]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/core/dev.c
bpf: XDP_REDIRECT enable use of cpumap
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
f1083048 84#include <linux/sched/mm.h>
4a3e2f71 85#include <linux/mutex.h>
1da177e4
LT
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
0187bdfb 95#include <linux/ethtool.h>
1da177e4
LT
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
a7862b45 98#include <linux/bpf.h>
b5cdae32 99#include <linux/bpf_trace.h>
457c4cbc 100#include <net/net_namespace.h>
1da177e4 101#include <net/sock.h>
02d62e86 102#include <net/busy_poll.h>
1da177e4 103#include <linux/rtnetlink.h>
1da177e4 104#include <linux/stat.h>
1da177e4 105#include <net/dst.h>
fc4099f1 106#include <net/dst_metadata.h>
1da177e4 107#include <net/pkt_sched.h>
87d83093 108#include <net/pkt_cls.h>
1da177e4 109#include <net/checksum.h>
44540960 110#include <net/xfrm.h>
1da177e4
LT
111#include <linux/highmem.h>
112#include <linux/init.h>
1da177e4 113#include <linux/module.h>
1da177e4
LT
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
1da177e4 117#include <net/iw_handler.h>
1da177e4 118#include <asm/current.h>
5bdb9886 119#include <linux/audit.h>
db217334 120#include <linux/dmaengine.h>
f6a78bfc 121#include <linux/err.h>
c7fa9d18 122#include <linux/ctype.h>
723e98b7 123#include <linux/if_arp.h>
6de329e2 124#include <linux/if_vlan.h>
8f0f2223 125#include <linux/ip.h>
ad55dcaf 126#include <net/ip.h>
25cd9ba0 127#include <net/mpls.h>
8f0f2223
DM
128#include <linux/ipv6.h>
129#include <linux/in.h>
b6b2fed1
DM
130#include <linux/jhash.h>
131#include <linux/random.h>
9cbc1cb8 132#include <trace/events/napi.h>
cf66ba58 133#include <trace/events/net.h>
07dc22e7 134#include <trace/events/skb.h>
5acbbd42 135#include <linux/pci.h>
caeda9b9 136#include <linux/inetdevice.h>
c445477d 137#include <linux/cpu_rmap.h>
c5905afb 138#include <linux/static_key.h>
af12fa6e 139#include <linux/hashtable.h>
60877a32 140#include <linux/vmalloc.h>
529d0489 141#include <linux/if_macvlan.h>
e7fd2885 142#include <linux/errqueue.h>
3b47d303 143#include <linux/hrtimer.h>
e687ad60 144#include <linux/netfilter_ingress.h>
40e4e713 145#include <linux/crash_dump.h>
b72b5bf6 146#include <linux/sctp.h>
ae847f40 147#include <net/udp_tunnel.h>
6621dd29 148#include <linux/net_namespace.h>
1da177e4 149
342709ef
PE
150#include "net-sysfs.h"
151
d565b0a1
HX
152/* Instead of increasing this, you should create a hash table. */
153#define MAX_GRO_SKBS 8
154
5d38a079
HX
155/* This should be increased if a protocol with a bigger head is added. */
156#define GRO_MAX_HEAD (MAX_HEADER + 128)
157
1da177e4 158static DEFINE_SPINLOCK(ptype_lock);
62532da9 159static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161struct list_head ptype_all __read_mostly; /* Taps */
62532da9 162static struct list_head offload_base __read_mostly;
1da177e4 163
ae78dbfa 164static int netif_rx_internal(struct sk_buff *skb);
54951194 165static int call_netdevice_notifiers_info(unsigned long val,
54951194 166 struct netdev_notifier_info *info);
90b602f8 167static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 168
1da177e4 169/*
7562f876 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
171 * semaphore.
172 *
c6d14c84 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
7562f876 176 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
1da177e4 188DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
189EXPORT_SYMBOL(dev_base_lock);
190
6c557001
FW
191static DEFINE_MUTEX(ifalias_mutex);
192
af12fa6e
ET
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
52bd2d62 196static unsigned int napi_gen_id = NR_CPUS;
6180d9de 197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 198
18afa4b0 199static seqcount_t devnet_rename_seq;
c91f6df2 200
4e985ada
TG
201static inline void dev_base_seq_inc(struct net *net)
202{
643aa9cb 203 while (++net->dev_base_seq == 0)
204 ;
4e985ada
TG
205}
206
881d966b 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 208{
8387ff25 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 210
08e9897d 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
212}
213
881d966b 214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 215{
7c28bd0b 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
217}
218
e36fa2f7 219static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
220{
221#ifdef CONFIG_RPS
e36fa2f7 222 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
223#endif
224}
225
e36fa2f7 226static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
227{
228#ifdef CONFIG_RPS
e36fa2f7 229 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
230#endif
231}
232
ce286d32 233/* Device list insertion */
53759be9 234static void list_netdevice(struct net_device *dev)
ce286d32 235{
c346dca1 236 struct net *net = dev_net(dev);
ce286d32
EB
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
c6d14c84 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
ce286d32 245 write_unlock_bh(&dev_base_lock);
4e985ada
TG
246
247 dev_base_seq_inc(net);
ce286d32
EB
248}
249
fb699dfd
ED
250/* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
ce286d32
EB
253static void unlist_netdevice(struct net_device *dev)
254{
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
c6d14c84 259 list_del_rcu(&dev->dev_list);
72c9528b 260 hlist_del_rcu(&dev->name_hlist);
fb699dfd 261 hlist_del_rcu(&dev->index_hlist);
ce286d32 262 write_unlock_bh(&dev_base_lock);
4e985ada
TG
263
264 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
265}
266
1da177e4
LT
267/*
268 * Our notifier list
269 */
270
f07d5b94 271static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
272
273/*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
bea3348e 277
9958da05 278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 279EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 280
cf508b12 281#ifdef CONFIG_LOCKDEP
723e98b7 282/*
c773e847 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
284 * according to dev->type
285 */
643aa9cb 286static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 302
643aa9cb 303static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
319
320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
322
323static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324{
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332}
333
cf508b12
DM
334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
723e98b7
JP
336{
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342}
cf508b12
DM
343
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345{
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352}
723e98b7 353#else
cf508b12
DM
354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356{
357}
358static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
359{
360}
361#endif
1da177e4
LT
362
363/*******************************************************************************
eb13da1a 364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
1da177e4 368
1da177e4 369
1da177e4
LT
370/*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
c07b68e8
ED
386static inline struct list_head *ptype_head(const struct packet_type *pt)
387{
388 if (pt->type == htons(ETH_P_ALL))
7866a621 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 390 else
7866a621
SN
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
393}
394
1da177e4
LT
395/**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
4ec93edb 403 * This call does not sleep therefore it can not
1da177e4
LT
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
408void dev_add_pack(struct packet_type *pt)
409{
c07b68e8 410 struct list_head *head = ptype_head(pt);
1da177e4 411
c07b68e8
ED
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
1da177e4 415}
d1b19dff 416EXPORT_SYMBOL(dev_add_pack);
1da177e4 417
1da177e4
LT
418/**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
4ec93edb 425 * returns.
1da177e4
LT
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
431void __dev_remove_pack(struct packet_type *pt)
432{
c07b68e8 433 struct list_head *head = ptype_head(pt);
1da177e4
LT
434 struct packet_type *pt1;
435
c07b68e8 436 spin_lock(&ptype_lock);
1da177e4
LT
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
7b6cd1ce 445 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 446out:
c07b68e8 447 spin_unlock(&ptype_lock);
1da177e4 448}
d1b19dff
ED
449EXPORT_SYMBOL(__dev_remove_pack);
450
1da177e4
LT
451/**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
463void dev_remove_pack(struct packet_type *pt)
464{
465 __dev_remove_pack(pt);
4ec93edb 466
1da177e4
LT
467 synchronize_net();
468}
d1b19dff 469EXPORT_SYMBOL(dev_remove_pack);
1da177e4 470
62532da9
VY
471
472/**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
484void dev_add_offload(struct packet_offload *po)
485{
bdef7de4 486 struct packet_offload *elem;
62532da9
VY
487
488 spin_lock(&offload_lock);
bdef7de4
DM
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
494 spin_unlock(&offload_lock);
495}
496EXPORT_SYMBOL(dev_add_offload);
497
498/**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
1d143d9f 511static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
512{
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
c53aa505 516 spin_lock(&offload_lock);
62532da9
VY
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526out:
c53aa505 527 spin_unlock(&offload_lock);
62532da9 528}
62532da9
VY
529
530/**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
542void dev_remove_offload(struct packet_offload *po)
543{
544 __dev_remove_offload(po);
545
546 synchronize_net();
547}
548EXPORT_SYMBOL(dev_remove_offload);
549
1da177e4 550/******************************************************************************
eb13da1a 551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
1da177e4
LT
555
556/* Boot time configuration table */
557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559/**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
568static int netdev_boot_setup_add(char *name, struct ifmap *map)
569{
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 577 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584}
585
586/**
722c9a0c 587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
1da177e4 589 *
722c9a0c 590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
594 */
595int netdev_boot_setup_check(struct net_device *dev)
596{
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 602 !strcmp(dev->name, s[i].name)) {
722c9a0c 603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
607 return 1;
608 }
609 }
610 return 0;
611}
d1b19dff 612EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
613
614
615/**
722c9a0c 616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
1da177e4
LT
624 */
625unsigned long netdev_boot_base(const char *prefix, int unit)
626{
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
881d966b 637 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644}
645
646/*
647 * Saves at boot time configured settings for any netdevice.
648 */
649int __init netdev_boot_setup(char *str)
650{
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671}
672
673__setup("netdev=", netdev_boot_setup);
674
675/*******************************************************************************
eb13da1a 676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
1da177e4 680
a54acb3a
ND
681/**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
689int dev_get_iflink(const struct net_device *dev)
690{
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
7a66bbc9 694 return dev->ifindex;
a54acb3a
ND
695}
696EXPORT_SYMBOL(dev_get_iflink);
697
fc4099f1
PS
698/**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708{
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721}
722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
1da177e4
LT
724/**
725 * __dev_get_by_name - find a device by its name
c4ea43c5 726 * @net: the applicable net namespace
1da177e4
LT
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
881d966b 736struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 737{
0bd8d536
ED
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 740
b67bfe0d 741 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
0bd8d536 744
1da177e4
LT
745 return NULL;
746}
d1b19dff 747EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 748
72c9528b 749/**
722c9a0c 750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
759 */
760
761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762{
72c9528b
ED
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
b67bfe0d 766 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_get_by_name_rcu);
773
1da177e4
LT
774/**
775 * dev_get_by_name - find a device by its name
c4ea43c5 776 * @net: the applicable net namespace
1da177e4
LT
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
881d966b 786struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
787{
788 struct net_device *dev;
789
72c9528b
ED
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
792 if (dev)
793 dev_hold(dev);
72c9528b 794 rcu_read_unlock();
1da177e4
LT
795 return dev;
796}
d1b19dff 797EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
798
799/**
800 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 801 * @net: the applicable net namespace
1da177e4
LT
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
881d966b 811struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 812{
0bd8d536
ED
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 815
b67bfe0d 816 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
817 if (dev->ifindex == ifindex)
818 return dev;
0bd8d536 819
1da177e4
LT
820 return NULL;
821}
d1b19dff 822EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 823
fb699dfd
ED
824/**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836{
fb699dfd
ED
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
b67bfe0d 840 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845}
846EXPORT_SYMBOL(dev_get_by_index_rcu);
847
1da177e4
LT
848
849/**
850 * dev_get_by_index - find a device by its ifindex
c4ea43c5 851 * @net: the applicable net namespace
1da177e4
LT
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
881d966b 860struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
861{
862 struct net_device *dev;
863
fb699dfd
ED
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
866 if (dev)
867 dev_hold(dev);
fb699dfd 868 rcu_read_unlock();
1da177e4
LT
869 return dev;
870}
d1b19dff 871EXPORT_SYMBOL(dev_get_by_index);
1da177e4 872
90b602f8
ML
873/**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
883struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884{
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895}
896EXPORT_SYMBOL(dev_get_by_napi_id);
897
5dbe7c17
NS
898/**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 *
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
907 */
908int netdev_get_name(struct net *net, char *name, int ifindex)
909{
910 struct net_device *dev;
911 unsigned int seq;
912
913retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
920 }
921
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
927 }
928
929 return 0;
930}
931
1da177e4 932/**
941666c2 933 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 934 * @net: the applicable net namespace
1da177e4
LT
935 * @type: media type of device
936 * @ha: hardware address
937 *
938 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941666c2 941 * The returned device has not had its ref count increased
1da177e4
LT
942 * and the caller must therefore be careful about locking
943 *
1da177e4
LT
944 */
945
941666c2
ED
946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
1da177e4
LT
948{
949 struct net_device *dev;
950
941666c2 951 for_each_netdev_rcu(net, dev)
1da177e4
LT
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
954 return dev;
955
956 return NULL;
1da177e4 957}
941666c2 958EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 959
881d966b 960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
961{
962 struct net_device *dev;
963
4e9cac2b 964 ASSERT_RTNL();
881d966b 965 for_each_netdev(net, dev)
4e9cac2b 966 if (dev->type == type)
7562f876
PE
967 return dev;
968
969 return NULL;
4e9cac2b 970}
4e9cac2b
PM
971EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
881d966b 973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 974{
99fe3c39 975 struct net_device *dev, *ret = NULL;
4e9cac2b 976
99fe3c39
ED
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
983 }
984 rcu_read_unlock();
985 return ret;
1da177e4 986}
1da177e4
LT
987EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989/**
6c555490 990 * __dev_get_by_flags - find any device with given flags
c4ea43c5 991 * @net: the applicable net namespace
1da177e4
LT
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
994 *
995 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 996 * is not found or a pointer to the device. Must be called inside
6c555490 997 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
998 */
999
6c555490
WC
1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1da177e4 1002{
7562f876 1003 struct net_device *dev, *ret;
1da177e4 1004
6c555490
WC
1005 ASSERT_RTNL();
1006
7562f876 1007 ret = NULL;
6c555490 1008 for_each_netdev(net, dev) {
1da177e4 1009 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1010 ret = dev;
1da177e4
LT
1011 break;
1012 }
1013 }
7562f876 1014 return ret;
1da177e4 1015}
6c555490 1016EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1017
1018/**
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1021 *
1022 * Network device names need to be valid file names to
c7fa9d18
DM
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1da177e4 1025 */
95f050bf 1026bool dev_valid_name(const char *name)
1da177e4 1027{
c7fa9d18 1028 if (*name == '\0')
95f050bf 1029 return false;
b6fe17d6 1030 if (strlen(name) >= IFNAMSIZ)
95f050bf 1031 return false;
c7fa9d18 1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1033 return false;
c7fa9d18
DM
1034
1035 while (*name) {
a4176a93 1036 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1037 return false;
c7fa9d18
DM
1038 name++;
1039 }
95f050bf 1040 return true;
1da177e4 1041}
d1b19dff 1042EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1043
1044/**
b267b179
EB
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1da177e4 1047 * @name: name format string
b267b179 1048 * @buf: scratch buffer and result name string
1da177e4
LT
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1057 */
1058
b267b179 1059static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1060{
1061 int i = 0;
1da177e4
LT
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1064 unsigned long *inuse;
1da177e4
LT
1065 struct net_device *d;
1066
1067 p = strnchr(name, IFNAMSIZ-1, '%');
1068 if (p) {
1069 /*
1070 * Verify the string as this thing may have come from
1071 * the user. There must be either one "%d" and no other "%"
1072 * characters.
1073 */
1074 if (p[1] != 'd' || strchr(p + 2, '%'))
1075 return -EINVAL;
1076
1077 /* Use one page as a bit array of possible slots */
cfcabdcc 1078 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1079 if (!inuse)
1080 return -ENOMEM;
1081
881d966b 1082 for_each_netdev(net, d) {
1da177e4
LT
1083 if (!sscanf(d->name, name, &i))
1084 continue;
1085 if (i < 0 || i >= max_netdevices)
1086 continue;
1087
1088 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1089 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1090 if (!strncmp(buf, d->name, IFNAMSIZ))
1091 set_bit(i, inuse);
1092 }
1093
1094 i = find_first_zero_bit(inuse, max_netdevices);
1095 free_page((unsigned long) inuse);
1096 }
1097
d9031024
OP
1098 if (buf != name)
1099 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1100 if (!__dev_get_by_name(net, buf))
1da177e4 1101 return i;
1da177e4
LT
1102
1103 /* It is possible to run out of possible slots
1104 * when the name is long and there isn't enough space left
1105 * for the digits, or if all bits are used.
1106 */
1107 return -ENFILE;
1108}
1109
b267b179
EB
1110/**
1111 * dev_alloc_name - allocate a name for a device
1112 * @dev: device
1113 * @name: name format string
1114 *
1115 * Passed a format string - eg "lt%d" it will try and find a suitable
1116 * id. It scans list of devices to build up a free map, then chooses
1117 * the first empty slot. The caller must hold the dev_base or rtnl lock
1118 * while allocating the name and adding the device in order to avoid
1119 * duplicates.
1120 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1121 * Returns the number of the unit assigned or a negative errno code.
1122 */
1123
1124int dev_alloc_name(struct net_device *dev, const char *name)
1125{
1126 char buf[IFNAMSIZ];
1127 struct net *net;
1128 int ret;
1129
c346dca1
YH
1130 BUG_ON(!dev_net(dev));
1131 net = dev_net(dev);
b267b179
EB
1132 ret = __dev_alloc_name(net, name, buf);
1133 if (ret >= 0)
1134 strlcpy(dev->name, buf, IFNAMSIZ);
1135 return ret;
1136}
d1b19dff 1137EXPORT_SYMBOL(dev_alloc_name);
b267b179 1138
828de4f6
G
1139static int dev_alloc_name_ns(struct net *net,
1140 struct net_device *dev,
1141 const char *name)
d9031024 1142{
828de4f6
G
1143 char buf[IFNAMSIZ];
1144 int ret;
8ce6cebc 1145
828de4f6
G
1146 ret = __dev_alloc_name(net, name, buf);
1147 if (ret >= 0)
1148 strlcpy(dev->name, buf, IFNAMSIZ);
1149 return ret;
1150}
1151
1152static int dev_get_valid_name(struct net *net,
1153 struct net_device *dev,
1154 const char *name)
1155{
1156 BUG_ON(!net);
8ce6cebc 1157
d9031024
OP
1158 if (!dev_valid_name(name))
1159 return -EINVAL;
1160
1c5cae81 1161 if (strchr(name, '%'))
828de4f6 1162 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1163 else if (__dev_get_by_name(net, name))
1164 return -EEXIST;
8ce6cebc
DL
1165 else if (dev->name != name)
1166 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1167
1168 return 0;
1169}
1da177e4
LT
1170
1171/**
1172 * dev_change_name - change name of a device
1173 * @dev: device
1174 * @newname: name (or format string) must be at least IFNAMSIZ
1175 *
1176 * Change name of a device, can pass format strings "eth%d".
1177 * for wildcarding.
1178 */
cf04a4c7 1179int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1180{
238fa362 1181 unsigned char old_assign_type;
fcc5a03a 1182 char oldname[IFNAMSIZ];
1da177e4 1183 int err = 0;
fcc5a03a 1184 int ret;
881d966b 1185 struct net *net;
1da177e4
LT
1186
1187 ASSERT_RTNL();
c346dca1 1188 BUG_ON(!dev_net(dev));
1da177e4 1189
c346dca1 1190 net = dev_net(dev);
1da177e4
LT
1191 if (dev->flags & IFF_UP)
1192 return -EBUSY;
1193
30e6c9fa 1194 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1195
1196 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1197 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1198 return 0;
c91f6df2 1199 }
c8d90dca 1200
fcc5a03a
HX
1201 memcpy(oldname, dev->name, IFNAMSIZ);
1202
828de4f6 1203 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1204 if (err < 0) {
30e6c9fa 1205 write_seqcount_end(&devnet_rename_seq);
d9031024 1206 return err;
c91f6df2 1207 }
1da177e4 1208
6fe82a39
VF
1209 if (oldname[0] && !strchr(oldname, '%'))
1210 netdev_info(dev, "renamed from %s\n", oldname);
1211
238fa362
TG
1212 old_assign_type = dev->name_assign_type;
1213 dev->name_assign_type = NET_NAME_RENAMED;
1214
fcc5a03a 1215rollback:
a1b3f594
EB
1216 ret = device_rename(&dev->dev, dev->name);
1217 if (ret) {
1218 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1219 dev->name_assign_type = old_assign_type;
30e6c9fa 1220 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1221 return ret;
dcc99773 1222 }
7f988eab 1223
30e6c9fa 1224 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1225
5bb025fa
VF
1226 netdev_adjacent_rename_links(dev, oldname);
1227
7f988eab 1228 write_lock_bh(&dev_base_lock);
372b2312 1229 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1230 write_unlock_bh(&dev_base_lock);
1231
1232 synchronize_rcu();
1233
1234 write_lock_bh(&dev_base_lock);
1235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1236 write_unlock_bh(&dev_base_lock);
1237
056925ab 1238 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1239 ret = notifier_to_errno(ret);
1240
1241 if (ret) {
91e9c07b
ED
1242 /* err >= 0 after dev_alloc_name() or stores the first errno */
1243 if (err >= 0) {
fcc5a03a 1244 err = ret;
30e6c9fa 1245 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1246 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1247 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1248 dev->name_assign_type = old_assign_type;
1249 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1250 goto rollback;
91e9c07b 1251 } else {
7b6cd1ce 1252 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1253 dev->name, ret);
fcc5a03a
HX
1254 }
1255 }
1da177e4
LT
1256
1257 return err;
1258}
1259
0b815a1a
SH
1260/**
1261 * dev_set_alias - change ifalias of a device
1262 * @dev: device
1263 * @alias: name up to IFALIASZ
f0db275a 1264 * @len: limit of bytes to copy from info
0b815a1a
SH
1265 *
1266 * Set ifalias for a device,
1267 */
1268int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1269{
6c557001 1270 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1271
1272 if (len >= IFALIASZ)
1273 return -EINVAL;
1274
6c557001
FW
1275 if (len) {
1276 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1277 if (!new_alias)
1278 return -ENOMEM;
1279
1280 memcpy(new_alias->ifalias, alias, len);
1281 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1282 }
1283
6c557001
FW
1284 mutex_lock(&ifalias_mutex);
1285 rcu_swap_protected(dev->ifalias, new_alias,
1286 mutex_is_locked(&ifalias_mutex));
1287 mutex_unlock(&ifalias_mutex);
1288
1289 if (new_alias)
1290 kfree_rcu(new_alias, rcuhead);
0b815a1a 1291
0b815a1a
SH
1292 return len;
1293}
1294
6c557001
FW
1295/**
1296 * dev_get_alias - get ifalias of a device
1297 * @dev: device
20e88320 1298 * @name: buffer to store name of ifalias
6c557001
FW
1299 * @len: size of buffer
1300 *
1301 * get ifalias for a device. Caller must make sure dev cannot go
1302 * away, e.g. rcu read lock or own a reference count to device.
1303 */
1304int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1305{
1306 const struct dev_ifalias *alias;
1307 int ret = 0;
1308
1309 rcu_read_lock();
1310 alias = rcu_dereference(dev->ifalias);
1311 if (alias)
1312 ret = snprintf(name, len, "%s", alias->ifalias);
1313 rcu_read_unlock();
1314
1315 return ret;
1316}
0b815a1a 1317
d8a33ac4 1318/**
3041a069 1319 * netdev_features_change - device changes features
d8a33ac4
SH
1320 * @dev: device to cause notification
1321 *
1322 * Called to indicate a device has changed features.
1323 */
1324void netdev_features_change(struct net_device *dev)
1325{
056925ab 1326 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1327}
1328EXPORT_SYMBOL(netdev_features_change);
1329
1da177e4
LT
1330/**
1331 * netdev_state_change - device changes state
1332 * @dev: device to cause notification
1333 *
1334 * Called to indicate a device has changed state. This function calls
1335 * the notifier chains for netdev_chain and sends a NEWLINK message
1336 * to the routing socket.
1337 */
1338void netdev_state_change(struct net_device *dev)
1339{
1340 if (dev->flags & IFF_UP) {
51d0c047
DA
1341 struct netdev_notifier_change_info change_info = {
1342 .info.dev = dev,
1343 };
54951194 1344
51d0c047 1345 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1346 &change_info.info);
7f294054 1347 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1348 }
1349}
d1b19dff 1350EXPORT_SYMBOL(netdev_state_change);
1da177e4 1351
ee89bab1 1352/**
722c9a0c 1353 * netdev_notify_peers - notify network peers about existence of @dev
1354 * @dev: network device
ee89bab1
AW
1355 *
1356 * Generate traffic such that interested network peers are aware of
1357 * @dev, such as by generating a gratuitous ARP. This may be used when
1358 * a device wants to inform the rest of the network about some sort of
1359 * reconfiguration such as a failover event or virtual machine
1360 * migration.
1361 */
1362void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1363{
ee89bab1
AW
1364 rtnl_lock();
1365 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1366 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1367 rtnl_unlock();
c1da4ac7 1368}
ee89bab1 1369EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1370
bd380811 1371static int __dev_open(struct net_device *dev)
1da177e4 1372{
d314774c 1373 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1374 int ret;
1da177e4 1375
e46b66bc
BH
1376 ASSERT_RTNL();
1377
1da177e4
LT
1378 if (!netif_device_present(dev))
1379 return -ENODEV;
1380
ca99ca14
NH
1381 /* Block netpoll from trying to do any rx path servicing.
1382 * If we don't do this there is a chance ndo_poll_controller
1383 * or ndo_poll may be running while we open the device
1384 */
66b5552f 1385 netpoll_poll_disable(dev);
ca99ca14 1386
3b8bcfd5
JB
1387 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1388 ret = notifier_to_errno(ret);
1389 if (ret)
1390 return ret;
1391
1da177e4 1392 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1393
d314774c
SH
1394 if (ops->ndo_validate_addr)
1395 ret = ops->ndo_validate_addr(dev);
bada339b 1396
d314774c
SH
1397 if (!ret && ops->ndo_open)
1398 ret = ops->ndo_open(dev);
1da177e4 1399
66b5552f 1400 netpoll_poll_enable(dev);
ca99ca14 1401
bada339b
JG
1402 if (ret)
1403 clear_bit(__LINK_STATE_START, &dev->state);
1404 else {
1da177e4 1405 dev->flags |= IFF_UP;
4417da66 1406 dev_set_rx_mode(dev);
1da177e4 1407 dev_activate(dev);
7bf23575 1408 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1409 }
bada339b 1410
1da177e4
LT
1411 return ret;
1412}
1413
1414/**
bd380811
PM
1415 * dev_open - prepare an interface for use.
1416 * @dev: device to open
1da177e4 1417 *
bd380811
PM
1418 * Takes a device from down to up state. The device's private open
1419 * function is invoked and then the multicast lists are loaded. Finally
1420 * the device is moved into the up state and a %NETDEV_UP message is
1421 * sent to the netdev notifier chain.
1422 *
1423 * Calling this function on an active interface is a nop. On a failure
1424 * a negative errno code is returned.
1da177e4 1425 */
bd380811
PM
1426int dev_open(struct net_device *dev)
1427{
1428 int ret;
1429
bd380811
PM
1430 if (dev->flags & IFF_UP)
1431 return 0;
1432
bd380811
PM
1433 ret = __dev_open(dev);
1434 if (ret < 0)
1435 return ret;
1436
7f294054 1437 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1438 call_netdevice_notifiers(NETDEV_UP, dev);
1439
1440 return ret;
1441}
1442EXPORT_SYMBOL(dev_open);
1443
7051b88a 1444static void __dev_close_many(struct list_head *head)
1da177e4 1445{
44345724 1446 struct net_device *dev;
e46b66bc 1447
bd380811 1448 ASSERT_RTNL();
9d5010db
DM
1449 might_sleep();
1450
5cde2829 1451 list_for_each_entry(dev, head, close_list) {
3f4df206 1452 /* Temporarily disable netpoll until the interface is down */
66b5552f 1453 netpoll_poll_disable(dev);
3f4df206 1454
44345724 1455 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1456
44345724 1457 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1458
44345724
OP
1459 /* Synchronize to scheduled poll. We cannot touch poll list, it
1460 * can be even on different cpu. So just clear netif_running().
1461 *
1462 * dev->stop() will invoke napi_disable() on all of it's
1463 * napi_struct instances on this device.
1464 */
4e857c58 1465 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1466 }
1da177e4 1467
44345724 1468 dev_deactivate_many(head);
d8b2a4d2 1469
5cde2829 1470 list_for_each_entry(dev, head, close_list) {
44345724 1471 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1472
44345724
OP
1473 /*
1474 * Call the device specific close. This cannot fail.
1475 * Only if device is UP
1476 *
1477 * We allow it to be called even after a DETACH hot-plug
1478 * event.
1479 */
1480 if (ops->ndo_stop)
1481 ops->ndo_stop(dev);
1482
44345724 1483 dev->flags &= ~IFF_UP;
66b5552f 1484 netpoll_poll_enable(dev);
44345724 1485 }
44345724
OP
1486}
1487
7051b88a 1488static void __dev_close(struct net_device *dev)
44345724
OP
1489{
1490 LIST_HEAD(single);
1491
5cde2829 1492 list_add(&dev->close_list, &single);
7051b88a 1493 __dev_close_many(&single);
f87e6f47 1494 list_del(&single);
44345724
OP
1495}
1496
7051b88a 1497void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1498{
1499 struct net_device *dev, *tmp;
1da177e4 1500
5cde2829
EB
1501 /* Remove the devices that don't need to be closed */
1502 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1503 if (!(dev->flags & IFF_UP))
5cde2829 1504 list_del_init(&dev->close_list);
44345724
OP
1505
1506 __dev_close_many(head);
1da177e4 1507
5cde2829 1508 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1509 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1510 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1511 if (unlink)
1512 list_del_init(&dev->close_list);
44345724 1513 }
bd380811 1514}
99c4a26a 1515EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1516
1517/**
1518 * dev_close - shutdown an interface.
1519 * @dev: device to shutdown
1520 *
1521 * This function moves an active device into down state. A
1522 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1523 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1524 * chain.
1525 */
7051b88a 1526void dev_close(struct net_device *dev)
bd380811 1527{
e14a5993
ED
1528 if (dev->flags & IFF_UP) {
1529 LIST_HEAD(single);
1da177e4 1530
5cde2829 1531 list_add(&dev->close_list, &single);
99c4a26a 1532 dev_close_many(&single, true);
e14a5993
ED
1533 list_del(&single);
1534 }
1da177e4 1535}
d1b19dff 1536EXPORT_SYMBOL(dev_close);
1da177e4
LT
1537
1538
0187bdfb
BH
1539/**
1540 * dev_disable_lro - disable Large Receive Offload on a device
1541 * @dev: device
1542 *
1543 * Disable Large Receive Offload (LRO) on a net device. Must be
1544 * called under RTNL. This is needed if received packets may be
1545 * forwarded to another interface.
1546 */
1547void dev_disable_lro(struct net_device *dev)
1548{
fbe168ba
MK
1549 struct net_device *lower_dev;
1550 struct list_head *iter;
529d0489 1551
bc5787c6
MM
1552 dev->wanted_features &= ~NETIF_F_LRO;
1553 netdev_update_features(dev);
27660515 1554
22d5969f
MM
1555 if (unlikely(dev->features & NETIF_F_LRO))
1556 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1557
1558 netdev_for_each_lower_dev(dev, lower_dev, iter)
1559 dev_disable_lro(lower_dev);
0187bdfb
BH
1560}
1561EXPORT_SYMBOL(dev_disable_lro);
1562
351638e7
JP
1563static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1564 struct net_device *dev)
1565{
51d0c047
DA
1566 struct netdev_notifier_info info = {
1567 .dev = dev,
1568 };
351638e7 1569
351638e7
JP
1570 return nb->notifier_call(nb, val, &info);
1571}
0187bdfb 1572
881d966b
EB
1573static int dev_boot_phase = 1;
1574
1da177e4 1575/**
722c9a0c 1576 * register_netdevice_notifier - register a network notifier block
1577 * @nb: notifier
1da177e4 1578 *
722c9a0c 1579 * Register a notifier to be called when network device events occur.
1580 * The notifier passed is linked into the kernel structures and must
1581 * not be reused until it has been unregistered. A negative errno code
1582 * is returned on a failure.
1da177e4 1583 *
722c9a0c 1584 * When registered all registration and up events are replayed
1585 * to the new notifier to allow device to have a race free
1586 * view of the network device list.
1da177e4
LT
1587 */
1588
1589int register_netdevice_notifier(struct notifier_block *nb)
1590{
1591 struct net_device *dev;
fcc5a03a 1592 struct net_device *last;
881d966b 1593 struct net *net;
1da177e4
LT
1594 int err;
1595
1596 rtnl_lock();
f07d5b94 1597 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1598 if (err)
1599 goto unlock;
881d966b
EB
1600 if (dev_boot_phase)
1601 goto unlock;
1602 for_each_net(net) {
1603 for_each_netdev(net, dev) {
351638e7 1604 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1605 err = notifier_to_errno(err);
1606 if (err)
1607 goto rollback;
1608
1609 if (!(dev->flags & IFF_UP))
1610 continue;
1da177e4 1611
351638e7 1612 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1613 }
1da177e4 1614 }
fcc5a03a
HX
1615
1616unlock:
1da177e4
LT
1617 rtnl_unlock();
1618 return err;
fcc5a03a
HX
1619
1620rollback:
1621 last = dev;
881d966b
EB
1622 for_each_net(net) {
1623 for_each_netdev(net, dev) {
1624 if (dev == last)
8f891489 1625 goto outroll;
fcc5a03a 1626
881d966b 1627 if (dev->flags & IFF_UP) {
351638e7
JP
1628 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1629 dev);
1630 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1631 }
351638e7 1632 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1633 }
fcc5a03a 1634 }
c67625a1 1635
8f891489 1636outroll:
c67625a1 1637 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1638 goto unlock;
1da177e4 1639}
d1b19dff 1640EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1641
1642/**
722c9a0c 1643 * unregister_netdevice_notifier - unregister a network notifier block
1644 * @nb: notifier
1da177e4 1645 *
722c9a0c 1646 * Unregister a notifier previously registered by
1647 * register_netdevice_notifier(). The notifier is unlinked into the
1648 * kernel structures and may then be reused. A negative errno code
1649 * is returned on a failure.
7d3d43da 1650 *
722c9a0c 1651 * After unregistering unregister and down device events are synthesized
1652 * for all devices on the device list to the removed notifier to remove
1653 * the need for special case cleanup code.
1da177e4
LT
1654 */
1655
1656int unregister_netdevice_notifier(struct notifier_block *nb)
1657{
7d3d43da
EB
1658 struct net_device *dev;
1659 struct net *net;
9f514950
HX
1660 int err;
1661
1662 rtnl_lock();
f07d5b94 1663 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1664 if (err)
1665 goto unlock;
1666
1667 for_each_net(net) {
1668 for_each_netdev(net, dev) {
1669 if (dev->flags & IFF_UP) {
351638e7
JP
1670 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1671 dev);
1672 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1673 }
351638e7 1674 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1675 }
1676 }
1677unlock:
9f514950
HX
1678 rtnl_unlock();
1679 return err;
1da177e4 1680}
d1b19dff 1681EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1682
351638e7
JP
1683/**
1684 * call_netdevice_notifiers_info - call all network notifier blocks
1685 * @val: value passed unmodified to notifier function
1686 * @dev: net_device pointer passed unmodified to notifier function
1687 * @info: notifier information data
1688 *
1689 * Call all network notifier blocks. Parameters and return value
1690 * are as for raw_notifier_call_chain().
1691 */
1692
1d143d9f 1693static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1694 struct netdev_notifier_info *info)
351638e7
JP
1695{
1696 ASSERT_RTNL();
351638e7
JP
1697 return raw_notifier_call_chain(&netdev_chain, val, info);
1698}
351638e7 1699
1da177e4
LT
1700/**
1701 * call_netdevice_notifiers - call all network notifier blocks
1702 * @val: value passed unmodified to notifier function
c4ea43c5 1703 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1704 *
1705 * Call all network notifier blocks. Parameters and return value
f07d5b94 1706 * are as for raw_notifier_call_chain().
1da177e4
LT
1707 */
1708
ad7379d4 1709int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1710{
51d0c047
DA
1711 struct netdev_notifier_info info = {
1712 .dev = dev,
1713 };
351638e7 1714
51d0c047 1715 return call_netdevice_notifiers_info(val, &info);
1da177e4 1716}
edf947f1 1717EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1718
1cf51900 1719#ifdef CONFIG_NET_INGRESS
4577139b
DB
1720static struct static_key ingress_needed __read_mostly;
1721
1722void net_inc_ingress_queue(void)
1723{
1724 static_key_slow_inc(&ingress_needed);
1725}
1726EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1727
1728void net_dec_ingress_queue(void)
1729{
1730 static_key_slow_dec(&ingress_needed);
1731}
1732EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1733#endif
1734
1f211a1b
DB
1735#ifdef CONFIG_NET_EGRESS
1736static struct static_key egress_needed __read_mostly;
1737
1738void net_inc_egress_queue(void)
1739{
1740 static_key_slow_inc(&egress_needed);
1741}
1742EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1743
1744void net_dec_egress_queue(void)
1745{
1746 static_key_slow_dec(&egress_needed);
1747}
1748EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1749#endif
1750
c5905afb 1751static struct static_key netstamp_needed __read_mostly;
b90e5794 1752#ifdef HAVE_JUMP_LABEL
b90e5794 1753static atomic_t netstamp_needed_deferred;
13baa00a 1754static atomic_t netstamp_wanted;
5fa8bbda 1755static void netstamp_clear(struct work_struct *work)
1da177e4 1756{
b90e5794 1757 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1758 int wanted;
b90e5794 1759
13baa00a
ED
1760 wanted = atomic_add_return(deferred, &netstamp_wanted);
1761 if (wanted > 0)
1762 static_key_enable(&netstamp_needed);
1763 else
1764 static_key_disable(&netstamp_needed);
5fa8bbda
ED
1765}
1766static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1767#endif
5fa8bbda
ED
1768
1769void net_enable_timestamp(void)
1770{
13baa00a
ED
1771#ifdef HAVE_JUMP_LABEL
1772 int wanted;
1773
1774 while (1) {
1775 wanted = atomic_read(&netstamp_wanted);
1776 if (wanted <= 0)
1777 break;
1778 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1779 return;
1780 }
1781 atomic_inc(&netstamp_needed_deferred);
1782 schedule_work(&netstamp_work);
1783#else
c5905afb 1784 static_key_slow_inc(&netstamp_needed);
13baa00a 1785#endif
1da177e4 1786}
d1b19dff 1787EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1788
1789void net_disable_timestamp(void)
1790{
b90e5794 1791#ifdef HAVE_JUMP_LABEL
13baa00a
ED
1792 int wanted;
1793
1794 while (1) {
1795 wanted = atomic_read(&netstamp_wanted);
1796 if (wanted <= 1)
1797 break;
1798 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1799 return;
1800 }
1801 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1802 schedule_work(&netstamp_work);
1803#else
c5905afb 1804 static_key_slow_dec(&netstamp_needed);
5fa8bbda 1805#endif
1da177e4 1806}
d1b19dff 1807EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1808
3b098e2d 1809static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1810{
2456e855 1811 skb->tstamp = 0;
c5905afb 1812 if (static_key_false(&netstamp_needed))
a61bbcf2 1813 __net_timestamp(skb);
1da177e4
LT
1814}
1815
588f0330 1816#define net_timestamp_check(COND, SKB) \
c5905afb 1817 if (static_key_false(&netstamp_needed)) { \
2456e855 1818 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1819 __net_timestamp(SKB); \
1820 } \
3b098e2d 1821
f4b05d27 1822bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1823{
1824 unsigned int len;
1825
1826 if (!(dev->flags & IFF_UP))
1827 return false;
1828
1829 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1830 if (skb->len <= len)
1831 return true;
1832
1833 /* if TSO is enabled, we don't care about the length as the packet
1834 * could be forwarded without being segmented before
1835 */
1836 if (skb_is_gso(skb))
1837 return true;
1838
1839 return false;
1840}
1ee481fb 1841EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1842
a0265d28
HX
1843int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1844{
4e3264d2 1845 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1846
4e3264d2
MKL
1847 if (likely(!ret)) {
1848 skb->protocol = eth_type_trans(skb, dev);
1849 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1850 }
a0265d28 1851
4e3264d2 1852 return ret;
a0265d28
HX
1853}
1854EXPORT_SYMBOL_GPL(__dev_forward_skb);
1855
44540960
AB
1856/**
1857 * dev_forward_skb - loopback an skb to another netif
1858 *
1859 * @dev: destination network device
1860 * @skb: buffer to forward
1861 *
1862 * return values:
1863 * NET_RX_SUCCESS (no congestion)
6ec82562 1864 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1865 *
1866 * dev_forward_skb can be used for injecting an skb from the
1867 * start_xmit function of one device into the receive queue
1868 * of another device.
1869 *
1870 * The receiving device may be in another namespace, so
1871 * we have to clear all information in the skb that could
1872 * impact namespace isolation.
1873 */
1874int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1875{
a0265d28 1876 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1877}
1878EXPORT_SYMBOL_GPL(dev_forward_skb);
1879
71d9dec2
CG
1880static inline int deliver_skb(struct sk_buff *skb,
1881 struct packet_type *pt_prev,
1882 struct net_device *orig_dev)
1883{
1f8b977a 1884 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 1885 return -ENOMEM;
63354797 1886 refcount_inc(&skb->users);
71d9dec2
CG
1887 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1888}
1889
7866a621
SN
1890static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1891 struct packet_type **pt,
fbcb2170
JP
1892 struct net_device *orig_dev,
1893 __be16 type,
7866a621
SN
1894 struct list_head *ptype_list)
1895{
1896 struct packet_type *ptype, *pt_prev = *pt;
1897
1898 list_for_each_entry_rcu(ptype, ptype_list, list) {
1899 if (ptype->type != type)
1900 continue;
1901 if (pt_prev)
fbcb2170 1902 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1903 pt_prev = ptype;
1904 }
1905 *pt = pt_prev;
1906}
1907
c0de08d0
EL
1908static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1909{
a3d744e9 1910 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1911 return false;
1912
1913 if (ptype->id_match)
1914 return ptype->id_match(ptype, skb->sk);
1915 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1916 return true;
1917
1918 return false;
1919}
1920
1da177e4
LT
1921/*
1922 * Support routine. Sends outgoing frames to any network
1923 * taps currently in use.
1924 */
1925
74b20582 1926void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1927{
1928 struct packet_type *ptype;
71d9dec2
CG
1929 struct sk_buff *skb2 = NULL;
1930 struct packet_type *pt_prev = NULL;
7866a621 1931 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1932
1da177e4 1933 rcu_read_lock();
7866a621
SN
1934again:
1935 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1936 /* Never send packets back to the socket
1937 * they originated from - MvS (miquels@drinkel.ow.org)
1938 */
7866a621
SN
1939 if (skb_loop_sk(ptype, skb))
1940 continue;
71d9dec2 1941
7866a621
SN
1942 if (pt_prev) {
1943 deliver_skb(skb2, pt_prev, skb->dev);
1944 pt_prev = ptype;
1945 continue;
1946 }
1da177e4 1947
7866a621
SN
1948 /* need to clone skb, done only once */
1949 skb2 = skb_clone(skb, GFP_ATOMIC);
1950 if (!skb2)
1951 goto out_unlock;
70978182 1952
7866a621 1953 net_timestamp_set(skb2);
1da177e4 1954
7866a621
SN
1955 /* skb->nh should be correctly
1956 * set by sender, so that the second statement is
1957 * just protection against buggy protocols.
1958 */
1959 skb_reset_mac_header(skb2);
1960
1961 if (skb_network_header(skb2) < skb2->data ||
1962 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1963 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1964 ntohs(skb2->protocol),
1965 dev->name);
1966 skb_reset_network_header(skb2);
1da177e4 1967 }
7866a621
SN
1968
1969 skb2->transport_header = skb2->network_header;
1970 skb2->pkt_type = PACKET_OUTGOING;
1971 pt_prev = ptype;
1972 }
1973
1974 if (ptype_list == &ptype_all) {
1975 ptype_list = &dev->ptype_all;
1976 goto again;
1da177e4 1977 }
7866a621 1978out_unlock:
581fe0ea
WB
1979 if (pt_prev) {
1980 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1981 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1982 else
1983 kfree_skb(skb2);
1984 }
1da177e4
LT
1985 rcu_read_unlock();
1986}
74b20582 1987EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1988
2c53040f
BH
1989/**
1990 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1991 * @dev: Network device
1992 * @txq: number of queues available
1993 *
1994 * If real_num_tx_queues is changed the tc mappings may no longer be
1995 * valid. To resolve this verify the tc mapping remains valid and if
1996 * not NULL the mapping. With no priorities mapping to this
1997 * offset/count pair it will no longer be used. In the worst case TC0
1998 * is invalid nothing can be done so disable priority mappings. If is
1999 * expected that drivers will fix this mapping if they can before
2000 * calling netif_set_real_num_tx_queues.
2001 */
bb134d22 2002static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2003{
2004 int i;
2005 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2006
2007 /* If TC0 is invalidated disable TC mapping */
2008 if (tc->offset + tc->count > txq) {
7b6cd1ce 2009 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2010 dev->num_tc = 0;
2011 return;
2012 }
2013
2014 /* Invalidated prio to tc mappings set to TC0 */
2015 for (i = 1; i < TC_BITMASK + 1; i++) {
2016 int q = netdev_get_prio_tc_map(dev, i);
2017
2018 tc = &dev->tc_to_txq[q];
2019 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2020 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2021 i, q);
4f57c087
JF
2022 netdev_set_prio_tc_map(dev, i, 0);
2023 }
2024 }
2025}
2026
8d059b0f
AD
2027int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2028{
2029 if (dev->num_tc) {
2030 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2031 int i;
2032
2033 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2034 if ((txq - tc->offset) < tc->count)
2035 return i;
2036 }
2037
2038 return -1;
2039 }
2040
2041 return 0;
2042}
8a5f2166 2043EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2044
537c00de
AD
2045#ifdef CONFIG_XPS
2046static DEFINE_MUTEX(xps_map_mutex);
2047#define xmap_dereference(P) \
2048 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2049
6234f874
AD
2050static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2051 int tci, u16 index)
537c00de 2052{
10cdc3f3
AD
2053 struct xps_map *map = NULL;
2054 int pos;
537c00de 2055
10cdc3f3 2056 if (dev_maps)
6234f874
AD
2057 map = xmap_dereference(dev_maps->cpu_map[tci]);
2058 if (!map)
2059 return false;
537c00de 2060
6234f874
AD
2061 for (pos = map->len; pos--;) {
2062 if (map->queues[pos] != index)
2063 continue;
2064
2065 if (map->len > 1) {
2066 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2067 break;
537c00de 2068 }
6234f874
AD
2069
2070 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2071 kfree_rcu(map, rcu);
2072 return false;
537c00de
AD
2073 }
2074
6234f874 2075 return true;
10cdc3f3
AD
2076}
2077
6234f874
AD
2078static bool remove_xps_queue_cpu(struct net_device *dev,
2079 struct xps_dev_maps *dev_maps,
2080 int cpu, u16 offset, u16 count)
2081{
184c449f
AD
2082 int num_tc = dev->num_tc ? : 1;
2083 bool active = false;
2084 int tci;
6234f874 2085
184c449f
AD
2086 for (tci = cpu * num_tc; num_tc--; tci++) {
2087 int i, j;
2088
2089 for (i = count, j = offset; i--; j++) {
2090 if (!remove_xps_queue(dev_maps, cpu, j))
2091 break;
2092 }
2093
2094 active |= i < 0;
6234f874
AD
2095 }
2096
184c449f 2097 return active;
6234f874
AD
2098}
2099
2100static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2101 u16 count)
10cdc3f3
AD
2102{
2103 struct xps_dev_maps *dev_maps;
024e9679 2104 int cpu, i;
10cdc3f3
AD
2105 bool active = false;
2106
2107 mutex_lock(&xps_map_mutex);
2108 dev_maps = xmap_dereference(dev->xps_maps);
2109
2110 if (!dev_maps)
2111 goto out_no_maps;
2112
6234f874
AD
2113 for_each_possible_cpu(cpu)
2114 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2115 offset, count);
10cdc3f3
AD
2116
2117 if (!active) {
537c00de
AD
2118 RCU_INIT_POINTER(dev->xps_maps, NULL);
2119 kfree_rcu(dev_maps, rcu);
2120 }
2121
6234f874 2122 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2123 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2124 NUMA_NO_NODE);
2125
537c00de
AD
2126out_no_maps:
2127 mutex_unlock(&xps_map_mutex);
2128}
2129
6234f874
AD
2130static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2131{
2132 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2133}
2134
01c5f864
AD
2135static struct xps_map *expand_xps_map(struct xps_map *map,
2136 int cpu, u16 index)
2137{
2138 struct xps_map *new_map;
2139 int alloc_len = XPS_MIN_MAP_ALLOC;
2140 int i, pos;
2141
2142 for (pos = 0; map && pos < map->len; pos++) {
2143 if (map->queues[pos] != index)
2144 continue;
2145 return map;
2146 }
2147
2148 /* Need to add queue to this CPU's existing map */
2149 if (map) {
2150 if (pos < map->alloc_len)
2151 return map;
2152
2153 alloc_len = map->alloc_len * 2;
2154 }
2155
2156 /* Need to allocate new map to store queue on this CPU's map */
2157 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2158 cpu_to_node(cpu));
2159 if (!new_map)
2160 return NULL;
2161
2162 for (i = 0; i < pos; i++)
2163 new_map->queues[i] = map->queues[i];
2164 new_map->alloc_len = alloc_len;
2165 new_map->len = pos;
2166
2167 return new_map;
2168}
2169
3573540c
MT
2170int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2171 u16 index)
537c00de 2172{
01c5f864 2173 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2174 int i, cpu, tci, numa_node_id = -2;
2175 int maps_sz, num_tc = 1, tc = 0;
537c00de 2176 struct xps_map *map, *new_map;
01c5f864 2177 bool active = false;
537c00de 2178
184c449f
AD
2179 if (dev->num_tc) {
2180 num_tc = dev->num_tc;
2181 tc = netdev_txq_to_tc(dev, index);
2182 if (tc < 0)
2183 return -EINVAL;
2184 }
2185
2186 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2187 if (maps_sz < L1_CACHE_BYTES)
2188 maps_sz = L1_CACHE_BYTES;
2189
537c00de
AD
2190 mutex_lock(&xps_map_mutex);
2191
2192 dev_maps = xmap_dereference(dev->xps_maps);
2193
01c5f864 2194 /* allocate memory for queue storage */
184c449f 2195 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2196 if (!new_dev_maps)
2197 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2198 if (!new_dev_maps) {
2199 mutex_unlock(&xps_map_mutex);
01c5f864 2200 return -ENOMEM;
2bb60cb9 2201 }
01c5f864 2202
184c449f
AD
2203 tci = cpu * num_tc + tc;
2204 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2205 NULL;
2206
2207 map = expand_xps_map(map, cpu, index);
2208 if (!map)
2209 goto error;
2210
184c449f 2211 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2212 }
2213
2214 if (!new_dev_maps)
2215 goto out_no_new_maps;
2216
537c00de 2217 for_each_possible_cpu(cpu) {
184c449f
AD
2218 /* copy maps belonging to foreign traffic classes */
2219 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2220 /* fill in the new device map from the old device map */
2221 map = xmap_dereference(dev_maps->cpu_map[tci]);
2222 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2223 }
2224
2225 /* We need to explicitly update tci as prevous loop
2226 * could break out early if dev_maps is NULL.
2227 */
2228 tci = cpu * num_tc + tc;
2229
01c5f864
AD
2230 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2231 /* add queue to CPU maps */
2232 int pos = 0;
2233
184c449f 2234 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2235 while ((pos < map->len) && (map->queues[pos] != index))
2236 pos++;
2237
2238 if (pos == map->len)
2239 map->queues[map->len++] = index;
537c00de 2240#ifdef CONFIG_NUMA
537c00de
AD
2241 if (numa_node_id == -2)
2242 numa_node_id = cpu_to_node(cpu);
2243 else if (numa_node_id != cpu_to_node(cpu))
2244 numa_node_id = -1;
537c00de 2245#endif
01c5f864
AD
2246 } else if (dev_maps) {
2247 /* fill in the new device map from the old device map */
184c449f
AD
2248 map = xmap_dereference(dev_maps->cpu_map[tci]);
2249 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2250 }
01c5f864 2251
184c449f
AD
2252 /* copy maps belonging to foreign traffic classes */
2253 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2254 /* fill in the new device map from the old device map */
2255 map = xmap_dereference(dev_maps->cpu_map[tci]);
2256 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2257 }
537c00de
AD
2258 }
2259
01c5f864
AD
2260 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2261
537c00de 2262 /* Cleanup old maps */
184c449f
AD
2263 if (!dev_maps)
2264 goto out_no_old_maps;
2265
2266 for_each_possible_cpu(cpu) {
2267 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2268 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2269 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2270 if (map && map != new_map)
2271 kfree_rcu(map, rcu);
2272 }
537c00de
AD
2273 }
2274
184c449f
AD
2275 kfree_rcu(dev_maps, rcu);
2276
2277out_no_old_maps:
01c5f864
AD
2278 dev_maps = new_dev_maps;
2279 active = true;
537c00de 2280
01c5f864
AD
2281out_no_new_maps:
2282 /* update Tx queue numa node */
537c00de
AD
2283 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2284 (numa_node_id >= 0) ? numa_node_id :
2285 NUMA_NO_NODE);
2286
01c5f864
AD
2287 if (!dev_maps)
2288 goto out_no_maps;
2289
2290 /* removes queue from unused CPUs */
2291 for_each_possible_cpu(cpu) {
184c449f
AD
2292 for (i = tc, tci = cpu * num_tc; i--; tci++)
2293 active |= remove_xps_queue(dev_maps, tci, index);
2294 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2295 active |= remove_xps_queue(dev_maps, tci, index);
2296 for (i = num_tc - tc, tci++; --i; tci++)
2297 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2298 }
2299
2300 /* free map if not active */
2301 if (!active) {
2302 RCU_INIT_POINTER(dev->xps_maps, NULL);
2303 kfree_rcu(dev_maps, rcu);
2304 }
2305
2306out_no_maps:
537c00de
AD
2307 mutex_unlock(&xps_map_mutex);
2308
2309 return 0;
2310error:
01c5f864
AD
2311 /* remove any maps that we added */
2312 for_each_possible_cpu(cpu) {
184c449f
AD
2313 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2314 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2315 map = dev_maps ?
2316 xmap_dereference(dev_maps->cpu_map[tci]) :
2317 NULL;
2318 if (new_map && new_map != map)
2319 kfree(new_map);
2320 }
01c5f864
AD
2321 }
2322
537c00de
AD
2323 mutex_unlock(&xps_map_mutex);
2324
537c00de
AD
2325 kfree(new_dev_maps);
2326 return -ENOMEM;
2327}
2328EXPORT_SYMBOL(netif_set_xps_queue);
2329
2330#endif
9cf1f6a8
AD
2331void netdev_reset_tc(struct net_device *dev)
2332{
6234f874
AD
2333#ifdef CONFIG_XPS
2334 netif_reset_xps_queues_gt(dev, 0);
2335#endif
9cf1f6a8
AD
2336 dev->num_tc = 0;
2337 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2338 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2339}
2340EXPORT_SYMBOL(netdev_reset_tc);
2341
2342int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2343{
2344 if (tc >= dev->num_tc)
2345 return -EINVAL;
2346
6234f874
AD
2347#ifdef CONFIG_XPS
2348 netif_reset_xps_queues(dev, offset, count);
2349#endif
9cf1f6a8
AD
2350 dev->tc_to_txq[tc].count = count;
2351 dev->tc_to_txq[tc].offset = offset;
2352 return 0;
2353}
2354EXPORT_SYMBOL(netdev_set_tc_queue);
2355
2356int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2357{
2358 if (num_tc > TC_MAX_QUEUE)
2359 return -EINVAL;
2360
6234f874
AD
2361#ifdef CONFIG_XPS
2362 netif_reset_xps_queues_gt(dev, 0);
2363#endif
9cf1f6a8
AD
2364 dev->num_tc = num_tc;
2365 return 0;
2366}
2367EXPORT_SYMBOL(netdev_set_num_tc);
2368
f0796d5c
JF
2369/*
2370 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2371 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2372 */
e6484930 2373int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2374{
1d24eb48
TH
2375 int rc;
2376
e6484930
TH
2377 if (txq < 1 || txq > dev->num_tx_queues)
2378 return -EINVAL;
f0796d5c 2379
5c56580b
BH
2380 if (dev->reg_state == NETREG_REGISTERED ||
2381 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2382 ASSERT_RTNL();
2383
1d24eb48
TH
2384 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2385 txq);
bf264145
TH
2386 if (rc)
2387 return rc;
2388
4f57c087
JF
2389 if (dev->num_tc)
2390 netif_setup_tc(dev, txq);
2391
024e9679 2392 if (txq < dev->real_num_tx_queues) {
e6484930 2393 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2394#ifdef CONFIG_XPS
2395 netif_reset_xps_queues_gt(dev, txq);
2396#endif
2397 }
f0796d5c 2398 }
e6484930
TH
2399
2400 dev->real_num_tx_queues = txq;
2401 return 0;
f0796d5c
JF
2402}
2403EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2404
a953be53 2405#ifdef CONFIG_SYSFS
62fe0b40
BH
2406/**
2407 * netif_set_real_num_rx_queues - set actual number of RX queues used
2408 * @dev: Network device
2409 * @rxq: Actual number of RX queues
2410 *
2411 * This must be called either with the rtnl_lock held or before
2412 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2413 * negative error code. If called before registration, it always
2414 * succeeds.
62fe0b40
BH
2415 */
2416int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2417{
2418 int rc;
2419
bd25fa7b
TH
2420 if (rxq < 1 || rxq > dev->num_rx_queues)
2421 return -EINVAL;
2422
62fe0b40
BH
2423 if (dev->reg_state == NETREG_REGISTERED) {
2424 ASSERT_RTNL();
2425
62fe0b40
BH
2426 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2427 rxq);
2428 if (rc)
2429 return rc;
62fe0b40
BH
2430 }
2431
2432 dev->real_num_rx_queues = rxq;
2433 return 0;
2434}
2435EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2436#endif
2437
2c53040f
BH
2438/**
2439 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2440 *
2441 * This routine should set an upper limit on the number of RSS queues
2442 * used by default by multiqueue devices.
2443 */
a55b138b 2444int netif_get_num_default_rss_queues(void)
16917b87 2445{
40e4e713
HS
2446 return is_kdump_kernel() ?
2447 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2448}
2449EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2450
3bcb846c 2451static void __netif_reschedule(struct Qdisc *q)
56079431 2452{
def82a1d
JP
2453 struct softnet_data *sd;
2454 unsigned long flags;
56079431 2455
def82a1d 2456 local_irq_save(flags);
903ceff7 2457 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2458 q->next_sched = NULL;
2459 *sd->output_queue_tailp = q;
2460 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2461 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2462 local_irq_restore(flags);
2463}
2464
2465void __netif_schedule(struct Qdisc *q)
2466{
2467 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2468 __netif_reschedule(q);
56079431
DV
2469}
2470EXPORT_SYMBOL(__netif_schedule);
2471
e6247027
ED
2472struct dev_kfree_skb_cb {
2473 enum skb_free_reason reason;
2474};
2475
2476static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2477{
e6247027
ED
2478 return (struct dev_kfree_skb_cb *)skb->cb;
2479}
2480
46e5da40
JF
2481void netif_schedule_queue(struct netdev_queue *txq)
2482{
2483 rcu_read_lock();
2484 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2485 struct Qdisc *q = rcu_dereference(txq->qdisc);
2486
2487 __netif_schedule(q);
2488 }
2489 rcu_read_unlock();
2490}
2491EXPORT_SYMBOL(netif_schedule_queue);
2492
46e5da40
JF
2493void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2494{
2495 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2496 struct Qdisc *q;
2497
2498 rcu_read_lock();
2499 q = rcu_dereference(dev_queue->qdisc);
2500 __netif_schedule(q);
2501 rcu_read_unlock();
2502 }
2503}
2504EXPORT_SYMBOL(netif_tx_wake_queue);
2505
e6247027 2506void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2507{
e6247027 2508 unsigned long flags;
56079431 2509
9899886d
MJ
2510 if (unlikely(!skb))
2511 return;
2512
63354797 2513 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2514 smp_rmb();
63354797
RE
2515 refcount_set(&skb->users, 0);
2516 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2517 return;
bea3348e 2518 }
e6247027
ED
2519 get_kfree_skb_cb(skb)->reason = reason;
2520 local_irq_save(flags);
2521 skb->next = __this_cpu_read(softnet_data.completion_queue);
2522 __this_cpu_write(softnet_data.completion_queue, skb);
2523 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2524 local_irq_restore(flags);
56079431 2525}
e6247027 2526EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2527
e6247027 2528void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2529{
2530 if (in_irq() || irqs_disabled())
e6247027 2531 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2532 else
2533 dev_kfree_skb(skb);
2534}
e6247027 2535EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2536
2537
bea3348e
SH
2538/**
2539 * netif_device_detach - mark device as removed
2540 * @dev: network device
2541 *
2542 * Mark device as removed from system and therefore no longer available.
2543 */
56079431
DV
2544void netif_device_detach(struct net_device *dev)
2545{
2546 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2547 netif_running(dev)) {
d543103a 2548 netif_tx_stop_all_queues(dev);
56079431
DV
2549 }
2550}
2551EXPORT_SYMBOL(netif_device_detach);
2552
bea3348e
SH
2553/**
2554 * netif_device_attach - mark device as attached
2555 * @dev: network device
2556 *
2557 * Mark device as attached from system and restart if needed.
2558 */
56079431
DV
2559void netif_device_attach(struct net_device *dev)
2560{
2561 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2562 netif_running(dev)) {
d543103a 2563 netif_tx_wake_all_queues(dev);
4ec93edb 2564 __netdev_watchdog_up(dev);
56079431
DV
2565 }
2566}
2567EXPORT_SYMBOL(netif_device_attach);
2568
5605c762
JP
2569/*
2570 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2571 * to be used as a distribution range.
2572 */
2573u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2574 unsigned int num_tx_queues)
2575{
2576 u32 hash;
2577 u16 qoffset = 0;
2578 u16 qcount = num_tx_queues;
2579
2580 if (skb_rx_queue_recorded(skb)) {
2581 hash = skb_get_rx_queue(skb);
2582 while (unlikely(hash >= num_tx_queues))
2583 hash -= num_tx_queues;
2584 return hash;
2585 }
2586
2587 if (dev->num_tc) {
2588 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
f4563a75 2589
5605c762
JP
2590 qoffset = dev->tc_to_txq[tc].offset;
2591 qcount = dev->tc_to_txq[tc].count;
2592 }
2593
2594 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2595}
2596EXPORT_SYMBOL(__skb_tx_hash);
2597
36c92474
BH
2598static void skb_warn_bad_offload(const struct sk_buff *skb)
2599{
84d15ae5 2600 static const netdev_features_t null_features;
36c92474 2601 struct net_device *dev = skb->dev;
88ad4175 2602 const char *name = "";
36c92474 2603
c846ad9b
BG
2604 if (!net_ratelimit())
2605 return;
2606
88ad4175
BM
2607 if (dev) {
2608 if (dev->dev.parent)
2609 name = dev_driver_string(dev->dev.parent);
2610 else
2611 name = netdev_name(dev);
2612 }
36c92474
BH
2613 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2614 "gso_type=%d ip_summed=%d\n",
88ad4175 2615 name, dev ? &dev->features : &null_features,
65e9d2fa 2616 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2617 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2618 skb_shinfo(skb)->gso_type, skb->ip_summed);
2619}
2620
1da177e4
LT
2621/*
2622 * Invalidate hardware checksum when packet is to be mangled, and
2623 * complete checksum manually on outgoing path.
2624 */
84fa7933 2625int skb_checksum_help(struct sk_buff *skb)
1da177e4 2626{
d3bc23e7 2627 __wsum csum;
663ead3b 2628 int ret = 0, offset;
1da177e4 2629
84fa7933 2630 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2631 goto out_set_summed;
2632
2633 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2634 skb_warn_bad_offload(skb);
2635 return -EINVAL;
1da177e4
LT
2636 }
2637
cef401de
ED
2638 /* Before computing a checksum, we should make sure no frag could
2639 * be modified by an external entity : checksum could be wrong.
2640 */
2641 if (skb_has_shared_frag(skb)) {
2642 ret = __skb_linearize(skb);
2643 if (ret)
2644 goto out;
2645 }
2646
55508d60 2647 offset = skb_checksum_start_offset(skb);
a030847e
HX
2648 BUG_ON(offset >= skb_headlen(skb));
2649 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2650
2651 offset += skb->csum_offset;
2652 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2653
2654 if (skb_cloned(skb) &&
2655 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2656 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2657 if (ret)
2658 goto out;
2659 }
2660
4f2e4ad5 2661 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2662out_set_summed:
1da177e4 2663 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2664out:
1da177e4
LT
2665 return ret;
2666}
d1b19dff 2667EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2668
b72b5bf6
DC
2669int skb_crc32c_csum_help(struct sk_buff *skb)
2670{
2671 __le32 crc32c_csum;
2672 int ret = 0, offset, start;
2673
2674 if (skb->ip_summed != CHECKSUM_PARTIAL)
2675 goto out;
2676
2677 if (unlikely(skb_is_gso(skb)))
2678 goto out;
2679
2680 /* Before computing a checksum, we should make sure no frag could
2681 * be modified by an external entity : checksum could be wrong.
2682 */
2683 if (unlikely(skb_has_shared_frag(skb))) {
2684 ret = __skb_linearize(skb);
2685 if (ret)
2686 goto out;
2687 }
2688 start = skb_checksum_start_offset(skb);
2689 offset = start + offsetof(struct sctphdr, checksum);
2690 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2691 ret = -EINVAL;
2692 goto out;
2693 }
2694 if (skb_cloned(skb) &&
2695 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2696 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2697 if (ret)
2698 goto out;
2699 }
2700 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2701 skb->len - start, ~(__u32)0,
2702 crc32c_csum_stub));
2703 *(__le32 *)(skb->data + offset) = crc32c_csum;
2704 skb->ip_summed = CHECKSUM_NONE;
dba00306 2705 skb->csum_not_inet = 0;
b72b5bf6
DC
2706out:
2707 return ret;
2708}
2709
53d6471c 2710__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2711{
252e3346 2712 __be16 type = skb->protocol;
f6a78bfc 2713
19acc327
PS
2714 /* Tunnel gso handlers can set protocol to ethernet. */
2715 if (type == htons(ETH_P_TEB)) {
2716 struct ethhdr *eth;
2717
2718 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2719 return 0;
2720
2721 eth = (struct ethhdr *)skb_mac_header(skb);
2722 type = eth->h_proto;
2723 }
2724
d4bcef3f 2725 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2726}
2727
2728/**
2729 * skb_mac_gso_segment - mac layer segmentation handler.
2730 * @skb: buffer to segment
2731 * @features: features for the output path (see dev->features)
2732 */
2733struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2734 netdev_features_t features)
2735{
2736 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2737 struct packet_offload *ptype;
53d6471c
VY
2738 int vlan_depth = skb->mac_len;
2739 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2740
2741 if (unlikely(!type))
2742 return ERR_PTR(-EINVAL);
2743
53d6471c 2744 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2745
2746 rcu_read_lock();
22061d80 2747 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2748 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2749 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2750 break;
2751 }
2752 }
2753 rcu_read_unlock();
2754
98e399f8 2755 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2756
f6a78bfc
HX
2757 return segs;
2758}
05e8ef4a
PS
2759EXPORT_SYMBOL(skb_mac_gso_segment);
2760
2761
2762/* openvswitch calls this on rx path, so we need a different check.
2763 */
2764static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2765{
2766 if (tx_path)
93991221 2767 return skb->ip_summed != CHECKSUM_PARTIAL;
6e7bc478
ED
2768
2769 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2770}
2771
2772/**
2773 * __skb_gso_segment - Perform segmentation on skb.
2774 * @skb: buffer to segment
2775 * @features: features for the output path (see dev->features)
2776 * @tx_path: whether it is called in TX path
2777 *
2778 * This function segments the given skb and returns a list of segments.
2779 *
2780 * It may return NULL if the skb requires no segmentation. This is
2781 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2782 *
2783 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2784 */
2785struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2786 netdev_features_t features, bool tx_path)
2787{
b2504a5d
ED
2788 struct sk_buff *segs;
2789
05e8ef4a
PS
2790 if (unlikely(skb_needs_check(skb, tx_path))) {
2791 int err;
2792
b2504a5d 2793 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2794 err = skb_cow_head(skb, 0);
2795 if (err < 0)
05e8ef4a
PS
2796 return ERR_PTR(err);
2797 }
2798
802ab55a
AD
2799 /* Only report GSO partial support if it will enable us to
2800 * support segmentation on this frame without needing additional
2801 * work.
2802 */
2803 if (features & NETIF_F_GSO_PARTIAL) {
2804 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2805 struct net_device *dev = skb->dev;
2806
2807 partial_features |= dev->features & dev->gso_partial_features;
2808 if (!skb_gso_ok(skb, features | partial_features))
2809 features &= ~NETIF_F_GSO_PARTIAL;
2810 }
2811
9207f9d4
KK
2812 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2813 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2814
68c33163 2815 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2816 SKB_GSO_CB(skb)->encap_level = 0;
2817
05e8ef4a
PS
2818 skb_reset_mac_header(skb);
2819 skb_reset_mac_len(skb);
2820
b2504a5d
ED
2821 segs = skb_mac_gso_segment(skb, features);
2822
2823 if (unlikely(skb_needs_check(skb, tx_path)))
2824 skb_warn_bad_offload(skb);
2825
2826 return segs;
05e8ef4a 2827}
12b0004d 2828EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2829
fb286bb2
HX
2830/* Take action when hardware reception checksum errors are detected. */
2831#ifdef CONFIG_BUG
2832void netdev_rx_csum_fault(struct net_device *dev)
2833{
2834 if (net_ratelimit()) {
7b6cd1ce 2835 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2836 dump_stack();
2837 }
2838}
2839EXPORT_SYMBOL(netdev_rx_csum_fault);
2840#endif
2841
1da177e4
LT
2842/* Actually, we should eliminate this check as soon as we know, that:
2843 * 1. IOMMU is present and allows to map all the memory.
2844 * 2. No high memory really exists on this machine.
2845 */
2846
c1e756bf 2847static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2848{
3d3a8533 2849#ifdef CONFIG_HIGHMEM
1da177e4 2850 int i;
f4563a75 2851
5acbbd42 2852 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2853 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2854 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 2855
ea2ab693 2856 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2857 return 1;
ea2ab693 2858 }
5acbbd42 2859 }
1da177e4 2860
5acbbd42
FT
2861 if (PCI_DMA_BUS_IS_PHYS) {
2862 struct device *pdev = dev->dev.parent;
1da177e4 2863
9092c658
ED
2864 if (!pdev)
2865 return 0;
5acbbd42 2866 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2867 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2868 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
f4563a75 2869
5acbbd42
FT
2870 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2871 return 1;
2872 }
2873 }
3d3a8533 2874#endif
1da177e4
LT
2875 return 0;
2876}
1da177e4 2877
3b392ddb
SH
2878/* If MPLS offload request, verify we are testing hardware MPLS features
2879 * instead of standard features for the netdev.
2880 */
d0edc7bf 2881#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2882static netdev_features_t net_mpls_features(struct sk_buff *skb,
2883 netdev_features_t features,
2884 __be16 type)
2885{
25cd9ba0 2886 if (eth_p_mpls(type))
3b392ddb
SH
2887 features &= skb->dev->mpls_features;
2888
2889 return features;
2890}
2891#else
2892static netdev_features_t net_mpls_features(struct sk_buff *skb,
2893 netdev_features_t features,
2894 __be16 type)
2895{
2896 return features;
2897}
2898#endif
2899
c8f44aff 2900static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2901 netdev_features_t features)
f01a5236 2902{
53d6471c 2903 int tmp;
3b392ddb
SH
2904 __be16 type;
2905
2906 type = skb_network_protocol(skb, &tmp);
2907 features = net_mpls_features(skb, features, type);
53d6471c 2908
c0d680e5 2909 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2910 !can_checksum_protocol(features, type)) {
996e8021 2911 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2912 }
7be2c82c
ED
2913 if (illegal_highdma(skb->dev, skb))
2914 features &= ~NETIF_F_SG;
f01a5236
JG
2915
2916 return features;
2917}
2918
e38f3025
TM
2919netdev_features_t passthru_features_check(struct sk_buff *skb,
2920 struct net_device *dev,
2921 netdev_features_t features)
2922{
2923 return features;
2924}
2925EXPORT_SYMBOL(passthru_features_check);
2926
8cb65d00
TM
2927static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2928 struct net_device *dev,
2929 netdev_features_t features)
2930{
2931 return vlan_features_check(skb, features);
2932}
2933
cbc53e08
AD
2934static netdev_features_t gso_features_check(const struct sk_buff *skb,
2935 struct net_device *dev,
2936 netdev_features_t features)
2937{
2938 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2939
2940 if (gso_segs > dev->gso_max_segs)
2941 return features & ~NETIF_F_GSO_MASK;
2942
802ab55a
AD
2943 /* Support for GSO partial features requires software
2944 * intervention before we can actually process the packets
2945 * so we need to strip support for any partial features now
2946 * and we can pull them back in after we have partially
2947 * segmented the frame.
2948 */
2949 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2950 features &= ~dev->gso_partial_features;
2951
2952 /* Make sure to clear the IPv4 ID mangling feature if the
2953 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2954 */
2955 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2956 struct iphdr *iph = skb->encapsulation ?
2957 inner_ip_hdr(skb) : ip_hdr(skb);
2958
2959 if (!(iph->frag_off & htons(IP_DF)))
2960 features &= ~NETIF_F_TSO_MANGLEID;
2961 }
2962
2963 return features;
2964}
2965
c1e756bf 2966netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2967{
5f35227e 2968 struct net_device *dev = skb->dev;
fcbeb976 2969 netdev_features_t features = dev->features;
58e998c6 2970
cbc53e08
AD
2971 if (skb_is_gso(skb))
2972 features = gso_features_check(skb, dev, features);
30b678d8 2973
5f35227e
JG
2974 /* If encapsulation offload request, verify we are testing
2975 * hardware encapsulation features instead of standard
2976 * features for the netdev
2977 */
2978 if (skb->encapsulation)
2979 features &= dev->hw_enc_features;
2980
f5a7fb88
TM
2981 if (skb_vlan_tagged(skb))
2982 features = netdev_intersect_features(features,
2983 dev->vlan_features |
2984 NETIF_F_HW_VLAN_CTAG_TX |
2985 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2986
5f35227e
JG
2987 if (dev->netdev_ops->ndo_features_check)
2988 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2989 features);
8cb65d00
TM
2990 else
2991 features &= dflt_features_check(skb, dev, features);
5f35227e 2992
c1e756bf 2993 return harmonize_features(skb, features);
58e998c6 2994}
c1e756bf 2995EXPORT_SYMBOL(netif_skb_features);
58e998c6 2996
2ea25513 2997static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2998 struct netdev_queue *txq, bool more)
f6a78bfc 2999{
2ea25513
DM
3000 unsigned int len;
3001 int rc;
00829823 3002
7866a621 3003 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 3004 dev_queue_xmit_nit(skb, dev);
fc741216 3005
2ea25513
DM
3006 len = skb->len;
3007 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3008 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3009 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3010
2ea25513
DM
3011 return rc;
3012}
7b9c6090 3013
8dcda22a
DM
3014struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3015 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3016{
3017 struct sk_buff *skb = first;
3018 int rc = NETDEV_TX_OK;
7b9c6090 3019
7f2e870f
DM
3020 while (skb) {
3021 struct sk_buff *next = skb->next;
fc70fb64 3022
7f2e870f 3023 skb->next = NULL;
95f6b3dd 3024 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3025 if (unlikely(!dev_xmit_complete(rc))) {
3026 skb->next = next;
3027 goto out;
3028 }
6afff0ca 3029
7f2e870f
DM
3030 skb = next;
3031 if (netif_xmit_stopped(txq) && skb) {
3032 rc = NETDEV_TX_BUSY;
3033 break;
9ccb8975 3034 }
7f2e870f 3035 }
9ccb8975 3036
7f2e870f
DM
3037out:
3038 *ret = rc;
3039 return skb;
3040}
b40863c6 3041
1ff0dc94
ED
3042static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3043 netdev_features_t features)
f6a78bfc 3044{
df8a39de 3045 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3046 !vlan_hw_offload_capable(features, skb->vlan_proto))
3047 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3048 return skb;
3049}
f6a78bfc 3050
43c26a1a
DC
3051int skb_csum_hwoffload_help(struct sk_buff *skb,
3052 const netdev_features_t features)
3053{
3054 if (unlikely(skb->csum_not_inet))
3055 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3056 skb_crc32c_csum_help(skb);
3057
3058 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3059}
3060EXPORT_SYMBOL(skb_csum_hwoffload_help);
3061
55a93b3e 3062static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
3063{
3064 netdev_features_t features;
f6a78bfc 3065
eae3f88e
DM
3066 features = netif_skb_features(skb);
3067 skb = validate_xmit_vlan(skb, features);
3068 if (unlikely(!skb))
3069 goto out_null;
7b9c6090 3070
8b86a61d 3071 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3072 struct sk_buff *segs;
3073
3074 segs = skb_gso_segment(skb, features);
cecda693 3075 if (IS_ERR(segs)) {
af6dabc9 3076 goto out_kfree_skb;
cecda693
JW
3077 } else if (segs) {
3078 consume_skb(skb);
3079 skb = segs;
f6a78bfc 3080 }
eae3f88e
DM
3081 } else {
3082 if (skb_needs_linearize(skb, features) &&
3083 __skb_linearize(skb))
3084 goto out_kfree_skb;
4ec93edb 3085
f6e27114
SK
3086 if (validate_xmit_xfrm(skb, features))
3087 goto out_kfree_skb;
3088
eae3f88e
DM
3089 /* If packet is not checksummed and device does not
3090 * support checksumming for this protocol, complete
3091 * checksumming here.
3092 */
3093 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3094 if (skb->encapsulation)
3095 skb_set_inner_transport_header(skb,
3096 skb_checksum_start_offset(skb));
3097 else
3098 skb_set_transport_header(skb,
3099 skb_checksum_start_offset(skb));
43c26a1a 3100 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3101 goto out_kfree_skb;
7b9c6090 3102 }
0c772159 3103 }
7b9c6090 3104
eae3f88e 3105 return skb;
fc70fb64 3106
f6a78bfc
HX
3107out_kfree_skb:
3108 kfree_skb(skb);
eae3f88e 3109out_null:
d21fd63e 3110 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3111 return NULL;
3112}
6afff0ca 3113
55a93b3e
ED
3114struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3115{
3116 struct sk_buff *next, *head = NULL, *tail;
3117
bec3cfdc 3118 for (; skb != NULL; skb = next) {
55a93b3e
ED
3119 next = skb->next;
3120 skb->next = NULL;
bec3cfdc
ED
3121
3122 /* in case skb wont be segmented, point to itself */
3123 skb->prev = skb;
3124
55a93b3e 3125 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3126 if (!skb)
3127 continue;
55a93b3e 3128
bec3cfdc
ED
3129 if (!head)
3130 head = skb;
3131 else
3132 tail->next = skb;
3133 /* If skb was segmented, skb->prev points to
3134 * the last segment. If not, it still contains skb.
3135 */
3136 tail = skb->prev;
55a93b3e
ED
3137 }
3138 return head;
f6a78bfc 3139}
104ba78c 3140EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3141
1def9238
ED
3142static void qdisc_pkt_len_init(struct sk_buff *skb)
3143{
3144 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3145
3146 qdisc_skb_cb(skb)->pkt_len = skb->len;
3147
3148 /* To get more precise estimation of bytes sent on wire,
3149 * we add to pkt_len the headers size of all segments
3150 */
3151 if (shinfo->gso_size) {
757b8b1d 3152 unsigned int hdr_len;
15e5a030 3153 u16 gso_segs = shinfo->gso_segs;
1def9238 3154
757b8b1d
ED
3155 /* mac layer + network layer */
3156 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3157
3158 /* + transport layer */
1def9238
ED
3159 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3160 hdr_len += tcp_hdrlen(skb);
3161 else
3162 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3163
3164 if (shinfo->gso_type & SKB_GSO_DODGY)
3165 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3166 shinfo->gso_size);
3167
3168 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3169 }
3170}
3171
bbd8a0d3
KK
3172static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3173 struct net_device *dev,
3174 struct netdev_queue *txq)
3175{
3176 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3177 struct sk_buff *to_free = NULL;
a2da570d 3178 bool contended;
bbd8a0d3
KK
3179 int rc;
3180
a2da570d 3181 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3182 /*
3183 * Heuristic to force contended enqueues to serialize on a
3184 * separate lock before trying to get qdisc main lock.
f9eb8aea 3185 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3186 * often and dequeue packets faster.
79640a4c 3187 */
a2da570d 3188 contended = qdisc_is_running(q);
79640a4c
ED
3189 if (unlikely(contended))
3190 spin_lock(&q->busylock);
3191
bbd8a0d3
KK
3192 spin_lock(root_lock);
3193 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3194 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3195 rc = NET_XMIT_DROP;
3196 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3197 qdisc_run_begin(q)) {
bbd8a0d3
KK
3198 /*
3199 * This is a work-conserving queue; there are no old skbs
3200 * waiting to be sent out; and the qdisc is not running -
3201 * xmit the skb directly.
3202 */
bfe0d029 3203
bfe0d029
ED
3204 qdisc_bstats_update(q, skb);
3205
55a93b3e 3206 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3207 if (unlikely(contended)) {
3208 spin_unlock(&q->busylock);
3209 contended = false;
3210 }
bbd8a0d3 3211 __qdisc_run(q);
79640a4c 3212 } else
bc135b23 3213 qdisc_run_end(q);
bbd8a0d3
KK
3214
3215 rc = NET_XMIT_SUCCESS;
3216 } else {
520ac30f 3217 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3218 if (qdisc_run_begin(q)) {
3219 if (unlikely(contended)) {
3220 spin_unlock(&q->busylock);
3221 contended = false;
3222 }
3223 __qdisc_run(q);
3224 }
bbd8a0d3
KK
3225 }
3226 spin_unlock(root_lock);
520ac30f
ED
3227 if (unlikely(to_free))
3228 kfree_skb_list(to_free);
79640a4c
ED
3229 if (unlikely(contended))
3230 spin_unlock(&q->busylock);
bbd8a0d3
KK
3231 return rc;
3232}
3233
86f8515f 3234#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3235static void skb_update_prio(struct sk_buff *skb)
3236{
6977a79d 3237 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3238
91c68ce2 3239 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3240 unsigned int prioidx =
3241 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3242
3243 if (prioidx < map->priomap_len)
3244 skb->priority = map->priomap[prioidx];
3245 }
5bc1421e
NH
3246}
3247#else
3248#define skb_update_prio(skb)
3249#endif
3250
f60e5990 3251DEFINE_PER_CPU(int, xmit_recursion);
3252EXPORT_SYMBOL(xmit_recursion);
3253
95603e22
MM
3254/**
3255 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3256 * @net: network namespace this loopback is happening in
3257 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3258 * @skb: buffer to transmit
3259 */
0c4b51f0 3260int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3261{
3262 skb_reset_mac_header(skb);
3263 __skb_pull(skb, skb_network_offset(skb));
3264 skb->pkt_type = PACKET_LOOPBACK;
3265 skb->ip_summed = CHECKSUM_UNNECESSARY;
3266 WARN_ON(!skb_dst(skb));
3267 skb_dst_force(skb);
3268 netif_rx_ni(skb);
3269 return 0;
3270}
3271EXPORT_SYMBOL(dev_loopback_xmit);
3272
1f211a1b
DB
3273#ifdef CONFIG_NET_EGRESS
3274static struct sk_buff *
3275sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3276{
3277 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3278 struct tcf_result cl_res;
3279
3280 if (!cl)
3281 return skb;
3282
8dc07fdb 3283 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
1f211a1b
DB
3284 qdisc_bstats_cpu_update(cl->q, skb);
3285
87d83093 3286 switch (tcf_classify(skb, cl, &cl_res, false)) {
1f211a1b
DB
3287 case TC_ACT_OK:
3288 case TC_ACT_RECLASSIFY:
3289 skb->tc_index = TC_H_MIN(cl_res.classid);
3290 break;
3291 case TC_ACT_SHOT:
3292 qdisc_qstats_cpu_drop(cl->q);
3293 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3294 kfree_skb(skb);
3295 return NULL;
1f211a1b
DB
3296 case TC_ACT_STOLEN:
3297 case TC_ACT_QUEUED:
e25ea21f 3298 case TC_ACT_TRAP:
1f211a1b 3299 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3300 consume_skb(skb);
1f211a1b
DB
3301 return NULL;
3302 case TC_ACT_REDIRECT:
3303 /* No need to push/pop skb's mac_header here on egress! */
3304 skb_do_redirect(skb);
3305 *ret = NET_XMIT_SUCCESS;
3306 return NULL;
3307 default:
3308 break;
3309 }
3310
3311 return skb;
3312}
3313#endif /* CONFIG_NET_EGRESS */
3314
638b2a69
JP
3315static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3316{
3317#ifdef CONFIG_XPS
3318 struct xps_dev_maps *dev_maps;
3319 struct xps_map *map;
3320 int queue_index = -1;
3321
3322 rcu_read_lock();
3323 dev_maps = rcu_dereference(dev->xps_maps);
3324 if (dev_maps) {
184c449f
AD
3325 unsigned int tci = skb->sender_cpu - 1;
3326
3327 if (dev->num_tc) {
3328 tci *= dev->num_tc;
3329 tci += netdev_get_prio_tc_map(dev, skb->priority);
3330 }
3331
3332 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3333 if (map) {
3334 if (map->len == 1)
3335 queue_index = map->queues[0];
3336 else
3337 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3338 map->len)];
3339 if (unlikely(queue_index >= dev->real_num_tx_queues))
3340 queue_index = -1;
3341 }
3342 }
3343 rcu_read_unlock();
3344
3345 return queue_index;
3346#else
3347 return -1;
3348#endif
3349}
3350
3351static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3352{
3353 struct sock *sk = skb->sk;
3354 int queue_index = sk_tx_queue_get(sk);
3355
3356 if (queue_index < 0 || skb->ooo_okay ||
3357 queue_index >= dev->real_num_tx_queues) {
3358 int new_index = get_xps_queue(dev, skb);
f4563a75 3359
638b2a69
JP
3360 if (new_index < 0)
3361 new_index = skb_tx_hash(dev, skb);
3362
3363 if (queue_index != new_index && sk &&
004a5d01 3364 sk_fullsock(sk) &&
638b2a69
JP
3365 rcu_access_pointer(sk->sk_dst_cache))
3366 sk_tx_queue_set(sk, new_index);
3367
3368 queue_index = new_index;
3369 }
3370
3371 return queue_index;
3372}
3373
3374struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3375 struct sk_buff *skb,
3376 void *accel_priv)
3377{
3378 int queue_index = 0;
3379
3380#ifdef CONFIG_XPS
52bd2d62
ED
3381 u32 sender_cpu = skb->sender_cpu - 1;
3382
3383 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3384 skb->sender_cpu = raw_smp_processor_id() + 1;
3385#endif
3386
3387 if (dev->real_num_tx_queues != 1) {
3388 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3389
638b2a69
JP
3390 if (ops->ndo_select_queue)
3391 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3392 __netdev_pick_tx);
3393 else
3394 queue_index = __netdev_pick_tx(dev, skb);
3395
3396 if (!accel_priv)
3397 queue_index = netdev_cap_txqueue(dev, queue_index);
3398 }
3399
3400 skb_set_queue_mapping(skb, queue_index);
3401 return netdev_get_tx_queue(dev, queue_index);
3402}
3403
d29f749e 3404/**
9d08dd3d 3405 * __dev_queue_xmit - transmit a buffer
d29f749e 3406 * @skb: buffer to transmit
9d08dd3d 3407 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3408 *
3409 * Queue a buffer for transmission to a network device. The caller must
3410 * have set the device and priority and built the buffer before calling
3411 * this function. The function can be called from an interrupt.
3412 *
3413 * A negative errno code is returned on a failure. A success does not
3414 * guarantee the frame will be transmitted as it may be dropped due
3415 * to congestion or traffic shaping.
3416 *
3417 * -----------------------------------------------------------------------------------
3418 * I notice this method can also return errors from the queue disciplines,
3419 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3420 * be positive.
3421 *
3422 * Regardless of the return value, the skb is consumed, so it is currently
3423 * difficult to retry a send to this method. (You can bump the ref count
3424 * before sending to hold a reference for retry if you are careful.)
3425 *
3426 * When calling this method, interrupts MUST be enabled. This is because
3427 * the BH enable code must have IRQs enabled so that it will not deadlock.
3428 * --BLG
3429 */
0a59f3a9 3430static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3431{
3432 struct net_device *dev = skb->dev;
dc2b4847 3433 struct netdev_queue *txq;
1da177e4
LT
3434 struct Qdisc *q;
3435 int rc = -ENOMEM;
3436
6d1ccff6
ED
3437 skb_reset_mac_header(skb);
3438
e7fd2885
WB
3439 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3440 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3441
4ec93edb
YH
3442 /* Disable soft irqs for various locks below. Also
3443 * stops preemption for RCU.
1da177e4 3444 */
4ec93edb 3445 rcu_read_lock_bh();
1da177e4 3446
5bc1421e
NH
3447 skb_update_prio(skb);
3448
1f211a1b
DB
3449 qdisc_pkt_len_init(skb);
3450#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3451 skb->tc_at_ingress = 0;
1f211a1b
DB
3452# ifdef CONFIG_NET_EGRESS
3453 if (static_key_false(&egress_needed)) {
3454 skb = sch_handle_egress(skb, &rc, dev);
3455 if (!skb)
3456 goto out;
3457 }
3458# endif
3459#endif
02875878
ED
3460 /* If device/qdisc don't need skb->dst, release it right now while
3461 * its hot in this cpu cache.
3462 */
3463 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3464 skb_dst_drop(skb);
3465 else
3466 skb_dst_force(skb);
3467
f663dd9a 3468 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3469 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3470
cf66ba58 3471 trace_net_dev_queue(skb);
1da177e4 3472 if (q->enqueue) {
bbd8a0d3 3473 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3474 goto out;
1da177e4
LT
3475 }
3476
3477 /* The device has no queue. Common case for software devices:
eb13da1a 3478 * loopback, all the sorts of tunnels...
1da177e4 3479
eb13da1a 3480 * Really, it is unlikely that netif_tx_lock protection is necessary
3481 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3482 * counters.)
3483 * However, it is possible, that they rely on protection
3484 * made by us here.
1da177e4 3485
eb13da1a 3486 * Check this and shot the lock. It is not prone from deadlocks.
3487 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3488 */
3489 if (dev->flags & IFF_UP) {
3490 int cpu = smp_processor_id(); /* ok because BHs are off */
3491
c773e847 3492 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3493 if (unlikely(__this_cpu_read(xmit_recursion) >
3494 XMIT_RECURSION_LIMIT))
745e20f1
ED
3495 goto recursion_alert;
3496
1f59533f
JDB
3497 skb = validate_xmit_skb(skb, dev);
3498 if (!skb)
d21fd63e 3499 goto out;
1f59533f 3500
c773e847 3501 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3502
73466498 3503 if (!netif_xmit_stopped(txq)) {
745e20f1 3504 __this_cpu_inc(xmit_recursion);
ce93718f 3505 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3506 __this_cpu_dec(xmit_recursion);
572a9d7b 3507 if (dev_xmit_complete(rc)) {
c773e847 3508 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3509 goto out;
3510 }
3511 }
c773e847 3512 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3513 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3514 dev->name);
1da177e4
LT
3515 } else {
3516 /* Recursion is detected! It is possible,
745e20f1
ED
3517 * unfortunately
3518 */
3519recursion_alert:
e87cc472
JP
3520 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3521 dev->name);
1da177e4
LT
3522 }
3523 }
3524
3525 rc = -ENETDOWN;
d4828d85 3526 rcu_read_unlock_bh();
1da177e4 3527
015f0688 3528 atomic_long_inc(&dev->tx_dropped);
1f59533f 3529 kfree_skb_list(skb);
1da177e4
LT
3530 return rc;
3531out:
d4828d85 3532 rcu_read_unlock_bh();
1da177e4
LT
3533 return rc;
3534}
f663dd9a 3535
2b4aa3ce 3536int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3537{
3538 return __dev_queue_xmit(skb, NULL);
3539}
2b4aa3ce 3540EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3541
f663dd9a
JW
3542int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3543{
3544 return __dev_queue_xmit(skb, accel_priv);
3545}
3546EXPORT_SYMBOL(dev_queue_xmit_accel);
3547
1da177e4 3548
eb13da1a 3549/*************************************************************************
3550 * Receiver routines
3551 *************************************************************************/
1da177e4 3552
6b2bedc3 3553int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3554EXPORT_SYMBOL(netdev_max_backlog);
3555
3b098e2d 3556int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3557int netdev_budget __read_mostly = 300;
7acf8a1e 3558unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3559int weight_p __read_mostly = 64; /* old backlog weight */
3560int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3561int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3562int dev_rx_weight __read_mostly = 64;
3563int dev_tx_weight __read_mostly = 64;
1da177e4 3564
eecfd7c4
ED
3565/* Called with irq disabled */
3566static inline void ____napi_schedule(struct softnet_data *sd,
3567 struct napi_struct *napi)
3568{
3569 list_add_tail(&napi->poll_list, &sd->poll_list);
3570 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3571}
3572
bfb564e7
KK
3573#ifdef CONFIG_RPS
3574
3575/* One global table that all flow-based protocols share. */
6e3f7faf 3576struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3577EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3578u32 rps_cpu_mask __read_mostly;
3579EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3580
c5905afb 3581struct static_key rps_needed __read_mostly;
3df97ba8 3582EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3583struct static_key rfs_needed __read_mostly;
3584EXPORT_SYMBOL(rfs_needed);
adc9300e 3585
c445477d
BH
3586static struct rps_dev_flow *
3587set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3588 struct rps_dev_flow *rflow, u16 next_cpu)
3589{
a31196b0 3590 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3591#ifdef CONFIG_RFS_ACCEL
3592 struct netdev_rx_queue *rxqueue;
3593 struct rps_dev_flow_table *flow_table;
3594 struct rps_dev_flow *old_rflow;
3595 u32 flow_id;
3596 u16 rxq_index;
3597 int rc;
3598
3599 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3600 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3601 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3602 goto out;
3603 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3604 if (rxq_index == skb_get_rx_queue(skb))
3605 goto out;
3606
3607 rxqueue = dev->_rx + rxq_index;
3608 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3609 if (!flow_table)
3610 goto out;
61b905da 3611 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3612 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3613 rxq_index, flow_id);
3614 if (rc < 0)
3615 goto out;
3616 old_rflow = rflow;
3617 rflow = &flow_table->flows[flow_id];
c445477d
BH
3618 rflow->filter = rc;
3619 if (old_rflow->filter == rflow->filter)
3620 old_rflow->filter = RPS_NO_FILTER;
3621 out:
3622#endif
3623 rflow->last_qtail =
09994d1b 3624 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3625 }
3626
09994d1b 3627 rflow->cpu = next_cpu;
c445477d
BH
3628 return rflow;
3629}
3630
bfb564e7
KK
3631/*
3632 * get_rps_cpu is called from netif_receive_skb and returns the target
3633 * CPU from the RPS map of the receiving queue for a given skb.
3634 * rcu_read_lock must be held on entry.
3635 */
3636static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3637 struct rps_dev_flow **rflowp)
3638{
567e4b79
ED
3639 const struct rps_sock_flow_table *sock_flow_table;
3640 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3641 struct rps_dev_flow_table *flow_table;
567e4b79 3642 struct rps_map *map;
bfb564e7 3643 int cpu = -1;
567e4b79 3644 u32 tcpu;
61b905da 3645 u32 hash;
bfb564e7
KK
3646
3647 if (skb_rx_queue_recorded(skb)) {
3648 u16 index = skb_get_rx_queue(skb);
567e4b79 3649
62fe0b40
BH
3650 if (unlikely(index >= dev->real_num_rx_queues)) {
3651 WARN_ONCE(dev->real_num_rx_queues > 1,
3652 "%s received packet on queue %u, but number "
3653 "of RX queues is %u\n",
3654 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3655 goto done;
3656 }
567e4b79
ED
3657 rxqueue += index;
3658 }
bfb564e7 3659
567e4b79
ED
3660 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3661
3662 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3663 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3664 if (!flow_table && !map)
bfb564e7
KK
3665 goto done;
3666
2d47b459 3667 skb_reset_network_header(skb);
61b905da
TH
3668 hash = skb_get_hash(skb);
3669 if (!hash)
bfb564e7
KK
3670 goto done;
3671
fec5e652
TH
3672 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3673 if (flow_table && sock_flow_table) {
fec5e652 3674 struct rps_dev_flow *rflow;
567e4b79
ED
3675 u32 next_cpu;
3676 u32 ident;
3677
3678 /* First check into global flow table if there is a match */
3679 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3680 if ((ident ^ hash) & ~rps_cpu_mask)
3681 goto try_rps;
fec5e652 3682
567e4b79
ED
3683 next_cpu = ident & rps_cpu_mask;
3684
3685 /* OK, now we know there is a match,
3686 * we can look at the local (per receive queue) flow table
3687 */
61b905da 3688 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3689 tcpu = rflow->cpu;
3690
fec5e652
TH
3691 /*
3692 * If the desired CPU (where last recvmsg was done) is
3693 * different from current CPU (one in the rx-queue flow
3694 * table entry), switch if one of the following holds:
a31196b0 3695 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3696 * - Current CPU is offline.
3697 * - The current CPU's queue tail has advanced beyond the
3698 * last packet that was enqueued using this table entry.
3699 * This guarantees that all previous packets for the flow
3700 * have been dequeued, thus preserving in order delivery.
3701 */
3702 if (unlikely(tcpu != next_cpu) &&
a31196b0 3703 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3704 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3705 rflow->last_qtail)) >= 0)) {
3706 tcpu = next_cpu;
c445477d 3707 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3708 }
c445477d 3709
a31196b0 3710 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3711 *rflowp = rflow;
3712 cpu = tcpu;
3713 goto done;
3714 }
3715 }
3716
567e4b79
ED
3717try_rps:
3718
0a9627f2 3719 if (map) {
8fc54f68 3720 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3721 if (cpu_online(tcpu)) {
3722 cpu = tcpu;
3723 goto done;
3724 }
3725 }
3726
3727done:
0a9627f2
TH
3728 return cpu;
3729}
3730
c445477d
BH
3731#ifdef CONFIG_RFS_ACCEL
3732
3733/**
3734 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3735 * @dev: Device on which the filter was set
3736 * @rxq_index: RX queue index
3737 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3738 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3739 *
3740 * Drivers that implement ndo_rx_flow_steer() should periodically call
3741 * this function for each installed filter and remove the filters for
3742 * which it returns %true.
3743 */
3744bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3745 u32 flow_id, u16 filter_id)
3746{
3747 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3748 struct rps_dev_flow_table *flow_table;
3749 struct rps_dev_flow *rflow;
3750 bool expire = true;
a31196b0 3751 unsigned int cpu;
c445477d
BH
3752
3753 rcu_read_lock();
3754 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3755 if (flow_table && flow_id <= flow_table->mask) {
3756 rflow = &flow_table->flows[flow_id];
3757 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3758 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3759 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3760 rflow->last_qtail) <
3761 (int)(10 * flow_table->mask)))
3762 expire = false;
3763 }
3764 rcu_read_unlock();
3765 return expire;
3766}
3767EXPORT_SYMBOL(rps_may_expire_flow);
3768
3769#endif /* CONFIG_RFS_ACCEL */
3770
0a9627f2 3771/* Called from hardirq (IPI) context */
e36fa2f7 3772static void rps_trigger_softirq(void *data)
0a9627f2 3773{
e36fa2f7
ED
3774 struct softnet_data *sd = data;
3775
eecfd7c4 3776 ____napi_schedule(sd, &sd->backlog);
dee42870 3777 sd->received_rps++;
0a9627f2 3778}
e36fa2f7 3779
fec5e652 3780#endif /* CONFIG_RPS */
0a9627f2 3781
e36fa2f7
ED
3782/*
3783 * Check if this softnet_data structure is another cpu one
3784 * If yes, queue it to our IPI list and return 1
3785 * If no, return 0
3786 */
3787static int rps_ipi_queued(struct softnet_data *sd)
3788{
3789#ifdef CONFIG_RPS
903ceff7 3790 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3791
3792 if (sd != mysd) {
3793 sd->rps_ipi_next = mysd->rps_ipi_list;
3794 mysd->rps_ipi_list = sd;
3795
3796 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3797 return 1;
3798 }
3799#endif /* CONFIG_RPS */
3800 return 0;
3801}
3802
99bbc707
WB
3803#ifdef CONFIG_NET_FLOW_LIMIT
3804int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3805#endif
3806
3807static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3808{
3809#ifdef CONFIG_NET_FLOW_LIMIT
3810 struct sd_flow_limit *fl;
3811 struct softnet_data *sd;
3812 unsigned int old_flow, new_flow;
3813
3814 if (qlen < (netdev_max_backlog >> 1))
3815 return false;
3816
903ceff7 3817 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3818
3819 rcu_read_lock();
3820 fl = rcu_dereference(sd->flow_limit);
3821 if (fl) {
3958afa1 3822 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3823 old_flow = fl->history[fl->history_head];
3824 fl->history[fl->history_head] = new_flow;
3825
3826 fl->history_head++;
3827 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3828
3829 if (likely(fl->buckets[old_flow]))
3830 fl->buckets[old_flow]--;
3831
3832 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3833 fl->count++;
3834 rcu_read_unlock();
3835 return true;
3836 }
3837 }
3838 rcu_read_unlock();
3839#endif
3840 return false;
3841}
3842
0a9627f2
TH
3843/*
3844 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3845 * queue (may be a remote CPU queue).
3846 */
fec5e652
TH
3847static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3848 unsigned int *qtail)
0a9627f2 3849{
e36fa2f7 3850 struct softnet_data *sd;
0a9627f2 3851 unsigned long flags;
99bbc707 3852 unsigned int qlen;
0a9627f2 3853
e36fa2f7 3854 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3855
3856 local_irq_save(flags);
0a9627f2 3857
e36fa2f7 3858 rps_lock(sd);
e9e4dd32
JA
3859 if (!netif_running(skb->dev))
3860 goto drop;
99bbc707
WB
3861 qlen = skb_queue_len(&sd->input_pkt_queue);
3862 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3863 if (qlen) {
0a9627f2 3864enqueue:
e36fa2f7 3865 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3866 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3867 rps_unlock(sd);
152102c7 3868 local_irq_restore(flags);
0a9627f2
TH
3869 return NET_RX_SUCCESS;
3870 }
3871
ebda37c2
ED
3872 /* Schedule NAPI for backlog device
3873 * We can use non atomic operation since we own the queue lock
3874 */
3875 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3876 if (!rps_ipi_queued(sd))
eecfd7c4 3877 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3878 }
3879 goto enqueue;
3880 }
3881
e9e4dd32 3882drop:
dee42870 3883 sd->dropped++;
e36fa2f7 3884 rps_unlock(sd);
0a9627f2 3885
0a9627f2
TH
3886 local_irq_restore(flags);
3887
caf586e5 3888 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3889 kfree_skb(skb);
3890 return NET_RX_DROP;
3891}
1da177e4 3892
d4455169
JF
3893static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3894 struct bpf_prog *xdp_prog)
3895{
de8f3a83 3896 u32 metalen, act = XDP_DROP;
d4455169 3897 struct xdp_buff xdp;
d4455169
JF
3898 void *orig_data;
3899 int hlen, off;
3900 u32 mac_len;
3901
3902 /* Reinjected packets coming from act_mirred or similar should
3903 * not get XDP generic processing.
3904 */
3905 if (skb_cloned(skb))
3906 return XDP_PASS;
3907
de8f3a83
DB
3908 /* XDP packets must be linear and must have sufficient headroom
3909 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3910 * native XDP provides, thus we need to do it here as well.
3911 */
3912 if (skb_is_nonlinear(skb) ||
3913 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3914 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3915 int troom = skb->tail + skb->data_len - skb->end;
3916
3917 /* In case we have to go down the path and also linearize,
3918 * then lets do the pskb_expand_head() work just once here.
3919 */
3920 if (pskb_expand_head(skb,
3921 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3922 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3923 goto do_drop;
3924 if (troom > 0 && __skb_linearize(skb))
3925 goto do_drop;
3926 }
d4455169
JF
3927
3928 /* The XDP program wants to see the packet starting at the MAC
3929 * header.
3930 */
3931 mac_len = skb->data - skb_mac_header(skb);
3932 hlen = skb_headlen(skb) + mac_len;
3933 xdp.data = skb->data - mac_len;
de8f3a83 3934 xdp.data_meta = xdp.data;
d4455169
JF
3935 xdp.data_end = xdp.data + hlen;
3936 xdp.data_hard_start = skb->data - skb_headroom(skb);
3937 orig_data = xdp.data;
3938
3939 act = bpf_prog_run_xdp(xdp_prog, &xdp);
3940
3941 off = xdp.data - orig_data;
3942 if (off > 0)
3943 __skb_pull(skb, off);
3944 else if (off < 0)
3945 __skb_push(skb, -off);
92dd5452 3946 skb->mac_header += off;
d4455169
JF
3947
3948 switch (act) {
6103aa96 3949 case XDP_REDIRECT:
d4455169
JF
3950 case XDP_TX:
3951 __skb_push(skb, mac_len);
de8f3a83 3952 break;
d4455169 3953 case XDP_PASS:
de8f3a83
DB
3954 metalen = xdp.data - xdp.data_meta;
3955 if (metalen)
3956 skb_metadata_set(skb, metalen);
d4455169 3957 break;
d4455169
JF
3958 default:
3959 bpf_warn_invalid_xdp_action(act);
3960 /* fall through */
3961 case XDP_ABORTED:
3962 trace_xdp_exception(skb->dev, xdp_prog, act);
3963 /* fall through */
3964 case XDP_DROP:
3965 do_drop:
3966 kfree_skb(skb);
3967 break;
3968 }
3969
3970 return act;
3971}
3972
3973/* When doing generic XDP we have to bypass the qdisc layer and the
3974 * network taps in order to match in-driver-XDP behavior.
3975 */
7c497478 3976void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
3977{
3978 struct net_device *dev = skb->dev;
3979 struct netdev_queue *txq;
3980 bool free_skb = true;
3981 int cpu, rc;
3982
3983 txq = netdev_pick_tx(dev, skb, NULL);
3984 cpu = smp_processor_id();
3985 HARD_TX_LOCK(dev, txq, cpu);
3986 if (!netif_xmit_stopped(txq)) {
3987 rc = netdev_start_xmit(skb, dev, txq, 0);
3988 if (dev_xmit_complete(rc))
3989 free_skb = false;
3990 }
3991 HARD_TX_UNLOCK(dev, txq);
3992 if (free_skb) {
3993 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3994 kfree_skb(skb);
3995 }
3996}
7c497478 3997EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169
JF
3998
3999static struct static_key generic_xdp_needed __read_mostly;
4000
7c497478 4001int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4002{
d4455169
JF
4003 if (xdp_prog) {
4004 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
6103aa96 4005 int err;
d4455169
JF
4006
4007 if (act != XDP_PASS) {
6103aa96
JF
4008 switch (act) {
4009 case XDP_REDIRECT:
2facaad6
JDB
4010 err = xdp_do_generic_redirect(skb->dev, skb,
4011 xdp_prog);
6103aa96
JF
4012 if (err)
4013 goto out_redir;
4014 /* fallthru to submit skb */
4015 case XDP_TX:
d4455169 4016 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4017 break;
4018 }
d4455169
JF
4019 return XDP_DROP;
4020 }
4021 }
4022 return XDP_PASS;
6103aa96 4023out_redir:
6103aa96
JF
4024 kfree_skb(skb);
4025 return XDP_DROP;
d4455169 4026}
7c497478 4027EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4028
ae78dbfa 4029static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4030{
b0e28f1e 4031 int ret;
1da177e4 4032
588f0330 4033 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4034
cf66ba58 4035 trace_netif_rx(skb);
d4455169
JF
4036
4037 if (static_key_false(&generic_xdp_needed)) {
bbbe211c
JF
4038 int ret;
4039
4040 preempt_disable();
4041 rcu_read_lock();
4042 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4043 rcu_read_unlock();
4044 preempt_enable();
d4455169 4045
6103aa96
JF
4046 /* Consider XDP consuming the packet a success from
4047 * the netdev point of view we do not want to count
4048 * this as an error.
4049 */
d4455169 4050 if (ret != XDP_PASS)
6103aa96 4051 return NET_RX_SUCCESS;
d4455169
JF
4052 }
4053
df334545 4054#ifdef CONFIG_RPS
c5905afb 4055 if (static_key_false(&rps_needed)) {
fec5e652 4056 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4057 int cpu;
4058
cece1945 4059 preempt_disable();
b0e28f1e 4060 rcu_read_lock();
fec5e652
TH
4061
4062 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4063 if (cpu < 0)
4064 cpu = smp_processor_id();
fec5e652
TH
4065
4066 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4067
b0e28f1e 4068 rcu_read_unlock();
cece1945 4069 preempt_enable();
adc9300e
ED
4070 } else
4071#endif
fec5e652
TH
4072 {
4073 unsigned int qtail;
f4563a75 4074
fec5e652
TH
4075 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4076 put_cpu();
4077 }
b0e28f1e 4078 return ret;
1da177e4 4079}
ae78dbfa
BH
4080
4081/**
4082 * netif_rx - post buffer to the network code
4083 * @skb: buffer to post
4084 *
4085 * This function receives a packet from a device driver and queues it for
4086 * the upper (protocol) levels to process. It always succeeds. The buffer
4087 * may be dropped during processing for congestion control or by the
4088 * protocol layers.
4089 *
4090 * return values:
4091 * NET_RX_SUCCESS (no congestion)
4092 * NET_RX_DROP (packet was dropped)
4093 *
4094 */
4095
4096int netif_rx(struct sk_buff *skb)
4097{
4098 trace_netif_rx_entry(skb);
4099
4100 return netif_rx_internal(skb);
4101}
d1b19dff 4102EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4103
4104int netif_rx_ni(struct sk_buff *skb)
4105{
4106 int err;
4107
ae78dbfa
BH
4108 trace_netif_rx_ni_entry(skb);
4109
1da177e4 4110 preempt_disable();
ae78dbfa 4111 err = netif_rx_internal(skb);
1da177e4
LT
4112 if (local_softirq_pending())
4113 do_softirq();
4114 preempt_enable();
4115
4116 return err;
4117}
1da177e4
LT
4118EXPORT_SYMBOL(netif_rx_ni);
4119
0766f788 4120static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4121{
903ceff7 4122 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4123
4124 if (sd->completion_queue) {
4125 struct sk_buff *clist;
4126
4127 local_irq_disable();
4128 clist = sd->completion_queue;
4129 sd->completion_queue = NULL;
4130 local_irq_enable();
4131
4132 while (clist) {
4133 struct sk_buff *skb = clist;
f4563a75 4134
1da177e4
LT
4135 clist = clist->next;
4136
63354797 4137 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4138 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4139 trace_consume_skb(skb);
4140 else
4141 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4142
4143 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4144 __kfree_skb(skb);
4145 else
4146 __kfree_skb_defer(skb);
1da177e4 4147 }
15fad714
JDB
4148
4149 __kfree_skb_flush();
1da177e4
LT
4150 }
4151
4152 if (sd->output_queue) {
37437bb2 4153 struct Qdisc *head;
1da177e4
LT
4154
4155 local_irq_disable();
4156 head = sd->output_queue;
4157 sd->output_queue = NULL;
a9cbd588 4158 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4159 local_irq_enable();
4160
4161 while (head) {
37437bb2
DM
4162 struct Qdisc *q = head;
4163 spinlock_t *root_lock;
4164
1da177e4
LT
4165 head = head->next_sched;
4166
5fb66229 4167 root_lock = qdisc_lock(q);
3bcb846c
ED
4168 spin_lock(root_lock);
4169 /* We need to make sure head->next_sched is read
4170 * before clearing __QDISC_STATE_SCHED
4171 */
4172 smp_mb__before_atomic();
4173 clear_bit(__QDISC_STATE_SCHED, &q->state);
4174 qdisc_run(q);
4175 spin_unlock(root_lock);
1da177e4
LT
4176 }
4177 }
4178}
4179
181402a5 4180#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4181/* This hook is defined here for ATM LANE */
4182int (*br_fdb_test_addr_hook)(struct net_device *dev,
4183 unsigned char *addr) __read_mostly;
4fb019a0 4184EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4185#endif
1da177e4 4186
1f211a1b
DB
4187static inline struct sk_buff *
4188sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4189 struct net_device *orig_dev)
f697c3e8 4190{
e7582bab 4191#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
4192 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4193 struct tcf_result cl_res;
24824a09 4194
c9e99fd0
DB
4195 /* If there's at least one ingress present somewhere (so
4196 * we get here via enabled static key), remaining devices
4197 * that are not configured with an ingress qdisc will bail
d2788d34 4198 * out here.
c9e99fd0 4199 */
d2788d34 4200 if (!cl)
4577139b 4201 return skb;
f697c3e8
HX
4202 if (*pt_prev) {
4203 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4204 *pt_prev = NULL;
1da177e4
LT
4205 }
4206
3365495c 4207 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4208 skb->tc_at_ingress = 1;
24ea591d 4209 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 4210
87d83093 4211 switch (tcf_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
4212 case TC_ACT_OK:
4213 case TC_ACT_RECLASSIFY:
4214 skb->tc_index = TC_H_MIN(cl_res.classid);
4215 break;
4216 case TC_ACT_SHOT:
24ea591d 4217 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
4218 kfree_skb(skb);
4219 return NULL;
d2788d34
DB
4220 case TC_ACT_STOLEN:
4221 case TC_ACT_QUEUED:
e25ea21f 4222 case TC_ACT_TRAP:
8a3a4c6e 4223 consume_skb(skb);
d2788d34 4224 return NULL;
27b29f63
AS
4225 case TC_ACT_REDIRECT:
4226 /* skb_mac_header check was done by cls/act_bpf, so
4227 * we can safely push the L2 header back before
4228 * redirecting to another netdev
4229 */
4230 __skb_push(skb, skb->mac_len);
4231 skb_do_redirect(skb);
4232 return NULL;
d2788d34
DB
4233 default:
4234 break;
f697c3e8 4235 }
e7582bab 4236#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4237 return skb;
4238}
1da177e4 4239
24b27fc4
MB
4240/**
4241 * netdev_is_rx_handler_busy - check if receive handler is registered
4242 * @dev: device to check
4243 *
4244 * Check if a receive handler is already registered for a given device.
4245 * Return true if there one.
4246 *
4247 * The caller must hold the rtnl_mutex.
4248 */
4249bool netdev_is_rx_handler_busy(struct net_device *dev)
4250{
4251 ASSERT_RTNL();
4252 return dev && rtnl_dereference(dev->rx_handler);
4253}
4254EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4255
ab95bfe0
JP
4256/**
4257 * netdev_rx_handler_register - register receive handler
4258 * @dev: device to register a handler for
4259 * @rx_handler: receive handler to register
93e2c32b 4260 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4261 *
e227867f 4262 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4263 * called from __netif_receive_skb. A negative errno code is returned
4264 * on a failure.
4265 *
4266 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4267 *
4268 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4269 */
4270int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4271 rx_handler_func_t *rx_handler,
4272 void *rx_handler_data)
ab95bfe0 4273{
1b7cd004 4274 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4275 return -EBUSY;
4276
00cfec37 4277 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4278 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4279 rcu_assign_pointer(dev->rx_handler, rx_handler);
4280
4281 return 0;
4282}
4283EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4284
4285/**
4286 * netdev_rx_handler_unregister - unregister receive handler
4287 * @dev: device to unregister a handler from
4288 *
166ec369 4289 * Unregister a receive handler from a device.
ab95bfe0
JP
4290 *
4291 * The caller must hold the rtnl_mutex.
4292 */
4293void netdev_rx_handler_unregister(struct net_device *dev)
4294{
4295
4296 ASSERT_RTNL();
a9b3cd7f 4297 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4298 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4299 * section has a guarantee to see a non NULL rx_handler_data
4300 * as well.
4301 */
4302 synchronize_net();
a9b3cd7f 4303 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4304}
4305EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4306
b4b9e355
MG
4307/*
4308 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4309 * the special handling of PFMEMALLOC skbs.
4310 */
4311static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4312{
4313 switch (skb->protocol) {
2b8837ae
JP
4314 case htons(ETH_P_ARP):
4315 case htons(ETH_P_IP):
4316 case htons(ETH_P_IPV6):
4317 case htons(ETH_P_8021Q):
4318 case htons(ETH_P_8021AD):
b4b9e355
MG
4319 return true;
4320 default:
4321 return false;
4322 }
4323}
4324
e687ad60
PN
4325static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4326 int *ret, struct net_device *orig_dev)
4327{
e7582bab 4328#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4329 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4330 int ingress_retval;
4331
e687ad60
PN
4332 if (*pt_prev) {
4333 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4334 *pt_prev = NULL;
4335 }
4336
2c1e2703
AC
4337 rcu_read_lock();
4338 ingress_retval = nf_hook_ingress(skb);
4339 rcu_read_unlock();
4340 return ingress_retval;
e687ad60 4341 }
e7582bab 4342#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4343 return 0;
4344}
e687ad60 4345
9754e293 4346static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4347{
4348 struct packet_type *ptype, *pt_prev;
ab95bfe0 4349 rx_handler_func_t *rx_handler;
f2ccd8fa 4350 struct net_device *orig_dev;
8a4eb573 4351 bool deliver_exact = false;
1da177e4 4352 int ret = NET_RX_DROP;
252e3346 4353 __be16 type;
1da177e4 4354
588f0330 4355 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4356
cf66ba58 4357 trace_netif_receive_skb(skb);
9b22ea56 4358
cc9bd5ce 4359 orig_dev = skb->dev;
8f903c70 4360
c1d2bbe1 4361 skb_reset_network_header(skb);
fda55eca
ED
4362 if (!skb_transport_header_was_set(skb))
4363 skb_reset_transport_header(skb);
0b5c9db1 4364 skb_reset_mac_len(skb);
1da177e4
LT
4365
4366 pt_prev = NULL;
4367
63d8ea7f 4368another_round:
b6858177 4369 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4370
4371 __this_cpu_inc(softnet_data.processed);
4372
8ad227ff
PM
4373 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4374 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4375 skb = skb_vlan_untag(skb);
bcc6d479 4376 if (unlikely(!skb))
2c17d27c 4377 goto out;
bcc6d479
JP
4378 }
4379
e7246e12
WB
4380 if (skb_skip_tc_classify(skb))
4381 goto skip_classify;
1da177e4 4382
9754e293 4383 if (pfmemalloc)
b4b9e355
MG
4384 goto skip_taps;
4385
1da177e4 4386 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4387 if (pt_prev)
4388 ret = deliver_skb(skb, pt_prev, orig_dev);
4389 pt_prev = ptype;
4390 }
4391
4392 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4393 if (pt_prev)
4394 ret = deliver_skb(skb, pt_prev, orig_dev);
4395 pt_prev = ptype;
1da177e4
LT
4396 }
4397
b4b9e355 4398skip_taps:
1cf51900 4399#ifdef CONFIG_NET_INGRESS
4577139b 4400 if (static_key_false(&ingress_needed)) {
1f211a1b 4401 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4402 if (!skb)
2c17d27c 4403 goto out;
e687ad60
PN
4404
4405 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4406 goto out;
4577139b 4407 }
1cf51900 4408#endif
a5135bcf 4409 skb_reset_tc(skb);
e7246e12 4410skip_classify:
9754e293 4411 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4412 goto drop;
4413
df8a39de 4414 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4415 if (pt_prev) {
4416 ret = deliver_skb(skb, pt_prev, orig_dev);
4417 pt_prev = NULL;
4418 }
48cc32d3 4419 if (vlan_do_receive(&skb))
2425717b
JF
4420 goto another_round;
4421 else if (unlikely(!skb))
2c17d27c 4422 goto out;
2425717b
JF
4423 }
4424
48cc32d3 4425 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4426 if (rx_handler) {
4427 if (pt_prev) {
4428 ret = deliver_skb(skb, pt_prev, orig_dev);
4429 pt_prev = NULL;
4430 }
8a4eb573
JP
4431 switch (rx_handler(&skb)) {
4432 case RX_HANDLER_CONSUMED:
3bc1b1ad 4433 ret = NET_RX_SUCCESS;
2c17d27c 4434 goto out;
8a4eb573 4435 case RX_HANDLER_ANOTHER:
63d8ea7f 4436 goto another_round;
8a4eb573
JP
4437 case RX_HANDLER_EXACT:
4438 deliver_exact = true;
4439 case RX_HANDLER_PASS:
4440 break;
4441 default:
4442 BUG();
4443 }
ab95bfe0 4444 }
1da177e4 4445
df8a39de
JP
4446 if (unlikely(skb_vlan_tag_present(skb))) {
4447 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4448 skb->pkt_type = PACKET_OTHERHOST;
4449 /* Note: we might in the future use prio bits
4450 * and set skb->priority like in vlan_do_receive()
4451 * For the time being, just ignore Priority Code Point
4452 */
4453 skb->vlan_tci = 0;
4454 }
48cc32d3 4455
7866a621
SN
4456 type = skb->protocol;
4457
63d8ea7f 4458 /* deliver only exact match when indicated */
7866a621
SN
4459 if (likely(!deliver_exact)) {
4460 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4461 &ptype_base[ntohs(type) &
4462 PTYPE_HASH_MASK]);
4463 }
1f3c8804 4464
7866a621
SN
4465 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4466 &orig_dev->ptype_specific);
4467
4468 if (unlikely(skb->dev != orig_dev)) {
4469 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4470 &skb->dev->ptype_specific);
1da177e4
LT
4471 }
4472
4473 if (pt_prev) {
1f8b977a 4474 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 4475 goto drop;
1080e512
MT
4476 else
4477 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4478 } else {
b4b9e355 4479drop:
6e7333d3
JW
4480 if (!deliver_exact)
4481 atomic_long_inc(&skb->dev->rx_dropped);
4482 else
4483 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4484 kfree_skb(skb);
4485 /* Jamal, now you will not able to escape explaining
4486 * me how you were going to use this. :-)
4487 */
4488 ret = NET_RX_DROP;
4489 }
4490
2c17d27c 4491out:
9754e293
DM
4492 return ret;
4493}
4494
4495static int __netif_receive_skb(struct sk_buff *skb)
4496{
4497 int ret;
4498
4499 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 4500 unsigned int noreclaim_flag;
9754e293
DM
4501
4502 /*
4503 * PFMEMALLOC skbs are special, they should
4504 * - be delivered to SOCK_MEMALLOC sockets only
4505 * - stay away from userspace
4506 * - have bounded memory usage
4507 *
4508 * Use PF_MEMALLOC as this saves us from propagating the allocation
4509 * context down to all allocation sites.
4510 */
f1083048 4511 noreclaim_flag = memalloc_noreclaim_save();
9754e293 4512 ret = __netif_receive_skb_core(skb, true);
f1083048 4513 memalloc_noreclaim_restore(noreclaim_flag);
9754e293
DM
4514 } else
4515 ret = __netif_receive_skb_core(skb, false);
4516
1da177e4
LT
4517 return ret;
4518}
0a9627f2 4519
b5cdae32
DM
4520static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4521{
58038695 4522 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
4523 struct bpf_prog *new = xdp->prog;
4524 int ret = 0;
4525
4526 switch (xdp->command) {
58038695 4527 case XDP_SETUP_PROG:
b5cdae32
DM
4528 rcu_assign_pointer(dev->xdp_prog, new);
4529 if (old)
4530 bpf_prog_put(old);
4531
4532 if (old && !new) {
4533 static_key_slow_dec(&generic_xdp_needed);
4534 } else if (new && !old) {
4535 static_key_slow_inc(&generic_xdp_needed);
4536 dev_disable_lro(dev);
4537 }
4538 break;
b5cdae32
DM
4539
4540 case XDP_QUERY_PROG:
58038695
MKL
4541 xdp->prog_attached = !!old;
4542 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
4543 break;
4544
4545 default:
4546 ret = -EINVAL;
4547 break;
4548 }
4549
4550 return ret;
4551}
4552
ae78dbfa 4553static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4554{
2c17d27c
JA
4555 int ret;
4556
588f0330 4557 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4558
c1f19b51
RC
4559 if (skb_defer_rx_timestamp(skb))
4560 return NET_RX_SUCCESS;
4561
b5cdae32 4562 if (static_key_false(&generic_xdp_needed)) {
bbbe211c 4563 int ret;
b5cdae32 4564
bbbe211c
JF
4565 preempt_disable();
4566 rcu_read_lock();
4567 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4568 rcu_read_unlock();
4569 preempt_enable();
4570
4571 if (ret != XDP_PASS)
d4455169 4572 return NET_RX_DROP;
b5cdae32
DM
4573 }
4574
bbbe211c 4575 rcu_read_lock();
df334545 4576#ifdef CONFIG_RPS
c5905afb 4577 if (static_key_false(&rps_needed)) {
3b098e2d 4578 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4579 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4580
3b098e2d
ED
4581 if (cpu >= 0) {
4582 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4583 rcu_read_unlock();
adc9300e 4584 return ret;
3b098e2d 4585 }
fec5e652 4586 }
1e94d72f 4587#endif
2c17d27c
JA
4588 ret = __netif_receive_skb(skb);
4589 rcu_read_unlock();
4590 return ret;
0a9627f2 4591}
ae78dbfa
BH
4592
4593/**
4594 * netif_receive_skb - process receive buffer from network
4595 * @skb: buffer to process
4596 *
4597 * netif_receive_skb() is the main receive data processing function.
4598 * It always succeeds. The buffer may be dropped during processing
4599 * for congestion control or by the protocol layers.
4600 *
4601 * This function may only be called from softirq context and interrupts
4602 * should be enabled.
4603 *
4604 * Return values (usually ignored):
4605 * NET_RX_SUCCESS: no congestion
4606 * NET_RX_DROP: packet was dropped
4607 */
04eb4489 4608int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4609{
4610 trace_netif_receive_skb_entry(skb);
4611
4612 return netif_receive_skb_internal(skb);
4613}
04eb4489 4614EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4615
41852497 4616DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4617
4618/* Network device is going away, flush any packets still pending */
4619static void flush_backlog(struct work_struct *work)
6e583ce5 4620{
6e583ce5 4621 struct sk_buff *skb, *tmp;
145dd5f9
PA
4622 struct softnet_data *sd;
4623
4624 local_bh_disable();
4625 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4626
145dd5f9 4627 local_irq_disable();
e36fa2f7 4628 rps_lock(sd);
6e7676c1 4629 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4630 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4631 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4632 kfree_skb(skb);
76cc8b13 4633 input_queue_head_incr(sd);
6e583ce5 4634 }
6e7676c1 4635 }
e36fa2f7 4636 rps_unlock(sd);
145dd5f9 4637 local_irq_enable();
6e7676c1
CG
4638
4639 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4640 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4641 __skb_unlink(skb, &sd->process_queue);
4642 kfree_skb(skb);
76cc8b13 4643 input_queue_head_incr(sd);
6e7676c1
CG
4644 }
4645 }
145dd5f9
PA
4646 local_bh_enable();
4647}
4648
41852497 4649static void flush_all_backlogs(void)
145dd5f9
PA
4650{
4651 unsigned int cpu;
4652
4653 get_online_cpus();
4654
41852497
ED
4655 for_each_online_cpu(cpu)
4656 queue_work_on(cpu, system_highpri_wq,
4657 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4658
4659 for_each_online_cpu(cpu)
41852497 4660 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4661
4662 put_online_cpus();
6e583ce5
SH
4663}
4664
d565b0a1
HX
4665static int napi_gro_complete(struct sk_buff *skb)
4666{
22061d80 4667 struct packet_offload *ptype;
d565b0a1 4668 __be16 type = skb->protocol;
22061d80 4669 struct list_head *head = &offload_base;
d565b0a1
HX
4670 int err = -ENOENT;
4671
c3c7c254
ED
4672 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4673
fc59f9a3
HX
4674 if (NAPI_GRO_CB(skb)->count == 1) {
4675 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4676 goto out;
fc59f9a3 4677 }
d565b0a1
HX
4678
4679 rcu_read_lock();
4680 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4681 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4682 continue;
4683
299603e8 4684 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4685 break;
4686 }
4687 rcu_read_unlock();
4688
4689 if (err) {
4690 WARN_ON(&ptype->list == head);
4691 kfree_skb(skb);
4692 return NET_RX_SUCCESS;
4693 }
4694
4695out:
ae78dbfa 4696 return netif_receive_skb_internal(skb);
d565b0a1
HX
4697}
4698
2e71a6f8
ED
4699/* napi->gro_list contains packets ordered by age.
4700 * youngest packets at the head of it.
4701 * Complete skbs in reverse order to reduce latencies.
4702 */
4703void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4704{
2e71a6f8 4705 struct sk_buff *skb, *prev = NULL;
d565b0a1 4706
2e71a6f8
ED
4707 /* scan list and build reverse chain */
4708 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4709 skb->prev = prev;
4710 prev = skb;
4711 }
4712
4713 for (skb = prev; skb; skb = prev) {
d565b0a1 4714 skb->next = NULL;
2e71a6f8
ED
4715
4716 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4717 return;
4718
4719 prev = skb->prev;
d565b0a1 4720 napi_gro_complete(skb);
2e71a6f8 4721 napi->gro_count--;
d565b0a1
HX
4722 }
4723
4724 napi->gro_list = NULL;
4725}
86cac58b 4726EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4727
89c5fa33
ED
4728static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4729{
4730 struct sk_buff *p;
4731 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4732 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4733
4734 for (p = napi->gro_list; p; p = p->next) {
4735 unsigned long diffs;
4736
0b4cec8c
TH
4737 NAPI_GRO_CB(p)->flush = 0;
4738
4739 if (hash != skb_get_hash_raw(p)) {
4740 NAPI_GRO_CB(p)->same_flow = 0;
4741 continue;
4742 }
4743
89c5fa33
ED
4744 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4745 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4746 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 4747 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
4748 if (maclen == ETH_HLEN)
4749 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4750 skb_mac_header(skb));
89c5fa33
ED
4751 else if (!diffs)
4752 diffs = memcmp(skb_mac_header(p),
a50e233c 4753 skb_mac_header(skb),
89c5fa33
ED
4754 maclen);
4755 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4756 }
4757}
4758
299603e8
JC
4759static void skb_gro_reset_offset(struct sk_buff *skb)
4760{
4761 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4762 const skb_frag_t *frag0 = &pinfo->frags[0];
4763
4764 NAPI_GRO_CB(skb)->data_offset = 0;
4765 NAPI_GRO_CB(skb)->frag0 = NULL;
4766 NAPI_GRO_CB(skb)->frag0_len = 0;
4767
4768 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4769 pinfo->nr_frags &&
4770 !PageHighMem(skb_frag_page(frag0))) {
4771 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4772 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4773 skb_frag_size(frag0),
4774 skb->end - skb->tail);
89c5fa33
ED
4775 }
4776}
4777
a50e233c
ED
4778static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4779{
4780 struct skb_shared_info *pinfo = skb_shinfo(skb);
4781
4782 BUG_ON(skb->end - skb->tail < grow);
4783
4784 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4785
4786 skb->data_len -= grow;
4787 skb->tail += grow;
4788
4789 pinfo->frags[0].page_offset += grow;
4790 skb_frag_size_sub(&pinfo->frags[0], grow);
4791
4792 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4793 skb_frag_unref(skb, 0);
4794 memmove(pinfo->frags, pinfo->frags + 1,
4795 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4796 }
4797}
4798
bb728820 4799static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4800{
4801 struct sk_buff **pp = NULL;
22061d80 4802 struct packet_offload *ptype;
d565b0a1 4803 __be16 type = skb->protocol;
22061d80 4804 struct list_head *head = &offload_base;
0da2afd5 4805 int same_flow;
5b252f0c 4806 enum gro_result ret;
a50e233c 4807 int grow;
d565b0a1 4808
b5cdae32 4809 if (netif_elide_gro(skb->dev))
d565b0a1
HX
4810 goto normal;
4811
89c5fa33
ED
4812 gro_list_prepare(napi, skb);
4813
d565b0a1
HX
4814 rcu_read_lock();
4815 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4816 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4817 continue;
4818
86911732 4819 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4820 skb_reset_mac_len(skb);
d565b0a1 4821 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4822 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4823 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4824 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4825 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4826 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4827 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4828 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4829
662880f4
TH
4830 /* Setup for GRO checksum validation */
4831 switch (skb->ip_summed) {
4832 case CHECKSUM_COMPLETE:
4833 NAPI_GRO_CB(skb)->csum = skb->csum;
4834 NAPI_GRO_CB(skb)->csum_valid = 1;
4835 NAPI_GRO_CB(skb)->csum_cnt = 0;
4836 break;
4837 case CHECKSUM_UNNECESSARY:
4838 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4839 NAPI_GRO_CB(skb)->csum_valid = 0;
4840 break;
4841 default:
4842 NAPI_GRO_CB(skb)->csum_cnt = 0;
4843 NAPI_GRO_CB(skb)->csum_valid = 0;
4844 }
d565b0a1 4845
f191a1d1 4846 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4847 break;
4848 }
4849 rcu_read_unlock();
4850
4851 if (&ptype->list == head)
4852 goto normal;
4853
25393d3f
SK
4854 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4855 ret = GRO_CONSUMED;
4856 goto ok;
4857 }
4858
0da2afd5 4859 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4860 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4861
d565b0a1
HX
4862 if (pp) {
4863 struct sk_buff *nskb = *pp;
4864
4865 *pp = nskb->next;
4866 nskb->next = NULL;
4867 napi_gro_complete(nskb);
4ae5544f 4868 napi->gro_count--;
d565b0a1
HX
4869 }
4870
0da2afd5 4871 if (same_flow)
d565b0a1
HX
4872 goto ok;
4873
600adc18 4874 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4875 goto normal;
d565b0a1 4876
600adc18
ED
4877 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4878 struct sk_buff *nskb = napi->gro_list;
4879
4880 /* locate the end of the list to select the 'oldest' flow */
4881 while (nskb->next) {
4882 pp = &nskb->next;
4883 nskb = *pp;
4884 }
4885 *pp = NULL;
4886 nskb->next = NULL;
4887 napi_gro_complete(nskb);
4888 } else {
4889 napi->gro_count++;
4890 }
d565b0a1 4891 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4892 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4893 NAPI_GRO_CB(skb)->last = skb;
86911732 4894 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4895 skb->next = napi->gro_list;
4896 napi->gro_list = skb;
5d0d9be8 4897 ret = GRO_HELD;
d565b0a1 4898
ad0f9904 4899pull:
a50e233c
ED
4900 grow = skb_gro_offset(skb) - skb_headlen(skb);
4901 if (grow > 0)
4902 gro_pull_from_frag0(skb, grow);
d565b0a1 4903ok:
5d0d9be8 4904 return ret;
d565b0a1
HX
4905
4906normal:
ad0f9904
HX
4907 ret = GRO_NORMAL;
4908 goto pull;
5d38a079 4909}
96e93eab 4910
bf5a755f
JC
4911struct packet_offload *gro_find_receive_by_type(__be16 type)
4912{
4913 struct list_head *offload_head = &offload_base;
4914 struct packet_offload *ptype;
4915
4916 list_for_each_entry_rcu(ptype, offload_head, list) {
4917 if (ptype->type != type || !ptype->callbacks.gro_receive)
4918 continue;
4919 return ptype;
4920 }
4921 return NULL;
4922}
e27a2f83 4923EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4924
4925struct packet_offload *gro_find_complete_by_type(__be16 type)
4926{
4927 struct list_head *offload_head = &offload_base;
4928 struct packet_offload *ptype;
4929
4930 list_for_each_entry_rcu(ptype, offload_head, list) {
4931 if (ptype->type != type || !ptype->callbacks.gro_complete)
4932 continue;
4933 return ptype;
4934 }
4935 return NULL;
4936}
e27a2f83 4937EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4938
e44699d2
MK
4939static void napi_skb_free_stolen_head(struct sk_buff *skb)
4940{
4941 skb_dst_drop(skb);
4942 secpath_reset(skb);
4943 kmem_cache_free(skbuff_head_cache, skb);
4944}
4945
bb728820 4946static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4947{
5d0d9be8
HX
4948 switch (ret) {
4949 case GRO_NORMAL:
ae78dbfa 4950 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4951 ret = GRO_DROP;
4952 break;
5d38a079 4953
5d0d9be8 4954 case GRO_DROP:
5d38a079
HX
4955 kfree_skb(skb);
4956 break;
5b252f0c 4957
daa86548 4958 case GRO_MERGED_FREE:
e44699d2
MK
4959 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4960 napi_skb_free_stolen_head(skb);
4961 else
d7e8883c 4962 __kfree_skb(skb);
daa86548
ED
4963 break;
4964
5b252f0c
BH
4965 case GRO_HELD:
4966 case GRO_MERGED:
25393d3f 4967 case GRO_CONSUMED:
5b252f0c 4968 break;
5d38a079
HX
4969 }
4970
c7c4b3b6 4971 return ret;
5d0d9be8 4972}
5d0d9be8 4973
c7c4b3b6 4974gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4975{
93f93a44 4976 skb_mark_napi_id(skb, napi);
ae78dbfa 4977 trace_napi_gro_receive_entry(skb);
86911732 4978
a50e233c
ED
4979 skb_gro_reset_offset(skb);
4980
89c5fa33 4981 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4982}
4983EXPORT_SYMBOL(napi_gro_receive);
4984
d0c2b0d2 4985static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4986{
93a35f59
ED
4987 if (unlikely(skb->pfmemalloc)) {
4988 consume_skb(skb);
4989 return;
4990 }
96e93eab 4991 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4992 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4993 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4994 skb->vlan_tci = 0;
66c46d74 4995 skb->dev = napi->dev;
6d152e23 4996 skb->skb_iif = 0;
c3caf119
JC
4997 skb->encapsulation = 0;
4998 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4999 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 5000 secpath_reset(skb);
96e93eab
HX
5001
5002 napi->skb = skb;
5003}
96e93eab 5004
76620aaf 5005struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5006{
5d38a079 5007 struct sk_buff *skb = napi->skb;
5d38a079
HX
5008
5009 if (!skb) {
fd11a83d 5010 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5011 if (skb) {
5012 napi->skb = skb;
5013 skb_mark_napi_id(skb, napi);
5014 }
80595d59 5015 }
96e93eab
HX
5016 return skb;
5017}
76620aaf 5018EXPORT_SYMBOL(napi_get_frags);
96e93eab 5019
a50e233c
ED
5020static gro_result_t napi_frags_finish(struct napi_struct *napi,
5021 struct sk_buff *skb,
5022 gro_result_t ret)
96e93eab 5023{
5d0d9be8
HX
5024 switch (ret) {
5025 case GRO_NORMAL:
a50e233c
ED
5026 case GRO_HELD:
5027 __skb_push(skb, ETH_HLEN);
5028 skb->protocol = eth_type_trans(skb, skb->dev);
5029 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 5030 ret = GRO_DROP;
86911732 5031 break;
5d38a079 5032
5d0d9be8 5033 case GRO_DROP:
5d0d9be8
HX
5034 napi_reuse_skb(napi, skb);
5035 break;
5b252f0c 5036
e44699d2
MK
5037 case GRO_MERGED_FREE:
5038 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5039 napi_skb_free_stolen_head(skb);
5040 else
5041 napi_reuse_skb(napi, skb);
5042 break;
5043
5b252f0c 5044 case GRO_MERGED:
25393d3f 5045 case GRO_CONSUMED:
5b252f0c 5046 break;
5d0d9be8 5047 }
5d38a079 5048
c7c4b3b6 5049 return ret;
5d38a079 5050}
5d0d9be8 5051
a50e233c
ED
5052/* Upper GRO stack assumes network header starts at gro_offset=0
5053 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5054 * We copy ethernet header into skb->data to have a common layout.
5055 */
4adb9c4a 5056static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5057{
5058 struct sk_buff *skb = napi->skb;
a50e233c
ED
5059 const struct ethhdr *eth;
5060 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5061
5062 napi->skb = NULL;
5063
a50e233c
ED
5064 skb_reset_mac_header(skb);
5065 skb_gro_reset_offset(skb);
5066
5067 eth = skb_gro_header_fast(skb, 0);
5068 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5069 eth = skb_gro_header_slow(skb, hlen, 0);
5070 if (unlikely(!eth)) {
4da46ceb
AC
5071 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5072 __func__, napi->dev->name);
a50e233c
ED
5073 napi_reuse_skb(napi, skb);
5074 return NULL;
5075 }
5076 } else {
5077 gro_pull_from_frag0(skb, hlen);
5078 NAPI_GRO_CB(skb)->frag0 += hlen;
5079 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5080 }
a50e233c
ED
5081 __skb_pull(skb, hlen);
5082
5083 /*
5084 * This works because the only protocols we care about don't require
5085 * special handling.
5086 * We'll fix it up properly in napi_frags_finish()
5087 */
5088 skb->protocol = eth->h_proto;
76620aaf 5089
76620aaf
HX
5090 return skb;
5091}
76620aaf 5092
c7c4b3b6 5093gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5094{
76620aaf 5095 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5096
5097 if (!skb)
c7c4b3b6 5098 return GRO_DROP;
5d0d9be8 5099
ae78dbfa
BH
5100 trace_napi_gro_frags_entry(skb);
5101
89c5fa33 5102 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 5103}
5d38a079
HX
5104EXPORT_SYMBOL(napi_gro_frags);
5105
573e8fca
TH
5106/* Compute the checksum from gro_offset and return the folded value
5107 * after adding in any pseudo checksum.
5108 */
5109__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5110{
5111 __wsum wsum;
5112 __sum16 sum;
5113
5114 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5115
5116 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5117 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5118 if (likely(!sum)) {
5119 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5120 !skb->csum_complete_sw)
5121 netdev_rx_csum_fault(skb->dev);
5122 }
5123
5124 NAPI_GRO_CB(skb)->csum = wsum;
5125 NAPI_GRO_CB(skb)->csum_valid = 1;
5126
5127 return sum;
5128}
5129EXPORT_SYMBOL(__skb_gro_checksum_complete);
5130
773fc8f6 5131static void net_rps_send_ipi(struct softnet_data *remsd)
5132{
5133#ifdef CONFIG_RPS
5134 while (remsd) {
5135 struct softnet_data *next = remsd->rps_ipi_next;
5136
5137 if (cpu_online(remsd->cpu))
5138 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5139 remsd = next;
5140 }
5141#endif
5142}
5143
e326bed2 5144/*
855abcf0 5145 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5146 * Note: called with local irq disabled, but exits with local irq enabled.
5147 */
5148static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5149{
5150#ifdef CONFIG_RPS
5151 struct softnet_data *remsd = sd->rps_ipi_list;
5152
5153 if (remsd) {
5154 sd->rps_ipi_list = NULL;
5155
5156 local_irq_enable();
5157
5158 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5159 net_rps_send_ipi(remsd);
e326bed2
ED
5160 } else
5161#endif
5162 local_irq_enable();
5163}
5164
d75b1ade
ED
5165static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5166{
5167#ifdef CONFIG_RPS
5168 return sd->rps_ipi_list != NULL;
5169#else
5170 return false;
5171#endif
5172}
5173
bea3348e 5174static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5175{
eecfd7c4 5176 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5177 bool again = true;
5178 int work = 0;
1da177e4 5179
e326bed2
ED
5180 /* Check if we have pending ipi, its better to send them now,
5181 * not waiting net_rx_action() end.
5182 */
d75b1ade 5183 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5184 local_irq_disable();
5185 net_rps_action_and_irq_enable(sd);
5186 }
d75b1ade 5187
3d48b53f 5188 napi->weight = dev_rx_weight;
145dd5f9 5189 while (again) {
1da177e4 5190 struct sk_buff *skb;
6e7676c1
CG
5191
5192 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5193 rcu_read_lock();
6e7676c1 5194 __netif_receive_skb(skb);
2c17d27c 5195 rcu_read_unlock();
76cc8b13 5196 input_queue_head_incr(sd);
145dd5f9 5197 if (++work >= quota)
76cc8b13 5198 return work;
145dd5f9 5199
6e7676c1 5200 }
1da177e4 5201
145dd5f9 5202 local_irq_disable();
e36fa2f7 5203 rps_lock(sd);
11ef7a89 5204 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5205 /*
5206 * Inline a custom version of __napi_complete().
5207 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5208 * and NAPI_STATE_SCHED is the only possible flag set
5209 * on backlog.
5210 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5211 * and we dont need an smp_mb() memory barrier.
5212 */
eecfd7c4 5213 napi->state = 0;
145dd5f9
PA
5214 again = false;
5215 } else {
5216 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5217 &sd->process_queue);
bea3348e 5218 }
e36fa2f7 5219 rps_unlock(sd);
145dd5f9 5220 local_irq_enable();
6e7676c1 5221 }
1da177e4 5222
bea3348e
SH
5223 return work;
5224}
1da177e4 5225
bea3348e
SH
5226/**
5227 * __napi_schedule - schedule for receive
c4ea43c5 5228 * @n: entry to schedule
bea3348e 5229 *
bc9ad166
ED
5230 * The entry's receive function will be scheduled to run.
5231 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5232 */
b5606c2d 5233void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5234{
5235 unsigned long flags;
1da177e4 5236
bea3348e 5237 local_irq_save(flags);
903ceff7 5238 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5239 local_irq_restore(flags);
1da177e4 5240}
bea3348e
SH
5241EXPORT_SYMBOL(__napi_schedule);
5242
39e6c820
ED
5243/**
5244 * napi_schedule_prep - check if napi can be scheduled
5245 * @n: napi context
5246 *
5247 * Test if NAPI routine is already running, and if not mark
5248 * it as running. This is used as a condition variable
5249 * insure only one NAPI poll instance runs. We also make
5250 * sure there is no pending NAPI disable.
5251 */
5252bool napi_schedule_prep(struct napi_struct *n)
5253{
5254 unsigned long val, new;
5255
5256 do {
5257 val = READ_ONCE(n->state);
5258 if (unlikely(val & NAPIF_STATE_DISABLE))
5259 return false;
5260 new = val | NAPIF_STATE_SCHED;
5261
5262 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5263 * This was suggested by Alexander Duyck, as compiler
5264 * emits better code than :
5265 * if (val & NAPIF_STATE_SCHED)
5266 * new |= NAPIF_STATE_MISSED;
5267 */
5268 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5269 NAPIF_STATE_MISSED;
5270 } while (cmpxchg(&n->state, val, new) != val);
5271
5272 return !(val & NAPIF_STATE_SCHED);
5273}
5274EXPORT_SYMBOL(napi_schedule_prep);
5275
bc9ad166
ED
5276/**
5277 * __napi_schedule_irqoff - schedule for receive
5278 * @n: entry to schedule
5279 *
5280 * Variant of __napi_schedule() assuming hard irqs are masked
5281 */
5282void __napi_schedule_irqoff(struct napi_struct *n)
5283{
5284 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5285}
5286EXPORT_SYMBOL(__napi_schedule_irqoff);
5287
364b6055 5288bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 5289{
39e6c820 5290 unsigned long flags, val, new;
d565b0a1
HX
5291
5292 /*
217f6974
ED
5293 * 1) Don't let napi dequeue from the cpu poll list
5294 * just in case its running on a different cpu.
5295 * 2) If we are busy polling, do nothing here, we have
5296 * the guarantee we will be called later.
d565b0a1 5297 */
217f6974
ED
5298 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5299 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 5300 return false;
d565b0a1 5301
3b47d303
ED
5302 if (n->gro_list) {
5303 unsigned long timeout = 0;
d75b1ade 5304
3b47d303
ED
5305 if (work_done)
5306 timeout = n->dev->gro_flush_timeout;
5307
5308 if (timeout)
5309 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5310 HRTIMER_MODE_REL_PINNED);
5311 else
5312 napi_gro_flush(n, false);
5313 }
02c1602e 5314 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
5315 /* If n->poll_list is not empty, we need to mask irqs */
5316 local_irq_save(flags);
02c1602e 5317 list_del_init(&n->poll_list);
d75b1ade
ED
5318 local_irq_restore(flags);
5319 }
39e6c820
ED
5320
5321 do {
5322 val = READ_ONCE(n->state);
5323
5324 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5325
5326 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5327
5328 /* If STATE_MISSED was set, leave STATE_SCHED set,
5329 * because we will call napi->poll() one more time.
5330 * This C code was suggested by Alexander Duyck to help gcc.
5331 */
5332 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5333 NAPIF_STATE_SCHED;
5334 } while (cmpxchg(&n->state, val, new) != val);
5335
5336 if (unlikely(val & NAPIF_STATE_MISSED)) {
5337 __napi_schedule(n);
5338 return false;
5339 }
5340
364b6055 5341 return true;
d565b0a1 5342}
3b47d303 5343EXPORT_SYMBOL(napi_complete_done);
d565b0a1 5344
af12fa6e 5345/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 5346static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
5347{
5348 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5349 struct napi_struct *napi;
5350
5351 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5352 if (napi->napi_id == napi_id)
5353 return napi;
5354
5355 return NULL;
5356}
02d62e86
ED
5357
5358#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 5359
ce6aea93 5360#define BUSY_POLL_BUDGET 8
217f6974
ED
5361
5362static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5363{
5364 int rc;
5365
39e6c820
ED
5366 /* Busy polling means there is a high chance device driver hard irq
5367 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5368 * set in napi_schedule_prep().
5369 * Since we are about to call napi->poll() once more, we can safely
5370 * clear NAPI_STATE_MISSED.
5371 *
5372 * Note: x86 could use a single "lock and ..." instruction
5373 * to perform these two clear_bit()
5374 */
5375 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
5376 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5377
5378 local_bh_disable();
5379
5380 /* All we really want here is to re-enable device interrupts.
5381 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5382 */
5383 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1e22391e 5384 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974
ED
5385 netpoll_poll_unlock(have_poll_lock);
5386 if (rc == BUSY_POLL_BUDGET)
5387 __napi_schedule(napi);
5388 local_bh_enable();
217f6974
ED
5389}
5390
7db6b048
SS
5391void napi_busy_loop(unsigned int napi_id,
5392 bool (*loop_end)(void *, unsigned long),
5393 void *loop_end_arg)
02d62e86 5394{
7db6b048 5395 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 5396 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 5397 void *have_poll_lock = NULL;
02d62e86 5398 struct napi_struct *napi;
217f6974
ED
5399
5400restart:
217f6974 5401 napi_poll = NULL;
02d62e86 5402
2a028ecb 5403 rcu_read_lock();
02d62e86 5404
545cd5e5 5405 napi = napi_by_id(napi_id);
02d62e86
ED
5406 if (!napi)
5407 goto out;
5408
217f6974
ED
5409 preempt_disable();
5410 for (;;) {
2b5cd0df
AD
5411 int work = 0;
5412
2a028ecb 5413 local_bh_disable();
217f6974
ED
5414 if (!napi_poll) {
5415 unsigned long val = READ_ONCE(napi->state);
5416
5417 /* If multiple threads are competing for this napi,
5418 * we avoid dirtying napi->state as much as we can.
5419 */
5420 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5421 NAPIF_STATE_IN_BUSY_POLL))
5422 goto count;
5423 if (cmpxchg(&napi->state, val,
5424 val | NAPIF_STATE_IN_BUSY_POLL |
5425 NAPIF_STATE_SCHED) != val)
5426 goto count;
5427 have_poll_lock = netpoll_poll_lock(napi);
5428 napi_poll = napi->poll;
5429 }
2b5cd0df
AD
5430 work = napi_poll(napi, BUSY_POLL_BUDGET);
5431 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 5432count:
2b5cd0df 5433 if (work > 0)
7db6b048 5434 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 5435 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 5436 local_bh_enable();
02d62e86 5437
7db6b048 5438 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 5439 break;
02d62e86 5440
217f6974
ED
5441 if (unlikely(need_resched())) {
5442 if (napi_poll)
5443 busy_poll_stop(napi, have_poll_lock);
5444 preempt_enable();
5445 rcu_read_unlock();
5446 cond_resched();
7db6b048 5447 if (loop_end(loop_end_arg, start_time))
2b5cd0df 5448 return;
217f6974
ED
5449 goto restart;
5450 }
6cdf89b1 5451 cpu_relax();
217f6974
ED
5452 }
5453 if (napi_poll)
5454 busy_poll_stop(napi, have_poll_lock);
5455 preempt_enable();
02d62e86 5456out:
2a028ecb 5457 rcu_read_unlock();
02d62e86 5458}
7db6b048 5459EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
5460
5461#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5462
149d6ad8 5463static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5464{
d64b5e85
ED
5465 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5466 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5467 return;
af12fa6e 5468
52bd2d62 5469 spin_lock(&napi_hash_lock);
af12fa6e 5470
545cd5e5 5471 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 5472 do {
545cd5e5
AD
5473 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5474 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
5475 } while (napi_by_id(napi_gen_id));
5476 napi->napi_id = napi_gen_id;
af12fa6e 5477
52bd2d62
ED
5478 hlist_add_head_rcu(&napi->napi_hash_node,
5479 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5480
52bd2d62 5481 spin_unlock(&napi_hash_lock);
af12fa6e 5482}
af12fa6e
ET
5483
5484/* Warning : caller is responsible to make sure rcu grace period
5485 * is respected before freeing memory containing @napi
5486 */
34cbe27e 5487bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5488{
34cbe27e
ED
5489 bool rcu_sync_needed = false;
5490
af12fa6e
ET
5491 spin_lock(&napi_hash_lock);
5492
34cbe27e
ED
5493 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5494 rcu_sync_needed = true;
af12fa6e 5495 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5496 }
af12fa6e 5497 spin_unlock(&napi_hash_lock);
34cbe27e 5498 return rcu_sync_needed;
af12fa6e
ET
5499}
5500EXPORT_SYMBOL_GPL(napi_hash_del);
5501
3b47d303
ED
5502static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5503{
5504 struct napi_struct *napi;
5505
5506 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
5507
5508 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5509 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5510 */
5511 if (napi->gro_list && !napi_disable_pending(napi) &&
5512 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5513 __napi_schedule_irqoff(napi);
3b47d303
ED
5514
5515 return HRTIMER_NORESTART;
5516}
5517
d565b0a1
HX
5518void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5519 int (*poll)(struct napi_struct *, int), int weight)
5520{
5521 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5522 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5523 napi->timer.function = napi_watchdog;
4ae5544f 5524 napi->gro_count = 0;
d565b0a1 5525 napi->gro_list = NULL;
5d38a079 5526 napi->skb = NULL;
d565b0a1 5527 napi->poll = poll;
82dc3c63
ED
5528 if (weight > NAPI_POLL_WEIGHT)
5529 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5530 weight, dev->name);
d565b0a1
HX
5531 napi->weight = weight;
5532 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5533 napi->dev = dev;
5d38a079 5534#ifdef CONFIG_NETPOLL
d565b0a1
HX
5535 napi->poll_owner = -1;
5536#endif
5537 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5538 napi_hash_add(napi);
d565b0a1
HX
5539}
5540EXPORT_SYMBOL(netif_napi_add);
5541
3b47d303
ED
5542void napi_disable(struct napi_struct *n)
5543{
5544 might_sleep();
5545 set_bit(NAPI_STATE_DISABLE, &n->state);
5546
5547 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5548 msleep(1);
2d8bff12
NH
5549 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5550 msleep(1);
3b47d303
ED
5551
5552 hrtimer_cancel(&n->timer);
5553
5554 clear_bit(NAPI_STATE_DISABLE, &n->state);
5555}
5556EXPORT_SYMBOL(napi_disable);
5557
93d05d4a 5558/* Must be called in process context */
d565b0a1
HX
5559void netif_napi_del(struct napi_struct *napi)
5560{
93d05d4a
ED
5561 might_sleep();
5562 if (napi_hash_del(napi))
5563 synchronize_net();
d7b06636 5564 list_del_init(&napi->dev_list);
76620aaf 5565 napi_free_frags(napi);
d565b0a1 5566
289dccbe 5567 kfree_skb_list(napi->gro_list);
d565b0a1 5568 napi->gro_list = NULL;
4ae5544f 5569 napi->gro_count = 0;
d565b0a1
HX
5570}
5571EXPORT_SYMBOL(netif_napi_del);
5572
726ce70e
HX
5573static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5574{
5575 void *have;
5576 int work, weight;
5577
5578 list_del_init(&n->poll_list);
5579
5580 have = netpoll_poll_lock(n);
5581
5582 weight = n->weight;
5583
5584 /* This NAPI_STATE_SCHED test is for avoiding a race
5585 * with netpoll's poll_napi(). Only the entity which
5586 * obtains the lock and sees NAPI_STATE_SCHED set will
5587 * actually make the ->poll() call. Therefore we avoid
5588 * accidentally calling ->poll() when NAPI is not scheduled.
5589 */
5590 work = 0;
5591 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5592 work = n->poll(n, weight);
1db19db7 5593 trace_napi_poll(n, work, weight);
726ce70e
HX
5594 }
5595
5596 WARN_ON_ONCE(work > weight);
5597
5598 if (likely(work < weight))
5599 goto out_unlock;
5600
5601 /* Drivers must not modify the NAPI state if they
5602 * consume the entire weight. In such cases this code
5603 * still "owns" the NAPI instance and therefore can
5604 * move the instance around on the list at-will.
5605 */
5606 if (unlikely(napi_disable_pending(n))) {
5607 napi_complete(n);
5608 goto out_unlock;
5609 }
5610
5611 if (n->gro_list) {
5612 /* flush too old packets
5613 * If HZ < 1000, flush all packets.
5614 */
5615 napi_gro_flush(n, HZ >= 1000);
5616 }
5617
001ce546
HX
5618 /* Some drivers may have called napi_schedule
5619 * prior to exhausting their budget.
5620 */
5621 if (unlikely(!list_empty(&n->poll_list))) {
5622 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5623 n->dev ? n->dev->name : "backlog");
5624 goto out_unlock;
5625 }
5626
726ce70e
HX
5627 list_add_tail(&n->poll_list, repoll);
5628
5629out_unlock:
5630 netpoll_poll_unlock(have);
5631
5632 return work;
5633}
5634
0766f788 5635static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5636{
903ceff7 5637 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
5638 unsigned long time_limit = jiffies +
5639 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 5640 int budget = netdev_budget;
d75b1ade
ED
5641 LIST_HEAD(list);
5642 LIST_HEAD(repoll);
53fb95d3 5643
1da177e4 5644 local_irq_disable();
d75b1ade
ED
5645 list_splice_init(&sd->poll_list, &list);
5646 local_irq_enable();
1da177e4 5647
ceb8d5bf 5648 for (;;) {
bea3348e 5649 struct napi_struct *n;
1da177e4 5650
ceb8d5bf
HX
5651 if (list_empty(&list)) {
5652 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5653 goto out;
ceb8d5bf
HX
5654 break;
5655 }
5656
6bd373eb
HX
5657 n = list_first_entry(&list, struct napi_struct, poll_list);
5658 budget -= napi_poll(n, &repoll);
5659
d75b1ade 5660 /* If softirq window is exhausted then punt.
24f8b238
SH
5661 * Allow this to run for 2 jiffies since which will allow
5662 * an average latency of 1.5/HZ.
bea3348e 5663 */
ceb8d5bf
HX
5664 if (unlikely(budget <= 0 ||
5665 time_after_eq(jiffies, time_limit))) {
5666 sd->time_squeeze++;
5667 break;
5668 }
1da177e4 5669 }
d75b1ade 5670
d75b1ade
ED
5671 local_irq_disable();
5672
5673 list_splice_tail_init(&sd->poll_list, &list);
5674 list_splice_tail(&repoll, &list);
5675 list_splice(&list, &sd->poll_list);
5676 if (!list_empty(&sd->poll_list))
5677 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5678
e326bed2 5679 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5680out:
5681 __kfree_skb_flush();
1da177e4
LT
5682}
5683
aa9d8560 5684struct netdev_adjacent {
9ff162a8 5685 struct net_device *dev;
5d261913
VF
5686
5687 /* upper master flag, there can only be one master device per list */
9ff162a8 5688 bool master;
5d261913 5689
5d261913
VF
5690 /* counter for the number of times this device was added to us */
5691 u16 ref_nr;
5692
402dae96
VF
5693 /* private field for the users */
5694 void *private;
5695
9ff162a8
JP
5696 struct list_head list;
5697 struct rcu_head rcu;
9ff162a8
JP
5698};
5699
6ea29da1 5700static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5701 struct list_head *adj_list)
9ff162a8 5702{
5d261913 5703 struct netdev_adjacent *adj;
5d261913 5704
2f268f12 5705 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5706 if (adj->dev == adj_dev)
5707 return adj;
9ff162a8
JP
5708 }
5709 return NULL;
5710}
5711
f1170fd4
DA
5712static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5713{
5714 struct net_device *dev = data;
5715
5716 return upper_dev == dev;
5717}
5718
9ff162a8
JP
5719/**
5720 * netdev_has_upper_dev - Check if device is linked to an upper device
5721 * @dev: device
5722 * @upper_dev: upper device to check
5723 *
5724 * Find out if a device is linked to specified upper device and return true
5725 * in case it is. Note that this checks only immediate upper device,
5726 * not through a complete stack of devices. The caller must hold the RTNL lock.
5727 */
5728bool netdev_has_upper_dev(struct net_device *dev,
5729 struct net_device *upper_dev)
5730{
5731 ASSERT_RTNL();
5732
f1170fd4
DA
5733 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5734 upper_dev);
9ff162a8
JP
5735}
5736EXPORT_SYMBOL(netdev_has_upper_dev);
5737
1a3f060c
DA
5738/**
5739 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5740 * @dev: device
5741 * @upper_dev: upper device to check
5742 *
5743 * Find out if a device is linked to specified upper device and return true
5744 * in case it is. Note that this checks the entire upper device chain.
5745 * The caller must hold rcu lock.
5746 */
5747
1a3f060c
DA
5748bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5749 struct net_device *upper_dev)
5750{
5751 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5752 upper_dev);
5753}
5754EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5755
9ff162a8
JP
5756/**
5757 * netdev_has_any_upper_dev - Check if device is linked to some device
5758 * @dev: device
5759 *
5760 * Find out if a device is linked to an upper device and return true in case
5761 * it is. The caller must hold the RTNL lock.
5762 */
25cc72a3 5763bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5764{
5765 ASSERT_RTNL();
5766
f1170fd4 5767 return !list_empty(&dev->adj_list.upper);
9ff162a8 5768}
25cc72a3 5769EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
5770
5771/**
5772 * netdev_master_upper_dev_get - Get master upper device
5773 * @dev: device
5774 *
5775 * Find a master upper device and return pointer to it or NULL in case
5776 * it's not there. The caller must hold the RTNL lock.
5777 */
5778struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5779{
aa9d8560 5780 struct netdev_adjacent *upper;
9ff162a8
JP
5781
5782 ASSERT_RTNL();
5783
2f268f12 5784 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5785 return NULL;
5786
2f268f12 5787 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5788 struct netdev_adjacent, list);
9ff162a8
JP
5789 if (likely(upper->master))
5790 return upper->dev;
5791 return NULL;
5792}
5793EXPORT_SYMBOL(netdev_master_upper_dev_get);
5794
0f524a80
DA
5795/**
5796 * netdev_has_any_lower_dev - Check if device is linked to some device
5797 * @dev: device
5798 *
5799 * Find out if a device is linked to a lower device and return true in case
5800 * it is. The caller must hold the RTNL lock.
5801 */
5802static bool netdev_has_any_lower_dev(struct net_device *dev)
5803{
5804 ASSERT_RTNL();
5805
5806 return !list_empty(&dev->adj_list.lower);
5807}
5808
b6ccba4c
VF
5809void *netdev_adjacent_get_private(struct list_head *adj_list)
5810{
5811 struct netdev_adjacent *adj;
5812
5813 adj = list_entry(adj_list, struct netdev_adjacent, list);
5814
5815 return adj->private;
5816}
5817EXPORT_SYMBOL(netdev_adjacent_get_private);
5818
44a40855
VY
5819/**
5820 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5821 * @dev: device
5822 * @iter: list_head ** of the current position
5823 *
5824 * Gets the next device from the dev's upper list, starting from iter
5825 * position. The caller must hold RCU read lock.
5826 */
5827struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5828 struct list_head **iter)
5829{
5830 struct netdev_adjacent *upper;
5831
5832 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5833
5834 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5835
5836 if (&upper->list == &dev->adj_list.upper)
5837 return NULL;
5838
5839 *iter = &upper->list;
5840
5841 return upper->dev;
5842}
5843EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5844
1a3f060c
DA
5845static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5846 struct list_head **iter)
5847{
5848 struct netdev_adjacent *upper;
5849
5850 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5851
5852 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5853
5854 if (&upper->list == &dev->adj_list.upper)
5855 return NULL;
5856
5857 *iter = &upper->list;
5858
5859 return upper->dev;
5860}
5861
5862int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5863 int (*fn)(struct net_device *dev,
5864 void *data),
5865 void *data)
5866{
5867 struct net_device *udev;
5868 struct list_head *iter;
5869 int ret;
5870
5871 for (iter = &dev->adj_list.upper,
5872 udev = netdev_next_upper_dev_rcu(dev, &iter);
5873 udev;
5874 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5875 /* first is the upper device itself */
5876 ret = fn(udev, data);
5877 if (ret)
5878 return ret;
5879
5880 /* then look at all of its upper devices */
5881 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5882 if (ret)
5883 return ret;
5884 }
5885
5886 return 0;
5887}
5888EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5889
31088a11
VF
5890/**
5891 * netdev_lower_get_next_private - Get the next ->private from the
5892 * lower neighbour list
5893 * @dev: device
5894 * @iter: list_head ** of the current position
5895 *
5896 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5897 * list, starting from iter position. The caller must hold either hold the
5898 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5899 * list will remain unchanged.
31088a11
VF
5900 */
5901void *netdev_lower_get_next_private(struct net_device *dev,
5902 struct list_head **iter)
5903{
5904 struct netdev_adjacent *lower;
5905
5906 lower = list_entry(*iter, struct netdev_adjacent, list);
5907
5908 if (&lower->list == &dev->adj_list.lower)
5909 return NULL;
5910
6859e7df 5911 *iter = lower->list.next;
31088a11
VF
5912
5913 return lower->private;
5914}
5915EXPORT_SYMBOL(netdev_lower_get_next_private);
5916
5917/**
5918 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5919 * lower neighbour list, RCU
5920 * variant
5921 * @dev: device
5922 * @iter: list_head ** of the current position
5923 *
5924 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5925 * list, starting from iter position. The caller must hold RCU read lock.
5926 */
5927void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5928 struct list_head **iter)
5929{
5930 struct netdev_adjacent *lower;
5931
5932 WARN_ON_ONCE(!rcu_read_lock_held());
5933
5934 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5935
5936 if (&lower->list == &dev->adj_list.lower)
5937 return NULL;
5938
6859e7df 5939 *iter = &lower->list;
31088a11
VF
5940
5941 return lower->private;
5942}
5943EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5944
4085ebe8
VY
5945/**
5946 * netdev_lower_get_next - Get the next device from the lower neighbour
5947 * list
5948 * @dev: device
5949 * @iter: list_head ** of the current position
5950 *
5951 * Gets the next netdev_adjacent from the dev's lower neighbour
5952 * list, starting from iter position. The caller must hold RTNL lock or
5953 * its own locking that guarantees that the neighbour lower
b469139e 5954 * list will remain unchanged.
4085ebe8
VY
5955 */
5956void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5957{
5958 struct netdev_adjacent *lower;
5959
cfdd28be 5960 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5961
5962 if (&lower->list == &dev->adj_list.lower)
5963 return NULL;
5964
cfdd28be 5965 *iter = lower->list.next;
4085ebe8
VY
5966
5967 return lower->dev;
5968}
5969EXPORT_SYMBOL(netdev_lower_get_next);
5970
1a3f060c
DA
5971static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5972 struct list_head **iter)
5973{
5974 struct netdev_adjacent *lower;
5975
46b5ab1a 5976 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5977
5978 if (&lower->list == &dev->adj_list.lower)
5979 return NULL;
5980
46b5ab1a 5981 *iter = &lower->list;
1a3f060c
DA
5982
5983 return lower->dev;
5984}
5985
5986int netdev_walk_all_lower_dev(struct net_device *dev,
5987 int (*fn)(struct net_device *dev,
5988 void *data),
5989 void *data)
5990{
5991 struct net_device *ldev;
5992 struct list_head *iter;
5993 int ret;
5994
5995 for (iter = &dev->adj_list.lower,
5996 ldev = netdev_next_lower_dev(dev, &iter);
5997 ldev;
5998 ldev = netdev_next_lower_dev(dev, &iter)) {
5999 /* first is the lower device itself */
6000 ret = fn(ldev, data);
6001 if (ret)
6002 return ret;
6003
6004 /* then look at all of its lower devices */
6005 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6006 if (ret)
6007 return ret;
6008 }
6009
6010 return 0;
6011}
6012EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6013
1a3f060c
DA
6014static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6015 struct list_head **iter)
6016{
6017 struct netdev_adjacent *lower;
6018
6019 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6020 if (&lower->list == &dev->adj_list.lower)
6021 return NULL;
6022
6023 *iter = &lower->list;
6024
6025 return lower->dev;
6026}
6027
6028int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6029 int (*fn)(struct net_device *dev,
6030 void *data),
6031 void *data)
6032{
6033 struct net_device *ldev;
6034 struct list_head *iter;
6035 int ret;
6036
6037 for (iter = &dev->adj_list.lower,
6038 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6039 ldev;
6040 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6041 /* first is the lower device itself */
6042 ret = fn(ldev, data);
6043 if (ret)
6044 return ret;
6045
6046 /* then look at all of its lower devices */
6047 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6048 if (ret)
6049 return ret;
6050 }
6051
6052 return 0;
6053}
6054EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6055
e001bfad 6056/**
6057 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6058 * lower neighbour list, RCU
6059 * variant
6060 * @dev: device
6061 *
6062 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6063 * list. The caller must hold RCU read lock.
6064 */
6065void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6066{
6067 struct netdev_adjacent *lower;
6068
6069 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6070 struct netdev_adjacent, list);
6071 if (lower)
6072 return lower->private;
6073 return NULL;
6074}
6075EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6076
9ff162a8
JP
6077/**
6078 * netdev_master_upper_dev_get_rcu - Get master upper device
6079 * @dev: device
6080 *
6081 * Find a master upper device and return pointer to it or NULL in case
6082 * it's not there. The caller must hold the RCU read lock.
6083 */
6084struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6085{
aa9d8560 6086 struct netdev_adjacent *upper;
9ff162a8 6087
2f268f12 6088 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 6089 struct netdev_adjacent, list);
9ff162a8
JP
6090 if (upper && likely(upper->master))
6091 return upper->dev;
6092 return NULL;
6093}
6094EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6095
0a59f3a9 6096static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
6097 struct net_device *adj_dev,
6098 struct list_head *dev_list)
6099{
6100 char linkname[IFNAMSIZ+7];
f4563a75 6101
3ee32707
VF
6102 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6103 "upper_%s" : "lower_%s", adj_dev->name);
6104 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6105 linkname);
6106}
0a59f3a9 6107static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
6108 char *name,
6109 struct list_head *dev_list)
6110{
6111 char linkname[IFNAMSIZ+7];
f4563a75 6112
3ee32707
VF
6113 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6114 "upper_%s" : "lower_%s", name);
6115 sysfs_remove_link(&(dev->dev.kobj), linkname);
6116}
6117
7ce64c79
AF
6118static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6119 struct net_device *adj_dev,
6120 struct list_head *dev_list)
6121{
6122 return (dev_list == &dev->adj_list.upper ||
6123 dev_list == &dev->adj_list.lower) &&
6124 net_eq(dev_net(dev), dev_net(adj_dev));
6125}
3ee32707 6126
5d261913
VF
6127static int __netdev_adjacent_dev_insert(struct net_device *dev,
6128 struct net_device *adj_dev,
7863c054 6129 struct list_head *dev_list,
402dae96 6130 void *private, bool master)
5d261913
VF
6131{
6132 struct netdev_adjacent *adj;
842d67a7 6133 int ret;
5d261913 6134
6ea29da1 6135 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6136
6137 if (adj) {
790510d9 6138 adj->ref_nr += 1;
67b62f98
DA
6139 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6140 dev->name, adj_dev->name, adj->ref_nr);
6141
5d261913
VF
6142 return 0;
6143 }
6144
6145 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6146 if (!adj)
6147 return -ENOMEM;
6148
6149 adj->dev = adj_dev;
6150 adj->master = master;
790510d9 6151 adj->ref_nr = 1;
402dae96 6152 adj->private = private;
5d261913 6153 dev_hold(adj_dev);
2f268f12 6154
67b62f98
DA
6155 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6156 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 6157
7ce64c79 6158 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 6159 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
6160 if (ret)
6161 goto free_adj;
6162 }
6163
7863c054 6164 /* Ensure that master link is always the first item in list. */
842d67a7
VF
6165 if (master) {
6166 ret = sysfs_create_link(&(dev->dev.kobj),
6167 &(adj_dev->dev.kobj), "master");
6168 if (ret)
5831d66e 6169 goto remove_symlinks;
842d67a7 6170
7863c054 6171 list_add_rcu(&adj->list, dev_list);
842d67a7 6172 } else {
7863c054 6173 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 6174 }
5d261913
VF
6175
6176 return 0;
842d67a7 6177
5831d66e 6178remove_symlinks:
7ce64c79 6179 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6180 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6181free_adj:
6182 kfree(adj);
974daef7 6183 dev_put(adj_dev);
842d67a7
VF
6184
6185 return ret;
5d261913
VF
6186}
6187
1d143d9f 6188static void __netdev_adjacent_dev_remove(struct net_device *dev,
6189 struct net_device *adj_dev,
93409033 6190 u16 ref_nr,
1d143d9f 6191 struct list_head *dev_list)
5d261913
VF
6192{
6193 struct netdev_adjacent *adj;
6194
67b62f98
DA
6195 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6196 dev->name, adj_dev->name, ref_nr);
6197
6ea29da1 6198 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6199
2f268f12 6200 if (!adj) {
67b62f98 6201 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 6202 dev->name, adj_dev->name);
67b62f98
DA
6203 WARN_ON(1);
6204 return;
2f268f12 6205 }
5d261913 6206
93409033 6207 if (adj->ref_nr > ref_nr) {
67b62f98
DA
6208 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6209 dev->name, adj_dev->name, ref_nr,
6210 adj->ref_nr - ref_nr);
93409033 6211 adj->ref_nr -= ref_nr;
5d261913
VF
6212 return;
6213 }
6214
842d67a7
VF
6215 if (adj->master)
6216 sysfs_remove_link(&(dev->dev.kobj), "master");
6217
7ce64c79 6218 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6219 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 6220
5d261913 6221 list_del_rcu(&adj->list);
67b62f98 6222 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 6223 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
6224 dev_put(adj_dev);
6225 kfree_rcu(adj, rcu);
6226}
6227
1d143d9f 6228static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6229 struct net_device *upper_dev,
6230 struct list_head *up_list,
6231 struct list_head *down_list,
6232 void *private, bool master)
5d261913
VF
6233{
6234 int ret;
6235
790510d9 6236 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 6237 private, master);
5d261913
VF
6238 if (ret)
6239 return ret;
6240
790510d9 6241 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 6242 private, false);
5d261913 6243 if (ret) {
790510d9 6244 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
6245 return ret;
6246 }
6247
6248 return 0;
6249}
6250
1d143d9f 6251static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6252 struct net_device *upper_dev,
93409033 6253 u16 ref_nr,
1d143d9f 6254 struct list_head *up_list,
6255 struct list_head *down_list)
5d261913 6256{
93409033
AC
6257 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6258 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
6259}
6260
1d143d9f 6261static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6262 struct net_device *upper_dev,
6263 void *private, bool master)
2f268f12 6264{
f1170fd4
DA
6265 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6266 &dev->adj_list.upper,
6267 &upper_dev->adj_list.lower,
6268 private, master);
5d261913
VF
6269}
6270
1d143d9f 6271static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6272 struct net_device *upper_dev)
2f268f12 6273{
93409033 6274 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
6275 &dev->adj_list.upper,
6276 &upper_dev->adj_list.lower);
6277}
5d261913 6278
9ff162a8 6279static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 6280 struct net_device *upper_dev, bool master,
42ab19ee
DA
6281 void *upper_priv, void *upper_info,
6282 struct netlink_ext_ack *extack)
9ff162a8 6283{
51d0c047
DA
6284 struct netdev_notifier_changeupper_info changeupper_info = {
6285 .info = {
6286 .dev = dev,
42ab19ee 6287 .extack = extack,
51d0c047
DA
6288 },
6289 .upper_dev = upper_dev,
6290 .master = master,
6291 .linking = true,
6292 .upper_info = upper_info,
6293 };
5d261913 6294 int ret = 0;
9ff162a8
JP
6295
6296 ASSERT_RTNL();
6297
6298 if (dev == upper_dev)
6299 return -EBUSY;
6300
6301 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 6302 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
6303 return -EBUSY;
6304
f1170fd4 6305 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
6306 return -EEXIST;
6307
6308 if (master && netdev_master_upper_dev_get(dev))
6309 return -EBUSY;
6310
51d0c047 6311 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
6312 &changeupper_info.info);
6313 ret = notifier_to_errno(ret);
6314 if (ret)
6315 return ret;
6316
6dffb044 6317 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 6318 master);
5d261913
VF
6319 if (ret)
6320 return ret;
9ff162a8 6321
51d0c047 6322 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
6323 &changeupper_info.info);
6324 ret = notifier_to_errno(ret);
6325 if (ret)
f1170fd4 6326 goto rollback;
b03804e7 6327
9ff162a8 6328 return 0;
5d261913 6329
f1170fd4 6330rollback:
2f268f12 6331 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
6332
6333 return ret;
9ff162a8
JP
6334}
6335
6336/**
6337 * netdev_upper_dev_link - Add a link to the upper device
6338 * @dev: device
6339 * @upper_dev: new upper device
6340 *
6341 * Adds a link to device which is upper to this one. The caller must hold
6342 * the RTNL lock. On a failure a negative errno code is returned.
6343 * On success the reference counts are adjusted and the function
6344 * returns zero.
6345 */
6346int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
6347 struct net_device *upper_dev,
6348 struct netlink_ext_ack *extack)
9ff162a8 6349{
42ab19ee
DA
6350 return __netdev_upper_dev_link(dev, upper_dev, false,
6351 NULL, NULL, extack);
9ff162a8
JP
6352}
6353EXPORT_SYMBOL(netdev_upper_dev_link);
6354
6355/**
6356 * netdev_master_upper_dev_link - Add a master link to the upper device
6357 * @dev: device
6358 * @upper_dev: new upper device
6dffb044 6359 * @upper_priv: upper device private
29bf24af 6360 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
6361 *
6362 * Adds a link to device which is upper to this one. In this case, only
6363 * one master upper device can be linked, although other non-master devices
6364 * might be linked as well. The caller must hold the RTNL lock.
6365 * On a failure a negative errno code is returned. On success the reference
6366 * counts are adjusted and the function returns zero.
6367 */
6368int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 6369 struct net_device *upper_dev,
42ab19ee
DA
6370 void *upper_priv, void *upper_info,
6371 struct netlink_ext_ack *extack)
9ff162a8 6372{
29bf24af 6373 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 6374 upper_priv, upper_info, extack);
9ff162a8
JP
6375}
6376EXPORT_SYMBOL(netdev_master_upper_dev_link);
6377
6378/**
6379 * netdev_upper_dev_unlink - Removes a link to upper device
6380 * @dev: device
6381 * @upper_dev: new upper device
6382 *
6383 * Removes a link to device which is upper to this one. The caller must hold
6384 * the RTNL lock.
6385 */
6386void netdev_upper_dev_unlink(struct net_device *dev,
6387 struct net_device *upper_dev)
6388{
51d0c047
DA
6389 struct netdev_notifier_changeupper_info changeupper_info = {
6390 .info = {
6391 .dev = dev,
6392 },
6393 .upper_dev = upper_dev,
6394 .linking = false,
6395 };
f4563a75 6396
9ff162a8
JP
6397 ASSERT_RTNL();
6398
0e4ead9d 6399 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 6400
51d0c047 6401 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
6402 &changeupper_info.info);
6403
2f268f12 6404 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 6405
51d0c047 6406 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 6407 &changeupper_info.info);
9ff162a8
JP
6408}
6409EXPORT_SYMBOL(netdev_upper_dev_unlink);
6410
61bd3857
MS
6411/**
6412 * netdev_bonding_info_change - Dispatch event about slave change
6413 * @dev: device
4a26e453 6414 * @bonding_info: info to dispatch
61bd3857
MS
6415 *
6416 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6417 * The caller must hold the RTNL lock.
6418 */
6419void netdev_bonding_info_change(struct net_device *dev,
6420 struct netdev_bonding_info *bonding_info)
6421{
51d0c047
DA
6422 struct netdev_notifier_bonding_info info = {
6423 .info.dev = dev,
6424 };
61bd3857
MS
6425
6426 memcpy(&info.bonding_info, bonding_info,
6427 sizeof(struct netdev_bonding_info));
51d0c047 6428 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
6429 &info.info);
6430}
6431EXPORT_SYMBOL(netdev_bonding_info_change);
6432
2ce1ee17 6433static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6434{
6435 struct netdev_adjacent *iter;
6436
6437 struct net *net = dev_net(dev);
6438
6439 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6440 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6441 continue;
6442 netdev_adjacent_sysfs_add(iter->dev, dev,
6443 &iter->dev->adj_list.lower);
6444 netdev_adjacent_sysfs_add(dev, iter->dev,
6445 &dev->adj_list.upper);
6446 }
6447
6448 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6449 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6450 continue;
6451 netdev_adjacent_sysfs_add(iter->dev, dev,
6452 &iter->dev->adj_list.upper);
6453 netdev_adjacent_sysfs_add(dev, iter->dev,
6454 &dev->adj_list.lower);
6455 }
6456}
6457
2ce1ee17 6458static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6459{
6460 struct netdev_adjacent *iter;
6461
6462 struct net *net = dev_net(dev);
6463
6464 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6465 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6466 continue;
6467 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6468 &iter->dev->adj_list.lower);
6469 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6470 &dev->adj_list.upper);
6471 }
6472
6473 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6474 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6475 continue;
6476 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6477 &iter->dev->adj_list.upper);
6478 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6479 &dev->adj_list.lower);
6480 }
6481}
6482
5bb025fa 6483void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6484{
5bb025fa 6485 struct netdev_adjacent *iter;
402dae96 6486
4c75431a
AF
6487 struct net *net = dev_net(dev);
6488
5bb025fa 6489 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6490 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6491 continue;
5bb025fa
VF
6492 netdev_adjacent_sysfs_del(iter->dev, oldname,
6493 &iter->dev->adj_list.lower);
6494 netdev_adjacent_sysfs_add(iter->dev, dev,
6495 &iter->dev->adj_list.lower);
6496 }
402dae96 6497
5bb025fa 6498 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6499 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6500 continue;
5bb025fa
VF
6501 netdev_adjacent_sysfs_del(iter->dev, oldname,
6502 &iter->dev->adj_list.upper);
6503 netdev_adjacent_sysfs_add(iter->dev, dev,
6504 &iter->dev->adj_list.upper);
6505 }
402dae96 6506}
402dae96
VF
6507
6508void *netdev_lower_dev_get_private(struct net_device *dev,
6509 struct net_device *lower_dev)
6510{
6511 struct netdev_adjacent *lower;
6512
6513 if (!lower_dev)
6514 return NULL;
6ea29da1 6515 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6516 if (!lower)
6517 return NULL;
6518
6519 return lower->private;
6520}
6521EXPORT_SYMBOL(netdev_lower_dev_get_private);
6522
4085ebe8 6523
952fcfd0 6524int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6525{
6526 struct net_device *lower = NULL;
6527 struct list_head *iter;
6528 int max_nest = -1;
6529 int nest;
6530
6531 ASSERT_RTNL();
6532
6533 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6534 nest = dev_get_nest_level(lower);
4085ebe8
VY
6535 if (max_nest < nest)
6536 max_nest = nest;
6537 }
6538
952fcfd0 6539 return max_nest + 1;
4085ebe8
VY
6540}
6541EXPORT_SYMBOL(dev_get_nest_level);
6542
04d48266
JP
6543/**
6544 * netdev_lower_change - Dispatch event about lower device state change
6545 * @lower_dev: device
6546 * @lower_state_info: state to dispatch
6547 *
6548 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6549 * The caller must hold the RTNL lock.
6550 */
6551void netdev_lower_state_changed(struct net_device *lower_dev,
6552 void *lower_state_info)
6553{
51d0c047
DA
6554 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6555 .info.dev = lower_dev,
6556 };
04d48266
JP
6557
6558 ASSERT_RTNL();
6559 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 6560 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
6561 &changelowerstate_info.info);
6562}
6563EXPORT_SYMBOL(netdev_lower_state_changed);
6564
b6c40d68
PM
6565static void dev_change_rx_flags(struct net_device *dev, int flags)
6566{
d314774c
SH
6567 const struct net_device_ops *ops = dev->netdev_ops;
6568
d2615bf4 6569 if (ops->ndo_change_rx_flags)
d314774c 6570 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6571}
6572
991fb3f7 6573static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6574{
b536db93 6575 unsigned int old_flags = dev->flags;
d04a48b0
EB
6576 kuid_t uid;
6577 kgid_t gid;
1da177e4 6578
24023451
PM
6579 ASSERT_RTNL();
6580
dad9b335
WC
6581 dev->flags |= IFF_PROMISC;
6582 dev->promiscuity += inc;
6583 if (dev->promiscuity == 0) {
6584 /*
6585 * Avoid overflow.
6586 * If inc causes overflow, untouch promisc and return error.
6587 */
6588 if (inc < 0)
6589 dev->flags &= ~IFF_PROMISC;
6590 else {
6591 dev->promiscuity -= inc;
7b6cd1ce
JP
6592 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6593 dev->name);
dad9b335
WC
6594 return -EOVERFLOW;
6595 }
6596 }
52609c0b 6597 if (dev->flags != old_flags) {
7b6cd1ce
JP
6598 pr_info("device %s %s promiscuous mode\n",
6599 dev->name,
6600 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6601 if (audit_enabled) {
6602 current_uid_gid(&uid, &gid);
7759db82
KHK
6603 audit_log(current->audit_context, GFP_ATOMIC,
6604 AUDIT_ANOM_PROMISCUOUS,
6605 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6606 dev->name, (dev->flags & IFF_PROMISC),
6607 (old_flags & IFF_PROMISC),
e1760bd5 6608 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6609 from_kuid(&init_user_ns, uid),
6610 from_kgid(&init_user_ns, gid),
7759db82 6611 audit_get_sessionid(current));
8192b0c4 6612 }
24023451 6613
b6c40d68 6614 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6615 }
991fb3f7
ND
6616 if (notify)
6617 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6618 return 0;
1da177e4
LT
6619}
6620
4417da66
PM
6621/**
6622 * dev_set_promiscuity - update promiscuity count on a device
6623 * @dev: device
6624 * @inc: modifier
6625 *
6626 * Add or remove promiscuity from a device. While the count in the device
6627 * remains above zero the interface remains promiscuous. Once it hits zero
6628 * the device reverts back to normal filtering operation. A negative inc
6629 * value is used to drop promiscuity on the device.
dad9b335 6630 * Return 0 if successful or a negative errno code on error.
4417da66 6631 */
dad9b335 6632int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6633{
b536db93 6634 unsigned int old_flags = dev->flags;
dad9b335 6635 int err;
4417da66 6636
991fb3f7 6637 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6638 if (err < 0)
dad9b335 6639 return err;
4417da66
PM
6640 if (dev->flags != old_flags)
6641 dev_set_rx_mode(dev);
dad9b335 6642 return err;
4417da66 6643}
d1b19dff 6644EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6645
991fb3f7 6646static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6647{
991fb3f7 6648 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6649
24023451
PM
6650 ASSERT_RTNL();
6651
1da177e4 6652 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6653 dev->allmulti += inc;
6654 if (dev->allmulti == 0) {
6655 /*
6656 * Avoid overflow.
6657 * If inc causes overflow, untouch allmulti and return error.
6658 */
6659 if (inc < 0)
6660 dev->flags &= ~IFF_ALLMULTI;
6661 else {
6662 dev->allmulti -= inc;
7b6cd1ce
JP
6663 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6664 dev->name);
dad9b335
WC
6665 return -EOVERFLOW;
6666 }
6667 }
24023451 6668 if (dev->flags ^ old_flags) {
b6c40d68 6669 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6670 dev_set_rx_mode(dev);
991fb3f7
ND
6671 if (notify)
6672 __dev_notify_flags(dev, old_flags,
6673 dev->gflags ^ old_gflags);
24023451 6674 }
dad9b335 6675 return 0;
4417da66 6676}
991fb3f7
ND
6677
6678/**
6679 * dev_set_allmulti - update allmulti count on a device
6680 * @dev: device
6681 * @inc: modifier
6682 *
6683 * Add or remove reception of all multicast frames to a device. While the
6684 * count in the device remains above zero the interface remains listening
6685 * to all interfaces. Once it hits zero the device reverts back to normal
6686 * filtering operation. A negative @inc value is used to drop the counter
6687 * when releasing a resource needing all multicasts.
6688 * Return 0 if successful or a negative errno code on error.
6689 */
6690
6691int dev_set_allmulti(struct net_device *dev, int inc)
6692{
6693 return __dev_set_allmulti(dev, inc, true);
6694}
d1b19dff 6695EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6696
6697/*
6698 * Upload unicast and multicast address lists to device and
6699 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6700 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6701 * are present.
6702 */
6703void __dev_set_rx_mode(struct net_device *dev)
6704{
d314774c
SH
6705 const struct net_device_ops *ops = dev->netdev_ops;
6706
4417da66
PM
6707 /* dev_open will call this function so the list will stay sane. */
6708 if (!(dev->flags&IFF_UP))
6709 return;
6710
6711 if (!netif_device_present(dev))
40b77c94 6712 return;
4417da66 6713
01789349 6714 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6715 /* Unicast addresses changes may only happen under the rtnl,
6716 * therefore calling __dev_set_promiscuity here is safe.
6717 */
32e7bfc4 6718 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6719 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6720 dev->uc_promisc = true;
32e7bfc4 6721 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6722 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6723 dev->uc_promisc = false;
4417da66 6724 }
4417da66 6725 }
01789349
JP
6726
6727 if (ops->ndo_set_rx_mode)
6728 ops->ndo_set_rx_mode(dev);
4417da66
PM
6729}
6730
6731void dev_set_rx_mode(struct net_device *dev)
6732{
b9e40857 6733 netif_addr_lock_bh(dev);
4417da66 6734 __dev_set_rx_mode(dev);
b9e40857 6735 netif_addr_unlock_bh(dev);
1da177e4
LT
6736}
6737
f0db275a
SH
6738/**
6739 * dev_get_flags - get flags reported to userspace
6740 * @dev: device
6741 *
6742 * Get the combination of flag bits exported through APIs to userspace.
6743 */
95c96174 6744unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6745{
95c96174 6746 unsigned int flags;
1da177e4
LT
6747
6748 flags = (dev->flags & ~(IFF_PROMISC |
6749 IFF_ALLMULTI |
b00055aa
SR
6750 IFF_RUNNING |
6751 IFF_LOWER_UP |
6752 IFF_DORMANT)) |
1da177e4
LT
6753 (dev->gflags & (IFF_PROMISC |
6754 IFF_ALLMULTI));
6755
b00055aa
SR
6756 if (netif_running(dev)) {
6757 if (netif_oper_up(dev))
6758 flags |= IFF_RUNNING;
6759 if (netif_carrier_ok(dev))
6760 flags |= IFF_LOWER_UP;
6761 if (netif_dormant(dev))
6762 flags |= IFF_DORMANT;
6763 }
1da177e4
LT
6764
6765 return flags;
6766}
d1b19dff 6767EXPORT_SYMBOL(dev_get_flags);
1da177e4 6768
bd380811 6769int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6770{
b536db93 6771 unsigned int old_flags = dev->flags;
bd380811 6772 int ret;
1da177e4 6773
24023451
PM
6774 ASSERT_RTNL();
6775
1da177e4
LT
6776 /*
6777 * Set the flags on our device.
6778 */
6779
6780 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6781 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6782 IFF_AUTOMEDIA)) |
6783 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6784 IFF_ALLMULTI));
6785
6786 /*
6787 * Load in the correct multicast list now the flags have changed.
6788 */
6789
b6c40d68
PM
6790 if ((old_flags ^ flags) & IFF_MULTICAST)
6791 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6792
4417da66 6793 dev_set_rx_mode(dev);
1da177e4
LT
6794
6795 /*
6796 * Have we downed the interface. We handle IFF_UP ourselves
6797 * according to user attempts to set it, rather than blindly
6798 * setting it.
6799 */
6800
6801 ret = 0;
7051b88a 6802 if ((old_flags ^ flags) & IFF_UP) {
6803 if (old_flags & IFF_UP)
6804 __dev_close(dev);
6805 else
6806 ret = __dev_open(dev);
6807 }
1da177e4 6808
1da177e4 6809 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6810 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6811 unsigned int old_flags = dev->flags;
d1b19dff 6812
1da177e4 6813 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6814
6815 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6816 if (dev->flags != old_flags)
6817 dev_set_rx_mode(dev);
1da177e4
LT
6818 }
6819
6820 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 6821 * is important. Some (broken) drivers set IFF_PROMISC, when
6822 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
6823 */
6824 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6825 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6826
1da177e4 6827 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6828 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6829 }
6830
bd380811
PM
6831 return ret;
6832}
6833
a528c219
ND
6834void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6835 unsigned int gchanges)
bd380811
PM
6836{
6837 unsigned int changes = dev->flags ^ old_flags;
6838
a528c219 6839 if (gchanges)
7f294054 6840 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6841
bd380811
PM
6842 if (changes & IFF_UP) {
6843 if (dev->flags & IFF_UP)
6844 call_netdevice_notifiers(NETDEV_UP, dev);
6845 else
6846 call_netdevice_notifiers(NETDEV_DOWN, dev);
6847 }
6848
6849 if (dev->flags & IFF_UP &&
be9efd36 6850 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
6851 struct netdev_notifier_change_info change_info = {
6852 .info = {
6853 .dev = dev,
6854 },
6855 .flags_changed = changes,
6856 };
6857
6858 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 6859 }
bd380811
PM
6860}
6861
6862/**
6863 * dev_change_flags - change device settings
6864 * @dev: device
6865 * @flags: device state flags
6866 *
6867 * Change settings on device based state flags. The flags are
6868 * in the userspace exported format.
6869 */
b536db93 6870int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6871{
b536db93 6872 int ret;
991fb3f7 6873 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6874
6875 ret = __dev_change_flags(dev, flags);
6876 if (ret < 0)
6877 return ret;
6878
991fb3f7 6879 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6880 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6881 return ret;
6882}
d1b19dff 6883EXPORT_SYMBOL(dev_change_flags);
1da177e4 6884
f51048c3 6885int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
6886{
6887 const struct net_device_ops *ops = dev->netdev_ops;
6888
6889 if (ops->ndo_change_mtu)
6890 return ops->ndo_change_mtu(dev, new_mtu);
6891
6892 dev->mtu = new_mtu;
6893 return 0;
6894}
f51048c3 6895EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 6896
f0db275a
SH
6897/**
6898 * dev_set_mtu - Change maximum transfer unit
6899 * @dev: device
6900 * @new_mtu: new transfer unit
6901 *
6902 * Change the maximum transfer size of the network device.
6903 */
1da177e4
LT
6904int dev_set_mtu(struct net_device *dev, int new_mtu)
6905{
2315dc91 6906 int err, orig_mtu;
1da177e4
LT
6907
6908 if (new_mtu == dev->mtu)
6909 return 0;
6910
61e84623
JW
6911 /* MTU must be positive, and in range */
6912 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6913 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6914 dev->name, new_mtu, dev->min_mtu);
1da177e4 6915 return -EINVAL;
61e84623
JW
6916 }
6917
6918 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6919 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6920 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6921 return -EINVAL;
6922 }
1da177e4
LT
6923
6924 if (!netif_device_present(dev))
6925 return -ENODEV;
6926
1d486bfb
VF
6927 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6928 err = notifier_to_errno(err);
6929 if (err)
6930 return err;
d314774c 6931
2315dc91
VF
6932 orig_mtu = dev->mtu;
6933 err = __dev_set_mtu(dev, new_mtu);
d314774c 6934
2315dc91
VF
6935 if (!err) {
6936 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6937 err = notifier_to_errno(err);
6938 if (err) {
6939 /* setting mtu back and notifying everyone again,
6940 * so that they have a chance to revert changes.
6941 */
6942 __dev_set_mtu(dev, orig_mtu);
6943 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6944 }
6945 }
1da177e4
LT
6946 return err;
6947}
d1b19dff 6948EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6949
cbda10fa
VD
6950/**
6951 * dev_set_group - Change group this device belongs to
6952 * @dev: device
6953 * @new_group: group this device should belong to
6954 */
6955void dev_set_group(struct net_device *dev, int new_group)
6956{
6957 dev->group = new_group;
6958}
6959EXPORT_SYMBOL(dev_set_group);
6960
f0db275a
SH
6961/**
6962 * dev_set_mac_address - Change Media Access Control Address
6963 * @dev: device
6964 * @sa: new address
6965 *
6966 * Change the hardware (MAC) address of the device
6967 */
1da177e4
LT
6968int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6969{
d314774c 6970 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6971 int err;
6972
d314774c 6973 if (!ops->ndo_set_mac_address)
1da177e4
LT
6974 return -EOPNOTSUPP;
6975 if (sa->sa_family != dev->type)
6976 return -EINVAL;
6977 if (!netif_device_present(dev))
6978 return -ENODEV;
d314774c 6979 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6980 if (err)
6981 return err;
fbdeca2d 6982 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6983 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6984 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6985 return 0;
1da177e4 6986}
d1b19dff 6987EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6988
4bf84c35
JP
6989/**
6990 * dev_change_carrier - Change device carrier
6991 * @dev: device
691b3b7e 6992 * @new_carrier: new value
4bf84c35
JP
6993 *
6994 * Change device carrier
6995 */
6996int dev_change_carrier(struct net_device *dev, bool new_carrier)
6997{
6998 const struct net_device_ops *ops = dev->netdev_ops;
6999
7000 if (!ops->ndo_change_carrier)
7001 return -EOPNOTSUPP;
7002 if (!netif_device_present(dev))
7003 return -ENODEV;
7004 return ops->ndo_change_carrier(dev, new_carrier);
7005}
7006EXPORT_SYMBOL(dev_change_carrier);
7007
66b52b0d
JP
7008/**
7009 * dev_get_phys_port_id - Get device physical port ID
7010 * @dev: device
7011 * @ppid: port ID
7012 *
7013 * Get device physical port ID
7014 */
7015int dev_get_phys_port_id(struct net_device *dev,
02637fce 7016 struct netdev_phys_item_id *ppid)
66b52b0d
JP
7017{
7018 const struct net_device_ops *ops = dev->netdev_ops;
7019
7020 if (!ops->ndo_get_phys_port_id)
7021 return -EOPNOTSUPP;
7022 return ops->ndo_get_phys_port_id(dev, ppid);
7023}
7024EXPORT_SYMBOL(dev_get_phys_port_id);
7025
db24a904
DA
7026/**
7027 * dev_get_phys_port_name - Get device physical port name
7028 * @dev: device
7029 * @name: port name
ed49e650 7030 * @len: limit of bytes to copy to name
db24a904
DA
7031 *
7032 * Get device physical port name
7033 */
7034int dev_get_phys_port_name(struct net_device *dev,
7035 char *name, size_t len)
7036{
7037 const struct net_device_ops *ops = dev->netdev_ops;
7038
7039 if (!ops->ndo_get_phys_port_name)
7040 return -EOPNOTSUPP;
7041 return ops->ndo_get_phys_port_name(dev, name, len);
7042}
7043EXPORT_SYMBOL(dev_get_phys_port_name);
7044
d746d707
AK
7045/**
7046 * dev_change_proto_down - update protocol port state information
7047 * @dev: device
7048 * @proto_down: new value
7049 *
7050 * This info can be used by switch drivers to set the phys state of the
7051 * port.
7052 */
7053int dev_change_proto_down(struct net_device *dev, bool proto_down)
7054{
7055 const struct net_device_ops *ops = dev->netdev_ops;
7056
7057 if (!ops->ndo_change_proto_down)
7058 return -EOPNOTSUPP;
7059 if (!netif_device_present(dev))
7060 return -ENODEV;
7061 return ops->ndo_change_proto_down(dev, proto_down);
7062}
7063EXPORT_SYMBOL(dev_change_proto_down);
7064
ce158e58 7065u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
d67b9cd2
DB
7066{
7067 struct netdev_xdp xdp;
7068
7069 memset(&xdp, 0, sizeof(xdp));
7070 xdp.command = XDP_QUERY_PROG;
7071
7072 /* Query must always succeed. */
7073 WARN_ON(xdp_op(dev, &xdp) < 0);
58038695
MKL
7074 if (prog_id)
7075 *prog_id = xdp.prog_id;
7076
d67b9cd2
DB
7077 return xdp.prog_attached;
7078}
7079
7080static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
32d60277 7081 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
7082 struct bpf_prog *prog)
7083{
7084 struct netdev_xdp xdp;
7085
7086 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
7087 if (flags & XDP_FLAGS_HW_MODE)
7088 xdp.command = XDP_SETUP_PROG_HW;
7089 else
7090 xdp.command = XDP_SETUP_PROG;
d67b9cd2 7091 xdp.extack = extack;
32d60277 7092 xdp.flags = flags;
d67b9cd2
DB
7093 xdp.prog = prog;
7094
7095 return xdp_op(dev, &xdp);
7096}
7097
a7862b45
BB
7098/**
7099 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7100 * @dev: device
b5d60989 7101 * @extack: netlink extended ack
a7862b45 7102 * @fd: new program fd or negative value to clear
85de8576 7103 * @flags: xdp-related flags
a7862b45
BB
7104 *
7105 * Set or clear a bpf program for a device
7106 */
ddf9f970
JK
7107int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7108 int fd, u32 flags)
a7862b45
BB
7109{
7110 const struct net_device_ops *ops = dev->netdev_ops;
7111 struct bpf_prog *prog = NULL;
d67b9cd2 7112 xdp_op_t xdp_op, xdp_chk;
a7862b45
BB
7113 int err;
7114
85de8576
DB
7115 ASSERT_RTNL();
7116
d67b9cd2 7117 xdp_op = xdp_chk = ops->ndo_xdp;
ee5d032f 7118 if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
0489df9a 7119 return -EOPNOTSUPP;
b5cdae32
DM
7120 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7121 xdp_op = generic_xdp_install;
d67b9cd2
DB
7122 if (xdp_op == xdp_chk)
7123 xdp_chk = generic_xdp_install;
b5cdae32 7124
a7862b45 7125 if (fd >= 0) {
58038695 7126 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
d67b9cd2
DB
7127 return -EEXIST;
7128 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
58038695 7129 __dev_xdp_attached(dev, xdp_op, NULL))
d67b9cd2 7130 return -EBUSY;
85de8576 7131
a7862b45
BB
7132 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7133 if (IS_ERR(prog))
7134 return PTR_ERR(prog);
7135 }
7136
32d60277 7137 err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
a7862b45
BB
7138 if (err < 0 && prog)
7139 bpf_prog_put(prog);
7140
7141 return err;
7142}
a7862b45 7143
1da177e4
LT
7144/**
7145 * dev_new_index - allocate an ifindex
c4ea43c5 7146 * @net: the applicable net namespace
1da177e4
LT
7147 *
7148 * Returns a suitable unique value for a new device interface
7149 * number. The caller must hold the rtnl semaphore or the
7150 * dev_base_lock to be sure it remains unique.
7151 */
881d966b 7152static int dev_new_index(struct net *net)
1da177e4 7153{
aa79e66e 7154 int ifindex = net->ifindex;
f4563a75 7155
1da177e4
LT
7156 for (;;) {
7157 if (++ifindex <= 0)
7158 ifindex = 1;
881d966b 7159 if (!__dev_get_by_index(net, ifindex))
aa79e66e 7160 return net->ifindex = ifindex;
1da177e4
LT
7161 }
7162}
7163
1da177e4 7164/* Delayed registration/unregisteration */
3b5b34fd 7165static LIST_HEAD(net_todo_list);
200b916f 7166DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 7167
6f05f629 7168static void net_set_todo(struct net_device *dev)
1da177e4 7169{
1da177e4 7170 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 7171 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
7172}
7173
9b5e383c 7174static void rollback_registered_many(struct list_head *head)
93ee31f1 7175{
e93737b0 7176 struct net_device *dev, *tmp;
5cde2829 7177 LIST_HEAD(close_head);
9b5e383c 7178
93ee31f1
DL
7179 BUG_ON(dev_boot_phase);
7180 ASSERT_RTNL();
7181
e93737b0 7182 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 7183 /* Some devices call without registering
e93737b0
KK
7184 * for initialization unwind. Remove those
7185 * devices and proceed with the remaining.
9b5e383c
ED
7186 */
7187 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
7188 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7189 dev->name, dev);
93ee31f1 7190
9b5e383c 7191 WARN_ON(1);
e93737b0
KK
7192 list_del(&dev->unreg_list);
7193 continue;
9b5e383c 7194 }
449f4544 7195 dev->dismantle = true;
9b5e383c 7196 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 7197 }
93ee31f1 7198
44345724 7199 /* If device is running, close it first. */
5cde2829
EB
7200 list_for_each_entry(dev, head, unreg_list)
7201 list_add_tail(&dev->close_list, &close_head);
99c4a26a 7202 dev_close_many(&close_head, true);
93ee31f1 7203
44345724 7204 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
7205 /* And unlink it from device chain. */
7206 unlist_netdevice(dev);
93ee31f1 7207
9b5e383c
ED
7208 dev->reg_state = NETREG_UNREGISTERING;
7209 }
41852497 7210 flush_all_backlogs();
93ee31f1
DL
7211
7212 synchronize_net();
7213
9b5e383c 7214 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
7215 struct sk_buff *skb = NULL;
7216
9b5e383c
ED
7217 /* Shutdown queueing discipline. */
7218 dev_shutdown(dev);
93ee31f1
DL
7219
7220
9b5e383c 7221 /* Notify protocols, that we are about to destroy
eb13da1a 7222 * this device. They should clean all the things.
7223 */
9b5e383c 7224 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 7225
395eea6c
MB
7226 if (!dev->rtnl_link_ops ||
7227 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 7228 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
6621dd29 7229 GFP_KERNEL, NULL);
395eea6c 7230
9b5e383c
ED
7231 /*
7232 * Flush the unicast and multicast chains
7233 */
a748ee24 7234 dev_uc_flush(dev);
22bedad3 7235 dev_mc_flush(dev);
93ee31f1 7236
9b5e383c
ED
7237 if (dev->netdev_ops->ndo_uninit)
7238 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 7239
395eea6c
MB
7240 if (skb)
7241 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 7242
9ff162a8
JP
7243 /* Notifier chain MUST detach us all upper devices. */
7244 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 7245 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 7246
9b5e383c
ED
7247 /* Remove entries from kobject tree */
7248 netdev_unregister_kobject(dev);
024e9679
AD
7249#ifdef CONFIG_XPS
7250 /* Remove XPS queueing entries */
7251 netif_reset_xps_queues_gt(dev, 0);
7252#endif
9b5e383c 7253 }
93ee31f1 7254
850a545b 7255 synchronize_net();
395264d5 7256
a5ee1551 7257 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
7258 dev_put(dev);
7259}
7260
7261static void rollback_registered(struct net_device *dev)
7262{
7263 LIST_HEAD(single);
7264
7265 list_add(&dev->unreg_list, &single);
7266 rollback_registered_many(&single);
ceaaec98 7267 list_del(&single);
93ee31f1
DL
7268}
7269
fd867d51
JW
7270static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7271 struct net_device *upper, netdev_features_t features)
7272{
7273 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7274 netdev_features_t feature;
5ba3f7d6 7275 int feature_bit;
fd867d51 7276
5ba3f7d6
JW
7277 for_each_netdev_feature(&upper_disables, feature_bit) {
7278 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7279 if (!(upper->wanted_features & feature)
7280 && (features & feature)) {
7281 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7282 &feature, upper->name);
7283 features &= ~feature;
7284 }
7285 }
7286
7287 return features;
7288}
7289
7290static void netdev_sync_lower_features(struct net_device *upper,
7291 struct net_device *lower, netdev_features_t features)
7292{
7293 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7294 netdev_features_t feature;
5ba3f7d6 7295 int feature_bit;
fd867d51 7296
5ba3f7d6
JW
7297 for_each_netdev_feature(&upper_disables, feature_bit) {
7298 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7299 if (!(features & feature) && (lower->features & feature)) {
7300 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7301 &feature, lower->name);
7302 lower->wanted_features &= ~feature;
7303 netdev_update_features(lower);
7304
7305 if (unlikely(lower->features & feature))
7306 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7307 &feature, lower->name);
7308 }
7309 }
7310}
7311
c8f44aff
MM
7312static netdev_features_t netdev_fix_features(struct net_device *dev,
7313 netdev_features_t features)
b63365a2 7314{
57422dc5
MM
7315 /* Fix illegal checksum combinations */
7316 if ((features & NETIF_F_HW_CSUM) &&
7317 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 7318 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
7319 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7320 }
7321
b63365a2 7322 /* TSO requires that SG is present as well. */
ea2d3688 7323 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 7324 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 7325 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
7326 }
7327
ec5f0615
PS
7328 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7329 !(features & NETIF_F_IP_CSUM)) {
7330 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7331 features &= ~NETIF_F_TSO;
7332 features &= ~NETIF_F_TSO_ECN;
7333 }
7334
7335 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7336 !(features & NETIF_F_IPV6_CSUM)) {
7337 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7338 features &= ~NETIF_F_TSO6;
7339 }
7340
b1dc497b
AD
7341 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7342 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7343 features &= ~NETIF_F_TSO_MANGLEID;
7344
31d8b9e0
BH
7345 /* TSO ECN requires that TSO is present as well. */
7346 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7347 features &= ~NETIF_F_TSO_ECN;
7348
212b573f
MM
7349 /* Software GSO depends on SG. */
7350 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 7351 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
7352 features &= ~NETIF_F_GSO;
7353 }
7354
802ab55a
AD
7355 /* GSO partial features require GSO partial be set */
7356 if ((features & dev->gso_partial_features) &&
7357 !(features & NETIF_F_GSO_PARTIAL)) {
7358 netdev_dbg(dev,
7359 "Dropping partially supported GSO features since no GSO partial.\n");
7360 features &= ~dev->gso_partial_features;
7361 }
7362
b63365a2
HX
7363 return features;
7364}
b63365a2 7365
6cb6a27c 7366int __netdev_update_features(struct net_device *dev)
5455c699 7367{
fd867d51 7368 struct net_device *upper, *lower;
c8f44aff 7369 netdev_features_t features;
fd867d51 7370 struct list_head *iter;
e7868a85 7371 int err = -1;
5455c699 7372
87267485
MM
7373 ASSERT_RTNL();
7374
5455c699
MM
7375 features = netdev_get_wanted_features(dev);
7376
7377 if (dev->netdev_ops->ndo_fix_features)
7378 features = dev->netdev_ops->ndo_fix_features(dev, features);
7379
7380 /* driver might be less strict about feature dependencies */
7381 features = netdev_fix_features(dev, features);
7382
fd867d51
JW
7383 /* some features can't be enabled if they're off an an upper device */
7384 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7385 features = netdev_sync_upper_features(dev, upper, features);
7386
5455c699 7387 if (dev->features == features)
e7868a85 7388 goto sync_lower;
5455c699 7389
c8f44aff
MM
7390 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7391 &dev->features, &features);
5455c699
MM
7392
7393 if (dev->netdev_ops->ndo_set_features)
7394 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
7395 else
7396 err = 0;
5455c699 7397
6cb6a27c 7398 if (unlikely(err < 0)) {
5455c699 7399 netdev_err(dev,
c8f44aff
MM
7400 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7401 err, &features, &dev->features);
17b85d29
NA
7402 /* return non-0 since some features might have changed and
7403 * it's better to fire a spurious notification than miss it
7404 */
7405 return -1;
6cb6a27c
MM
7406 }
7407
e7868a85 7408sync_lower:
fd867d51
JW
7409 /* some features must be disabled on lower devices when disabled
7410 * on an upper device (think: bonding master or bridge)
7411 */
7412 netdev_for_each_lower_dev(dev, lower, iter)
7413 netdev_sync_lower_features(dev, lower, features);
7414
ae847f40
SD
7415 if (!err) {
7416 netdev_features_t diff = features ^ dev->features;
7417
7418 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7419 /* udp_tunnel_{get,drop}_rx_info both need
7420 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7421 * device, or they won't do anything.
7422 * Thus we need to update dev->features
7423 * *before* calling udp_tunnel_get_rx_info,
7424 * but *after* calling udp_tunnel_drop_rx_info.
7425 */
7426 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7427 dev->features = features;
7428 udp_tunnel_get_rx_info(dev);
7429 } else {
7430 udp_tunnel_drop_rx_info(dev);
7431 }
7432 }
7433
6cb6a27c 7434 dev->features = features;
ae847f40 7435 }
6cb6a27c 7436
e7868a85 7437 return err < 0 ? 0 : 1;
6cb6a27c
MM
7438}
7439
afe12cc8
MM
7440/**
7441 * netdev_update_features - recalculate device features
7442 * @dev: the device to check
7443 *
7444 * Recalculate dev->features set and send notifications if it
7445 * has changed. Should be called after driver or hardware dependent
7446 * conditions might have changed that influence the features.
7447 */
6cb6a27c
MM
7448void netdev_update_features(struct net_device *dev)
7449{
7450 if (__netdev_update_features(dev))
7451 netdev_features_change(dev);
5455c699
MM
7452}
7453EXPORT_SYMBOL(netdev_update_features);
7454
afe12cc8
MM
7455/**
7456 * netdev_change_features - recalculate device features
7457 * @dev: the device to check
7458 *
7459 * Recalculate dev->features set and send notifications even
7460 * if they have not changed. Should be called instead of
7461 * netdev_update_features() if also dev->vlan_features might
7462 * have changed to allow the changes to be propagated to stacked
7463 * VLAN devices.
7464 */
7465void netdev_change_features(struct net_device *dev)
7466{
7467 __netdev_update_features(dev);
7468 netdev_features_change(dev);
7469}
7470EXPORT_SYMBOL(netdev_change_features);
7471
fc4a7489
PM
7472/**
7473 * netif_stacked_transfer_operstate - transfer operstate
7474 * @rootdev: the root or lower level device to transfer state from
7475 * @dev: the device to transfer operstate to
7476 *
7477 * Transfer operational state from root to device. This is normally
7478 * called when a stacking relationship exists between the root
7479 * device and the device(a leaf device).
7480 */
7481void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7482 struct net_device *dev)
7483{
7484 if (rootdev->operstate == IF_OPER_DORMANT)
7485 netif_dormant_on(dev);
7486 else
7487 netif_dormant_off(dev);
7488
0575c86b
ZS
7489 if (netif_carrier_ok(rootdev))
7490 netif_carrier_on(dev);
7491 else
7492 netif_carrier_off(dev);
fc4a7489
PM
7493}
7494EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7495
a953be53 7496#ifdef CONFIG_SYSFS
1b4bf461
ED
7497static int netif_alloc_rx_queues(struct net_device *dev)
7498{
1b4bf461 7499 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7500 struct netdev_rx_queue *rx;
10595902 7501 size_t sz = count * sizeof(*rx);
1b4bf461 7502
bd25fa7b 7503 BUG_ON(count < 1);
1b4bf461 7504
dcda9b04 7505 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7506 if (!rx)
7507 return -ENOMEM;
7508
bd25fa7b
TH
7509 dev->_rx = rx;
7510
bd25fa7b 7511 for (i = 0; i < count; i++)
fe822240 7512 rx[i].dev = dev;
1b4bf461
ED
7513 return 0;
7514}
bf264145 7515#endif
1b4bf461 7516
aa942104
CG
7517static void netdev_init_one_queue(struct net_device *dev,
7518 struct netdev_queue *queue, void *_unused)
7519{
7520 /* Initialize queue lock */
7521 spin_lock_init(&queue->_xmit_lock);
7522 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7523 queue->xmit_lock_owner = -1;
b236da69 7524 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7525 queue->dev = dev;
114cf580
TH
7526#ifdef CONFIG_BQL
7527 dql_init(&queue->dql, HZ);
7528#endif
aa942104
CG
7529}
7530
60877a32
ED
7531static void netif_free_tx_queues(struct net_device *dev)
7532{
4cb28970 7533 kvfree(dev->_tx);
60877a32
ED
7534}
7535
e6484930
TH
7536static int netif_alloc_netdev_queues(struct net_device *dev)
7537{
7538 unsigned int count = dev->num_tx_queues;
7539 struct netdev_queue *tx;
60877a32 7540 size_t sz = count * sizeof(*tx);
e6484930 7541
d339727c
ED
7542 if (count < 1 || count > 0xffff)
7543 return -EINVAL;
62b5942a 7544
dcda9b04 7545 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7546 if (!tx)
7547 return -ENOMEM;
7548
e6484930 7549 dev->_tx = tx;
1d24eb48 7550
e6484930
TH
7551 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7552 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7553
7554 return 0;
e6484930
TH
7555}
7556
a2029240
DV
7557void netif_tx_stop_all_queues(struct net_device *dev)
7558{
7559 unsigned int i;
7560
7561 for (i = 0; i < dev->num_tx_queues; i++) {
7562 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 7563
a2029240
DV
7564 netif_tx_stop_queue(txq);
7565 }
7566}
7567EXPORT_SYMBOL(netif_tx_stop_all_queues);
7568
1da177e4
LT
7569/**
7570 * register_netdevice - register a network device
7571 * @dev: device to register
7572 *
7573 * Take a completed network device structure and add it to the kernel
7574 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7575 * chain. 0 is returned on success. A negative errno code is returned
7576 * on a failure to set up the device, or if the name is a duplicate.
7577 *
7578 * Callers must hold the rtnl semaphore. You may want
7579 * register_netdev() instead of this.
7580 *
7581 * BUGS:
7582 * The locking appears insufficient to guarantee two parallel registers
7583 * will not get the same name.
7584 */
7585
7586int register_netdevice(struct net_device *dev)
7587{
1da177e4 7588 int ret;
d314774c 7589 struct net *net = dev_net(dev);
1da177e4
LT
7590
7591 BUG_ON(dev_boot_phase);
7592 ASSERT_RTNL();
7593
b17a7c17
SH
7594 might_sleep();
7595
1da177e4
LT
7596 /* When net_device's are persistent, this will be fatal. */
7597 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7598 BUG_ON(!net);
1da177e4 7599
f1f28aa3 7600 spin_lock_init(&dev->addr_list_lock);
cf508b12 7601 netdev_set_addr_lockdep_class(dev);
1da177e4 7602
828de4f6 7603 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7604 if (ret < 0)
7605 goto out;
7606
1da177e4 7607 /* Init, if this function is available */
d314774c
SH
7608 if (dev->netdev_ops->ndo_init) {
7609 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7610 if (ret) {
7611 if (ret > 0)
7612 ret = -EIO;
90833aa4 7613 goto out;
1da177e4
LT
7614 }
7615 }
4ec93edb 7616
f646968f
PM
7617 if (((dev->hw_features | dev->features) &
7618 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7619 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7620 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7621 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7622 ret = -EINVAL;
7623 goto err_uninit;
7624 }
7625
9c7dafbf
PE
7626 ret = -EBUSY;
7627 if (!dev->ifindex)
7628 dev->ifindex = dev_new_index(net);
7629 else if (__dev_get_by_index(net, dev->ifindex))
7630 goto err_uninit;
7631
5455c699
MM
7632 /* Transfer changeable features to wanted_features and enable
7633 * software offloads (GSO and GRO).
7634 */
7635 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f 7636 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
7637
7638 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7639 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7640 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7641 }
7642
14d1232f 7643 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7644
cbc53e08 7645 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7646 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7647
7f348a60
AD
7648 /* If IPv4 TCP segmentation offload is supported we should also
7649 * allow the device to enable segmenting the frame with the option
7650 * of ignoring a static IP ID value. This doesn't enable the
7651 * feature itself but allows the user to enable it later.
7652 */
cbc53e08
AD
7653 if (dev->hw_features & NETIF_F_TSO)
7654 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7655 if (dev->vlan_features & NETIF_F_TSO)
7656 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7657 if (dev->mpls_features & NETIF_F_TSO)
7658 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7659 if (dev->hw_enc_features & NETIF_F_TSO)
7660 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7661
1180e7d6 7662 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7663 */
1180e7d6 7664 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7665
ee579677
PS
7666 /* Make NETIF_F_SG inheritable to tunnel devices.
7667 */
802ab55a 7668 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7669
0d89d203
SH
7670 /* Make NETIF_F_SG inheritable to MPLS.
7671 */
7672 dev->mpls_features |= NETIF_F_SG;
7673
7ffbe3fd
JB
7674 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7675 ret = notifier_to_errno(ret);
7676 if (ret)
7677 goto err_uninit;
7678
8b41d188 7679 ret = netdev_register_kobject(dev);
b17a7c17 7680 if (ret)
7ce1b0ed 7681 goto err_uninit;
b17a7c17
SH
7682 dev->reg_state = NETREG_REGISTERED;
7683
6cb6a27c 7684 __netdev_update_features(dev);
8e9b59b2 7685
1da177e4
LT
7686 /*
7687 * Default initial state at registry is that the
7688 * device is present.
7689 */
7690
7691 set_bit(__LINK_STATE_PRESENT, &dev->state);
7692
8f4cccbb
BH
7693 linkwatch_init_dev(dev);
7694
1da177e4 7695 dev_init_scheduler(dev);
1da177e4 7696 dev_hold(dev);
ce286d32 7697 list_netdevice(dev);
7bf23575 7698 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7699
948b337e
JP
7700 /* If the device has permanent device address, driver should
7701 * set dev_addr and also addr_assign_type should be set to
7702 * NET_ADDR_PERM (default value).
7703 */
7704 if (dev->addr_assign_type == NET_ADDR_PERM)
7705 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7706
1da177e4 7707 /* Notify protocols, that a new device appeared. */
056925ab 7708 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7709 ret = notifier_to_errno(ret);
93ee31f1
DL
7710 if (ret) {
7711 rollback_registered(dev);
7712 dev->reg_state = NETREG_UNREGISTERED;
7713 }
d90a909e
EB
7714 /*
7715 * Prevent userspace races by waiting until the network
7716 * device is fully setup before sending notifications.
7717 */
a2835763
PM
7718 if (!dev->rtnl_link_ops ||
7719 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7720 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7721
7722out:
7723 return ret;
7ce1b0ed
HX
7724
7725err_uninit:
d314774c
SH
7726 if (dev->netdev_ops->ndo_uninit)
7727 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
7728 if (dev->priv_destructor)
7729 dev->priv_destructor(dev);
7ce1b0ed 7730 goto out;
1da177e4 7731}
d1b19dff 7732EXPORT_SYMBOL(register_netdevice);
1da177e4 7733
937f1ba5
BH
7734/**
7735 * init_dummy_netdev - init a dummy network device for NAPI
7736 * @dev: device to init
7737 *
7738 * This takes a network device structure and initialize the minimum
7739 * amount of fields so it can be used to schedule NAPI polls without
7740 * registering a full blown interface. This is to be used by drivers
7741 * that need to tie several hardware interfaces to a single NAPI
7742 * poll scheduler due to HW limitations.
7743 */
7744int init_dummy_netdev(struct net_device *dev)
7745{
7746 /* Clear everything. Note we don't initialize spinlocks
7747 * are they aren't supposed to be taken by any of the
7748 * NAPI code and this dummy netdev is supposed to be
7749 * only ever used for NAPI polls
7750 */
7751 memset(dev, 0, sizeof(struct net_device));
7752
7753 /* make sure we BUG if trying to hit standard
7754 * register/unregister code path
7755 */
7756 dev->reg_state = NETREG_DUMMY;
7757
937f1ba5
BH
7758 /* NAPI wants this */
7759 INIT_LIST_HEAD(&dev->napi_list);
7760
7761 /* a dummy interface is started by default */
7762 set_bit(__LINK_STATE_PRESENT, &dev->state);
7763 set_bit(__LINK_STATE_START, &dev->state);
7764
29b4433d
ED
7765 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7766 * because users of this 'device' dont need to change
7767 * its refcount.
7768 */
7769
937f1ba5
BH
7770 return 0;
7771}
7772EXPORT_SYMBOL_GPL(init_dummy_netdev);
7773
7774
1da177e4
LT
7775/**
7776 * register_netdev - register a network device
7777 * @dev: device to register
7778 *
7779 * Take a completed network device structure and add it to the kernel
7780 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7781 * chain. 0 is returned on success. A negative errno code is returned
7782 * on a failure to set up the device, or if the name is a duplicate.
7783 *
38b4da38 7784 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7785 * and expands the device name if you passed a format string to
7786 * alloc_netdev.
7787 */
7788int register_netdev(struct net_device *dev)
7789{
7790 int err;
7791
7792 rtnl_lock();
1da177e4 7793 err = register_netdevice(dev);
1da177e4
LT
7794 rtnl_unlock();
7795 return err;
7796}
7797EXPORT_SYMBOL(register_netdev);
7798
29b4433d
ED
7799int netdev_refcnt_read(const struct net_device *dev)
7800{
7801 int i, refcnt = 0;
7802
7803 for_each_possible_cpu(i)
7804 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7805 return refcnt;
7806}
7807EXPORT_SYMBOL(netdev_refcnt_read);
7808
2c53040f 7809/**
1da177e4 7810 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7811 * @dev: target net_device
1da177e4
LT
7812 *
7813 * This is called when unregistering network devices.
7814 *
7815 * Any protocol or device that holds a reference should register
7816 * for netdevice notification, and cleanup and put back the
7817 * reference if they receive an UNREGISTER event.
7818 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7819 * call dev_put.
1da177e4
LT
7820 */
7821static void netdev_wait_allrefs(struct net_device *dev)
7822{
7823 unsigned long rebroadcast_time, warning_time;
29b4433d 7824 int refcnt;
1da177e4 7825
e014debe
ED
7826 linkwatch_forget_dev(dev);
7827
1da177e4 7828 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7829 refcnt = netdev_refcnt_read(dev);
7830
7831 while (refcnt != 0) {
1da177e4 7832 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7833 rtnl_lock();
1da177e4
LT
7834
7835 /* Rebroadcast unregister notification */
056925ab 7836 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7837
748e2d93 7838 __rtnl_unlock();
0115e8e3 7839 rcu_barrier();
748e2d93
ED
7840 rtnl_lock();
7841
0115e8e3 7842 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7843 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7844 &dev->state)) {
7845 /* We must not have linkwatch events
7846 * pending on unregister. If this
7847 * happens, we simply run the queue
7848 * unscheduled, resulting in a noop
7849 * for this device.
7850 */
7851 linkwatch_run_queue();
7852 }
7853
6756ae4b 7854 __rtnl_unlock();
1da177e4
LT
7855
7856 rebroadcast_time = jiffies;
7857 }
7858
7859 msleep(250);
7860
29b4433d
ED
7861 refcnt = netdev_refcnt_read(dev);
7862
1da177e4 7863 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7864 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7865 dev->name, refcnt);
1da177e4
LT
7866 warning_time = jiffies;
7867 }
7868 }
7869}
7870
7871/* The sequence is:
7872 *
7873 * rtnl_lock();
7874 * ...
7875 * register_netdevice(x1);
7876 * register_netdevice(x2);
7877 * ...
7878 * unregister_netdevice(y1);
7879 * unregister_netdevice(y2);
7880 * ...
7881 * rtnl_unlock();
7882 * free_netdev(y1);
7883 * free_netdev(y2);
7884 *
58ec3b4d 7885 * We are invoked by rtnl_unlock().
1da177e4 7886 * This allows us to deal with problems:
b17a7c17 7887 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7888 * without deadlocking with linkwatch via keventd.
7889 * 2) Since we run with the RTNL semaphore not held, we can sleep
7890 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7891 *
7892 * We must not return until all unregister events added during
7893 * the interval the lock was held have been completed.
1da177e4 7894 */
1da177e4
LT
7895void netdev_run_todo(void)
7896{
626ab0e6 7897 struct list_head list;
1da177e4 7898
1da177e4 7899 /* Snapshot list, allow later requests */
626ab0e6 7900 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7901
7902 __rtnl_unlock();
626ab0e6 7903
0115e8e3
ED
7904
7905 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7906 if (!list_empty(&list))
7907 rcu_barrier();
7908
1da177e4
LT
7909 while (!list_empty(&list)) {
7910 struct net_device *dev
e5e26d75 7911 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7912 list_del(&dev->todo_list);
7913
748e2d93 7914 rtnl_lock();
0115e8e3 7915 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7916 __rtnl_unlock();
0115e8e3 7917
b17a7c17 7918 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7919 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7920 dev->name, dev->reg_state);
7921 dump_stack();
7922 continue;
7923 }
1da177e4 7924
b17a7c17 7925 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7926
b17a7c17 7927 netdev_wait_allrefs(dev);
1da177e4 7928
b17a7c17 7929 /* paranoia */
29b4433d 7930 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7931 BUG_ON(!list_empty(&dev->ptype_all));
7932 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7933 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7934 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7935 WARN_ON(dev->dn_ptr);
1da177e4 7936
cf124db5
DM
7937 if (dev->priv_destructor)
7938 dev->priv_destructor(dev);
7939 if (dev->needs_free_netdev)
7940 free_netdev(dev);
9093bbb2 7941
50624c93
EB
7942 /* Report a network device has been unregistered */
7943 rtnl_lock();
7944 dev_net(dev)->dev_unreg_count--;
7945 __rtnl_unlock();
7946 wake_up(&netdev_unregistering_wq);
7947
9093bbb2
SH
7948 /* Free network device */
7949 kobject_put(&dev->dev.kobj);
1da177e4 7950 }
1da177e4
LT
7951}
7952
9256645a
JW
7953/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7954 * all the same fields in the same order as net_device_stats, with only
7955 * the type differing, but rtnl_link_stats64 may have additional fields
7956 * at the end for newer counters.
3cfde79c 7957 */
77a1abf5
ED
7958void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7959 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7960{
7961#if BITS_PER_LONG == 64
9256645a 7962 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 7963 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
7964 /* zero out counters that only exist in rtnl_link_stats64 */
7965 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7966 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7967#else
9256645a 7968 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7969 const unsigned long *src = (const unsigned long *)netdev_stats;
7970 u64 *dst = (u64 *)stats64;
7971
9256645a 7972 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7973 for (i = 0; i < n; i++)
7974 dst[i] = src[i];
9256645a
JW
7975 /* zero out counters that only exist in rtnl_link_stats64 */
7976 memset((char *)stats64 + n * sizeof(u64), 0,
7977 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7978#endif
7979}
77a1abf5 7980EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7981
eeda3fd6
SH
7982/**
7983 * dev_get_stats - get network device statistics
7984 * @dev: device to get statistics from
28172739 7985 * @storage: place to store stats
eeda3fd6 7986 *
d7753516
BH
7987 * Get network statistics from device. Return @storage.
7988 * The device driver may provide its own method by setting
7989 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7990 * otherwise the internal statistics structure is used.
eeda3fd6 7991 */
d7753516
BH
7992struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7993 struct rtnl_link_stats64 *storage)
7004bf25 7994{
eeda3fd6
SH
7995 const struct net_device_ops *ops = dev->netdev_ops;
7996
28172739
ED
7997 if (ops->ndo_get_stats64) {
7998 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7999 ops->ndo_get_stats64(dev, storage);
8000 } else if (ops->ndo_get_stats) {
3cfde79c 8001 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
8002 } else {
8003 netdev_stats_to_stats64(storage, &dev->stats);
28172739 8004 }
6f64ec74
ED
8005 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8006 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8007 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 8008 return storage;
c45d286e 8009}
eeda3fd6 8010EXPORT_SYMBOL(dev_get_stats);
c45d286e 8011
24824a09 8012struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 8013{
24824a09 8014 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 8015
24824a09
ED
8016#ifdef CONFIG_NET_CLS_ACT
8017 if (queue)
8018 return queue;
8019 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8020 if (!queue)
8021 return NULL;
8022 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 8023 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
8024 queue->qdisc_sleeping = &noop_qdisc;
8025 rcu_assign_pointer(dev->ingress_queue, queue);
8026#endif
8027 return queue;
bb949fbd
DM
8028}
8029
2c60db03
ED
8030static const struct ethtool_ops default_ethtool_ops;
8031
d07d7507
SG
8032void netdev_set_default_ethtool_ops(struct net_device *dev,
8033 const struct ethtool_ops *ops)
8034{
8035 if (dev->ethtool_ops == &default_ethtool_ops)
8036 dev->ethtool_ops = ops;
8037}
8038EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8039
74d332c1
ED
8040void netdev_freemem(struct net_device *dev)
8041{
8042 char *addr = (char *)dev - dev->padded;
8043
4cb28970 8044 kvfree(addr);
74d332c1
ED
8045}
8046
1da177e4 8047/**
722c9a0c 8048 * alloc_netdev_mqs - allocate network device
8049 * @sizeof_priv: size of private data to allocate space for
8050 * @name: device name format string
8051 * @name_assign_type: origin of device name
8052 * @setup: callback to initialize device
8053 * @txqs: the number of TX subqueues to allocate
8054 * @rxqs: the number of RX subqueues to allocate
8055 *
8056 * Allocates a struct net_device with private data area for driver use
8057 * and performs basic initialization. Also allocates subqueue structs
8058 * for each queue on the device.
1da177e4 8059 */
36909ea4 8060struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 8061 unsigned char name_assign_type,
36909ea4
TH
8062 void (*setup)(struct net_device *),
8063 unsigned int txqs, unsigned int rxqs)
1da177e4 8064{
1da177e4 8065 struct net_device *dev;
52a59bd5 8066 unsigned int alloc_size;
1ce8e7b5 8067 struct net_device *p;
1da177e4 8068
b6fe17d6
SH
8069 BUG_ON(strlen(name) >= sizeof(dev->name));
8070
36909ea4 8071 if (txqs < 1) {
7b6cd1ce 8072 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
8073 return NULL;
8074 }
8075
a953be53 8076#ifdef CONFIG_SYSFS
36909ea4 8077 if (rxqs < 1) {
7b6cd1ce 8078 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
8079 return NULL;
8080 }
8081#endif
8082
fd2ea0a7 8083 alloc_size = sizeof(struct net_device);
d1643d24
AD
8084 if (sizeof_priv) {
8085 /* ensure 32-byte alignment of private area */
1ce8e7b5 8086 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
8087 alloc_size += sizeof_priv;
8088 }
8089 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 8090 alloc_size += NETDEV_ALIGN - 1;
1da177e4 8091
dcda9b04 8092 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 8093 if (!p)
1da177e4 8094 return NULL;
1da177e4 8095
1ce8e7b5 8096 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 8097 dev->padded = (char *)dev - (char *)p;
ab9c73cc 8098
29b4433d
ED
8099 dev->pcpu_refcnt = alloc_percpu(int);
8100 if (!dev->pcpu_refcnt)
74d332c1 8101 goto free_dev;
ab9c73cc 8102
ab9c73cc 8103 if (dev_addr_init(dev))
29b4433d 8104 goto free_pcpu;
ab9c73cc 8105
22bedad3 8106 dev_mc_init(dev);
a748ee24 8107 dev_uc_init(dev);
ccffad25 8108
c346dca1 8109 dev_net_set(dev, &init_net);
1da177e4 8110
8d3bdbd5 8111 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 8112 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 8113
8d3bdbd5
DM
8114 INIT_LIST_HEAD(&dev->napi_list);
8115 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 8116 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 8117 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
8118 INIT_LIST_HEAD(&dev->adj_list.upper);
8119 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
8120 INIT_LIST_HEAD(&dev->ptype_all);
8121 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
8122#ifdef CONFIG_NET_SCHED
8123 hash_init(dev->qdisc_hash);
8124#endif
02875878 8125 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
8126 setup(dev);
8127
a813104d 8128 if (!dev->tx_queue_len) {
f84bb1ea 8129 dev->priv_flags |= IFF_NO_QUEUE;
11597084 8130 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 8131 }
906470c1 8132
36909ea4
TH
8133 dev->num_tx_queues = txqs;
8134 dev->real_num_tx_queues = txqs;
ed9af2e8 8135 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 8136 goto free_all;
e8a0464c 8137
a953be53 8138#ifdef CONFIG_SYSFS
36909ea4
TH
8139 dev->num_rx_queues = rxqs;
8140 dev->real_num_rx_queues = rxqs;
fe822240 8141 if (netif_alloc_rx_queues(dev))
8d3bdbd5 8142 goto free_all;
df334545 8143#endif
0a9627f2 8144
1da177e4 8145 strcpy(dev->name, name);
c835a677 8146 dev->name_assign_type = name_assign_type;
cbda10fa 8147 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
8148 if (!dev->ethtool_ops)
8149 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
8150
8151 nf_hook_ingress_init(dev);
8152
1da177e4 8153 return dev;
ab9c73cc 8154
8d3bdbd5
DM
8155free_all:
8156 free_netdev(dev);
8157 return NULL;
8158
29b4433d
ED
8159free_pcpu:
8160 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
8161free_dev:
8162 netdev_freemem(dev);
ab9c73cc 8163 return NULL;
1da177e4 8164}
36909ea4 8165EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
8166
8167/**
722c9a0c 8168 * free_netdev - free network device
8169 * @dev: device
1da177e4 8170 *
722c9a0c 8171 * This function does the last stage of destroying an allocated device
8172 * interface. The reference to the device object is released. If this
8173 * is the last reference then it will be freed.Must be called in process
8174 * context.
1da177e4
LT
8175 */
8176void free_netdev(struct net_device *dev)
8177{
d565b0a1 8178 struct napi_struct *p, *n;
b5cdae32 8179 struct bpf_prog *prog;
d565b0a1 8180
93d05d4a 8181 might_sleep();
60877a32 8182 netif_free_tx_queues(dev);
a953be53 8183#ifdef CONFIG_SYSFS
10595902 8184 kvfree(dev->_rx);
fe822240 8185#endif
e8a0464c 8186
33d480ce 8187 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 8188
f001fde5
JP
8189 /* Flush device addresses */
8190 dev_addr_flush(dev);
8191
d565b0a1
HX
8192 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8193 netif_napi_del(p);
8194
29b4433d
ED
8195 free_percpu(dev->pcpu_refcnt);
8196 dev->pcpu_refcnt = NULL;
8197
b5cdae32
DM
8198 prog = rcu_dereference_protected(dev->xdp_prog, 1);
8199 if (prog) {
8200 bpf_prog_put(prog);
8201 static_key_slow_dec(&generic_xdp_needed);
8202 }
8203
3041a069 8204 /* Compatibility with error handling in drivers */
1da177e4 8205 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 8206 netdev_freemem(dev);
1da177e4
LT
8207 return;
8208 }
8209
8210 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8211 dev->reg_state = NETREG_RELEASED;
8212
43cb76d9
GKH
8213 /* will free via device release */
8214 put_device(&dev->dev);
1da177e4 8215}
d1b19dff 8216EXPORT_SYMBOL(free_netdev);
4ec93edb 8217
f0db275a
SH
8218/**
8219 * synchronize_net - Synchronize with packet receive processing
8220 *
8221 * Wait for packets currently being received to be done.
8222 * Does not block later packets from starting.
8223 */
4ec93edb 8224void synchronize_net(void)
1da177e4
LT
8225{
8226 might_sleep();
be3fc413
ED
8227 if (rtnl_is_locked())
8228 synchronize_rcu_expedited();
8229 else
8230 synchronize_rcu();
1da177e4 8231}
d1b19dff 8232EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
8233
8234/**
44a0873d 8235 * unregister_netdevice_queue - remove device from the kernel
1da177e4 8236 * @dev: device
44a0873d 8237 * @head: list
6ebfbc06 8238 *
1da177e4 8239 * This function shuts down a device interface and removes it
d59b54b1 8240 * from the kernel tables.
44a0873d 8241 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
8242 *
8243 * Callers must hold the rtnl semaphore. You may want
8244 * unregister_netdev() instead of this.
8245 */
8246
44a0873d 8247void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 8248{
a6620712
HX
8249 ASSERT_RTNL();
8250
44a0873d 8251 if (head) {
9fdce099 8252 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
8253 } else {
8254 rollback_registered(dev);
8255 /* Finish processing unregister after unlock */
8256 net_set_todo(dev);
8257 }
1da177e4 8258}
44a0873d 8259EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 8260
9b5e383c
ED
8261/**
8262 * unregister_netdevice_many - unregister many devices
8263 * @head: list of devices
87757a91
ED
8264 *
8265 * Note: As most callers use a stack allocated list_head,
8266 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
8267 */
8268void unregister_netdevice_many(struct list_head *head)
8269{
8270 struct net_device *dev;
8271
8272 if (!list_empty(head)) {
8273 rollback_registered_many(head);
8274 list_for_each_entry(dev, head, unreg_list)
8275 net_set_todo(dev);
87757a91 8276 list_del(head);
9b5e383c
ED
8277 }
8278}
63c8099d 8279EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 8280
1da177e4
LT
8281/**
8282 * unregister_netdev - remove device from the kernel
8283 * @dev: device
8284 *
8285 * This function shuts down a device interface and removes it
d59b54b1 8286 * from the kernel tables.
1da177e4
LT
8287 *
8288 * This is just a wrapper for unregister_netdevice that takes
8289 * the rtnl semaphore. In general you want to use this and not
8290 * unregister_netdevice.
8291 */
8292void unregister_netdev(struct net_device *dev)
8293{
8294 rtnl_lock();
8295 unregister_netdevice(dev);
8296 rtnl_unlock();
8297}
1da177e4
LT
8298EXPORT_SYMBOL(unregister_netdev);
8299
ce286d32
EB
8300/**
8301 * dev_change_net_namespace - move device to different nethost namespace
8302 * @dev: device
8303 * @net: network namespace
8304 * @pat: If not NULL name pattern to try if the current device name
8305 * is already taken in the destination network namespace.
8306 *
8307 * This function shuts down a device interface and moves it
8308 * to a new network namespace. On success 0 is returned, on
8309 * a failure a netagive errno code is returned.
8310 *
8311 * Callers must hold the rtnl semaphore.
8312 */
8313
8314int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8315{
6621dd29 8316 int err, new_nsid;
ce286d32
EB
8317
8318 ASSERT_RTNL();
8319
8320 /* Don't allow namespace local devices to be moved. */
8321 err = -EINVAL;
8322 if (dev->features & NETIF_F_NETNS_LOCAL)
8323 goto out;
8324
8325 /* Ensure the device has been registrered */
ce286d32
EB
8326 if (dev->reg_state != NETREG_REGISTERED)
8327 goto out;
8328
8329 /* Get out if there is nothing todo */
8330 err = 0;
878628fb 8331 if (net_eq(dev_net(dev), net))
ce286d32
EB
8332 goto out;
8333
8334 /* Pick the destination device name, and ensure
8335 * we can use it in the destination network namespace.
8336 */
8337 err = -EEXIST;
d9031024 8338 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
8339 /* We get here if we can't use the current device name */
8340 if (!pat)
8341 goto out;
828de4f6 8342 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
8343 goto out;
8344 }
8345
8346 /*
8347 * And now a mini version of register_netdevice unregister_netdevice.
8348 */
8349
8350 /* If device is running close it first. */
9b772652 8351 dev_close(dev);
ce286d32
EB
8352
8353 /* And unlink it from device chain */
8354 err = -ENODEV;
8355 unlist_netdevice(dev);
8356
8357 synchronize_net();
8358
8359 /* Shutdown queueing discipline. */
8360 dev_shutdown(dev);
8361
8362 /* Notify protocols, that we are about to destroy
eb13da1a 8363 * this device. They should clean all the things.
8364 *
8365 * Note that dev->reg_state stays at NETREG_REGISTERED.
8366 * This is wanted because this way 8021q and macvlan know
8367 * the device is just moving and can keep their slaves up.
8368 */
ce286d32 8369 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
8370 rcu_barrier();
8371 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6621dd29
ND
8372 if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8373 new_nsid = peernet2id_alloc(dev_net(dev), net);
8374 else
8375 new_nsid = peernet2id(dev_net(dev), net);
8376 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
ce286d32
EB
8377
8378 /*
8379 * Flush the unicast and multicast chains
8380 */
a748ee24 8381 dev_uc_flush(dev);
22bedad3 8382 dev_mc_flush(dev);
ce286d32 8383
4e66ae2e
SH
8384 /* Send a netdev-removed uevent to the old namespace */
8385 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 8386 netdev_adjacent_del_links(dev);
4e66ae2e 8387
ce286d32 8388 /* Actually switch the network namespace */
c346dca1 8389 dev_net_set(dev, net);
ce286d32 8390
ce286d32 8391 /* If there is an ifindex conflict assign a new one */
7a66bbc9 8392 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 8393 dev->ifindex = dev_new_index(net);
ce286d32 8394
4e66ae2e
SH
8395 /* Send a netdev-add uevent to the new namespace */
8396 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 8397 netdev_adjacent_add_links(dev);
4e66ae2e 8398
8b41d188 8399 /* Fixup kobjects */
a1b3f594 8400 err = device_rename(&dev->dev, dev->name);
8b41d188 8401 WARN_ON(err);
ce286d32
EB
8402
8403 /* Add the device back in the hashes */
8404 list_netdevice(dev);
8405
8406 /* Notify protocols, that a new device appeared. */
8407 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8408
d90a909e
EB
8409 /*
8410 * Prevent userspace races by waiting until the network
8411 * device is fully setup before sending notifications.
8412 */
7f294054 8413 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 8414
ce286d32
EB
8415 synchronize_net();
8416 err = 0;
8417out:
8418 return err;
8419}
463d0183 8420EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 8421
f0bf90de 8422static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
8423{
8424 struct sk_buff **list_skb;
1da177e4 8425 struct sk_buff *skb;
f0bf90de 8426 unsigned int cpu;
97d8b6e3 8427 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 8428
1da177e4
LT
8429 local_irq_disable();
8430 cpu = smp_processor_id();
8431 sd = &per_cpu(softnet_data, cpu);
8432 oldsd = &per_cpu(softnet_data, oldcpu);
8433
8434 /* Find end of our completion_queue. */
8435 list_skb = &sd->completion_queue;
8436 while (*list_skb)
8437 list_skb = &(*list_skb)->next;
8438 /* Append completion queue from offline CPU. */
8439 *list_skb = oldsd->completion_queue;
8440 oldsd->completion_queue = NULL;
8441
1da177e4 8442 /* Append output queue from offline CPU. */
a9cbd588
CG
8443 if (oldsd->output_queue) {
8444 *sd->output_queue_tailp = oldsd->output_queue;
8445 sd->output_queue_tailp = oldsd->output_queue_tailp;
8446 oldsd->output_queue = NULL;
8447 oldsd->output_queue_tailp = &oldsd->output_queue;
8448 }
ac64da0b
ED
8449 /* Append NAPI poll list from offline CPU, with one exception :
8450 * process_backlog() must be called by cpu owning percpu backlog.
8451 * We properly handle process_queue & input_pkt_queue later.
8452 */
8453 while (!list_empty(&oldsd->poll_list)) {
8454 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8455 struct napi_struct,
8456 poll_list);
8457
8458 list_del_init(&napi->poll_list);
8459 if (napi->poll == process_backlog)
8460 napi->state = 0;
8461 else
8462 ____napi_schedule(sd, napi);
264524d5 8463 }
1da177e4
LT
8464
8465 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8466 local_irq_enable();
8467
773fc8f6 8468#ifdef CONFIG_RPS
8469 remsd = oldsd->rps_ipi_list;
8470 oldsd->rps_ipi_list = NULL;
8471#endif
8472 /* send out pending IPI's on offline CPU */
8473 net_rps_send_ipi(remsd);
8474
1da177e4 8475 /* Process offline CPU's input_pkt_queue */
76cc8b13 8476 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8477 netif_rx_ni(skb);
76cc8b13 8478 input_queue_head_incr(oldsd);
fec5e652 8479 }
ac64da0b 8480 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8481 netif_rx_ni(skb);
76cc8b13
TH
8482 input_queue_head_incr(oldsd);
8483 }
1da177e4 8484
f0bf90de 8485 return 0;
1da177e4 8486}
1da177e4 8487
7f353bf2 8488/**
b63365a2
HX
8489 * netdev_increment_features - increment feature set by one
8490 * @all: current feature set
8491 * @one: new feature set
8492 * @mask: mask feature set
7f353bf2
HX
8493 *
8494 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8495 * @one to the master device with current feature set @all. Will not
8496 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8497 */
c8f44aff
MM
8498netdev_features_t netdev_increment_features(netdev_features_t all,
8499 netdev_features_t one, netdev_features_t mask)
b63365a2 8500{
c8cd0989 8501 if (mask & NETIF_F_HW_CSUM)
a188222b 8502 mask |= NETIF_F_CSUM_MASK;
1742f183 8503 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8504
a188222b 8505 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8506 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8507
1742f183 8508 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8509 if (all & NETIF_F_HW_CSUM)
8510 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8511
8512 return all;
8513}
b63365a2 8514EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8515
430f03cd 8516static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8517{
8518 int i;
8519 struct hlist_head *hash;
8520
8521 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8522 if (hash != NULL)
8523 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8524 INIT_HLIST_HEAD(&hash[i]);
8525
8526 return hash;
8527}
8528
881d966b 8529/* Initialize per network namespace state */
4665079c 8530static int __net_init netdev_init(struct net *net)
881d966b 8531{
734b6541
RM
8532 if (net != &init_net)
8533 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8534
30d97d35
PE
8535 net->dev_name_head = netdev_create_hash();
8536 if (net->dev_name_head == NULL)
8537 goto err_name;
881d966b 8538
30d97d35
PE
8539 net->dev_index_head = netdev_create_hash();
8540 if (net->dev_index_head == NULL)
8541 goto err_idx;
881d966b
EB
8542
8543 return 0;
30d97d35
PE
8544
8545err_idx:
8546 kfree(net->dev_name_head);
8547err_name:
8548 return -ENOMEM;
881d966b
EB
8549}
8550
f0db275a
SH
8551/**
8552 * netdev_drivername - network driver for the device
8553 * @dev: network device
f0db275a
SH
8554 *
8555 * Determine network driver for device.
8556 */
3019de12 8557const char *netdev_drivername(const struct net_device *dev)
6579e57b 8558{
cf04a4c7
SH
8559 const struct device_driver *driver;
8560 const struct device *parent;
3019de12 8561 const char *empty = "";
6579e57b
AV
8562
8563 parent = dev->dev.parent;
6579e57b 8564 if (!parent)
3019de12 8565 return empty;
6579e57b
AV
8566
8567 driver = parent->driver;
8568 if (driver && driver->name)
3019de12
DM
8569 return driver->name;
8570 return empty;
6579e57b
AV
8571}
8572
6ea754eb
JP
8573static void __netdev_printk(const char *level, const struct net_device *dev,
8574 struct va_format *vaf)
256df2f3 8575{
b004ff49 8576 if (dev && dev->dev.parent) {
6ea754eb
JP
8577 dev_printk_emit(level[1] - '0',
8578 dev->dev.parent,
8579 "%s %s %s%s: %pV",
8580 dev_driver_string(dev->dev.parent),
8581 dev_name(dev->dev.parent),
8582 netdev_name(dev), netdev_reg_state(dev),
8583 vaf);
b004ff49 8584 } else if (dev) {
6ea754eb
JP
8585 printk("%s%s%s: %pV",
8586 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8587 } else {
6ea754eb 8588 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8589 }
256df2f3
JP
8590}
8591
6ea754eb
JP
8592void netdev_printk(const char *level, const struct net_device *dev,
8593 const char *format, ...)
256df2f3
JP
8594{
8595 struct va_format vaf;
8596 va_list args;
256df2f3
JP
8597
8598 va_start(args, format);
8599
8600 vaf.fmt = format;
8601 vaf.va = &args;
8602
6ea754eb 8603 __netdev_printk(level, dev, &vaf);
b004ff49 8604
256df2f3 8605 va_end(args);
256df2f3
JP
8606}
8607EXPORT_SYMBOL(netdev_printk);
8608
8609#define define_netdev_printk_level(func, level) \
6ea754eb 8610void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8611{ \
256df2f3
JP
8612 struct va_format vaf; \
8613 va_list args; \
8614 \
8615 va_start(args, fmt); \
8616 \
8617 vaf.fmt = fmt; \
8618 vaf.va = &args; \
8619 \
6ea754eb 8620 __netdev_printk(level, dev, &vaf); \
b004ff49 8621 \
256df2f3 8622 va_end(args); \
256df2f3
JP
8623} \
8624EXPORT_SYMBOL(func);
8625
8626define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8627define_netdev_printk_level(netdev_alert, KERN_ALERT);
8628define_netdev_printk_level(netdev_crit, KERN_CRIT);
8629define_netdev_printk_level(netdev_err, KERN_ERR);
8630define_netdev_printk_level(netdev_warn, KERN_WARNING);
8631define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8632define_netdev_printk_level(netdev_info, KERN_INFO);
8633
4665079c 8634static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8635{
8636 kfree(net->dev_name_head);
8637 kfree(net->dev_index_head);
8638}
8639
022cbae6 8640static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8641 .init = netdev_init,
8642 .exit = netdev_exit,
8643};
8644
4665079c 8645static void __net_exit default_device_exit(struct net *net)
ce286d32 8646{
e008b5fc 8647 struct net_device *dev, *aux;
ce286d32 8648 /*
e008b5fc 8649 * Push all migratable network devices back to the
ce286d32
EB
8650 * initial network namespace
8651 */
8652 rtnl_lock();
e008b5fc 8653 for_each_netdev_safe(net, dev, aux) {
ce286d32 8654 int err;
aca51397 8655 char fb_name[IFNAMSIZ];
ce286d32
EB
8656
8657 /* Ignore unmoveable devices (i.e. loopback) */
8658 if (dev->features & NETIF_F_NETNS_LOCAL)
8659 continue;
8660
e008b5fc
EB
8661 /* Leave virtual devices for the generic cleanup */
8662 if (dev->rtnl_link_ops)
8663 continue;
d0c082ce 8664
25985edc 8665 /* Push remaining network devices to init_net */
aca51397
PE
8666 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8667 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8668 if (err) {
7b6cd1ce
JP
8669 pr_emerg("%s: failed to move %s to init_net: %d\n",
8670 __func__, dev->name, err);
aca51397 8671 BUG();
ce286d32
EB
8672 }
8673 }
8674 rtnl_unlock();
8675}
8676
50624c93
EB
8677static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8678{
8679 /* Return with the rtnl_lock held when there are no network
8680 * devices unregistering in any network namespace in net_list.
8681 */
8682 struct net *net;
8683 bool unregistering;
ff960a73 8684 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8685
ff960a73 8686 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8687 for (;;) {
50624c93
EB
8688 unregistering = false;
8689 rtnl_lock();
8690 list_for_each_entry(net, net_list, exit_list) {
8691 if (net->dev_unreg_count > 0) {
8692 unregistering = true;
8693 break;
8694 }
8695 }
8696 if (!unregistering)
8697 break;
8698 __rtnl_unlock();
ff960a73
PZ
8699
8700 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8701 }
ff960a73 8702 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8703}
8704
04dc7f6b
EB
8705static void __net_exit default_device_exit_batch(struct list_head *net_list)
8706{
8707 /* At exit all network devices most be removed from a network
b595076a 8708 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8709 * Do this across as many network namespaces as possible to
8710 * improve batching efficiency.
8711 */
8712 struct net_device *dev;
8713 struct net *net;
8714 LIST_HEAD(dev_kill_list);
8715
50624c93
EB
8716 /* To prevent network device cleanup code from dereferencing
8717 * loopback devices or network devices that have been freed
8718 * wait here for all pending unregistrations to complete,
8719 * before unregistring the loopback device and allowing the
8720 * network namespace be freed.
8721 *
8722 * The netdev todo list containing all network devices
8723 * unregistrations that happen in default_device_exit_batch
8724 * will run in the rtnl_unlock() at the end of
8725 * default_device_exit_batch.
8726 */
8727 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8728 list_for_each_entry(net, net_list, exit_list) {
8729 for_each_netdev_reverse(net, dev) {
b0ab2fab 8730 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8731 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8732 else
8733 unregister_netdevice_queue(dev, &dev_kill_list);
8734 }
8735 }
8736 unregister_netdevice_many(&dev_kill_list);
8737 rtnl_unlock();
8738}
8739
022cbae6 8740static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8741 .exit = default_device_exit,
04dc7f6b 8742 .exit_batch = default_device_exit_batch,
ce286d32
EB
8743};
8744
1da177e4
LT
8745/*
8746 * Initialize the DEV module. At boot time this walks the device list and
8747 * unhooks any devices that fail to initialise (normally hardware not
8748 * present) and leaves us with a valid list of present and active devices.
8749 *
8750 */
8751
8752/*
8753 * This is called single threaded during boot, so no need
8754 * to take the rtnl semaphore.
8755 */
8756static int __init net_dev_init(void)
8757{
8758 int i, rc = -ENOMEM;
8759
8760 BUG_ON(!dev_boot_phase);
8761
1da177e4
LT
8762 if (dev_proc_init())
8763 goto out;
8764
8b41d188 8765 if (netdev_kobject_init())
1da177e4
LT
8766 goto out;
8767
8768 INIT_LIST_HEAD(&ptype_all);
82d8a867 8769 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8770 INIT_LIST_HEAD(&ptype_base[i]);
8771
62532da9
VY
8772 INIT_LIST_HEAD(&offload_base);
8773
881d966b
EB
8774 if (register_pernet_subsys(&netdev_net_ops))
8775 goto out;
1da177e4
LT
8776
8777 /*
8778 * Initialise the packet receive queues.
8779 */
8780
6f912042 8781 for_each_possible_cpu(i) {
41852497 8782 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8783 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8784
41852497
ED
8785 INIT_WORK(flush, flush_backlog);
8786
e36fa2f7 8787 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8788 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8789 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8790 sd->output_queue_tailp = &sd->output_queue;
df334545 8791#ifdef CONFIG_RPS
e36fa2f7
ED
8792 sd->csd.func = rps_trigger_softirq;
8793 sd->csd.info = sd;
e36fa2f7 8794 sd->cpu = i;
1e94d72f 8795#endif
0a9627f2 8796
e36fa2f7
ED
8797 sd->backlog.poll = process_backlog;
8798 sd->backlog.weight = weight_p;
1da177e4
LT
8799 }
8800
1da177e4
LT
8801 dev_boot_phase = 0;
8802
505d4f73
EB
8803 /* The loopback device is special if any other network devices
8804 * is present in a network namespace the loopback device must
8805 * be present. Since we now dynamically allocate and free the
8806 * loopback device ensure this invariant is maintained by
8807 * keeping the loopback device as the first device on the
8808 * list of network devices. Ensuring the loopback devices
8809 * is the first device that appears and the last network device
8810 * that disappears.
8811 */
8812 if (register_pernet_device(&loopback_net_ops))
8813 goto out;
8814
8815 if (register_pernet_device(&default_device_ops))
8816 goto out;
8817
962cf36c
CM
8818 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8819 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8820
f0bf90de
SAS
8821 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8822 NULL, dev_cpu_dead);
8823 WARN_ON(rc < 0);
1da177e4
LT
8824 rc = 0;
8825out:
8826 return rc;
8827}
8828
8829subsys_initcall(net_dev_init);