]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - net/core/dev.c
net: report right mtu value in error message
[mirror_ubuntu-jammy-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
40e4e713 142#include <linux/crash_dump.h>
1da177e4 143
342709ef
PE
144#include "net-sysfs.h"
145
d565b0a1
HX
146/* Instead of increasing this, you should create a hash table. */
147#define MAX_GRO_SKBS 8
148
5d38a079
HX
149/* This should be increased if a protocol with a bigger head is added. */
150#define GRO_MAX_HEAD (MAX_HEADER + 128)
151
1da177e4 152static DEFINE_SPINLOCK(ptype_lock);
62532da9 153static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
154struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155struct list_head ptype_all __read_mostly; /* Taps */
62532da9 156static struct list_head offload_base __read_mostly;
1da177e4 157
ae78dbfa 158static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
159static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
ae78dbfa 162
1da177e4 163/*
7562f876 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
165 * semaphore.
166 *
c6d14c84 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
7562f876 170 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
1da177e4 182DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
183EXPORT_SYMBOL(dev_base_lock);
184
af12fa6e
ET
185/* protects napi_hash addition/deletion and napi_gen_id */
186static DEFINE_SPINLOCK(napi_hash_lock);
187
52bd2d62 188static unsigned int napi_gen_id = NR_CPUS;
6180d9de 189static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 190
18afa4b0 191static seqcount_t devnet_rename_seq;
c91f6df2 192
4e985ada
TG
193static inline void dev_base_seq_inc(struct net *net)
194{
195 while (++net->dev_base_seq == 0);
196}
197
881d966b 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 199{
8387ff25 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 201
08e9897d 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
203}
204
881d966b 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 206{
7c28bd0b 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
208}
209
e36fa2f7 210static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
211{
212#ifdef CONFIG_RPS
e36fa2f7 213 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
214#endif
215}
216
e36fa2f7 217static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
ce286d32 224/* Device list insertion */
53759be9 225static void list_netdevice(struct net_device *dev)
ce286d32 226{
c346dca1 227 struct net *net = dev_net(dev);
ce286d32
EB
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
c6d14c84 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
ce286d32 236 write_unlock_bh(&dev_base_lock);
4e985ada
TG
237
238 dev_base_seq_inc(net);
ce286d32
EB
239}
240
fb699dfd
ED
241/* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
ce286d32
EB
244static void unlist_netdevice(struct net_device *dev)
245{
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
c6d14c84 250 list_del_rcu(&dev->dev_list);
72c9528b 251 hlist_del_rcu(&dev->name_hlist);
fb699dfd 252 hlist_del_rcu(&dev->index_hlist);
ce286d32 253 write_unlock_bh(&dev_base_lock);
4e985ada
TG
254
255 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
256}
257
1da177e4
LT
258/*
259 * Our notifier list
260 */
261
f07d5b94 262static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
263
264/*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
bea3348e 268
9958da05 269DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 270EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 271
cf508b12 272#ifdef CONFIG_LOCKDEP
723e98b7 273/*
c773e847 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
275 * according to dev->type
276 */
277static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 293
36cbd3dc 294static const char *const netdev_lock_name[] =
723e98b7
JP
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
310
311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
313
314static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315{
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323}
324
cf508b12
DM
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
723e98b7
JP
327{
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333}
cf508b12
DM
334
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336{
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343}
723e98b7 344#else
cf508b12
DM
345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347{
348}
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
350{
351}
352#endif
1da177e4
LT
353
354/*******************************************************************************
355
356 Protocol management and registration routines
357
358*******************************************************************************/
359
1da177e4
LT
360/*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
c07b68e8
ED
376static inline struct list_head *ptype_head(const struct packet_type *pt)
377{
378 if (pt->type == htons(ETH_P_ALL))
7866a621 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 380 else
7866a621
SN
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
383}
384
1da177e4
LT
385/**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
4ec93edb 393 * This call does not sleep therefore it can not
1da177e4
LT
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398void dev_add_pack(struct packet_type *pt)
399{
c07b68e8 400 struct list_head *head = ptype_head(pt);
1da177e4 401
c07b68e8
ED
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
1da177e4 405}
d1b19dff 406EXPORT_SYMBOL(dev_add_pack);
1da177e4 407
1da177e4
LT
408/**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
4ec93edb 415 * returns.
1da177e4
LT
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421void __dev_remove_pack(struct packet_type *pt)
422{
c07b68e8 423 struct list_head *head = ptype_head(pt);
1da177e4
LT
424 struct packet_type *pt1;
425
c07b68e8 426 spin_lock(&ptype_lock);
1da177e4
LT
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
7b6cd1ce 435 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 436out:
c07b68e8 437 spin_unlock(&ptype_lock);
1da177e4 438}
d1b19dff
ED
439EXPORT_SYMBOL(__dev_remove_pack);
440
1da177e4
LT
441/**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453void dev_remove_pack(struct packet_type *pt)
454{
455 __dev_remove_pack(pt);
4ec93edb 456
1da177e4
LT
457 synchronize_net();
458}
d1b19dff 459EXPORT_SYMBOL(dev_remove_pack);
1da177e4 460
62532da9
VY
461
462/**
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
465 *
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
469 *
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
473 */
474void dev_add_offload(struct packet_offload *po)
475{
bdef7de4 476 struct packet_offload *elem;
62532da9
VY
477
478 spin_lock(&offload_lock);
bdef7de4
DM
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
482 }
483 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
484 spin_unlock(&offload_lock);
485}
486EXPORT_SYMBOL(dev_add_offload);
487
488/**
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
491 *
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
496 *
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
500 */
1d143d9f 501static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
502{
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
505
c53aa505 506 spin_lock(&offload_lock);
62532da9
VY
507
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
512 }
513 }
514
515 pr_warn("dev_remove_offload: %p not found\n", po);
516out:
c53aa505 517 spin_unlock(&offload_lock);
62532da9 518}
62532da9
VY
519
520/**
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
523 *
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
528 *
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
531 */
532void dev_remove_offload(struct packet_offload *po)
533{
534 __dev_remove_offload(po);
535
536 synchronize_net();
537}
538EXPORT_SYMBOL(dev_remove_offload);
539
1da177e4
LT
540/******************************************************************************
541
542 Device Boot-time Settings Routines
543
544*******************************************************************************/
545
546/* Boot time configuration table */
547static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549/**
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
553 *
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
557 */
558static int netdev_boot_setup_add(char *name, struct ifmap *map)
559{
560 struct netdev_boot_setup *s;
561 int i;
562
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 567 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
570 }
571 }
572
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574}
575
576/**
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
579 *
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
584 */
585int netdev_boot_setup_check(struct net_device *dev)
586{
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
589
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 592 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
598 }
599 }
600 return 0;
601}
d1b19dff 602EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
603
604
605/**
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
609 *
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
614 */
615unsigned long netdev_boot_base(const char *prefix, int unit)
616{
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
620
621 sprintf(name, "%s%d", prefix, unit);
622
623 /*
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
626 */
881d966b 627 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
628 return 1;
629
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
634}
635
636/*
637 * Saves at boot time configured settings for any netdevice.
638 */
639int __init netdev_boot_setup(char *str)
640{
641 int ints[5];
642 struct ifmap map;
643
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
647
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
658
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
661}
662
663__setup("netdev=", netdev_boot_setup);
664
665/*******************************************************************************
666
667 Device Interface Subroutines
668
669*******************************************************************************/
670
a54acb3a
ND
671/**
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
674 *
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
677 */
678
679int dev_get_iflink(const struct net_device *dev)
680{
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
683
7a66bbc9 684 return dev->ifindex;
a54acb3a
ND
685}
686EXPORT_SYMBOL(dev_get_iflink);
687
fc4099f1
PS
688/**
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
692 *
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
696 */
697int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698{
699 struct ip_tunnel_info *info;
700
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
703
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
709
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711}
712EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
1da177e4
LT
714/**
715 * __dev_get_by_name - find a device by its name
c4ea43c5 716 * @net: the applicable net namespace
1da177e4
LT
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
881d966b 726struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 727{
0bd8d536
ED
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 730
b67bfe0d 731 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
0bd8d536 734
1da177e4
LT
735 return NULL;
736}
d1b19dff 737EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 738
72c9528b
ED
739/**
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
749 */
750
751struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752{
72c9528b
ED
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
755
b67bfe0d 756 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
759
760 return NULL;
761}
762EXPORT_SYMBOL(dev_get_by_name_rcu);
763
1da177e4
LT
764/**
765 * dev_get_by_name - find a device by its name
c4ea43c5 766 * @net: the applicable net namespace
1da177e4
LT
767 * @name: name to find
768 *
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
774 */
775
881d966b 776struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
777{
778 struct net_device *dev;
779
72c9528b
ED
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
782 if (dev)
783 dev_hold(dev);
72c9528b 784 rcu_read_unlock();
1da177e4
LT
785 return dev;
786}
d1b19dff 787EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
788
789/**
790 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 791 * @net: the applicable net namespace
1da177e4
LT
792 * @ifindex: index of device
793 *
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
799 */
800
881d966b 801struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 802{
0bd8d536
ED
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 805
b67bfe0d 806 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
807 if (dev->ifindex == ifindex)
808 return dev;
0bd8d536 809
1da177e4
LT
810 return NULL;
811}
d1b19dff 812EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 813
fb699dfd
ED
814/**
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
818 *
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
823 */
824
825struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826{
fb699dfd
ED
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
829
b67bfe0d 830 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
831 if (dev->ifindex == ifindex)
832 return dev;
833
834 return NULL;
835}
836EXPORT_SYMBOL(dev_get_by_index_rcu);
837
1da177e4
LT
838
839/**
840 * dev_get_by_index - find a device by its ifindex
c4ea43c5 841 * @net: the applicable net namespace
1da177e4
LT
842 * @ifindex: index of device
843 *
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
848 */
849
881d966b 850struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
851{
852 struct net_device *dev;
853
fb699dfd
ED
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
856 if (dev)
857 dev_hold(dev);
fb699dfd 858 rcu_read_unlock();
1da177e4
LT
859 return dev;
860}
d1b19dff 861EXPORT_SYMBOL(dev_get_by_index);
1da177e4 862
5dbe7c17
NS
863/**
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
868 *
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
872 */
873int netdev_get_name(struct net *net, char *name, int ifindex)
874{
875 struct net_device *dev;
876 unsigned int seq;
877
878retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
885 }
886
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
892 }
893
894 return 0;
895}
896
1da177e4 897/**
941666c2 898 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 899 * @net: the applicable net namespace
1da177e4
LT
900 * @type: media type of device
901 * @ha: hardware address
902 *
903 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
941666c2 906 * The returned device has not had its ref count increased
1da177e4
LT
907 * and the caller must therefore be careful about locking
908 *
1da177e4
LT
909 */
910
941666c2
ED
911struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
1da177e4
LT
913{
914 struct net_device *dev;
915
941666c2 916 for_each_netdev_rcu(net, dev)
1da177e4
LT
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
919 return dev;
920
921 return NULL;
1da177e4 922}
941666c2 923EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 924
881d966b 925struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
926{
927 struct net_device *dev;
928
4e9cac2b 929 ASSERT_RTNL();
881d966b 930 for_each_netdev(net, dev)
4e9cac2b 931 if (dev->type == type)
7562f876
PE
932 return dev;
933
934 return NULL;
4e9cac2b 935}
4e9cac2b
PM
936EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
881d966b 938struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 939{
99fe3c39 940 struct net_device *dev, *ret = NULL;
4e9cac2b 941
99fe3c39
ED
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
948 }
949 rcu_read_unlock();
950 return ret;
1da177e4 951}
1da177e4
LT
952EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954/**
6c555490 955 * __dev_get_by_flags - find any device with given flags
c4ea43c5 956 * @net: the applicable net namespace
1da177e4
LT
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
959 *
960 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 961 * is not found or a pointer to the device. Must be called inside
6c555490 962 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
963 */
964
6c555490
WC
965struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
1da177e4 967{
7562f876 968 struct net_device *dev, *ret;
1da177e4 969
6c555490
WC
970 ASSERT_RTNL();
971
7562f876 972 ret = NULL;
6c555490 973 for_each_netdev(net, dev) {
1da177e4 974 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 975 ret = dev;
1da177e4
LT
976 break;
977 }
978 }
7562f876 979 return ret;
1da177e4 980}
6c555490 981EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
982
983/**
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
986 *
987 * Network device names need to be valid file names to
c7fa9d18
DM
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
1da177e4 990 */
95f050bf 991bool dev_valid_name(const char *name)
1da177e4 992{
c7fa9d18 993 if (*name == '\0')
95f050bf 994 return false;
b6fe17d6 995 if (strlen(name) >= IFNAMSIZ)
95f050bf 996 return false;
c7fa9d18 997 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 998 return false;
c7fa9d18
DM
999
1000 while (*name) {
a4176a93 1001 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1002 return false;
c7fa9d18
DM
1003 name++;
1004 }
95f050bf 1005 return true;
1da177e4 1006}
d1b19dff 1007EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1008
1009/**
b267b179
EB
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1da177e4 1012 * @name: name format string
b267b179 1013 * @buf: scratch buffer and result name string
1da177e4
LT
1014 *
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1022 */
1023
b267b179 1024static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1025{
1026 int i = 0;
1da177e4
LT
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1029 unsigned long *inuse;
1da177e4
LT
1030 struct net_device *d;
1031
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
cfcabdcc 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1044 if (!inuse)
1045 return -ENOMEM;
1046
881d966b 1047 for_each_netdev(net, d) {
1da177e4
LT
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1052
1053 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1054 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1057 }
1058
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1061 }
1062
d9031024
OP
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1065 if (!__dev_get_by_name(net, buf))
1da177e4 1066 return i;
1da177e4
LT
1067
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1071 */
1072 return -ENFILE;
1073}
1074
b267b179
EB
1075/**
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089int dev_alloc_name(struct net_device *dev, const char *name)
1090{
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1094
c346dca1
YH
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
b267b179
EB
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1101}
d1b19dff 1102EXPORT_SYMBOL(dev_alloc_name);
b267b179 1103
828de4f6
G
1104static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
d9031024 1107{
828de4f6
G
1108 char buf[IFNAMSIZ];
1109 int ret;
8ce6cebc 1110
828de4f6
G
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1115}
1116
1117static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1120{
1121 BUG_ON(!net);
8ce6cebc 1122
d9031024
OP
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1125
1c5cae81 1126 if (strchr(name, '%'))
828de4f6 1127 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
8ce6cebc
DL
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1132
1133 return 0;
1134}
1da177e4
LT
1135
1136/**
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1140 *
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1143 */
cf04a4c7 1144int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1145{
238fa362 1146 unsigned char old_assign_type;
fcc5a03a 1147 char oldname[IFNAMSIZ];
1da177e4 1148 int err = 0;
fcc5a03a 1149 int ret;
881d966b 1150 struct net *net;
1da177e4
LT
1151
1152 ASSERT_RTNL();
c346dca1 1153 BUG_ON(!dev_net(dev));
1da177e4 1154
c346dca1 1155 net = dev_net(dev);
1da177e4
LT
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1158
30e6c9fa 1159 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1160
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1162 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1163 return 0;
c91f6df2 1164 }
c8d90dca 1165
fcc5a03a
HX
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1167
828de4f6 1168 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1169 if (err < 0) {
30e6c9fa 1170 write_seqcount_end(&devnet_rename_seq);
d9031024 1171 return err;
c91f6df2 1172 }
1da177e4 1173
6fe82a39
VF
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1176
238fa362
TG
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1179
fcc5a03a 1180rollback:
a1b3f594
EB
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1184 dev->name_assign_type = old_assign_type;
30e6c9fa 1185 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1186 return ret;
dcc99773 1187 }
7f988eab 1188
30e6c9fa 1189 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1190
5bb025fa
VF
1191 netdev_adjacent_rename_links(dev, oldname);
1192
7f988eab 1193 write_lock_bh(&dev_base_lock);
372b2312 1194 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1195 write_unlock_bh(&dev_base_lock);
1196
1197 synchronize_rcu();
1198
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1201 write_unlock_bh(&dev_base_lock);
1202
056925ab 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1204 ret = notifier_to_errno(ret);
1205
1206 if (ret) {
91e9c07b
ED
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
fcc5a03a 1209 err = ret;
30e6c9fa 1210 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1211 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1212 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1215 goto rollback;
91e9c07b 1216 } else {
7b6cd1ce 1217 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1218 dev->name, ret);
fcc5a03a
HX
1219 }
1220 }
1da177e4
LT
1221
1222 return err;
1223}
1224
0b815a1a
SH
1225/**
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
f0db275a 1229 * @len: limit of bytes to copy from info
0b815a1a
SH
1230 *
1231 * Set ifalias for a device,
1232 */
1233int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234{
7364e445
AK
1235 char *new_ifalias;
1236
0b815a1a
SH
1237 ASSERT_RTNL();
1238
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1241
96ca4a2c 1242 if (!len) {
388dfc2d
SK
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
96ca4a2c
OH
1245 return 0;
1246 }
1247
7364e445
AK
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
0b815a1a 1250 return -ENOMEM;
7364e445 1251 dev->ifalias = new_ifalias;
0b815a1a
SH
1252
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1255}
1256
1257
d8a33ac4 1258/**
3041a069 1259 * netdev_features_change - device changes features
d8a33ac4
SH
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed features.
1263 */
1264void netdev_features_change(struct net_device *dev)
1265{
056925ab 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1267}
1268EXPORT_SYMBOL(netdev_features_change);
1269
1da177e4
LT
1270/**
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1273 *
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1277 */
1278void netdev_state_change(struct net_device *dev)
1279{
1280 if (dev->flags & IFF_UP) {
54951194
LP
1281 struct netdev_notifier_change_info change_info;
1282
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
7f294054 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1287 }
1288}
d1b19dff 1289EXPORT_SYMBOL(netdev_state_change);
1da177e4 1290
ee89bab1
AW
1291/**
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1294 *
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1300 */
1301void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1302{
ee89bab1
AW
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
c1da4ac7 1306}
ee89bab1 1307EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1308
bd380811 1309static int __dev_open(struct net_device *dev)
1da177e4 1310{
d314774c 1311 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1312 int ret;
1da177e4 1313
e46b66bc
BH
1314 ASSERT_RTNL();
1315
1da177e4
LT
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1318
ca99ca14
NH
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1322 */
66b5552f 1323 netpoll_poll_disable(dev);
ca99ca14 1324
3b8bcfd5
JB
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1329
1da177e4 1330 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1331
d314774c
SH
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
bada339b 1334
d314774c
SH
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1da177e4 1337
66b5552f 1338 netpoll_poll_enable(dev);
ca99ca14 1339
bada339b
JG
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1da177e4 1343 dev->flags |= IFF_UP;
4417da66 1344 dev_set_rx_mode(dev);
1da177e4 1345 dev_activate(dev);
7bf23575 1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1347 }
bada339b 1348
1da177e4
LT
1349 return ret;
1350}
1351
1352/**
bd380811
PM
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1da177e4 1355 *
bd380811
PM
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1360 *
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1da177e4 1363 */
bd380811
PM
1364int dev_open(struct net_device *dev)
1365{
1366 int ret;
1367
bd380811
PM
1368 if (dev->flags & IFF_UP)
1369 return 0;
1370
bd380811
PM
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1374
7f294054 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378 return ret;
1379}
1380EXPORT_SYMBOL(dev_open);
1381
44345724 1382static int __dev_close_many(struct list_head *head)
1da177e4 1383{
44345724 1384 struct net_device *dev;
e46b66bc 1385
bd380811 1386 ASSERT_RTNL();
9d5010db
DM
1387 might_sleep();
1388
5cde2829 1389 list_for_each_entry(dev, head, close_list) {
3f4df206 1390 /* Temporarily disable netpoll until the interface is down */
66b5552f 1391 netpoll_poll_disable(dev);
3f4df206 1392
44345724 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1394
44345724 1395 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1396
44345724
OP
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1399 *
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1402 */
4e857c58 1403 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1404 }
1da177e4 1405
44345724 1406 dev_deactivate_many(head);
d8b2a4d2 1407
5cde2829 1408 list_for_each_entry(dev, head, close_list) {
44345724 1409 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1410
44345724
OP
1411 /*
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1414 *
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1417 */
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1420
44345724 1421 dev->flags &= ~IFF_UP;
66b5552f 1422 netpoll_poll_enable(dev);
44345724
OP
1423 }
1424
1425 return 0;
1426}
1427
1428static int __dev_close(struct net_device *dev)
1429{
f87e6f47 1430 int retval;
44345724
OP
1431 LIST_HEAD(single);
1432
5cde2829 1433 list_add(&dev->close_list, &single);
f87e6f47
LT
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
ca99ca14 1436
f87e6f47 1437 return retval;
44345724
OP
1438}
1439
99c4a26a 1440int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1441{
1442 struct net_device *dev, *tmp;
1da177e4 1443
5cde2829
EB
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1446 if (!(dev->flags & IFF_UP))
5cde2829 1447 list_del_init(&dev->close_list);
44345724
OP
1448
1449 __dev_close_many(head);
1da177e4 1450
5cde2829 1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1454 if (unlink)
1455 list_del_init(&dev->close_list);
44345724 1456 }
bd380811
PM
1457
1458 return 0;
1459}
99c4a26a 1460EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1461
1462/**
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1465 *
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1470 */
1471int dev_close(struct net_device *dev)
1472{
e14a5993
ED
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1da177e4 1475
5cde2829 1476 list_add(&dev->close_list, &single);
99c4a26a 1477 dev_close_many(&single, true);
e14a5993
ED
1478 list_del(&single);
1479 }
da6e378b 1480 return 0;
1da177e4 1481}
d1b19dff 1482EXPORT_SYMBOL(dev_close);
1da177e4
LT
1483
1484
0187bdfb
BH
1485/**
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1492 */
1493void dev_disable_lro(struct net_device *dev)
1494{
fbe168ba
MK
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
529d0489 1497
bc5787c6
MM
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
27660515 1500
22d5969f
MM
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1503
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
0187bdfb
BH
1506}
1507EXPORT_SYMBOL(dev_disable_lro);
1508
351638e7
JP
1509static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1511{
1512 struct netdev_notifier_info info;
1513
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1516}
0187bdfb 1517
881d966b
EB
1518static int dev_boot_phase = 1;
1519
1da177e4
LT
1520/**
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1523 *
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1528 *
1529 * When registered all registration and up events are replayed
4ec93edb 1530 * to the new notifier to allow device to have a race free
1da177e4
LT
1531 * view of the network device list.
1532 */
1533
1534int register_netdevice_notifier(struct notifier_block *nb)
1535{
1536 struct net_device *dev;
fcc5a03a 1537 struct net_device *last;
881d966b 1538 struct net *net;
1da177e4
LT
1539 int err;
1540
1541 rtnl_lock();
f07d5b94 1542 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1543 if (err)
1544 goto unlock;
881d966b
EB
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
351638e7 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1553
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1da177e4 1556
351638e7 1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1558 }
1da177e4 1559 }
fcc5a03a
HX
1560
1561unlock:
1da177e4
LT
1562 rtnl_unlock();
1563 return err;
fcc5a03a
HX
1564
1565rollback:
1566 last = dev;
881d966b
EB
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
8f891489 1570 goto outroll;
fcc5a03a 1571
881d966b 1572 if (dev->flags & IFF_UP) {
351638e7
JP
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1576 }
351638e7 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1578 }
fcc5a03a 1579 }
c67625a1 1580
8f891489 1581outroll:
c67625a1 1582 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1583 goto unlock;
1da177e4 1584}
d1b19dff 1585EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1586
1587/**
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1590 *
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
7d3d43da
EB
1595 *
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1da177e4
LT
1599 */
1600
1601int unregister_netdevice_notifier(struct notifier_block *nb)
1602{
7d3d43da
EB
1603 struct net_device *dev;
1604 struct net *net;
9f514950
HX
1605 int err;
1606
1607 rtnl_lock();
f07d5b94 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1609 if (err)
1610 goto unlock;
1611
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
351638e7
JP
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1618 }
351638e7 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1620 }
1621 }
1622unlock:
9f514950
HX
1623 rtnl_unlock();
1624 return err;
1da177e4 1625}
d1b19dff 1626EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1627
351638e7
JP
1628/**
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1633 *
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1636 */
1637
1d143d9f 1638static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
351638e7
JP
1641{
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1645}
351638e7 1646
1da177e4
LT
1647/**
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
c4ea43c5 1650 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1651 *
1652 * Call all network notifier blocks. Parameters and return value
f07d5b94 1653 * are as for raw_notifier_call_chain().
1da177e4
LT
1654 */
1655
ad7379d4 1656int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1657{
351638e7
JP
1658 struct netdev_notifier_info info;
1659
1660 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1661}
edf947f1 1662EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1663
1cf51900 1664#ifdef CONFIG_NET_INGRESS
4577139b
DB
1665static struct static_key ingress_needed __read_mostly;
1666
1667void net_inc_ingress_queue(void)
1668{
1669 static_key_slow_inc(&ingress_needed);
1670}
1671EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673void net_dec_ingress_queue(void)
1674{
1675 static_key_slow_dec(&ingress_needed);
1676}
1677EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678#endif
1679
1f211a1b
DB
1680#ifdef CONFIG_NET_EGRESS
1681static struct static_key egress_needed __read_mostly;
1682
1683void net_inc_egress_queue(void)
1684{
1685 static_key_slow_inc(&egress_needed);
1686}
1687EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689void net_dec_egress_queue(void)
1690{
1691 static_key_slow_dec(&egress_needed);
1692}
1693EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694#endif
1695
c5905afb 1696static struct static_key netstamp_needed __read_mostly;
b90e5794 1697#ifdef HAVE_JUMP_LABEL
c5905afb 1698/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1699 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1700 * static_key_slow_dec() calls.
b90e5794
ED
1701 */
1702static atomic_t netstamp_needed_deferred;
1703#endif
1da177e4
LT
1704
1705void net_enable_timestamp(void)
1706{
b90e5794
ED
1707#ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710 if (deferred) {
1711 while (--deferred)
c5905afb 1712 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1713 return;
1714 }
1715#endif
c5905afb 1716 static_key_slow_inc(&netstamp_needed);
1da177e4 1717}
d1b19dff 1718EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1719
1720void net_disable_timestamp(void)
1721{
b90e5794
ED
1722#ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1725 return;
1726 }
1727#endif
c5905afb 1728 static_key_slow_dec(&netstamp_needed);
1da177e4 1729}
d1b19dff 1730EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1731
3b098e2d 1732static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1733{
588f0330 1734 skb->tstamp.tv64 = 0;
c5905afb 1735 if (static_key_false(&netstamp_needed))
a61bbcf2 1736 __net_timestamp(skb);
1da177e4
LT
1737}
1738
588f0330 1739#define net_timestamp_check(COND, SKB) \
c5905afb 1740 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1741 if ((COND) && !(SKB)->tstamp.tv64) \
1742 __net_timestamp(SKB); \
1743 } \
3b098e2d 1744
f4b05d27 1745bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1746{
1747 unsigned int len;
1748
1749 if (!(dev->flags & IFF_UP))
1750 return false;
1751
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1754 return true;
1755
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1758 */
1759 if (skb_is_gso(skb))
1760 return true;
1761
1762 return false;
1763}
1ee481fb 1764EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1765
a0265d28
HX
1766int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767{
bbbf2df0
WB
1768 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1769 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1770 atomic_long_inc(&dev->rx_dropped);
1771 kfree_skb(skb);
1772 return NET_RX_DROP;
1773 }
1774
1775 skb_scrub_packet(skb, true);
08b4b8ea 1776 skb->priority = 0;
a0265d28 1777 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1778 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1779
1780 return 0;
1781}
1782EXPORT_SYMBOL_GPL(__dev_forward_skb);
1783
44540960
AB
1784/**
1785 * dev_forward_skb - loopback an skb to another netif
1786 *
1787 * @dev: destination network device
1788 * @skb: buffer to forward
1789 *
1790 * return values:
1791 * NET_RX_SUCCESS (no congestion)
6ec82562 1792 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1793 *
1794 * dev_forward_skb can be used for injecting an skb from the
1795 * start_xmit function of one device into the receive queue
1796 * of another device.
1797 *
1798 * The receiving device may be in another namespace, so
1799 * we have to clear all information in the skb that could
1800 * impact namespace isolation.
1801 */
1802int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1803{
a0265d28 1804 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1805}
1806EXPORT_SYMBOL_GPL(dev_forward_skb);
1807
71d9dec2
CG
1808static inline int deliver_skb(struct sk_buff *skb,
1809 struct packet_type *pt_prev,
1810 struct net_device *orig_dev)
1811{
1080e512
MT
1812 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1813 return -ENOMEM;
71d9dec2
CG
1814 atomic_inc(&skb->users);
1815 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1816}
1817
7866a621
SN
1818static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1819 struct packet_type **pt,
fbcb2170
JP
1820 struct net_device *orig_dev,
1821 __be16 type,
7866a621
SN
1822 struct list_head *ptype_list)
1823{
1824 struct packet_type *ptype, *pt_prev = *pt;
1825
1826 list_for_each_entry_rcu(ptype, ptype_list, list) {
1827 if (ptype->type != type)
1828 continue;
1829 if (pt_prev)
fbcb2170 1830 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1831 pt_prev = ptype;
1832 }
1833 *pt = pt_prev;
1834}
1835
c0de08d0
EL
1836static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1837{
a3d744e9 1838 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1839 return false;
1840
1841 if (ptype->id_match)
1842 return ptype->id_match(ptype, skb->sk);
1843 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1844 return true;
1845
1846 return false;
1847}
1848
1da177e4
LT
1849/*
1850 * Support routine. Sends outgoing frames to any network
1851 * taps currently in use.
1852 */
1853
74b20582 1854void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1855{
1856 struct packet_type *ptype;
71d9dec2
CG
1857 struct sk_buff *skb2 = NULL;
1858 struct packet_type *pt_prev = NULL;
7866a621 1859 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1860
1da177e4 1861 rcu_read_lock();
7866a621
SN
1862again:
1863 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1864 /* Never send packets back to the socket
1865 * they originated from - MvS (miquels@drinkel.ow.org)
1866 */
7866a621
SN
1867 if (skb_loop_sk(ptype, skb))
1868 continue;
71d9dec2 1869
7866a621
SN
1870 if (pt_prev) {
1871 deliver_skb(skb2, pt_prev, skb->dev);
1872 pt_prev = ptype;
1873 continue;
1874 }
1da177e4 1875
7866a621
SN
1876 /* need to clone skb, done only once */
1877 skb2 = skb_clone(skb, GFP_ATOMIC);
1878 if (!skb2)
1879 goto out_unlock;
70978182 1880
7866a621 1881 net_timestamp_set(skb2);
1da177e4 1882
7866a621
SN
1883 /* skb->nh should be correctly
1884 * set by sender, so that the second statement is
1885 * just protection against buggy protocols.
1886 */
1887 skb_reset_mac_header(skb2);
1888
1889 if (skb_network_header(skb2) < skb2->data ||
1890 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1891 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1892 ntohs(skb2->protocol),
1893 dev->name);
1894 skb_reset_network_header(skb2);
1da177e4 1895 }
7866a621
SN
1896
1897 skb2->transport_header = skb2->network_header;
1898 skb2->pkt_type = PACKET_OUTGOING;
1899 pt_prev = ptype;
1900 }
1901
1902 if (ptype_list == &ptype_all) {
1903 ptype_list = &dev->ptype_all;
1904 goto again;
1da177e4 1905 }
7866a621 1906out_unlock:
71d9dec2
CG
1907 if (pt_prev)
1908 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1909 rcu_read_unlock();
1910}
74b20582 1911EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1912
2c53040f
BH
1913/**
1914 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1915 * @dev: Network device
1916 * @txq: number of queues available
1917 *
1918 * If real_num_tx_queues is changed the tc mappings may no longer be
1919 * valid. To resolve this verify the tc mapping remains valid and if
1920 * not NULL the mapping. With no priorities mapping to this
1921 * offset/count pair it will no longer be used. In the worst case TC0
1922 * is invalid nothing can be done so disable priority mappings. If is
1923 * expected that drivers will fix this mapping if they can before
1924 * calling netif_set_real_num_tx_queues.
1925 */
bb134d22 1926static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1927{
1928 int i;
1929 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1930
1931 /* If TC0 is invalidated disable TC mapping */
1932 if (tc->offset + tc->count > txq) {
7b6cd1ce 1933 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1934 dev->num_tc = 0;
1935 return;
1936 }
1937
1938 /* Invalidated prio to tc mappings set to TC0 */
1939 for (i = 1; i < TC_BITMASK + 1; i++) {
1940 int q = netdev_get_prio_tc_map(dev, i);
1941
1942 tc = &dev->tc_to_txq[q];
1943 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1944 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1945 i, q);
4f57c087
JF
1946 netdev_set_prio_tc_map(dev, i, 0);
1947 }
1948 }
1949}
1950
537c00de
AD
1951#ifdef CONFIG_XPS
1952static DEFINE_MUTEX(xps_map_mutex);
1953#define xmap_dereference(P) \
1954 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1955
10cdc3f3
AD
1956static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1957 int cpu, u16 index)
537c00de 1958{
10cdc3f3
AD
1959 struct xps_map *map = NULL;
1960 int pos;
537c00de 1961
10cdc3f3
AD
1962 if (dev_maps)
1963 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1964
10cdc3f3
AD
1965 for (pos = 0; map && pos < map->len; pos++) {
1966 if (map->queues[pos] == index) {
537c00de
AD
1967 if (map->len > 1) {
1968 map->queues[pos] = map->queues[--map->len];
1969 } else {
10cdc3f3 1970 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1971 kfree_rcu(map, rcu);
1972 map = NULL;
1973 }
10cdc3f3 1974 break;
537c00de 1975 }
537c00de
AD
1976 }
1977
10cdc3f3
AD
1978 return map;
1979}
1980
024e9679 1981static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1982{
1983 struct xps_dev_maps *dev_maps;
024e9679 1984 int cpu, i;
10cdc3f3
AD
1985 bool active = false;
1986
1987 mutex_lock(&xps_map_mutex);
1988 dev_maps = xmap_dereference(dev->xps_maps);
1989
1990 if (!dev_maps)
1991 goto out_no_maps;
1992
1993 for_each_possible_cpu(cpu) {
024e9679
AD
1994 for (i = index; i < dev->num_tx_queues; i++) {
1995 if (!remove_xps_queue(dev_maps, cpu, i))
1996 break;
1997 }
1998 if (i == dev->num_tx_queues)
10cdc3f3
AD
1999 active = true;
2000 }
2001
2002 if (!active) {
537c00de
AD
2003 RCU_INIT_POINTER(dev->xps_maps, NULL);
2004 kfree_rcu(dev_maps, rcu);
2005 }
2006
024e9679
AD
2007 for (i = index; i < dev->num_tx_queues; i++)
2008 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2009 NUMA_NO_NODE);
2010
537c00de
AD
2011out_no_maps:
2012 mutex_unlock(&xps_map_mutex);
2013}
2014
01c5f864
AD
2015static struct xps_map *expand_xps_map(struct xps_map *map,
2016 int cpu, u16 index)
2017{
2018 struct xps_map *new_map;
2019 int alloc_len = XPS_MIN_MAP_ALLOC;
2020 int i, pos;
2021
2022 for (pos = 0; map && pos < map->len; pos++) {
2023 if (map->queues[pos] != index)
2024 continue;
2025 return map;
2026 }
2027
2028 /* Need to add queue to this CPU's existing map */
2029 if (map) {
2030 if (pos < map->alloc_len)
2031 return map;
2032
2033 alloc_len = map->alloc_len * 2;
2034 }
2035
2036 /* Need to allocate new map to store queue on this CPU's map */
2037 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2038 cpu_to_node(cpu));
2039 if (!new_map)
2040 return NULL;
2041
2042 for (i = 0; i < pos; i++)
2043 new_map->queues[i] = map->queues[i];
2044 new_map->alloc_len = alloc_len;
2045 new_map->len = pos;
2046
2047 return new_map;
2048}
2049
3573540c
MT
2050int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2051 u16 index)
537c00de 2052{
01c5f864 2053 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2054 struct xps_map *map, *new_map;
537c00de 2055 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2056 int cpu, numa_node_id = -2;
2057 bool active = false;
537c00de
AD
2058
2059 mutex_lock(&xps_map_mutex);
2060
2061 dev_maps = xmap_dereference(dev->xps_maps);
2062
01c5f864
AD
2063 /* allocate memory for queue storage */
2064 for_each_online_cpu(cpu) {
2065 if (!cpumask_test_cpu(cpu, mask))
2066 continue;
2067
2068 if (!new_dev_maps)
2069 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2070 if (!new_dev_maps) {
2071 mutex_unlock(&xps_map_mutex);
01c5f864 2072 return -ENOMEM;
2bb60cb9 2073 }
01c5f864
AD
2074
2075 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2076 NULL;
2077
2078 map = expand_xps_map(map, cpu, index);
2079 if (!map)
2080 goto error;
2081
2082 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2083 }
2084
2085 if (!new_dev_maps)
2086 goto out_no_new_maps;
2087
537c00de 2088 for_each_possible_cpu(cpu) {
01c5f864
AD
2089 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2090 /* add queue to CPU maps */
2091 int pos = 0;
2092
2093 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2094 while ((pos < map->len) && (map->queues[pos] != index))
2095 pos++;
2096
2097 if (pos == map->len)
2098 map->queues[map->len++] = index;
537c00de 2099#ifdef CONFIG_NUMA
537c00de
AD
2100 if (numa_node_id == -2)
2101 numa_node_id = cpu_to_node(cpu);
2102 else if (numa_node_id != cpu_to_node(cpu))
2103 numa_node_id = -1;
537c00de 2104#endif
01c5f864
AD
2105 } else if (dev_maps) {
2106 /* fill in the new device map from the old device map */
2107 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2108 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2109 }
01c5f864 2110
537c00de
AD
2111 }
2112
01c5f864
AD
2113 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2114
537c00de 2115 /* Cleanup old maps */
01c5f864
AD
2116 if (dev_maps) {
2117 for_each_possible_cpu(cpu) {
2118 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2119 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2120 if (map && map != new_map)
2121 kfree_rcu(map, rcu);
2122 }
537c00de 2123
01c5f864 2124 kfree_rcu(dev_maps, rcu);
537c00de
AD
2125 }
2126
01c5f864
AD
2127 dev_maps = new_dev_maps;
2128 active = true;
537c00de 2129
01c5f864
AD
2130out_no_new_maps:
2131 /* update Tx queue numa node */
537c00de
AD
2132 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2133 (numa_node_id >= 0) ? numa_node_id :
2134 NUMA_NO_NODE);
2135
01c5f864
AD
2136 if (!dev_maps)
2137 goto out_no_maps;
2138
2139 /* removes queue from unused CPUs */
2140 for_each_possible_cpu(cpu) {
2141 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2142 continue;
2143
2144 if (remove_xps_queue(dev_maps, cpu, index))
2145 active = true;
2146 }
2147
2148 /* free map if not active */
2149 if (!active) {
2150 RCU_INIT_POINTER(dev->xps_maps, NULL);
2151 kfree_rcu(dev_maps, rcu);
2152 }
2153
2154out_no_maps:
537c00de
AD
2155 mutex_unlock(&xps_map_mutex);
2156
2157 return 0;
2158error:
01c5f864
AD
2159 /* remove any maps that we added */
2160 for_each_possible_cpu(cpu) {
2161 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2162 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2163 NULL;
2164 if (new_map && new_map != map)
2165 kfree(new_map);
2166 }
2167
537c00de
AD
2168 mutex_unlock(&xps_map_mutex);
2169
537c00de
AD
2170 kfree(new_dev_maps);
2171 return -ENOMEM;
2172}
2173EXPORT_SYMBOL(netif_set_xps_queue);
2174
2175#endif
f0796d5c
JF
2176/*
2177 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2178 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2179 */
e6484930 2180int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2181{
1d24eb48
TH
2182 int rc;
2183
e6484930
TH
2184 if (txq < 1 || txq > dev->num_tx_queues)
2185 return -EINVAL;
f0796d5c 2186
5c56580b
BH
2187 if (dev->reg_state == NETREG_REGISTERED ||
2188 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2189 ASSERT_RTNL();
2190
1d24eb48
TH
2191 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2192 txq);
bf264145
TH
2193 if (rc)
2194 return rc;
2195
4f57c087
JF
2196 if (dev->num_tc)
2197 netif_setup_tc(dev, txq);
2198
024e9679 2199 if (txq < dev->real_num_tx_queues) {
e6484930 2200 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2201#ifdef CONFIG_XPS
2202 netif_reset_xps_queues_gt(dev, txq);
2203#endif
2204 }
f0796d5c 2205 }
e6484930
TH
2206
2207 dev->real_num_tx_queues = txq;
2208 return 0;
f0796d5c
JF
2209}
2210EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2211
a953be53 2212#ifdef CONFIG_SYSFS
62fe0b40
BH
2213/**
2214 * netif_set_real_num_rx_queues - set actual number of RX queues used
2215 * @dev: Network device
2216 * @rxq: Actual number of RX queues
2217 *
2218 * This must be called either with the rtnl_lock held or before
2219 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2220 * negative error code. If called before registration, it always
2221 * succeeds.
62fe0b40
BH
2222 */
2223int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2224{
2225 int rc;
2226
bd25fa7b
TH
2227 if (rxq < 1 || rxq > dev->num_rx_queues)
2228 return -EINVAL;
2229
62fe0b40
BH
2230 if (dev->reg_state == NETREG_REGISTERED) {
2231 ASSERT_RTNL();
2232
62fe0b40
BH
2233 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2234 rxq);
2235 if (rc)
2236 return rc;
62fe0b40
BH
2237 }
2238
2239 dev->real_num_rx_queues = rxq;
2240 return 0;
2241}
2242EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2243#endif
2244
2c53040f
BH
2245/**
2246 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2247 *
2248 * This routine should set an upper limit on the number of RSS queues
2249 * used by default by multiqueue devices.
2250 */
a55b138b 2251int netif_get_num_default_rss_queues(void)
16917b87 2252{
40e4e713
HS
2253 return is_kdump_kernel() ?
2254 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2255}
2256EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2257
3bcb846c 2258static void __netif_reschedule(struct Qdisc *q)
56079431 2259{
def82a1d
JP
2260 struct softnet_data *sd;
2261 unsigned long flags;
56079431 2262
def82a1d 2263 local_irq_save(flags);
903ceff7 2264 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2265 q->next_sched = NULL;
2266 *sd->output_queue_tailp = q;
2267 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2268 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2269 local_irq_restore(flags);
2270}
2271
2272void __netif_schedule(struct Qdisc *q)
2273{
2274 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2275 __netif_reschedule(q);
56079431
DV
2276}
2277EXPORT_SYMBOL(__netif_schedule);
2278
e6247027
ED
2279struct dev_kfree_skb_cb {
2280 enum skb_free_reason reason;
2281};
2282
2283static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2284{
e6247027
ED
2285 return (struct dev_kfree_skb_cb *)skb->cb;
2286}
2287
46e5da40
JF
2288void netif_schedule_queue(struct netdev_queue *txq)
2289{
2290 rcu_read_lock();
2291 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2292 struct Qdisc *q = rcu_dereference(txq->qdisc);
2293
2294 __netif_schedule(q);
2295 }
2296 rcu_read_unlock();
2297}
2298EXPORT_SYMBOL(netif_schedule_queue);
2299
2300/**
2301 * netif_wake_subqueue - allow sending packets on subqueue
2302 * @dev: network device
2303 * @queue_index: sub queue index
2304 *
2305 * Resume individual transmit queue of a device with multiple transmit queues.
2306 */
2307void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2308{
2309 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2310
2311 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2312 struct Qdisc *q;
2313
2314 rcu_read_lock();
2315 q = rcu_dereference(txq->qdisc);
2316 __netif_schedule(q);
2317 rcu_read_unlock();
2318 }
2319}
2320EXPORT_SYMBOL(netif_wake_subqueue);
2321
2322void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2323{
2324 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2325 struct Qdisc *q;
2326
2327 rcu_read_lock();
2328 q = rcu_dereference(dev_queue->qdisc);
2329 __netif_schedule(q);
2330 rcu_read_unlock();
2331 }
2332}
2333EXPORT_SYMBOL(netif_tx_wake_queue);
2334
e6247027 2335void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2336{
e6247027 2337 unsigned long flags;
56079431 2338
e6247027
ED
2339 if (likely(atomic_read(&skb->users) == 1)) {
2340 smp_rmb();
2341 atomic_set(&skb->users, 0);
2342 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2343 return;
bea3348e 2344 }
e6247027
ED
2345 get_kfree_skb_cb(skb)->reason = reason;
2346 local_irq_save(flags);
2347 skb->next = __this_cpu_read(softnet_data.completion_queue);
2348 __this_cpu_write(softnet_data.completion_queue, skb);
2349 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2350 local_irq_restore(flags);
56079431 2351}
e6247027 2352EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2353
e6247027 2354void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2355{
2356 if (in_irq() || irqs_disabled())
e6247027 2357 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2358 else
2359 dev_kfree_skb(skb);
2360}
e6247027 2361EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2362
2363
bea3348e
SH
2364/**
2365 * netif_device_detach - mark device as removed
2366 * @dev: network device
2367 *
2368 * Mark device as removed from system and therefore no longer available.
2369 */
56079431
DV
2370void netif_device_detach(struct net_device *dev)
2371{
2372 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2373 netif_running(dev)) {
d543103a 2374 netif_tx_stop_all_queues(dev);
56079431
DV
2375 }
2376}
2377EXPORT_SYMBOL(netif_device_detach);
2378
bea3348e
SH
2379/**
2380 * netif_device_attach - mark device as attached
2381 * @dev: network device
2382 *
2383 * Mark device as attached from system and restart if needed.
2384 */
56079431
DV
2385void netif_device_attach(struct net_device *dev)
2386{
2387 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2388 netif_running(dev)) {
d543103a 2389 netif_tx_wake_all_queues(dev);
4ec93edb 2390 __netdev_watchdog_up(dev);
56079431
DV
2391 }
2392}
2393EXPORT_SYMBOL(netif_device_attach);
2394
5605c762
JP
2395/*
2396 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2397 * to be used as a distribution range.
2398 */
2399u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2400 unsigned int num_tx_queues)
2401{
2402 u32 hash;
2403 u16 qoffset = 0;
2404 u16 qcount = num_tx_queues;
2405
2406 if (skb_rx_queue_recorded(skb)) {
2407 hash = skb_get_rx_queue(skb);
2408 while (unlikely(hash >= num_tx_queues))
2409 hash -= num_tx_queues;
2410 return hash;
2411 }
2412
2413 if (dev->num_tc) {
2414 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2415 qoffset = dev->tc_to_txq[tc].offset;
2416 qcount = dev->tc_to_txq[tc].count;
2417 }
2418
2419 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2420}
2421EXPORT_SYMBOL(__skb_tx_hash);
2422
36c92474
BH
2423static void skb_warn_bad_offload(const struct sk_buff *skb)
2424{
84d15ae5 2425 static const netdev_features_t null_features;
36c92474 2426 struct net_device *dev = skb->dev;
88ad4175 2427 const char *name = "";
36c92474 2428
c846ad9b
BG
2429 if (!net_ratelimit())
2430 return;
2431
88ad4175
BM
2432 if (dev) {
2433 if (dev->dev.parent)
2434 name = dev_driver_string(dev->dev.parent);
2435 else
2436 name = netdev_name(dev);
2437 }
36c92474
BH
2438 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2439 "gso_type=%d ip_summed=%d\n",
88ad4175 2440 name, dev ? &dev->features : &null_features,
65e9d2fa 2441 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2442 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2443 skb_shinfo(skb)->gso_type, skb->ip_summed);
2444}
2445
1da177e4
LT
2446/*
2447 * Invalidate hardware checksum when packet is to be mangled, and
2448 * complete checksum manually on outgoing path.
2449 */
84fa7933 2450int skb_checksum_help(struct sk_buff *skb)
1da177e4 2451{
d3bc23e7 2452 __wsum csum;
663ead3b 2453 int ret = 0, offset;
1da177e4 2454
84fa7933 2455 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2456 goto out_set_summed;
2457
2458 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2459 skb_warn_bad_offload(skb);
2460 return -EINVAL;
1da177e4
LT
2461 }
2462
cef401de
ED
2463 /* Before computing a checksum, we should make sure no frag could
2464 * be modified by an external entity : checksum could be wrong.
2465 */
2466 if (skb_has_shared_frag(skb)) {
2467 ret = __skb_linearize(skb);
2468 if (ret)
2469 goto out;
2470 }
2471
55508d60 2472 offset = skb_checksum_start_offset(skb);
a030847e
HX
2473 BUG_ON(offset >= skb_headlen(skb));
2474 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2475
2476 offset += skb->csum_offset;
2477 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2478
2479 if (skb_cloned(skb) &&
2480 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2481 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2482 if (ret)
2483 goto out;
2484 }
2485
a030847e 2486 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2487out_set_summed:
1da177e4 2488 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2489out:
1da177e4
LT
2490 return ret;
2491}
d1b19dff 2492EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2493
53d6471c 2494__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2495{
252e3346 2496 __be16 type = skb->protocol;
f6a78bfc 2497
19acc327
PS
2498 /* Tunnel gso handlers can set protocol to ethernet. */
2499 if (type == htons(ETH_P_TEB)) {
2500 struct ethhdr *eth;
2501
2502 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2503 return 0;
2504
2505 eth = (struct ethhdr *)skb_mac_header(skb);
2506 type = eth->h_proto;
2507 }
2508
d4bcef3f 2509 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2510}
2511
2512/**
2513 * skb_mac_gso_segment - mac layer segmentation handler.
2514 * @skb: buffer to segment
2515 * @features: features for the output path (see dev->features)
2516 */
2517struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2518 netdev_features_t features)
2519{
2520 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2521 struct packet_offload *ptype;
53d6471c
VY
2522 int vlan_depth = skb->mac_len;
2523 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2524
2525 if (unlikely(!type))
2526 return ERR_PTR(-EINVAL);
2527
53d6471c 2528 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2529
2530 rcu_read_lock();
22061d80 2531 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2532 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2533 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2534 break;
2535 }
2536 }
2537 rcu_read_unlock();
2538
98e399f8 2539 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2540
f6a78bfc
HX
2541 return segs;
2542}
05e8ef4a
PS
2543EXPORT_SYMBOL(skb_mac_gso_segment);
2544
2545
2546/* openvswitch calls this on rx path, so we need a different check.
2547 */
2548static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2549{
2550 if (tx_path)
2551 return skb->ip_summed != CHECKSUM_PARTIAL;
2552 else
2553 return skb->ip_summed == CHECKSUM_NONE;
2554}
2555
2556/**
2557 * __skb_gso_segment - Perform segmentation on skb.
2558 * @skb: buffer to segment
2559 * @features: features for the output path (see dev->features)
2560 * @tx_path: whether it is called in TX path
2561 *
2562 * This function segments the given skb and returns a list of segments.
2563 *
2564 * It may return NULL if the skb requires no segmentation. This is
2565 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2566 *
2567 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2568 */
2569struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2570 netdev_features_t features, bool tx_path)
2571{
2572 if (unlikely(skb_needs_check(skb, tx_path))) {
2573 int err;
2574
2575 skb_warn_bad_offload(skb);
2576
a40e0a66 2577 err = skb_cow_head(skb, 0);
2578 if (err < 0)
05e8ef4a
PS
2579 return ERR_PTR(err);
2580 }
2581
802ab55a
AD
2582 /* Only report GSO partial support if it will enable us to
2583 * support segmentation on this frame without needing additional
2584 * work.
2585 */
2586 if (features & NETIF_F_GSO_PARTIAL) {
2587 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2588 struct net_device *dev = skb->dev;
2589
2590 partial_features |= dev->features & dev->gso_partial_features;
2591 if (!skb_gso_ok(skb, features | partial_features))
2592 features &= ~NETIF_F_GSO_PARTIAL;
2593 }
2594
9207f9d4
KK
2595 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2596 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2597
68c33163 2598 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2599 SKB_GSO_CB(skb)->encap_level = 0;
2600
05e8ef4a
PS
2601 skb_reset_mac_header(skb);
2602 skb_reset_mac_len(skb);
2603
2604 return skb_mac_gso_segment(skb, features);
2605}
12b0004d 2606EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2607
fb286bb2
HX
2608/* Take action when hardware reception checksum errors are detected. */
2609#ifdef CONFIG_BUG
2610void netdev_rx_csum_fault(struct net_device *dev)
2611{
2612 if (net_ratelimit()) {
7b6cd1ce 2613 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2614 dump_stack();
2615 }
2616}
2617EXPORT_SYMBOL(netdev_rx_csum_fault);
2618#endif
2619
1da177e4
LT
2620/* Actually, we should eliminate this check as soon as we know, that:
2621 * 1. IOMMU is present and allows to map all the memory.
2622 * 2. No high memory really exists on this machine.
2623 */
2624
c1e756bf 2625static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2626{
3d3a8533 2627#ifdef CONFIG_HIGHMEM
1da177e4 2628 int i;
5acbbd42 2629 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2630 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2631 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2632 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2633 return 1;
ea2ab693 2634 }
5acbbd42 2635 }
1da177e4 2636
5acbbd42
FT
2637 if (PCI_DMA_BUS_IS_PHYS) {
2638 struct device *pdev = dev->dev.parent;
1da177e4 2639
9092c658
ED
2640 if (!pdev)
2641 return 0;
5acbbd42 2642 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2643 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2644 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2645 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2646 return 1;
2647 }
2648 }
3d3a8533 2649#endif
1da177e4
LT
2650 return 0;
2651}
1da177e4 2652
3b392ddb
SH
2653/* If MPLS offload request, verify we are testing hardware MPLS features
2654 * instead of standard features for the netdev.
2655 */
d0edc7bf 2656#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2657static netdev_features_t net_mpls_features(struct sk_buff *skb,
2658 netdev_features_t features,
2659 __be16 type)
2660{
25cd9ba0 2661 if (eth_p_mpls(type))
3b392ddb
SH
2662 features &= skb->dev->mpls_features;
2663
2664 return features;
2665}
2666#else
2667static netdev_features_t net_mpls_features(struct sk_buff *skb,
2668 netdev_features_t features,
2669 __be16 type)
2670{
2671 return features;
2672}
2673#endif
2674
c8f44aff 2675static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2676 netdev_features_t features)
f01a5236 2677{
53d6471c 2678 int tmp;
3b392ddb
SH
2679 __be16 type;
2680
2681 type = skb_network_protocol(skb, &tmp);
2682 features = net_mpls_features(skb, features, type);
53d6471c 2683
c0d680e5 2684 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2685 !can_checksum_protocol(features, type)) {
996e8021 2686 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2687 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2688 features &= ~NETIF_F_SG;
2689 }
2690
2691 return features;
2692}
2693
e38f3025
TM
2694netdev_features_t passthru_features_check(struct sk_buff *skb,
2695 struct net_device *dev,
2696 netdev_features_t features)
2697{
2698 return features;
2699}
2700EXPORT_SYMBOL(passthru_features_check);
2701
8cb65d00
TM
2702static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2703 struct net_device *dev,
2704 netdev_features_t features)
2705{
2706 return vlan_features_check(skb, features);
2707}
2708
cbc53e08
AD
2709static netdev_features_t gso_features_check(const struct sk_buff *skb,
2710 struct net_device *dev,
2711 netdev_features_t features)
2712{
2713 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2714
2715 if (gso_segs > dev->gso_max_segs)
2716 return features & ~NETIF_F_GSO_MASK;
2717
802ab55a
AD
2718 /* Support for GSO partial features requires software
2719 * intervention before we can actually process the packets
2720 * so we need to strip support for any partial features now
2721 * and we can pull them back in after we have partially
2722 * segmented the frame.
2723 */
2724 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2725 features &= ~dev->gso_partial_features;
2726
2727 /* Make sure to clear the IPv4 ID mangling feature if the
2728 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2729 */
2730 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2731 struct iphdr *iph = skb->encapsulation ?
2732 inner_ip_hdr(skb) : ip_hdr(skb);
2733
2734 if (!(iph->frag_off & htons(IP_DF)))
2735 features &= ~NETIF_F_TSO_MANGLEID;
2736 }
2737
2738 return features;
2739}
2740
c1e756bf 2741netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2742{
5f35227e 2743 struct net_device *dev = skb->dev;
fcbeb976 2744 netdev_features_t features = dev->features;
58e998c6 2745
cbc53e08
AD
2746 if (skb_is_gso(skb))
2747 features = gso_features_check(skb, dev, features);
30b678d8 2748
5f35227e
JG
2749 /* If encapsulation offload request, verify we are testing
2750 * hardware encapsulation features instead of standard
2751 * features for the netdev
2752 */
2753 if (skb->encapsulation)
2754 features &= dev->hw_enc_features;
2755
f5a7fb88
TM
2756 if (skb_vlan_tagged(skb))
2757 features = netdev_intersect_features(features,
2758 dev->vlan_features |
2759 NETIF_F_HW_VLAN_CTAG_TX |
2760 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2761
5f35227e
JG
2762 if (dev->netdev_ops->ndo_features_check)
2763 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2764 features);
8cb65d00
TM
2765 else
2766 features &= dflt_features_check(skb, dev, features);
5f35227e 2767
c1e756bf 2768 return harmonize_features(skb, features);
58e998c6 2769}
c1e756bf 2770EXPORT_SYMBOL(netif_skb_features);
58e998c6 2771
2ea25513 2772static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2773 struct netdev_queue *txq, bool more)
f6a78bfc 2774{
2ea25513
DM
2775 unsigned int len;
2776 int rc;
00829823 2777
7866a621 2778 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2779 dev_queue_xmit_nit(skb, dev);
fc741216 2780
2ea25513
DM
2781 len = skb->len;
2782 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2783 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2784 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2785
2ea25513
DM
2786 return rc;
2787}
7b9c6090 2788
8dcda22a
DM
2789struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2790 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2791{
2792 struct sk_buff *skb = first;
2793 int rc = NETDEV_TX_OK;
7b9c6090 2794
7f2e870f
DM
2795 while (skb) {
2796 struct sk_buff *next = skb->next;
fc70fb64 2797
7f2e870f 2798 skb->next = NULL;
95f6b3dd 2799 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2800 if (unlikely(!dev_xmit_complete(rc))) {
2801 skb->next = next;
2802 goto out;
2803 }
6afff0ca 2804
7f2e870f
DM
2805 skb = next;
2806 if (netif_xmit_stopped(txq) && skb) {
2807 rc = NETDEV_TX_BUSY;
2808 break;
9ccb8975 2809 }
7f2e870f 2810 }
9ccb8975 2811
7f2e870f
DM
2812out:
2813 *ret = rc;
2814 return skb;
2815}
b40863c6 2816
1ff0dc94
ED
2817static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2818 netdev_features_t features)
f6a78bfc 2819{
df8a39de 2820 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2821 !vlan_hw_offload_capable(features, skb->vlan_proto))
2822 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2823 return skb;
2824}
f6a78bfc 2825
55a93b3e 2826static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2827{
2828 netdev_features_t features;
f6a78bfc 2829
eae3f88e
DM
2830 features = netif_skb_features(skb);
2831 skb = validate_xmit_vlan(skb, features);
2832 if (unlikely(!skb))
2833 goto out_null;
7b9c6090 2834
8b86a61d 2835 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2836 struct sk_buff *segs;
2837
2838 segs = skb_gso_segment(skb, features);
cecda693 2839 if (IS_ERR(segs)) {
af6dabc9 2840 goto out_kfree_skb;
cecda693
JW
2841 } else if (segs) {
2842 consume_skb(skb);
2843 skb = segs;
f6a78bfc 2844 }
eae3f88e
DM
2845 } else {
2846 if (skb_needs_linearize(skb, features) &&
2847 __skb_linearize(skb))
2848 goto out_kfree_skb;
4ec93edb 2849
eae3f88e
DM
2850 /* If packet is not checksummed and device does not
2851 * support checksumming for this protocol, complete
2852 * checksumming here.
2853 */
2854 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2855 if (skb->encapsulation)
2856 skb_set_inner_transport_header(skb,
2857 skb_checksum_start_offset(skb));
2858 else
2859 skb_set_transport_header(skb,
2860 skb_checksum_start_offset(skb));
a188222b 2861 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2862 skb_checksum_help(skb))
2863 goto out_kfree_skb;
7b9c6090 2864 }
0c772159 2865 }
7b9c6090 2866
eae3f88e 2867 return skb;
fc70fb64 2868
f6a78bfc
HX
2869out_kfree_skb:
2870 kfree_skb(skb);
eae3f88e 2871out_null:
d21fd63e 2872 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
2873 return NULL;
2874}
6afff0ca 2875
55a93b3e
ED
2876struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2877{
2878 struct sk_buff *next, *head = NULL, *tail;
2879
bec3cfdc 2880 for (; skb != NULL; skb = next) {
55a93b3e
ED
2881 next = skb->next;
2882 skb->next = NULL;
bec3cfdc
ED
2883
2884 /* in case skb wont be segmented, point to itself */
2885 skb->prev = skb;
2886
55a93b3e 2887 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2888 if (!skb)
2889 continue;
55a93b3e 2890
bec3cfdc
ED
2891 if (!head)
2892 head = skb;
2893 else
2894 tail->next = skb;
2895 /* If skb was segmented, skb->prev points to
2896 * the last segment. If not, it still contains skb.
2897 */
2898 tail = skb->prev;
55a93b3e
ED
2899 }
2900 return head;
f6a78bfc
HX
2901}
2902
1def9238
ED
2903static void qdisc_pkt_len_init(struct sk_buff *skb)
2904{
2905 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2906
2907 qdisc_skb_cb(skb)->pkt_len = skb->len;
2908
2909 /* To get more precise estimation of bytes sent on wire,
2910 * we add to pkt_len the headers size of all segments
2911 */
2912 if (shinfo->gso_size) {
757b8b1d 2913 unsigned int hdr_len;
15e5a030 2914 u16 gso_segs = shinfo->gso_segs;
1def9238 2915
757b8b1d
ED
2916 /* mac layer + network layer */
2917 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2918
2919 /* + transport layer */
1def9238
ED
2920 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2921 hdr_len += tcp_hdrlen(skb);
2922 else
2923 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2924
2925 if (shinfo->gso_type & SKB_GSO_DODGY)
2926 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2927 shinfo->gso_size);
2928
2929 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2930 }
2931}
2932
bbd8a0d3
KK
2933static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2934 struct net_device *dev,
2935 struct netdev_queue *txq)
2936{
2937 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 2938 struct sk_buff *to_free = NULL;
a2da570d 2939 bool contended;
bbd8a0d3
KK
2940 int rc;
2941
a2da570d 2942 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2943 /*
2944 * Heuristic to force contended enqueues to serialize on a
2945 * separate lock before trying to get qdisc main lock.
f9eb8aea 2946 * This permits qdisc->running owner to get the lock more
9bf2b8c2 2947 * often and dequeue packets faster.
79640a4c 2948 */
a2da570d 2949 contended = qdisc_is_running(q);
79640a4c
ED
2950 if (unlikely(contended))
2951 spin_lock(&q->busylock);
2952
bbd8a0d3
KK
2953 spin_lock(root_lock);
2954 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 2955 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
2956 rc = NET_XMIT_DROP;
2957 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2958 qdisc_run_begin(q)) {
bbd8a0d3
KK
2959 /*
2960 * This is a work-conserving queue; there are no old skbs
2961 * waiting to be sent out; and the qdisc is not running -
2962 * xmit the skb directly.
2963 */
bfe0d029 2964
bfe0d029
ED
2965 qdisc_bstats_update(q, skb);
2966
55a93b3e 2967 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
2968 if (unlikely(contended)) {
2969 spin_unlock(&q->busylock);
2970 contended = false;
2971 }
bbd8a0d3 2972 __qdisc_run(q);
79640a4c 2973 } else
bc135b23 2974 qdisc_run_end(q);
bbd8a0d3
KK
2975
2976 rc = NET_XMIT_SUCCESS;
2977 } else {
520ac30f 2978 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
2979 if (qdisc_run_begin(q)) {
2980 if (unlikely(contended)) {
2981 spin_unlock(&q->busylock);
2982 contended = false;
2983 }
2984 __qdisc_run(q);
2985 }
bbd8a0d3
KK
2986 }
2987 spin_unlock(root_lock);
520ac30f
ED
2988 if (unlikely(to_free))
2989 kfree_skb_list(to_free);
79640a4c
ED
2990 if (unlikely(contended))
2991 spin_unlock(&q->busylock);
bbd8a0d3
KK
2992 return rc;
2993}
2994
86f8515f 2995#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2996static void skb_update_prio(struct sk_buff *skb)
2997{
6977a79d 2998 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2999
91c68ce2 3000 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3001 unsigned int prioidx =
3002 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3003
3004 if (prioidx < map->priomap_len)
3005 skb->priority = map->priomap[prioidx];
3006 }
5bc1421e
NH
3007}
3008#else
3009#define skb_update_prio(skb)
3010#endif
3011
f60e5990 3012DEFINE_PER_CPU(int, xmit_recursion);
3013EXPORT_SYMBOL(xmit_recursion);
3014
95603e22
MM
3015/**
3016 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3017 * @net: network namespace this loopback is happening in
3018 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3019 * @skb: buffer to transmit
3020 */
0c4b51f0 3021int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3022{
3023 skb_reset_mac_header(skb);
3024 __skb_pull(skb, skb_network_offset(skb));
3025 skb->pkt_type = PACKET_LOOPBACK;
3026 skb->ip_summed = CHECKSUM_UNNECESSARY;
3027 WARN_ON(!skb_dst(skb));
3028 skb_dst_force(skb);
3029 netif_rx_ni(skb);
3030 return 0;
3031}
3032EXPORT_SYMBOL(dev_loopback_xmit);
3033
1f211a1b
DB
3034#ifdef CONFIG_NET_EGRESS
3035static struct sk_buff *
3036sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3037{
3038 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3039 struct tcf_result cl_res;
3040
3041 if (!cl)
3042 return skb;
3043
3044 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3045 * earlier by the caller.
3046 */
3047 qdisc_bstats_cpu_update(cl->q, skb);
3048
3049 switch (tc_classify(skb, cl, &cl_res, false)) {
3050 case TC_ACT_OK:
3051 case TC_ACT_RECLASSIFY:
3052 skb->tc_index = TC_H_MIN(cl_res.classid);
3053 break;
3054 case TC_ACT_SHOT:
3055 qdisc_qstats_cpu_drop(cl->q);
3056 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3057 kfree_skb(skb);
3058 return NULL;
1f211a1b
DB
3059 case TC_ACT_STOLEN:
3060 case TC_ACT_QUEUED:
3061 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3062 consume_skb(skb);
1f211a1b
DB
3063 return NULL;
3064 case TC_ACT_REDIRECT:
3065 /* No need to push/pop skb's mac_header here on egress! */
3066 skb_do_redirect(skb);
3067 *ret = NET_XMIT_SUCCESS;
3068 return NULL;
3069 default:
3070 break;
3071 }
3072
3073 return skb;
3074}
3075#endif /* CONFIG_NET_EGRESS */
3076
638b2a69
JP
3077static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3078{
3079#ifdef CONFIG_XPS
3080 struct xps_dev_maps *dev_maps;
3081 struct xps_map *map;
3082 int queue_index = -1;
3083
3084 rcu_read_lock();
3085 dev_maps = rcu_dereference(dev->xps_maps);
3086 if (dev_maps) {
3087 map = rcu_dereference(
3088 dev_maps->cpu_map[skb->sender_cpu - 1]);
3089 if (map) {
3090 if (map->len == 1)
3091 queue_index = map->queues[0];
3092 else
3093 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3094 map->len)];
3095 if (unlikely(queue_index >= dev->real_num_tx_queues))
3096 queue_index = -1;
3097 }
3098 }
3099 rcu_read_unlock();
3100
3101 return queue_index;
3102#else
3103 return -1;
3104#endif
3105}
3106
3107static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3108{
3109 struct sock *sk = skb->sk;
3110 int queue_index = sk_tx_queue_get(sk);
3111
3112 if (queue_index < 0 || skb->ooo_okay ||
3113 queue_index >= dev->real_num_tx_queues) {
3114 int new_index = get_xps_queue(dev, skb);
3115 if (new_index < 0)
3116 new_index = skb_tx_hash(dev, skb);
3117
3118 if (queue_index != new_index && sk &&
004a5d01 3119 sk_fullsock(sk) &&
638b2a69
JP
3120 rcu_access_pointer(sk->sk_dst_cache))
3121 sk_tx_queue_set(sk, new_index);
3122
3123 queue_index = new_index;
3124 }
3125
3126 return queue_index;
3127}
3128
3129struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3130 struct sk_buff *skb,
3131 void *accel_priv)
3132{
3133 int queue_index = 0;
3134
3135#ifdef CONFIG_XPS
52bd2d62
ED
3136 u32 sender_cpu = skb->sender_cpu - 1;
3137
3138 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3139 skb->sender_cpu = raw_smp_processor_id() + 1;
3140#endif
3141
3142 if (dev->real_num_tx_queues != 1) {
3143 const struct net_device_ops *ops = dev->netdev_ops;
3144 if (ops->ndo_select_queue)
3145 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3146 __netdev_pick_tx);
3147 else
3148 queue_index = __netdev_pick_tx(dev, skb);
3149
3150 if (!accel_priv)
3151 queue_index = netdev_cap_txqueue(dev, queue_index);
3152 }
3153
3154 skb_set_queue_mapping(skb, queue_index);
3155 return netdev_get_tx_queue(dev, queue_index);
3156}
3157
d29f749e 3158/**
9d08dd3d 3159 * __dev_queue_xmit - transmit a buffer
d29f749e 3160 * @skb: buffer to transmit
9d08dd3d 3161 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3162 *
3163 * Queue a buffer for transmission to a network device. The caller must
3164 * have set the device and priority and built the buffer before calling
3165 * this function. The function can be called from an interrupt.
3166 *
3167 * A negative errno code is returned on a failure. A success does not
3168 * guarantee the frame will be transmitted as it may be dropped due
3169 * to congestion or traffic shaping.
3170 *
3171 * -----------------------------------------------------------------------------------
3172 * I notice this method can also return errors from the queue disciplines,
3173 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3174 * be positive.
3175 *
3176 * Regardless of the return value, the skb is consumed, so it is currently
3177 * difficult to retry a send to this method. (You can bump the ref count
3178 * before sending to hold a reference for retry if you are careful.)
3179 *
3180 * When calling this method, interrupts MUST be enabled. This is because
3181 * the BH enable code must have IRQs enabled so that it will not deadlock.
3182 * --BLG
3183 */
0a59f3a9 3184static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3185{
3186 struct net_device *dev = skb->dev;
dc2b4847 3187 struct netdev_queue *txq;
1da177e4
LT
3188 struct Qdisc *q;
3189 int rc = -ENOMEM;
3190
6d1ccff6
ED
3191 skb_reset_mac_header(skb);
3192
e7fd2885
WB
3193 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3194 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3195
4ec93edb
YH
3196 /* Disable soft irqs for various locks below. Also
3197 * stops preemption for RCU.
1da177e4 3198 */
4ec93edb 3199 rcu_read_lock_bh();
1da177e4 3200
5bc1421e
NH
3201 skb_update_prio(skb);
3202
1f211a1b
DB
3203 qdisc_pkt_len_init(skb);
3204#ifdef CONFIG_NET_CLS_ACT
3205 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3206# ifdef CONFIG_NET_EGRESS
3207 if (static_key_false(&egress_needed)) {
3208 skb = sch_handle_egress(skb, &rc, dev);
3209 if (!skb)
3210 goto out;
3211 }
3212# endif
3213#endif
02875878
ED
3214 /* If device/qdisc don't need skb->dst, release it right now while
3215 * its hot in this cpu cache.
3216 */
3217 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3218 skb_dst_drop(skb);
3219 else
3220 skb_dst_force(skb);
3221
f663dd9a 3222 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3223 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3224
cf66ba58 3225 trace_net_dev_queue(skb);
1da177e4 3226 if (q->enqueue) {
bbd8a0d3 3227 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3228 goto out;
1da177e4
LT
3229 }
3230
3231 /* The device has no queue. Common case for software devices:
3232 loopback, all the sorts of tunnels...
3233
932ff279
HX
3234 Really, it is unlikely that netif_tx_lock protection is necessary
3235 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3236 counters.)
3237 However, it is possible, that they rely on protection
3238 made by us here.
3239
3240 Check this and shot the lock. It is not prone from deadlocks.
3241 Either shot noqueue qdisc, it is even simpler 8)
3242 */
3243 if (dev->flags & IFF_UP) {
3244 int cpu = smp_processor_id(); /* ok because BHs are off */
3245
c773e847 3246 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3247 if (unlikely(__this_cpu_read(xmit_recursion) >
3248 XMIT_RECURSION_LIMIT))
745e20f1
ED
3249 goto recursion_alert;
3250
1f59533f
JDB
3251 skb = validate_xmit_skb(skb, dev);
3252 if (!skb)
d21fd63e 3253 goto out;
1f59533f 3254
c773e847 3255 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3256
73466498 3257 if (!netif_xmit_stopped(txq)) {
745e20f1 3258 __this_cpu_inc(xmit_recursion);
ce93718f 3259 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3260 __this_cpu_dec(xmit_recursion);
572a9d7b 3261 if (dev_xmit_complete(rc)) {
c773e847 3262 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3263 goto out;
3264 }
3265 }
c773e847 3266 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3267 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3268 dev->name);
1da177e4
LT
3269 } else {
3270 /* Recursion is detected! It is possible,
745e20f1
ED
3271 * unfortunately
3272 */
3273recursion_alert:
e87cc472
JP
3274 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3275 dev->name);
1da177e4
LT
3276 }
3277 }
3278
3279 rc = -ENETDOWN;
d4828d85 3280 rcu_read_unlock_bh();
1da177e4 3281
015f0688 3282 atomic_long_inc(&dev->tx_dropped);
1f59533f 3283 kfree_skb_list(skb);
1da177e4
LT
3284 return rc;
3285out:
d4828d85 3286 rcu_read_unlock_bh();
1da177e4
LT
3287 return rc;
3288}
f663dd9a 3289
2b4aa3ce 3290int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3291{
3292 return __dev_queue_xmit(skb, NULL);
3293}
2b4aa3ce 3294EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3295
f663dd9a
JW
3296int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3297{
3298 return __dev_queue_xmit(skb, accel_priv);
3299}
3300EXPORT_SYMBOL(dev_queue_xmit_accel);
3301
1da177e4
LT
3302
3303/*=======================================================================
3304 Receiver routines
3305 =======================================================================*/
3306
6b2bedc3 3307int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3308EXPORT_SYMBOL(netdev_max_backlog);
3309
3b098e2d 3310int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3311int netdev_budget __read_mostly = 300;
3312int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3313
eecfd7c4
ED
3314/* Called with irq disabled */
3315static inline void ____napi_schedule(struct softnet_data *sd,
3316 struct napi_struct *napi)
3317{
3318 list_add_tail(&napi->poll_list, &sd->poll_list);
3319 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3320}
3321
bfb564e7
KK
3322#ifdef CONFIG_RPS
3323
3324/* One global table that all flow-based protocols share. */
6e3f7faf 3325struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3326EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3327u32 rps_cpu_mask __read_mostly;
3328EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3329
c5905afb 3330struct static_key rps_needed __read_mostly;
3df97ba8 3331EXPORT_SYMBOL(rps_needed);
adc9300e 3332
c445477d
BH
3333static struct rps_dev_flow *
3334set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3335 struct rps_dev_flow *rflow, u16 next_cpu)
3336{
a31196b0 3337 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3338#ifdef CONFIG_RFS_ACCEL
3339 struct netdev_rx_queue *rxqueue;
3340 struct rps_dev_flow_table *flow_table;
3341 struct rps_dev_flow *old_rflow;
3342 u32 flow_id;
3343 u16 rxq_index;
3344 int rc;
3345
3346 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3347 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3348 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3349 goto out;
3350 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3351 if (rxq_index == skb_get_rx_queue(skb))
3352 goto out;
3353
3354 rxqueue = dev->_rx + rxq_index;
3355 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3356 if (!flow_table)
3357 goto out;
61b905da 3358 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3359 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3360 rxq_index, flow_id);
3361 if (rc < 0)
3362 goto out;
3363 old_rflow = rflow;
3364 rflow = &flow_table->flows[flow_id];
c445477d
BH
3365 rflow->filter = rc;
3366 if (old_rflow->filter == rflow->filter)
3367 old_rflow->filter = RPS_NO_FILTER;
3368 out:
3369#endif
3370 rflow->last_qtail =
09994d1b 3371 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3372 }
3373
09994d1b 3374 rflow->cpu = next_cpu;
c445477d
BH
3375 return rflow;
3376}
3377
bfb564e7
KK
3378/*
3379 * get_rps_cpu is called from netif_receive_skb and returns the target
3380 * CPU from the RPS map of the receiving queue for a given skb.
3381 * rcu_read_lock must be held on entry.
3382 */
3383static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3384 struct rps_dev_flow **rflowp)
3385{
567e4b79
ED
3386 const struct rps_sock_flow_table *sock_flow_table;
3387 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3388 struct rps_dev_flow_table *flow_table;
567e4b79 3389 struct rps_map *map;
bfb564e7 3390 int cpu = -1;
567e4b79 3391 u32 tcpu;
61b905da 3392 u32 hash;
bfb564e7
KK
3393
3394 if (skb_rx_queue_recorded(skb)) {
3395 u16 index = skb_get_rx_queue(skb);
567e4b79 3396
62fe0b40
BH
3397 if (unlikely(index >= dev->real_num_rx_queues)) {
3398 WARN_ONCE(dev->real_num_rx_queues > 1,
3399 "%s received packet on queue %u, but number "
3400 "of RX queues is %u\n",
3401 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3402 goto done;
3403 }
567e4b79
ED
3404 rxqueue += index;
3405 }
bfb564e7 3406
567e4b79
ED
3407 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3408
3409 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3410 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3411 if (!flow_table && !map)
bfb564e7
KK
3412 goto done;
3413
2d47b459 3414 skb_reset_network_header(skb);
61b905da
TH
3415 hash = skb_get_hash(skb);
3416 if (!hash)
bfb564e7
KK
3417 goto done;
3418
fec5e652
TH
3419 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3420 if (flow_table && sock_flow_table) {
fec5e652 3421 struct rps_dev_flow *rflow;
567e4b79
ED
3422 u32 next_cpu;
3423 u32 ident;
3424
3425 /* First check into global flow table if there is a match */
3426 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3427 if ((ident ^ hash) & ~rps_cpu_mask)
3428 goto try_rps;
fec5e652 3429
567e4b79
ED
3430 next_cpu = ident & rps_cpu_mask;
3431
3432 /* OK, now we know there is a match,
3433 * we can look at the local (per receive queue) flow table
3434 */
61b905da 3435 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3436 tcpu = rflow->cpu;
3437
fec5e652
TH
3438 /*
3439 * If the desired CPU (where last recvmsg was done) is
3440 * different from current CPU (one in the rx-queue flow
3441 * table entry), switch if one of the following holds:
a31196b0 3442 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3443 * - Current CPU is offline.
3444 * - The current CPU's queue tail has advanced beyond the
3445 * last packet that was enqueued using this table entry.
3446 * This guarantees that all previous packets for the flow
3447 * have been dequeued, thus preserving in order delivery.
3448 */
3449 if (unlikely(tcpu != next_cpu) &&
a31196b0 3450 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3451 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3452 rflow->last_qtail)) >= 0)) {
3453 tcpu = next_cpu;
c445477d 3454 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3455 }
c445477d 3456
a31196b0 3457 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3458 *rflowp = rflow;
3459 cpu = tcpu;
3460 goto done;
3461 }
3462 }
3463
567e4b79
ED
3464try_rps:
3465
0a9627f2 3466 if (map) {
8fc54f68 3467 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3468 if (cpu_online(tcpu)) {
3469 cpu = tcpu;
3470 goto done;
3471 }
3472 }
3473
3474done:
0a9627f2
TH
3475 return cpu;
3476}
3477
c445477d
BH
3478#ifdef CONFIG_RFS_ACCEL
3479
3480/**
3481 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3482 * @dev: Device on which the filter was set
3483 * @rxq_index: RX queue index
3484 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3485 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3486 *
3487 * Drivers that implement ndo_rx_flow_steer() should periodically call
3488 * this function for each installed filter and remove the filters for
3489 * which it returns %true.
3490 */
3491bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3492 u32 flow_id, u16 filter_id)
3493{
3494 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3495 struct rps_dev_flow_table *flow_table;
3496 struct rps_dev_flow *rflow;
3497 bool expire = true;
a31196b0 3498 unsigned int cpu;
c445477d
BH
3499
3500 rcu_read_lock();
3501 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3502 if (flow_table && flow_id <= flow_table->mask) {
3503 rflow = &flow_table->flows[flow_id];
3504 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3505 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3506 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3507 rflow->last_qtail) <
3508 (int)(10 * flow_table->mask)))
3509 expire = false;
3510 }
3511 rcu_read_unlock();
3512 return expire;
3513}
3514EXPORT_SYMBOL(rps_may_expire_flow);
3515
3516#endif /* CONFIG_RFS_ACCEL */
3517
0a9627f2 3518/* Called from hardirq (IPI) context */
e36fa2f7 3519static void rps_trigger_softirq(void *data)
0a9627f2 3520{
e36fa2f7
ED
3521 struct softnet_data *sd = data;
3522
eecfd7c4 3523 ____napi_schedule(sd, &sd->backlog);
dee42870 3524 sd->received_rps++;
0a9627f2 3525}
e36fa2f7 3526
fec5e652 3527#endif /* CONFIG_RPS */
0a9627f2 3528
e36fa2f7
ED
3529/*
3530 * Check if this softnet_data structure is another cpu one
3531 * If yes, queue it to our IPI list and return 1
3532 * If no, return 0
3533 */
3534static int rps_ipi_queued(struct softnet_data *sd)
3535{
3536#ifdef CONFIG_RPS
903ceff7 3537 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3538
3539 if (sd != mysd) {
3540 sd->rps_ipi_next = mysd->rps_ipi_list;
3541 mysd->rps_ipi_list = sd;
3542
3543 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3544 return 1;
3545 }
3546#endif /* CONFIG_RPS */
3547 return 0;
3548}
3549
99bbc707
WB
3550#ifdef CONFIG_NET_FLOW_LIMIT
3551int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3552#endif
3553
3554static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3555{
3556#ifdef CONFIG_NET_FLOW_LIMIT
3557 struct sd_flow_limit *fl;
3558 struct softnet_data *sd;
3559 unsigned int old_flow, new_flow;
3560
3561 if (qlen < (netdev_max_backlog >> 1))
3562 return false;
3563
903ceff7 3564 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3565
3566 rcu_read_lock();
3567 fl = rcu_dereference(sd->flow_limit);
3568 if (fl) {
3958afa1 3569 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3570 old_flow = fl->history[fl->history_head];
3571 fl->history[fl->history_head] = new_flow;
3572
3573 fl->history_head++;
3574 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3575
3576 if (likely(fl->buckets[old_flow]))
3577 fl->buckets[old_flow]--;
3578
3579 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3580 fl->count++;
3581 rcu_read_unlock();
3582 return true;
3583 }
3584 }
3585 rcu_read_unlock();
3586#endif
3587 return false;
3588}
3589
0a9627f2
TH
3590/*
3591 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3592 * queue (may be a remote CPU queue).
3593 */
fec5e652
TH
3594static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3595 unsigned int *qtail)
0a9627f2 3596{
e36fa2f7 3597 struct softnet_data *sd;
0a9627f2 3598 unsigned long flags;
99bbc707 3599 unsigned int qlen;
0a9627f2 3600
e36fa2f7 3601 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3602
3603 local_irq_save(flags);
0a9627f2 3604
e36fa2f7 3605 rps_lock(sd);
e9e4dd32
JA
3606 if (!netif_running(skb->dev))
3607 goto drop;
99bbc707
WB
3608 qlen = skb_queue_len(&sd->input_pkt_queue);
3609 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3610 if (qlen) {
0a9627f2 3611enqueue:
e36fa2f7 3612 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3613 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3614 rps_unlock(sd);
152102c7 3615 local_irq_restore(flags);
0a9627f2
TH
3616 return NET_RX_SUCCESS;
3617 }
3618
ebda37c2
ED
3619 /* Schedule NAPI for backlog device
3620 * We can use non atomic operation since we own the queue lock
3621 */
3622 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3623 if (!rps_ipi_queued(sd))
eecfd7c4 3624 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3625 }
3626 goto enqueue;
3627 }
3628
e9e4dd32 3629drop:
dee42870 3630 sd->dropped++;
e36fa2f7 3631 rps_unlock(sd);
0a9627f2 3632
0a9627f2
TH
3633 local_irq_restore(flags);
3634
caf586e5 3635 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3636 kfree_skb(skb);
3637 return NET_RX_DROP;
3638}
1da177e4 3639
ae78dbfa 3640static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3641{
b0e28f1e 3642 int ret;
1da177e4 3643
588f0330 3644 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3645
cf66ba58 3646 trace_netif_rx(skb);
df334545 3647#ifdef CONFIG_RPS
c5905afb 3648 if (static_key_false(&rps_needed)) {
fec5e652 3649 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3650 int cpu;
3651
cece1945 3652 preempt_disable();
b0e28f1e 3653 rcu_read_lock();
fec5e652
TH
3654
3655 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3656 if (cpu < 0)
3657 cpu = smp_processor_id();
fec5e652
TH
3658
3659 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3660
b0e28f1e 3661 rcu_read_unlock();
cece1945 3662 preempt_enable();
adc9300e
ED
3663 } else
3664#endif
fec5e652
TH
3665 {
3666 unsigned int qtail;
3667 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3668 put_cpu();
3669 }
b0e28f1e 3670 return ret;
1da177e4 3671}
ae78dbfa
BH
3672
3673/**
3674 * netif_rx - post buffer to the network code
3675 * @skb: buffer to post
3676 *
3677 * This function receives a packet from a device driver and queues it for
3678 * the upper (protocol) levels to process. It always succeeds. The buffer
3679 * may be dropped during processing for congestion control or by the
3680 * protocol layers.
3681 *
3682 * return values:
3683 * NET_RX_SUCCESS (no congestion)
3684 * NET_RX_DROP (packet was dropped)
3685 *
3686 */
3687
3688int netif_rx(struct sk_buff *skb)
3689{
3690 trace_netif_rx_entry(skb);
3691
3692 return netif_rx_internal(skb);
3693}
d1b19dff 3694EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3695
3696int netif_rx_ni(struct sk_buff *skb)
3697{
3698 int err;
3699
ae78dbfa
BH
3700 trace_netif_rx_ni_entry(skb);
3701
1da177e4 3702 preempt_disable();
ae78dbfa 3703 err = netif_rx_internal(skb);
1da177e4
LT
3704 if (local_softirq_pending())
3705 do_softirq();
3706 preempt_enable();
3707
3708 return err;
3709}
1da177e4
LT
3710EXPORT_SYMBOL(netif_rx_ni);
3711
1da177e4
LT
3712static void net_tx_action(struct softirq_action *h)
3713{
903ceff7 3714 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3715
3716 if (sd->completion_queue) {
3717 struct sk_buff *clist;
3718
3719 local_irq_disable();
3720 clist = sd->completion_queue;
3721 sd->completion_queue = NULL;
3722 local_irq_enable();
3723
3724 while (clist) {
3725 struct sk_buff *skb = clist;
3726 clist = clist->next;
3727
547b792c 3728 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3729 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3730 trace_consume_skb(skb);
3731 else
3732 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3733
3734 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3735 __kfree_skb(skb);
3736 else
3737 __kfree_skb_defer(skb);
1da177e4 3738 }
15fad714
JDB
3739
3740 __kfree_skb_flush();
1da177e4
LT
3741 }
3742
3743 if (sd->output_queue) {
37437bb2 3744 struct Qdisc *head;
1da177e4
LT
3745
3746 local_irq_disable();
3747 head = sd->output_queue;
3748 sd->output_queue = NULL;
a9cbd588 3749 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3750 local_irq_enable();
3751
3752 while (head) {
37437bb2
DM
3753 struct Qdisc *q = head;
3754 spinlock_t *root_lock;
3755
1da177e4
LT
3756 head = head->next_sched;
3757
5fb66229 3758 root_lock = qdisc_lock(q);
3bcb846c
ED
3759 spin_lock(root_lock);
3760 /* We need to make sure head->next_sched is read
3761 * before clearing __QDISC_STATE_SCHED
3762 */
3763 smp_mb__before_atomic();
3764 clear_bit(__QDISC_STATE_SCHED, &q->state);
3765 qdisc_run(q);
3766 spin_unlock(root_lock);
1da177e4
LT
3767 }
3768 }
3769}
3770
181402a5 3771#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3772/* This hook is defined here for ATM LANE */
3773int (*br_fdb_test_addr_hook)(struct net_device *dev,
3774 unsigned char *addr) __read_mostly;
4fb019a0 3775EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3776#endif
1da177e4 3777
1f211a1b
DB
3778static inline struct sk_buff *
3779sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3780 struct net_device *orig_dev)
f697c3e8 3781{
e7582bab 3782#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3783 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3784 struct tcf_result cl_res;
24824a09 3785
c9e99fd0
DB
3786 /* If there's at least one ingress present somewhere (so
3787 * we get here via enabled static key), remaining devices
3788 * that are not configured with an ingress qdisc will bail
d2788d34 3789 * out here.
c9e99fd0 3790 */
d2788d34 3791 if (!cl)
4577139b 3792 return skb;
f697c3e8
HX
3793 if (*pt_prev) {
3794 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3795 *pt_prev = NULL;
1da177e4
LT
3796 }
3797
3365495c 3798 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3799 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3800 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3801
3b3ae880 3802 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3803 case TC_ACT_OK:
3804 case TC_ACT_RECLASSIFY:
3805 skb->tc_index = TC_H_MIN(cl_res.classid);
3806 break;
3807 case TC_ACT_SHOT:
24ea591d 3808 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3809 kfree_skb(skb);
3810 return NULL;
d2788d34
DB
3811 case TC_ACT_STOLEN:
3812 case TC_ACT_QUEUED:
8a3a4c6e 3813 consume_skb(skb);
d2788d34 3814 return NULL;
27b29f63
AS
3815 case TC_ACT_REDIRECT:
3816 /* skb_mac_header check was done by cls/act_bpf, so
3817 * we can safely push the L2 header back before
3818 * redirecting to another netdev
3819 */
3820 __skb_push(skb, skb->mac_len);
3821 skb_do_redirect(skb);
3822 return NULL;
d2788d34
DB
3823 default:
3824 break;
f697c3e8 3825 }
e7582bab 3826#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3827 return skb;
3828}
1da177e4 3829
24b27fc4
MB
3830/**
3831 * netdev_is_rx_handler_busy - check if receive handler is registered
3832 * @dev: device to check
3833 *
3834 * Check if a receive handler is already registered for a given device.
3835 * Return true if there one.
3836 *
3837 * The caller must hold the rtnl_mutex.
3838 */
3839bool netdev_is_rx_handler_busy(struct net_device *dev)
3840{
3841 ASSERT_RTNL();
3842 return dev && rtnl_dereference(dev->rx_handler);
3843}
3844EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3845
ab95bfe0
JP
3846/**
3847 * netdev_rx_handler_register - register receive handler
3848 * @dev: device to register a handler for
3849 * @rx_handler: receive handler to register
93e2c32b 3850 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3851 *
e227867f 3852 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3853 * called from __netif_receive_skb. A negative errno code is returned
3854 * on a failure.
3855 *
3856 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3857 *
3858 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3859 */
3860int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3861 rx_handler_func_t *rx_handler,
3862 void *rx_handler_data)
ab95bfe0
JP
3863{
3864 ASSERT_RTNL();
3865
3866 if (dev->rx_handler)
3867 return -EBUSY;
3868
00cfec37 3869 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3870 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3871 rcu_assign_pointer(dev->rx_handler, rx_handler);
3872
3873 return 0;
3874}
3875EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3876
3877/**
3878 * netdev_rx_handler_unregister - unregister receive handler
3879 * @dev: device to unregister a handler from
3880 *
166ec369 3881 * Unregister a receive handler from a device.
ab95bfe0
JP
3882 *
3883 * The caller must hold the rtnl_mutex.
3884 */
3885void netdev_rx_handler_unregister(struct net_device *dev)
3886{
3887
3888 ASSERT_RTNL();
a9b3cd7f 3889 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3890 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3891 * section has a guarantee to see a non NULL rx_handler_data
3892 * as well.
3893 */
3894 synchronize_net();
a9b3cd7f 3895 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3896}
3897EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3898
b4b9e355
MG
3899/*
3900 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3901 * the special handling of PFMEMALLOC skbs.
3902 */
3903static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3904{
3905 switch (skb->protocol) {
2b8837ae
JP
3906 case htons(ETH_P_ARP):
3907 case htons(ETH_P_IP):
3908 case htons(ETH_P_IPV6):
3909 case htons(ETH_P_8021Q):
3910 case htons(ETH_P_8021AD):
b4b9e355
MG
3911 return true;
3912 default:
3913 return false;
3914 }
3915}
3916
e687ad60
PN
3917static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3918 int *ret, struct net_device *orig_dev)
3919{
e7582bab 3920#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 3921 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
3922 int ingress_retval;
3923
e687ad60
PN
3924 if (*pt_prev) {
3925 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3926 *pt_prev = NULL;
3927 }
3928
2c1e2703
AC
3929 rcu_read_lock();
3930 ingress_retval = nf_hook_ingress(skb);
3931 rcu_read_unlock();
3932 return ingress_retval;
e687ad60 3933 }
e7582bab 3934#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
3935 return 0;
3936}
e687ad60 3937
9754e293 3938static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3939{
3940 struct packet_type *ptype, *pt_prev;
ab95bfe0 3941 rx_handler_func_t *rx_handler;
f2ccd8fa 3942 struct net_device *orig_dev;
8a4eb573 3943 bool deliver_exact = false;
1da177e4 3944 int ret = NET_RX_DROP;
252e3346 3945 __be16 type;
1da177e4 3946
588f0330 3947 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3948
cf66ba58 3949 trace_netif_receive_skb(skb);
9b22ea56 3950
cc9bd5ce 3951 orig_dev = skb->dev;
8f903c70 3952
c1d2bbe1 3953 skb_reset_network_header(skb);
fda55eca
ED
3954 if (!skb_transport_header_was_set(skb))
3955 skb_reset_transport_header(skb);
0b5c9db1 3956 skb_reset_mac_len(skb);
1da177e4
LT
3957
3958 pt_prev = NULL;
3959
63d8ea7f 3960another_round:
b6858177 3961 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3962
3963 __this_cpu_inc(softnet_data.processed);
3964
8ad227ff
PM
3965 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3966 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3967 skb = skb_vlan_untag(skb);
bcc6d479 3968 if (unlikely(!skb))
2c17d27c 3969 goto out;
bcc6d479
JP
3970 }
3971
1da177e4
LT
3972#ifdef CONFIG_NET_CLS_ACT
3973 if (skb->tc_verd & TC_NCLS) {
3974 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3975 goto ncls;
3976 }
3977#endif
3978
9754e293 3979 if (pfmemalloc)
b4b9e355
MG
3980 goto skip_taps;
3981
1da177e4 3982 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
3983 if (pt_prev)
3984 ret = deliver_skb(skb, pt_prev, orig_dev);
3985 pt_prev = ptype;
3986 }
3987
3988 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3989 if (pt_prev)
3990 ret = deliver_skb(skb, pt_prev, orig_dev);
3991 pt_prev = ptype;
1da177e4
LT
3992 }
3993
b4b9e355 3994skip_taps:
1cf51900 3995#ifdef CONFIG_NET_INGRESS
4577139b 3996 if (static_key_false(&ingress_needed)) {
1f211a1b 3997 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 3998 if (!skb)
2c17d27c 3999 goto out;
e687ad60
PN
4000
4001 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4002 goto out;
4577139b 4003 }
1cf51900
PN
4004#endif
4005#ifdef CONFIG_NET_CLS_ACT
4577139b 4006 skb->tc_verd = 0;
1da177e4
LT
4007ncls:
4008#endif
9754e293 4009 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4010 goto drop;
4011
df8a39de 4012 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4013 if (pt_prev) {
4014 ret = deliver_skb(skb, pt_prev, orig_dev);
4015 pt_prev = NULL;
4016 }
48cc32d3 4017 if (vlan_do_receive(&skb))
2425717b
JF
4018 goto another_round;
4019 else if (unlikely(!skb))
2c17d27c 4020 goto out;
2425717b
JF
4021 }
4022
48cc32d3 4023 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4024 if (rx_handler) {
4025 if (pt_prev) {
4026 ret = deliver_skb(skb, pt_prev, orig_dev);
4027 pt_prev = NULL;
4028 }
8a4eb573
JP
4029 switch (rx_handler(&skb)) {
4030 case RX_HANDLER_CONSUMED:
3bc1b1ad 4031 ret = NET_RX_SUCCESS;
2c17d27c 4032 goto out;
8a4eb573 4033 case RX_HANDLER_ANOTHER:
63d8ea7f 4034 goto another_round;
8a4eb573
JP
4035 case RX_HANDLER_EXACT:
4036 deliver_exact = true;
4037 case RX_HANDLER_PASS:
4038 break;
4039 default:
4040 BUG();
4041 }
ab95bfe0 4042 }
1da177e4 4043
df8a39de
JP
4044 if (unlikely(skb_vlan_tag_present(skb))) {
4045 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4046 skb->pkt_type = PACKET_OTHERHOST;
4047 /* Note: we might in the future use prio bits
4048 * and set skb->priority like in vlan_do_receive()
4049 * For the time being, just ignore Priority Code Point
4050 */
4051 skb->vlan_tci = 0;
4052 }
48cc32d3 4053
7866a621
SN
4054 type = skb->protocol;
4055
63d8ea7f 4056 /* deliver only exact match when indicated */
7866a621
SN
4057 if (likely(!deliver_exact)) {
4058 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4059 &ptype_base[ntohs(type) &
4060 PTYPE_HASH_MASK]);
4061 }
1f3c8804 4062
7866a621
SN
4063 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4064 &orig_dev->ptype_specific);
4065
4066 if (unlikely(skb->dev != orig_dev)) {
4067 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4068 &skb->dev->ptype_specific);
1da177e4
LT
4069 }
4070
4071 if (pt_prev) {
1080e512 4072 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4073 goto drop;
1080e512
MT
4074 else
4075 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4076 } else {
b4b9e355 4077drop:
6e7333d3
JW
4078 if (!deliver_exact)
4079 atomic_long_inc(&skb->dev->rx_dropped);
4080 else
4081 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4082 kfree_skb(skb);
4083 /* Jamal, now you will not able to escape explaining
4084 * me how you were going to use this. :-)
4085 */
4086 ret = NET_RX_DROP;
4087 }
4088
2c17d27c 4089out:
9754e293
DM
4090 return ret;
4091}
4092
4093static int __netif_receive_skb(struct sk_buff *skb)
4094{
4095 int ret;
4096
4097 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4098 unsigned long pflags = current->flags;
4099
4100 /*
4101 * PFMEMALLOC skbs are special, they should
4102 * - be delivered to SOCK_MEMALLOC sockets only
4103 * - stay away from userspace
4104 * - have bounded memory usage
4105 *
4106 * Use PF_MEMALLOC as this saves us from propagating the allocation
4107 * context down to all allocation sites.
4108 */
4109 current->flags |= PF_MEMALLOC;
4110 ret = __netif_receive_skb_core(skb, true);
4111 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4112 } else
4113 ret = __netif_receive_skb_core(skb, false);
4114
1da177e4
LT
4115 return ret;
4116}
0a9627f2 4117
ae78dbfa 4118static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4119{
2c17d27c
JA
4120 int ret;
4121
588f0330 4122 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4123
c1f19b51
RC
4124 if (skb_defer_rx_timestamp(skb))
4125 return NET_RX_SUCCESS;
4126
2c17d27c
JA
4127 rcu_read_lock();
4128
df334545 4129#ifdef CONFIG_RPS
c5905afb 4130 if (static_key_false(&rps_needed)) {
3b098e2d 4131 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4132 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4133
3b098e2d
ED
4134 if (cpu >= 0) {
4135 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4136 rcu_read_unlock();
adc9300e 4137 return ret;
3b098e2d 4138 }
fec5e652 4139 }
1e94d72f 4140#endif
2c17d27c
JA
4141 ret = __netif_receive_skb(skb);
4142 rcu_read_unlock();
4143 return ret;
0a9627f2 4144}
ae78dbfa
BH
4145
4146/**
4147 * netif_receive_skb - process receive buffer from network
4148 * @skb: buffer to process
4149 *
4150 * netif_receive_skb() is the main receive data processing function.
4151 * It always succeeds. The buffer may be dropped during processing
4152 * for congestion control or by the protocol layers.
4153 *
4154 * This function may only be called from softirq context and interrupts
4155 * should be enabled.
4156 *
4157 * Return values (usually ignored):
4158 * NET_RX_SUCCESS: no congestion
4159 * NET_RX_DROP: packet was dropped
4160 */
04eb4489 4161int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4162{
4163 trace_netif_receive_skb_entry(skb);
4164
4165 return netif_receive_skb_internal(skb);
4166}
04eb4489 4167EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4168
41852497 4169DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4170
4171/* Network device is going away, flush any packets still pending */
4172static void flush_backlog(struct work_struct *work)
6e583ce5 4173{
6e583ce5 4174 struct sk_buff *skb, *tmp;
145dd5f9
PA
4175 struct softnet_data *sd;
4176
4177 local_bh_disable();
4178 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4179
145dd5f9 4180 local_irq_disable();
e36fa2f7 4181 rps_lock(sd);
6e7676c1 4182 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4183 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4184 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4185 kfree_skb(skb);
76cc8b13 4186 input_queue_head_incr(sd);
6e583ce5 4187 }
6e7676c1 4188 }
e36fa2f7 4189 rps_unlock(sd);
145dd5f9 4190 local_irq_enable();
6e7676c1
CG
4191
4192 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4193 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4194 __skb_unlink(skb, &sd->process_queue);
4195 kfree_skb(skb);
76cc8b13 4196 input_queue_head_incr(sd);
6e7676c1
CG
4197 }
4198 }
145dd5f9
PA
4199 local_bh_enable();
4200}
4201
41852497 4202static void flush_all_backlogs(void)
145dd5f9
PA
4203{
4204 unsigned int cpu;
4205
4206 get_online_cpus();
4207
41852497
ED
4208 for_each_online_cpu(cpu)
4209 queue_work_on(cpu, system_highpri_wq,
4210 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4211
4212 for_each_online_cpu(cpu)
41852497 4213 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4214
4215 put_online_cpus();
6e583ce5
SH
4216}
4217
d565b0a1
HX
4218static int napi_gro_complete(struct sk_buff *skb)
4219{
22061d80 4220 struct packet_offload *ptype;
d565b0a1 4221 __be16 type = skb->protocol;
22061d80 4222 struct list_head *head = &offload_base;
d565b0a1
HX
4223 int err = -ENOENT;
4224
c3c7c254
ED
4225 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4226
fc59f9a3
HX
4227 if (NAPI_GRO_CB(skb)->count == 1) {
4228 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4229 goto out;
fc59f9a3 4230 }
d565b0a1
HX
4231
4232 rcu_read_lock();
4233 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4234 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4235 continue;
4236
299603e8 4237 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4238 break;
4239 }
4240 rcu_read_unlock();
4241
4242 if (err) {
4243 WARN_ON(&ptype->list == head);
4244 kfree_skb(skb);
4245 return NET_RX_SUCCESS;
4246 }
4247
4248out:
ae78dbfa 4249 return netif_receive_skb_internal(skb);
d565b0a1
HX
4250}
4251
2e71a6f8
ED
4252/* napi->gro_list contains packets ordered by age.
4253 * youngest packets at the head of it.
4254 * Complete skbs in reverse order to reduce latencies.
4255 */
4256void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4257{
2e71a6f8 4258 struct sk_buff *skb, *prev = NULL;
d565b0a1 4259
2e71a6f8
ED
4260 /* scan list and build reverse chain */
4261 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4262 skb->prev = prev;
4263 prev = skb;
4264 }
4265
4266 for (skb = prev; skb; skb = prev) {
d565b0a1 4267 skb->next = NULL;
2e71a6f8
ED
4268
4269 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4270 return;
4271
4272 prev = skb->prev;
d565b0a1 4273 napi_gro_complete(skb);
2e71a6f8 4274 napi->gro_count--;
d565b0a1
HX
4275 }
4276
4277 napi->gro_list = NULL;
4278}
86cac58b 4279EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4280
89c5fa33
ED
4281static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4282{
4283 struct sk_buff *p;
4284 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4285 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4286
4287 for (p = napi->gro_list; p; p = p->next) {
4288 unsigned long diffs;
4289
0b4cec8c
TH
4290 NAPI_GRO_CB(p)->flush = 0;
4291
4292 if (hash != skb_get_hash_raw(p)) {
4293 NAPI_GRO_CB(p)->same_flow = 0;
4294 continue;
4295 }
4296
89c5fa33
ED
4297 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4298 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4299 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4300 if (maclen == ETH_HLEN)
4301 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4302 skb_mac_header(skb));
89c5fa33
ED
4303 else if (!diffs)
4304 diffs = memcmp(skb_mac_header(p),
a50e233c 4305 skb_mac_header(skb),
89c5fa33
ED
4306 maclen);
4307 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4308 }
4309}
4310
299603e8
JC
4311static void skb_gro_reset_offset(struct sk_buff *skb)
4312{
4313 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4314 const skb_frag_t *frag0 = &pinfo->frags[0];
4315
4316 NAPI_GRO_CB(skb)->data_offset = 0;
4317 NAPI_GRO_CB(skb)->frag0 = NULL;
4318 NAPI_GRO_CB(skb)->frag0_len = 0;
4319
4320 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4321 pinfo->nr_frags &&
4322 !PageHighMem(skb_frag_page(frag0))) {
4323 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4324 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4325 }
4326}
4327
a50e233c
ED
4328static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4329{
4330 struct skb_shared_info *pinfo = skb_shinfo(skb);
4331
4332 BUG_ON(skb->end - skb->tail < grow);
4333
4334 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4335
4336 skb->data_len -= grow;
4337 skb->tail += grow;
4338
4339 pinfo->frags[0].page_offset += grow;
4340 skb_frag_size_sub(&pinfo->frags[0], grow);
4341
4342 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4343 skb_frag_unref(skb, 0);
4344 memmove(pinfo->frags, pinfo->frags + 1,
4345 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4346 }
4347}
4348
bb728820 4349static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4350{
4351 struct sk_buff **pp = NULL;
22061d80 4352 struct packet_offload *ptype;
d565b0a1 4353 __be16 type = skb->protocol;
22061d80 4354 struct list_head *head = &offload_base;
0da2afd5 4355 int same_flow;
5b252f0c 4356 enum gro_result ret;
a50e233c 4357 int grow;
d565b0a1 4358
9c62a68d 4359 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4360 goto normal;
4361
5a212329 4362 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4363 goto normal;
4364
89c5fa33
ED
4365 gro_list_prepare(napi, skb);
4366
d565b0a1
HX
4367 rcu_read_lock();
4368 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4369 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4370 continue;
4371
86911732 4372 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4373 skb_reset_mac_len(skb);
d565b0a1
HX
4374 NAPI_GRO_CB(skb)->same_flow = 0;
4375 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4376 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4377 NAPI_GRO_CB(skb)->encap_mark = 0;
a0ca153f 4378 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4379 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4380 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4381
662880f4
TH
4382 /* Setup for GRO checksum validation */
4383 switch (skb->ip_summed) {
4384 case CHECKSUM_COMPLETE:
4385 NAPI_GRO_CB(skb)->csum = skb->csum;
4386 NAPI_GRO_CB(skb)->csum_valid = 1;
4387 NAPI_GRO_CB(skb)->csum_cnt = 0;
4388 break;
4389 case CHECKSUM_UNNECESSARY:
4390 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4391 NAPI_GRO_CB(skb)->csum_valid = 0;
4392 break;
4393 default:
4394 NAPI_GRO_CB(skb)->csum_cnt = 0;
4395 NAPI_GRO_CB(skb)->csum_valid = 0;
4396 }
d565b0a1 4397
f191a1d1 4398 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4399 break;
4400 }
4401 rcu_read_unlock();
4402
4403 if (&ptype->list == head)
4404 goto normal;
4405
0da2afd5 4406 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4407 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4408
d565b0a1
HX
4409 if (pp) {
4410 struct sk_buff *nskb = *pp;
4411
4412 *pp = nskb->next;
4413 nskb->next = NULL;
4414 napi_gro_complete(nskb);
4ae5544f 4415 napi->gro_count--;
d565b0a1
HX
4416 }
4417
0da2afd5 4418 if (same_flow)
d565b0a1
HX
4419 goto ok;
4420
600adc18 4421 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4422 goto normal;
d565b0a1 4423
600adc18
ED
4424 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4425 struct sk_buff *nskb = napi->gro_list;
4426
4427 /* locate the end of the list to select the 'oldest' flow */
4428 while (nskb->next) {
4429 pp = &nskb->next;
4430 nskb = *pp;
4431 }
4432 *pp = NULL;
4433 nskb->next = NULL;
4434 napi_gro_complete(nskb);
4435 } else {
4436 napi->gro_count++;
4437 }
d565b0a1 4438 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4439 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4440 NAPI_GRO_CB(skb)->last = skb;
86911732 4441 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4442 skb->next = napi->gro_list;
4443 napi->gro_list = skb;
5d0d9be8 4444 ret = GRO_HELD;
d565b0a1 4445
ad0f9904 4446pull:
a50e233c
ED
4447 grow = skb_gro_offset(skb) - skb_headlen(skb);
4448 if (grow > 0)
4449 gro_pull_from_frag0(skb, grow);
d565b0a1 4450ok:
5d0d9be8 4451 return ret;
d565b0a1
HX
4452
4453normal:
ad0f9904
HX
4454 ret = GRO_NORMAL;
4455 goto pull;
5d38a079 4456}
96e93eab 4457
bf5a755f
JC
4458struct packet_offload *gro_find_receive_by_type(__be16 type)
4459{
4460 struct list_head *offload_head = &offload_base;
4461 struct packet_offload *ptype;
4462
4463 list_for_each_entry_rcu(ptype, offload_head, list) {
4464 if (ptype->type != type || !ptype->callbacks.gro_receive)
4465 continue;
4466 return ptype;
4467 }
4468 return NULL;
4469}
e27a2f83 4470EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4471
4472struct packet_offload *gro_find_complete_by_type(__be16 type)
4473{
4474 struct list_head *offload_head = &offload_base;
4475 struct packet_offload *ptype;
4476
4477 list_for_each_entry_rcu(ptype, offload_head, list) {
4478 if (ptype->type != type || !ptype->callbacks.gro_complete)
4479 continue;
4480 return ptype;
4481 }
4482 return NULL;
4483}
e27a2f83 4484EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4485
bb728820 4486static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4487{
5d0d9be8
HX
4488 switch (ret) {
4489 case GRO_NORMAL:
ae78dbfa 4490 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4491 ret = GRO_DROP;
4492 break;
5d38a079 4493
5d0d9be8 4494 case GRO_DROP:
5d38a079
HX
4495 kfree_skb(skb);
4496 break;
5b252f0c 4497
daa86548 4498 case GRO_MERGED_FREE:
ce87fc6c
JG
4499 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4500 skb_dst_drop(skb);
d7e8883c 4501 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4502 } else {
d7e8883c 4503 __kfree_skb(skb);
ce87fc6c 4504 }
daa86548
ED
4505 break;
4506
5b252f0c
BH
4507 case GRO_HELD:
4508 case GRO_MERGED:
4509 break;
5d38a079
HX
4510 }
4511
c7c4b3b6 4512 return ret;
5d0d9be8 4513}
5d0d9be8 4514
c7c4b3b6 4515gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4516{
93f93a44 4517 skb_mark_napi_id(skb, napi);
ae78dbfa 4518 trace_napi_gro_receive_entry(skb);
86911732 4519
a50e233c
ED
4520 skb_gro_reset_offset(skb);
4521
89c5fa33 4522 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4523}
4524EXPORT_SYMBOL(napi_gro_receive);
4525
d0c2b0d2 4526static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4527{
93a35f59
ED
4528 if (unlikely(skb->pfmemalloc)) {
4529 consume_skb(skb);
4530 return;
4531 }
96e93eab 4532 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4533 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4534 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4535 skb->vlan_tci = 0;
66c46d74 4536 skb->dev = napi->dev;
6d152e23 4537 skb->skb_iif = 0;
c3caf119
JC
4538 skb->encapsulation = 0;
4539 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4540 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4541
4542 napi->skb = skb;
4543}
96e93eab 4544
76620aaf 4545struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4546{
5d38a079 4547 struct sk_buff *skb = napi->skb;
5d38a079
HX
4548
4549 if (!skb) {
fd11a83d 4550 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4551 if (skb) {
4552 napi->skb = skb;
4553 skb_mark_napi_id(skb, napi);
4554 }
80595d59 4555 }
96e93eab
HX
4556 return skb;
4557}
76620aaf 4558EXPORT_SYMBOL(napi_get_frags);
96e93eab 4559
a50e233c
ED
4560static gro_result_t napi_frags_finish(struct napi_struct *napi,
4561 struct sk_buff *skb,
4562 gro_result_t ret)
96e93eab 4563{
5d0d9be8
HX
4564 switch (ret) {
4565 case GRO_NORMAL:
a50e233c
ED
4566 case GRO_HELD:
4567 __skb_push(skb, ETH_HLEN);
4568 skb->protocol = eth_type_trans(skb, skb->dev);
4569 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4570 ret = GRO_DROP;
86911732 4571 break;
5d38a079 4572
5d0d9be8 4573 case GRO_DROP:
5d0d9be8
HX
4574 case GRO_MERGED_FREE:
4575 napi_reuse_skb(napi, skb);
4576 break;
5b252f0c
BH
4577
4578 case GRO_MERGED:
4579 break;
5d0d9be8 4580 }
5d38a079 4581
c7c4b3b6 4582 return ret;
5d38a079 4583}
5d0d9be8 4584
a50e233c
ED
4585/* Upper GRO stack assumes network header starts at gro_offset=0
4586 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4587 * We copy ethernet header into skb->data to have a common layout.
4588 */
4adb9c4a 4589static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4590{
4591 struct sk_buff *skb = napi->skb;
a50e233c
ED
4592 const struct ethhdr *eth;
4593 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4594
4595 napi->skb = NULL;
4596
a50e233c
ED
4597 skb_reset_mac_header(skb);
4598 skb_gro_reset_offset(skb);
4599
4600 eth = skb_gro_header_fast(skb, 0);
4601 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4602 eth = skb_gro_header_slow(skb, hlen, 0);
4603 if (unlikely(!eth)) {
4da46ceb
AC
4604 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4605 __func__, napi->dev->name);
a50e233c
ED
4606 napi_reuse_skb(napi, skb);
4607 return NULL;
4608 }
4609 } else {
4610 gro_pull_from_frag0(skb, hlen);
4611 NAPI_GRO_CB(skb)->frag0 += hlen;
4612 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4613 }
a50e233c
ED
4614 __skb_pull(skb, hlen);
4615
4616 /*
4617 * This works because the only protocols we care about don't require
4618 * special handling.
4619 * We'll fix it up properly in napi_frags_finish()
4620 */
4621 skb->protocol = eth->h_proto;
76620aaf 4622
76620aaf
HX
4623 return skb;
4624}
76620aaf 4625
c7c4b3b6 4626gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4627{
76620aaf 4628 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4629
4630 if (!skb)
c7c4b3b6 4631 return GRO_DROP;
5d0d9be8 4632
ae78dbfa
BH
4633 trace_napi_gro_frags_entry(skb);
4634
89c5fa33 4635 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4636}
5d38a079
HX
4637EXPORT_SYMBOL(napi_gro_frags);
4638
573e8fca
TH
4639/* Compute the checksum from gro_offset and return the folded value
4640 * after adding in any pseudo checksum.
4641 */
4642__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4643{
4644 __wsum wsum;
4645 __sum16 sum;
4646
4647 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4648
4649 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4650 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4651 if (likely(!sum)) {
4652 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4653 !skb->csum_complete_sw)
4654 netdev_rx_csum_fault(skb->dev);
4655 }
4656
4657 NAPI_GRO_CB(skb)->csum = wsum;
4658 NAPI_GRO_CB(skb)->csum_valid = 1;
4659
4660 return sum;
4661}
4662EXPORT_SYMBOL(__skb_gro_checksum_complete);
4663
e326bed2 4664/*
855abcf0 4665 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4666 * Note: called with local irq disabled, but exits with local irq enabled.
4667 */
4668static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4669{
4670#ifdef CONFIG_RPS
4671 struct softnet_data *remsd = sd->rps_ipi_list;
4672
4673 if (remsd) {
4674 sd->rps_ipi_list = NULL;
4675
4676 local_irq_enable();
4677
4678 /* Send pending IPI's to kick RPS processing on remote cpus. */
4679 while (remsd) {
4680 struct softnet_data *next = remsd->rps_ipi_next;
4681
4682 if (cpu_online(remsd->cpu))
c46fff2a 4683 smp_call_function_single_async(remsd->cpu,
fce8ad15 4684 &remsd->csd);
e326bed2
ED
4685 remsd = next;
4686 }
4687 } else
4688#endif
4689 local_irq_enable();
4690}
4691
d75b1ade
ED
4692static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4693{
4694#ifdef CONFIG_RPS
4695 return sd->rps_ipi_list != NULL;
4696#else
4697 return false;
4698#endif
4699}
4700
bea3348e 4701static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4702{
eecfd7c4 4703 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4704 bool again = true;
4705 int work = 0;
1da177e4 4706
e326bed2
ED
4707 /* Check if we have pending ipi, its better to send them now,
4708 * not waiting net_rx_action() end.
4709 */
d75b1ade 4710 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4711 local_irq_disable();
4712 net_rps_action_and_irq_enable(sd);
4713 }
d75b1ade 4714
bea3348e 4715 napi->weight = weight_p;
145dd5f9 4716 while (again) {
1da177e4 4717 struct sk_buff *skb;
6e7676c1
CG
4718
4719 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4720 rcu_read_lock();
6e7676c1 4721 __netif_receive_skb(skb);
2c17d27c 4722 rcu_read_unlock();
76cc8b13 4723 input_queue_head_incr(sd);
145dd5f9 4724 if (++work >= quota)
76cc8b13 4725 return work;
145dd5f9 4726
6e7676c1 4727 }
1da177e4 4728
145dd5f9 4729 local_irq_disable();
e36fa2f7 4730 rps_lock(sd);
11ef7a89 4731 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4732 /*
4733 * Inline a custom version of __napi_complete().
4734 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4735 * and NAPI_STATE_SCHED is the only possible flag set
4736 * on backlog.
4737 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4738 * and we dont need an smp_mb() memory barrier.
4739 */
eecfd7c4 4740 napi->state = 0;
145dd5f9
PA
4741 again = false;
4742 } else {
4743 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4744 &sd->process_queue);
bea3348e 4745 }
e36fa2f7 4746 rps_unlock(sd);
145dd5f9 4747 local_irq_enable();
6e7676c1 4748 }
1da177e4 4749
bea3348e
SH
4750 return work;
4751}
1da177e4 4752
bea3348e
SH
4753/**
4754 * __napi_schedule - schedule for receive
c4ea43c5 4755 * @n: entry to schedule
bea3348e 4756 *
bc9ad166
ED
4757 * The entry's receive function will be scheduled to run.
4758 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4759 */
b5606c2d 4760void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4761{
4762 unsigned long flags;
1da177e4 4763
bea3348e 4764 local_irq_save(flags);
903ceff7 4765 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4766 local_irq_restore(flags);
1da177e4 4767}
bea3348e
SH
4768EXPORT_SYMBOL(__napi_schedule);
4769
bc9ad166
ED
4770/**
4771 * __napi_schedule_irqoff - schedule for receive
4772 * @n: entry to schedule
4773 *
4774 * Variant of __napi_schedule() assuming hard irqs are masked
4775 */
4776void __napi_schedule_irqoff(struct napi_struct *n)
4777{
4778 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4779}
4780EXPORT_SYMBOL(__napi_schedule_irqoff);
4781
d565b0a1
HX
4782void __napi_complete(struct napi_struct *n)
4783{
4784 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4785
d75b1ade 4786 list_del_init(&n->poll_list);
4e857c58 4787 smp_mb__before_atomic();
d565b0a1
HX
4788 clear_bit(NAPI_STATE_SCHED, &n->state);
4789}
4790EXPORT_SYMBOL(__napi_complete);
4791
3b47d303 4792void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4793{
4794 unsigned long flags;
4795
4796 /*
4797 * don't let napi dequeue from the cpu poll list
4798 * just in case its running on a different cpu
4799 */
4800 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4801 return;
4802
3b47d303
ED
4803 if (n->gro_list) {
4804 unsigned long timeout = 0;
d75b1ade 4805
3b47d303
ED
4806 if (work_done)
4807 timeout = n->dev->gro_flush_timeout;
4808
4809 if (timeout)
4810 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4811 HRTIMER_MODE_REL_PINNED);
4812 else
4813 napi_gro_flush(n, false);
4814 }
d75b1ade
ED
4815 if (likely(list_empty(&n->poll_list))) {
4816 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4817 } else {
4818 /* If n->poll_list is not empty, we need to mask irqs */
4819 local_irq_save(flags);
4820 __napi_complete(n);
4821 local_irq_restore(flags);
4822 }
d565b0a1 4823}
3b47d303 4824EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4825
af12fa6e 4826/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4827static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4828{
4829 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4830 struct napi_struct *napi;
4831
4832 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4833 if (napi->napi_id == napi_id)
4834 return napi;
4835
4836 return NULL;
4837}
02d62e86
ED
4838
4839#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4840#define BUSY_POLL_BUDGET 8
02d62e86
ED
4841bool sk_busy_loop(struct sock *sk, int nonblock)
4842{
4843 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4844 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4845 struct napi_struct *napi;
4846 int rc = false;
4847
2a028ecb 4848 rcu_read_lock();
02d62e86
ED
4849
4850 napi = napi_by_id(sk->sk_napi_id);
4851 if (!napi)
4852 goto out;
4853
ce6aea93
ED
4854 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4855 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4856
4857 do {
ce6aea93 4858 rc = 0;
2a028ecb 4859 local_bh_disable();
ce6aea93
ED
4860 if (busy_poll) {
4861 rc = busy_poll(napi);
4862 } else if (napi_schedule_prep(napi)) {
4863 void *have = netpoll_poll_lock(napi);
4864
4865 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4866 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1db19db7 4867 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
ce6aea93
ED
4868 if (rc == BUSY_POLL_BUDGET) {
4869 napi_complete_done(napi, rc);
4870 napi_schedule(napi);
4871 }
4872 }
4873 netpoll_poll_unlock(have);
4874 }
2a028ecb 4875 if (rc > 0)
02a1d6e7
ED
4876 __NET_ADD_STATS(sock_net(sk),
4877 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 4878 local_bh_enable();
02d62e86
ED
4879
4880 if (rc == LL_FLUSH_FAILED)
4881 break; /* permanent failure */
4882
02d62e86 4883 cpu_relax();
02d62e86
ED
4884 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4885 !need_resched() && !busy_loop_timeout(end_time));
4886
4887 rc = !skb_queue_empty(&sk->sk_receive_queue);
4888out:
2a028ecb 4889 rcu_read_unlock();
02d62e86
ED
4890 return rc;
4891}
4892EXPORT_SYMBOL(sk_busy_loop);
4893
4894#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
4895
4896void napi_hash_add(struct napi_struct *napi)
4897{
d64b5e85
ED
4898 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4899 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 4900 return;
af12fa6e 4901
52bd2d62 4902 spin_lock(&napi_hash_lock);
af12fa6e 4903
52bd2d62
ED
4904 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4905 do {
4906 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4907 napi_gen_id = NR_CPUS + 1;
4908 } while (napi_by_id(napi_gen_id));
4909 napi->napi_id = napi_gen_id;
af12fa6e 4910
52bd2d62
ED
4911 hlist_add_head_rcu(&napi->napi_hash_node,
4912 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 4913
52bd2d62 4914 spin_unlock(&napi_hash_lock);
af12fa6e
ET
4915}
4916EXPORT_SYMBOL_GPL(napi_hash_add);
4917
4918/* Warning : caller is responsible to make sure rcu grace period
4919 * is respected before freeing memory containing @napi
4920 */
34cbe27e 4921bool napi_hash_del(struct napi_struct *napi)
af12fa6e 4922{
34cbe27e
ED
4923 bool rcu_sync_needed = false;
4924
af12fa6e
ET
4925 spin_lock(&napi_hash_lock);
4926
34cbe27e
ED
4927 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4928 rcu_sync_needed = true;
af12fa6e 4929 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 4930 }
af12fa6e 4931 spin_unlock(&napi_hash_lock);
34cbe27e 4932 return rcu_sync_needed;
af12fa6e
ET
4933}
4934EXPORT_SYMBOL_GPL(napi_hash_del);
4935
3b47d303
ED
4936static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4937{
4938 struct napi_struct *napi;
4939
4940 napi = container_of(timer, struct napi_struct, timer);
4941 if (napi->gro_list)
4942 napi_schedule(napi);
4943
4944 return HRTIMER_NORESTART;
4945}
4946
d565b0a1
HX
4947void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4948 int (*poll)(struct napi_struct *, int), int weight)
4949{
4950 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
4951 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4952 napi->timer.function = napi_watchdog;
4ae5544f 4953 napi->gro_count = 0;
d565b0a1 4954 napi->gro_list = NULL;
5d38a079 4955 napi->skb = NULL;
d565b0a1 4956 napi->poll = poll;
82dc3c63
ED
4957 if (weight > NAPI_POLL_WEIGHT)
4958 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4959 weight, dev->name);
d565b0a1
HX
4960 napi->weight = weight;
4961 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4962 napi->dev = dev;
5d38a079 4963#ifdef CONFIG_NETPOLL
d565b0a1
HX
4964 spin_lock_init(&napi->poll_lock);
4965 napi->poll_owner = -1;
4966#endif
4967 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 4968 napi_hash_add(napi);
d565b0a1
HX
4969}
4970EXPORT_SYMBOL(netif_napi_add);
4971
3b47d303
ED
4972void napi_disable(struct napi_struct *n)
4973{
4974 might_sleep();
4975 set_bit(NAPI_STATE_DISABLE, &n->state);
4976
4977 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4978 msleep(1);
2d8bff12
NH
4979 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4980 msleep(1);
3b47d303
ED
4981
4982 hrtimer_cancel(&n->timer);
4983
4984 clear_bit(NAPI_STATE_DISABLE, &n->state);
4985}
4986EXPORT_SYMBOL(napi_disable);
4987
93d05d4a 4988/* Must be called in process context */
d565b0a1
HX
4989void netif_napi_del(struct napi_struct *napi)
4990{
93d05d4a
ED
4991 might_sleep();
4992 if (napi_hash_del(napi))
4993 synchronize_net();
d7b06636 4994 list_del_init(&napi->dev_list);
76620aaf 4995 napi_free_frags(napi);
d565b0a1 4996
289dccbe 4997 kfree_skb_list(napi->gro_list);
d565b0a1 4998 napi->gro_list = NULL;
4ae5544f 4999 napi->gro_count = 0;
d565b0a1
HX
5000}
5001EXPORT_SYMBOL(netif_napi_del);
5002
726ce70e
HX
5003static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5004{
5005 void *have;
5006 int work, weight;
5007
5008 list_del_init(&n->poll_list);
5009
5010 have = netpoll_poll_lock(n);
5011
5012 weight = n->weight;
5013
5014 /* This NAPI_STATE_SCHED test is for avoiding a race
5015 * with netpoll's poll_napi(). Only the entity which
5016 * obtains the lock and sees NAPI_STATE_SCHED set will
5017 * actually make the ->poll() call. Therefore we avoid
5018 * accidentally calling ->poll() when NAPI is not scheduled.
5019 */
5020 work = 0;
5021 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5022 work = n->poll(n, weight);
1db19db7 5023 trace_napi_poll(n, work, weight);
726ce70e
HX
5024 }
5025
5026 WARN_ON_ONCE(work > weight);
5027
5028 if (likely(work < weight))
5029 goto out_unlock;
5030
5031 /* Drivers must not modify the NAPI state if they
5032 * consume the entire weight. In such cases this code
5033 * still "owns" the NAPI instance and therefore can
5034 * move the instance around on the list at-will.
5035 */
5036 if (unlikely(napi_disable_pending(n))) {
5037 napi_complete(n);
5038 goto out_unlock;
5039 }
5040
5041 if (n->gro_list) {
5042 /* flush too old packets
5043 * If HZ < 1000, flush all packets.
5044 */
5045 napi_gro_flush(n, HZ >= 1000);
5046 }
5047
001ce546
HX
5048 /* Some drivers may have called napi_schedule
5049 * prior to exhausting their budget.
5050 */
5051 if (unlikely(!list_empty(&n->poll_list))) {
5052 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5053 n->dev ? n->dev->name : "backlog");
5054 goto out_unlock;
5055 }
5056
726ce70e
HX
5057 list_add_tail(&n->poll_list, repoll);
5058
5059out_unlock:
5060 netpoll_poll_unlock(have);
5061
5062 return work;
5063}
5064
1da177e4
LT
5065static void net_rx_action(struct softirq_action *h)
5066{
903ceff7 5067 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5068 unsigned long time_limit = jiffies + 2;
51b0bded 5069 int budget = netdev_budget;
d75b1ade
ED
5070 LIST_HEAD(list);
5071 LIST_HEAD(repoll);
53fb95d3 5072
1da177e4 5073 local_irq_disable();
d75b1ade
ED
5074 list_splice_init(&sd->poll_list, &list);
5075 local_irq_enable();
1da177e4 5076
ceb8d5bf 5077 for (;;) {
bea3348e 5078 struct napi_struct *n;
1da177e4 5079
ceb8d5bf
HX
5080 if (list_empty(&list)) {
5081 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5082 return;
5083 break;
5084 }
5085
6bd373eb
HX
5086 n = list_first_entry(&list, struct napi_struct, poll_list);
5087 budget -= napi_poll(n, &repoll);
5088
d75b1ade 5089 /* If softirq window is exhausted then punt.
24f8b238
SH
5090 * Allow this to run for 2 jiffies since which will allow
5091 * an average latency of 1.5/HZ.
bea3348e 5092 */
ceb8d5bf
HX
5093 if (unlikely(budget <= 0 ||
5094 time_after_eq(jiffies, time_limit))) {
5095 sd->time_squeeze++;
5096 break;
5097 }
1da177e4 5098 }
d75b1ade 5099
795bb1c0 5100 __kfree_skb_flush();
d75b1ade
ED
5101 local_irq_disable();
5102
5103 list_splice_tail_init(&sd->poll_list, &list);
5104 list_splice_tail(&repoll, &list);
5105 list_splice(&list, &sd->poll_list);
5106 if (!list_empty(&sd->poll_list))
5107 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5108
e326bed2 5109 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5110}
5111
aa9d8560 5112struct netdev_adjacent {
9ff162a8 5113 struct net_device *dev;
5d261913
VF
5114
5115 /* upper master flag, there can only be one master device per list */
9ff162a8 5116 bool master;
5d261913 5117
5d261913
VF
5118 /* counter for the number of times this device was added to us */
5119 u16 ref_nr;
5120
402dae96
VF
5121 /* private field for the users */
5122 void *private;
5123
9ff162a8
JP
5124 struct list_head list;
5125 struct rcu_head rcu;
9ff162a8
JP
5126};
5127
6ea29da1 5128static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5129 struct list_head *adj_list)
9ff162a8 5130{
5d261913 5131 struct netdev_adjacent *adj;
5d261913 5132
2f268f12 5133 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5134 if (adj->dev == adj_dev)
5135 return adj;
9ff162a8
JP
5136 }
5137 return NULL;
5138}
5139
5140/**
5141 * netdev_has_upper_dev - Check if device is linked to an upper device
5142 * @dev: device
5143 * @upper_dev: upper device to check
5144 *
5145 * Find out if a device is linked to specified upper device and return true
5146 * in case it is. Note that this checks only immediate upper device,
5147 * not through a complete stack of devices. The caller must hold the RTNL lock.
5148 */
5149bool netdev_has_upper_dev(struct net_device *dev,
5150 struct net_device *upper_dev)
5151{
5152 ASSERT_RTNL();
5153
6ea29da1 5154 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
5155}
5156EXPORT_SYMBOL(netdev_has_upper_dev);
5157
5158/**
5159 * netdev_has_any_upper_dev - Check if device is linked to some device
5160 * @dev: device
5161 *
5162 * Find out if a device is linked to an upper device and return true in case
5163 * it is. The caller must hold the RTNL lock.
5164 */
1d143d9f 5165static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5166{
5167 ASSERT_RTNL();
5168
2f268f12 5169 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 5170}
9ff162a8
JP
5171
5172/**
5173 * netdev_master_upper_dev_get - Get master upper device
5174 * @dev: device
5175 *
5176 * Find a master upper device and return pointer to it or NULL in case
5177 * it's not there. The caller must hold the RTNL lock.
5178 */
5179struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5180{
aa9d8560 5181 struct netdev_adjacent *upper;
9ff162a8
JP
5182
5183 ASSERT_RTNL();
5184
2f268f12 5185 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5186 return NULL;
5187
2f268f12 5188 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5189 struct netdev_adjacent, list);
9ff162a8
JP
5190 if (likely(upper->master))
5191 return upper->dev;
5192 return NULL;
5193}
5194EXPORT_SYMBOL(netdev_master_upper_dev_get);
5195
b6ccba4c
VF
5196void *netdev_adjacent_get_private(struct list_head *adj_list)
5197{
5198 struct netdev_adjacent *adj;
5199
5200 adj = list_entry(adj_list, struct netdev_adjacent, list);
5201
5202 return adj->private;
5203}
5204EXPORT_SYMBOL(netdev_adjacent_get_private);
5205
44a40855
VY
5206/**
5207 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5208 * @dev: device
5209 * @iter: list_head ** of the current position
5210 *
5211 * Gets the next device from the dev's upper list, starting from iter
5212 * position. The caller must hold RCU read lock.
5213 */
5214struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5215 struct list_head **iter)
5216{
5217 struct netdev_adjacent *upper;
5218
5219 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5220
5221 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5222
5223 if (&upper->list == &dev->adj_list.upper)
5224 return NULL;
5225
5226 *iter = &upper->list;
5227
5228 return upper->dev;
5229}
5230EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5231
31088a11
VF
5232/**
5233 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5234 * @dev: device
5235 * @iter: list_head ** of the current position
5236 *
5237 * Gets the next device from the dev's upper list, starting from iter
5238 * position. The caller must hold RCU read lock.
5239 */
2f268f12
VF
5240struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5241 struct list_head **iter)
48311f46
VF
5242{
5243 struct netdev_adjacent *upper;
5244
85328240 5245 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5246
5247 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5248
2f268f12 5249 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5250 return NULL;
5251
5252 *iter = &upper->list;
5253
5254 return upper->dev;
5255}
2f268f12 5256EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5257
31088a11
VF
5258/**
5259 * netdev_lower_get_next_private - Get the next ->private from the
5260 * lower neighbour list
5261 * @dev: device
5262 * @iter: list_head ** of the current position
5263 *
5264 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5265 * list, starting from iter position. The caller must hold either hold the
5266 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5267 * list will remain unchanged.
31088a11
VF
5268 */
5269void *netdev_lower_get_next_private(struct net_device *dev,
5270 struct list_head **iter)
5271{
5272 struct netdev_adjacent *lower;
5273
5274 lower = list_entry(*iter, struct netdev_adjacent, list);
5275
5276 if (&lower->list == &dev->adj_list.lower)
5277 return NULL;
5278
6859e7df 5279 *iter = lower->list.next;
31088a11
VF
5280
5281 return lower->private;
5282}
5283EXPORT_SYMBOL(netdev_lower_get_next_private);
5284
5285/**
5286 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5287 * lower neighbour list, RCU
5288 * variant
5289 * @dev: device
5290 * @iter: list_head ** of the current position
5291 *
5292 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5293 * list, starting from iter position. The caller must hold RCU read lock.
5294 */
5295void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5296 struct list_head **iter)
5297{
5298 struct netdev_adjacent *lower;
5299
5300 WARN_ON_ONCE(!rcu_read_lock_held());
5301
5302 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5303
5304 if (&lower->list == &dev->adj_list.lower)
5305 return NULL;
5306
6859e7df 5307 *iter = &lower->list;
31088a11
VF
5308
5309 return lower->private;
5310}
5311EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5312
4085ebe8
VY
5313/**
5314 * netdev_lower_get_next - Get the next device from the lower neighbour
5315 * list
5316 * @dev: device
5317 * @iter: list_head ** of the current position
5318 *
5319 * Gets the next netdev_adjacent from the dev's lower neighbour
5320 * list, starting from iter position. The caller must hold RTNL lock or
5321 * its own locking that guarantees that the neighbour lower
b469139e 5322 * list will remain unchanged.
4085ebe8
VY
5323 */
5324void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5325{
5326 struct netdev_adjacent *lower;
5327
cfdd28be 5328 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5329
5330 if (&lower->list == &dev->adj_list.lower)
5331 return NULL;
5332
cfdd28be 5333 *iter = lower->list.next;
4085ebe8
VY
5334
5335 return lower->dev;
5336}
5337EXPORT_SYMBOL(netdev_lower_get_next);
5338
7ce856aa
JP
5339/**
5340 * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5341 * @dev: device
5342 * @iter: list_head ** of the current position
5343 *
5344 * Gets the next netdev_adjacent from the dev's all lower neighbour
5345 * list, starting from iter position. The caller must hold RTNL lock or
5346 * its own locking that guarantees that the neighbour all lower
5347 * list will remain unchanged.
5348 */
5349struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5350{
5351 struct netdev_adjacent *lower;
5352
5353 lower = list_entry(*iter, struct netdev_adjacent, list);
5354
5355 if (&lower->list == &dev->all_adj_list.lower)
5356 return NULL;
5357
5358 *iter = lower->list.next;
5359
5360 return lower->dev;
5361}
5362EXPORT_SYMBOL(netdev_all_lower_get_next);
5363
5364/**
5365 * netdev_all_lower_get_next_rcu - Get the next device from all
5366 * lower neighbour list, RCU variant
5367 * @dev: device
5368 * @iter: list_head ** of the current position
5369 *
5370 * Gets the next netdev_adjacent from the dev's all lower neighbour
5371 * list, starting from iter position. The caller must hold RCU read lock.
5372 */
5373struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5374 struct list_head **iter)
5375{
5376 struct netdev_adjacent *lower;
5377
5378 lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5379 struct netdev_adjacent, list);
5380
5381 return lower ? lower->dev : NULL;
5382}
5383EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5384
e001bfad 5385/**
5386 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5387 * lower neighbour list, RCU
5388 * variant
5389 * @dev: device
5390 *
5391 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5392 * list. The caller must hold RCU read lock.
5393 */
5394void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5395{
5396 struct netdev_adjacent *lower;
5397
5398 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5399 struct netdev_adjacent, list);
5400 if (lower)
5401 return lower->private;
5402 return NULL;
5403}
5404EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5405
9ff162a8
JP
5406/**
5407 * netdev_master_upper_dev_get_rcu - Get master upper device
5408 * @dev: device
5409 *
5410 * Find a master upper device and return pointer to it or NULL in case
5411 * it's not there. The caller must hold the RCU read lock.
5412 */
5413struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5414{
aa9d8560 5415 struct netdev_adjacent *upper;
9ff162a8 5416
2f268f12 5417 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5418 struct netdev_adjacent, list);
9ff162a8
JP
5419 if (upper && likely(upper->master))
5420 return upper->dev;
5421 return NULL;
5422}
5423EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5424
0a59f3a9 5425static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5426 struct net_device *adj_dev,
5427 struct list_head *dev_list)
5428{
5429 char linkname[IFNAMSIZ+7];
5430 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5431 "upper_%s" : "lower_%s", adj_dev->name);
5432 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5433 linkname);
5434}
0a59f3a9 5435static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5436 char *name,
5437 struct list_head *dev_list)
5438{
5439 char linkname[IFNAMSIZ+7];
5440 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5441 "upper_%s" : "lower_%s", name);
5442 sysfs_remove_link(&(dev->dev.kobj), linkname);
5443}
5444
7ce64c79
AF
5445static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5446 struct net_device *adj_dev,
5447 struct list_head *dev_list)
5448{
5449 return (dev_list == &dev->adj_list.upper ||
5450 dev_list == &dev->adj_list.lower) &&
5451 net_eq(dev_net(dev), dev_net(adj_dev));
5452}
3ee32707 5453
5d261913
VF
5454static int __netdev_adjacent_dev_insert(struct net_device *dev,
5455 struct net_device *adj_dev,
93409033 5456 u16 ref_nr,
7863c054 5457 struct list_head *dev_list,
402dae96 5458 void *private, bool master)
5d261913
VF
5459{
5460 struct netdev_adjacent *adj;
842d67a7 5461 int ret;
5d261913 5462
6ea29da1 5463 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5464
5465 if (adj) {
93409033 5466 adj->ref_nr += ref_nr;
5d261913
VF
5467 return 0;
5468 }
5469
5470 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5471 if (!adj)
5472 return -ENOMEM;
5473
5474 adj->dev = adj_dev;
5475 adj->master = master;
93409033 5476 adj->ref_nr = ref_nr;
402dae96 5477 adj->private = private;
5d261913 5478 dev_hold(adj_dev);
2f268f12
VF
5479
5480 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5481 adj_dev->name, dev->name, adj_dev->name);
5d261913 5482
7ce64c79 5483 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5484 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5485 if (ret)
5486 goto free_adj;
5487 }
5488
7863c054 5489 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5490 if (master) {
5491 ret = sysfs_create_link(&(dev->dev.kobj),
5492 &(adj_dev->dev.kobj), "master");
5493 if (ret)
5831d66e 5494 goto remove_symlinks;
842d67a7 5495
7863c054 5496 list_add_rcu(&adj->list, dev_list);
842d67a7 5497 } else {
7863c054 5498 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5499 }
5d261913
VF
5500
5501 return 0;
842d67a7 5502
5831d66e 5503remove_symlinks:
7ce64c79 5504 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5505 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5506free_adj:
5507 kfree(adj);
974daef7 5508 dev_put(adj_dev);
842d67a7
VF
5509
5510 return ret;
5d261913
VF
5511}
5512
1d143d9f 5513static void __netdev_adjacent_dev_remove(struct net_device *dev,
5514 struct net_device *adj_dev,
93409033 5515 u16 ref_nr,
1d143d9f 5516 struct list_head *dev_list)
5d261913
VF
5517{
5518 struct netdev_adjacent *adj;
5519
6ea29da1 5520 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5521
2f268f12
VF
5522 if (!adj) {
5523 pr_err("tried to remove device %s from %s\n",
5524 dev->name, adj_dev->name);
5d261913 5525 BUG();
2f268f12 5526 }
5d261913 5527
93409033
AC
5528 if (adj->ref_nr > ref_nr) {
5529 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5530 ref_nr, adj->ref_nr-ref_nr);
5531 adj->ref_nr -= ref_nr;
5d261913
VF
5532 return;
5533 }
5534
842d67a7
VF
5535 if (adj->master)
5536 sysfs_remove_link(&(dev->dev.kobj), "master");
5537
7ce64c79 5538 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5539 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5540
5d261913 5541 list_del_rcu(&adj->list);
2f268f12
VF
5542 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5543 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5544 dev_put(adj_dev);
5545 kfree_rcu(adj, rcu);
5546}
5547
1d143d9f 5548static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5549 struct net_device *upper_dev,
93409033 5550 u16 ref_nr,
1d143d9f 5551 struct list_head *up_list,
5552 struct list_head *down_list,
5553 void *private, bool master)
5d261913
VF
5554{
5555 int ret;
5556
93409033
AC
5557 ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5558 private, master);
5d261913
VF
5559 if (ret)
5560 return ret;
5561
93409033
AC
5562 ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5563 private, false);
5d261913 5564 if (ret) {
93409033 5565 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5d261913
VF
5566 return ret;
5567 }
5568
5569 return 0;
5570}
5571
1d143d9f 5572static int __netdev_adjacent_dev_link(struct net_device *dev,
93409033
AC
5573 struct net_device *upper_dev,
5574 u16 ref_nr)
5d261913 5575{
93409033 5576 return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
2f268f12
VF
5577 &dev->all_adj_list.upper,
5578 &upper_dev->all_adj_list.lower,
402dae96 5579 NULL, false);
5d261913
VF
5580}
5581
1d143d9f 5582static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5583 struct net_device *upper_dev,
93409033 5584 u16 ref_nr,
1d143d9f 5585 struct list_head *up_list,
5586 struct list_head *down_list)
5d261913 5587{
93409033
AC
5588 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5589 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
5590}
5591
1d143d9f 5592static void __netdev_adjacent_dev_unlink(struct net_device *dev,
93409033
AC
5593 struct net_device *upper_dev,
5594 u16 ref_nr)
5d261913 5595{
93409033 5596 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
2f268f12
VF
5597 &dev->all_adj_list.upper,
5598 &upper_dev->all_adj_list.lower);
5599}
5600
1d143d9f 5601static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5602 struct net_device *upper_dev,
5603 void *private, bool master)
2f268f12 5604{
93409033 5605 int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
2f268f12
VF
5606
5607 if (ret)
5608 return ret;
5609
93409033 5610 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
2f268f12
VF
5611 &dev->adj_list.upper,
5612 &upper_dev->adj_list.lower,
402dae96 5613 private, master);
2f268f12 5614 if (ret) {
93409033 5615 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
2f268f12
VF
5616 return ret;
5617 }
5618
5619 return 0;
5d261913
VF
5620}
5621
1d143d9f 5622static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5623 struct net_device *upper_dev)
2f268f12 5624{
93409033
AC
5625 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5626 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
5627 &dev->adj_list.upper,
5628 &upper_dev->adj_list.lower);
5629}
5d261913 5630
9ff162a8 5631static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5632 struct net_device *upper_dev, bool master,
29bf24af 5633 void *upper_priv, void *upper_info)
9ff162a8 5634{
0e4ead9d 5635 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5636 struct netdev_adjacent *i, *j, *to_i, *to_j;
5637 int ret = 0;
9ff162a8
JP
5638
5639 ASSERT_RTNL();
5640
5641 if (dev == upper_dev)
5642 return -EBUSY;
5643
5644 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5645 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5646 return -EBUSY;
5647
6ea29da1 5648 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5649 return -EEXIST;
5650
5651 if (master && netdev_master_upper_dev_get(dev))
5652 return -EBUSY;
5653
0e4ead9d
JP
5654 changeupper_info.upper_dev = upper_dev;
5655 changeupper_info.master = master;
5656 changeupper_info.linking = true;
29bf24af 5657 changeupper_info.upper_info = upper_info;
0e4ead9d 5658
573c7ba0
JP
5659 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5660 &changeupper_info.info);
5661 ret = notifier_to_errno(ret);
5662 if (ret)
5663 return ret;
5664
6dffb044 5665 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5666 master);
5d261913
VF
5667 if (ret)
5668 return ret;
9ff162a8 5669
5d261913 5670 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5671 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5672 * versa, and don't forget the devices itself. All of these
5673 * links are non-neighbours.
5674 */
2f268f12
VF
5675 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5676 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5677 pr_debug("Interlinking %s with %s, non-neighbour\n",
5678 i->dev->name, j->dev->name);
93409033 5679 ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5d261913
VF
5680 if (ret)
5681 goto rollback_mesh;
5682 }
5683 }
5684
5685 /* add dev to every upper_dev's upper device */
2f268f12
VF
5686 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5687 pr_debug("linking %s's upper device %s with %s\n",
5688 upper_dev->name, i->dev->name, dev->name);
93409033 5689 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5d261913
VF
5690 if (ret)
5691 goto rollback_upper_mesh;
5692 }
5693
5694 /* add upper_dev to every dev's lower device */
2f268f12
VF
5695 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5696 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5697 i->dev->name, upper_dev->name);
93409033 5698 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5d261913
VF
5699 if (ret)
5700 goto rollback_lower_mesh;
5701 }
9ff162a8 5702
b03804e7
IS
5703 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5704 &changeupper_info.info);
5705 ret = notifier_to_errno(ret);
5706 if (ret)
5707 goto rollback_lower_mesh;
5708
9ff162a8 5709 return 0;
5d261913
VF
5710
5711rollback_lower_mesh:
5712 to_i = i;
2f268f12 5713 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5714 if (i == to_i)
5715 break;
93409033 5716 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5d261913
VF
5717 }
5718
5719 i = NULL;
5720
5721rollback_upper_mesh:
5722 to_i = i;
2f268f12 5723 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5724 if (i == to_i)
5725 break;
93409033 5726 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5d261913
VF
5727 }
5728
5729 i = j = NULL;
5730
5731rollback_mesh:
5732 to_i = i;
5733 to_j = j;
2f268f12
VF
5734 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5735 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5736 if (i == to_i && j == to_j)
5737 break;
93409033 5738 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5d261913
VF
5739 }
5740 if (i == to_i)
5741 break;
5742 }
5743
2f268f12 5744 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5745
5746 return ret;
9ff162a8
JP
5747}
5748
5749/**
5750 * netdev_upper_dev_link - Add a link to the upper device
5751 * @dev: device
5752 * @upper_dev: new upper device
5753 *
5754 * Adds a link to device which is upper to this one. The caller must hold
5755 * the RTNL lock. On a failure a negative errno code is returned.
5756 * On success the reference counts are adjusted and the function
5757 * returns zero.
5758 */
5759int netdev_upper_dev_link(struct net_device *dev,
5760 struct net_device *upper_dev)
5761{
29bf24af 5762 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5763}
5764EXPORT_SYMBOL(netdev_upper_dev_link);
5765
5766/**
5767 * netdev_master_upper_dev_link - Add a master link to the upper device
5768 * @dev: device
5769 * @upper_dev: new upper device
6dffb044 5770 * @upper_priv: upper device private
29bf24af 5771 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5772 *
5773 * Adds a link to device which is upper to this one. In this case, only
5774 * one master upper device can be linked, although other non-master devices
5775 * might be linked as well. The caller must hold the RTNL lock.
5776 * On a failure a negative errno code is returned. On success the reference
5777 * counts are adjusted and the function returns zero.
5778 */
5779int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5780 struct net_device *upper_dev,
29bf24af 5781 void *upper_priv, void *upper_info)
9ff162a8 5782{
29bf24af
JP
5783 return __netdev_upper_dev_link(dev, upper_dev, true,
5784 upper_priv, upper_info);
9ff162a8
JP
5785}
5786EXPORT_SYMBOL(netdev_master_upper_dev_link);
5787
5788/**
5789 * netdev_upper_dev_unlink - Removes a link to upper device
5790 * @dev: device
5791 * @upper_dev: new upper device
5792 *
5793 * Removes a link to device which is upper to this one. The caller must hold
5794 * the RTNL lock.
5795 */
5796void netdev_upper_dev_unlink(struct net_device *dev,
5797 struct net_device *upper_dev)
5798{
0e4ead9d 5799 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5800 struct netdev_adjacent *i, *j;
9ff162a8
JP
5801 ASSERT_RTNL();
5802
0e4ead9d
JP
5803 changeupper_info.upper_dev = upper_dev;
5804 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5805 changeupper_info.linking = false;
5806
573c7ba0
JP
5807 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5808 &changeupper_info.info);
5809
2f268f12 5810 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5811
5812 /* Here is the tricky part. We must remove all dev's lower
5813 * devices from all upper_dev's upper devices and vice
5814 * versa, to maintain the graph relationship.
5815 */
2f268f12
VF
5816 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5817 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
93409033 5818 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5d261913
VF
5819
5820 /* remove also the devices itself from lower/upper device
5821 * list
5822 */
2f268f12 5823 list_for_each_entry(i, &dev->all_adj_list.lower, list)
93409033 5824 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5d261913 5825
2f268f12 5826 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
93409033 5827 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5d261913 5828
0e4ead9d
JP
5829 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5830 &changeupper_info.info);
9ff162a8
JP
5831}
5832EXPORT_SYMBOL(netdev_upper_dev_unlink);
5833
61bd3857
MS
5834/**
5835 * netdev_bonding_info_change - Dispatch event about slave change
5836 * @dev: device
4a26e453 5837 * @bonding_info: info to dispatch
61bd3857
MS
5838 *
5839 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5840 * The caller must hold the RTNL lock.
5841 */
5842void netdev_bonding_info_change(struct net_device *dev,
5843 struct netdev_bonding_info *bonding_info)
5844{
5845 struct netdev_notifier_bonding_info info;
5846
5847 memcpy(&info.bonding_info, bonding_info,
5848 sizeof(struct netdev_bonding_info));
5849 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5850 &info.info);
5851}
5852EXPORT_SYMBOL(netdev_bonding_info_change);
5853
2ce1ee17 5854static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5855{
5856 struct netdev_adjacent *iter;
5857
5858 struct net *net = dev_net(dev);
5859
5860 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5861 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5862 continue;
5863 netdev_adjacent_sysfs_add(iter->dev, dev,
5864 &iter->dev->adj_list.lower);
5865 netdev_adjacent_sysfs_add(dev, iter->dev,
5866 &dev->adj_list.upper);
5867 }
5868
5869 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5870 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5871 continue;
5872 netdev_adjacent_sysfs_add(iter->dev, dev,
5873 &iter->dev->adj_list.upper);
5874 netdev_adjacent_sysfs_add(dev, iter->dev,
5875 &dev->adj_list.lower);
5876 }
5877}
5878
2ce1ee17 5879static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5880{
5881 struct netdev_adjacent *iter;
5882
5883 struct net *net = dev_net(dev);
5884
5885 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5886 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5887 continue;
5888 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5889 &iter->dev->adj_list.lower);
5890 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5891 &dev->adj_list.upper);
5892 }
5893
5894 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5895 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5896 continue;
5897 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5898 &iter->dev->adj_list.upper);
5899 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5900 &dev->adj_list.lower);
5901 }
5902}
5903
5bb025fa 5904void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5905{
5bb025fa 5906 struct netdev_adjacent *iter;
402dae96 5907
4c75431a
AF
5908 struct net *net = dev_net(dev);
5909
5bb025fa 5910 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5911 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 5912 continue;
5bb025fa
VF
5913 netdev_adjacent_sysfs_del(iter->dev, oldname,
5914 &iter->dev->adj_list.lower);
5915 netdev_adjacent_sysfs_add(iter->dev, dev,
5916 &iter->dev->adj_list.lower);
5917 }
402dae96 5918
5bb025fa 5919 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5920 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 5921 continue;
5bb025fa
VF
5922 netdev_adjacent_sysfs_del(iter->dev, oldname,
5923 &iter->dev->adj_list.upper);
5924 netdev_adjacent_sysfs_add(iter->dev, dev,
5925 &iter->dev->adj_list.upper);
5926 }
402dae96 5927}
402dae96
VF
5928
5929void *netdev_lower_dev_get_private(struct net_device *dev,
5930 struct net_device *lower_dev)
5931{
5932 struct netdev_adjacent *lower;
5933
5934 if (!lower_dev)
5935 return NULL;
6ea29da1 5936 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
5937 if (!lower)
5938 return NULL;
5939
5940 return lower->private;
5941}
5942EXPORT_SYMBOL(netdev_lower_dev_get_private);
5943
4085ebe8 5944
952fcfd0 5945int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
5946{
5947 struct net_device *lower = NULL;
5948 struct list_head *iter;
5949 int max_nest = -1;
5950 int nest;
5951
5952 ASSERT_RTNL();
5953
5954 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 5955 nest = dev_get_nest_level(lower);
4085ebe8
VY
5956 if (max_nest < nest)
5957 max_nest = nest;
5958 }
5959
952fcfd0 5960 return max_nest + 1;
4085ebe8
VY
5961}
5962EXPORT_SYMBOL(dev_get_nest_level);
5963
04d48266
JP
5964/**
5965 * netdev_lower_change - Dispatch event about lower device state change
5966 * @lower_dev: device
5967 * @lower_state_info: state to dispatch
5968 *
5969 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5970 * The caller must hold the RTNL lock.
5971 */
5972void netdev_lower_state_changed(struct net_device *lower_dev,
5973 void *lower_state_info)
5974{
5975 struct netdev_notifier_changelowerstate_info changelowerstate_info;
5976
5977 ASSERT_RTNL();
5978 changelowerstate_info.lower_state_info = lower_state_info;
5979 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5980 &changelowerstate_info.info);
5981}
5982EXPORT_SYMBOL(netdev_lower_state_changed);
5983
18bfb924
JP
5984int netdev_default_l2upper_neigh_construct(struct net_device *dev,
5985 struct neighbour *n)
5986{
5987 struct net_device *lower_dev, *stop_dev;
5988 struct list_head *iter;
5989 int err;
5990
5991 netdev_for_each_lower_dev(dev, lower_dev, iter) {
5992 if (!lower_dev->netdev_ops->ndo_neigh_construct)
5993 continue;
5994 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
5995 if (err) {
5996 stop_dev = lower_dev;
5997 goto rollback;
5998 }
5999 }
6000 return 0;
6001
6002rollback:
6003 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6004 if (lower_dev == stop_dev)
6005 break;
6006 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6007 continue;
6008 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6009 }
6010 return err;
6011}
6012EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6013
6014void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6015 struct neighbour *n)
6016{
6017 struct net_device *lower_dev;
6018 struct list_head *iter;
6019
6020 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6021 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6022 continue;
6023 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6024 }
6025}
6026EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6027
b6c40d68
PM
6028static void dev_change_rx_flags(struct net_device *dev, int flags)
6029{
d314774c
SH
6030 const struct net_device_ops *ops = dev->netdev_ops;
6031
d2615bf4 6032 if (ops->ndo_change_rx_flags)
d314774c 6033 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6034}
6035
991fb3f7 6036static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6037{
b536db93 6038 unsigned int old_flags = dev->flags;
d04a48b0
EB
6039 kuid_t uid;
6040 kgid_t gid;
1da177e4 6041
24023451
PM
6042 ASSERT_RTNL();
6043
dad9b335
WC
6044 dev->flags |= IFF_PROMISC;
6045 dev->promiscuity += inc;
6046 if (dev->promiscuity == 0) {
6047 /*
6048 * Avoid overflow.
6049 * If inc causes overflow, untouch promisc and return error.
6050 */
6051 if (inc < 0)
6052 dev->flags &= ~IFF_PROMISC;
6053 else {
6054 dev->promiscuity -= inc;
7b6cd1ce
JP
6055 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6056 dev->name);
dad9b335
WC
6057 return -EOVERFLOW;
6058 }
6059 }
52609c0b 6060 if (dev->flags != old_flags) {
7b6cd1ce
JP
6061 pr_info("device %s %s promiscuous mode\n",
6062 dev->name,
6063 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6064 if (audit_enabled) {
6065 current_uid_gid(&uid, &gid);
7759db82
KHK
6066 audit_log(current->audit_context, GFP_ATOMIC,
6067 AUDIT_ANOM_PROMISCUOUS,
6068 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6069 dev->name, (dev->flags & IFF_PROMISC),
6070 (old_flags & IFF_PROMISC),
e1760bd5 6071 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6072 from_kuid(&init_user_ns, uid),
6073 from_kgid(&init_user_ns, gid),
7759db82 6074 audit_get_sessionid(current));
8192b0c4 6075 }
24023451 6076
b6c40d68 6077 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6078 }
991fb3f7
ND
6079 if (notify)
6080 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6081 return 0;
1da177e4
LT
6082}
6083
4417da66
PM
6084/**
6085 * dev_set_promiscuity - update promiscuity count on a device
6086 * @dev: device
6087 * @inc: modifier
6088 *
6089 * Add or remove promiscuity from a device. While the count in the device
6090 * remains above zero the interface remains promiscuous. Once it hits zero
6091 * the device reverts back to normal filtering operation. A negative inc
6092 * value is used to drop promiscuity on the device.
dad9b335 6093 * Return 0 if successful or a negative errno code on error.
4417da66 6094 */
dad9b335 6095int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6096{
b536db93 6097 unsigned int old_flags = dev->flags;
dad9b335 6098 int err;
4417da66 6099
991fb3f7 6100 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6101 if (err < 0)
dad9b335 6102 return err;
4417da66
PM
6103 if (dev->flags != old_flags)
6104 dev_set_rx_mode(dev);
dad9b335 6105 return err;
4417da66 6106}
d1b19dff 6107EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6108
991fb3f7 6109static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6110{
991fb3f7 6111 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6112
24023451
PM
6113 ASSERT_RTNL();
6114
1da177e4 6115 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6116 dev->allmulti += inc;
6117 if (dev->allmulti == 0) {
6118 /*
6119 * Avoid overflow.
6120 * If inc causes overflow, untouch allmulti and return error.
6121 */
6122 if (inc < 0)
6123 dev->flags &= ~IFF_ALLMULTI;
6124 else {
6125 dev->allmulti -= inc;
7b6cd1ce
JP
6126 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6127 dev->name);
dad9b335
WC
6128 return -EOVERFLOW;
6129 }
6130 }
24023451 6131 if (dev->flags ^ old_flags) {
b6c40d68 6132 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6133 dev_set_rx_mode(dev);
991fb3f7
ND
6134 if (notify)
6135 __dev_notify_flags(dev, old_flags,
6136 dev->gflags ^ old_gflags);
24023451 6137 }
dad9b335 6138 return 0;
4417da66 6139}
991fb3f7
ND
6140
6141/**
6142 * dev_set_allmulti - update allmulti count on a device
6143 * @dev: device
6144 * @inc: modifier
6145 *
6146 * Add or remove reception of all multicast frames to a device. While the
6147 * count in the device remains above zero the interface remains listening
6148 * to all interfaces. Once it hits zero the device reverts back to normal
6149 * filtering operation. A negative @inc value is used to drop the counter
6150 * when releasing a resource needing all multicasts.
6151 * Return 0 if successful or a negative errno code on error.
6152 */
6153
6154int dev_set_allmulti(struct net_device *dev, int inc)
6155{
6156 return __dev_set_allmulti(dev, inc, true);
6157}
d1b19dff 6158EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6159
6160/*
6161 * Upload unicast and multicast address lists to device and
6162 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6163 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6164 * are present.
6165 */
6166void __dev_set_rx_mode(struct net_device *dev)
6167{
d314774c
SH
6168 const struct net_device_ops *ops = dev->netdev_ops;
6169
4417da66
PM
6170 /* dev_open will call this function so the list will stay sane. */
6171 if (!(dev->flags&IFF_UP))
6172 return;
6173
6174 if (!netif_device_present(dev))
40b77c94 6175 return;
4417da66 6176
01789349 6177 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6178 /* Unicast addresses changes may only happen under the rtnl,
6179 * therefore calling __dev_set_promiscuity here is safe.
6180 */
32e7bfc4 6181 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6182 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6183 dev->uc_promisc = true;
32e7bfc4 6184 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6185 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6186 dev->uc_promisc = false;
4417da66 6187 }
4417da66 6188 }
01789349
JP
6189
6190 if (ops->ndo_set_rx_mode)
6191 ops->ndo_set_rx_mode(dev);
4417da66
PM
6192}
6193
6194void dev_set_rx_mode(struct net_device *dev)
6195{
b9e40857 6196 netif_addr_lock_bh(dev);
4417da66 6197 __dev_set_rx_mode(dev);
b9e40857 6198 netif_addr_unlock_bh(dev);
1da177e4
LT
6199}
6200
f0db275a
SH
6201/**
6202 * dev_get_flags - get flags reported to userspace
6203 * @dev: device
6204 *
6205 * Get the combination of flag bits exported through APIs to userspace.
6206 */
95c96174 6207unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6208{
95c96174 6209 unsigned int flags;
1da177e4
LT
6210
6211 flags = (dev->flags & ~(IFF_PROMISC |
6212 IFF_ALLMULTI |
b00055aa
SR
6213 IFF_RUNNING |
6214 IFF_LOWER_UP |
6215 IFF_DORMANT)) |
1da177e4
LT
6216 (dev->gflags & (IFF_PROMISC |
6217 IFF_ALLMULTI));
6218
b00055aa
SR
6219 if (netif_running(dev)) {
6220 if (netif_oper_up(dev))
6221 flags |= IFF_RUNNING;
6222 if (netif_carrier_ok(dev))
6223 flags |= IFF_LOWER_UP;
6224 if (netif_dormant(dev))
6225 flags |= IFF_DORMANT;
6226 }
1da177e4
LT
6227
6228 return flags;
6229}
d1b19dff 6230EXPORT_SYMBOL(dev_get_flags);
1da177e4 6231
bd380811 6232int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6233{
b536db93 6234 unsigned int old_flags = dev->flags;
bd380811 6235 int ret;
1da177e4 6236
24023451
PM
6237 ASSERT_RTNL();
6238
1da177e4
LT
6239 /*
6240 * Set the flags on our device.
6241 */
6242
6243 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6244 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6245 IFF_AUTOMEDIA)) |
6246 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6247 IFF_ALLMULTI));
6248
6249 /*
6250 * Load in the correct multicast list now the flags have changed.
6251 */
6252
b6c40d68
PM
6253 if ((old_flags ^ flags) & IFF_MULTICAST)
6254 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6255
4417da66 6256 dev_set_rx_mode(dev);
1da177e4
LT
6257
6258 /*
6259 * Have we downed the interface. We handle IFF_UP ourselves
6260 * according to user attempts to set it, rather than blindly
6261 * setting it.
6262 */
6263
6264 ret = 0;
d215d10f 6265 if ((old_flags ^ flags) & IFF_UP)
bd380811 6266 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6267
1da177e4 6268 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6269 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6270 unsigned int old_flags = dev->flags;
d1b19dff 6271
1da177e4 6272 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6273
6274 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6275 if (dev->flags != old_flags)
6276 dev_set_rx_mode(dev);
1da177e4
LT
6277 }
6278
6279 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6280 is important. Some (broken) drivers set IFF_PROMISC, when
6281 IFF_ALLMULTI is requested not asking us and not reporting.
6282 */
6283 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6284 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6285
1da177e4 6286 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6287 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6288 }
6289
bd380811
PM
6290 return ret;
6291}
6292
a528c219
ND
6293void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6294 unsigned int gchanges)
bd380811
PM
6295{
6296 unsigned int changes = dev->flags ^ old_flags;
6297
a528c219 6298 if (gchanges)
7f294054 6299 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6300
bd380811
PM
6301 if (changes & IFF_UP) {
6302 if (dev->flags & IFF_UP)
6303 call_netdevice_notifiers(NETDEV_UP, dev);
6304 else
6305 call_netdevice_notifiers(NETDEV_DOWN, dev);
6306 }
6307
6308 if (dev->flags & IFF_UP &&
be9efd36
JP
6309 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6310 struct netdev_notifier_change_info change_info;
6311
6312 change_info.flags_changed = changes;
6313 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6314 &change_info.info);
6315 }
bd380811
PM
6316}
6317
6318/**
6319 * dev_change_flags - change device settings
6320 * @dev: device
6321 * @flags: device state flags
6322 *
6323 * Change settings on device based state flags. The flags are
6324 * in the userspace exported format.
6325 */
b536db93 6326int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6327{
b536db93 6328 int ret;
991fb3f7 6329 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6330
6331 ret = __dev_change_flags(dev, flags);
6332 if (ret < 0)
6333 return ret;
6334
991fb3f7 6335 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6336 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6337 return ret;
6338}
d1b19dff 6339EXPORT_SYMBOL(dev_change_flags);
1da177e4 6340
2315dc91
VF
6341static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6342{
6343 const struct net_device_ops *ops = dev->netdev_ops;
6344
6345 if (ops->ndo_change_mtu)
6346 return ops->ndo_change_mtu(dev, new_mtu);
6347
6348 dev->mtu = new_mtu;
6349 return 0;
6350}
6351
f0db275a
SH
6352/**
6353 * dev_set_mtu - Change maximum transfer unit
6354 * @dev: device
6355 * @new_mtu: new transfer unit
6356 *
6357 * Change the maximum transfer size of the network device.
6358 */
1da177e4
LT
6359int dev_set_mtu(struct net_device *dev, int new_mtu)
6360{
2315dc91 6361 int err, orig_mtu;
1da177e4
LT
6362
6363 if (new_mtu == dev->mtu)
6364 return 0;
6365
61e84623
JW
6366 /* MTU must be positive, and in range */
6367 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6368 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6369 dev->name, new_mtu, dev->min_mtu);
1da177e4 6370 return -EINVAL;
61e84623
JW
6371 }
6372
6373 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6374 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6375 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6376 return -EINVAL;
6377 }
1da177e4
LT
6378
6379 if (!netif_device_present(dev))
6380 return -ENODEV;
6381
1d486bfb
VF
6382 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6383 err = notifier_to_errno(err);
6384 if (err)
6385 return err;
d314774c 6386
2315dc91
VF
6387 orig_mtu = dev->mtu;
6388 err = __dev_set_mtu(dev, new_mtu);
d314774c 6389
2315dc91
VF
6390 if (!err) {
6391 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6392 err = notifier_to_errno(err);
6393 if (err) {
6394 /* setting mtu back and notifying everyone again,
6395 * so that they have a chance to revert changes.
6396 */
6397 __dev_set_mtu(dev, orig_mtu);
6398 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6399 }
6400 }
1da177e4
LT
6401 return err;
6402}
d1b19dff 6403EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6404
cbda10fa
VD
6405/**
6406 * dev_set_group - Change group this device belongs to
6407 * @dev: device
6408 * @new_group: group this device should belong to
6409 */
6410void dev_set_group(struct net_device *dev, int new_group)
6411{
6412 dev->group = new_group;
6413}
6414EXPORT_SYMBOL(dev_set_group);
6415
f0db275a
SH
6416/**
6417 * dev_set_mac_address - Change Media Access Control Address
6418 * @dev: device
6419 * @sa: new address
6420 *
6421 * Change the hardware (MAC) address of the device
6422 */
1da177e4
LT
6423int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6424{
d314774c 6425 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6426 int err;
6427
d314774c 6428 if (!ops->ndo_set_mac_address)
1da177e4
LT
6429 return -EOPNOTSUPP;
6430 if (sa->sa_family != dev->type)
6431 return -EINVAL;
6432 if (!netif_device_present(dev))
6433 return -ENODEV;
d314774c 6434 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6435 if (err)
6436 return err;
fbdeca2d 6437 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6438 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6439 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6440 return 0;
1da177e4 6441}
d1b19dff 6442EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6443
4bf84c35
JP
6444/**
6445 * dev_change_carrier - Change device carrier
6446 * @dev: device
691b3b7e 6447 * @new_carrier: new value
4bf84c35
JP
6448 *
6449 * Change device carrier
6450 */
6451int dev_change_carrier(struct net_device *dev, bool new_carrier)
6452{
6453 const struct net_device_ops *ops = dev->netdev_ops;
6454
6455 if (!ops->ndo_change_carrier)
6456 return -EOPNOTSUPP;
6457 if (!netif_device_present(dev))
6458 return -ENODEV;
6459 return ops->ndo_change_carrier(dev, new_carrier);
6460}
6461EXPORT_SYMBOL(dev_change_carrier);
6462
66b52b0d
JP
6463/**
6464 * dev_get_phys_port_id - Get device physical port ID
6465 * @dev: device
6466 * @ppid: port ID
6467 *
6468 * Get device physical port ID
6469 */
6470int dev_get_phys_port_id(struct net_device *dev,
02637fce 6471 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6472{
6473 const struct net_device_ops *ops = dev->netdev_ops;
6474
6475 if (!ops->ndo_get_phys_port_id)
6476 return -EOPNOTSUPP;
6477 return ops->ndo_get_phys_port_id(dev, ppid);
6478}
6479EXPORT_SYMBOL(dev_get_phys_port_id);
6480
db24a904
DA
6481/**
6482 * dev_get_phys_port_name - Get device physical port name
6483 * @dev: device
6484 * @name: port name
ed49e650 6485 * @len: limit of bytes to copy to name
db24a904
DA
6486 *
6487 * Get device physical port name
6488 */
6489int dev_get_phys_port_name(struct net_device *dev,
6490 char *name, size_t len)
6491{
6492 const struct net_device_ops *ops = dev->netdev_ops;
6493
6494 if (!ops->ndo_get_phys_port_name)
6495 return -EOPNOTSUPP;
6496 return ops->ndo_get_phys_port_name(dev, name, len);
6497}
6498EXPORT_SYMBOL(dev_get_phys_port_name);
6499
d746d707
AK
6500/**
6501 * dev_change_proto_down - update protocol port state information
6502 * @dev: device
6503 * @proto_down: new value
6504 *
6505 * This info can be used by switch drivers to set the phys state of the
6506 * port.
6507 */
6508int dev_change_proto_down(struct net_device *dev, bool proto_down)
6509{
6510 const struct net_device_ops *ops = dev->netdev_ops;
6511
6512 if (!ops->ndo_change_proto_down)
6513 return -EOPNOTSUPP;
6514 if (!netif_device_present(dev))
6515 return -ENODEV;
6516 return ops->ndo_change_proto_down(dev, proto_down);
6517}
6518EXPORT_SYMBOL(dev_change_proto_down);
6519
a7862b45
BB
6520/**
6521 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6522 * @dev: device
6523 * @fd: new program fd or negative value to clear
6524 *
6525 * Set or clear a bpf program for a device
6526 */
6527int dev_change_xdp_fd(struct net_device *dev, int fd)
6528{
6529 const struct net_device_ops *ops = dev->netdev_ops;
6530 struct bpf_prog *prog = NULL;
6531 struct netdev_xdp xdp = {};
6532 int err;
6533
6534 if (!ops->ndo_xdp)
6535 return -EOPNOTSUPP;
6536 if (fd >= 0) {
6537 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6538 if (IS_ERR(prog))
6539 return PTR_ERR(prog);
6540 }
6541
6542 xdp.command = XDP_SETUP_PROG;
6543 xdp.prog = prog;
6544 err = ops->ndo_xdp(dev, &xdp);
6545 if (err < 0 && prog)
6546 bpf_prog_put(prog);
6547
6548 return err;
6549}
6550EXPORT_SYMBOL(dev_change_xdp_fd);
6551
1da177e4
LT
6552/**
6553 * dev_new_index - allocate an ifindex
c4ea43c5 6554 * @net: the applicable net namespace
1da177e4
LT
6555 *
6556 * Returns a suitable unique value for a new device interface
6557 * number. The caller must hold the rtnl semaphore or the
6558 * dev_base_lock to be sure it remains unique.
6559 */
881d966b 6560static int dev_new_index(struct net *net)
1da177e4 6561{
aa79e66e 6562 int ifindex = net->ifindex;
1da177e4
LT
6563 for (;;) {
6564 if (++ifindex <= 0)
6565 ifindex = 1;
881d966b 6566 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6567 return net->ifindex = ifindex;
1da177e4
LT
6568 }
6569}
6570
1da177e4 6571/* Delayed registration/unregisteration */
3b5b34fd 6572static LIST_HEAD(net_todo_list);
200b916f 6573DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6574
6f05f629 6575static void net_set_todo(struct net_device *dev)
1da177e4 6576{
1da177e4 6577 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6578 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6579}
6580
9b5e383c 6581static void rollback_registered_many(struct list_head *head)
93ee31f1 6582{
e93737b0 6583 struct net_device *dev, *tmp;
5cde2829 6584 LIST_HEAD(close_head);
9b5e383c 6585
93ee31f1
DL
6586 BUG_ON(dev_boot_phase);
6587 ASSERT_RTNL();
6588
e93737b0 6589 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6590 /* Some devices call without registering
e93737b0
KK
6591 * for initialization unwind. Remove those
6592 * devices and proceed with the remaining.
9b5e383c
ED
6593 */
6594 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6595 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6596 dev->name, dev);
93ee31f1 6597
9b5e383c 6598 WARN_ON(1);
e93737b0
KK
6599 list_del(&dev->unreg_list);
6600 continue;
9b5e383c 6601 }
449f4544 6602 dev->dismantle = true;
9b5e383c 6603 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6604 }
93ee31f1 6605
44345724 6606 /* If device is running, close it first. */
5cde2829
EB
6607 list_for_each_entry(dev, head, unreg_list)
6608 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6609 dev_close_many(&close_head, true);
93ee31f1 6610
44345724 6611 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6612 /* And unlink it from device chain. */
6613 unlist_netdevice(dev);
93ee31f1 6614
9b5e383c
ED
6615 dev->reg_state = NETREG_UNREGISTERING;
6616 }
41852497 6617 flush_all_backlogs();
93ee31f1
DL
6618
6619 synchronize_net();
6620
9b5e383c 6621 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6622 struct sk_buff *skb = NULL;
6623
9b5e383c
ED
6624 /* Shutdown queueing discipline. */
6625 dev_shutdown(dev);
93ee31f1
DL
6626
6627
9b5e383c
ED
6628 /* Notify protocols, that we are about to destroy
6629 this device. They should clean all the things.
6630 */
6631 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6632
395eea6c
MB
6633 if (!dev->rtnl_link_ops ||
6634 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6635 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6636 GFP_KERNEL);
6637
9b5e383c
ED
6638 /*
6639 * Flush the unicast and multicast chains
6640 */
a748ee24 6641 dev_uc_flush(dev);
22bedad3 6642 dev_mc_flush(dev);
93ee31f1 6643
9b5e383c
ED
6644 if (dev->netdev_ops->ndo_uninit)
6645 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6646
395eea6c
MB
6647 if (skb)
6648 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6649
9ff162a8
JP
6650 /* Notifier chain MUST detach us all upper devices. */
6651 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6652
9b5e383c
ED
6653 /* Remove entries from kobject tree */
6654 netdev_unregister_kobject(dev);
024e9679
AD
6655#ifdef CONFIG_XPS
6656 /* Remove XPS queueing entries */
6657 netif_reset_xps_queues_gt(dev, 0);
6658#endif
9b5e383c 6659 }
93ee31f1 6660
850a545b 6661 synchronize_net();
395264d5 6662
a5ee1551 6663 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6664 dev_put(dev);
6665}
6666
6667static void rollback_registered(struct net_device *dev)
6668{
6669 LIST_HEAD(single);
6670
6671 list_add(&dev->unreg_list, &single);
6672 rollback_registered_many(&single);
ceaaec98 6673 list_del(&single);
93ee31f1
DL
6674}
6675
fd867d51
JW
6676static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6677 struct net_device *upper, netdev_features_t features)
6678{
6679 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6680 netdev_features_t feature;
5ba3f7d6 6681 int feature_bit;
fd867d51 6682
5ba3f7d6
JW
6683 for_each_netdev_feature(&upper_disables, feature_bit) {
6684 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6685 if (!(upper->wanted_features & feature)
6686 && (features & feature)) {
6687 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6688 &feature, upper->name);
6689 features &= ~feature;
6690 }
6691 }
6692
6693 return features;
6694}
6695
6696static void netdev_sync_lower_features(struct net_device *upper,
6697 struct net_device *lower, netdev_features_t features)
6698{
6699 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6700 netdev_features_t feature;
5ba3f7d6 6701 int feature_bit;
fd867d51 6702
5ba3f7d6
JW
6703 for_each_netdev_feature(&upper_disables, feature_bit) {
6704 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6705 if (!(features & feature) && (lower->features & feature)) {
6706 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6707 &feature, lower->name);
6708 lower->wanted_features &= ~feature;
6709 netdev_update_features(lower);
6710
6711 if (unlikely(lower->features & feature))
6712 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6713 &feature, lower->name);
6714 }
6715 }
6716}
6717
c8f44aff
MM
6718static netdev_features_t netdev_fix_features(struct net_device *dev,
6719 netdev_features_t features)
b63365a2 6720{
57422dc5
MM
6721 /* Fix illegal checksum combinations */
6722 if ((features & NETIF_F_HW_CSUM) &&
6723 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6724 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6725 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6726 }
6727
b63365a2 6728 /* TSO requires that SG is present as well. */
ea2d3688 6729 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6730 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6731 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6732 }
6733
ec5f0615
PS
6734 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6735 !(features & NETIF_F_IP_CSUM)) {
6736 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6737 features &= ~NETIF_F_TSO;
6738 features &= ~NETIF_F_TSO_ECN;
6739 }
6740
6741 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6742 !(features & NETIF_F_IPV6_CSUM)) {
6743 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6744 features &= ~NETIF_F_TSO6;
6745 }
6746
b1dc497b
AD
6747 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6748 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6749 features &= ~NETIF_F_TSO_MANGLEID;
6750
31d8b9e0
BH
6751 /* TSO ECN requires that TSO is present as well. */
6752 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6753 features &= ~NETIF_F_TSO_ECN;
6754
212b573f
MM
6755 /* Software GSO depends on SG. */
6756 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6757 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6758 features &= ~NETIF_F_GSO;
6759 }
6760
acd1130e 6761 /* UFO needs SG and checksumming */
b63365a2 6762 if (features & NETIF_F_UFO) {
79032644 6763 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6764 if (!(features & NETIF_F_HW_CSUM) &&
6765 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6766 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6767 netdev_dbg(dev,
acd1130e 6768 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6769 features &= ~NETIF_F_UFO;
6770 }
6771
6772 if (!(features & NETIF_F_SG)) {
6f404e44 6773 netdev_dbg(dev,
acd1130e 6774 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6775 features &= ~NETIF_F_UFO;
6776 }
6777 }
6778
802ab55a
AD
6779 /* GSO partial features require GSO partial be set */
6780 if ((features & dev->gso_partial_features) &&
6781 !(features & NETIF_F_GSO_PARTIAL)) {
6782 netdev_dbg(dev,
6783 "Dropping partially supported GSO features since no GSO partial.\n");
6784 features &= ~dev->gso_partial_features;
6785 }
6786
d0290214
JP
6787#ifdef CONFIG_NET_RX_BUSY_POLL
6788 if (dev->netdev_ops->ndo_busy_poll)
6789 features |= NETIF_F_BUSY_POLL;
6790 else
6791#endif
6792 features &= ~NETIF_F_BUSY_POLL;
6793
b63365a2
HX
6794 return features;
6795}
b63365a2 6796
6cb6a27c 6797int __netdev_update_features(struct net_device *dev)
5455c699 6798{
fd867d51 6799 struct net_device *upper, *lower;
c8f44aff 6800 netdev_features_t features;
fd867d51 6801 struct list_head *iter;
e7868a85 6802 int err = -1;
5455c699 6803
87267485
MM
6804 ASSERT_RTNL();
6805
5455c699
MM
6806 features = netdev_get_wanted_features(dev);
6807
6808 if (dev->netdev_ops->ndo_fix_features)
6809 features = dev->netdev_ops->ndo_fix_features(dev, features);
6810
6811 /* driver might be less strict about feature dependencies */
6812 features = netdev_fix_features(dev, features);
6813
fd867d51
JW
6814 /* some features can't be enabled if they're off an an upper device */
6815 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6816 features = netdev_sync_upper_features(dev, upper, features);
6817
5455c699 6818 if (dev->features == features)
e7868a85 6819 goto sync_lower;
5455c699 6820
c8f44aff
MM
6821 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6822 &dev->features, &features);
5455c699
MM
6823
6824 if (dev->netdev_ops->ndo_set_features)
6825 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6826 else
6827 err = 0;
5455c699 6828
6cb6a27c 6829 if (unlikely(err < 0)) {
5455c699 6830 netdev_err(dev,
c8f44aff
MM
6831 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6832 err, &features, &dev->features);
17b85d29
NA
6833 /* return non-0 since some features might have changed and
6834 * it's better to fire a spurious notification than miss it
6835 */
6836 return -1;
6cb6a27c
MM
6837 }
6838
e7868a85 6839sync_lower:
fd867d51
JW
6840 /* some features must be disabled on lower devices when disabled
6841 * on an upper device (think: bonding master or bridge)
6842 */
6843 netdev_for_each_lower_dev(dev, lower, iter)
6844 netdev_sync_lower_features(dev, lower, features);
6845
6cb6a27c
MM
6846 if (!err)
6847 dev->features = features;
6848
e7868a85 6849 return err < 0 ? 0 : 1;
6cb6a27c
MM
6850}
6851
afe12cc8
MM
6852/**
6853 * netdev_update_features - recalculate device features
6854 * @dev: the device to check
6855 *
6856 * Recalculate dev->features set and send notifications if it
6857 * has changed. Should be called after driver or hardware dependent
6858 * conditions might have changed that influence the features.
6859 */
6cb6a27c
MM
6860void netdev_update_features(struct net_device *dev)
6861{
6862 if (__netdev_update_features(dev))
6863 netdev_features_change(dev);
5455c699
MM
6864}
6865EXPORT_SYMBOL(netdev_update_features);
6866
afe12cc8
MM
6867/**
6868 * netdev_change_features - recalculate device features
6869 * @dev: the device to check
6870 *
6871 * Recalculate dev->features set and send notifications even
6872 * if they have not changed. Should be called instead of
6873 * netdev_update_features() if also dev->vlan_features might
6874 * have changed to allow the changes to be propagated to stacked
6875 * VLAN devices.
6876 */
6877void netdev_change_features(struct net_device *dev)
6878{
6879 __netdev_update_features(dev);
6880 netdev_features_change(dev);
6881}
6882EXPORT_SYMBOL(netdev_change_features);
6883
fc4a7489
PM
6884/**
6885 * netif_stacked_transfer_operstate - transfer operstate
6886 * @rootdev: the root or lower level device to transfer state from
6887 * @dev: the device to transfer operstate to
6888 *
6889 * Transfer operational state from root to device. This is normally
6890 * called when a stacking relationship exists between the root
6891 * device and the device(a leaf device).
6892 */
6893void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6894 struct net_device *dev)
6895{
6896 if (rootdev->operstate == IF_OPER_DORMANT)
6897 netif_dormant_on(dev);
6898 else
6899 netif_dormant_off(dev);
6900
6901 if (netif_carrier_ok(rootdev)) {
6902 if (!netif_carrier_ok(dev))
6903 netif_carrier_on(dev);
6904 } else {
6905 if (netif_carrier_ok(dev))
6906 netif_carrier_off(dev);
6907 }
6908}
6909EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6910
a953be53 6911#ifdef CONFIG_SYSFS
1b4bf461
ED
6912static int netif_alloc_rx_queues(struct net_device *dev)
6913{
1b4bf461 6914 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6915 struct netdev_rx_queue *rx;
10595902 6916 size_t sz = count * sizeof(*rx);
1b4bf461 6917
bd25fa7b 6918 BUG_ON(count < 1);
1b4bf461 6919
10595902
PG
6920 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6921 if (!rx) {
6922 rx = vzalloc(sz);
6923 if (!rx)
6924 return -ENOMEM;
6925 }
bd25fa7b
TH
6926 dev->_rx = rx;
6927
bd25fa7b 6928 for (i = 0; i < count; i++)
fe822240 6929 rx[i].dev = dev;
1b4bf461
ED
6930 return 0;
6931}
bf264145 6932#endif
1b4bf461 6933
aa942104
CG
6934static void netdev_init_one_queue(struct net_device *dev,
6935 struct netdev_queue *queue, void *_unused)
6936{
6937 /* Initialize queue lock */
6938 spin_lock_init(&queue->_xmit_lock);
6939 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6940 queue->xmit_lock_owner = -1;
b236da69 6941 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6942 queue->dev = dev;
114cf580
TH
6943#ifdef CONFIG_BQL
6944 dql_init(&queue->dql, HZ);
6945#endif
aa942104
CG
6946}
6947
60877a32
ED
6948static void netif_free_tx_queues(struct net_device *dev)
6949{
4cb28970 6950 kvfree(dev->_tx);
60877a32
ED
6951}
6952
e6484930
TH
6953static int netif_alloc_netdev_queues(struct net_device *dev)
6954{
6955 unsigned int count = dev->num_tx_queues;
6956 struct netdev_queue *tx;
60877a32 6957 size_t sz = count * sizeof(*tx);
e6484930 6958
d339727c
ED
6959 if (count < 1 || count > 0xffff)
6960 return -EINVAL;
62b5942a 6961
60877a32
ED
6962 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6963 if (!tx) {
6964 tx = vzalloc(sz);
6965 if (!tx)
6966 return -ENOMEM;
6967 }
e6484930 6968 dev->_tx = tx;
1d24eb48 6969
e6484930
TH
6970 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6971 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6972
6973 return 0;
e6484930
TH
6974}
6975
a2029240
DV
6976void netif_tx_stop_all_queues(struct net_device *dev)
6977{
6978 unsigned int i;
6979
6980 for (i = 0; i < dev->num_tx_queues; i++) {
6981 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6982 netif_tx_stop_queue(txq);
6983 }
6984}
6985EXPORT_SYMBOL(netif_tx_stop_all_queues);
6986
1da177e4
LT
6987/**
6988 * register_netdevice - register a network device
6989 * @dev: device to register
6990 *
6991 * Take a completed network device structure and add it to the kernel
6992 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6993 * chain. 0 is returned on success. A negative errno code is returned
6994 * on a failure to set up the device, or if the name is a duplicate.
6995 *
6996 * Callers must hold the rtnl semaphore. You may want
6997 * register_netdev() instead of this.
6998 *
6999 * BUGS:
7000 * The locking appears insufficient to guarantee two parallel registers
7001 * will not get the same name.
7002 */
7003
7004int register_netdevice(struct net_device *dev)
7005{
1da177e4 7006 int ret;
d314774c 7007 struct net *net = dev_net(dev);
1da177e4
LT
7008
7009 BUG_ON(dev_boot_phase);
7010 ASSERT_RTNL();
7011
b17a7c17
SH
7012 might_sleep();
7013
1da177e4
LT
7014 /* When net_device's are persistent, this will be fatal. */
7015 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7016 BUG_ON(!net);
1da177e4 7017
f1f28aa3 7018 spin_lock_init(&dev->addr_list_lock);
cf508b12 7019 netdev_set_addr_lockdep_class(dev);
1da177e4 7020
828de4f6 7021 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7022 if (ret < 0)
7023 goto out;
7024
1da177e4 7025 /* Init, if this function is available */
d314774c
SH
7026 if (dev->netdev_ops->ndo_init) {
7027 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7028 if (ret) {
7029 if (ret > 0)
7030 ret = -EIO;
90833aa4 7031 goto out;
1da177e4
LT
7032 }
7033 }
4ec93edb 7034
f646968f
PM
7035 if (((dev->hw_features | dev->features) &
7036 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7037 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7038 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7039 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7040 ret = -EINVAL;
7041 goto err_uninit;
7042 }
7043
9c7dafbf
PE
7044 ret = -EBUSY;
7045 if (!dev->ifindex)
7046 dev->ifindex = dev_new_index(net);
7047 else if (__dev_get_by_index(net, dev->ifindex))
7048 goto err_uninit;
7049
5455c699
MM
7050 /* Transfer changeable features to wanted_features and enable
7051 * software offloads (GSO and GRO).
7052 */
7053 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7054 dev->features |= NETIF_F_SOFT_FEATURES;
7055 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7056
cbc53e08 7057 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7058 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7059
7f348a60
AD
7060 /* If IPv4 TCP segmentation offload is supported we should also
7061 * allow the device to enable segmenting the frame with the option
7062 * of ignoring a static IP ID value. This doesn't enable the
7063 * feature itself but allows the user to enable it later.
7064 */
cbc53e08
AD
7065 if (dev->hw_features & NETIF_F_TSO)
7066 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7067 if (dev->vlan_features & NETIF_F_TSO)
7068 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7069 if (dev->mpls_features & NETIF_F_TSO)
7070 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7071 if (dev->hw_enc_features & NETIF_F_TSO)
7072 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7073
1180e7d6 7074 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7075 */
1180e7d6 7076 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7077
ee579677
PS
7078 /* Make NETIF_F_SG inheritable to tunnel devices.
7079 */
802ab55a 7080 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7081
0d89d203
SH
7082 /* Make NETIF_F_SG inheritable to MPLS.
7083 */
7084 dev->mpls_features |= NETIF_F_SG;
7085
7ffbe3fd
JB
7086 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7087 ret = notifier_to_errno(ret);
7088 if (ret)
7089 goto err_uninit;
7090
8b41d188 7091 ret = netdev_register_kobject(dev);
b17a7c17 7092 if (ret)
7ce1b0ed 7093 goto err_uninit;
b17a7c17
SH
7094 dev->reg_state = NETREG_REGISTERED;
7095
6cb6a27c 7096 __netdev_update_features(dev);
8e9b59b2 7097
1da177e4
LT
7098 /*
7099 * Default initial state at registry is that the
7100 * device is present.
7101 */
7102
7103 set_bit(__LINK_STATE_PRESENT, &dev->state);
7104
8f4cccbb
BH
7105 linkwatch_init_dev(dev);
7106
1da177e4 7107 dev_init_scheduler(dev);
1da177e4 7108 dev_hold(dev);
ce286d32 7109 list_netdevice(dev);
7bf23575 7110 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7111
948b337e
JP
7112 /* If the device has permanent device address, driver should
7113 * set dev_addr and also addr_assign_type should be set to
7114 * NET_ADDR_PERM (default value).
7115 */
7116 if (dev->addr_assign_type == NET_ADDR_PERM)
7117 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7118
1da177e4 7119 /* Notify protocols, that a new device appeared. */
056925ab 7120 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7121 ret = notifier_to_errno(ret);
93ee31f1
DL
7122 if (ret) {
7123 rollback_registered(dev);
7124 dev->reg_state = NETREG_UNREGISTERED;
7125 }
d90a909e
EB
7126 /*
7127 * Prevent userspace races by waiting until the network
7128 * device is fully setup before sending notifications.
7129 */
a2835763
PM
7130 if (!dev->rtnl_link_ops ||
7131 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7132 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7133
7134out:
7135 return ret;
7ce1b0ed
HX
7136
7137err_uninit:
d314774c
SH
7138 if (dev->netdev_ops->ndo_uninit)
7139 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7140 goto out;
1da177e4 7141}
d1b19dff 7142EXPORT_SYMBOL(register_netdevice);
1da177e4 7143
937f1ba5
BH
7144/**
7145 * init_dummy_netdev - init a dummy network device for NAPI
7146 * @dev: device to init
7147 *
7148 * This takes a network device structure and initialize the minimum
7149 * amount of fields so it can be used to schedule NAPI polls without
7150 * registering a full blown interface. This is to be used by drivers
7151 * that need to tie several hardware interfaces to a single NAPI
7152 * poll scheduler due to HW limitations.
7153 */
7154int init_dummy_netdev(struct net_device *dev)
7155{
7156 /* Clear everything. Note we don't initialize spinlocks
7157 * are they aren't supposed to be taken by any of the
7158 * NAPI code and this dummy netdev is supposed to be
7159 * only ever used for NAPI polls
7160 */
7161 memset(dev, 0, sizeof(struct net_device));
7162
7163 /* make sure we BUG if trying to hit standard
7164 * register/unregister code path
7165 */
7166 dev->reg_state = NETREG_DUMMY;
7167
937f1ba5
BH
7168 /* NAPI wants this */
7169 INIT_LIST_HEAD(&dev->napi_list);
7170
7171 /* a dummy interface is started by default */
7172 set_bit(__LINK_STATE_PRESENT, &dev->state);
7173 set_bit(__LINK_STATE_START, &dev->state);
7174
29b4433d
ED
7175 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7176 * because users of this 'device' dont need to change
7177 * its refcount.
7178 */
7179
937f1ba5
BH
7180 return 0;
7181}
7182EXPORT_SYMBOL_GPL(init_dummy_netdev);
7183
7184
1da177e4
LT
7185/**
7186 * register_netdev - register a network device
7187 * @dev: device to register
7188 *
7189 * Take a completed network device structure and add it to the kernel
7190 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7191 * chain. 0 is returned on success. A negative errno code is returned
7192 * on a failure to set up the device, or if the name is a duplicate.
7193 *
38b4da38 7194 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7195 * and expands the device name if you passed a format string to
7196 * alloc_netdev.
7197 */
7198int register_netdev(struct net_device *dev)
7199{
7200 int err;
7201
7202 rtnl_lock();
1da177e4 7203 err = register_netdevice(dev);
1da177e4
LT
7204 rtnl_unlock();
7205 return err;
7206}
7207EXPORT_SYMBOL(register_netdev);
7208
29b4433d
ED
7209int netdev_refcnt_read(const struct net_device *dev)
7210{
7211 int i, refcnt = 0;
7212
7213 for_each_possible_cpu(i)
7214 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7215 return refcnt;
7216}
7217EXPORT_SYMBOL(netdev_refcnt_read);
7218
2c53040f 7219/**
1da177e4 7220 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7221 * @dev: target net_device
1da177e4
LT
7222 *
7223 * This is called when unregistering network devices.
7224 *
7225 * Any protocol or device that holds a reference should register
7226 * for netdevice notification, and cleanup and put back the
7227 * reference if they receive an UNREGISTER event.
7228 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7229 * call dev_put.
1da177e4
LT
7230 */
7231static void netdev_wait_allrefs(struct net_device *dev)
7232{
7233 unsigned long rebroadcast_time, warning_time;
29b4433d 7234 int refcnt;
1da177e4 7235
e014debe
ED
7236 linkwatch_forget_dev(dev);
7237
1da177e4 7238 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7239 refcnt = netdev_refcnt_read(dev);
7240
7241 while (refcnt != 0) {
1da177e4 7242 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7243 rtnl_lock();
1da177e4
LT
7244
7245 /* Rebroadcast unregister notification */
056925ab 7246 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7247
748e2d93 7248 __rtnl_unlock();
0115e8e3 7249 rcu_barrier();
748e2d93
ED
7250 rtnl_lock();
7251
0115e8e3 7252 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7253 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7254 &dev->state)) {
7255 /* We must not have linkwatch events
7256 * pending on unregister. If this
7257 * happens, we simply run the queue
7258 * unscheduled, resulting in a noop
7259 * for this device.
7260 */
7261 linkwatch_run_queue();
7262 }
7263
6756ae4b 7264 __rtnl_unlock();
1da177e4
LT
7265
7266 rebroadcast_time = jiffies;
7267 }
7268
7269 msleep(250);
7270
29b4433d
ED
7271 refcnt = netdev_refcnt_read(dev);
7272
1da177e4 7273 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7274 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7275 dev->name, refcnt);
1da177e4
LT
7276 warning_time = jiffies;
7277 }
7278 }
7279}
7280
7281/* The sequence is:
7282 *
7283 * rtnl_lock();
7284 * ...
7285 * register_netdevice(x1);
7286 * register_netdevice(x2);
7287 * ...
7288 * unregister_netdevice(y1);
7289 * unregister_netdevice(y2);
7290 * ...
7291 * rtnl_unlock();
7292 * free_netdev(y1);
7293 * free_netdev(y2);
7294 *
58ec3b4d 7295 * We are invoked by rtnl_unlock().
1da177e4 7296 * This allows us to deal with problems:
b17a7c17 7297 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7298 * without deadlocking with linkwatch via keventd.
7299 * 2) Since we run with the RTNL semaphore not held, we can sleep
7300 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7301 *
7302 * We must not return until all unregister events added during
7303 * the interval the lock was held have been completed.
1da177e4 7304 */
1da177e4
LT
7305void netdev_run_todo(void)
7306{
626ab0e6 7307 struct list_head list;
1da177e4 7308
1da177e4 7309 /* Snapshot list, allow later requests */
626ab0e6 7310 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7311
7312 __rtnl_unlock();
626ab0e6 7313
0115e8e3
ED
7314
7315 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7316 if (!list_empty(&list))
7317 rcu_barrier();
7318
1da177e4
LT
7319 while (!list_empty(&list)) {
7320 struct net_device *dev
e5e26d75 7321 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7322 list_del(&dev->todo_list);
7323
748e2d93 7324 rtnl_lock();
0115e8e3 7325 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7326 __rtnl_unlock();
0115e8e3 7327
b17a7c17 7328 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7329 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7330 dev->name, dev->reg_state);
7331 dump_stack();
7332 continue;
7333 }
1da177e4 7334
b17a7c17 7335 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7336
b17a7c17 7337 netdev_wait_allrefs(dev);
1da177e4 7338
b17a7c17 7339 /* paranoia */
29b4433d 7340 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7341 BUG_ON(!list_empty(&dev->ptype_all));
7342 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7343 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7344 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7345 WARN_ON(dev->dn_ptr);
1da177e4 7346
b17a7c17
SH
7347 if (dev->destructor)
7348 dev->destructor(dev);
9093bbb2 7349
50624c93
EB
7350 /* Report a network device has been unregistered */
7351 rtnl_lock();
7352 dev_net(dev)->dev_unreg_count--;
7353 __rtnl_unlock();
7354 wake_up(&netdev_unregistering_wq);
7355
9093bbb2
SH
7356 /* Free network device */
7357 kobject_put(&dev->dev.kobj);
1da177e4 7358 }
1da177e4
LT
7359}
7360
9256645a
JW
7361/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7362 * all the same fields in the same order as net_device_stats, with only
7363 * the type differing, but rtnl_link_stats64 may have additional fields
7364 * at the end for newer counters.
3cfde79c 7365 */
77a1abf5
ED
7366void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7367 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7368{
7369#if BITS_PER_LONG == 64
9256645a 7370 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7371 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7372 /* zero out counters that only exist in rtnl_link_stats64 */
7373 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7374 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7375#else
9256645a 7376 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7377 const unsigned long *src = (const unsigned long *)netdev_stats;
7378 u64 *dst = (u64 *)stats64;
7379
9256645a 7380 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7381 for (i = 0; i < n; i++)
7382 dst[i] = src[i];
9256645a
JW
7383 /* zero out counters that only exist in rtnl_link_stats64 */
7384 memset((char *)stats64 + n * sizeof(u64), 0,
7385 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7386#endif
7387}
77a1abf5 7388EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7389
eeda3fd6
SH
7390/**
7391 * dev_get_stats - get network device statistics
7392 * @dev: device to get statistics from
28172739 7393 * @storage: place to store stats
eeda3fd6 7394 *
d7753516
BH
7395 * Get network statistics from device. Return @storage.
7396 * The device driver may provide its own method by setting
7397 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7398 * otherwise the internal statistics structure is used.
eeda3fd6 7399 */
d7753516
BH
7400struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7401 struct rtnl_link_stats64 *storage)
7004bf25 7402{
eeda3fd6
SH
7403 const struct net_device_ops *ops = dev->netdev_ops;
7404
28172739
ED
7405 if (ops->ndo_get_stats64) {
7406 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7407 ops->ndo_get_stats64(dev, storage);
7408 } else if (ops->ndo_get_stats) {
3cfde79c 7409 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7410 } else {
7411 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7412 }
caf586e5 7413 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7414 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7415 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7416 return storage;
c45d286e 7417}
eeda3fd6 7418EXPORT_SYMBOL(dev_get_stats);
c45d286e 7419
24824a09 7420struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7421{
24824a09 7422 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7423
24824a09
ED
7424#ifdef CONFIG_NET_CLS_ACT
7425 if (queue)
7426 return queue;
7427 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7428 if (!queue)
7429 return NULL;
7430 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7431 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7432 queue->qdisc_sleeping = &noop_qdisc;
7433 rcu_assign_pointer(dev->ingress_queue, queue);
7434#endif
7435 return queue;
bb949fbd
DM
7436}
7437
2c60db03
ED
7438static const struct ethtool_ops default_ethtool_ops;
7439
d07d7507
SG
7440void netdev_set_default_ethtool_ops(struct net_device *dev,
7441 const struct ethtool_ops *ops)
7442{
7443 if (dev->ethtool_ops == &default_ethtool_ops)
7444 dev->ethtool_ops = ops;
7445}
7446EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7447
74d332c1
ED
7448void netdev_freemem(struct net_device *dev)
7449{
7450 char *addr = (char *)dev - dev->padded;
7451
4cb28970 7452 kvfree(addr);
74d332c1
ED
7453}
7454
1da177e4 7455/**
36909ea4 7456 * alloc_netdev_mqs - allocate network device
c835a677
TG
7457 * @sizeof_priv: size of private data to allocate space for
7458 * @name: device name format string
7459 * @name_assign_type: origin of device name
7460 * @setup: callback to initialize device
7461 * @txqs: the number of TX subqueues to allocate
7462 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7463 *
7464 * Allocates a struct net_device with private data area for driver use
90e51adf 7465 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7466 * for each queue on the device.
1da177e4 7467 */
36909ea4 7468struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7469 unsigned char name_assign_type,
36909ea4
TH
7470 void (*setup)(struct net_device *),
7471 unsigned int txqs, unsigned int rxqs)
1da177e4 7472{
1da177e4 7473 struct net_device *dev;
7943986c 7474 size_t alloc_size;
1ce8e7b5 7475 struct net_device *p;
1da177e4 7476
b6fe17d6
SH
7477 BUG_ON(strlen(name) >= sizeof(dev->name));
7478
36909ea4 7479 if (txqs < 1) {
7b6cd1ce 7480 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7481 return NULL;
7482 }
7483
a953be53 7484#ifdef CONFIG_SYSFS
36909ea4 7485 if (rxqs < 1) {
7b6cd1ce 7486 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7487 return NULL;
7488 }
7489#endif
7490
fd2ea0a7 7491 alloc_size = sizeof(struct net_device);
d1643d24
AD
7492 if (sizeof_priv) {
7493 /* ensure 32-byte alignment of private area */
1ce8e7b5 7494 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7495 alloc_size += sizeof_priv;
7496 }
7497 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7498 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7499
74d332c1
ED
7500 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7501 if (!p)
7502 p = vzalloc(alloc_size);
62b5942a 7503 if (!p)
1da177e4 7504 return NULL;
1da177e4 7505
1ce8e7b5 7506 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7507 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7508
29b4433d
ED
7509 dev->pcpu_refcnt = alloc_percpu(int);
7510 if (!dev->pcpu_refcnt)
74d332c1 7511 goto free_dev;
ab9c73cc 7512
ab9c73cc 7513 if (dev_addr_init(dev))
29b4433d 7514 goto free_pcpu;
ab9c73cc 7515
22bedad3 7516 dev_mc_init(dev);
a748ee24 7517 dev_uc_init(dev);
ccffad25 7518
c346dca1 7519 dev_net_set(dev, &init_net);
1da177e4 7520
8d3bdbd5 7521 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7522 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7523
8d3bdbd5
DM
7524 INIT_LIST_HEAD(&dev->napi_list);
7525 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7526 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7527 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7528 INIT_LIST_HEAD(&dev->adj_list.upper);
7529 INIT_LIST_HEAD(&dev->adj_list.lower);
7530 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7531 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7532 INIT_LIST_HEAD(&dev->ptype_all);
7533 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7534#ifdef CONFIG_NET_SCHED
7535 hash_init(dev->qdisc_hash);
7536#endif
02875878 7537 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7538 setup(dev);
7539
a813104d 7540 if (!dev->tx_queue_len) {
f84bb1ea 7541 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7542 dev->tx_queue_len = 1;
7543 }
906470c1 7544
36909ea4
TH
7545 dev->num_tx_queues = txqs;
7546 dev->real_num_tx_queues = txqs;
ed9af2e8 7547 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7548 goto free_all;
e8a0464c 7549
a953be53 7550#ifdef CONFIG_SYSFS
36909ea4
TH
7551 dev->num_rx_queues = rxqs;
7552 dev->real_num_rx_queues = rxqs;
fe822240 7553 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7554 goto free_all;
df334545 7555#endif
0a9627f2 7556
1da177e4 7557 strcpy(dev->name, name);
c835a677 7558 dev->name_assign_type = name_assign_type;
cbda10fa 7559 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7560 if (!dev->ethtool_ops)
7561 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7562
7563 nf_hook_ingress_init(dev);
7564
1da177e4 7565 return dev;
ab9c73cc 7566
8d3bdbd5
DM
7567free_all:
7568 free_netdev(dev);
7569 return NULL;
7570
29b4433d
ED
7571free_pcpu:
7572 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7573free_dev:
7574 netdev_freemem(dev);
ab9c73cc 7575 return NULL;
1da177e4 7576}
36909ea4 7577EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7578
7579/**
7580 * free_netdev - free network device
7581 * @dev: device
7582 *
4ec93edb
YH
7583 * This function does the last stage of destroying an allocated device
7584 * interface. The reference to the device object is released.
1da177e4 7585 * If this is the last reference then it will be freed.
93d05d4a 7586 * Must be called in process context.
1da177e4
LT
7587 */
7588void free_netdev(struct net_device *dev)
7589{
d565b0a1
HX
7590 struct napi_struct *p, *n;
7591
93d05d4a 7592 might_sleep();
60877a32 7593 netif_free_tx_queues(dev);
a953be53 7594#ifdef CONFIG_SYSFS
10595902 7595 kvfree(dev->_rx);
fe822240 7596#endif
e8a0464c 7597
33d480ce 7598 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7599
f001fde5
JP
7600 /* Flush device addresses */
7601 dev_addr_flush(dev);
7602
d565b0a1
HX
7603 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7604 netif_napi_del(p);
7605
29b4433d
ED
7606 free_percpu(dev->pcpu_refcnt);
7607 dev->pcpu_refcnt = NULL;
7608
3041a069 7609 /* Compatibility with error handling in drivers */
1da177e4 7610 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7611 netdev_freemem(dev);
1da177e4
LT
7612 return;
7613 }
7614
7615 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7616 dev->reg_state = NETREG_RELEASED;
7617
43cb76d9
GKH
7618 /* will free via device release */
7619 put_device(&dev->dev);
1da177e4 7620}
d1b19dff 7621EXPORT_SYMBOL(free_netdev);
4ec93edb 7622
f0db275a
SH
7623/**
7624 * synchronize_net - Synchronize with packet receive processing
7625 *
7626 * Wait for packets currently being received to be done.
7627 * Does not block later packets from starting.
7628 */
4ec93edb 7629void synchronize_net(void)
1da177e4
LT
7630{
7631 might_sleep();
be3fc413
ED
7632 if (rtnl_is_locked())
7633 synchronize_rcu_expedited();
7634 else
7635 synchronize_rcu();
1da177e4 7636}
d1b19dff 7637EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7638
7639/**
44a0873d 7640 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7641 * @dev: device
44a0873d 7642 * @head: list
6ebfbc06 7643 *
1da177e4 7644 * This function shuts down a device interface and removes it
d59b54b1 7645 * from the kernel tables.
44a0873d 7646 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7647 *
7648 * Callers must hold the rtnl semaphore. You may want
7649 * unregister_netdev() instead of this.
7650 */
7651
44a0873d 7652void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7653{
a6620712
HX
7654 ASSERT_RTNL();
7655
44a0873d 7656 if (head) {
9fdce099 7657 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7658 } else {
7659 rollback_registered(dev);
7660 /* Finish processing unregister after unlock */
7661 net_set_todo(dev);
7662 }
1da177e4 7663}
44a0873d 7664EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7665
9b5e383c
ED
7666/**
7667 * unregister_netdevice_many - unregister many devices
7668 * @head: list of devices
87757a91
ED
7669 *
7670 * Note: As most callers use a stack allocated list_head,
7671 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7672 */
7673void unregister_netdevice_many(struct list_head *head)
7674{
7675 struct net_device *dev;
7676
7677 if (!list_empty(head)) {
7678 rollback_registered_many(head);
7679 list_for_each_entry(dev, head, unreg_list)
7680 net_set_todo(dev);
87757a91 7681 list_del(head);
9b5e383c
ED
7682 }
7683}
63c8099d 7684EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7685
1da177e4
LT
7686/**
7687 * unregister_netdev - remove device from the kernel
7688 * @dev: device
7689 *
7690 * This function shuts down a device interface and removes it
d59b54b1 7691 * from the kernel tables.
1da177e4
LT
7692 *
7693 * This is just a wrapper for unregister_netdevice that takes
7694 * the rtnl semaphore. In general you want to use this and not
7695 * unregister_netdevice.
7696 */
7697void unregister_netdev(struct net_device *dev)
7698{
7699 rtnl_lock();
7700 unregister_netdevice(dev);
7701 rtnl_unlock();
7702}
1da177e4
LT
7703EXPORT_SYMBOL(unregister_netdev);
7704
ce286d32
EB
7705/**
7706 * dev_change_net_namespace - move device to different nethost namespace
7707 * @dev: device
7708 * @net: network namespace
7709 * @pat: If not NULL name pattern to try if the current device name
7710 * is already taken in the destination network namespace.
7711 *
7712 * This function shuts down a device interface and moves it
7713 * to a new network namespace. On success 0 is returned, on
7714 * a failure a netagive errno code is returned.
7715 *
7716 * Callers must hold the rtnl semaphore.
7717 */
7718
7719int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7720{
ce286d32
EB
7721 int err;
7722
7723 ASSERT_RTNL();
7724
7725 /* Don't allow namespace local devices to be moved. */
7726 err = -EINVAL;
7727 if (dev->features & NETIF_F_NETNS_LOCAL)
7728 goto out;
7729
7730 /* Ensure the device has been registrered */
ce286d32
EB
7731 if (dev->reg_state != NETREG_REGISTERED)
7732 goto out;
7733
7734 /* Get out if there is nothing todo */
7735 err = 0;
878628fb 7736 if (net_eq(dev_net(dev), net))
ce286d32
EB
7737 goto out;
7738
7739 /* Pick the destination device name, and ensure
7740 * we can use it in the destination network namespace.
7741 */
7742 err = -EEXIST;
d9031024 7743 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7744 /* We get here if we can't use the current device name */
7745 if (!pat)
7746 goto out;
828de4f6 7747 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7748 goto out;
7749 }
7750
7751 /*
7752 * And now a mini version of register_netdevice unregister_netdevice.
7753 */
7754
7755 /* If device is running close it first. */
9b772652 7756 dev_close(dev);
ce286d32
EB
7757
7758 /* And unlink it from device chain */
7759 err = -ENODEV;
7760 unlist_netdevice(dev);
7761
7762 synchronize_net();
7763
7764 /* Shutdown queueing discipline. */
7765 dev_shutdown(dev);
7766
7767 /* Notify protocols, that we are about to destroy
7768 this device. They should clean all the things.
3b27e105
DL
7769
7770 Note that dev->reg_state stays at NETREG_REGISTERED.
7771 This is wanted because this way 8021q and macvlan know
7772 the device is just moving and can keep their slaves up.
ce286d32
EB
7773 */
7774 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7775 rcu_barrier();
7776 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7777 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7778
7779 /*
7780 * Flush the unicast and multicast chains
7781 */
a748ee24 7782 dev_uc_flush(dev);
22bedad3 7783 dev_mc_flush(dev);
ce286d32 7784
4e66ae2e
SH
7785 /* Send a netdev-removed uevent to the old namespace */
7786 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7787 netdev_adjacent_del_links(dev);
4e66ae2e 7788
ce286d32 7789 /* Actually switch the network namespace */
c346dca1 7790 dev_net_set(dev, net);
ce286d32 7791
ce286d32 7792 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7793 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7794 dev->ifindex = dev_new_index(net);
ce286d32 7795
4e66ae2e
SH
7796 /* Send a netdev-add uevent to the new namespace */
7797 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7798 netdev_adjacent_add_links(dev);
4e66ae2e 7799
8b41d188 7800 /* Fixup kobjects */
a1b3f594 7801 err = device_rename(&dev->dev, dev->name);
8b41d188 7802 WARN_ON(err);
ce286d32
EB
7803
7804 /* Add the device back in the hashes */
7805 list_netdevice(dev);
7806
7807 /* Notify protocols, that a new device appeared. */
7808 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7809
d90a909e
EB
7810 /*
7811 * Prevent userspace races by waiting until the network
7812 * device is fully setup before sending notifications.
7813 */
7f294054 7814 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7815
ce286d32
EB
7816 synchronize_net();
7817 err = 0;
7818out:
7819 return err;
7820}
463d0183 7821EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7822
1da177e4
LT
7823static int dev_cpu_callback(struct notifier_block *nfb,
7824 unsigned long action,
7825 void *ocpu)
7826{
7827 struct sk_buff **list_skb;
1da177e4
LT
7828 struct sk_buff *skb;
7829 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7830 struct softnet_data *sd, *oldsd;
7831
8bb78442 7832 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7833 return NOTIFY_OK;
7834
7835 local_irq_disable();
7836 cpu = smp_processor_id();
7837 sd = &per_cpu(softnet_data, cpu);
7838 oldsd = &per_cpu(softnet_data, oldcpu);
7839
7840 /* Find end of our completion_queue. */
7841 list_skb = &sd->completion_queue;
7842 while (*list_skb)
7843 list_skb = &(*list_skb)->next;
7844 /* Append completion queue from offline CPU. */
7845 *list_skb = oldsd->completion_queue;
7846 oldsd->completion_queue = NULL;
7847
1da177e4 7848 /* Append output queue from offline CPU. */
a9cbd588
CG
7849 if (oldsd->output_queue) {
7850 *sd->output_queue_tailp = oldsd->output_queue;
7851 sd->output_queue_tailp = oldsd->output_queue_tailp;
7852 oldsd->output_queue = NULL;
7853 oldsd->output_queue_tailp = &oldsd->output_queue;
7854 }
ac64da0b
ED
7855 /* Append NAPI poll list from offline CPU, with one exception :
7856 * process_backlog() must be called by cpu owning percpu backlog.
7857 * We properly handle process_queue & input_pkt_queue later.
7858 */
7859 while (!list_empty(&oldsd->poll_list)) {
7860 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7861 struct napi_struct,
7862 poll_list);
7863
7864 list_del_init(&napi->poll_list);
7865 if (napi->poll == process_backlog)
7866 napi->state = 0;
7867 else
7868 ____napi_schedule(sd, napi);
264524d5 7869 }
1da177e4
LT
7870
7871 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7872 local_irq_enable();
7873
7874 /* Process offline CPU's input_pkt_queue */
76cc8b13 7875 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7876 netif_rx_ni(skb);
76cc8b13 7877 input_queue_head_incr(oldsd);
fec5e652 7878 }
ac64da0b 7879 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7880 netif_rx_ni(skb);
76cc8b13
TH
7881 input_queue_head_incr(oldsd);
7882 }
1da177e4
LT
7883
7884 return NOTIFY_OK;
7885}
1da177e4
LT
7886
7887
7f353bf2 7888/**
b63365a2
HX
7889 * netdev_increment_features - increment feature set by one
7890 * @all: current feature set
7891 * @one: new feature set
7892 * @mask: mask feature set
7f353bf2
HX
7893 *
7894 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7895 * @one to the master device with current feature set @all. Will not
7896 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7897 */
c8f44aff
MM
7898netdev_features_t netdev_increment_features(netdev_features_t all,
7899 netdev_features_t one, netdev_features_t mask)
b63365a2 7900{
c8cd0989 7901 if (mask & NETIF_F_HW_CSUM)
a188222b 7902 mask |= NETIF_F_CSUM_MASK;
1742f183 7903 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7904
a188222b 7905 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 7906 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7907
1742f183 7908 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
7909 if (all & NETIF_F_HW_CSUM)
7910 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
7911
7912 return all;
7913}
b63365a2 7914EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7915
430f03cd 7916static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7917{
7918 int i;
7919 struct hlist_head *hash;
7920
7921 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7922 if (hash != NULL)
7923 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7924 INIT_HLIST_HEAD(&hash[i]);
7925
7926 return hash;
7927}
7928
881d966b 7929/* Initialize per network namespace state */
4665079c 7930static int __net_init netdev_init(struct net *net)
881d966b 7931{
734b6541
RM
7932 if (net != &init_net)
7933 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7934
30d97d35
PE
7935 net->dev_name_head = netdev_create_hash();
7936 if (net->dev_name_head == NULL)
7937 goto err_name;
881d966b 7938
30d97d35
PE
7939 net->dev_index_head = netdev_create_hash();
7940 if (net->dev_index_head == NULL)
7941 goto err_idx;
881d966b
EB
7942
7943 return 0;
30d97d35
PE
7944
7945err_idx:
7946 kfree(net->dev_name_head);
7947err_name:
7948 return -ENOMEM;
881d966b
EB
7949}
7950
f0db275a
SH
7951/**
7952 * netdev_drivername - network driver for the device
7953 * @dev: network device
f0db275a
SH
7954 *
7955 * Determine network driver for device.
7956 */
3019de12 7957const char *netdev_drivername(const struct net_device *dev)
6579e57b 7958{
cf04a4c7
SH
7959 const struct device_driver *driver;
7960 const struct device *parent;
3019de12 7961 const char *empty = "";
6579e57b
AV
7962
7963 parent = dev->dev.parent;
6579e57b 7964 if (!parent)
3019de12 7965 return empty;
6579e57b
AV
7966
7967 driver = parent->driver;
7968 if (driver && driver->name)
3019de12
DM
7969 return driver->name;
7970 return empty;
6579e57b
AV
7971}
7972
6ea754eb
JP
7973static void __netdev_printk(const char *level, const struct net_device *dev,
7974 struct va_format *vaf)
256df2f3 7975{
b004ff49 7976 if (dev && dev->dev.parent) {
6ea754eb
JP
7977 dev_printk_emit(level[1] - '0',
7978 dev->dev.parent,
7979 "%s %s %s%s: %pV",
7980 dev_driver_string(dev->dev.parent),
7981 dev_name(dev->dev.parent),
7982 netdev_name(dev), netdev_reg_state(dev),
7983 vaf);
b004ff49 7984 } else if (dev) {
6ea754eb
JP
7985 printk("%s%s%s: %pV",
7986 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7987 } else {
6ea754eb 7988 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7989 }
256df2f3
JP
7990}
7991
6ea754eb
JP
7992void netdev_printk(const char *level, const struct net_device *dev,
7993 const char *format, ...)
256df2f3
JP
7994{
7995 struct va_format vaf;
7996 va_list args;
256df2f3
JP
7997
7998 va_start(args, format);
7999
8000 vaf.fmt = format;
8001 vaf.va = &args;
8002
6ea754eb 8003 __netdev_printk(level, dev, &vaf);
b004ff49 8004
256df2f3 8005 va_end(args);
256df2f3
JP
8006}
8007EXPORT_SYMBOL(netdev_printk);
8008
8009#define define_netdev_printk_level(func, level) \
6ea754eb 8010void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8011{ \
256df2f3
JP
8012 struct va_format vaf; \
8013 va_list args; \
8014 \
8015 va_start(args, fmt); \
8016 \
8017 vaf.fmt = fmt; \
8018 vaf.va = &args; \
8019 \
6ea754eb 8020 __netdev_printk(level, dev, &vaf); \
b004ff49 8021 \
256df2f3 8022 va_end(args); \
256df2f3
JP
8023} \
8024EXPORT_SYMBOL(func);
8025
8026define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8027define_netdev_printk_level(netdev_alert, KERN_ALERT);
8028define_netdev_printk_level(netdev_crit, KERN_CRIT);
8029define_netdev_printk_level(netdev_err, KERN_ERR);
8030define_netdev_printk_level(netdev_warn, KERN_WARNING);
8031define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8032define_netdev_printk_level(netdev_info, KERN_INFO);
8033
4665079c 8034static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8035{
8036 kfree(net->dev_name_head);
8037 kfree(net->dev_index_head);
8038}
8039
022cbae6 8040static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8041 .init = netdev_init,
8042 .exit = netdev_exit,
8043};
8044
4665079c 8045static void __net_exit default_device_exit(struct net *net)
ce286d32 8046{
e008b5fc 8047 struct net_device *dev, *aux;
ce286d32 8048 /*
e008b5fc 8049 * Push all migratable network devices back to the
ce286d32
EB
8050 * initial network namespace
8051 */
8052 rtnl_lock();
e008b5fc 8053 for_each_netdev_safe(net, dev, aux) {
ce286d32 8054 int err;
aca51397 8055 char fb_name[IFNAMSIZ];
ce286d32
EB
8056
8057 /* Ignore unmoveable devices (i.e. loopback) */
8058 if (dev->features & NETIF_F_NETNS_LOCAL)
8059 continue;
8060
e008b5fc
EB
8061 /* Leave virtual devices for the generic cleanup */
8062 if (dev->rtnl_link_ops)
8063 continue;
d0c082ce 8064
25985edc 8065 /* Push remaining network devices to init_net */
aca51397
PE
8066 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8067 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8068 if (err) {
7b6cd1ce
JP
8069 pr_emerg("%s: failed to move %s to init_net: %d\n",
8070 __func__, dev->name, err);
aca51397 8071 BUG();
ce286d32
EB
8072 }
8073 }
8074 rtnl_unlock();
8075}
8076
50624c93
EB
8077static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8078{
8079 /* Return with the rtnl_lock held when there are no network
8080 * devices unregistering in any network namespace in net_list.
8081 */
8082 struct net *net;
8083 bool unregistering;
ff960a73 8084 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8085
ff960a73 8086 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8087 for (;;) {
50624c93
EB
8088 unregistering = false;
8089 rtnl_lock();
8090 list_for_each_entry(net, net_list, exit_list) {
8091 if (net->dev_unreg_count > 0) {
8092 unregistering = true;
8093 break;
8094 }
8095 }
8096 if (!unregistering)
8097 break;
8098 __rtnl_unlock();
ff960a73
PZ
8099
8100 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8101 }
ff960a73 8102 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8103}
8104
04dc7f6b
EB
8105static void __net_exit default_device_exit_batch(struct list_head *net_list)
8106{
8107 /* At exit all network devices most be removed from a network
b595076a 8108 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8109 * Do this across as many network namespaces as possible to
8110 * improve batching efficiency.
8111 */
8112 struct net_device *dev;
8113 struct net *net;
8114 LIST_HEAD(dev_kill_list);
8115
50624c93
EB
8116 /* To prevent network device cleanup code from dereferencing
8117 * loopback devices or network devices that have been freed
8118 * wait here for all pending unregistrations to complete,
8119 * before unregistring the loopback device and allowing the
8120 * network namespace be freed.
8121 *
8122 * The netdev todo list containing all network devices
8123 * unregistrations that happen in default_device_exit_batch
8124 * will run in the rtnl_unlock() at the end of
8125 * default_device_exit_batch.
8126 */
8127 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8128 list_for_each_entry(net, net_list, exit_list) {
8129 for_each_netdev_reverse(net, dev) {
b0ab2fab 8130 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8131 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8132 else
8133 unregister_netdevice_queue(dev, &dev_kill_list);
8134 }
8135 }
8136 unregister_netdevice_many(&dev_kill_list);
8137 rtnl_unlock();
8138}
8139
022cbae6 8140static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8141 .exit = default_device_exit,
04dc7f6b 8142 .exit_batch = default_device_exit_batch,
ce286d32
EB
8143};
8144
1da177e4
LT
8145/*
8146 * Initialize the DEV module. At boot time this walks the device list and
8147 * unhooks any devices that fail to initialise (normally hardware not
8148 * present) and leaves us with a valid list of present and active devices.
8149 *
8150 */
8151
8152/*
8153 * This is called single threaded during boot, so no need
8154 * to take the rtnl semaphore.
8155 */
8156static int __init net_dev_init(void)
8157{
8158 int i, rc = -ENOMEM;
8159
8160 BUG_ON(!dev_boot_phase);
8161
1da177e4
LT
8162 if (dev_proc_init())
8163 goto out;
8164
8b41d188 8165 if (netdev_kobject_init())
1da177e4
LT
8166 goto out;
8167
8168 INIT_LIST_HEAD(&ptype_all);
82d8a867 8169 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8170 INIT_LIST_HEAD(&ptype_base[i]);
8171
62532da9
VY
8172 INIT_LIST_HEAD(&offload_base);
8173
881d966b
EB
8174 if (register_pernet_subsys(&netdev_net_ops))
8175 goto out;
1da177e4
LT
8176
8177 /*
8178 * Initialise the packet receive queues.
8179 */
8180
6f912042 8181 for_each_possible_cpu(i) {
41852497 8182 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8183 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8184
41852497
ED
8185 INIT_WORK(flush, flush_backlog);
8186
e36fa2f7 8187 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8188 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8189 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8190 sd->output_queue_tailp = &sd->output_queue;
df334545 8191#ifdef CONFIG_RPS
e36fa2f7
ED
8192 sd->csd.func = rps_trigger_softirq;
8193 sd->csd.info = sd;
e36fa2f7 8194 sd->cpu = i;
1e94d72f 8195#endif
0a9627f2 8196
e36fa2f7
ED
8197 sd->backlog.poll = process_backlog;
8198 sd->backlog.weight = weight_p;
1da177e4
LT
8199 }
8200
1da177e4
LT
8201 dev_boot_phase = 0;
8202
505d4f73
EB
8203 /* The loopback device is special if any other network devices
8204 * is present in a network namespace the loopback device must
8205 * be present. Since we now dynamically allocate and free the
8206 * loopback device ensure this invariant is maintained by
8207 * keeping the loopback device as the first device on the
8208 * list of network devices. Ensuring the loopback devices
8209 * is the first device that appears and the last network device
8210 * that disappears.
8211 */
8212 if (register_pernet_device(&loopback_net_ops))
8213 goto out;
8214
8215 if (register_pernet_device(&default_device_ops))
8216 goto out;
8217
962cf36c
CM
8218 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8219 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8220
8221 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8222 dst_subsys_init();
1da177e4
LT
8223 rc = 0;
8224out:
8225 return rc;
8226}
8227
8228subsys_initcall(net_dev_init);