == dev->mtu)
8278 return 0;
8279
d836f5c6
ED
8280 err = dev_validate_mtu(dev, new_mtu, extack);
8281 if (err)
8282 return err;
1da177e4
LT
8283
8284 if (!netif_device_present(dev))
8285 return -ENODEV;
8286
1d486bfb
VF
8287 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8288 err = notifier_to_errno(err);
8289 if (err)
8290 return err;
d314774c 8291
2315dc91
VF
8292 orig_mtu = dev->mtu;
8293 err = __dev_set_mtu(dev, new_mtu);
d314774c 8294
2315dc91 8295 if (!err) {
af7d6cce
SD
8296 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8297 orig_mtu);
2315dc91
VF
8298 err = notifier_to_errno(err);
8299 if (err) {
8300 /* setting mtu back and notifying everyone again,
8301 * so that they have a chance to revert changes.
8302 */
8303 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8304 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8305 new_mtu);
2315dc91
VF
8306 }
8307 }
1da177e4
LT
8308 return err;
8309}
7a4c53be
SH
8310
8311int dev_set_mtu(struct net_device *dev, int new_mtu)
8312{
8313 struct netlink_ext_ack extack;
8314 int err;
8315
a6bcfc89 8316 memset(&extack, 0, sizeof(extack));
7a4c53be 8317 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8318 if (err && extack._msg)
7a4c53be
SH
8319 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8320 return err;
8321}
d1b19dff 8322EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8323
6a643ddb
CW
8324/**
8325 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8326 * @dev: device
8327 * @new_len: new tx queue length
8328 */
8329int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8330{
8331 unsigned int orig_len = dev->tx_queue_len;
8332 int res;
8333
8334 if (new_len != (unsigned int)new_len)
8335 return -ERANGE;
8336
8337 if (new_len != orig_len) {
8338 dev->tx_queue_len = new_len;
8339 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8340 res = notifier_to_errno(res);
7effaf06
TT
8341 if (res)
8342 goto err_rollback;
8343 res = dev_qdisc_change_tx_queue_len(dev);
8344 if (res)
8345 goto err_rollback;
6a643ddb
CW
8346 }
8347
8348 return 0;
7effaf06
TT
8349
8350err_rollback:
8351 netdev_err(dev, "refused to change device tx_queue_len\n");
8352 dev->tx_queue_len = orig_len;
8353 return res;
6a643ddb
CW
8354}
8355
cbda10fa
VD
8356/**
8357 * dev_set_group - Change group this device belongs to
8358 * @dev: device
8359 * @new_group: group this device should belong to
8360 */
8361void dev_set_group(struct net_device *dev, int new_group)
8362{
8363 dev->group = new_group;
8364}
8365EXPORT_SYMBOL(dev_set_group);
8366
d59cdf94
PM
8367/**
8368 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8369 * @dev: device
8370 * @addr: new address
8371 * @extack: netlink extended ack
8372 */
8373int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8374 struct netlink_ext_ack *extack)
8375{
8376 struct netdev_notifier_pre_changeaddr_info info = {
8377 .info.dev = dev,
8378 .info.extack = extack,
8379 .dev_addr = addr,
8380 };
8381 int rc;
8382
8383 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8384 return notifier_to_errno(rc);
8385}
8386EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8387
f0db275a
SH
8388/**
8389 * dev_set_mac_address - Change Media Access Control Address
8390 * @dev: device
8391 * @sa: new address
3a37a963 8392 * @extack: netlink extended ack
f0db275a
SH
8393 *
8394 * Change the hardware (MAC) address of the device
8395 */
3a37a963
PM
8396int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8397 struct netlink_ext_ack *extack)
1da177e4 8398{
d314774c 8399 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
8400 int err;
8401
d314774c 8402 if (!ops->ndo_set_mac_address)
1da177e4
LT
8403 return -EOPNOTSUPP;
8404 if (sa->sa_family != dev->type)
8405 return -EINVAL;
8406 if (!netif_device_present(dev))
8407 return -ENODEV;
d59cdf94
PM
8408 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8409 if (err)
8410 return err;
d314774c 8411 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
8412 if (err)
8413 return err;
fbdeca2d 8414 dev->addr_assign_type = NET_ADDR_SET;
f6521516 8415 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 8416 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 8417 return 0;
1da177e4 8418}
d1b19dff 8419EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 8420
4bf84c35
JP
8421/**
8422 * dev_change_carrier - Change device carrier
8423 * @dev: device
691b3b7e 8424 * @new_carrier: new value
4bf84c35
JP
8425 *
8426 * Change device carrier
8427 */
8428int dev_change_carrier(struct net_device *dev, bool new_carrier)
8429{
8430 const struct net_device_ops *ops = dev->netdev_ops;
8431
8432 if (!ops->ndo_change_carrier)
8433 return -EOPNOTSUPP;
8434 if (!netif_device_present(dev))
8435 return -ENODEV;
8436 return ops->ndo_change_carrier(dev, new_carrier);
8437}
8438EXPORT_SYMBOL(dev_change_carrier);
8439
66b52b0d
JP
8440/**
8441 * dev_get_phys_port_id - Get device physical port ID
8442 * @dev: device
8443 * @ppid: port ID
8444 *
8445 * Get device physical port ID
8446 */
8447int dev_get_phys_port_id(struct net_device *dev,
02637fce 8448 struct netdev_phys_item_id *ppid)
66b52b0d
JP
8449{
8450 const struct net_device_ops *ops = dev->netdev_ops;
8451
8452 if (!ops->ndo_get_phys_port_id)
8453 return -EOPNOTSUPP;
8454 return ops->ndo_get_phys_port_id(dev, ppid);
8455}
8456EXPORT_SYMBOL(dev_get_phys_port_id);
8457
db24a904
DA
8458/**
8459 * dev_get_phys_port_name - Get device physical port name
8460 * @dev: device
8461 * @name: port name
ed49e650 8462 * @len: limit of bytes to copy to name
db24a904
DA
8463 *
8464 * Get device physical port name
8465 */
8466int dev_get_phys_port_name(struct net_device *dev,
8467 char *name, size_t len)
8468{
8469 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 8470 int err;
db24a904 8471
af3836df
JP
8472 if (ops->ndo_get_phys_port_name) {
8473 err = ops->ndo_get_phys_port_name(dev, name, len);
8474 if (err != -EOPNOTSUPP)
8475 return err;
8476 }
8477 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
8478}
8479EXPORT_SYMBOL(dev_get_phys_port_name);
8480
d6abc596
FF
8481/**
8482 * dev_get_port_parent_id - Get the device's port parent identifier
8483 * @dev: network device
8484 * @ppid: pointer to a storage for the port's parent identifier
8485 * @recurse: allow/disallow recursion to lower devices
8486 *
8487 * Get the devices's port parent identifier
8488 */
8489int dev_get_port_parent_id(struct net_device *dev,
8490 struct netdev_phys_item_id *ppid,
8491 bool recurse)
8492{
8493 const struct net_device_ops *ops = dev->netdev_ops;
8494 struct netdev_phys_item_id first = { };
8495 struct net_device *lower_dev;
8496 struct list_head *iter;
7e1146e8
JP
8497 int err;
8498
8499 if (ops->ndo_get_port_parent_id) {
8500 err = ops->ndo_get_port_parent_id(dev, ppid);
8501 if (err != -EOPNOTSUPP)
8502 return err;
8503 }
d6abc596 8504
7e1146e8
JP
8505 err = devlink_compat_switch_id_get(dev, ppid);
8506 if (!err || err != -EOPNOTSUPP)
8507 return err;
d6abc596
FF
8508
8509 if (!recurse)
7e1146e8 8510 return -EOPNOTSUPP;
d6abc596
FF
8511
8512 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8513 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8514 if (err)
8515 break;
8516 if (!first.id_len)
8517 first = *ppid;
8518 else if (memcmp(&first, ppid, sizeof(*ppid)))
8519 return -ENODATA;
8520 }
8521
8522 return err;
8523}
8524EXPORT_SYMBOL(dev_get_port_parent_id);
8525
8526/**
8527 * netdev_port_same_parent_id - Indicate if two network devices have
8528 * the same port parent identifier
8529 * @a: first network device
8530 * @b: second network device
8531 */
8532bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8533{
8534 struct netdev_phys_item_id a_id = { };
8535 struct netdev_phys_item_id b_id = { };
8536
8537 if (dev_get_port_parent_id(a, &a_id, true) ||
8538 dev_get_port_parent_id(b, &b_id, true))
8539 return false;
8540
8541 return netdev_phys_item_id_same(&a_id, &b_id);
8542}
8543EXPORT_SYMBOL(netdev_port_same_parent_id);
8544
d746d707
AK
8545/**
8546 * dev_change_proto_down - update protocol port state information
8547 * @dev: device
8548 * @proto_down: new value
8549 *
8550 * This info can be used by switch drivers to set the phys state of the
8551 * port.
8552 */
8553int dev_change_proto_down(struct net_device *dev, bool proto_down)
8554{
8555 const struct net_device_ops *ops = dev->netdev_ops;
8556
8557 if (!ops->ndo_change_proto_down)
8558 return -EOPNOTSUPP;
8559 if (!netif_device_present(dev))
8560 return -ENODEV;
8561 return ops->ndo_change_proto_down(dev, proto_down);
8562}
8563EXPORT_SYMBOL(dev_change_proto_down);
8564
b5899679
AR
8565/**
8566 * dev_change_proto_down_generic - generic implementation for
8567 * ndo_change_proto_down that sets carrier according to
8568 * proto_down.
8569 *
8570 * @dev: device
8571 * @proto_down: new value
8572 */
8573int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8574{
8575 if (proto_down)
8576 netif_carrier_off(dev);
8577 else
8578 netif_carrier_on(dev);
8579 dev->proto_down = proto_down;
8580 return 0;
8581}
8582EXPORT_SYMBOL(dev_change_proto_down_generic);
8583
a25717d2
JK
8584u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8585 enum bpf_netdev_command cmd)
d67b9cd2 8586{
a25717d2 8587 struct netdev_bpf xdp;
d67b9cd2 8588
a25717d2
JK
8589 if (!bpf_op)
8590 return 0;
118b4aa2 8591
a25717d2
JK
8592 memset(&xdp, 0, sizeof(xdp));
8593 xdp.command = cmd;
118b4aa2 8594
a25717d2
JK
8595 /* Query must always succeed. */
8596 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
58038695 8597
6b867589 8598 return xdp.prog_id;
d67b9cd2
DB
8599}
8600
f4e63525 8601static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
32d60277 8602 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
8603 struct bpf_prog *prog)
8604{
7e6897f9
BT
8605 bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8606 struct bpf_prog *prev_prog = NULL;
f4e63525 8607 struct netdev_bpf xdp;
7e6897f9
BT
8608 int err;
8609
8610 if (non_hw) {
8611 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8612 XDP_QUERY_PROG));
8613 if (IS_ERR(prev_prog))
8614 prev_prog = NULL;
8615 }
d67b9cd2
DB
8616
8617 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
8618 if (flags & XDP_FLAGS_HW_MODE)
8619 xdp.command = XDP_SETUP_PROG_HW;
8620 else
8621 xdp.command = XDP_SETUP_PROG;
d67b9cd2 8622 xdp.extack = extack;
32d60277 8623 xdp.flags = flags;
d67b9cd2
DB
8624 xdp.prog = prog;
8625
7e6897f9
BT
8626 err = bpf_op(dev, &xdp);
8627 if (!err && non_hw)
8628 bpf_prog_change_xdp(prev_prog, prog);
8629
8630 if (prev_prog)
8631 bpf_prog_put(prev_prog);
8632
8633 return err;
d67b9cd2
DB
8634}
8635
bd0b2e7f
JK
8636static void dev_xdp_uninstall(struct net_device *dev)
8637{
8638 struct netdev_bpf xdp;
8639 bpf_op_t ndo_bpf;
8640
8641 /* Remove generic XDP */
8642 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8643
8644 /* Remove from the driver */
8645 ndo_bpf = dev->netdev_ops->ndo_bpf;
8646 if (!ndo_bpf)
8647 return;
8648
a25717d2
JK
8649 memset(&xdp, 0, sizeof(xdp));
8650 xdp.command = XDP_QUERY_PROG;
8651 WARN_ON(ndo_bpf(dev, &xdp));
8652 if (xdp.prog_id)
8653 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8654 NULL));
bd0b2e7f 8655
a25717d2
JK
8656 /* Remove HW offload */
8657 memset(&xdp, 0, sizeof(xdp));
8658 xdp.command = XDP_QUERY_PROG_HW;
8659 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8660 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8661 NULL));
bd0b2e7f
JK
8662}
8663
a7862b45
BB
8664/**
8665 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8666 * @dev: device
b5d60989 8667 * @extack: netlink extended ack
a7862b45 8668 * @fd: new program fd or negative value to clear
85de8576 8669 * @flags: xdp-related flags
a7862b45
BB
8670 *
8671 * Set or clear a bpf program for a device
8672 */
ddf9f970
JK
8673int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8674 int fd, u32 flags)
a7862b45
BB
8675{
8676 const struct net_device_ops *ops = dev->netdev_ops;
a25717d2 8677 enum bpf_netdev_command query;
a7862b45 8678 struct bpf_prog *prog = NULL;
f4e63525 8679 bpf_op_t bpf_op, bpf_chk;
9ee963d6 8680 bool offload;
a7862b45
BB
8681 int err;
8682
85de8576
DB
8683 ASSERT_RTNL();
8684
9ee963d6
JK
8685 offload = flags & XDP_FLAGS_HW_MODE;
8686 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
a25717d2 8687
f4e63525 8688 bpf_op = bpf_chk = ops->ndo_bpf;
01dde20c
MF
8689 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8690 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
0489df9a 8691 return -EOPNOTSUPP;
01dde20c 8692 }
f4e63525
JK
8693 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8694 bpf_op = generic_xdp_install;
8695 if (bpf_op == bpf_chk)
8696 bpf_chk = generic_xdp_install;
b5cdae32 8697
a7862b45 8698 if (fd >= 0) {
c14a9f63
MM
8699 u32 prog_id;
8700
9ee963d6 8701 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
01dde20c 8702 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
d67b9cd2 8703 return -EEXIST;
01dde20c 8704 }
c14a9f63
MM
8705
8706 prog_id = __dev_xdp_query(dev, bpf_op, query);
8707 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
01dde20c 8708 NL_SET_ERR_MSG(extack, "XDP program already attached");
d67b9cd2 8709 return -EBUSY;
01dde20c 8710 }
85de8576 8711
288b3de5
JK
8712 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8713 bpf_op == ops->ndo_bpf);
a7862b45
BB
8714 if (IS_ERR(prog))
8715 return PTR_ERR(prog);
441a3303 8716
9ee963d6 8717 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
441a3303
JK
8718 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8719 bpf_prog_put(prog);
8720 return -EINVAL;
8721 }
c14a9f63 8722
aefc3e72
JK
8723 /* prog->aux->id may be 0 for orphaned device-bound progs */
8724 if (prog->aux->id && prog->aux->id == prog_id) {
c14a9f63
MM
8725 bpf_prog_put(prog);
8726 return 0;
8727 }
8728 } else {
8729 if (!__dev_xdp_query(dev, bpf_op, query))
8730 return 0;
a7862b45
BB
8731 }
8732
f4e63525 8733 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
a7862b45
BB
8734 if (err < 0 && prog)
8735 bpf_prog_put(prog);
8736
8737 return err;
8738}
a7862b45 8739
1da177e4
LT
8740/**
8741 * dev_new_index - allocate an ifindex
c4ea43c5 8742 * @net: the applicable net namespace
1da177e4
LT
8743 *
8744 * Returns a suitable unique value for a new device interface
8745 * number. The caller must hold the rtnl semaphore or the
8746 * dev_base_lock to be sure it remains unique.
8747 */
881d966b 8748static int dev_new_index(struct net *net)
1da177e4 8749{
aa79e66e 8750 int ifindex = net->ifindex;
f4563a75 8751
1da177e4
LT
8752 for (;;) {
8753 if (++ifindex <= 0)
8754 ifindex = 1;
881d966b 8755 if (!__dev_get_by_index(net, ifindex))
aa79e66e 8756 return net->ifindex = ifindex;
1da177e4
LT
8757 }
8758}
8759
1da177e4 8760/* Delayed registration/unregisteration */
3b5b34fd 8761static LIST_HEAD(net_todo_list);
200b916f 8762DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 8763
6f05f629 8764static void net_set_todo(struct net_device *dev)
1da177e4 8765{
1da177e4 8766 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 8767 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
8768}
8769
9b5e383c 8770static void rollback_registered_many(struct list_head *head)
93ee31f1 8771{
e93737b0 8772 struct net_device *dev, *tmp;
5cde2829 8773 LIST_HEAD(close_head);
9b5e383c 8774
93ee31f1
DL
8775 BUG_ON(dev_boot_phase);
8776 ASSERT_RTNL();
8777
e93737b0 8778 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 8779 /* Some devices call without registering
e93737b0
KK
8780 * for initialization unwind. Remove those
8781 * devices and proceed with the remaining.
9b5e383c
ED
8782 */
8783 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
8784 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8785 dev->name, dev);
93ee31f1 8786
9b5e383c 8787 WARN_ON(1);
e93737b0
KK
8788 list_del(&dev->unreg_list);
8789 continue;
9b5e383c 8790 }
449f4544 8791 dev->dismantle = true;
9b5e383c 8792 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 8793 }
93ee31f1 8794
44345724 8795 /* If device is running, close it first. */
5cde2829
EB
8796 list_for_each_entry(dev, head, unreg_list)
8797 list_add_tail(&dev->close_list, &close_head);
99c4a26a 8798 dev_close_many(&close_head, true);
93ee31f1 8799
44345724 8800 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
8801 /* And unlink it from device chain. */
8802 unlist_netdevice(dev);
93ee31f1 8803
9b5e383c
ED
8804 dev->reg_state = NETREG_UNREGISTERING;
8805 }
41852497 8806 flush_all_backlogs();
93ee31f1
DL
8807
8808 synchronize_net();
8809
9b5e383c 8810 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
8811 struct sk_buff *skb = NULL;
8812
9b5e383c
ED
8813 /* Shutdown queueing discipline. */
8814 dev_shutdown(dev);
93ee31f1 8815
bd0b2e7f 8816 dev_xdp_uninstall(dev);
93ee31f1 8817
9b5e383c 8818 /* Notify protocols, that we are about to destroy
eb13da1a 8819 * this device. They should clean all the things.
8820 */
9b5e383c 8821 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 8822
395eea6c
MB
8823 if (!dev->rtnl_link_ops ||
8824 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 8825 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 8826 GFP_KERNEL, NULL, 0);
395eea6c 8827
9b5e383c
ED
8828 /*
8829 * Flush the unicast and multicast chains
8830 */
a748ee24 8831 dev_uc_flush(dev);
22bedad3 8832 dev_mc_flush(dev);
93ee31f1 8833
36fbf1e5 8834 netdev_name_node_alt_flush(dev);
ff927412
JP
8835 netdev_name_node_free(dev->name_node);
8836
9b5e383c
ED
8837 if (dev->netdev_ops->ndo_uninit)
8838 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 8839
395eea6c
MB
8840 if (skb)
8841 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 8842
9ff162a8
JP
8843 /* Notifier chain MUST detach us all upper devices. */
8844 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 8845 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 8846
9b5e383c
ED
8847 /* Remove entries from kobject tree */
8848 netdev_unregister_kobject(dev);
024e9679
AD
8849#ifdef CONFIG_XPS
8850 /* Remove XPS queueing entries */
8851 netif_reset_xps_queues_gt(dev, 0);
8852#endif
9b5e383c 8853 }
93ee31f1 8854
850a545b 8855 synchronize_net();
395264d5 8856
a5ee1551 8857 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
8858 dev_put(dev);
8859}
8860
8861static void rollback_registered(struct net_device *dev)
8862{
8863 LIST_HEAD(single);
8864
8865 list_add(&dev->unreg_list, &single);
8866 rollback_registered_many(&single);
ceaaec98 8867 list_del(&single);
93ee31f1
DL
8868}
8869
fd867d51
JW
8870static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8871 struct net_device *upper, netdev_features_t features)
8872{
8873 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8874 netdev_features_t feature;
5ba3f7d6 8875 int feature_bit;
fd867d51 8876
3b89ea9c 8877 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8878 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8879 if (!(upper->wanted_features & feature)
8880 && (features & feature)) {
8881 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8882 &feature, upper->name);
8883 features &= ~feature;
8884 }
8885 }
8886
8887 return features;
8888}
8889
8890static void netdev_sync_lower_features(struct net_device *upper,
8891 struct net_device *lower, netdev_features_t features)
8892{
8893 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8894 netdev_features_t feature;
5ba3f7d6 8895 int feature_bit;
fd867d51 8896
3b89ea9c 8897 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8898 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8899 if (!(features & feature) && (lower->features & feature)) {
8900 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8901 &feature, lower->name);
8902 lower->wanted_features &= ~feature;
8903 netdev_update_features(lower);
8904
8905 if (unlikely(lower->features & feature))
8906 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8907 &feature, lower->name);
8908 }
8909 }
8910}
8911
c8f44aff
MM
8912static netdev_features_t netdev_fix_features(struct net_device *dev,
8913 netdev_features_t features)
b63365a2 8914{
57422dc5
MM
8915 /* Fix illegal checksum combinations */
8916 if ((features & NETIF_F_HW_CSUM) &&
8917 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 8918 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
8919 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8920 }
8921
b63365a2 8922 /* TSO requires that SG is present as well. */
ea2d3688 8923 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 8924 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 8925 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
8926 }
8927
ec5f0615
PS
8928 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8929 !(features & NETIF_F_IP_CSUM)) {
8930 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8931 features &= ~NETIF_F_TSO;
8932 features &= ~NETIF_F_TSO_ECN;
8933 }
8934
8935 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8936 !(features & NETIF_F_IPV6_CSUM)) {
8937 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8938 features &= ~NETIF_F_TSO6;
8939 }
8940
b1dc497b
AD
8941 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8942 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8943 features &= ~NETIF_F_TSO_MANGLEID;
8944
31d8b9e0
BH
8945 /* TSO ECN requires that TSO is present as well. */
8946 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8947 features &= ~NETIF_F_TSO_ECN;
8948
212b573f
MM
8949 /* Software GSO depends on SG. */
8950 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 8951 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
8952 features &= ~NETIF_F_GSO;
8953 }
8954
802ab55a
AD
8955 /* GSO partial features require GSO partial be set */
8956 if ((features & dev->gso_partial_features) &&
8957 !(features & NETIF_F_GSO_PARTIAL)) {
8958 netdev_dbg(dev,
8959 "Dropping partially supported GSO features since no GSO partial.\n");
8960 features &= ~dev->gso_partial_features;
8961 }
8962
fb1f5f79
MC
8963 if (!(features & NETIF_F_RXCSUM)) {
8964 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8965 * successfully merged by hardware must also have the
8966 * checksum verified by hardware. If the user does not
8967 * want to enable RXCSUM, logically, we should disable GRO_HW.
8968 */
8969 if (features & NETIF_F_GRO_HW) {
8970 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8971 features &= ~NETIF_F_GRO_HW;
8972 }
8973 }
8974
de8d5ab2
GP
8975 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8976 if (features & NETIF_F_RXFCS) {
8977 if (features & NETIF_F_LRO) {
8978 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8979 features &= ~NETIF_F_LRO;
8980 }
8981
8982 if (features & NETIF_F_GRO_HW) {
8983 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8984 features &= ~NETIF_F_GRO_HW;
8985 }
e6c6a929
GP
8986 }
8987
b63365a2
HX
8988 return features;
8989}
b63365a2 8990
6cb6a27c 8991int __netdev_update_features(struct net_device *dev)
5455c699 8992{
fd867d51 8993 struct net_device *upper, *lower;
c8f44aff 8994 netdev_features_t features;
fd867d51 8995 struct list_head *iter;
e7868a85 8996 int err = -1;
5455c699 8997
87267485
MM
8998 ASSERT_RTNL();
8999
5455c699
MM
9000 features = netdev_get_wanted_features(dev);
9001
9002 if (dev->netdev_ops->ndo_fix_features)
9003 features = dev->netdev_ops->ndo_fix_features(dev, features);
9004
9005 /* driver might be less strict about feature dependencies */
9006 features = netdev_fix_features(dev, features);
9007
fd867d51
JW
9008 /* some features can't be enabled if they're off an an upper device */
9009 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9010 features = netdev_sync_upper_features(dev, upper, features);
9011
5455c699 9012 if (dev->features == features)
e7868a85 9013 goto sync_lower;
5455c699 9014
c8f44aff
MM
9015 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9016 &dev->features, &features);
5455c699
MM
9017
9018 if (dev->netdev_ops->ndo_set_features)
9019 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9020 else
9021 err = 0;
5455c699 9022
6cb6a27c 9023 if (unlikely(err < 0)) {
5455c699 9024 netdev_err(dev,
c8f44aff
MM
9025 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9026 err, &features, &dev->features);
17b85d29
NA
9027 /* return non-0 since some features might have changed and
9028 * it's better to fire a spurious notification than miss it
9029 */
9030 return -1;
6cb6a27c
MM
9031 }
9032
e7868a85 9033sync_lower:
fd867d51
JW
9034 /* some features must be disabled on lower devices when disabled
9035 * on an upper device (think: bonding master or bridge)
9036 */
9037 netdev_for_each_lower_dev(dev, lower, iter)
9038 netdev_sync_lower_features(dev, lower, features);
9039
ae847f40
SD
9040 if (!err) {
9041 netdev_features_t diff = features ^ dev->features;
9042
9043 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9044 /* udp_tunnel_{get,drop}_rx_info both need
9045 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9046 * device, or they won't do anything.
9047 * Thus we need to update dev->features
9048 * *before* calling udp_tunnel_get_rx_info,
9049 * but *after* calling udp_tunnel_drop_rx_info.
9050 */
9051 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9052 dev->features = features;
9053 udp_tunnel_get_rx_info(dev);
9054 } else {
9055 udp_tunnel_drop_rx_info(dev);
9056 }
9057 }
9058
9daae9bd
GP
9059 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9060 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9061 dev->features = features;
9062 err |= vlan_get_rx_ctag_filter_info(dev);
9063 } else {
9064 vlan_drop_rx_ctag_filter_info(dev);
9065 }
9066 }
9067
9068 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9069 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9070 dev->features = features;
9071 err |= vlan_get_rx_stag_filter_info(dev);
9072 } else {
9073 vlan_drop_rx_stag_filter_info(dev);
9074 }
9075 }
9076
6cb6a27c 9077 dev->features = features;
ae847f40 9078 }
6cb6a27c 9079
e7868a85 9080 return err < 0 ? 0 : 1;
6cb6a27c
MM
9081}
9082
afe12cc8
MM
9083/**
9084 * netdev_update_features - recalculate device features
9085 * @dev: the device to check
9086 *
9087 * Recalculate dev->features set and send notifications if it
9088 * has changed. Should be called after driver or hardware dependent
9089 * conditions might have changed that influence the features.
9090 */
6cb6a27c
MM
9091void netdev_update_features(struct net_device *dev)
9092{
9093 if (__netdev_update_features(dev))
9094 netdev_features_change(dev);
5455c699
MM
9095}
9096EXPORT_SYMBOL(netdev_update_features);
9097
afe12cc8
MM
9098/**
9099 * netdev_change_features - recalculate device features
9100 * @dev: the device to check
9101 *
9102 * Recalculate dev->features set and send notifications even
9103 * if they have not changed. Should be called instead of
9104 * netdev_update_features() if also dev->vlan_features might
9105 * have changed to allow the changes to be propagated to stacked
9106 * VLAN devices.
9107 */
9108void netdev_change_features(struct net_device *dev)
9109{
9110 __netdev_update_features(dev);
9111 netdev_features_change(dev);
9112}
9113EXPORT_SYMBOL(netdev_change_features);
9114
fc4a7489
PM
9115/**
9116 * netif_stacked_transfer_operstate - transfer operstate
9117 * @rootdev: the root or lower level device to transfer state from
9118 * @dev: the device to transfer operstate to
9119 *
9120 * Transfer operational state from root to device. This is normally
9121 * called when a stacking relationship exists between the root
9122 * device and the device(a leaf device).
9123 */
9124void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9125 struct net_device *dev)
9126{
9127 if (rootdev->operstate == IF_OPER_DORMANT)
9128 netif_dormant_on(dev);
9129 else
9130 netif_dormant_off(dev);
9131
0575c86b
ZS
9132 if (netif_carrier_ok(rootdev))
9133 netif_carrier_on(dev);
9134 else
9135 netif_carrier_off(dev);
fc4a7489
PM
9136}
9137EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9138
1b4bf461
ED
9139static int netif_alloc_rx_queues(struct net_device *dev)
9140{
1b4bf461 9141 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 9142 struct netdev_rx_queue *rx;
10595902 9143 size_t sz = count * sizeof(*rx);
e817f856 9144 int err = 0;
1b4bf461 9145
bd25fa7b 9146 BUG_ON(count < 1);
1b4bf461 9147
dcda9b04 9148 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9149 if (!rx)
9150 return -ENOMEM;
9151
bd25fa7b
TH
9152 dev->_rx = rx;
9153
e817f856 9154 for (i = 0; i < count; i++) {
fe822240 9155 rx[i].dev = dev;
e817f856
JDB
9156
9157 /* XDP RX-queue setup */
9158 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9159 if (err < 0)
9160 goto err_rxq_info;
9161 }
1b4bf461 9162 return 0;
e817f856
JDB
9163
9164err_rxq_info:
9165 /* Rollback successful reg's and free other resources */
9166 while (i--)
9167 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 9168 kvfree(dev->_rx);
e817f856
JDB
9169 dev->_rx = NULL;
9170 return err;
9171}
9172
9173static void netif_free_rx_queues(struct net_device *dev)
9174{
9175 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
9176
9177 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9178 if (!dev->_rx)
9179 return;
9180
e817f856 9181 for (i = 0; i < count; i++)
82aaff2f
JK
9182 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9183
9184 kvfree(dev->_rx);
1b4bf461
ED
9185}
9186
aa942104
CG
9187static void netdev_init_one_queue(struct net_device *dev,
9188 struct netdev_queue *queue, void *_unused)
9189{
9190 /* Initialize queue lock */
9191 spin_lock_init(&queue->_xmit_lock);
ab92d68f 9192 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
aa942104 9193 queue->xmit_lock_owner = -1;
b236da69 9194 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 9195 queue->dev = dev;
114cf580
TH
9196#ifdef CONFIG_BQL
9197 dql_init(&queue->dql, HZ);
9198#endif
aa942104
CG
9199}
9200
60877a32
ED
9201static void netif_free_tx_queues(struct net_device *dev)
9202{
4cb28970 9203 kvfree(dev->_tx);
60877a32
ED
9204}
9205
e6484930
TH
9206static int netif_alloc_netdev_queues(struct net_device *dev)
9207{
9208 unsigned int count = dev->num_tx_queues;
9209 struct netdev_queue *tx;
60877a32 9210 size_t sz = count * sizeof(*tx);
e6484930 9211
d339727c
ED
9212 if (count < 1 || count > 0xffff)
9213 return -EINVAL;
62b5942a 9214
dcda9b04 9215 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9216 if (!tx)
9217 return -ENOMEM;
9218
e6484930 9219 dev->_tx = tx;
1d24eb48 9220
e6484930
TH
9221 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9222 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
9223
9224 return 0;
e6484930
TH
9225}
9226
a2029240
DV
9227void netif_tx_stop_all_queues(struct net_device *dev)
9228{
9229 unsigned int i;
9230
9231 for (i = 0; i < dev->num_tx_queues; i++) {
9232 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 9233
a2029240
DV
9234 netif_tx_stop_queue(txq);
9235 }
9236}
9237EXPORT_SYMBOL(netif_tx_stop_all_queues);
9238
ab92d68f
TY
9239static void netdev_register_lockdep_key(struct net_device *dev)
9240{
9241 lockdep_register_key(&dev->qdisc_tx_busylock_key);
9242 lockdep_register_key(&dev->qdisc_running_key);
9243 lockdep_register_key(&dev->qdisc_xmit_lock_key);
9244 lockdep_register_key(&dev->addr_list_lock_key);
9245}
9246
9247static void netdev_unregister_lockdep_key(struct net_device *dev)
9248{
9249 lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9250 lockdep_unregister_key(&dev->qdisc_running_key);
9251 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9252 lockdep_unregister_key(&dev->addr_list_lock_key);
9253}
9254
9255void netdev_update_lockdep_key(struct net_device *dev)
9256{
ab92d68f 9257 lockdep_unregister_key(&dev->addr_list_lock_key);
ab92d68f
TY
9258 lockdep_register_key(&dev->addr_list_lock_key);
9259
9260 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
ab92d68f
TY
9261}
9262EXPORT_SYMBOL(netdev_update_lockdep_key);
9263
1da177e4
LT
9264/**
9265 * register_netdevice - register a network device
9266 * @dev: device to register
9267 *
9268 * Take a completed network device structure and add it to the kernel
9269 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9270 * chain. 0 is returned on success. A negative errno code is returned
9271 * on a failure to set up the device, or if the name is a duplicate.
9272 *
9273 * Callers must hold the rtnl semaphore. You may want
9274 * register_netdev() instead of this.
9275 *
9276 * BUGS:
9277 * The locking appears insufficient to guarantee two parallel registers
9278 * will not get the same name.
9279 */
9280
9281int register_netdevice(struct net_device *dev)
9282{
1da177e4 9283 int ret;
d314774c 9284 struct net *net = dev_net(dev);
1da177e4 9285
e283de3a
FF
9286 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9287 NETDEV_FEATURE_COUNT);
1da177e4
LT
9288 BUG_ON(dev_boot_phase);
9289 ASSERT_RTNL();
9290
b17a7c17
SH
9291 might_sleep();
9292
1da177e4
LT
9293 /* When net_device's are persistent, this will be fatal. */
9294 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 9295 BUG_ON(!net);
1da177e4 9296
f1f28aa3 9297 spin_lock_init(&dev->addr_list_lock);
ab92d68f 9298 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
1da177e4 9299
828de4f6 9300 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
9301 if (ret < 0)
9302 goto out;
9303
9077f052 9304 ret = -ENOMEM;
ff927412
JP
9305 dev->name_node = netdev_name_node_head_alloc(dev);
9306 if (!dev->name_node)
9307 goto out;
9308
1da177e4 9309 /* Init, if this function is available */
d314774c
SH
9310 if (dev->netdev_ops->ndo_init) {
9311 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
9312 if (ret) {
9313 if (ret > 0)
9314 ret = -EIO;
42c17fa6 9315 goto err_free_name;
1da177e4
LT
9316 }
9317 }
4ec93edb 9318
f646968f
PM
9319 if (((dev->hw_features | dev->features) &
9320 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
9321 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9322 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9323 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9324 ret = -EINVAL;
9325 goto err_uninit;
9326 }
9327
9c7dafbf
PE
9328 ret = -EBUSY;
9329 if (!dev->ifindex)
9330 dev->ifindex = dev_new_index(net);
9331 else if (__dev_get_by_index(net, dev->ifindex))
9332 goto err_uninit;
9333
5455c699
MM
9334 /* Transfer changeable features to wanted_features and enable
9335 * software offloads (GSO and GRO).
9336 */
1a3c998f 9337 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 9338 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
9339
9340 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9341 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9342 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9343 }
9344
14d1232f 9345 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 9346
cbc53e08 9347 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 9348 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 9349
7f348a60
AD
9350 /* If IPv4 TCP segmentation offload is supported we should also
9351 * allow the device to enable segmenting the frame with the option
9352 * of ignoring a static IP ID value. This doesn't enable the
9353 * feature itself but allows the user to enable it later.
9354 */
cbc53e08
AD
9355 if (dev->hw_features & NETIF_F_TSO)
9356 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
9357 if (dev->vlan_features & NETIF_F_TSO)
9358 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9359 if (dev->mpls_features & NETIF_F_TSO)
9360 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9361 if (dev->hw_enc_features & NETIF_F_TSO)
9362 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 9363
1180e7d6 9364 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 9365 */
1180e7d6 9366 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 9367
ee579677
PS
9368 /* Make NETIF_F_SG inheritable to tunnel devices.
9369 */
802ab55a 9370 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 9371
0d89d203
SH
9372 /* Make NETIF_F_SG inheritable to MPLS.
9373 */
9374 dev->mpls_features |= NETIF_F_SG;
9375
7ffbe3fd
JB
9376 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9377 ret = notifier_to_errno(ret);
9378 if (ret)
9379 goto err_uninit;
9380
8b41d188 9381 ret = netdev_register_kobject(dev);
cb626bf5
JH
9382 if (ret) {
9383 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 9384 goto err_uninit;
cb626bf5 9385 }
b17a7c17
SH
9386 dev->reg_state = NETREG_REGISTERED;
9387
6cb6a27c 9388 __netdev_update_features(dev);
8e9b59b2 9389
1da177e4
LT
9390 /*
9391 * Default initial state at registry is that the
9392 * device is present.
9393 */
9394
9395 set_bit(__LINK_STATE_PRESENT, &dev->state);
9396
8f4cccbb
BH
9397 linkwatch_init_dev(dev);
9398
1da177e4 9399 dev_init_scheduler(dev);
1da177e4 9400 dev_hold(dev);
ce286d32 9401 list_netdevice(dev);
7bf23575 9402 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 9403
948b337e
JP
9404 /* If the device has permanent device address, driver should
9405 * set dev_addr and also addr_assign_type should be set to
9406 * NET_ADDR_PERM (default value).
9407 */
9408 if (dev->addr_assign_type == NET_ADDR_PERM)
9409 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9410
1da177e4 9411 /* Notify protocols, that a new device appeared. */
056925ab 9412 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 9413 ret = notifier_to_errno(ret);
93ee31f1
DL
9414 if (ret) {
9415 rollback_registered(dev);
10cc514f
SAK
9416 rcu_barrier();
9417
93ee31f1
DL
9418 dev->reg_state = NETREG_UNREGISTERED;
9419 }
d90a909e
EB
9420 /*
9421 * Prevent userspace races by waiting until the network
9422 * device is fully setup before sending notifications.
9423 */
a2835763
PM
9424 if (!dev->rtnl_link_ops ||
9425 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 9426 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
9427
9428out:
9429 return ret;
7ce1b0ed
HX
9430
9431err_uninit:
d314774c
SH
9432 if (dev->netdev_ops->ndo_uninit)
9433 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
9434 if (dev->priv_destructor)
9435 dev->priv_destructor(dev);
42c17fa6
DC
9436err_free_name:
9437 netdev_name_node_free(dev->name_node);
7ce1b0ed 9438 goto out;
1da177e4 9439}
d1b19dff 9440EXPORT_SYMBOL(register_netdevice);
1da177e4 9441
937f1ba5
BH
9442/**
9443 * init_dummy_netdev - init a dummy network device for NAPI
9444 * @dev: device to init
9445 *
9446 * This takes a network device structure and initialize the minimum
9447 * amount of fields so it can be used to schedule NAPI polls without
9448 * registering a full blown interface. This is to be used by drivers
9449 * that need to tie several hardware interfaces to a single NAPI
9450 * poll scheduler due to HW limitations.
9451 */
9452int init_dummy_netdev(struct net_device *dev)
9453{
9454 /* Clear everything. Note we don't initialize spinlocks
9455 * are they aren't supposed to be taken by any of the
9456 * NAPI code and this dummy netdev is supposed to be
9457 * only ever used for NAPI polls
9458 */
9459 memset(dev, 0, sizeof(struct net_device));
9460
9461 /* make sure we BUG if trying to hit standard
9462 * register/unregister code path
9463 */
9464 dev->reg_state = NETREG_DUMMY;
9465
937f1ba5
BH
9466 /* NAPI wants this */
9467 INIT_LIST_HEAD(&dev->napi_list);
9468
9469 /* a dummy interface is started by default */
9470 set_bit(__LINK_STATE_PRESENT, &dev->state);
9471 set_bit(__LINK_STATE_START, &dev->state);
9472
35edfdc7
JE
9473 /* napi_busy_loop stats accounting wants this */
9474 dev_net_set(dev, &init_net);
9475
29b4433d
ED
9476 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9477 * because users of this 'device' dont need to change
9478 * its refcount.
9479 */
9480
937f1ba5
BH
9481 return 0;
9482}
9483EXPORT_SYMBOL_GPL(init_dummy_netdev);
9484
9485
1da177e4
LT
9486/**
9487 * register_netdev - register a network device
9488 * @dev: device to register
9489 *
9490 * Take a completed network device structure and add it to the kernel
9491 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9492 * chain. 0 is returned on success. A negative errno code is returned
9493 * on a failure to set up the device, or if the name is a duplicate.
9494 *
38b4da38 9495 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
9496 * and expands the device name if you passed a format string to
9497 * alloc_netdev.
9498 */
9499int register_netdev(struct net_device *dev)
9500{
9501 int err;
9502
b0f3debc
KT
9503 if (rtnl_lock_killable())
9504 return -EINTR;
1da177e4 9505 err = register_netdevice(dev);
1da177e4
LT
9506 rtnl_unlock();
9507 return err;
9508}
9509EXPORT_SYMBOL(register_netdev);
9510
29b4433d
ED
9511int netdev_refcnt_read(const struct net_device *dev)
9512{
9513 int i, refcnt = 0;
9514
9515 for_each_possible_cpu(i)
9516 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9517 return refcnt;
9518}
9519EXPORT_SYMBOL(netdev_refcnt_read);
9520
2c53040f 9521/**
1da177e4 9522 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 9523 * @dev: target net_device
1da177e4
LT
9524 *
9525 * This is called when unregistering network devices.
9526 *
9527 * Any protocol or device that holds a reference should register
9528 * for netdevice notification, and cleanup and put back the
9529 * reference if they receive an UNREGISTER event.
9530 * We can get stuck here if buggy protocols don't correctly
4ec93edb 9531 * call dev_put.
1da177e4
LT
9532 */
9533static void netdev_wait_allrefs(struct net_device *dev)
9534{
9535 unsigned long rebroadcast_time, warning_time;
29b4433d 9536 int refcnt;
1da177e4 9537
e014debe
ED
9538 linkwatch_forget_dev(dev);
9539
1da177e4 9540 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
9541 refcnt = netdev_refcnt_read(dev);
9542
9543 while (refcnt != 0) {
1da177e4 9544 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 9545 rtnl_lock();
1da177e4
LT
9546
9547 /* Rebroadcast unregister notification */
056925ab 9548 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 9549
748e2d93 9550 __rtnl_unlock();
0115e8e3 9551 rcu_barrier();
748e2d93
ED
9552 rtnl_lock();
9553
1da177e4
LT
9554 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9555 &dev->state)) {
9556 /* We must not have linkwatch events
9557 * pending on unregister. If this
9558 * happens, we simply run the queue
9559 * unscheduled, resulting in a noop
9560 * for this device.
9561 */
9562 linkwatch_run_queue();
9563 }
9564
6756ae4b 9565 __rtnl_unlock();
1da177e4
LT
9566
9567 rebroadcast_time = jiffies;
9568 }
9569
9570 msleep(250);
9571
29b4433d
ED
9572 refcnt = netdev_refcnt_read(dev);
9573
d7c04b05 9574 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
9575 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9576 dev->name, refcnt);
1da177e4
LT
9577 warning_time = jiffies;
9578 }
9579 }
9580}
9581
9582/* The sequence is:
9583 *
9584 * rtnl_lock();
9585 * ...
9586 * register_netdevice(x1);
9587 * register_netdevice(x2);
9588 * ...
9589 * unregister_netdevice(y1);
9590 * unregister_netdevice(y2);
9591 * ...
9592 * rtnl_unlock();
9593 * free_netdev(y1);
9594 * free_netdev(y2);
9595 *
58ec3b4d 9596 * We are invoked by rtnl_unlock().
1da177e4 9597 * This allows us to deal with problems:
b17a7c17 9598 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
9599 * without deadlocking with linkwatch via keventd.
9600 * 2) Since we run with the RTNL semaphore not held, we can sleep
9601 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
9602 *
9603 * We must not return until all unregister events added during
9604 * the interval the lock was held have been completed.
1da177e4 9605 */
1da177e4
LT
9606void netdev_run_todo(void)
9607{
626ab0e6 9608 struct list_head list;
1da177e4 9609
1da177e4 9610 /* Snapshot list, allow later requests */
626ab0e6 9611 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
9612
9613 __rtnl_unlock();
626ab0e6 9614
0115e8e3
ED
9615
9616 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
9617 if (!list_empty(&list))
9618 rcu_barrier();
9619
1da177e4
LT
9620 while (!list_empty(&list)) {
9621 struct net_device *dev
e5e26d75 9622 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
9623 list_del(&dev->todo_list);
9624
b17a7c17 9625 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 9626 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
9627 dev->name, dev->reg_state);
9628 dump_stack();
9629 continue;
9630 }
1da177e4 9631
b17a7c17 9632 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 9633
b17a7c17 9634 netdev_wait_allrefs(dev);
1da177e4 9635
b17a7c17 9636 /* paranoia */
29b4433d 9637 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
9638 BUG_ON(!list_empty(&dev->ptype_all));
9639 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
9640 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9641 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 9642#if IS_ENABLED(CONFIG_DECNET)
547b792c 9643 WARN_ON(dev->dn_ptr);
330c7272 9644#endif
cf124db5
DM
9645 if (dev->priv_destructor)
9646 dev->priv_destructor(dev);
9647 if (dev->needs_free_netdev)
9648 free_netdev(dev);
9093bbb2 9649
50624c93
EB
9650 /* Report a network device has been unregistered */
9651 rtnl_lock();
9652 dev_net(dev)->dev_unreg_count--;
9653 __rtnl_unlock();
9654 wake_up(&netdev_unregistering_wq);
9655
9093bbb2
SH
9656 /* Free network device */
9657 kobject_put(&dev->dev.kobj);
1da177e4 9658 }
1da177e4
LT
9659}
9660
9256645a
JW
9661/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9662 * all the same fields in the same order as net_device_stats, with only
9663 * the type differing, but rtnl_link_stats64 may have additional fields
9664 * at the end for newer counters.
3cfde79c 9665 */
77a1abf5
ED
9666void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9667 const struct net_device_stats *netdev_stats)
3cfde79c
BH
9668{
9669#if BITS_PER_LONG == 64
9256645a 9670 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 9671 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
9672 /* zero out counters that only exist in rtnl_link_stats64 */
9673 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9674 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 9675#else
9256645a 9676 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
9677 const unsigned long *src = (const unsigned long *)netdev_stats;
9678 u64 *dst = (u64 *)stats64;
9679
9256645a 9680 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
9681 for (i = 0; i < n; i++)
9682 dst[i] = src[i];
9256645a
JW
9683 /* zero out counters that only exist in rtnl_link_stats64 */
9684 memset((char *)stats64 + n * sizeof(u64), 0,
9685 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
9686#endif
9687}
77a1abf5 9688EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 9689
eeda3fd6
SH
9690/**
9691 * dev_get_stats - get network device statistics
9692 * @dev: device to get statistics from
28172739 9693 * @storage: place to store stats
eeda3fd6 9694 *
d7753516
BH
9695 * Get network statistics from device. Return @storage.
9696 * The device driver may provide its own method by setting
9697 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9698 * otherwise the internal statistics structure is used.
eeda3fd6 9699 */
d7753516
BH
9700struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9701 struct rtnl_link_stats64 *storage)
7004bf25 9702{
eeda3fd6
SH
9703 const struct net_device_ops *ops = dev->netdev_ops;
9704
28172739
ED
9705 if (ops->ndo_get_stats64) {
9706 memset(storage, 0, sizeof(*storage));
caf586e5
ED
9707 ops->ndo_get_stats64(dev, storage);
9708 } else if (ops->ndo_get_stats) {
3cfde79c 9709 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
9710 } else {
9711 netdev_stats_to_stats64(storage, &dev->stats);
28172739 9712 }
6f64ec74
ED
9713 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9714 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9715 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 9716 return storage;
c45d286e 9717}
eeda3fd6 9718EXPORT_SYMBOL(dev_get_stats);
c45d286e 9719
24824a09 9720struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 9721{
24824a09 9722 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 9723
24824a09
ED
9724#ifdef CONFIG_NET_CLS_ACT
9725 if (queue)
9726 return queue;
9727 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9728 if (!queue)
9729 return NULL;
9730 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 9731 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
9732 queue->qdisc_sleeping = &noop_qdisc;
9733 rcu_assign_pointer(dev->ingress_queue, queue);
9734#endif
9735 return queue;
bb949fbd
DM
9736}
9737
2c60db03
ED
9738static const struct ethtool_ops default_ethtool_ops;
9739
d07d7507
SG
9740void netdev_set_default_ethtool_ops(struct net_device *dev,
9741 const struct ethtool_ops *ops)
9742{
9743 if (dev->ethtool_ops == &default_ethtool_ops)
9744 dev->ethtool_ops = ops;
9745}
9746EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9747
74d332c1
ED
9748void netdev_freemem(struct net_device *dev)
9749{
9750 char *addr = (char *)dev - dev->padded;
9751
4cb28970 9752 kvfree(addr);
74d332c1
ED
9753}
9754
1da177e4 9755/**
722c9a0c 9756 * alloc_netdev_mqs - allocate network device
9757 * @sizeof_priv: size of private data to allocate space for
9758 * @name: device name format string
9759 * @name_assign_type: origin of device name
9760 * @setup: callback to initialize device
9761 * @txqs: the number of TX subqueues to allocate
9762 * @rxqs: the number of RX subqueues to allocate
9763 *
9764 * Allocates a struct net_device with private data area for driver use
9765 * and performs basic initialization. Also allocates subqueue structs
9766 * for each queue on the device.
1da177e4 9767 */
36909ea4 9768struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 9769 unsigned char name_assign_type,
36909ea4
TH
9770 void (*setup)(struct net_device *),
9771 unsigned int txqs, unsigned int rxqs)
1da177e4 9772{
1da177e4 9773 struct net_device *dev;
52a59bd5 9774 unsigned int alloc_size;
1ce8e7b5 9775 struct net_device *p;
1da177e4 9776
b6fe17d6
SH
9777 BUG_ON(strlen(name) >= sizeof(dev->name));
9778
36909ea4 9779 if (txqs < 1) {
7b6cd1ce 9780 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
9781 return NULL;
9782 }
9783
36909ea4 9784 if (rxqs < 1) {
7b6cd1ce 9785 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
9786 return NULL;
9787 }
36909ea4 9788
fd2ea0a7 9789 alloc_size = sizeof(struct net_device);
d1643d24
AD
9790 if (sizeof_priv) {
9791 /* ensure 32-byte alignment of private area */
1ce8e7b5 9792 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
9793 alloc_size += sizeof_priv;
9794 }
9795 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 9796 alloc_size += NETDEV_ALIGN - 1;
1da177e4 9797
dcda9b04 9798 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 9799 if (!p)
1da177e4 9800 return NULL;
1da177e4 9801
1ce8e7b5 9802 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 9803 dev->padded = (char *)dev - (char *)p;
ab9c73cc 9804
29b4433d
ED
9805 dev->pcpu_refcnt = alloc_percpu(int);
9806 if (!dev->pcpu_refcnt)
74d332c1 9807 goto free_dev;
ab9c73cc 9808
ab9c73cc 9809 if (dev_addr_init(dev))
29b4433d 9810 goto free_pcpu;
ab9c73cc 9811
22bedad3 9812 dev_mc_init(dev);
a748ee24 9813 dev_uc_init(dev);
ccffad25 9814
c346dca1 9815 dev_net_set(dev, &init_net);
1da177e4 9816
ab92d68f
TY
9817 netdev_register_lockdep_key(dev);
9818
8d3bdbd5 9819 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 9820 dev->gso_max_segs = GSO_MAX_SEGS;
5343da4c
TY
9821 dev->upper_level = 1;
9822 dev->lower_level = 1;
8d3bdbd5 9823
8d3bdbd5
DM
9824 INIT_LIST_HEAD(&dev->napi_list);
9825 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 9826 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 9827 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
9828 INIT_LIST_HEAD(&dev->adj_list.upper);
9829 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
9830 INIT_LIST_HEAD(&dev->ptype_all);
9831 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 9832 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
9833#ifdef CONFIG_NET_SCHED
9834 hash_init(dev->qdisc_hash);
9835#endif
02875878 9836 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
9837 setup(dev);
9838
a813104d 9839 if (!dev->tx_queue_len) {
f84bb1ea 9840 dev->priv_flags |= IFF_NO_QUEUE;
11597084 9841 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 9842 }
906470c1 9843
36909ea4
TH
9844 dev->num_tx_queues = txqs;
9845 dev->real_num_tx_queues = txqs;
ed9af2e8 9846 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 9847 goto free_all;
e8a0464c 9848
36909ea4
TH
9849 dev->num_rx_queues = rxqs;
9850 dev->real_num_rx_queues = rxqs;
fe822240 9851 if (netif_alloc_rx_queues(dev))
8d3bdbd5 9852 goto free_all;
0a9627f2 9853
1da177e4 9854 strcpy(dev->name, name);
c835a677 9855 dev->name_assign_type = name_assign_type;
cbda10fa 9856 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
9857 if (!dev->ethtool_ops)
9858 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
9859
9860 nf_hook_ingress_init(dev);
9861
1da177e4 9862 return dev;
ab9c73cc 9863
8d3bdbd5
DM
9864free_all:
9865 free_netdev(dev);
9866 return NULL;
9867
29b4433d
ED
9868free_pcpu:
9869 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
9870free_dev:
9871 netdev_freemem(dev);
ab9c73cc 9872 return NULL;
1da177e4 9873}
36909ea4 9874EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
9875
9876/**
722c9a0c 9877 * free_netdev - free network device
9878 * @dev: device
1da177e4 9879 *
722c9a0c 9880 * This function does the last stage of destroying an allocated device
9881 * interface. The reference to the device object is released. If this
9882 * is the last reference then it will be freed.Must be called in process
9883 * context.
1da177e4
LT
9884 */
9885void free_netdev(struct net_device *dev)
9886{
d565b0a1
HX
9887 struct napi_struct *p, *n;
9888
93d05d4a 9889 might_sleep();
60877a32 9890 netif_free_tx_queues(dev);
e817f856 9891 netif_free_rx_queues(dev);
e8a0464c 9892
33d480ce 9893 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 9894
f001fde5
JP
9895 /* Flush device addresses */
9896 dev_addr_flush(dev);
9897
d565b0a1
HX
9898 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9899 netif_napi_del(p);
9900
29b4433d
ED
9901 free_percpu(dev->pcpu_refcnt);
9902 dev->pcpu_refcnt = NULL;
75ccae62
THJ
9903 free_percpu(dev->xdp_bulkq);
9904 dev->xdp_bulkq = NULL;
29b4433d 9905
ab92d68f
TY
9906 netdev_unregister_lockdep_key(dev);
9907
3041a069 9908 /* Compatibility with error handling in drivers */
1da177e4 9909 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 9910 netdev_freemem(dev);
1da177e4
LT
9911 return;
9912 }
9913
9914 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9915 dev->reg_state = NETREG_RELEASED;
9916
43cb76d9
GKH
9917 /* will free via device release */
9918 put_device(&dev->dev);
1da177e4 9919}
d1b19dff 9920EXPORT_SYMBOL(free_netdev);
4ec93edb 9921
f0db275a
SH
9922/**
9923 * synchronize_net - Synchronize with packet receive processing
9924 *
9925 * Wait for packets currently being received to be done.
9926 * Does not block later packets from starting.
9927 */
4ec93edb 9928void synchronize_net(void)
1da177e4
LT
9929{
9930 might_sleep();
be3fc413
ED
9931 if (rtnl_is_locked())
9932 synchronize_rcu_expedited();
9933 else
9934 synchronize_rcu();
1da177e4 9935}
d1b19dff 9936EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
9937
9938/**
44a0873d 9939 * unregister_netdevice_queue - remove device from the kernel
1da177e4 9940 * @dev: device
44a0873d 9941 * @head: list
6ebfbc06 9942 *
1da177e4 9943 * This function shuts down a device interface and removes it
d59b54b1 9944 * from the kernel tables.
44a0873d 9945 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
9946 *
9947 * Callers must hold the rtnl semaphore. You may want
9948 * unregister_netdev() instead of this.
9949 */
9950
44a0873d 9951void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 9952{
a6620712
HX
9953 ASSERT_RTNL();
9954
44a0873d 9955 if (head) {
9fdce099 9956 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
9957 } else {
9958 rollback_registered(dev);
9959 /* Finish processing unregister after unlock */
9960 net_set_todo(dev);
9961 }
1da177e4 9962}
44a0873d 9963EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 9964
9b5e383c
ED
9965/**
9966 * unregister_netdevice_many - unregister many devices
9967 * @head: list of devices
87757a91
ED
9968 *
9969 * Note: As most callers use a stack allocated list_head,
9970 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
9971 */
9972void unregister_netdevice_many(struct list_head *head)
9973{
9974 struct net_device *dev;
9975
9976 if (!list_empty(head)) {
9977 rollback_registered_many(head);
9978 list_for_each_entry(dev, head, unreg_list)
9979 net_set_todo(dev);
87757a91 9980 list_del(head);
9b5e383c
ED
9981 }
9982}
63c8099d 9983EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 9984
1da177e4
LT
9985/**
9986 * unregister_netdev - remove device from the kernel
9987 * @dev: device
9988 *
9989 * This function shuts down a device interface and removes it
d59b54b1 9990 * from the kernel tables.
1da177e4
LT
9991 *
9992 * This is just a wrapper for unregister_netdevice that takes
9993 * the rtnl semaphore. In general you want to use this and not
9994 * unregister_netdevice.
9995 */
9996void unregister_netdev(struct net_device *dev)
9997{
9998 rtnl_lock();
9999 unregister_netdevice(dev);
10000 rtnl_unlock();
10001}
1da177e4
LT
10002EXPORT_SYMBOL(unregister_netdev);
10003
ce286d32
EB
10004/**
10005 * dev_change_net_namespace - move device to different nethost namespace
10006 * @dev: device
10007 * @net: network namespace
10008 * @pat: If not NULL name pattern to try if the current device name
10009 * is already taken in the destination network namespace.
10010 *
10011 * This function shuts down a device interface and moves it
10012 * to a new network namespace. On success 0 is returned, on
10013 * a failure a netagive errno code is returned.
10014 *
10015 * Callers must hold the rtnl semaphore.
10016 */
10017
10018int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10019{
38e01b30 10020 int err, new_nsid, new_ifindex;
ce286d32
EB
10021
10022 ASSERT_RTNL();
10023
10024 /* Don't allow namespace local devices to be moved. */
10025 err = -EINVAL;
10026 if (dev->features & NETIF_F_NETNS_LOCAL)
10027 goto out;
10028
10029 /* Ensure the device has been registrered */
ce286d32
EB
10030 if (dev->reg_state != NETREG_REGISTERED)
10031 goto out;
10032
10033 /* Get out if there is nothing todo */
10034 err = 0;
878628fb 10035 if (net_eq(dev_net(dev), net))
ce286d32
EB
10036 goto out;
10037
10038 /* Pick the destination device name, and ensure
10039 * we can use it in the destination network namespace.
10040 */
10041 err = -EEXIST;
d9031024 10042 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
10043 /* We get here if we can't use the current device name */
10044 if (!pat)
10045 goto out;
7892bd08
LR
10046 err = dev_get_valid_name(net, dev, pat);
10047 if (err < 0)
ce286d32
EB
10048 goto out;
10049 }
10050
10051 /*
10052 * And now a mini version of register_netdevice unregister_netdevice.
10053 */
10054
10055 /* If device is running close it first. */
9b772652 10056 dev_close(dev);
ce286d32
EB
10057
10058 /* And unlink it from device chain */
ce286d32
EB
10059 unlist_netdevice(dev);
10060
10061 synchronize_net();
10062
10063 /* Shutdown queueing discipline. */
10064 dev_shutdown(dev);
10065
10066 /* Notify protocols, that we are about to destroy
eb13da1a 10067 * this device. They should clean all the things.
10068 *
10069 * Note that dev->reg_state stays at NETREG_REGISTERED.
10070 * This is wanted because this way 8021q and macvlan know
10071 * the device is just moving and can keep their slaves up.
10072 */
ce286d32 10073 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 10074 rcu_barrier();
38e01b30 10075
d4e4fdf9 10076 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30
ND
10077 /* If there is an ifindex conflict assign a new one */
10078 if (__dev_get_by_index(net, dev->ifindex))
10079 new_ifindex = dev_new_index(net);
10080 else
10081 new_ifindex = dev->ifindex;
10082
10083 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10084 new_ifindex);
ce286d32
EB
10085
10086 /*
10087 * Flush the unicast and multicast chains
10088 */
a748ee24 10089 dev_uc_flush(dev);
22bedad3 10090 dev_mc_flush(dev);
ce286d32 10091
4e66ae2e
SH
10092 /* Send a netdev-removed uevent to the old namespace */
10093 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 10094 netdev_adjacent_del_links(dev);
4e66ae2e 10095
93642e14
JP
10096 /* Move per-net netdevice notifiers that are following the netdevice */
10097 move_netdevice_notifiers_dev_net(dev, net);
10098
ce286d32 10099 /* Actually switch the network namespace */
c346dca1 10100 dev_net_set(dev, net);
38e01b30 10101 dev->ifindex = new_ifindex;
ce286d32 10102
4e66ae2e
SH
10103 /* Send a netdev-add uevent to the new namespace */
10104 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 10105 netdev_adjacent_add_links(dev);
4e66ae2e 10106
8b41d188 10107 /* Fixup kobjects */
a1b3f594 10108 err = device_rename(&dev->dev, dev->name);
8b41d188 10109 WARN_ON(err);
ce286d32
EB
10110
10111 /* Add the device back in the hashes */
10112 list_netdevice(dev);
10113
10114 /* Notify protocols, that a new device appeared. */
10115 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10116
d90a909e
EB
10117 /*
10118 * Prevent userspace races by waiting until the network
10119 * device is fully setup before sending notifications.
10120 */
7f294054 10121 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 10122
ce286d32
EB
10123 synchronize_net();
10124 err = 0;
10125out:
10126 return err;
10127}
463d0183 10128EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 10129
f0bf90de 10130static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
10131{
10132 struct sk_buff **list_skb;
1da177e4 10133 struct sk_buff *skb;
f0bf90de 10134 unsigned int cpu;
97d8b6e3 10135 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 10136
1da177e4
LT
10137 local_irq_disable();
10138 cpu = smp_processor_id();
10139 sd = &per_cpu(softnet_data, cpu);
10140 oldsd = &per_cpu(softnet_data, oldcpu);
10141
10142 /* Find end of our completion_queue. */
10143 list_skb = &sd->completion_queue;
10144 while (*list_skb)
10145 list_skb = &(*list_skb)->next;
10146 /* Append completion queue from offline CPU. */
10147 *list_skb = oldsd->completion_queue;
10148 oldsd->completion_queue = NULL;
10149
1da177e4 10150 /* Append output queue from offline CPU. */
a9cbd588
CG
10151 if (oldsd->output_queue) {
10152 *sd->output_queue_tailp = oldsd->output_queue;
10153 sd->output_queue_tailp = oldsd->output_queue_tailp;
10154 oldsd->output_queue = NULL;
10155 oldsd->output_queue_tailp = &oldsd->output_queue;
10156 }
ac64da0b
ED
10157 /* Append NAPI poll list from offline CPU, with one exception :
10158 * process_backlog() must be called by cpu owning percpu backlog.
10159 * We properly handle process_queue & input_pkt_queue later.
10160 */
10161 while (!list_empty(&oldsd->poll_list)) {
10162 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10163 struct napi_struct,
10164 poll_list);
10165
10166 list_del_init(&napi->poll_list);
10167 if (napi->poll == process_backlog)
10168 napi->state = 0;
10169 else
10170 ____napi_schedule(sd, napi);
264524d5 10171 }
1da177e4
LT
10172
10173 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10174 local_irq_enable();
10175
773fc8f6 10176#ifdef CONFIG_RPS
10177 remsd = oldsd->rps_ipi_list;
10178 oldsd->rps_ipi_list = NULL;
10179#endif
10180 /* send out pending IPI's on offline CPU */
10181 net_rps_send_ipi(remsd);
10182
1da177e4 10183 /* Process offline CPU's input_pkt_queue */
76cc8b13 10184 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 10185 netif_rx_ni(skb);
76cc8b13 10186 input_queue_head_incr(oldsd);
fec5e652 10187 }
ac64da0b 10188 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 10189 netif_rx_ni(skb);
76cc8b13
TH
10190 input_queue_head_incr(oldsd);
10191 }
1da177e4 10192
f0bf90de 10193 return 0;
1da177e4 10194}
1da177e4 10195
7f353bf2 10196/**
b63365a2
HX
10197 * netdev_increment_features - increment feature set by one
10198 * @all: current feature set
10199 * @one: new feature set
10200 * @mask: mask feature set
7f353bf2
HX
10201 *
10202 * Computes a new feature set after adding a device with feature set
b63365a2
HX
10203 * @one to the master device with current feature set @all. Will not
10204 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 10205 */
c8f44aff
MM
10206netdev_features_t netdev_increment_features(netdev_features_t all,
10207 netdev_features_t one, netdev_features_t mask)
b63365a2 10208{
c8cd0989 10209 if (mask & NETIF_F_HW_CSUM)
a188222b 10210 mask |= NETIF_F_CSUM_MASK;
1742f183 10211 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 10212
a188222b 10213 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 10214 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 10215
1742f183 10216 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
10217 if (all & NETIF_F_HW_CSUM)
10218 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
10219
10220 return all;
10221}
b63365a2 10222EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 10223
430f03cd 10224static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
10225{
10226 int i;
10227 struct hlist_head *hash;
10228
6da2ec56 10229 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
10230 if (hash != NULL)
10231 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10232 INIT_HLIST_HEAD(&hash[i]);
10233
10234 return hash;
10235}
10236
881d966b 10237/* Initialize per network namespace state */
4665079c 10238static int __net_init netdev_init(struct net *net)
881d966b 10239{
d9f37d01 10240 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 10241 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 10242
734b6541
RM
10243 if (net != &init_net)
10244 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 10245
30d97d35
PE
10246 net->dev_name_head = netdev_create_hash();
10247 if (net->dev_name_head == NULL)
10248 goto err_name;
881d966b 10249
30d97d35
PE
10250 net->dev_index_head = netdev_create_hash();
10251 if (net->dev_index_head == NULL)
10252 goto err_idx;
881d966b 10253
a30c7b42
JP
10254 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10255
881d966b 10256 return 0;
30d97d35
PE
10257
10258err_idx:
10259 kfree(net->dev_name_head);
10260err_name:
10261 return -ENOMEM;
881d966b
EB
10262}
10263
f0db275a
SH
10264/**
10265 * netdev_drivername - network driver for the device
10266 * @dev: network device
f0db275a
SH
10267 *
10268 * Determine network driver for device.
10269 */
3019de12 10270const char *netdev_drivername(const struct net_device *dev)
6579e57b 10271{
cf04a4c7
SH
10272 const struct device_driver *driver;
10273 const struct device *parent;
3019de12 10274 const char *empty = "";
6579e57b
AV
10275
10276 parent = dev->dev.parent;
6579e57b 10277 if (!parent)
3019de12 10278 return empty;
6579e57b
AV
10279
10280 driver = parent->driver;
10281 if (driver && driver->name)
3019de12
DM
10282 return driver->name;
10283 return empty;
6579e57b
AV
10284}
10285
6ea754eb
JP
10286static void __netdev_printk(const char *level, const struct net_device *dev,
10287 struct va_format *vaf)
256df2f3 10288{
b004ff49 10289 if (dev && dev->dev.parent) {
6ea754eb
JP
10290 dev_printk_emit(level[1] - '0',
10291 dev->dev.parent,
10292 "%s %s %s%s: %pV",
10293 dev_driver_string(dev->dev.parent),
10294 dev_name(dev->dev.parent),
10295 netdev_name(dev), netdev_reg_state(dev),
10296 vaf);
b004ff49 10297 } else if (dev) {
6ea754eb
JP
10298 printk("%s%s%s: %pV",
10299 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 10300 } else {
6ea754eb 10301 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 10302 }
256df2f3
JP
10303}
10304
6ea754eb
JP
10305void netdev_printk(const char *level, const struct net_device *dev,
10306 const char *format, ...)
256df2f3
JP
10307{
10308 struct va_format vaf;
10309 va_list args;
256df2f3
JP
10310
10311 va_start(args, format);
10312
10313 vaf.fmt = format;
10314 vaf.va = &args;
10315
6ea754eb 10316 __netdev_printk(level, dev, &vaf);
b004ff49 10317
256df2f3 10318 va_end(args);
256df2f3
JP
10319}
10320EXPORT_SYMBOL(netdev_printk);
10321
10322#define define_netdev_printk_level(func, level) \
6ea754eb 10323void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 10324{ \
256df2f3
JP
10325 struct va_format vaf; \
10326 va_list args; \
10327 \
10328 va_start(args, fmt); \
10329 \
10330 vaf.fmt = fmt; \
10331 vaf.va = &args; \
10332 \
6ea754eb 10333 __netdev_printk(level, dev, &vaf); \
b004ff49 10334 \
256df2f3 10335 va_end(args); \
256df2f3
JP
10336} \
10337EXPORT_SYMBOL(func);
10338
10339define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10340define_netdev_printk_level(netdev_alert, KERN_ALERT);
10341define_netdev_printk_level(netdev_crit, KERN_CRIT);
10342define_netdev_printk_level(netdev_err, KERN_ERR);
10343define_netdev_printk_level(netdev_warn, KERN_WARNING);
10344define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10345define_netdev_printk_level(netdev_info, KERN_INFO);
10346
4665079c 10347static void __net_exit netdev_exit(struct net *net)
881d966b
EB
10348{
10349 kfree(net->dev_name_head);
10350 kfree(net->dev_index_head);
ee21b18b
VA
10351 if (net != &init_net)
10352 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
10353}
10354
022cbae6 10355static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
10356 .init = netdev_init,
10357 .exit = netdev_exit,
10358};
10359
4665079c 10360static void __net_exit default_device_exit(struct net *net)
ce286d32 10361{
e008b5fc 10362 struct net_device *dev, *aux;
ce286d32 10363 /*
e008b5fc 10364 * Push all migratable network devices back to the
ce286d32
EB
10365 * initial network namespace
10366 */
10367 rtnl_lock();
e008b5fc 10368 for_each_netdev_safe(net, dev, aux) {
ce286d32 10369 int err;
aca51397 10370 char fb_name[IFNAMSIZ];
ce286d32
EB
10371
10372 /* Ignore unmoveable devices (i.e. loopback) */
10373 if (dev->features & NETIF_F_NETNS_LOCAL)
10374 continue;
10375
e008b5fc
EB
10376 /* Leave virtual devices for the generic cleanup */
10377 if (dev->rtnl_link_ops)
10378 continue;
d0c082ce 10379
25985edc 10380 /* Push remaining network devices to init_net */
aca51397 10381 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
10382 if (__dev_get_by_name(&init_net, fb_name))
10383 snprintf(fb_name, IFNAMSIZ, "dev%%d");
aca51397 10384 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 10385 if (err) {
7b6cd1ce
JP
10386 pr_emerg("%s: failed to move %s to init_net: %d\n",
10387 __func__, dev->name, err);
aca51397 10388 BUG();
ce286d32
EB
10389 }
10390 }
10391 rtnl_unlock();
10392}
10393
50624c93
EB
10394static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10395{
10396 /* Return with the rtnl_lock held when there are no network
10397 * devices unregistering in any network namespace in net_list.
10398 */
10399 struct net *net;
10400 bool unregistering;
ff960a73 10401 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 10402
ff960a73 10403 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 10404 for (;;) {
50624c93
EB
10405 unregistering = false;
10406 rtnl_lock();
10407 list_for_each_entry(net, net_list, exit_list) {
10408 if (net->dev_unreg_count > 0) {
10409 unregistering = true;
10410 break;
10411 }
10412 }
10413 if (!unregistering)
10414 break;
10415 __rtnl_unlock();
ff960a73
PZ
10416
10417 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 10418 }
ff960a73 10419 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
10420}
10421
04dc7f6b
EB
10422static void __net_exit default_device_exit_batch(struct list_head *net_list)
10423{
10424 /* At exit all network devices most be removed from a network
b595076a 10425 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
10426 * Do this across as many network namespaces as possible to
10427 * improve batching efficiency.
10428 */
10429 struct net_device *dev;
10430 struct net *net;
10431 LIST_HEAD(dev_kill_list);
10432
50624c93
EB
10433 /* To prevent network device cleanup code from dereferencing
10434 * loopback devices or network devices that have been freed
10435 * wait here for all pending unregistrations to complete,
10436 * before unregistring the loopback device and allowing the
10437 * network namespace be freed.
10438 *
10439 * The netdev todo list containing all network devices
10440 * unregistrations that happen in default_device_exit_batch
10441 * will run in the rtnl_unlock() at the end of
10442 * default_device_exit_batch.
10443 */
10444 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
10445 list_for_each_entry(net, net_list, exit_list) {
10446 for_each_netdev_reverse(net, dev) {
b0ab2fab 10447 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
10448 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10449 else
10450 unregister_netdevice_queue(dev, &dev_kill_list);
10451 }
10452 }
10453 unregister_netdevice_many(&dev_kill_list);
10454 rtnl_unlock();
10455}
10456
022cbae6 10457static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 10458 .exit = default_device_exit,
04dc7f6b 10459 .exit_batch = default_device_exit_batch,
ce286d32
EB
10460};
10461
1da177e4
LT
10462/*
10463 * Initialize the DEV module. At boot time this walks the device list and
10464 * unhooks any devices that fail to initialise (normally hardware not
10465 * present) and leaves us with a valid list of present and active devices.
10466 *
10467 */
10468
10469/*
10470 * This is called single threaded during boot, so no need
10471 * to take the rtnl semaphore.
10472 */
10473static int __init net_dev_init(void)
10474{
10475 int i, rc = -ENOMEM;
10476
10477 BUG_ON(!dev_boot_phase);
10478
1da177e4
LT
10479 if (dev_proc_init())
10480 goto out;
10481
8b41d188 10482 if (netdev_kobject_init())
1da177e4
LT
10483 goto out;
10484
10485 INIT_LIST_HEAD(&ptype_all);
82d8a867 10486 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
10487 INIT_LIST_HEAD(&ptype_base[i]);
10488
62532da9
VY
10489 INIT_LIST_HEAD(&offload_base);
10490
881d966b
EB
10491 if (register_pernet_subsys(&netdev_net_ops))
10492 goto out;
1da177e4
LT
10493
10494 /*
10495 * Initialise the packet receive queues.
10496 */
10497
6f912042 10498 for_each_possible_cpu(i) {
41852497 10499 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 10500 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 10501
41852497
ED
10502 INIT_WORK(flush, flush_backlog);
10503
e36fa2f7 10504 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 10505 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
10506#ifdef CONFIG_XFRM_OFFLOAD
10507 skb_queue_head_init(&sd->xfrm_backlog);
10508#endif
e36fa2f7 10509 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 10510 sd->output_queue_tailp = &sd->output_queue;
df334545 10511#ifdef CONFIG_RPS
e36fa2f7
ED
10512 sd->csd.func = rps_trigger_softirq;
10513 sd->csd.info = sd;
e36fa2f7 10514 sd->cpu = i;
1e94d72f 10515#endif
0a9627f2 10516
7c4ec749 10517 init_gro_hash(&sd->backlog);
e36fa2f7
ED
10518 sd->backlog.poll = process_backlog;
10519 sd->backlog.weight = weight_p;
1da177e4
LT
10520 }
10521
1da177e4
LT
10522 dev_boot_phase = 0;
10523
505d4f73
EB
10524 /* The loopback device is special if any other network devices
10525 * is present in a network namespace the loopback device must
10526 * be present. Since we now dynamically allocate and free the
10527 * loopback device ensure this invariant is maintained by
10528 * keeping the loopback device as the first device on the
10529 * list of network devices. Ensuring the loopback devices
10530 * is the first device that appears and the last network device
10531 * that disappears.
10532 */
10533 if (register_pernet_device(&loopback_net_ops))
10534 goto out;
10535
10536 if (register_pernet_device(&default_device_ops))
10537 goto out;
10538
962cf36c
CM
10539 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10540 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 10541
f0bf90de
SAS
10542 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10543 NULL, dev_cpu_dead);
10544 WARN_ON(rc < 0);
1da177e4
LT
10545 rc = 0;
10546out:
10547 return rc;
10548}
10549
10550subsys_initcall(net_dev_init);