]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/core/dev.c
sh_eth: fix typo in RX descriptor bit name
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4 101#include <net/dst.h>
fc4099f1 102#include <net/dst_metadata.h>
1da177e4
LT
103#include <net/pkt_sched.h>
104#include <net/checksum.h>
44540960 105#include <net/xfrm.h>
1da177e4
LT
106#include <linux/highmem.h>
107#include <linux/init.h>
1da177e4 108#include <linux/module.h>
1da177e4
LT
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
1da177e4 112#include <net/iw_handler.h>
1da177e4 113#include <asm/current.h>
5bdb9886 114#include <linux/audit.h>
db217334 115#include <linux/dmaengine.h>
f6a78bfc 116#include <linux/err.h>
c7fa9d18 117#include <linux/ctype.h>
723e98b7 118#include <linux/if_arp.h>
6de329e2 119#include <linux/if_vlan.h>
8f0f2223 120#include <linux/ip.h>
ad55dcaf 121#include <net/ip.h>
25cd9ba0 122#include <net/mpls.h>
8f0f2223
DM
123#include <linux/ipv6.h>
124#include <linux/in.h>
b6b2fed1
DM
125#include <linux/jhash.h>
126#include <linux/random.h>
9cbc1cb8 127#include <trace/events/napi.h>
cf66ba58 128#include <trace/events/net.h>
07dc22e7 129#include <trace/events/skb.h>
5acbbd42 130#include <linux/pci.h>
caeda9b9 131#include <linux/inetdevice.h>
c445477d 132#include <linux/cpu_rmap.h>
c5905afb 133#include <linux/static_key.h>
af12fa6e 134#include <linux/hashtable.h>
60877a32 135#include <linux/vmalloc.h>
529d0489 136#include <linux/if_macvlan.h>
e7fd2885 137#include <linux/errqueue.h>
3b47d303 138#include <linux/hrtimer.h>
e687ad60 139#include <linux/netfilter_ingress.h>
1da177e4 140
342709ef
PE
141#include "net-sysfs.h"
142
d565b0a1
HX
143/* Instead of increasing this, you should create a hash table. */
144#define MAX_GRO_SKBS 8
145
5d38a079
HX
146/* This should be increased if a protocol with a bigger head is added. */
147#define GRO_MAX_HEAD (MAX_HEADER + 128)
148
1da177e4 149static DEFINE_SPINLOCK(ptype_lock);
62532da9 150static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
151struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152struct list_head ptype_all __read_mostly; /* Taps */
62532da9 153static struct list_head offload_base __read_mostly;
1da177e4 154
ae78dbfa 155static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
156static int call_netdevice_notifiers_info(unsigned long val,
157 struct net_device *dev,
158 struct netdev_notifier_info *info);
ae78dbfa 159
1da177e4 160/*
7562f876 161 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
162 * semaphore.
163 *
c6d14c84 164 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
165 *
166 * Writers must hold the rtnl semaphore while they loop through the
7562f876 167 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
168 * actual updates. This allows pure readers to access the list even
169 * while a writer is preparing to update it.
170 *
171 * To put it another way, dev_base_lock is held for writing only to
172 * protect against pure readers; the rtnl semaphore provides the
173 * protection against other writers.
174 *
175 * See, for example usages, register_netdevice() and
176 * unregister_netdevice(), which must be called with the rtnl
177 * semaphore held.
178 */
1da177e4 179DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
180EXPORT_SYMBOL(dev_base_lock);
181
af12fa6e
ET
182/* protects napi_hash addition/deletion and napi_gen_id */
183static DEFINE_SPINLOCK(napi_hash_lock);
184
185static unsigned int napi_gen_id;
186static DEFINE_HASHTABLE(napi_hash, 8);
187
18afa4b0 188static seqcount_t devnet_rename_seq;
c91f6df2 189
4e985ada
TG
190static inline void dev_base_seq_inc(struct net *net)
191{
192 while (++net->dev_base_seq == 0);
193}
194
881d966b 195static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 196{
95c96174
ED
197 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198
08e9897d 199 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
200}
201
881d966b 202static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 203{
7c28bd0b 204 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
205}
206
e36fa2f7 207static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
208{
209#ifdef CONFIG_RPS
e36fa2f7 210 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
211#endif
212}
213
e36fa2f7 214static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
215{
216#ifdef CONFIG_RPS
e36fa2f7 217 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
218#endif
219}
220
ce286d32 221/* Device list insertion */
53759be9 222static void list_netdevice(struct net_device *dev)
ce286d32 223{
c346dca1 224 struct net *net = dev_net(dev);
ce286d32
EB
225
226 ASSERT_RTNL();
227
228 write_lock_bh(&dev_base_lock);
c6d14c84 229 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 230 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
231 hlist_add_head_rcu(&dev->index_hlist,
232 dev_index_hash(net, dev->ifindex));
ce286d32 233 write_unlock_bh(&dev_base_lock);
4e985ada
TG
234
235 dev_base_seq_inc(net);
ce286d32
EB
236}
237
fb699dfd
ED
238/* Device list removal
239 * caller must respect a RCU grace period before freeing/reusing dev
240 */
ce286d32
EB
241static void unlist_netdevice(struct net_device *dev)
242{
243 ASSERT_RTNL();
244
245 /* Unlink dev from the device chain */
246 write_lock_bh(&dev_base_lock);
c6d14c84 247 list_del_rcu(&dev->dev_list);
72c9528b 248 hlist_del_rcu(&dev->name_hlist);
fb699dfd 249 hlist_del_rcu(&dev->index_hlist);
ce286d32 250 write_unlock_bh(&dev_base_lock);
4e985ada
TG
251
252 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
253}
254
1da177e4
LT
255/*
256 * Our notifier list
257 */
258
f07d5b94 259static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
260
261/*
262 * Device drivers call our routines to queue packets here. We empty the
263 * queue in the local softnet handler.
264 */
bea3348e 265
9958da05 266DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 267EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 268
cf508b12 269#ifdef CONFIG_LOCKDEP
723e98b7 270/*
c773e847 271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
272 * according to dev->type
273 */
274static const unsigned short netdev_lock_type[] =
275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
287 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 290
36cbd3dc 291static const char *const netdev_lock_name[] =
723e98b7
JP
292 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
304 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
307
308static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 309static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
310
311static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312{
313 int i;
314
315 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316 if (netdev_lock_type[i] == dev_type)
317 return i;
318 /* the last key is used by default */
319 return ARRAY_SIZE(netdev_lock_type) - 1;
320}
321
cf508b12
DM
322static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323 unsigned short dev_type)
723e98b7
JP
324{
325 int i;
326
327 i = netdev_lock_pos(dev_type);
328 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329 netdev_lock_name[i]);
330}
cf508b12
DM
331
332static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333{
334 int i;
335
336 i = netdev_lock_pos(dev->type);
337 lockdep_set_class_and_name(&dev->addr_list_lock,
338 &netdev_addr_lock_key[i],
339 netdev_lock_name[i]);
340}
723e98b7 341#else
cf508b12
DM
342static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343 unsigned short dev_type)
344{
345}
346static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
347{
348}
349#endif
1da177e4
LT
350
351/*******************************************************************************
352
353 Protocol management and registration routines
354
355*******************************************************************************/
356
1da177e4
LT
357/*
358 * Add a protocol ID to the list. Now that the input handler is
359 * smarter we can dispense with all the messy stuff that used to be
360 * here.
361 *
362 * BEWARE!!! Protocol handlers, mangling input packets,
363 * MUST BE last in hash buckets and checking protocol handlers
364 * MUST start from promiscuous ptype_all chain in net_bh.
365 * It is true now, do not change it.
366 * Explanation follows: if protocol handler, mangling packet, will
367 * be the first on list, it is not able to sense, that packet
368 * is cloned and should be copied-on-write, so that it will
369 * change it and subsequent readers will get broken packet.
370 * --ANK (980803)
371 */
372
c07b68e8
ED
373static inline struct list_head *ptype_head(const struct packet_type *pt)
374{
375 if (pt->type == htons(ETH_P_ALL))
7866a621 376 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 377 else
7866a621
SN
378 return pt->dev ? &pt->dev->ptype_specific :
379 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
380}
381
1da177e4
LT
382/**
383 * dev_add_pack - add packet handler
384 * @pt: packet type declaration
385 *
386 * Add a protocol handler to the networking stack. The passed &packet_type
387 * is linked into kernel lists and may not be freed until it has been
388 * removed from the kernel lists.
389 *
4ec93edb 390 * This call does not sleep therefore it can not
1da177e4
LT
391 * guarantee all CPU's that are in middle of receiving packets
392 * will see the new packet type (until the next received packet).
393 */
394
395void dev_add_pack(struct packet_type *pt)
396{
c07b68e8 397 struct list_head *head = ptype_head(pt);
1da177e4 398
c07b68e8
ED
399 spin_lock(&ptype_lock);
400 list_add_rcu(&pt->list, head);
401 spin_unlock(&ptype_lock);
1da177e4 402}
d1b19dff 403EXPORT_SYMBOL(dev_add_pack);
1da177e4 404
1da177e4
LT
405/**
406 * __dev_remove_pack - remove packet handler
407 * @pt: packet type declaration
408 *
409 * Remove a protocol handler that was previously added to the kernel
410 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
411 * from the kernel lists and can be freed or reused once this function
4ec93edb 412 * returns.
1da177e4
LT
413 *
414 * The packet type might still be in use by receivers
415 * and must not be freed until after all the CPU's have gone
416 * through a quiescent state.
417 */
418void __dev_remove_pack(struct packet_type *pt)
419{
c07b68e8 420 struct list_head *head = ptype_head(pt);
1da177e4
LT
421 struct packet_type *pt1;
422
c07b68e8 423 spin_lock(&ptype_lock);
1da177e4
LT
424
425 list_for_each_entry(pt1, head, list) {
426 if (pt == pt1) {
427 list_del_rcu(&pt->list);
428 goto out;
429 }
430 }
431
7b6cd1ce 432 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 433out:
c07b68e8 434 spin_unlock(&ptype_lock);
1da177e4 435}
d1b19dff
ED
436EXPORT_SYMBOL(__dev_remove_pack);
437
1da177e4
LT
438/**
439 * dev_remove_pack - remove packet handler
440 * @pt: packet type declaration
441 *
442 * Remove a protocol handler that was previously added to the kernel
443 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
444 * from the kernel lists and can be freed or reused once this function
445 * returns.
446 *
447 * This call sleeps to guarantee that no CPU is looking at the packet
448 * type after return.
449 */
450void dev_remove_pack(struct packet_type *pt)
451{
452 __dev_remove_pack(pt);
4ec93edb 453
1da177e4
LT
454 synchronize_net();
455}
d1b19dff 456EXPORT_SYMBOL(dev_remove_pack);
1da177e4 457
62532da9
VY
458
459/**
460 * dev_add_offload - register offload handlers
461 * @po: protocol offload declaration
462 *
463 * Add protocol offload handlers to the networking stack. The passed
464 * &proto_offload is linked into kernel lists and may not be freed until
465 * it has been removed from the kernel lists.
466 *
467 * This call does not sleep therefore it can not
468 * guarantee all CPU's that are in middle of receiving packets
469 * will see the new offload handlers (until the next received packet).
470 */
471void dev_add_offload(struct packet_offload *po)
472{
bdef7de4 473 struct packet_offload *elem;
62532da9
VY
474
475 spin_lock(&offload_lock);
bdef7de4
DM
476 list_for_each_entry(elem, &offload_base, list) {
477 if (po->priority < elem->priority)
478 break;
479 }
480 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
481 spin_unlock(&offload_lock);
482}
483EXPORT_SYMBOL(dev_add_offload);
484
485/**
486 * __dev_remove_offload - remove offload handler
487 * @po: packet offload declaration
488 *
489 * Remove a protocol offload handler that was previously added to the
490 * kernel offload handlers by dev_add_offload(). The passed &offload_type
491 * is removed from the kernel lists and can be freed or reused once this
492 * function returns.
493 *
494 * The packet type might still be in use by receivers
495 * and must not be freed until after all the CPU's have gone
496 * through a quiescent state.
497 */
1d143d9f 498static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
499{
500 struct list_head *head = &offload_base;
501 struct packet_offload *po1;
502
c53aa505 503 spin_lock(&offload_lock);
62532da9
VY
504
505 list_for_each_entry(po1, head, list) {
506 if (po == po1) {
507 list_del_rcu(&po->list);
508 goto out;
509 }
510 }
511
512 pr_warn("dev_remove_offload: %p not found\n", po);
513out:
c53aa505 514 spin_unlock(&offload_lock);
62532da9 515}
62532da9
VY
516
517/**
518 * dev_remove_offload - remove packet offload handler
519 * @po: packet offload declaration
520 *
521 * Remove a packet offload handler that was previously added to the kernel
522 * offload handlers by dev_add_offload(). The passed &offload_type is
523 * removed from the kernel lists and can be freed or reused once this
524 * function returns.
525 *
526 * This call sleeps to guarantee that no CPU is looking at the packet
527 * type after return.
528 */
529void dev_remove_offload(struct packet_offload *po)
530{
531 __dev_remove_offload(po);
532
533 synchronize_net();
534}
535EXPORT_SYMBOL(dev_remove_offload);
536
1da177e4
LT
537/******************************************************************************
538
539 Device Boot-time Settings Routines
540
541*******************************************************************************/
542
543/* Boot time configuration table */
544static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545
546/**
547 * netdev_boot_setup_add - add new setup entry
548 * @name: name of the device
549 * @map: configured settings for the device
550 *
551 * Adds new setup entry to the dev_boot_setup list. The function
552 * returns 0 on error and 1 on success. This is a generic routine to
553 * all netdevices.
554 */
555static int netdev_boot_setup_add(char *name, struct ifmap *map)
556{
557 struct netdev_boot_setup *s;
558 int i;
559
560 s = dev_boot_setup;
561 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 564 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
565 memcpy(&s[i].map, map, sizeof(s[i].map));
566 break;
567 }
568 }
569
570 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571}
572
573/**
574 * netdev_boot_setup_check - check boot time settings
575 * @dev: the netdevice
576 *
577 * Check boot time settings for the device.
578 * The found settings are set for the device to be used
579 * later in the device probing.
580 * Returns 0 if no settings found, 1 if they are.
581 */
582int netdev_boot_setup_check(struct net_device *dev)
583{
584 struct netdev_boot_setup *s = dev_boot_setup;
585 int i;
586
587 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 589 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
590 dev->irq = s[i].map.irq;
591 dev->base_addr = s[i].map.base_addr;
592 dev->mem_start = s[i].map.mem_start;
593 dev->mem_end = s[i].map.mem_end;
594 return 1;
595 }
596 }
597 return 0;
598}
d1b19dff 599EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
600
601
602/**
603 * netdev_boot_base - get address from boot time settings
604 * @prefix: prefix for network device
605 * @unit: id for network device
606 *
607 * Check boot time settings for the base address of device.
608 * The found settings are set for the device to be used
609 * later in the device probing.
610 * Returns 0 if no settings found.
611 */
612unsigned long netdev_boot_base(const char *prefix, int unit)
613{
614 const struct netdev_boot_setup *s = dev_boot_setup;
615 char name[IFNAMSIZ];
616 int i;
617
618 sprintf(name, "%s%d", prefix, unit);
619
620 /*
621 * If device already registered then return base of 1
622 * to indicate not to probe for this interface
623 */
881d966b 624 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
625 return 1;
626
627 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628 if (!strcmp(name, s[i].name))
629 return s[i].map.base_addr;
630 return 0;
631}
632
633/*
634 * Saves at boot time configured settings for any netdevice.
635 */
636int __init netdev_boot_setup(char *str)
637{
638 int ints[5];
639 struct ifmap map;
640
641 str = get_options(str, ARRAY_SIZE(ints), ints);
642 if (!str || !*str)
643 return 0;
644
645 /* Save settings */
646 memset(&map, 0, sizeof(map));
647 if (ints[0] > 0)
648 map.irq = ints[1];
649 if (ints[0] > 1)
650 map.base_addr = ints[2];
651 if (ints[0] > 2)
652 map.mem_start = ints[3];
653 if (ints[0] > 3)
654 map.mem_end = ints[4];
655
656 /* Add new entry to the list */
657 return netdev_boot_setup_add(str, &map);
658}
659
660__setup("netdev=", netdev_boot_setup);
661
662/*******************************************************************************
663
664 Device Interface Subroutines
665
666*******************************************************************************/
667
a54acb3a
ND
668/**
669 * dev_get_iflink - get 'iflink' value of a interface
670 * @dev: targeted interface
671 *
672 * Indicates the ifindex the interface is linked to.
673 * Physical interfaces have the same 'ifindex' and 'iflink' values.
674 */
675
676int dev_get_iflink(const struct net_device *dev)
677{
678 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679 return dev->netdev_ops->ndo_get_iflink(dev);
680
7a66bbc9 681 return dev->ifindex;
a54acb3a
ND
682}
683EXPORT_SYMBOL(dev_get_iflink);
684
fc4099f1
PS
685/**
686 * dev_fill_metadata_dst - Retrieve tunnel egress information.
687 * @dev: targeted interface
688 * @skb: The packet.
689 *
690 * For better visibility of tunnel traffic OVS needs to retrieve
691 * egress tunnel information for a packet. Following API allows
692 * user to get this info.
693 */
694int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695{
696 struct ip_tunnel_info *info;
697
698 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
699 return -EINVAL;
700
701 info = skb_tunnel_info_unclone(skb);
702 if (!info)
703 return -ENOMEM;
704 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705 return -EINVAL;
706
707 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708}
709EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710
1da177e4
LT
711/**
712 * __dev_get_by_name - find a device by its name
c4ea43c5 713 * @net: the applicable net namespace
1da177e4
LT
714 * @name: name to find
715 *
716 * Find an interface by name. Must be called under RTNL semaphore
717 * or @dev_base_lock. If the name is found a pointer to the device
718 * is returned. If the name is not found then %NULL is returned. The
719 * reference counters are not incremented so the caller must be
720 * careful with locks.
721 */
722
881d966b 723struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 724{
0bd8d536
ED
725 struct net_device *dev;
726 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 727
b67bfe0d 728 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
729 if (!strncmp(dev->name, name, IFNAMSIZ))
730 return dev;
0bd8d536 731
1da177e4
LT
732 return NULL;
733}
d1b19dff 734EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 735
72c9528b
ED
736/**
737 * dev_get_by_name_rcu - find a device by its name
738 * @net: the applicable net namespace
739 * @name: name to find
740 *
741 * Find an interface by name.
742 * If the name is found a pointer to the device is returned.
743 * If the name is not found then %NULL is returned.
744 * The reference counters are not incremented so the caller must be
745 * careful with locks. The caller must hold RCU lock.
746 */
747
748struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749{
72c9528b
ED
750 struct net_device *dev;
751 struct hlist_head *head = dev_name_hash(net, name);
752
b67bfe0d 753 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
754 if (!strncmp(dev->name, name, IFNAMSIZ))
755 return dev;
756
757 return NULL;
758}
759EXPORT_SYMBOL(dev_get_by_name_rcu);
760
1da177e4
LT
761/**
762 * dev_get_by_name - find a device by its name
c4ea43c5 763 * @net: the applicable net namespace
1da177e4
LT
764 * @name: name to find
765 *
766 * Find an interface by name. This can be called from any
767 * context and does its own locking. The returned handle has
768 * the usage count incremented and the caller must use dev_put() to
769 * release it when it is no longer needed. %NULL is returned if no
770 * matching device is found.
771 */
772
881d966b 773struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
774{
775 struct net_device *dev;
776
72c9528b
ED
777 rcu_read_lock();
778 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
779 if (dev)
780 dev_hold(dev);
72c9528b 781 rcu_read_unlock();
1da177e4
LT
782 return dev;
783}
d1b19dff 784EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
785
786/**
787 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 788 * @net: the applicable net namespace
1da177e4
LT
789 * @ifindex: index of device
790 *
791 * Search for an interface by index. Returns %NULL if the device
792 * is not found or a pointer to the device. The device has not
793 * had its reference counter increased so the caller must be careful
794 * about locking. The caller must hold either the RTNL semaphore
795 * or @dev_base_lock.
796 */
797
881d966b 798struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 799{
0bd8d536
ED
800 struct net_device *dev;
801 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 802
b67bfe0d 803 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
804 if (dev->ifindex == ifindex)
805 return dev;
0bd8d536 806
1da177e4
LT
807 return NULL;
808}
d1b19dff 809EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 810
fb699dfd
ED
811/**
812 * dev_get_by_index_rcu - find a device by its ifindex
813 * @net: the applicable net namespace
814 * @ifindex: index of device
815 *
816 * Search for an interface by index. Returns %NULL if the device
817 * is not found or a pointer to the device. The device has not
818 * had its reference counter increased so the caller must be careful
819 * about locking. The caller must hold RCU lock.
820 */
821
822struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823{
fb699dfd
ED
824 struct net_device *dev;
825 struct hlist_head *head = dev_index_hash(net, ifindex);
826
b67bfe0d 827 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
828 if (dev->ifindex == ifindex)
829 return dev;
830
831 return NULL;
832}
833EXPORT_SYMBOL(dev_get_by_index_rcu);
834
1da177e4
LT
835
836/**
837 * dev_get_by_index - find a device by its ifindex
c4ea43c5 838 * @net: the applicable net namespace
1da177e4
LT
839 * @ifindex: index of device
840 *
841 * Search for an interface by index. Returns NULL if the device
842 * is not found or a pointer to the device. The device returned has
843 * had a reference added and the pointer is safe until the user calls
844 * dev_put to indicate they have finished with it.
845 */
846
881d966b 847struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
848{
849 struct net_device *dev;
850
fb699dfd
ED
851 rcu_read_lock();
852 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
853 if (dev)
854 dev_hold(dev);
fb699dfd 855 rcu_read_unlock();
1da177e4
LT
856 return dev;
857}
d1b19dff 858EXPORT_SYMBOL(dev_get_by_index);
1da177e4 859
5dbe7c17
NS
860/**
861 * netdev_get_name - get a netdevice name, knowing its ifindex.
862 * @net: network namespace
863 * @name: a pointer to the buffer where the name will be stored.
864 * @ifindex: the ifindex of the interface to get the name from.
865 *
866 * The use of raw_seqcount_begin() and cond_resched() before
867 * retrying is required as we want to give the writers a chance
868 * to complete when CONFIG_PREEMPT is not set.
869 */
870int netdev_get_name(struct net *net, char *name, int ifindex)
871{
872 struct net_device *dev;
873 unsigned int seq;
874
875retry:
876 seq = raw_seqcount_begin(&devnet_rename_seq);
877 rcu_read_lock();
878 dev = dev_get_by_index_rcu(net, ifindex);
879 if (!dev) {
880 rcu_read_unlock();
881 return -ENODEV;
882 }
883
884 strcpy(name, dev->name);
885 rcu_read_unlock();
886 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887 cond_resched();
888 goto retry;
889 }
890
891 return 0;
892}
893
1da177e4 894/**
941666c2 895 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 896 * @net: the applicable net namespace
1da177e4
LT
897 * @type: media type of device
898 * @ha: hardware address
899 *
900 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
901 * is not found or a pointer to the device.
902 * The caller must hold RCU or RTNL.
941666c2 903 * The returned device has not had its ref count increased
1da177e4
LT
904 * and the caller must therefore be careful about locking
905 *
1da177e4
LT
906 */
907
941666c2
ED
908struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909 const char *ha)
1da177e4
LT
910{
911 struct net_device *dev;
912
941666c2 913 for_each_netdev_rcu(net, dev)
1da177e4
LT
914 if (dev->type == type &&
915 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
916 return dev;
917
918 return NULL;
1da177e4 919}
941666c2 920EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 921
881d966b 922struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
923{
924 struct net_device *dev;
925
4e9cac2b 926 ASSERT_RTNL();
881d966b 927 for_each_netdev(net, dev)
4e9cac2b 928 if (dev->type == type)
7562f876
PE
929 return dev;
930
931 return NULL;
4e9cac2b 932}
4e9cac2b
PM
933EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934
881d966b 935struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 936{
99fe3c39 937 struct net_device *dev, *ret = NULL;
4e9cac2b 938
99fe3c39
ED
939 rcu_read_lock();
940 for_each_netdev_rcu(net, dev)
941 if (dev->type == type) {
942 dev_hold(dev);
943 ret = dev;
944 break;
945 }
946 rcu_read_unlock();
947 return ret;
1da177e4 948}
1da177e4
LT
949EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951/**
6c555490 952 * __dev_get_by_flags - find any device with given flags
c4ea43c5 953 * @net: the applicable net namespace
1da177e4
LT
954 * @if_flags: IFF_* values
955 * @mask: bitmask of bits in if_flags to check
956 *
957 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 958 * is not found or a pointer to the device. Must be called inside
6c555490 959 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
960 */
961
6c555490
WC
962struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963 unsigned short mask)
1da177e4 964{
7562f876 965 struct net_device *dev, *ret;
1da177e4 966
6c555490
WC
967 ASSERT_RTNL();
968
7562f876 969 ret = NULL;
6c555490 970 for_each_netdev(net, dev) {
1da177e4 971 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 972 ret = dev;
1da177e4
LT
973 break;
974 }
975 }
7562f876 976 return ret;
1da177e4 977}
6c555490 978EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
979
980/**
981 * dev_valid_name - check if name is okay for network device
982 * @name: name string
983 *
984 * Network device names need to be valid file names to
c7fa9d18
DM
985 * to allow sysfs to work. We also disallow any kind of
986 * whitespace.
1da177e4 987 */
95f050bf 988bool dev_valid_name(const char *name)
1da177e4 989{
c7fa9d18 990 if (*name == '\0')
95f050bf 991 return false;
b6fe17d6 992 if (strlen(name) >= IFNAMSIZ)
95f050bf 993 return false;
c7fa9d18 994 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 995 return false;
c7fa9d18
DM
996
997 while (*name) {
a4176a93 998 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 999 return false;
c7fa9d18
DM
1000 name++;
1001 }
95f050bf 1002 return true;
1da177e4 1003}
d1b19dff 1004EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1005
1006/**
b267b179
EB
1007 * __dev_alloc_name - allocate a name for a device
1008 * @net: network namespace to allocate the device name in
1da177e4 1009 * @name: name format string
b267b179 1010 * @buf: scratch buffer and result name string
1da177e4
LT
1011 *
1012 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1013 * id. It scans list of devices to build up a free map, then chooses
1014 * the first empty slot. The caller must hold the dev_base or rtnl lock
1015 * while allocating the name and adding the device in order to avoid
1016 * duplicates.
1017 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1019 */
1020
b267b179 1021static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1022{
1023 int i = 0;
1da177e4
LT
1024 const char *p;
1025 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1026 unsigned long *inuse;
1da177e4
LT
1027 struct net_device *d;
1028
1029 p = strnchr(name, IFNAMSIZ-1, '%');
1030 if (p) {
1031 /*
1032 * Verify the string as this thing may have come from
1033 * the user. There must be either one "%d" and no other "%"
1034 * characters.
1035 */
1036 if (p[1] != 'd' || strchr(p + 2, '%'))
1037 return -EINVAL;
1038
1039 /* Use one page as a bit array of possible slots */
cfcabdcc 1040 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1041 if (!inuse)
1042 return -ENOMEM;
1043
881d966b 1044 for_each_netdev(net, d) {
1da177e4
LT
1045 if (!sscanf(d->name, name, &i))
1046 continue;
1047 if (i < 0 || i >= max_netdevices)
1048 continue;
1049
1050 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1051 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1052 if (!strncmp(buf, d->name, IFNAMSIZ))
1053 set_bit(i, inuse);
1054 }
1055
1056 i = find_first_zero_bit(inuse, max_netdevices);
1057 free_page((unsigned long) inuse);
1058 }
1059
d9031024
OP
1060 if (buf != name)
1061 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1062 if (!__dev_get_by_name(net, buf))
1da177e4 1063 return i;
1da177e4
LT
1064
1065 /* It is possible to run out of possible slots
1066 * when the name is long and there isn't enough space left
1067 * for the digits, or if all bits are used.
1068 */
1069 return -ENFILE;
1070}
1071
b267b179
EB
1072/**
1073 * dev_alloc_name - allocate a name for a device
1074 * @dev: device
1075 * @name: name format string
1076 *
1077 * Passed a format string - eg "lt%d" it will try and find a suitable
1078 * id. It scans list of devices to build up a free map, then chooses
1079 * the first empty slot. The caller must hold the dev_base or rtnl lock
1080 * while allocating the name and adding the device in order to avoid
1081 * duplicates.
1082 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083 * Returns the number of the unit assigned or a negative errno code.
1084 */
1085
1086int dev_alloc_name(struct net_device *dev, const char *name)
1087{
1088 char buf[IFNAMSIZ];
1089 struct net *net;
1090 int ret;
1091
c346dca1
YH
1092 BUG_ON(!dev_net(dev));
1093 net = dev_net(dev);
b267b179
EB
1094 ret = __dev_alloc_name(net, name, buf);
1095 if (ret >= 0)
1096 strlcpy(dev->name, buf, IFNAMSIZ);
1097 return ret;
1098}
d1b19dff 1099EXPORT_SYMBOL(dev_alloc_name);
b267b179 1100
828de4f6
G
1101static int dev_alloc_name_ns(struct net *net,
1102 struct net_device *dev,
1103 const char *name)
d9031024 1104{
828de4f6
G
1105 char buf[IFNAMSIZ];
1106 int ret;
8ce6cebc 1107
828de4f6
G
1108 ret = __dev_alloc_name(net, name, buf);
1109 if (ret >= 0)
1110 strlcpy(dev->name, buf, IFNAMSIZ);
1111 return ret;
1112}
1113
1114static int dev_get_valid_name(struct net *net,
1115 struct net_device *dev,
1116 const char *name)
1117{
1118 BUG_ON(!net);
8ce6cebc 1119
d9031024
OP
1120 if (!dev_valid_name(name))
1121 return -EINVAL;
1122
1c5cae81 1123 if (strchr(name, '%'))
828de4f6 1124 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1125 else if (__dev_get_by_name(net, name))
1126 return -EEXIST;
8ce6cebc
DL
1127 else if (dev->name != name)
1128 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1129
1130 return 0;
1131}
1da177e4
LT
1132
1133/**
1134 * dev_change_name - change name of a device
1135 * @dev: device
1136 * @newname: name (or format string) must be at least IFNAMSIZ
1137 *
1138 * Change name of a device, can pass format strings "eth%d".
1139 * for wildcarding.
1140 */
cf04a4c7 1141int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1142{
238fa362 1143 unsigned char old_assign_type;
fcc5a03a 1144 char oldname[IFNAMSIZ];
1da177e4 1145 int err = 0;
fcc5a03a 1146 int ret;
881d966b 1147 struct net *net;
1da177e4
LT
1148
1149 ASSERT_RTNL();
c346dca1 1150 BUG_ON(!dev_net(dev));
1da177e4 1151
c346dca1 1152 net = dev_net(dev);
1da177e4
LT
1153 if (dev->flags & IFF_UP)
1154 return -EBUSY;
1155
30e6c9fa 1156 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1157
1158 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1159 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1160 return 0;
c91f6df2 1161 }
c8d90dca 1162
fcc5a03a
HX
1163 memcpy(oldname, dev->name, IFNAMSIZ);
1164
828de4f6 1165 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1166 if (err < 0) {
30e6c9fa 1167 write_seqcount_end(&devnet_rename_seq);
d9031024 1168 return err;
c91f6df2 1169 }
1da177e4 1170
6fe82a39
VF
1171 if (oldname[0] && !strchr(oldname, '%'))
1172 netdev_info(dev, "renamed from %s\n", oldname);
1173
238fa362
TG
1174 old_assign_type = dev->name_assign_type;
1175 dev->name_assign_type = NET_NAME_RENAMED;
1176
fcc5a03a 1177rollback:
a1b3f594
EB
1178 ret = device_rename(&dev->dev, dev->name);
1179 if (ret) {
1180 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1181 dev->name_assign_type = old_assign_type;
30e6c9fa 1182 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1183 return ret;
dcc99773 1184 }
7f988eab 1185
30e6c9fa 1186 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1187
5bb025fa
VF
1188 netdev_adjacent_rename_links(dev, oldname);
1189
7f988eab 1190 write_lock_bh(&dev_base_lock);
372b2312 1191 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1192 write_unlock_bh(&dev_base_lock);
1193
1194 synchronize_rcu();
1195
1196 write_lock_bh(&dev_base_lock);
1197 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1198 write_unlock_bh(&dev_base_lock);
1199
056925ab 1200 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1201 ret = notifier_to_errno(ret);
1202
1203 if (ret) {
91e9c07b
ED
1204 /* err >= 0 after dev_alloc_name() or stores the first errno */
1205 if (err >= 0) {
fcc5a03a 1206 err = ret;
30e6c9fa 1207 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1208 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1209 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1210 dev->name_assign_type = old_assign_type;
1211 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1212 goto rollback;
91e9c07b 1213 } else {
7b6cd1ce 1214 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1215 dev->name, ret);
fcc5a03a
HX
1216 }
1217 }
1da177e4
LT
1218
1219 return err;
1220}
1221
0b815a1a
SH
1222/**
1223 * dev_set_alias - change ifalias of a device
1224 * @dev: device
1225 * @alias: name up to IFALIASZ
f0db275a 1226 * @len: limit of bytes to copy from info
0b815a1a
SH
1227 *
1228 * Set ifalias for a device,
1229 */
1230int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231{
7364e445
AK
1232 char *new_ifalias;
1233
0b815a1a
SH
1234 ASSERT_RTNL();
1235
1236 if (len >= IFALIASZ)
1237 return -EINVAL;
1238
96ca4a2c 1239 if (!len) {
388dfc2d
SK
1240 kfree(dev->ifalias);
1241 dev->ifalias = NULL;
96ca4a2c
OH
1242 return 0;
1243 }
1244
7364e445
AK
1245 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246 if (!new_ifalias)
0b815a1a 1247 return -ENOMEM;
7364e445 1248 dev->ifalias = new_ifalias;
0b815a1a
SH
1249
1250 strlcpy(dev->ifalias, alias, len+1);
1251 return len;
1252}
1253
1254
d8a33ac4 1255/**
3041a069 1256 * netdev_features_change - device changes features
d8a33ac4
SH
1257 * @dev: device to cause notification
1258 *
1259 * Called to indicate a device has changed features.
1260 */
1261void netdev_features_change(struct net_device *dev)
1262{
056925ab 1263 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1264}
1265EXPORT_SYMBOL(netdev_features_change);
1266
1da177e4
LT
1267/**
1268 * netdev_state_change - device changes state
1269 * @dev: device to cause notification
1270 *
1271 * Called to indicate a device has changed state. This function calls
1272 * the notifier chains for netdev_chain and sends a NEWLINK message
1273 * to the routing socket.
1274 */
1275void netdev_state_change(struct net_device *dev)
1276{
1277 if (dev->flags & IFF_UP) {
54951194
LP
1278 struct netdev_notifier_change_info change_info;
1279
1280 change_info.flags_changed = 0;
1281 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282 &change_info.info);
7f294054 1283 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1284 }
1285}
d1b19dff 1286EXPORT_SYMBOL(netdev_state_change);
1da177e4 1287
ee89bab1
AW
1288/**
1289 * netdev_notify_peers - notify network peers about existence of @dev
1290 * @dev: network device
1291 *
1292 * Generate traffic such that interested network peers are aware of
1293 * @dev, such as by generating a gratuitous ARP. This may be used when
1294 * a device wants to inform the rest of the network about some sort of
1295 * reconfiguration such as a failover event or virtual machine
1296 * migration.
1297 */
1298void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1299{
ee89bab1
AW
1300 rtnl_lock();
1301 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302 rtnl_unlock();
c1da4ac7 1303}
ee89bab1 1304EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1305
bd380811 1306static int __dev_open(struct net_device *dev)
1da177e4 1307{
d314774c 1308 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1309 int ret;
1da177e4 1310
e46b66bc
BH
1311 ASSERT_RTNL();
1312
1da177e4
LT
1313 if (!netif_device_present(dev))
1314 return -ENODEV;
1315
ca99ca14
NH
1316 /* Block netpoll from trying to do any rx path servicing.
1317 * If we don't do this there is a chance ndo_poll_controller
1318 * or ndo_poll may be running while we open the device
1319 */
66b5552f 1320 netpoll_poll_disable(dev);
ca99ca14 1321
3b8bcfd5
JB
1322 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323 ret = notifier_to_errno(ret);
1324 if (ret)
1325 return ret;
1326
1da177e4 1327 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1328
d314774c
SH
1329 if (ops->ndo_validate_addr)
1330 ret = ops->ndo_validate_addr(dev);
bada339b 1331
d314774c
SH
1332 if (!ret && ops->ndo_open)
1333 ret = ops->ndo_open(dev);
1da177e4 1334
66b5552f 1335 netpoll_poll_enable(dev);
ca99ca14 1336
bada339b
JG
1337 if (ret)
1338 clear_bit(__LINK_STATE_START, &dev->state);
1339 else {
1da177e4 1340 dev->flags |= IFF_UP;
4417da66 1341 dev_set_rx_mode(dev);
1da177e4 1342 dev_activate(dev);
7bf23575 1343 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1344 }
bada339b 1345
1da177e4
LT
1346 return ret;
1347}
1348
1349/**
bd380811
PM
1350 * dev_open - prepare an interface for use.
1351 * @dev: device to open
1da177e4 1352 *
bd380811
PM
1353 * Takes a device from down to up state. The device's private open
1354 * function is invoked and then the multicast lists are loaded. Finally
1355 * the device is moved into the up state and a %NETDEV_UP message is
1356 * sent to the netdev notifier chain.
1357 *
1358 * Calling this function on an active interface is a nop. On a failure
1359 * a negative errno code is returned.
1da177e4 1360 */
bd380811
PM
1361int dev_open(struct net_device *dev)
1362{
1363 int ret;
1364
bd380811
PM
1365 if (dev->flags & IFF_UP)
1366 return 0;
1367
bd380811
PM
1368 ret = __dev_open(dev);
1369 if (ret < 0)
1370 return ret;
1371
7f294054 1372 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1373 call_netdevice_notifiers(NETDEV_UP, dev);
1374
1375 return ret;
1376}
1377EXPORT_SYMBOL(dev_open);
1378
44345724 1379static int __dev_close_many(struct list_head *head)
1da177e4 1380{
44345724 1381 struct net_device *dev;
e46b66bc 1382
bd380811 1383 ASSERT_RTNL();
9d5010db
DM
1384 might_sleep();
1385
5cde2829 1386 list_for_each_entry(dev, head, close_list) {
3f4df206 1387 /* Temporarily disable netpoll until the interface is down */
66b5552f 1388 netpoll_poll_disable(dev);
3f4df206 1389
44345724 1390 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1391
44345724 1392 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1393
44345724
OP
1394 /* Synchronize to scheduled poll. We cannot touch poll list, it
1395 * can be even on different cpu. So just clear netif_running().
1396 *
1397 * dev->stop() will invoke napi_disable() on all of it's
1398 * napi_struct instances on this device.
1399 */
4e857c58 1400 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1401 }
1da177e4 1402
44345724 1403 dev_deactivate_many(head);
d8b2a4d2 1404
5cde2829 1405 list_for_each_entry(dev, head, close_list) {
44345724 1406 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1407
44345724
OP
1408 /*
1409 * Call the device specific close. This cannot fail.
1410 * Only if device is UP
1411 *
1412 * We allow it to be called even after a DETACH hot-plug
1413 * event.
1414 */
1415 if (ops->ndo_stop)
1416 ops->ndo_stop(dev);
1417
44345724 1418 dev->flags &= ~IFF_UP;
66b5552f 1419 netpoll_poll_enable(dev);
44345724
OP
1420 }
1421
1422 return 0;
1423}
1424
1425static int __dev_close(struct net_device *dev)
1426{
f87e6f47 1427 int retval;
44345724
OP
1428 LIST_HEAD(single);
1429
5cde2829 1430 list_add(&dev->close_list, &single);
f87e6f47
LT
1431 retval = __dev_close_many(&single);
1432 list_del(&single);
ca99ca14 1433
f87e6f47 1434 return retval;
44345724
OP
1435}
1436
99c4a26a 1437int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1438{
1439 struct net_device *dev, *tmp;
1da177e4 1440
5cde2829
EB
1441 /* Remove the devices that don't need to be closed */
1442 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1443 if (!(dev->flags & IFF_UP))
5cde2829 1444 list_del_init(&dev->close_list);
44345724
OP
1445
1446 __dev_close_many(head);
1da177e4 1447
5cde2829 1448 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1449 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1450 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1451 if (unlink)
1452 list_del_init(&dev->close_list);
44345724 1453 }
bd380811
PM
1454
1455 return 0;
1456}
99c4a26a 1457EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1458
1459/**
1460 * dev_close - shutdown an interface.
1461 * @dev: device to shutdown
1462 *
1463 * This function moves an active device into down state. A
1464 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466 * chain.
1467 */
1468int dev_close(struct net_device *dev)
1469{
e14a5993
ED
1470 if (dev->flags & IFF_UP) {
1471 LIST_HEAD(single);
1da177e4 1472
5cde2829 1473 list_add(&dev->close_list, &single);
99c4a26a 1474 dev_close_many(&single, true);
e14a5993
ED
1475 list_del(&single);
1476 }
da6e378b 1477 return 0;
1da177e4 1478}
d1b19dff 1479EXPORT_SYMBOL(dev_close);
1da177e4
LT
1480
1481
0187bdfb
BH
1482/**
1483 * dev_disable_lro - disable Large Receive Offload on a device
1484 * @dev: device
1485 *
1486 * Disable Large Receive Offload (LRO) on a net device. Must be
1487 * called under RTNL. This is needed if received packets may be
1488 * forwarded to another interface.
1489 */
1490void dev_disable_lro(struct net_device *dev)
1491{
fbe168ba
MK
1492 struct net_device *lower_dev;
1493 struct list_head *iter;
529d0489 1494
bc5787c6
MM
1495 dev->wanted_features &= ~NETIF_F_LRO;
1496 netdev_update_features(dev);
27660515 1497
22d5969f
MM
1498 if (unlikely(dev->features & NETIF_F_LRO))
1499 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1500
1501 netdev_for_each_lower_dev(dev, lower_dev, iter)
1502 dev_disable_lro(lower_dev);
0187bdfb
BH
1503}
1504EXPORT_SYMBOL(dev_disable_lro);
1505
351638e7
JP
1506static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507 struct net_device *dev)
1508{
1509 struct netdev_notifier_info info;
1510
1511 netdev_notifier_info_init(&info, dev);
1512 return nb->notifier_call(nb, val, &info);
1513}
0187bdfb 1514
881d966b
EB
1515static int dev_boot_phase = 1;
1516
1da177e4
LT
1517/**
1518 * register_netdevice_notifier - register a network notifier block
1519 * @nb: notifier
1520 *
1521 * Register a notifier to be called when network device events occur.
1522 * The notifier passed is linked into the kernel structures and must
1523 * not be reused until it has been unregistered. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * When registered all registration and up events are replayed
4ec93edb 1527 * to the new notifier to allow device to have a race free
1da177e4
LT
1528 * view of the network device list.
1529 */
1530
1531int register_netdevice_notifier(struct notifier_block *nb)
1532{
1533 struct net_device *dev;
fcc5a03a 1534 struct net_device *last;
881d966b 1535 struct net *net;
1da177e4
LT
1536 int err;
1537
1538 rtnl_lock();
f07d5b94 1539 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1540 if (err)
1541 goto unlock;
881d966b
EB
1542 if (dev_boot_phase)
1543 goto unlock;
1544 for_each_net(net) {
1545 for_each_netdev(net, dev) {
351638e7 1546 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1547 err = notifier_to_errno(err);
1548 if (err)
1549 goto rollback;
1550
1551 if (!(dev->flags & IFF_UP))
1552 continue;
1da177e4 1553
351638e7 1554 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1555 }
1da177e4 1556 }
fcc5a03a
HX
1557
1558unlock:
1da177e4
LT
1559 rtnl_unlock();
1560 return err;
fcc5a03a
HX
1561
1562rollback:
1563 last = dev;
881d966b
EB
1564 for_each_net(net) {
1565 for_each_netdev(net, dev) {
1566 if (dev == last)
8f891489 1567 goto outroll;
fcc5a03a 1568
881d966b 1569 if (dev->flags & IFF_UP) {
351638e7
JP
1570 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571 dev);
1572 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1573 }
351638e7 1574 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1575 }
fcc5a03a 1576 }
c67625a1 1577
8f891489 1578outroll:
c67625a1 1579 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1580 goto unlock;
1da177e4 1581}
d1b19dff 1582EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1583
1584/**
1585 * unregister_netdevice_notifier - unregister a network notifier block
1586 * @nb: notifier
1587 *
1588 * Unregister a notifier previously registered by
1589 * register_netdevice_notifier(). The notifier is unlinked into the
1590 * kernel structures and may then be reused. A negative errno code
1591 * is returned on a failure.
7d3d43da
EB
1592 *
1593 * After unregistering unregister and down device events are synthesized
1594 * for all devices on the device list to the removed notifier to remove
1595 * the need for special case cleanup code.
1da177e4
LT
1596 */
1597
1598int unregister_netdevice_notifier(struct notifier_block *nb)
1599{
7d3d43da
EB
1600 struct net_device *dev;
1601 struct net *net;
9f514950
HX
1602 int err;
1603
1604 rtnl_lock();
f07d5b94 1605 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1606 if (err)
1607 goto unlock;
1608
1609 for_each_net(net) {
1610 for_each_netdev(net, dev) {
1611 if (dev->flags & IFF_UP) {
351638e7
JP
1612 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613 dev);
1614 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1615 }
351638e7 1616 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1617 }
1618 }
1619unlock:
9f514950
HX
1620 rtnl_unlock();
1621 return err;
1da177e4 1622}
d1b19dff 1623EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1624
351638e7
JP
1625/**
1626 * call_netdevice_notifiers_info - call all network notifier blocks
1627 * @val: value passed unmodified to notifier function
1628 * @dev: net_device pointer passed unmodified to notifier function
1629 * @info: notifier information data
1630 *
1631 * Call all network notifier blocks. Parameters and return value
1632 * are as for raw_notifier_call_chain().
1633 */
1634
1d143d9f 1635static int call_netdevice_notifiers_info(unsigned long val,
1636 struct net_device *dev,
1637 struct netdev_notifier_info *info)
351638e7
JP
1638{
1639 ASSERT_RTNL();
1640 netdev_notifier_info_init(info, dev);
1641 return raw_notifier_call_chain(&netdev_chain, val, info);
1642}
351638e7 1643
1da177e4
LT
1644/**
1645 * call_netdevice_notifiers - call all network notifier blocks
1646 * @val: value passed unmodified to notifier function
c4ea43c5 1647 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1648 *
1649 * Call all network notifier blocks. Parameters and return value
f07d5b94 1650 * are as for raw_notifier_call_chain().
1da177e4
LT
1651 */
1652
ad7379d4 1653int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1654{
351638e7
JP
1655 struct netdev_notifier_info info;
1656
1657 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1658}
edf947f1 1659EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1660
1cf51900 1661#ifdef CONFIG_NET_INGRESS
4577139b
DB
1662static struct static_key ingress_needed __read_mostly;
1663
1664void net_inc_ingress_queue(void)
1665{
1666 static_key_slow_inc(&ingress_needed);
1667}
1668EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669
1670void net_dec_ingress_queue(void)
1671{
1672 static_key_slow_dec(&ingress_needed);
1673}
1674EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675#endif
1676
c5905afb 1677static struct static_key netstamp_needed __read_mostly;
b90e5794 1678#ifdef HAVE_JUMP_LABEL
c5905afb 1679/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1680 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1681 * static_key_slow_dec() calls.
b90e5794
ED
1682 */
1683static atomic_t netstamp_needed_deferred;
1684#endif
1da177e4
LT
1685
1686void net_enable_timestamp(void)
1687{
b90e5794
ED
1688#ifdef HAVE_JUMP_LABEL
1689 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690
1691 if (deferred) {
1692 while (--deferred)
c5905afb 1693 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1694 return;
1695 }
1696#endif
c5905afb 1697 static_key_slow_inc(&netstamp_needed);
1da177e4 1698}
d1b19dff 1699EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1700
1701void net_disable_timestamp(void)
1702{
b90e5794
ED
1703#ifdef HAVE_JUMP_LABEL
1704 if (in_interrupt()) {
1705 atomic_inc(&netstamp_needed_deferred);
1706 return;
1707 }
1708#endif
c5905afb 1709 static_key_slow_dec(&netstamp_needed);
1da177e4 1710}
d1b19dff 1711EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1712
3b098e2d 1713static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1714{
588f0330 1715 skb->tstamp.tv64 = 0;
c5905afb 1716 if (static_key_false(&netstamp_needed))
a61bbcf2 1717 __net_timestamp(skb);
1da177e4
LT
1718}
1719
588f0330 1720#define net_timestamp_check(COND, SKB) \
c5905afb 1721 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1722 if ((COND) && !(SKB)->tstamp.tv64) \
1723 __net_timestamp(SKB); \
1724 } \
3b098e2d 1725
1ee481fb 1726bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1727{
1728 unsigned int len;
1729
1730 if (!(dev->flags & IFF_UP))
1731 return false;
1732
1733 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734 if (skb->len <= len)
1735 return true;
1736
1737 /* if TSO is enabled, we don't care about the length as the packet
1738 * could be forwarded without being segmented before
1739 */
1740 if (skb_is_gso(skb))
1741 return true;
1742
1743 return false;
1744}
1ee481fb 1745EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1746
a0265d28
HX
1747int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748{
bbbf2df0
WB
1749 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1751 atomic_long_inc(&dev->rx_dropped);
1752 kfree_skb(skb);
1753 return NET_RX_DROP;
1754 }
1755
1756 skb_scrub_packet(skb, true);
08b4b8ea 1757 skb->priority = 0;
a0265d28 1758 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1759 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1760
1761 return 0;
1762}
1763EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764
44540960
AB
1765/**
1766 * dev_forward_skb - loopback an skb to another netif
1767 *
1768 * @dev: destination network device
1769 * @skb: buffer to forward
1770 *
1771 * return values:
1772 * NET_RX_SUCCESS (no congestion)
6ec82562 1773 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1774 *
1775 * dev_forward_skb can be used for injecting an skb from the
1776 * start_xmit function of one device into the receive queue
1777 * of another device.
1778 *
1779 * The receiving device may be in another namespace, so
1780 * we have to clear all information in the skb that could
1781 * impact namespace isolation.
1782 */
1783int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784{
a0265d28 1785 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1786}
1787EXPORT_SYMBOL_GPL(dev_forward_skb);
1788
71d9dec2
CG
1789static inline int deliver_skb(struct sk_buff *skb,
1790 struct packet_type *pt_prev,
1791 struct net_device *orig_dev)
1792{
1080e512
MT
1793 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794 return -ENOMEM;
71d9dec2
CG
1795 atomic_inc(&skb->users);
1796 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797}
1798
7866a621
SN
1799static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800 struct packet_type **pt,
fbcb2170
JP
1801 struct net_device *orig_dev,
1802 __be16 type,
7866a621
SN
1803 struct list_head *ptype_list)
1804{
1805 struct packet_type *ptype, *pt_prev = *pt;
1806
1807 list_for_each_entry_rcu(ptype, ptype_list, list) {
1808 if (ptype->type != type)
1809 continue;
1810 if (pt_prev)
fbcb2170 1811 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1812 pt_prev = ptype;
1813 }
1814 *pt = pt_prev;
1815}
1816
c0de08d0
EL
1817static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818{
a3d744e9 1819 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1820 return false;
1821
1822 if (ptype->id_match)
1823 return ptype->id_match(ptype, skb->sk);
1824 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825 return true;
1826
1827 return false;
1828}
1829
1da177e4
LT
1830/*
1831 * Support routine. Sends outgoing frames to any network
1832 * taps currently in use.
1833 */
1834
f6a78bfc 1835static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1836{
1837 struct packet_type *ptype;
71d9dec2
CG
1838 struct sk_buff *skb2 = NULL;
1839 struct packet_type *pt_prev = NULL;
7866a621 1840 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1841
1da177e4 1842 rcu_read_lock();
7866a621
SN
1843again:
1844 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1845 /* Never send packets back to the socket
1846 * they originated from - MvS (miquels@drinkel.ow.org)
1847 */
7866a621
SN
1848 if (skb_loop_sk(ptype, skb))
1849 continue;
71d9dec2 1850
7866a621
SN
1851 if (pt_prev) {
1852 deliver_skb(skb2, pt_prev, skb->dev);
1853 pt_prev = ptype;
1854 continue;
1855 }
1da177e4 1856
7866a621
SN
1857 /* need to clone skb, done only once */
1858 skb2 = skb_clone(skb, GFP_ATOMIC);
1859 if (!skb2)
1860 goto out_unlock;
70978182 1861
7866a621 1862 net_timestamp_set(skb2);
1da177e4 1863
7866a621
SN
1864 /* skb->nh should be correctly
1865 * set by sender, so that the second statement is
1866 * just protection against buggy protocols.
1867 */
1868 skb_reset_mac_header(skb2);
1869
1870 if (skb_network_header(skb2) < skb2->data ||
1871 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873 ntohs(skb2->protocol),
1874 dev->name);
1875 skb_reset_network_header(skb2);
1da177e4 1876 }
7866a621
SN
1877
1878 skb2->transport_header = skb2->network_header;
1879 skb2->pkt_type = PACKET_OUTGOING;
1880 pt_prev = ptype;
1881 }
1882
1883 if (ptype_list == &ptype_all) {
1884 ptype_list = &dev->ptype_all;
1885 goto again;
1da177e4 1886 }
7866a621 1887out_unlock:
71d9dec2
CG
1888 if (pt_prev)
1889 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1890 rcu_read_unlock();
1891}
1892
2c53040f
BH
1893/**
1894 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1895 * @dev: Network device
1896 * @txq: number of queues available
1897 *
1898 * If real_num_tx_queues is changed the tc mappings may no longer be
1899 * valid. To resolve this verify the tc mapping remains valid and if
1900 * not NULL the mapping. With no priorities mapping to this
1901 * offset/count pair it will no longer be used. In the worst case TC0
1902 * is invalid nothing can be done so disable priority mappings. If is
1903 * expected that drivers will fix this mapping if they can before
1904 * calling netif_set_real_num_tx_queues.
1905 */
bb134d22 1906static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1907{
1908 int i;
1909 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910
1911 /* If TC0 is invalidated disable TC mapping */
1912 if (tc->offset + tc->count > txq) {
7b6cd1ce 1913 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1914 dev->num_tc = 0;
1915 return;
1916 }
1917
1918 /* Invalidated prio to tc mappings set to TC0 */
1919 for (i = 1; i < TC_BITMASK + 1; i++) {
1920 int q = netdev_get_prio_tc_map(dev, i);
1921
1922 tc = &dev->tc_to_txq[q];
1923 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1924 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925 i, q);
4f57c087
JF
1926 netdev_set_prio_tc_map(dev, i, 0);
1927 }
1928 }
1929}
1930
537c00de
AD
1931#ifdef CONFIG_XPS
1932static DEFINE_MUTEX(xps_map_mutex);
1933#define xmap_dereference(P) \
1934 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935
10cdc3f3
AD
1936static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937 int cpu, u16 index)
537c00de 1938{
10cdc3f3
AD
1939 struct xps_map *map = NULL;
1940 int pos;
537c00de 1941
10cdc3f3
AD
1942 if (dev_maps)
1943 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1944
10cdc3f3
AD
1945 for (pos = 0; map && pos < map->len; pos++) {
1946 if (map->queues[pos] == index) {
537c00de
AD
1947 if (map->len > 1) {
1948 map->queues[pos] = map->queues[--map->len];
1949 } else {
10cdc3f3 1950 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1951 kfree_rcu(map, rcu);
1952 map = NULL;
1953 }
10cdc3f3 1954 break;
537c00de 1955 }
537c00de
AD
1956 }
1957
10cdc3f3
AD
1958 return map;
1959}
1960
024e9679 1961static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1962{
1963 struct xps_dev_maps *dev_maps;
024e9679 1964 int cpu, i;
10cdc3f3
AD
1965 bool active = false;
1966
1967 mutex_lock(&xps_map_mutex);
1968 dev_maps = xmap_dereference(dev->xps_maps);
1969
1970 if (!dev_maps)
1971 goto out_no_maps;
1972
1973 for_each_possible_cpu(cpu) {
024e9679
AD
1974 for (i = index; i < dev->num_tx_queues; i++) {
1975 if (!remove_xps_queue(dev_maps, cpu, i))
1976 break;
1977 }
1978 if (i == dev->num_tx_queues)
10cdc3f3
AD
1979 active = true;
1980 }
1981
1982 if (!active) {
537c00de
AD
1983 RCU_INIT_POINTER(dev->xps_maps, NULL);
1984 kfree_rcu(dev_maps, rcu);
1985 }
1986
024e9679
AD
1987 for (i = index; i < dev->num_tx_queues; i++)
1988 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989 NUMA_NO_NODE);
1990
537c00de
AD
1991out_no_maps:
1992 mutex_unlock(&xps_map_mutex);
1993}
1994
01c5f864
AD
1995static struct xps_map *expand_xps_map(struct xps_map *map,
1996 int cpu, u16 index)
1997{
1998 struct xps_map *new_map;
1999 int alloc_len = XPS_MIN_MAP_ALLOC;
2000 int i, pos;
2001
2002 for (pos = 0; map && pos < map->len; pos++) {
2003 if (map->queues[pos] != index)
2004 continue;
2005 return map;
2006 }
2007
2008 /* Need to add queue to this CPU's existing map */
2009 if (map) {
2010 if (pos < map->alloc_len)
2011 return map;
2012
2013 alloc_len = map->alloc_len * 2;
2014 }
2015
2016 /* Need to allocate new map to store queue on this CPU's map */
2017 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018 cpu_to_node(cpu));
2019 if (!new_map)
2020 return NULL;
2021
2022 for (i = 0; i < pos; i++)
2023 new_map->queues[i] = map->queues[i];
2024 new_map->alloc_len = alloc_len;
2025 new_map->len = pos;
2026
2027 return new_map;
2028}
2029
3573540c
MT
2030int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031 u16 index)
537c00de 2032{
01c5f864 2033 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2034 struct xps_map *map, *new_map;
537c00de 2035 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2036 int cpu, numa_node_id = -2;
2037 bool active = false;
537c00de
AD
2038
2039 mutex_lock(&xps_map_mutex);
2040
2041 dev_maps = xmap_dereference(dev->xps_maps);
2042
01c5f864
AD
2043 /* allocate memory for queue storage */
2044 for_each_online_cpu(cpu) {
2045 if (!cpumask_test_cpu(cpu, mask))
2046 continue;
2047
2048 if (!new_dev_maps)
2049 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2050 if (!new_dev_maps) {
2051 mutex_unlock(&xps_map_mutex);
01c5f864 2052 return -ENOMEM;
2bb60cb9 2053 }
01c5f864
AD
2054
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057
2058 map = expand_xps_map(map, cpu, index);
2059 if (!map)
2060 goto error;
2061
2062 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063 }
2064
2065 if (!new_dev_maps)
2066 goto out_no_new_maps;
2067
537c00de 2068 for_each_possible_cpu(cpu) {
01c5f864
AD
2069 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070 /* add queue to CPU maps */
2071 int pos = 0;
2072
2073 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074 while ((pos < map->len) && (map->queues[pos] != index))
2075 pos++;
2076
2077 if (pos == map->len)
2078 map->queues[map->len++] = index;
537c00de 2079#ifdef CONFIG_NUMA
537c00de
AD
2080 if (numa_node_id == -2)
2081 numa_node_id = cpu_to_node(cpu);
2082 else if (numa_node_id != cpu_to_node(cpu))
2083 numa_node_id = -1;
537c00de 2084#endif
01c5f864
AD
2085 } else if (dev_maps) {
2086 /* fill in the new device map from the old device map */
2087 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2089 }
01c5f864 2090
537c00de
AD
2091 }
2092
01c5f864
AD
2093 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094
537c00de 2095 /* Cleanup old maps */
01c5f864
AD
2096 if (dev_maps) {
2097 for_each_possible_cpu(cpu) {
2098 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100 if (map && map != new_map)
2101 kfree_rcu(map, rcu);
2102 }
537c00de 2103
01c5f864 2104 kfree_rcu(dev_maps, rcu);
537c00de
AD
2105 }
2106
01c5f864
AD
2107 dev_maps = new_dev_maps;
2108 active = true;
537c00de 2109
01c5f864
AD
2110out_no_new_maps:
2111 /* update Tx queue numa node */
537c00de
AD
2112 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113 (numa_node_id >= 0) ? numa_node_id :
2114 NUMA_NO_NODE);
2115
01c5f864
AD
2116 if (!dev_maps)
2117 goto out_no_maps;
2118
2119 /* removes queue from unused CPUs */
2120 for_each_possible_cpu(cpu) {
2121 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122 continue;
2123
2124 if (remove_xps_queue(dev_maps, cpu, index))
2125 active = true;
2126 }
2127
2128 /* free map if not active */
2129 if (!active) {
2130 RCU_INIT_POINTER(dev->xps_maps, NULL);
2131 kfree_rcu(dev_maps, rcu);
2132 }
2133
2134out_no_maps:
537c00de
AD
2135 mutex_unlock(&xps_map_mutex);
2136
2137 return 0;
2138error:
01c5f864
AD
2139 /* remove any maps that we added */
2140 for_each_possible_cpu(cpu) {
2141 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143 NULL;
2144 if (new_map && new_map != map)
2145 kfree(new_map);
2146 }
2147
537c00de
AD
2148 mutex_unlock(&xps_map_mutex);
2149
537c00de
AD
2150 kfree(new_dev_maps);
2151 return -ENOMEM;
2152}
2153EXPORT_SYMBOL(netif_set_xps_queue);
2154
2155#endif
f0796d5c
JF
2156/*
2157 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159 */
e6484930 2160int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2161{
1d24eb48
TH
2162 int rc;
2163
e6484930
TH
2164 if (txq < 1 || txq > dev->num_tx_queues)
2165 return -EINVAL;
f0796d5c 2166
5c56580b
BH
2167 if (dev->reg_state == NETREG_REGISTERED ||
2168 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2169 ASSERT_RTNL();
2170
1d24eb48
TH
2171 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172 txq);
bf264145
TH
2173 if (rc)
2174 return rc;
2175
4f57c087
JF
2176 if (dev->num_tc)
2177 netif_setup_tc(dev, txq);
2178
024e9679 2179 if (txq < dev->real_num_tx_queues) {
e6484930 2180 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2181#ifdef CONFIG_XPS
2182 netif_reset_xps_queues_gt(dev, txq);
2183#endif
2184 }
f0796d5c 2185 }
e6484930
TH
2186
2187 dev->real_num_tx_queues = txq;
2188 return 0;
f0796d5c
JF
2189}
2190EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2191
a953be53 2192#ifdef CONFIG_SYSFS
62fe0b40
BH
2193/**
2194 * netif_set_real_num_rx_queues - set actual number of RX queues used
2195 * @dev: Network device
2196 * @rxq: Actual number of RX queues
2197 *
2198 * This must be called either with the rtnl_lock held or before
2199 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2200 * negative error code. If called before registration, it always
2201 * succeeds.
62fe0b40
BH
2202 */
2203int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204{
2205 int rc;
2206
bd25fa7b
TH
2207 if (rxq < 1 || rxq > dev->num_rx_queues)
2208 return -EINVAL;
2209
62fe0b40
BH
2210 if (dev->reg_state == NETREG_REGISTERED) {
2211 ASSERT_RTNL();
2212
62fe0b40
BH
2213 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214 rxq);
2215 if (rc)
2216 return rc;
62fe0b40
BH
2217 }
2218
2219 dev->real_num_rx_queues = rxq;
2220 return 0;
2221}
2222EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223#endif
2224
2c53040f
BH
2225/**
2226 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2227 *
2228 * This routine should set an upper limit on the number of RSS queues
2229 * used by default by multiqueue devices.
2230 */
a55b138b 2231int netif_get_num_default_rss_queues(void)
16917b87
YM
2232{
2233 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234}
2235EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236
def82a1d 2237static inline void __netif_reschedule(struct Qdisc *q)
56079431 2238{
def82a1d
JP
2239 struct softnet_data *sd;
2240 unsigned long flags;
56079431 2241
def82a1d 2242 local_irq_save(flags);
903ceff7 2243 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2244 q->next_sched = NULL;
2245 *sd->output_queue_tailp = q;
2246 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2247 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248 local_irq_restore(flags);
2249}
2250
2251void __netif_schedule(struct Qdisc *q)
2252{
2253 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254 __netif_reschedule(q);
56079431
DV
2255}
2256EXPORT_SYMBOL(__netif_schedule);
2257
e6247027
ED
2258struct dev_kfree_skb_cb {
2259 enum skb_free_reason reason;
2260};
2261
2262static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2263{
e6247027
ED
2264 return (struct dev_kfree_skb_cb *)skb->cb;
2265}
2266
46e5da40
JF
2267void netif_schedule_queue(struct netdev_queue *txq)
2268{
2269 rcu_read_lock();
2270 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271 struct Qdisc *q = rcu_dereference(txq->qdisc);
2272
2273 __netif_schedule(q);
2274 }
2275 rcu_read_unlock();
2276}
2277EXPORT_SYMBOL(netif_schedule_queue);
2278
2279/**
2280 * netif_wake_subqueue - allow sending packets on subqueue
2281 * @dev: network device
2282 * @queue_index: sub queue index
2283 *
2284 * Resume individual transmit queue of a device with multiple transmit queues.
2285 */
2286void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287{
2288 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289
2290 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291 struct Qdisc *q;
2292
2293 rcu_read_lock();
2294 q = rcu_dereference(txq->qdisc);
2295 __netif_schedule(q);
2296 rcu_read_unlock();
2297 }
2298}
2299EXPORT_SYMBOL(netif_wake_subqueue);
2300
2301void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302{
2303 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304 struct Qdisc *q;
2305
2306 rcu_read_lock();
2307 q = rcu_dereference(dev_queue->qdisc);
2308 __netif_schedule(q);
2309 rcu_read_unlock();
2310 }
2311}
2312EXPORT_SYMBOL(netif_tx_wake_queue);
2313
e6247027 2314void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2315{
e6247027 2316 unsigned long flags;
56079431 2317
e6247027
ED
2318 if (likely(atomic_read(&skb->users) == 1)) {
2319 smp_rmb();
2320 atomic_set(&skb->users, 0);
2321 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2322 return;
bea3348e 2323 }
e6247027
ED
2324 get_kfree_skb_cb(skb)->reason = reason;
2325 local_irq_save(flags);
2326 skb->next = __this_cpu_read(softnet_data.completion_queue);
2327 __this_cpu_write(softnet_data.completion_queue, skb);
2328 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329 local_irq_restore(flags);
56079431 2330}
e6247027 2331EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2332
e6247027 2333void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2334{
2335 if (in_irq() || irqs_disabled())
e6247027 2336 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2337 else
2338 dev_kfree_skb(skb);
2339}
e6247027 2340EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2341
2342
bea3348e
SH
2343/**
2344 * netif_device_detach - mark device as removed
2345 * @dev: network device
2346 *
2347 * Mark device as removed from system and therefore no longer available.
2348 */
56079431
DV
2349void netif_device_detach(struct net_device *dev)
2350{
2351 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352 netif_running(dev)) {
d543103a 2353 netif_tx_stop_all_queues(dev);
56079431
DV
2354 }
2355}
2356EXPORT_SYMBOL(netif_device_detach);
2357
bea3348e
SH
2358/**
2359 * netif_device_attach - mark device as attached
2360 * @dev: network device
2361 *
2362 * Mark device as attached from system and restart if needed.
2363 */
56079431
DV
2364void netif_device_attach(struct net_device *dev)
2365{
2366 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367 netif_running(dev)) {
d543103a 2368 netif_tx_wake_all_queues(dev);
4ec93edb 2369 __netdev_watchdog_up(dev);
56079431
DV
2370 }
2371}
2372EXPORT_SYMBOL(netif_device_attach);
2373
5605c762
JP
2374/*
2375 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376 * to be used as a distribution range.
2377 */
2378u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379 unsigned int num_tx_queues)
2380{
2381 u32 hash;
2382 u16 qoffset = 0;
2383 u16 qcount = num_tx_queues;
2384
2385 if (skb_rx_queue_recorded(skb)) {
2386 hash = skb_get_rx_queue(skb);
2387 while (unlikely(hash >= num_tx_queues))
2388 hash -= num_tx_queues;
2389 return hash;
2390 }
2391
2392 if (dev->num_tc) {
2393 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394 qoffset = dev->tc_to_txq[tc].offset;
2395 qcount = dev->tc_to_txq[tc].count;
2396 }
2397
2398 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399}
2400EXPORT_SYMBOL(__skb_tx_hash);
2401
36c92474
BH
2402static void skb_warn_bad_offload(const struct sk_buff *skb)
2403{
65e9d2fa 2404 static const netdev_features_t null_features = 0;
36c92474
BH
2405 struct net_device *dev = skb->dev;
2406 const char *driver = "";
2407
c846ad9b
BG
2408 if (!net_ratelimit())
2409 return;
2410
36c92474
BH
2411 if (dev && dev->dev.parent)
2412 driver = dev_driver_string(dev->dev.parent);
2413
2414 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2415 "gso_type=%d ip_summed=%d\n",
65e9d2fa
MM
2416 driver, dev ? &dev->features : &null_features,
2417 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2418 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2419 skb_shinfo(skb)->gso_type, skb->ip_summed);
2420}
2421
1da177e4
LT
2422/*
2423 * Invalidate hardware checksum when packet is to be mangled, and
2424 * complete checksum manually on outgoing path.
2425 */
84fa7933 2426int skb_checksum_help(struct sk_buff *skb)
1da177e4 2427{
d3bc23e7 2428 __wsum csum;
663ead3b 2429 int ret = 0, offset;
1da177e4 2430
84fa7933 2431 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2432 goto out_set_summed;
2433
2434 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2435 skb_warn_bad_offload(skb);
2436 return -EINVAL;
1da177e4
LT
2437 }
2438
cef401de
ED
2439 /* Before computing a checksum, we should make sure no frag could
2440 * be modified by an external entity : checksum could be wrong.
2441 */
2442 if (skb_has_shared_frag(skb)) {
2443 ret = __skb_linearize(skb);
2444 if (ret)
2445 goto out;
2446 }
2447
55508d60 2448 offset = skb_checksum_start_offset(skb);
a030847e
HX
2449 BUG_ON(offset >= skb_headlen(skb));
2450 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2451
2452 offset += skb->csum_offset;
2453 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2454
2455 if (skb_cloned(skb) &&
2456 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2457 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2458 if (ret)
2459 goto out;
2460 }
2461
a030847e 2462 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2463out_set_summed:
1da177e4 2464 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2465out:
1da177e4
LT
2466 return ret;
2467}
d1b19dff 2468EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2469
53d6471c 2470__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2471{
252e3346 2472 __be16 type = skb->protocol;
f6a78bfc 2473
19acc327
PS
2474 /* Tunnel gso handlers can set protocol to ethernet. */
2475 if (type == htons(ETH_P_TEB)) {
2476 struct ethhdr *eth;
2477
2478 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2479 return 0;
2480
2481 eth = (struct ethhdr *)skb_mac_header(skb);
2482 type = eth->h_proto;
2483 }
2484
d4bcef3f 2485 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2486}
2487
2488/**
2489 * skb_mac_gso_segment - mac layer segmentation handler.
2490 * @skb: buffer to segment
2491 * @features: features for the output path (see dev->features)
2492 */
2493struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2494 netdev_features_t features)
2495{
2496 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2497 struct packet_offload *ptype;
53d6471c
VY
2498 int vlan_depth = skb->mac_len;
2499 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2500
2501 if (unlikely(!type))
2502 return ERR_PTR(-EINVAL);
2503
53d6471c 2504 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2505
2506 rcu_read_lock();
22061d80 2507 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2508 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2509 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2510 break;
2511 }
2512 }
2513 rcu_read_unlock();
2514
98e399f8 2515 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2516
f6a78bfc
HX
2517 return segs;
2518}
05e8ef4a
PS
2519EXPORT_SYMBOL(skb_mac_gso_segment);
2520
2521
2522/* openvswitch calls this on rx path, so we need a different check.
2523 */
2524static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2525{
2526 if (tx_path)
2527 return skb->ip_summed != CHECKSUM_PARTIAL;
2528 else
2529 return skb->ip_summed == CHECKSUM_NONE;
2530}
2531
2532/**
2533 * __skb_gso_segment - Perform segmentation on skb.
2534 * @skb: buffer to segment
2535 * @features: features for the output path (see dev->features)
2536 * @tx_path: whether it is called in TX path
2537 *
2538 * This function segments the given skb and returns a list of segments.
2539 *
2540 * It may return NULL if the skb requires no segmentation. This is
2541 * only possible when GSO is used for verifying header integrity.
2542 */
2543struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2544 netdev_features_t features, bool tx_path)
2545{
2546 if (unlikely(skb_needs_check(skb, tx_path))) {
2547 int err;
2548
2549 skb_warn_bad_offload(skb);
2550
a40e0a66 2551 err = skb_cow_head(skb, 0);
2552 if (err < 0)
05e8ef4a
PS
2553 return ERR_PTR(err);
2554 }
2555
68c33163 2556 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2557 SKB_GSO_CB(skb)->encap_level = 0;
2558
05e8ef4a
PS
2559 skb_reset_mac_header(skb);
2560 skb_reset_mac_len(skb);
2561
2562 return skb_mac_gso_segment(skb, features);
2563}
12b0004d 2564EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2565
fb286bb2
HX
2566/* Take action when hardware reception checksum errors are detected. */
2567#ifdef CONFIG_BUG
2568void netdev_rx_csum_fault(struct net_device *dev)
2569{
2570 if (net_ratelimit()) {
7b6cd1ce 2571 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2572 dump_stack();
2573 }
2574}
2575EXPORT_SYMBOL(netdev_rx_csum_fault);
2576#endif
2577
1da177e4
LT
2578/* Actually, we should eliminate this check as soon as we know, that:
2579 * 1. IOMMU is present and allows to map all the memory.
2580 * 2. No high memory really exists on this machine.
2581 */
2582
c1e756bf 2583static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2584{
3d3a8533 2585#ifdef CONFIG_HIGHMEM
1da177e4 2586 int i;
5acbbd42 2587 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2588 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2589 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2590 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2591 return 1;
ea2ab693 2592 }
5acbbd42 2593 }
1da177e4 2594
5acbbd42
FT
2595 if (PCI_DMA_BUS_IS_PHYS) {
2596 struct device *pdev = dev->dev.parent;
1da177e4 2597
9092c658
ED
2598 if (!pdev)
2599 return 0;
5acbbd42 2600 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2601 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2602 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2603 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2604 return 1;
2605 }
2606 }
3d3a8533 2607#endif
1da177e4
LT
2608 return 0;
2609}
1da177e4 2610
3b392ddb
SH
2611/* If MPLS offload request, verify we are testing hardware MPLS features
2612 * instead of standard features for the netdev.
2613 */
d0edc7bf 2614#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2615static netdev_features_t net_mpls_features(struct sk_buff *skb,
2616 netdev_features_t features,
2617 __be16 type)
2618{
25cd9ba0 2619 if (eth_p_mpls(type))
3b392ddb
SH
2620 features &= skb->dev->mpls_features;
2621
2622 return features;
2623}
2624#else
2625static netdev_features_t net_mpls_features(struct sk_buff *skb,
2626 netdev_features_t features,
2627 __be16 type)
2628{
2629 return features;
2630}
2631#endif
2632
c8f44aff 2633static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2634 netdev_features_t features)
f01a5236 2635{
53d6471c 2636 int tmp;
3b392ddb
SH
2637 __be16 type;
2638
2639 type = skb_network_protocol(skb, &tmp);
2640 features = net_mpls_features(skb, features, type);
53d6471c 2641
c0d680e5 2642 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2643 !can_checksum_protocol(features, type)) {
f01a5236 2644 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2645 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2646 features &= ~NETIF_F_SG;
2647 }
2648
2649 return features;
2650}
2651
e38f3025
TM
2652netdev_features_t passthru_features_check(struct sk_buff *skb,
2653 struct net_device *dev,
2654 netdev_features_t features)
2655{
2656 return features;
2657}
2658EXPORT_SYMBOL(passthru_features_check);
2659
8cb65d00
TM
2660static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2661 struct net_device *dev,
2662 netdev_features_t features)
2663{
2664 return vlan_features_check(skb, features);
2665}
2666
c1e756bf 2667netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2668{
5f35227e 2669 struct net_device *dev = skb->dev;
fcbeb976
ED
2670 netdev_features_t features = dev->features;
2671 u16 gso_segs = skb_shinfo(skb)->gso_segs;
58e998c6 2672
fcbeb976 2673 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
30b678d8
BH
2674 features &= ~NETIF_F_GSO_MASK;
2675
5f35227e
JG
2676 /* If encapsulation offload request, verify we are testing
2677 * hardware encapsulation features instead of standard
2678 * features for the netdev
2679 */
2680 if (skb->encapsulation)
2681 features &= dev->hw_enc_features;
2682
f5a7fb88
TM
2683 if (skb_vlan_tagged(skb))
2684 features = netdev_intersect_features(features,
2685 dev->vlan_features |
2686 NETIF_F_HW_VLAN_CTAG_TX |
2687 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2688
5f35227e
JG
2689 if (dev->netdev_ops->ndo_features_check)
2690 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2691 features);
8cb65d00
TM
2692 else
2693 features &= dflt_features_check(skb, dev, features);
5f35227e 2694
c1e756bf 2695 return harmonize_features(skb, features);
58e998c6 2696}
c1e756bf 2697EXPORT_SYMBOL(netif_skb_features);
58e998c6 2698
2ea25513 2699static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2700 struct netdev_queue *txq, bool more)
f6a78bfc 2701{
2ea25513
DM
2702 unsigned int len;
2703 int rc;
00829823 2704
7866a621 2705 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2706 dev_queue_xmit_nit(skb, dev);
fc741216 2707
2ea25513
DM
2708 len = skb->len;
2709 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2710 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2711 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2712
2ea25513
DM
2713 return rc;
2714}
7b9c6090 2715
8dcda22a
DM
2716struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2717 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2718{
2719 struct sk_buff *skb = first;
2720 int rc = NETDEV_TX_OK;
7b9c6090 2721
7f2e870f
DM
2722 while (skb) {
2723 struct sk_buff *next = skb->next;
fc70fb64 2724
7f2e870f 2725 skb->next = NULL;
95f6b3dd 2726 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2727 if (unlikely(!dev_xmit_complete(rc))) {
2728 skb->next = next;
2729 goto out;
2730 }
6afff0ca 2731
7f2e870f
DM
2732 skb = next;
2733 if (netif_xmit_stopped(txq) && skb) {
2734 rc = NETDEV_TX_BUSY;
2735 break;
9ccb8975 2736 }
7f2e870f 2737 }
9ccb8975 2738
7f2e870f
DM
2739out:
2740 *ret = rc;
2741 return skb;
2742}
b40863c6 2743
1ff0dc94
ED
2744static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2745 netdev_features_t features)
f6a78bfc 2746{
df8a39de 2747 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2748 !vlan_hw_offload_capable(features, skb->vlan_proto))
2749 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2750 return skb;
2751}
f6a78bfc 2752
55a93b3e 2753static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2754{
2755 netdev_features_t features;
f6a78bfc 2756
eae3f88e
DM
2757 if (skb->next)
2758 return skb;
068a2de5 2759
eae3f88e
DM
2760 features = netif_skb_features(skb);
2761 skb = validate_xmit_vlan(skb, features);
2762 if (unlikely(!skb))
2763 goto out_null;
7b9c6090 2764
8b86a61d 2765 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2766 struct sk_buff *segs;
2767
2768 segs = skb_gso_segment(skb, features);
cecda693 2769 if (IS_ERR(segs)) {
af6dabc9 2770 goto out_kfree_skb;
cecda693
JW
2771 } else if (segs) {
2772 consume_skb(skb);
2773 skb = segs;
f6a78bfc 2774 }
eae3f88e
DM
2775 } else {
2776 if (skb_needs_linearize(skb, features) &&
2777 __skb_linearize(skb))
2778 goto out_kfree_skb;
4ec93edb 2779
eae3f88e
DM
2780 /* If packet is not checksummed and device does not
2781 * support checksumming for this protocol, complete
2782 * checksumming here.
2783 */
2784 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2785 if (skb->encapsulation)
2786 skb_set_inner_transport_header(skb,
2787 skb_checksum_start_offset(skb));
2788 else
2789 skb_set_transport_header(skb,
2790 skb_checksum_start_offset(skb));
2791 if (!(features & NETIF_F_ALL_CSUM) &&
2792 skb_checksum_help(skb))
2793 goto out_kfree_skb;
7b9c6090 2794 }
0c772159 2795 }
7b9c6090 2796
eae3f88e 2797 return skb;
fc70fb64 2798
f6a78bfc
HX
2799out_kfree_skb:
2800 kfree_skb(skb);
eae3f88e
DM
2801out_null:
2802 return NULL;
2803}
6afff0ca 2804
55a93b3e
ED
2805struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2806{
2807 struct sk_buff *next, *head = NULL, *tail;
2808
bec3cfdc 2809 for (; skb != NULL; skb = next) {
55a93b3e
ED
2810 next = skb->next;
2811 skb->next = NULL;
bec3cfdc
ED
2812
2813 /* in case skb wont be segmented, point to itself */
2814 skb->prev = skb;
2815
55a93b3e 2816 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2817 if (!skb)
2818 continue;
55a93b3e 2819
bec3cfdc
ED
2820 if (!head)
2821 head = skb;
2822 else
2823 tail->next = skb;
2824 /* If skb was segmented, skb->prev points to
2825 * the last segment. If not, it still contains skb.
2826 */
2827 tail = skb->prev;
55a93b3e
ED
2828 }
2829 return head;
f6a78bfc
HX
2830}
2831
1def9238
ED
2832static void qdisc_pkt_len_init(struct sk_buff *skb)
2833{
2834 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2835
2836 qdisc_skb_cb(skb)->pkt_len = skb->len;
2837
2838 /* To get more precise estimation of bytes sent on wire,
2839 * we add to pkt_len the headers size of all segments
2840 */
2841 if (shinfo->gso_size) {
757b8b1d 2842 unsigned int hdr_len;
15e5a030 2843 u16 gso_segs = shinfo->gso_segs;
1def9238 2844
757b8b1d
ED
2845 /* mac layer + network layer */
2846 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2847
2848 /* + transport layer */
1def9238
ED
2849 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2850 hdr_len += tcp_hdrlen(skb);
2851 else
2852 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2853
2854 if (shinfo->gso_type & SKB_GSO_DODGY)
2855 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2856 shinfo->gso_size);
2857
2858 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2859 }
2860}
2861
bbd8a0d3
KK
2862static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2863 struct net_device *dev,
2864 struct netdev_queue *txq)
2865{
2866 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2867 bool contended;
bbd8a0d3
KK
2868 int rc;
2869
1def9238 2870 qdisc_pkt_len_init(skb);
a2da570d 2871 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2872 /*
2873 * Heuristic to force contended enqueues to serialize on a
2874 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2875 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2876 * often and dequeue packets faster.
79640a4c 2877 */
a2da570d 2878 contended = qdisc_is_running(q);
79640a4c
ED
2879 if (unlikely(contended))
2880 spin_lock(&q->busylock);
2881
bbd8a0d3
KK
2882 spin_lock(root_lock);
2883 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2884 kfree_skb(skb);
2885 rc = NET_XMIT_DROP;
2886 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2887 qdisc_run_begin(q)) {
bbd8a0d3
KK
2888 /*
2889 * This is a work-conserving queue; there are no old skbs
2890 * waiting to be sent out; and the qdisc is not running -
2891 * xmit the skb directly.
2892 */
bfe0d029 2893
bfe0d029
ED
2894 qdisc_bstats_update(q, skb);
2895
55a93b3e 2896 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
2897 if (unlikely(contended)) {
2898 spin_unlock(&q->busylock);
2899 contended = false;
2900 }
bbd8a0d3 2901 __qdisc_run(q);
79640a4c 2902 } else
bc135b23 2903 qdisc_run_end(q);
bbd8a0d3
KK
2904
2905 rc = NET_XMIT_SUCCESS;
2906 } else {
a2da570d 2907 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2908 if (qdisc_run_begin(q)) {
2909 if (unlikely(contended)) {
2910 spin_unlock(&q->busylock);
2911 contended = false;
2912 }
2913 __qdisc_run(q);
2914 }
bbd8a0d3
KK
2915 }
2916 spin_unlock(root_lock);
79640a4c
ED
2917 if (unlikely(contended))
2918 spin_unlock(&q->busylock);
bbd8a0d3
KK
2919 return rc;
2920}
2921
86f8515f 2922#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2923static void skb_update_prio(struct sk_buff *skb)
2924{
6977a79d 2925 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2926
91c68ce2
ED
2927 if (!skb->priority && skb->sk && map) {
2928 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2929
2930 if (prioidx < map->priomap_len)
2931 skb->priority = map->priomap[prioidx];
2932 }
5bc1421e
NH
2933}
2934#else
2935#define skb_update_prio(skb)
2936#endif
2937
f60e5990 2938DEFINE_PER_CPU(int, xmit_recursion);
2939EXPORT_SYMBOL(xmit_recursion);
2940
11a766ce 2941#define RECURSION_LIMIT 10
745e20f1 2942
95603e22
MM
2943/**
2944 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
2945 * @net: network namespace this loopback is happening in
2946 * @sk: sk needed to be a netfilter okfn
95603e22
MM
2947 * @skb: buffer to transmit
2948 */
0c4b51f0 2949int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
2950{
2951 skb_reset_mac_header(skb);
2952 __skb_pull(skb, skb_network_offset(skb));
2953 skb->pkt_type = PACKET_LOOPBACK;
2954 skb->ip_summed = CHECKSUM_UNNECESSARY;
2955 WARN_ON(!skb_dst(skb));
2956 skb_dst_force(skb);
2957 netif_rx_ni(skb);
2958 return 0;
2959}
2960EXPORT_SYMBOL(dev_loopback_xmit);
2961
638b2a69
JP
2962static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2963{
2964#ifdef CONFIG_XPS
2965 struct xps_dev_maps *dev_maps;
2966 struct xps_map *map;
2967 int queue_index = -1;
2968
2969 rcu_read_lock();
2970 dev_maps = rcu_dereference(dev->xps_maps);
2971 if (dev_maps) {
2972 map = rcu_dereference(
2973 dev_maps->cpu_map[skb->sender_cpu - 1]);
2974 if (map) {
2975 if (map->len == 1)
2976 queue_index = map->queues[0];
2977 else
2978 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2979 map->len)];
2980 if (unlikely(queue_index >= dev->real_num_tx_queues))
2981 queue_index = -1;
2982 }
2983 }
2984 rcu_read_unlock();
2985
2986 return queue_index;
2987#else
2988 return -1;
2989#endif
2990}
2991
2992static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2993{
2994 struct sock *sk = skb->sk;
2995 int queue_index = sk_tx_queue_get(sk);
2996
2997 if (queue_index < 0 || skb->ooo_okay ||
2998 queue_index >= dev->real_num_tx_queues) {
2999 int new_index = get_xps_queue(dev, skb);
3000 if (new_index < 0)
3001 new_index = skb_tx_hash(dev, skb);
3002
3003 if (queue_index != new_index && sk &&
004a5d01 3004 sk_fullsock(sk) &&
638b2a69
JP
3005 rcu_access_pointer(sk->sk_dst_cache))
3006 sk_tx_queue_set(sk, new_index);
3007
3008 queue_index = new_index;
3009 }
3010
3011 return queue_index;
3012}
3013
3014struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3015 struct sk_buff *skb,
3016 void *accel_priv)
3017{
3018 int queue_index = 0;
3019
3020#ifdef CONFIG_XPS
3021 if (skb->sender_cpu == 0)
3022 skb->sender_cpu = raw_smp_processor_id() + 1;
3023#endif
3024
3025 if (dev->real_num_tx_queues != 1) {
3026 const struct net_device_ops *ops = dev->netdev_ops;
3027 if (ops->ndo_select_queue)
3028 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3029 __netdev_pick_tx);
3030 else
3031 queue_index = __netdev_pick_tx(dev, skb);
3032
3033 if (!accel_priv)
3034 queue_index = netdev_cap_txqueue(dev, queue_index);
3035 }
3036
3037 skb_set_queue_mapping(skb, queue_index);
3038 return netdev_get_tx_queue(dev, queue_index);
3039}
3040
d29f749e 3041/**
9d08dd3d 3042 * __dev_queue_xmit - transmit a buffer
d29f749e 3043 * @skb: buffer to transmit
9d08dd3d 3044 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3045 *
3046 * Queue a buffer for transmission to a network device. The caller must
3047 * have set the device and priority and built the buffer before calling
3048 * this function. The function can be called from an interrupt.
3049 *
3050 * A negative errno code is returned on a failure. A success does not
3051 * guarantee the frame will be transmitted as it may be dropped due
3052 * to congestion or traffic shaping.
3053 *
3054 * -----------------------------------------------------------------------------------
3055 * I notice this method can also return errors from the queue disciplines,
3056 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3057 * be positive.
3058 *
3059 * Regardless of the return value, the skb is consumed, so it is currently
3060 * difficult to retry a send to this method. (You can bump the ref count
3061 * before sending to hold a reference for retry if you are careful.)
3062 *
3063 * When calling this method, interrupts MUST be enabled. This is because
3064 * the BH enable code must have IRQs enabled so that it will not deadlock.
3065 * --BLG
3066 */
0a59f3a9 3067static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3068{
3069 struct net_device *dev = skb->dev;
dc2b4847 3070 struct netdev_queue *txq;
1da177e4
LT
3071 struct Qdisc *q;
3072 int rc = -ENOMEM;
3073
6d1ccff6
ED
3074 skb_reset_mac_header(skb);
3075
e7fd2885
WB
3076 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3077 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3078
4ec93edb
YH
3079 /* Disable soft irqs for various locks below. Also
3080 * stops preemption for RCU.
1da177e4 3081 */
4ec93edb 3082 rcu_read_lock_bh();
1da177e4 3083
5bc1421e
NH
3084 skb_update_prio(skb);
3085
02875878
ED
3086 /* If device/qdisc don't need skb->dst, release it right now while
3087 * its hot in this cpu cache.
3088 */
3089 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3090 skb_dst_drop(skb);
3091 else
3092 skb_dst_force(skb);
3093
0c4f691f
SF
3094#ifdef CONFIG_NET_SWITCHDEV
3095 /* Don't forward if offload device already forwarded */
3096 if (skb->offload_fwd_mark &&
3097 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3098 consume_skb(skb);
3099 rc = NET_XMIT_SUCCESS;
3100 goto out;
3101 }
3102#endif
3103
f663dd9a 3104 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3105 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3106
1da177e4 3107#ifdef CONFIG_NET_CLS_ACT
d1b19dff 3108 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 3109#endif
cf66ba58 3110 trace_net_dev_queue(skb);
1da177e4 3111 if (q->enqueue) {
bbd8a0d3 3112 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3113 goto out;
1da177e4
LT
3114 }
3115
3116 /* The device has no queue. Common case for software devices:
3117 loopback, all the sorts of tunnels...
3118
932ff279
HX
3119 Really, it is unlikely that netif_tx_lock protection is necessary
3120 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3121 counters.)
3122 However, it is possible, that they rely on protection
3123 made by us here.
3124
3125 Check this and shot the lock. It is not prone from deadlocks.
3126 Either shot noqueue qdisc, it is even simpler 8)
3127 */
3128 if (dev->flags & IFF_UP) {
3129 int cpu = smp_processor_id(); /* ok because BHs are off */
3130
c773e847 3131 if (txq->xmit_lock_owner != cpu) {
1da177e4 3132
745e20f1
ED
3133 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3134 goto recursion_alert;
3135
1f59533f
JDB
3136 skb = validate_xmit_skb(skb, dev);
3137 if (!skb)
3138 goto drop;
3139
c773e847 3140 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3141
73466498 3142 if (!netif_xmit_stopped(txq)) {
745e20f1 3143 __this_cpu_inc(xmit_recursion);
ce93718f 3144 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3145 __this_cpu_dec(xmit_recursion);
572a9d7b 3146 if (dev_xmit_complete(rc)) {
c773e847 3147 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3148 goto out;
3149 }
3150 }
c773e847 3151 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3152 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3153 dev->name);
1da177e4
LT
3154 } else {
3155 /* Recursion is detected! It is possible,
745e20f1
ED
3156 * unfortunately
3157 */
3158recursion_alert:
e87cc472
JP
3159 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3160 dev->name);
1da177e4
LT
3161 }
3162 }
3163
3164 rc = -ENETDOWN;
1f59533f 3165drop:
d4828d85 3166 rcu_read_unlock_bh();
1da177e4 3167
015f0688 3168 atomic_long_inc(&dev->tx_dropped);
1f59533f 3169 kfree_skb_list(skb);
1da177e4
LT
3170 return rc;
3171out:
d4828d85 3172 rcu_read_unlock_bh();
1da177e4
LT
3173 return rc;
3174}
f663dd9a 3175
2b4aa3ce 3176int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3177{
3178 return __dev_queue_xmit(skb, NULL);
3179}
2b4aa3ce 3180EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3181
f663dd9a
JW
3182int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3183{
3184 return __dev_queue_xmit(skb, accel_priv);
3185}
3186EXPORT_SYMBOL(dev_queue_xmit_accel);
3187
1da177e4
LT
3188
3189/*=======================================================================
3190 Receiver routines
3191 =======================================================================*/
3192
6b2bedc3 3193int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3194EXPORT_SYMBOL(netdev_max_backlog);
3195
3b098e2d 3196int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3197int netdev_budget __read_mostly = 300;
3198int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3199
eecfd7c4
ED
3200/* Called with irq disabled */
3201static inline void ____napi_schedule(struct softnet_data *sd,
3202 struct napi_struct *napi)
3203{
3204 list_add_tail(&napi->poll_list, &sd->poll_list);
3205 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3206}
3207
bfb564e7
KK
3208#ifdef CONFIG_RPS
3209
3210/* One global table that all flow-based protocols share. */
6e3f7faf 3211struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3212EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3213u32 rps_cpu_mask __read_mostly;
3214EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3215
c5905afb 3216struct static_key rps_needed __read_mostly;
adc9300e 3217
c445477d
BH
3218static struct rps_dev_flow *
3219set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3220 struct rps_dev_flow *rflow, u16 next_cpu)
3221{
a31196b0 3222 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3223#ifdef CONFIG_RFS_ACCEL
3224 struct netdev_rx_queue *rxqueue;
3225 struct rps_dev_flow_table *flow_table;
3226 struct rps_dev_flow *old_rflow;
3227 u32 flow_id;
3228 u16 rxq_index;
3229 int rc;
3230
3231 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3232 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3233 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3234 goto out;
3235 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3236 if (rxq_index == skb_get_rx_queue(skb))
3237 goto out;
3238
3239 rxqueue = dev->_rx + rxq_index;
3240 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3241 if (!flow_table)
3242 goto out;
61b905da 3243 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3244 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3245 rxq_index, flow_id);
3246 if (rc < 0)
3247 goto out;
3248 old_rflow = rflow;
3249 rflow = &flow_table->flows[flow_id];
c445477d
BH
3250 rflow->filter = rc;
3251 if (old_rflow->filter == rflow->filter)
3252 old_rflow->filter = RPS_NO_FILTER;
3253 out:
3254#endif
3255 rflow->last_qtail =
09994d1b 3256 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3257 }
3258
09994d1b 3259 rflow->cpu = next_cpu;
c445477d
BH
3260 return rflow;
3261}
3262
bfb564e7
KK
3263/*
3264 * get_rps_cpu is called from netif_receive_skb and returns the target
3265 * CPU from the RPS map of the receiving queue for a given skb.
3266 * rcu_read_lock must be held on entry.
3267 */
3268static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3269 struct rps_dev_flow **rflowp)
3270{
567e4b79
ED
3271 const struct rps_sock_flow_table *sock_flow_table;
3272 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3273 struct rps_dev_flow_table *flow_table;
567e4b79 3274 struct rps_map *map;
bfb564e7 3275 int cpu = -1;
567e4b79 3276 u32 tcpu;
61b905da 3277 u32 hash;
bfb564e7
KK
3278
3279 if (skb_rx_queue_recorded(skb)) {
3280 u16 index = skb_get_rx_queue(skb);
567e4b79 3281
62fe0b40
BH
3282 if (unlikely(index >= dev->real_num_rx_queues)) {
3283 WARN_ONCE(dev->real_num_rx_queues > 1,
3284 "%s received packet on queue %u, but number "
3285 "of RX queues is %u\n",
3286 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3287 goto done;
3288 }
567e4b79
ED
3289 rxqueue += index;
3290 }
bfb564e7 3291
567e4b79
ED
3292 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3293
3294 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3295 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3296 if (!flow_table && !map)
bfb564e7
KK
3297 goto done;
3298
2d47b459 3299 skb_reset_network_header(skb);
61b905da
TH
3300 hash = skb_get_hash(skb);
3301 if (!hash)
bfb564e7
KK
3302 goto done;
3303
fec5e652
TH
3304 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3305 if (flow_table && sock_flow_table) {
fec5e652 3306 struct rps_dev_flow *rflow;
567e4b79
ED
3307 u32 next_cpu;
3308 u32 ident;
3309
3310 /* First check into global flow table if there is a match */
3311 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3312 if ((ident ^ hash) & ~rps_cpu_mask)
3313 goto try_rps;
fec5e652 3314
567e4b79
ED
3315 next_cpu = ident & rps_cpu_mask;
3316
3317 /* OK, now we know there is a match,
3318 * we can look at the local (per receive queue) flow table
3319 */
61b905da 3320 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3321 tcpu = rflow->cpu;
3322
fec5e652
TH
3323 /*
3324 * If the desired CPU (where last recvmsg was done) is
3325 * different from current CPU (one in the rx-queue flow
3326 * table entry), switch if one of the following holds:
a31196b0 3327 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3328 * - Current CPU is offline.
3329 * - The current CPU's queue tail has advanced beyond the
3330 * last packet that was enqueued using this table entry.
3331 * This guarantees that all previous packets for the flow
3332 * have been dequeued, thus preserving in order delivery.
3333 */
3334 if (unlikely(tcpu != next_cpu) &&
a31196b0 3335 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3336 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3337 rflow->last_qtail)) >= 0)) {
3338 tcpu = next_cpu;
c445477d 3339 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3340 }
c445477d 3341
a31196b0 3342 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3343 *rflowp = rflow;
3344 cpu = tcpu;
3345 goto done;
3346 }
3347 }
3348
567e4b79
ED
3349try_rps:
3350
0a9627f2 3351 if (map) {
8fc54f68 3352 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3353 if (cpu_online(tcpu)) {
3354 cpu = tcpu;
3355 goto done;
3356 }
3357 }
3358
3359done:
0a9627f2
TH
3360 return cpu;
3361}
3362
c445477d
BH
3363#ifdef CONFIG_RFS_ACCEL
3364
3365/**
3366 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3367 * @dev: Device on which the filter was set
3368 * @rxq_index: RX queue index
3369 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3370 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3371 *
3372 * Drivers that implement ndo_rx_flow_steer() should periodically call
3373 * this function for each installed filter and remove the filters for
3374 * which it returns %true.
3375 */
3376bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3377 u32 flow_id, u16 filter_id)
3378{
3379 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3380 struct rps_dev_flow_table *flow_table;
3381 struct rps_dev_flow *rflow;
3382 bool expire = true;
a31196b0 3383 unsigned int cpu;
c445477d
BH
3384
3385 rcu_read_lock();
3386 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3387 if (flow_table && flow_id <= flow_table->mask) {
3388 rflow = &flow_table->flows[flow_id];
3389 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3390 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3391 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3392 rflow->last_qtail) <
3393 (int)(10 * flow_table->mask)))
3394 expire = false;
3395 }
3396 rcu_read_unlock();
3397 return expire;
3398}
3399EXPORT_SYMBOL(rps_may_expire_flow);
3400
3401#endif /* CONFIG_RFS_ACCEL */
3402
0a9627f2 3403/* Called from hardirq (IPI) context */
e36fa2f7 3404static void rps_trigger_softirq(void *data)
0a9627f2 3405{
e36fa2f7
ED
3406 struct softnet_data *sd = data;
3407
eecfd7c4 3408 ____napi_schedule(sd, &sd->backlog);
dee42870 3409 sd->received_rps++;
0a9627f2 3410}
e36fa2f7 3411
fec5e652 3412#endif /* CONFIG_RPS */
0a9627f2 3413
e36fa2f7
ED
3414/*
3415 * Check if this softnet_data structure is another cpu one
3416 * If yes, queue it to our IPI list and return 1
3417 * If no, return 0
3418 */
3419static int rps_ipi_queued(struct softnet_data *sd)
3420{
3421#ifdef CONFIG_RPS
903ceff7 3422 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3423
3424 if (sd != mysd) {
3425 sd->rps_ipi_next = mysd->rps_ipi_list;
3426 mysd->rps_ipi_list = sd;
3427
3428 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3429 return 1;
3430 }
3431#endif /* CONFIG_RPS */
3432 return 0;
3433}
3434
99bbc707
WB
3435#ifdef CONFIG_NET_FLOW_LIMIT
3436int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3437#endif
3438
3439static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3440{
3441#ifdef CONFIG_NET_FLOW_LIMIT
3442 struct sd_flow_limit *fl;
3443 struct softnet_data *sd;
3444 unsigned int old_flow, new_flow;
3445
3446 if (qlen < (netdev_max_backlog >> 1))
3447 return false;
3448
903ceff7 3449 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3450
3451 rcu_read_lock();
3452 fl = rcu_dereference(sd->flow_limit);
3453 if (fl) {
3958afa1 3454 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3455 old_flow = fl->history[fl->history_head];
3456 fl->history[fl->history_head] = new_flow;
3457
3458 fl->history_head++;
3459 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3460
3461 if (likely(fl->buckets[old_flow]))
3462 fl->buckets[old_flow]--;
3463
3464 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3465 fl->count++;
3466 rcu_read_unlock();
3467 return true;
3468 }
3469 }
3470 rcu_read_unlock();
3471#endif
3472 return false;
3473}
3474
0a9627f2
TH
3475/*
3476 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3477 * queue (may be a remote CPU queue).
3478 */
fec5e652
TH
3479static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3480 unsigned int *qtail)
0a9627f2 3481{
e36fa2f7 3482 struct softnet_data *sd;
0a9627f2 3483 unsigned long flags;
99bbc707 3484 unsigned int qlen;
0a9627f2 3485
e36fa2f7 3486 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3487
3488 local_irq_save(flags);
0a9627f2 3489
e36fa2f7 3490 rps_lock(sd);
e9e4dd32
JA
3491 if (!netif_running(skb->dev))
3492 goto drop;
99bbc707
WB
3493 qlen = skb_queue_len(&sd->input_pkt_queue);
3494 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3495 if (qlen) {
0a9627f2 3496enqueue:
e36fa2f7 3497 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3498 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3499 rps_unlock(sd);
152102c7 3500 local_irq_restore(flags);
0a9627f2
TH
3501 return NET_RX_SUCCESS;
3502 }
3503
ebda37c2
ED
3504 /* Schedule NAPI for backlog device
3505 * We can use non atomic operation since we own the queue lock
3506 */
3507 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3508 if (!rps_ipi_queued(sd))
eecfd7c4 3509 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3510 }
3511 goto enqueue;
3512 }
3513
e9e4dd32 3514drop:
dee42870 3515 sd->dropped++;
e36fa2f7 3516 rps_unlock(sd);
0a9627f2 3517
0a9627f2
TH
3518 local_irq_restore(flags);
3519
caf586e5 3520 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3521 kfree_skb(skb);
3522 return NET_RX_DROP;
3523}
1da177e4 3524
ae78dbfa 3525static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3526{
b0e28f1e 3527 int ret;
1da177e4 3528
588f0330 3529 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3530
cf66ba58 3531 trace_netif_rx(skb);
df334545 3532#ifdef CONFIG_RPS
c5905afb 3533 if (static_key_false(&rps_needed)) {
fec5e652 3534 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3535 int cpu;
3536
cece1945 3537 preempt_disable();
b0e28f1e 3538 rcu_read_lock();
fec5e652
TH
3539
3540 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3541 if (cpu < 0)
3542 cpu = smp_processor_id();
fec5e652
TH
3543
3544 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3545
b0e28f1e 3546 rcu_read_unlock();
cece1945 3547 preempt_enable();
adc9300e
ED
3548 } else
3549#endif
fec5e652
TH
3550 {
3551 unsigned int qtail;
3552 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3553 put_cpu();
3554 }
b0e28f1e 3555 return ret;
1da177e4 3556}
ae78dbfa
BH
3557
3558/**
3559 * netif_rx - post buffer to the network code
3560 * @skb: buffer to post
3561 *
3562 * This function receives a packet from a device driver and queues it for
3563 * the upper (protocol) levels to process. It always succeeds. The buffer
3564 * may be dropped during processing for congestion control or by the
3565 * protocol layers.
3566 *
3567 * return values:
3568 * NET_RX_SUCCESS (no congestion)
3569 * NET_RX_DROP (packet was dropped)
3570 *
3571 */
3572
3573int netif_rx(struct sk_buff *skb)
3574{
3575 trace_netif_rx_entry(skb);
3576
3577 return netif_rx_internal(skb);
3578}
d1b19dff 3579EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3580
3581int netif_rx_ni(struct sk_buff *skb)
3582{
3583 int err;
3584
ae78dbfa
BH
3585 trace_netif_rx_ni_entry(skb);
3586
1da177e4 3587 preempt_disable();
ae78dbfa 3588 err = netif_rx_internal(skb);
1da177e4
LT
3589 if (local_softirq_pending())
3590 do_softirq();
3591 preempt_enable();
3592
3593 return err;
3594}
1da177e4
LT
3595EXPORT_SYMBOL(netif_rx_ni);
3596
1da177e4
LT
3597static void net_tx_action(struct softirq_action *h)
3598{
903ceff7 3599 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3600
3601 if (sd->completion_queue) {
3602 struct sk_buff *clist;
3603
3604 local_irq_disable();
3605 clist = sd->completion_queue;
3606 sd->completion_queue = NULL;
3607 local_irq_enable();
3608
3609 while (clist) {
3610 struct sk_buff *skb = clist;
3611 clist = clist->next;
3612
547b792c 3613 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3614 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3615 trace_consume_skb(skb);
3616 else
3617 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3618 __kfree_skb(skb);
3619 }
3620 }
3621
3622 if (sd->output_queue) {
37437bb2 3623 struct Qdisc *head;
1da177e4
LT
3624
3625 local_irq_disable();
3626 head = sd->output_queue;
3627 sd->output_queue = NULL;
a9cbd588 3628 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3629 local_irq_enable();
3630
3631 while (head) {
37437bb2
DM
3632 struct Qdisc *q = head;
3633 spinlock_t *root_lock;
3634
1da177e4
LT
3635 head = head->next_sched;
3636
5fb66229 3637 root_lock = qdisc_lock(q);
37437bb2 3638 if (spin_trylock(root_lock)) {
4e857c58 3639 smp_mb__before_atomic();
def82a1d
JP
3640 clear_bit(__QDISC_STATE_SCHED,
3641 &q->state);
37437bb2
DM
3642 qdisc_run(q);
3643 spin_unlock(root_lock);
1da177e4 3644 } else {
195648bb 3645 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3646 &q->state)) {
195648bb 3647 __netif_reschedule(q);
e8a83e10 3648 } else {
4e857c58 3649 smp_mb__before_atomic();
e8a83e10
JP
3650 clear_bit(__QDISC_STATE_SCHED,
3651 &q->state);
3652 }
1da177e4
LT
3653 }
3654 }
3655 }
3656}
3657
ab95bfe0
JP
3658#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3659 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3660/* This hook is defined here for ATM LANE */
3661int (*br_fdb_test_addr_hook)(struct net_device *dev,
3662 unsigned char *addr) __read_mostly;
4fb019a0 3663EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3664#endif
1da177e4 3665
f697c3e8
HX
3666static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3667 struct packet_type **pt_prev,
3668 int *ret, struct net_device *orig_dev)
3669{
e7582bab 3670#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3671 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3672 struct tcf_result cl_res;
24824a09 3673
c9e99fd0
DB
3674 /* If there's at least one ingress present somewhere (so
3675 * we get here via enabled static key), remaining devices
3676 * that are not configured with an ingress qdisc will bail
d2788d34 3677 * out here.
c9e99fd0 3678 */
d2788d34 3679 if (!cl)
4577139b 3680 return skb;
f697c3e8
HX
3681 if (*pt_prev) {
3682 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3683 *pt_prev = NULL;
1da177e4
LT
3684 }
3685
3365495c 3686 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3687 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3688 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3689
3b3ae880 3690 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3691 case TC_ACT_OK:
3692 case TC_ACT_RECLASSIFY:
3693 skb->tc_index = TC_H_MIN(cl_res.classid);
3694 break;
3695 case TC_ACT_SHOT:
24ea591d 3696 qdisc_qstats_cpu_drop(cl->q);
d2788d34
DB
3697 case TC_ACT_STOLEN:
3698 case TC_ACT_QUEUED:
3699 kfree_skb(skb);
3700 return NULL;
27b29f63
AS
3701 case TC_ACT_REDIRECT:
3702 /* skb_mac_header check was done by cls/act_bpf, so
3703 * we can safely push the L2 header back before
3704 * redirecting to another netdev
3705 */
3706 __skb_push(skb, skb->mac_len);
3707 skb_do_redirect(skb);
3708 return NULL;
d2788d34
DB
3709 default:
3710 break;
f697c3e8 3711 }
e7582bab 3712#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3713 return skb;
3714}
1da177e4 3715
ab95bfe0
JP
3716/**
3717 * netdev_rx_handler_register - register receive handler
3718 * @dev: device to register a handler for
3719 * @rx_handler: receive handler to register
93e2c32b 3720 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3721 *
e227867f 3722 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3723 * called from __netif_receive_skb. A negative errno code is returned
3724 * on a failure.
3725 *
3726 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3727 *
3728 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3729 */
3730int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3731 rx_handler_func_t *rx_handler,
3732 void *rx_handler_data)
ab95bfe0
JP
3733{
3734 ASSERT_RTNL();
3735
3736 if (dev->rx_handler)
3737 return -EBUSY;
3738
00cfec37 3739 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3740 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3741 rcu_assign_pointer(dev->rx_handler, rx_handler);
3742
3743 return 0;
3744}
3745EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3746
3747/**
3748 * netdev_rx_handler_unregister - unregister receive handler
3749 * @dev: device to unregister a handler from
3750 *
166ec369 3751 * Unregister a receive handler from a device.
ab95bfe0
JP
3752 *
3753 * The caller must hold the rtnl_mutex.
3754 */
3755void netdev_rx_handler_unregister(struct net_device *dev)
3756{
3757
3758 ASSERT_RTNL();
a9b3cd7f 3759 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3760 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3761 * section has a guarantee to see a non NULL rx_handler_data
3762 * as well.
3763 */
3764 synchronize_net();
a9b3cd7f 3765 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3766}
3767EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3768
b4b9e355
MG
3769/*
3770 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3771 * the special handling of PFMEMALLOC skbs.
3772 */
3773static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3774{
3775 switch (skb->protocol) {
2b8837ae
JP
3776 case htons(ETH_P_ARP):
3777 case htons(ETH_P_IP):
3778 case htons(ETH_P_IPV6):
3779 case htons(ETH_P_8021Q):
3780 case htons(ETH_P_8021AD):
b4b9e355
MG
3781 return true;
3782 default:
3783 return false;
3784 }
3785}
3786
e687ad60
PN
3787static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3788 int *ret, struct net_device *orig_dev)
3789{
e7582bab 3790#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
3791 if (nf_hook_ingress_active(skb)) {
3792 if (*pt_prev) {
3793 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3794 *pt_prev = NULL;
3795 }
3796
3797 return nf_hook_ingress(skb);
3798 }
e7582bab 3799#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
3800 return 0;
3801}
e687ad60 3802
9754e293 3803static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3804{
3805 struct packet_type *ptype, *pt_prev;
ab95bfe0 3806 rx_handler_func_t *rx_handler;
f2ccd8fa 3807 struct net_device *orig_dev;
8a4eb573 3808 bool deliver_exact = false;
1da177e4 3809 int ret = NET_RX_DROP;
252e3346 3810 __be16 type;
1da177e4 3811
588f0330 3812 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3813
cf66ba58 3814 trace_netif_receive_skb(skb);
9b22ea56 3815
cc9bd5ce 3816 orig_dev = skb->dev;
8f903c70 3817
c1d2bbe1 3818 skb_reset_network_header(skb);
fda55eca
ED
3819 if (!skb_transport_header_was_set(skb))
3820 skb_reset_transport_header(skb);
0b5c9db1 3821 skb_reset_mac_len(skb);
1da177e4
LT
3822
3823 pt_prev = NULL;
3824
63d8ea7f 3825another_round:
b6858177 3826 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3827
3828 __this_cpu_inc(softnet_data.processed);
3829
8ad227ff
PM
3830 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3831 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3832 skb = skb_vlan_untag(skb);
bcc6d479 3833 if (unlikely(!skb))
2c17d27c 3834 goto out;
bcc6d479
JP
3835 }
3836
1da177e4
LT
3837#ifdef CONFIG_NET_CLS_ACT
3838 if (skb->tc_verd & TC_NCLS) {
3839 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3840 goto ncls;
3841 }
3842#endif
3843
9754e293 3844 if (pfmemalloc)
b4b9e355
MG
3845 goto skip_taps;
3846
1da177e4 3847 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
3848 if (pt_prev)
3849 ret = deliver_skb(skb, pt_prev, orig_dev);
3850 pt_prev = ptype;
3851 }
3852
3853 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3854 if (pt_prev)
3855 ret = deliver_skb(skb, pt_prev, orig_dev);
3856 pt_prev = ptype;
1da177e4
LT
3857 }
3858
b4b9e355 3859skip_taps:
1cf51900 3860#ifdef CONFIG_NET_INGRESS
4577139b
DB
3861 if (static_key_false(&ingress_needed)) {
3862 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3863 if (!skb)
2c17d27c 3864 goto out;
e687ad60
PN
3865
3866 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 3867 goto out;
4577139b 3868 }
1cf51900
PN
3869#endif
3870#ifdef CONFIG_NET_CLS_ACT
4577139b 3871 skb->tc_verd = 0;
1da177e4
LT
3872ncls:
3873#endif
9754e293 3874 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3875 goto drop;
3876
df8a39de 3877 if (skb_vlan_tag_present(skb)) {
2425717b
JF
3878 if (pt_prev) {
3879 ret = deliver_skb(skb, pt_prev, orig_dev);
3880 pt_prev = NULL;
3881 }
48cc32d3 3882 if (vlan_do_receive(&skb))
2425717b
JF
3883 goto another_round;
3884 else if (unlikely(!skb))
2c17d27c 3885 goto out;
2425717b
JF
3886 }
3887
48cc32d3 3888 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3889 if (rx_handler) {
3890 if (pt_prev) {
3891 ret = deliver_skb(skb, pt_prev, orig_dev);
3892 pt_prev = NULL;
3893 }
8a4eb573
JP
3894 switch (rx_handler(&skb)) {
3895 case RX_HANDLER_CONSUMED:
3bc1b1ad 3896 ret = NET_RX_SUCCESS;
2c17d27c 3897 goto out;
8a4eb573 3898 case RX_HANDLER_ANOTHER:
63d8ea7f 3899 goto another_round;
8a4eb573
JP
3900 case RX_HANDLER_EXACT:
3901 deliver_exact = true;
3902 case RX_HANDLER_PASS:
3903 break;
3904 default:
3905 BUG();
3906 }
ab95bfe0 3907 }
1da177e4 3908
df8a39de
JP
3909 if (unlikely(skb_vlan_tag_present(skb))) {
3910 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
3911 skb->pkt_type = PACKET_OTHERHOST;
3912 /* Note: we might in the future use prio bits
3913 * and set skb->priority like in vlan_do_receive()
3914 * For the time being, just ignore Priority Code Point
3915 */
3916 skb->vlan_tci = 0;
3917 }
48cc32d3 3918
7866a621
SN
3919 type = skb->protocol;
3920
63d8ea7f 3921 /* deliver only exact match when indicated */
7866a621
SN
3922 if (likely(!deliver_exact)) {
3923 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3924 &ptype_base[ntohs(type) &
3925 PTYPE_HASH_MASK]);
3926 }
1f3c8804 3927
7866a621
SN
3928 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3929 &orig_dev->ptype_specific);
3930
3931 if (unlikely(skb->dev != orig_dev)) {
3932 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3933 &skb->dev->ptype_specific);
1da177e4
LT
3934 }
3935
3936 if (pt_prev) {
1080e512 3937 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3938 goto drop;
1080e512
MT
3939 else
3940 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3941 } else {
b4b9e355 3942drop:
caf586e5 3943 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3944 kfree_skb(skb);
3945 /* Jamal, now you will not able to escape explaining
3946 * me how you were going to use this. :-)
3947 */
3948 ret = NET_RX_DROP;
3949 }
3950
2c17d27c 3951out:
9754e293
DM
3952 return ret;
3953}
3954
3955static int __netif_receive_skb(struct sk_buff *skb)
3956{
3957 int ret;
3958
3959 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3960 unsigned long pflags = current->flags;
3961
3962 /*
3963 * PFMEMALLOC skbs are special, they should
3964 * - be delivered to SOCK_MEMALLOC sockets only
3965 * - stay away from userspace
3966 * - have bounded memory usage
3967 *
3968 * Use PF_MEMALLOC as this saves us from propagating the allocation
3969 * context down to all allocation sites.
3970 */
3971 current->flags |= PF_MEMALLOC;
3972 ret = __netif_receive_skb_core(skb, true);
3973 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3974 } else
3975 ret = __netif_receive_skb_core(skb, false);
3976
1da177e4
LT
3977 return ret;
3978}
0a9627f2 3979
ae78dbfa 3980static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3981{
2c17d27c
JA
3982 int ret;
3983
588f0330 3984 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3985
c1f19b51
RC
3986 if (skb_defer_rx_timestamp(skb))
3987 return NET_RX_SUCCESS;
3988
2c17d27c
JA
3989 rcu_read_lock();
3990
df334545 3991#ifdef CONFIG_RPS
c5905afb 3992 if (static_key_false(&rps_needed)) {
3b098e2d 3993 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 3994 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3995
3b098e2d
ED
3996 if (cpu >= 0) {
3997 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3998 rcu_read_unlock();
adc9300e 3999 return ret;
3b098e2d 4000 }
fec5e652 4001 }
1e94d72f 4002#endif
2c17d27c
JA
4003 ret = __netif_receive_skb(skb);
4004 rcu_read_unlock();
4005 return ret;
0a9627f2 4006}
ae78dbfa
BH
4007
4008/**
4009 * netif_receive_skb - process receive buffer from network
4010 * @skb: buffer to process
4011 *
4012 * netif_receive_skb() is the main receive data processing function.
4013 * It always succeeds. The buffer may be dropped during processing
4014 * for congestion control or by the protocol layers.
4015 *
4016 * This function may only be called from softirq context and interrupts
4017 * should be enabled.
4018 *
4019 * Return values (usually ignored):
4020 * NET_RX_SUCCESS: no congestion
4021 * NET_RX_DROP: packet was dropped
4022 */
04eb4489 4023int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4024{
4025 trace_netif_receive_skb_entry(skb);
4026
4027 return netif_receive_skb_internal(skb);
4028}
04eb4489 4029EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4030
88751275
ED
4031/* Network device is going away, flush any packets still pending
4032 * Called with irqs disabled.
4033 */
152102c7 4034static void flush_backlog(void *arg)
6e583ce5 4035{
152102c7 4036 struct net_device *dev = arg;
903ceff7 4037 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
4038 struct sk_buff *skb, *tmp;
4039
e36fa2f7 4040 rps_lock(sd);
6e7676c1 4041 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 4042 if (skb->dev == dev) {
e36fa2f7 4043 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4044 kfree_skb(skb);
76cc8b13 4045 input_queue_head_incr(sd);
6e583ce5 4046 }
6e7676c1 4047 }
e36fa2f7 4048 rps_unlock(sd);
6e7676c1
CG
4049
4050 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4051 if (skb->dev == dev) {
4052 __skb_unlink(skb, &sd->process_queue);
4053 kfree_skb(skb);
76cc8b13 4054 input_queue_head_incr(sd);
6e7676c1
CG
4055 }
4056 }
6e583ce5
SH
4057}
4058
d565b0a1
HX
4059static int napi_gro_complete(struct sk_buff *skb)
4060{
22061d80 4061 struct packet_offload *ptype;
d565b0a1 4062 __be16 type = skb->protocol;
22061d80 4063 struct list_head *head = &offload_base;
d565b0a1
HX
4064 int err = -ENOENT;
4065
c3c7c254
ED
4066 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4067
fc59f9a3
HX
4068 if (NAPI_GRO_CB(skb)->count == 1) {
4069 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4070 goto out;
fc59f9a3 4071 }
d565b0a1
HX
4072
4073 rcu_read_lock();
4074 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4075 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4076 continue;
4077
299603e8 4078 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4079 break;
4080 }
4081 rcu_read_unlock();
4082
4083 if (err) {
4084 WARN_ON(&ptype->list == head);
4085 kfree_skb(skb);
4086 return NET_RX_SUCCESS;
4087 }
4088
4089out:
ae78dbfa 4090 return netif_receive_skb_internal(skb);
d565b0a1
HX
4091}
4092
2e71a6f8
ED
4093/* napi->gro_list contains packets ordered by age.
4094 * youngest packets at the head of it.
4095 * Complete skbs in reverse order to reduce latencies.
4096 */
4097void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4098{
2e71a6f8 4099 struct sk_buff *skb, *prev = NULL;
d565b0a1 4100
2e71a6f8
ED
4101 /* scan list and build reverse chain */
4102 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4103 skb->prev = prev;
4104 prev = skb;
4105 }
4106
4107 for (skb = prev; skb; skb = prev) {
d565b0a1 4108 skb->next = NULL;
2e71a6f8
ED
4109
4110 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4111 return;
4112
4113 prev = skb->prev;
d565b0a1 4114 napi_gro_complete(skb);
2e71a6f8 4115 napi->gro_count--;
d565b0a1
HX
4116 }
4117
4118 napi->gro_list = NULL;
4119}
86cac58b 4120EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4121
89c5fa33
ED
4122static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4123{
4124 struct sk_buff *p;
4125 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4126 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4127
4128 for (p = napi->gro_list; p; p = p->next) {
4129 unsigned long diffs;
4130
0b4cec8c
TH
4131 NAPI_GRO_CB(p)->flush = 0;
4132
4133 if (hash != skb_get_hash_raw(p)) {
4134 NAPI_GRO_CB(p)->same_flow = 0;
4135 continue;
4136 }
4137
89c5fa33
ED
4138 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4139 diffs |= p->vlan_tci ^ skb->vlan_tci;
4140 if (maclen == ETH_HLEN)
4141 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4142 skb_mac_header(skb));
89c5fa33
ED
4143 else if (!diffs)
4144 diffs = memcmp(skb_mac_header(p),
a50e233c 4145 skb_mac_header(skb),
89c5fa33
ED
4146 maclen);
4147 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4148 }
4149}
4150
299603e8
JC
4151static void skb_gro_reset_offset(struct sk_buff *skb)
4152{
4153 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4154 const skb_frag_t *frag0 = &pinfo->frags[0];
4155
4156 NAPI_GRO_CB(skb)->data_offset = 0;
4157 NAPI_GRO_CB(skb)->frag0 = NULL;
4158 NAPI_GRO_CB(skb)->frag0_len = 0;
4159
4160 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4161 pinfo->nr_frags &&
4162 !PageHighMem(skb_frag_page(frag0))) {
4163 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4164 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4165 }
4166}
4167
a50e233c
ED
4168static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4169{
4170 struct skb_shared_info *pinfo = skb_shinfo(skb);
4171
4172 BUG_ON(skb->end - skb->tail < grow);
4173
4174 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4175
4176 skb->data_len -= grow;
4177 skb->tail += grow;
4178
4179 pinfo->frags[0].page_offset += grow;
4180 skb_frag_size_sub(&pinfo->frags[0], grow);
4181
4182 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4183 skb_frag_unref(skb, 0);
4184 memmove(pinfo->frags, pinfo->frags + 1,
4185 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4186 }
4187}
4188
bb728820 4189static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4190{
4191 struct sk_buff **pp = NULL;
22061d80 4192 struct packet_offload *ptype;
d565b0a1 4193 __be16 type = skb->protocol;
22061d80 4194 struct list_head *head = &offload_base;
0da2afd5 4195 int same_flow;
5b252f0c 4196 enum gro_result ret;
a50e233c 4197 int grow;
d565b0a1 4198
9c62a68d 4199 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4200 goto normal;
4201
5a212329 4202 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4203 goto normal;
4204
89c5fa33
ED
4205 gro_list_prepare(napi, skb);
4206
d565b0a1
HX
4207 rcu_read_lock();
4208 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4209 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4210 continue;
4211
86911732 4212 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4213 skb_reset_mac_len(skb);
d565b0a1
HX
4214 NAPI_GRO_CB(skb)->same_flow = 0;
4215 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4216 NAPI_GRO_CB(skb)->free = 0;
b582ef09 4217 NAPI_GRO_CB(skb)->udp_mark = 0;
15e2396d 4218 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4219
662880f4
TH
4220 /* Setup for GRO checksum validation */
4221 switch (skb->ip_summed) {
4222 case CHECKSUM_COMPLETE:
4223 NAPI_GRO_CB(skb)->csum = skb->csum;
4224 NAPI_GRO_CB(skb)->csum_valid = 1;
4225 NAPI_GRO_CB(skb)->csum_cnt = 0;
4226 break;
4227 case CHECKSUM_UNNECESSARY:
4228 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4229 NAPI_GRO_CB(skb)->csum_valid = 0;
4230 break;
4231 default:
4232 NAPI_GRO_CB(skb)->csum_cnt = 0;
4233 NAPI_GRO_CB(skb)->csum_valid = 0;
4234 }
d565b0a1 4235
f191a1d1 4236 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4237 break;
4238 }
4239 rcu_read_unlock();
4240
4241 if (&ptype->list == head)
4242 goto normal;
4243
0da2afd5 4244 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4245 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4246
d565b0a1
HX
4247 if (pp) {
4248 struct sk_buff *nskb = *pp;
4249
4250 *pp = nskb->next;
4251 nskb->next = NULL;
4252 napi_gro_complete(nskb);
4ae5544f 4253 napi->gro_count--;
d565b0a1
HX
4254 }
4255
0da2afd5 4256 if (same_flow)
d565b0a1
HX
4257 goto ok;
4258
600adc18 4259 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4260 goto normal;
d565b0a1 4261
600adc18
ED
4262 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4263 struct sk_buff *nskb = napi->gro_list;
4264
4265 /* locate the end of the list to select the 'oldest' flow */
4266 while (nskb->next) {
4267 pp = &nskb->next;
4268 nskb = *pp;
4269 }
4270 *pp = NULL;
4271 nskb->next = NULL;
4272 napi_gro_complete(nskb);
4273 } else {
4274 napi->gro_count++;
4275 }
d565b0a1 4276 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4277 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4278 NAPI_GRO_CB(skb)->last = skb;
86911732 4279 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4280 skb->next = napi->gro_list;
4281 napi->gro_list = skb;
5d0d9be8 4282 ret = GRO_HELD;
d565b0a1 4283
ad0f9904 4284pull:
a50e233c
ED
4285 grow = skb_gro_offset(skb) - skb_headlen(skb);
4286 if (grow > 0)
4287 gro_pull_from_frag0(skb, grow);
d565b0a1 4288ok:
5d0d9be8 4289 return ret;
d565b0a1
HX
4290
4291normal:
ad0f9904
HX
4292 ret = GRO_NORMAL;
4293 goto pull;
5d38a079 4294}
96e93eab 4295
bf5a755f
JC
4296struct packet_offload *gro_find_receive_by_type(__be16 type)
4297{
4298 struct list_head *offload_head = &offload_base;
4299 struct packet_offload *ptype;
4300
4301 list_for_each_entry_rcu(ptype, offload_head, list) {
4302 if (ptype->type != type || !ptype->callbacks.gro_receive)
4303 continue;
4304 return ptype;
4305 }
4306 return NULL;
4307}
e27a2f83 4308EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4309
4310struct packet_offload *gro_find_complete_by_type(__be16 type)
4311{
4312 struct list_head *offload_head = &offload_base;
4313 struct packet_offload *ptype;
4314
4315 list_for_each_entry_rcu(ptype, offload_head, list) {
4316 if (ptype->type != type || !ptype->callbacks.gro_complete)
4317 continue;
4318 return ptype;
4319 }
4320 return NULL;
4321}
e27a2f83 4322EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4323
bb728820 4324static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4325{
5d0d9be8
HX
4326 switch (ret) {
4327 case GRO_NORMAL:
ae78dbfa 4328 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4329 ret = GRO_DROP;
4330 break;
5d38a079 4331
5d0d9be8 4332 case GRO_DROP:
5d38a079
HX
4333 kfree_skb(skb);
4334 break;
5b252f0c 4335
daa86548 4336 case GRO_MERGED_FREE:
d7e8883c
ED
4337 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4338 kmem_cache_free(skbuff_head_cache, skb);
4339 else
4340 __kfree_skb(skb);
daa86548
ED
4341 break;
4342
5b252f0c
BH
4343 case GRO_HELD:
4344 case GRO_MERGED:
4345 break;
5d38a079
HX
4346 }
4347
c7c4b3b6 4348 return ret;
5d0d9be8 4349}
5d0d9be8 4350
c7c4b3b6 4351gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4352{
ae78dbfa 4353 trace_napi_gro_receive_entry(skb);
86911732 4354
a50e233c
ED
4355 skb_gro_reset_offset(skb);
4356
89c5fa33 4357 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4358}
4359EXPORT_SYMBOL(napi_gro_receive);
4360
d0c2b0d2 4361static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4362{
93a35f59
ED
4363 if (unlikely(skb->pfmemalloc)) {
4364 consume_skb(skb);
4365 return;
4366 }
96e93eab 4367 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4368 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4369 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4370 skb->vlan_tci = 0;
66c46d74 4371 skb->dev = napi->dev;
6d152e23 4372 skb->skb_iif = 0;
c3caf119
JC
4373 skb->encapsulation = 0;
4374 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4375 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4376
4377 napi->skb = skb;
4378}
96e93eab 4379
76620aaf 4380struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4381{
5d38a079 4382 struct sk_buff *skb = napi->skb;
5d38a079
HX
4383
4384 if (!skb) {
fd11a83d 4385 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
84b9cd63 4386 napi->skb = skb;
80595d59 4387 }
96e93eab
HX
4388 return skb;
4389}
76620aaf 4390EXPORT_SYMBOL(napi_get_frags);
96e93eab 4391
a50e233c
ED
4392static gro_result_t napi_frags_finish(struct napi_struct *napi,
4393 struct sk_buff *skb,
4394 gro_result_t ret)
96e93eab 4395{
5d0d9be8
HX
4396 switch (ret) {
4397 case GRO_NORMAL:
a50e233c
ED
4398 case GRO_HELD:
4399 __skb_push(skb, ETH_HLEN);
4400 skb->protocol = eth_type_trans(skb, skb->dev);
4401 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4402 ret = GRO_DROP;
86911732 4403 break;
5d38a079 4404
5d0d9be8 4405 case GRO_DROP:
5d0d9be8
HX
4406 case GRO_MERGED_FREE:
4407 napi_reuse_skb(napi, skb);
4408 break;
5b252f0c
BH
4409
4410 case GRO_MERGED:
4411 break;
5d0d9be8 4412 }
5d38a079 4413
c7c4b3b6 4414 return ret;
5d38a079 4415}
5d0d9be8 4416
a50e233c
ED
4417/* Upper GRO stack assumes network header starts at gro_offset=0
4418 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4419 * We copy ethernet header into skb->data to have a common layout.
4420 */
4adb9c4a 4421static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4422{
4423 struct sk_buff *skb = napi->skb;
a50e233c
ED
4424 const struct ethhdr *eth;
4425 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4426
4427 napi->skb = NULL;
4428
a50e233c
ED
4429 skb_reset_mac_header(skb);
4430 skb_gro_reset_offset(skb);
4431
4432 eth = skb_gro_header_fast(skb, 0);
4433 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4434 eth = skb_gro_header_slow(skb, hlen, 0);
4435 if (unlikely(!eth)) {
4436 napi_reuse_skb(napi, skb);
4437 return NULL;
4438 }
4439 } else {
4440 gro_pull_from_frag0(skb, hlen);
4441 NAPI_GRO_CB(skb)->frag0 += hlen;
4442 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4443 }
a50e233c
ED
4444 __skb_pull(skb, hlen);
4445
4446 /*
4447 * This works because the only protocols we care about don't require
4448 * special handling.
4449 * We'll fix it up properly in napi_frags_finish()
4450 */
4451 skb->protocol = eth->h_proto;
76620aaf 4452
76620aaf
HX
4453 return skb;
4454}
76620aaf 4455
c7c4b3b6 4456gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4457{
76620aaf 4458 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4459
4460 if (!skb)
c7c4b3b6 4461 return GRO_DROP;
5d0d9be8 4462
ae78dbfa
BH
4463 trace_napi_gro_frags_entry(skb);
4464
89c5fa33 4465 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4466}
5d38a079
HX
4467EXPORT_SYMBOL(napi_gro_frags);
4468
573e8fca
TH
4469/* Compute the checksum from gro_offset and return the folded value
4470 * after adding in any pseudo checksum.
4471 */
4472__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4473{
4474 __wsum wsum;
4475 __sum16 sum;
4476
4477 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4478
4479 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4480 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4481 if (likely(!sum)) {
4482 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4483 !skb->csum_complete_sw)
4484 netdev_rx_csum_fault(skb->dev);
4485 }
4486
4487 NAPI_GRO_CB(skb)->csum = wsum;
4488 NAPI_GRO_CB(skb)->csum_valid = 1;
4489
4490 return sum;
4491}
4492EXPORT_SYMBOL(__skb_gro_checksum_complete);
4493
e326bed2 4494/*
855abcf0 4495 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4496 * Note: called with local irq disabled, but exits with local irq enabled.
4497 */
4498static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4499{
4500#ifdef CONFIG_RPS
4501 struct softnet_data *remsd = sd->rps_ipi_list;
4502
4503 if (remsd) {
4504 sd->rps_ipi_list = NULL;
4505
4506 local_irq_enable();
4507
4508 /* Send pending IPI's to kick RPS processing on remote cpus. */
4509 while (remsd) {
4510 struct softnet_data *next = remsd->rps_ipi_next;
4511
4512 if (cpu_online(remsd->cpu))
c46fff2a 4513 smp_call_function_single_async(remsd->cpu,
fce8ad15 4514 &remsd->csd);
e326bed2
ED
4515 remsd = next;
4516 }
4517 } else
4518#endif
4519 local_irq_enable();
4520}
4521
d75b1ade
ED
4522static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4523{
4524#ifdef CONFIG_RPS
4525 return sd->rps_ipi_list != NULL;
4526#else
4527 return false;
4528#endif
4529}
4530
bea3348e 4531static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4532{
4533 int work = 0;
eecfd7c4 4534 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4535
e326bed2
ED
4536 /* Check if we have pending ipi, its better to send them now,
4537 * not waiting net_rx_action() end.
4538 */
d75b1ade 4539 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4540 local_irq_disable();
4541 net_rps_action_and_irq_enable(sd);
4542 }
d75b1ade 4543
bea3348e 4544 napi->weight = weight_p;
6e7676c1 4545 local_irq_disable();
11ef7a89 4546 while (1) {
1da177e4 4547 struct sk_buff *skb;
6e7676c1
CG
4548
4549 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4550 rcu_read_lock();
6e7676c1
CG
4551 local_irq_enable();
4552 __netif_receive_skb(skb);
2c17d27c 4553 rcu_read_unlock();
6e7676c1 4554 local_irq_disable();
76cc8b13
TH
4555 input_queue_head_incr(sd);
4556 if (++work >= quota) {
4557 local_irq_enable();
4558 return work;
4559 }
6e7676c1 4560 }
1da177e4 4561
e36fa2f7 4562 rps_lock(sd);
11ef7a89 4563 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4564 /*
4565 * Inline a custom version of __napi_complete().
4566 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4567 * and NAPI_STATE_SCHED is the only possible flag set
4568 * on backlog.
4569 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4570 * and we dont need an smp_mb() memory barrier.
4571 */
eecfd7c4 4572 napi->state = 0;
11ef7a89 4573 rps_unlock(sd);
eecfd7c4 4574
11ef7a89 4575 break;
bea3348e 4576 }
11ef7a89
TH
4577
4578 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4579 &sd->process_queue);
e36fa2f7 4580 rps_unlock(sd);
6e7676c1
CG
4581 }
4582 local_irq_enable();
1da177e4 4583
bea3348e
SH
4584 return work;
4585}
1da177e4 4586
bea3348e
SH
4587/**
4588 * __napi_schedule - schedule for receive
c4ea43c5 4589 * @n: entry to schedule
bea3348e 4590 *
bc9ad166
ED
4591 * The entry's receive function will be scheduled to run.
4592 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4593 */
b5606c2d 4594void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4595{
4596 unsigned long flags;
1da177e4 4597
bea3348e 4598 local_irq_save(flags);
903ceff7 4599 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4600 local_irq_restore(flags);
1da177e4 4601}
bea3348e
SH
4602EXPORT_SYMBOL(__napi_schedule);
4603
bc9ad166
ED
4604/**
4605 * __napi_schedule_irqoff - schedule for receive
4606 * @n: entry to schedule
4607 *
4608 * Variant of __napi_schedule() assuming hard irqs are masked
4609 */
4610void __napi_schedule_irqoff(struct napi_struct *n)
4611{
4612 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4613}
4614EXPORT_SYMBOL(__napi_schedule_irqoff);
4615
d565b0a1
HX
4616void __napi_complete(struct napi_struct *n)
4617{
4618 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4619
d75b1ade 4620 list_del_init(&n->poll_list);
4e857c58 4621 smp_mb__before_atomic();
d565b0a1
HX
4622 clear_bit(NAPI_STATE_SCHED, &n->state);
4623}
4624EXPORT_SYMBOL(__napi_complete);
4625
3b47d303 4626void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4627{
4628 unsigned long flags;
4629
4630 /*
4631 * don't let napi dequeue from the cpu poll list
4632 * just in case its running on a different cpu
4633 */
4634 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4635 return;
4636
3b47d303
ED
4637 if (n->gro_list) {
4638 unsigned long timeout = 0;
d75b1ade 4639
3b47d303
ED
4640 if (work_done)
4641 timeout = n->dev->gro_flush_timeout;
4642
4643 if (timeout)
4644 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4645 HRTIMER_MODE_REL_PINNED);
4646 else
4647 napi_gro_flush(n, false);
4648 }
d75b1ade
ED
4649 if (likely(list_empty(&n->poll_list))) {
4650 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4651 } else {
4652 /* If n->poll_list is not empty, we need to mask irqs */
4653 local_irq_save(flags);
4654 __napi_complete(n);
4655 local_irq_restore(flags);
4656 }
d565b0a1 4657}
3b47d303 4658EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4659
af12fa6e
ET
4660/* must be called under rcu_read_lock(), as we dont take a reference */
4661struct napi_struct *napi_by_id(unsigned int napi_id)
4662{
4663 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4664 struct napi_struct *napi;
4665
4666 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4667 if (napi->napi_id == napi_id)
4668 return napi;
4669
4670 return NULL;
4671}
4672EXPORT_SYMBOL_GPL(napi_by_id);
4673
4674void napi_hash_add(struct napi_struct *napi)
4675{
4676 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4677
4678 spin_lock(&napi_hash_lock);
4679
4680 /* 0 is not a valid id, we also skip an id that is taken
4681 * we expect both events to be extremely rare
4682 */
4683 napi->napi_id = 0;
4684 while (!napi->napi_id) {
4685 napi->napi_id = ++napi_gen_id;
4686 if (napi_by_id(napi->napi_id))
4687 napi->napi_id = 0;
4688 }
4689
4690 hlist_add_head_rcu(&napi->napi_hash_node,
4691 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4692
4693 spin_unlock(&napi_hash_lock);
4694 }
4695}
4696EXPORT_SYMBOL_GPL(napi_hash_add);
4697
4698/* Warning : caller is responsible to make sure rcu grace period
4699 * is respected before freeing memory containing @napi
4700 */
4701void napi_hash_del(struct napi_struct *napi)
4702{
4703 spin_lock(&napi_hash_lock);
4704
4705 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4706 hlist_del_rcu(&napi->napi_hash_node);
4707
4708 spin_unlock(&napi_hash_lock);
4709}
4710EXPORT_SYMBOL_GPL(napi_hash_del);
4711
3b47d303
ED
4712static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4713{
4714 struct napi_struct *napi;
4715
4716 napi = container_of(timer, struct napi_struct, timer);
4717 if (napi->gro_list)
4718 napi_schedule(napi);
4719
4720 return HRTIMER_NORESTART;
4721}
4722
d565b0a1
HX
4723void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4724 int (*poll)(struct napi_struct *, int), int weight)
4725{
4726 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
4727 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4728 napi->timer.function = napi_watchdog;
4ae5544f 4729 napi->gro_count = 0;
d565b0a1 4730 napi->gro_list = NULL;
5d38a079 4731 napi->skb = NULL;
d565b0a1 4732 napi->poll = poll;
82dc3c63
ED
4733 if (weight > NAPI_POLL_WEIGHT)
4734 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4735 weight, dev->name);
d565b0a1
HX
4736 napi->weight = weight;
4737 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4738 napi->dev = dev;
5d38a079 4739#ifdef CONFIG_NETPOLL
d565b0a1
HX
4740 spin_lock_init(&napi->poll_lock);
4741 napi->poll_owner = -1;
4742#endif
4743 set_bit(NAPI_STATE_SCHED, &napi->state);
4744}
4745EXPORT_SYMBOL(netif_napi_add);
4746
3b47d303
ED
4747void napi_disable(struct napi_struct *n)
4748{
4749 might_sleep();
4750 set_bit(NAPI_STATE_DISABLE, &n->state);
4751
4752 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4753 msleep(1);
2d8bff12
NH
4754 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4755 msleep(1);
3b47d303
ED
4756
4757 hrtimer_cancel(&n->timer);
4758
4759 clear_bit(NAPI_STATE_DISABLE, &n->state);
4760}
4761EXPORT_SYMBOL(napi_disable);
4762
d565b0a1
HX
4763void netif_napi_del(struct napi_struct *napi)
4764{
d7b06636 4765 list_del_init(&napi->dev_list);
76620aaf 4766 napi_free_frags(napi);
d565b0a1 4767
289dccbe 4768 kfree_skb_list(napi->gro_list);
d565b0a1 4769 napi->gro_list = NULL;
4ae5544f 4770 napi->gro_count = 0;
d565b0a1
HX
4771}
4772EXPORT_SYMBOL(netif_napi_del);
4773
726ce70e
HX
4774static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4775{
4776 void *have;
4777 int work, weight;
4778
4779 list_del_init(&n->poll_list);
4780
4781 have = netpoll_poll_lock(n);
4782
4783 weight = n->weight;
4784
4785 /* This NAPI_STATE_SCHED test is for avoiding a race
4786 * with netpoll's poll_napi(). Only the entity which
4787 * obtains the lock and sees NAPI_STATE_SCHED set will
4788 * actually make the ->poll() call. Therefore we avoid
4789 * accidentally calling ->poll() when NAPI is not scheduled.
4790 */
4791 work = 0;
4792 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4793 work = n->poll(n, weight);
4794 trace_napi_poll(n);
4795 }
4796
4797 WARN_ON_ONCE(work > weight);
4798
4799 if (likely(work < weight))
4800 goto out_unlock;
4801
4802 /* Drivers must not modify the NAPI state if they
4803 * consume the entire weight. In such cases this code
4804 * still "owns" the NAPI instance and therefore can
4805 * move the instance around on the list at-will.
4806 */
4807 if (unlikely(napi_disable_pending(n))) {
4808 napi_complete(n);
4809 goto out_unlock;
4810 }
4811
4812 if (n->gro_list) {
4813 /* flush too old packets
4814 * If HZ < 1000, flush all packets.
4815 */
4816 napi_gro_flush(n, HZ >= 1000);
4817 }
4818
001ce546
HX
4819 /* Some drivers may have called napi_schedule
4820 * prior to exhausting their budget.
4821 */
4822 if (unlikely(!list_empty(&n->poll_list))) {
4823 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4824 n->dev ? n->dev->name : "backlog");
4825 goto out_unlock;
4826 }
4827
726ce70e
HX
4828 list_add_tail(&n->poll_list, repoll);
4829
4830out_unlock:
4831 netpoll_poll_unlock(have);
4832
4833 return work;
4834}
4835
1da177e4
LT
4836static void net_rx_action(struct softirq_action *h)
4837{
903ceff7 4838 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 4839 unsigned long time_limit = jiffies + 2;
51b0bded 4840 int budget = netdev_budget;
d75b1ade
ED
4841 LIST_HEAD(list);
4842 LIST_HEAD(repoll);
53fb95d3 4843
1da177e4 4844 local_irq_disable();
d75b1ade
ED
4845 list_splice_init(&sd->poll_list, &list);
4846 local_irq_enable();
1da177e4 4847
ceb8d5bf 4848 for (;;) {
bea3348e 4849 struct napi_struct *n;
1da177e4 4850
ceb8d5bf
HX
4851 if (list_empty(&list)) {
4852 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4853 return;
4854 break;
4855 }
4856
6bd373eb
HX
4857 n = list_first_entry(&list, struct napi_struct, poll_list);
4858 budget -= napi_poll(n, &repoll);
4859
d75b1ade 4860 /* If softirq window is exhausted then punt.
24f8b238
SH
4861 * Allow this to run for 2 jiffies since which will allow
4862 * an average latency of 1.5/HZ.
bea3348e 4863 */
ceb8d5bf
HX
4864 if (unlikely(budget <= 0 ||
4865 time_after_eq(jiffies, time_limit))) {
4866 sd->time_squeeze++;
4867 break;
4868 }
1da177e4 4869 }
d75b1ade 4870
d75b1ade
ED
4871 local_irq_disable();
4872
4873 list_splice_tail_init(&sd->poll_list, &list);
4874 list_splice_tail(&repoll, &list);
4875 list_splice(&list, &sd->poll_list);
4876 if (!list_empty(&sd->poll_list))
4877 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4878
e326bed2 4879 net_rps_action_and_irq_enable(sd);
1da177e4
LT
4880}
4881
aa9d8560 4882struct netdev_adjacent {
9ff162a8 4883 struct net_device *dev;
5d261913
VF
4884
4885 /* upper master flag, there can only be one master device per list */
9ff162a8 4886 bool master;
5d261913 4887
5d261913
VF
4888 /* counter for the number of times this device was added to us */
4889 u16 ref_nr;
4890
402dae96
VF
4891 /* private field for the users */
4892 void *private;
4893
9ff162a8
JP
4894 struct list_head list;
4895 struct rcu_head rcu;
9ff162a8
JP
4896};
4897
6ea29da1 4898static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 4899 struct list_head *adj_list)
9ff162a8 4900{
5d261913 4901 struct netdev_adjacent *adj;
5d261913 4902
2f268f12 4903 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4904 if (adj->dev == adj_dev)
4905 return adj;
9ff162a8
JP
4906 }
4907 return NULL;
4908}
4909
4910/**
4911 * netdev_has_upper_dev - Check if device is linked to an upper device
4912 * @dev: device
4913 * @upper_dev: upper device to check
4914 *
4915 * Find out if a device is linked to specified upper device and return true
4916 * in case it is. Note that this checks only immediate upper device,
4917 * not through a complete stack of devices. The caller must hold the RTNL lock.
4918 */
4919bool netdev_has_upper_dev(struct net_device *dev,
4920 struct net_device *upper_dev)
4921{
4922 ASSERT_RTNL();
4923
6ea29da1 4924 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4925}
4926EXPORT_SYMBOL(netdev_has_upper_dev);
4927
4928/**
4929 * netdev_has_any_upper_dev - Check if device is linked to some device
4930 * @dev: device
4931 *
4932 * Find out if a device is linked to an upper device and return true in case
4933 * it is. The caller must hold the RTNL lock.
4934 */
1d143d9f 4935static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4936{
4937 ASSERT_RTNL();
4938
2f268f12 4939 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4940}
9ff162a8
JP
4941
4942/**
4943 * netdev_master_upper_dev_get - Get master upper device
4944 * @dev: device
4945 *
4946 * Find a master upper device and return pointer to it or NULL in case
4947 * it's not there. The caller must hold the RTNL lock.
4948 */
4949struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4950{
aa9d8560 4951 struct netdev_adjacent *upper;
9ff162a8
JP
4952
4953 ASSERT_RTNL();
4954
2f268f12 4955 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4956 return NULL;
4957
2f268f12 4958 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4959 struct netdev_adjacent, list);
9ff162a8
JP
4960 if (likely(upper->master))
4961 return upper->dev;
4962 return NULL;
4963}
4964EXPORT_SYMBOL(netdev_master_upper_dev_get);
4965
b6ccba4c
VF
4966void *netdev_adjacent_get_private(struct list_head *adj_list)
4967{
4968 struct netdev_adjacent *adj;
4969
4970 adj = list_entry(adj_list, struct netdev_adjacent, list);
4971
4972 return adj->private;
4973}
4974EXPORT_SYMBOL(netdev_adjacent_get_private);
4975
44a40855
VY
4976/**
4977 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4978 * @dev: device
4979 * @iter: list_head ** of the current position
4980 *
4981 * Gets the next device from the dev's upper list, starting from iter
4982 * position. The caller must hold RCU read lock.
4983 */
4984struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4985 struct list_head **iter)
4986{
4987 struct netdev_adjacent *upper;
4988
4989 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4990
4991 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4992
4993 if (&upper->list == &dev->adj_list.upper)
4994 return NULL;
4995
4996 *iter = &upper->list;
4997
4998 return upper->dev;
4999}
5000EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5001
31088a11
VF
5002/**
5003 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5004 * @dev: device
5005 * @iter: list_head ** of the current position
5006 *
5007 * Gets the next device from the dev's upper list, starting from iter
5008 * position. The caller must hold RCU read lock.
5009 */
2f268f12
VF
5010struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5011 struct list_head **iter)
48311f46
VF
5012{
5013 struct netdev_adjacent *upper;
5014
85328240 5015 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5016
5017 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5018
2f268f12 5019 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5020 return NULL;
5021
5022 *iter = &upper->list;
5023
5024 return upper->dev;
5025}
2f268f12 5026EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5027
31088a11
VF
5028/**
5029 * netdev_lower_get_next_private - Get the next ->private from the
5030 * lower neighbour list
5031 * @dev: device
5032 * @iter: list_head ** of the current position
5033 *
5034 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5035 * list, starting from iter position. The caller must hold either hold the
5036 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5037 * list will remain unchanged.
31088a11
VF
5038 */
5039void *netdev_lower_get_next_private(struct net_device *dev,
5040 struct list_head **iter)
5041{
5042 struct netdev_adjacent *lower;
5043
5044 lower = list_entry(*iter, struct netdev_adjacent, list);
5045
5046 if (&lower->list == &dev->adj_list.lower)
5047 return NULL;
5048
6859e7df 5049 *iter = lower->list.next;
31088a11
VF
5050
5051 return lower->private;
5052}
5053EXPORT_SYMBOL(netdev_lower_get_next_private);
5054
5055/**
5056 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5057 * lower neighbour list, RCU
5058 * variant
5059 * @dev: device
5060 * @iter: list_head ** of the current position
5061 *
5062 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5063 * list, starting from iter position. The caller must hold RCU read lock.
5064 */
5065void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5066 struct list_head **iter)
5067{
5068 struct netdev_adjacent *lower;
5069
5070 WARN_ON_ONCE(!rcu_read_lock_held());
5071
5072 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5073
5074 if (&lower->list == &dev->adj_list.lower)
5075 return NULL;
5076
6859e7df 5077 *iter = &lower->list;
31088a11
VF
5078
5079 return lower->private;
5080}
5081EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5082
4085ebe8
VY
5083/**
5084 * netdev_lower_get_next - Get the next device from the lower neighbour
5085 * list
5086 * @dev: device
5087 * @iter: list_head ** of the current position
5088 *
5089 * Gets the next netdev_adjacent from the dev's lower neighbour
5090 * list, starting from iter position. The caller must hold RTNL lock or
5091 * its own locking that guarantees that the neighbour lower
b469139e 5092 * list will remain unchanged.
4085ebe8
VY
5093 */
5094void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5095{
5096 struct netdev_adjacent *lower;
5097
5098 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5099
5100 if (&lower->list == &dev->adj_list.lower)
5101 return NULL;
5102
5103 *iter = &lower->list;
5104
5105 return lower->dev;
5106}
5107EXPORT_SYMBOL(netdev_lower_get_next);
5108
e001bfad 5109/**
5110 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5111 * lower neighbour list, RCU
5112 * variant
5113 * @dev: device
5114 *
5115 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5116 * list. The caller must hold RCU read lock.
5117 */
5118void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5119{
5120 struct netdev_adjacent *lower;
5121
5122 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5123 struct netdev_adjacent, list);
5124 if (lower)
5125 return lower->private;
5126 return NULL;
5127}
5128EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5129
9ff162a8
JP
5130/**
5131 * netdev_master_upper_dev_get_rcu - Get master upper device
5132 * @dev: device
5133 *
5134 * Find a master upper device and return pointer to it or NULL in case
5135 * it's not there. The caller must hold the RCU read lock.
5136 */
5137struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5138{
aa9d8560 5139 struct netdev_adjacent *upper;
9ff162a8 5140
2f268f12 5141 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5142 struct netdev_adjacent, list);
9ff162a8
JP
5143 if (upper && likely(upper->master))
5144 return upper->dev;
5145 return NULL;
5146}
5147EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5148
0a59f3a9 5149static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5150 struct net_device *adj_dev,
5151 struct list_head *dev_list)
5152{
5153 char linkname[IFNAMSIZ+7];
5154 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5155 "upper_%s" : "lower_%s", adj_dev->name);
5156 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5157 linkname);
5158}
0a59f3a9 5159static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5160 char *name,
5161 struct list_head *dev_list)
5162{
5163 char linkname[IFNAMSIZ+7];
5164 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5165 "upper_%s" : "lower_%s", name);
5166 sysfs_remove_link(&(dev->dev.kobj), linkname);
5167}
5168
7ce64c79
AF
5169static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5170 struct net_device *adj_dev,
5171 struct list_head *dev_list)
5172{
5173 return (dev_list == &dev->adj_list.upper ||
5174 dev_list == &dev->adj_list.lower) &&
5175 net_eq(dev_net(dev), dev_net(adj_dev));
5176}
3ee32707 5177
5d261913
VF
5178static int __netdev_adjacent_dev_insert(struct net_device *dev,
5179 struct net_device *adj_dev,
7863c054 5180 struct list_head *dev_list,
402dae96 5181 void *private, bool master)
5d261913
VF
5182{
5183 struct netdev_adjacent *adj;
842d67a7 5184 int ret;
5d261913 5185
6ea29da1 5186 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5187
5188 if (adj) {
5d261913
VF
5189 adj->ref_nr++;
5190 return 0;
5191 }
5192
5193 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5194 if (!adj)
5195 return -ENOMEM;
5196
5197 adj->dev = adj_dev;
5198 adj->master = master;
5d261913 5199 adj->ref_nr = 1;
402dae96 5200 adj->private = private;
5d261913 5201 dev_hold(adj_dev);
2f268f12
VF
5202
5203 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5204 adj_dev->name, dev->name, adj_dev->name);
5d261913 5205
7ce64c79 5206 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5207 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5208 if (ret)
5209 goto free_adj;
5210 }
5211
7863c054 5212 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5213 if (master) {
5214 ret = sysfs_create_link(&(dev->dev.kobj),
5215 &(adj_dev->dev.kobj), "master");
5216 if (ret)
5831d66e 5217 goto remove_symlinks;
842d67a7 5218
7863c054 5219 list_add_rcu(&adj->list, dev_list);
842d67a7 5220 } else {
7863c054 5221 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5222 }
5d261913
VF
5223
5224 return 0;
842d67a7 5225
5831d66e 5226remove_symlinks:
7ce64c79 5227 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5228 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5229free_adj:
5230 kfree(adj);
974daef7 5231 dev_put(adj_dev);
842d67a7
VF
5232
5233 return ret;
5d261913
VF
5234}
5235
1d143d9f 5236static void __netdev_adjacent_dev_remove(struct net_device *dev,
5237 struct net_device *adj_dev,
5238 struct list_head *dev_list)
5d261913
VF
5239{
5240 struct netdev_adjacent *adj;
5241
6ea29da1 5242 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5243
2f268f12
VF
5244 if (!adj) {
5245 pr_err("tried to remove device %s from %s\n",
5246 dev->name, adj_dev->name);
5d261913 5247 BUG();
2f268f12 5248 }
5d261913
VF
5249
5250 if (adj->ref_nr > 1) {
2f268f12
VF
5251 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5252 adj->ref_nr-1);
5d261913
VF
5253 adj->ref_nr--;
5254 return;
5255 }
5256
842d67a7
VF
5257 if (adj->master)
5258 sysfs_remove_link(&(dev->dev.kobj), "master");
5259
7ce64c79 5260 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5261 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5262
5d261913 5263 list_del_rcu(&adj->list);
2f268f12
VF
5264 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5265 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5266 dev_put(adj_dev);
5267 kfree_rcu(adj, rcu);
5268}
5269
1d143d9f 5270static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5271 struct net_device *upper_dev,
5272 struct list_head *up_list,
5273 struct list_head *down_list,
5274 void *private, bool master)
5d261913
VF
5275{
5276 int ret;
5277
402dae96
VF
5278 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5279 master);
5d261913
VF
5280 if (ret)
5281 return ret;
5282
402dae96
VF
5283 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5284 false);
5d261913 5285 if (ret) {
2f268f12 5286 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5287 return ret;
5288 }
5289
5290 return 0;
5291}
5292
1d143d9f 5293static int __netdev_adjacent_dev_link(struct net_device *dev,
5294 struct net_device *upper_dev)
5d261913 5295{
2f268f12
VF
5296 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5297 &dev->all_adj_list.upper,
5298 &upper_dev->all_adj_list.lower,
402dae96 5299 NULL, false);
5d261913
VF
5300}
5301
1d143d9f 5302static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5303 struct net_device *upper_dev,
5304 struct list_head *up_list,
5305 struct list_head *down_list)
5d261913 5306{
2f268f12
VF
5307 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5308 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5309}
5310
1d143d9f 5311static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5312 struct net_device *upper_dev)
5d261913 5313{
2f268f12
VF
5314 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5315 &dev->all_adj_list.upper,
5316 &upper_dev->all_adj_list.lower);
5317}
5318
1d143d9f 5319static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5320 struct net_device *upper_dev,
5321 void *private, bool master)
2f268f12
VF
5322{
5323 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5324
5325 if (ret)
5326 return ret;
5327
5328 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5329 &dev->adj_list.upper,
5330 &upper_dev->adj_list.lower,
402dae96 5331 private, master);
2f268f12
VF
5332 if (ret) {
5333 __netdev_adjacent_dev_unlink(dev, upper_dev);
5334 return ret;
5335 }
5336
5337 return 0;
5d261913
VF
5338}
5339
1d143d9f 5340static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5341 struct net_device *upper_dev)
2f268f12
VF
5342{
5343 __netdev_adjacent_dev_unlink(dev, upper_dev);
5344 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5345 &dev->adj_list.upper,
5346 &upper_dev->adj_list.lower);
5347}
5d261913 5348
9ff162a8 5349static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
5350 struct net_device *upper_dev, bool master,
5351 void *private)
9ff162a8 5352{
0e4ead9d 5353 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5354 struct netdev_adjacent *i, *j, *to_i, *to_j;
5355 int ret = 0;
9ff162a8
JP
5356
5357 ASSERT_RTNL();
5358
5359 if (dev == upper_dev)
5360 return -EBUSY;
5361
5362 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5363 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5364 return -EBUSY;
5365
6ea29da1 5366 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5367 return -EEXIST;
5368
5369 if (master && netdev_master_upper_dev_get(dev))
5370 return -EBUSY;
5371
0e4ead9d
JP
5372 changeupper_info.upper_dev = upper_dev;
5373 changeupper_info.master = master;
5374 changeupper_info.linking = true;
5375
573c7ba0
JP
5376 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5377 &changeupper_info.info);
5378 ret = notifier_to_errno(ret);
5379 if (ret)
5380 return ret;
5381
402dae96
VF
5382 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5383 master);
5d261913
VF
5384 if (ret)
5385 return ret;
9ff162a8 5386
5d261913 5387 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5388 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5389 * versa, and don't forget the devices itself. All of these
5390 * links are non-neighbours.
5391 */
2f268f12
VF
5392 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5393 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5394 pr_debug("Interlinking %s with %s, non-neighbour\n",
5395 i->dev->name, j->dev->name);
5d261913
VF
5396 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5397 if (ret)
5398 goto rollback_mesh;
5399 }
5400 }
5401
5402 /* add dev to every upper_dev's upper device */
2f268f12
VF
5403 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5404 pr_debug("linking %s's upper device %s with %s\n",
5405 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5406 ret = __netdev_adjacent_dev_link(dev, i->dev);
5407 if (ret)
5408 goto rollback_upper_mesh;
5409 }
5410
5411 /* add upper_dev to every dev's lower device */
2f268f12
VF
5412 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5413 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5414 i->dev->name, upper_dev->name);
5d261913
VF
5415 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5416 if (ret)
5417 goto rollback_lower_mesh;
5418 }
9ff162a8 5419
0e4ead9d
JP
5420 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5421 &changeupper_info.info);
9ff162a8 5422 return 0;
5d261913
VF
5423
5424rollback_lower_mesh:
5425 to_i = i;
2f268f12 5426 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5427 if (i == to_i)
5428 break;
5429 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5430 }
5431
5432 i = NULL;
5433
5434rollback_upper_mesh:
5435 to_i = i;
2f268f12 5436 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5437 if (i == to_i)
5438 break;
5439 __netdev_adjacent_dev_unlink(dev, i->dev);
5440 }
5441
5442 i = j = NULL;
5443
5444rollback_mesh:
5445 to_i = i;
5446 to_j = j;
2f268f12
VF
5447 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5448 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5449 if (i == to_i && j == to_j)
5450 break;
5451 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5452 }
5453 if (i == to_i)
5454 break;
5455 }
5456
2f268f12 5457 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5458
5459 return ret;
9ff162a8
JP
5460}
5461
5462/**
5463 * netdev_upper_dev_link - Add a link to the upper device
5464 * @dev: device
5465 * @upper_dev: new upper device
5466 *
5467 * Adds a link to device which is upper to this one. The caller must hold
5468 * the RTNL lock. On a failure a negative errno code is returned.
5469 * On success the reference counts are adjusted and the function
5470 * returns zero.
5471 */
5472int netdev_upper_dev_link(struct net_device *dev,
5473 struct net_device *upper_dev)
5474{
402dae96 5475 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5476}
5477EXPORT_SYMBOL(netdev_upper_dev_link);
5478
5479/**
5480 * netdev_master_upper_dev_link - Add a master link to the upper device
5481 * @dev: device
5482 * @upper_dev: new upper device
5483 *
5484 * Adds a link to device which is upper to this one. In this case, only
5485 * one master upper device can be linked, although other non-master devices
5486 * might be linked as well. The caller must hold the RTNL lock.
5487 * On a failure a negative errno code is returned. On success the reference
5488 * counts are adjusted and the function returns zero.
5489 */
5490int netdev_master_upper_dev_link(struct net_device *dev,
5491 struct net_device *upper_dev)
5492{
402dae96 5493 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5494}
5495EXPORT_SYMBOL(netdev_master_upper_dev_link);
5496
402dae96
VF
5497int netdev_master_upper_dev_link_private(struct net_device *dev,
5498 struct net_device *upper_dev,
5499 void *private)
5500{
5501 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5502}
5503EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5504
9ff162a8
JP
5505/**
5506 * netdev_upper_dev_unlink - Removes a link to upper device
5507 * @dev: device
5508 * @upper_dev: new upper device
5509 *
5510 * Removes a link to device which is upper to this one. The caller must hold
5511 * the RTNL lock.
5512 */
5513void netdev_upper_dev_unlink(struct net_device *dev,
5514 struct net_device *upper_dev)
5515{
0e4ead9d 5516 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5517 struct netdev_adjacent *i, *j;
9ff162a8
JP
5518 ASSERT_RTNL();
5519
0e4ead9d
JP
5520 changeupper_info.upper_dev = upper_dev;
5521 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5522 changeupper_info.linking = false;
5523
573c7ba0
JP
5524 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5525 &changeupper_info.info);
5526
2f268f12 5527 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5528
5529 /* Here is the tricky part. We must remove all dev's lower
5530 * devices from all upper_dev's upper devices and vice
5531 * versa, to maintain the graph relationship.
5532 */
2f268f12
VF
5533 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5534 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5535 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5536
5537 /* remove also the devices itself from lower/upper device
5538 * list
5539 */
2f268f12 5540 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5541 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5542
2f268f12 5543 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5544 __netdev_adjacent_dev_unlink(dev, i->dev);
5545
0e4ead9d
JP
5546 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5547 &changeupper_info.info);
9ff162a8
JP
5548}
5549EXPORT_SYMBOL(netdev_upper_dev_unlink);
5550
61bd3857
MS
5551/**
5552 * netdev_bonding_info_change - Dispatch event about slave change
5553 * @dev: device
4a26e453 5554 * @bonding_info: info to dispatch
61bd3857
MS
5555 *
5556 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5557 * The caller must hold the RTNL lock.
5558 */
5559void netdev_bonding_info_change(struct net_device *dev,
5560 struct netdev_bonding_info *bonding_info)
5561{
5562 struct netdev_notifier_bonding_info info;
5563
5564 memcpy(&info.bonding_info, bonding_info,
5565 sizeof(struct netdev_bonding_info));
5566 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5567 &info.info);
5568}
5569EXPORT_SYMBOL(netdev_bonding_info_change);
5570
2ce1ee17 5571static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5572{
5573 struct netdev_adjacent *iter;
5574
5575 struct net *net = dev_net(dev);
5576
5577 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5578 if (!net_eq(net,dev_net(iter->dev)))
5579 continue;
5580 netdev_adjacent_sysfs_add(iter->dev, dev,
5581 &iter->dev->adj_list.lower);
5582 netdev_adjacent_sysfs_add(dev, iter->dev,
5583 &dev->adj_list.upper);
5584 }
5585
5586 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5587 if (!net_eq(net,dev_net(iter->dev)))
5588 continue;
5589 netdev_adjacent_sysfs_add(iter->dev, dev,
5590 &iter->dev->adj_list.upper);
5591 netdev_adjacent_sysfs_add(dev, iter->dev,
5592 &dev->adj_list.lower);
5593 }
5594}
5595
2ce1ee17 5596static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5597{
5598 struct netdev_adjacent *iter;
5599
5600 struct net *net = dev_net(dev);
5601
5602 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5603 if (!net_eq(net,dev_net(iter->dev)))
5604 continue;
5605 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5606 &iter->dev->adj_list.lower);
5607 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5608 &dev->adj_list.upper);
5609 }
5610
5611 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5612 if (!net_eq(net,dev_net(iter->dev)))
5613 continue;
5614 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5615 &iter->dev->adj_list.upper);
5616 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5617 &dev->adj_list.lower);
5618 }
5619}
5620
5bb025fa 5621void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5622{
5bb025fa 5623 struct netdev_adjacent *iter;
402dae96 5624
4c75431a
AF
5625 struct net *net = dev_net(dev);
5626
5bb025fa 5627 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5628 if (!net_eq(net,dev_net(iter->dev)))
5629 continue;
5bb025fa
VF
5630 netdev_adjacent_sysfs_del(iter->dev, oldname,
5631 &iter->dev->adj_list.lower);
5632 netdev_adjacent_sysfs_add(iter->dev, dev,
5633 &iter->dev->adj_list.lower);
5634 }
402dae96 5635
5bb025fa 5636 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5637 if (!net_eq(net,dev_net(iter->dev)))
5638 continue;
5bb025fa
VF
5639 netdev_adjacent_sysfs_del(iter->dev, oldname,
5640 &iter->dev->adj_list.upper);
5641 netdev_adjacent_sysfs_add(iter->dev, dev,
5642 &iter->dev->adj_list.upper);
5643 }
402dae96 5644}
402dae96
VF
5645
5646void *netdev_lower_dev_get_private(struct net_device *dev,
5647 struct net_device *lower_dev)
5648{
5649 struct netdev_adjacent *lower;
5650
5651 if (!lower_dev)
5652 return NULL;
6ea29da1 5653 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
5654 if (!lower)
5655 return NULL;
5656
5657 return lower->private;
5658}
5659EXPORT_SYMBOL(netdev_lower_dev_get_private);
5660
4085ebe8
VY
5661
5662int dev_get_nest_level(struct net_device *dev,
5663 bool (*type_check)(struct net_device *dev))
5664{
5665 struct net_device *lower = NULL;
5666 struct list_head *iter;
5667 int max_nest = -1;
5668 int nest;
5669
5670 ASSERT_RTNL();
5671
5672 netdev_for_each_lower_dev(dev, lower, iter) {
5673 nest = dev_get_nest_level(lower, type_check);
5674 if (max_nest < nest)
5675 max_nest = nest;
5676 }
5677
5678 if (type_check(dev))
5679 max_nest++;
5680
5681 return max_nest;
5682}
5683EXPORT_SYMBOL(dev_get_nest_level);
5684
b6c40d68
PM
5685static void dev_change_rx_flags(struct net_device *dev, int flags)
5686{
d314774c
SH
5687 const struct net_device_ops *ops = dev->netdev_ops;
5688
d2615bf4 5689 if (ops->ndo_change_rx_flags)
d314774c 5690 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5691}
5692
991fb3f7 5693static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5694{
b536db93 5695 unsigned int old_flags = dev->flags;
d04a48b0
EB
5696 kuid_t uid;
5697 kgid_t gid;
1da177e4 5698
24023451
PM
5699 ASSERT_RTNL();
5700
dad9b335
WC
5701 dev->flags |= IFF_PROMISC;
5702 dev->promiscuity += inc;
5703 if (dev->promiscuity == 0) {
5704 /*
5705 * Avoid overflow.
5706 * If inc causes overflow, untouch promisc and return error.
5707 */
5708 if (inc < 0)
5709 dev->flags &= ~IFF_PROMISC;
5710 else {
5711 dev->promiscuity -= inc;
7b6cd1ce
JP
5712 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5713 dev->name);
dad9b335
WC
5714 return -EOVERFLOW;
5715 }
5716 }
52609c0b 5717 if (dev->flags != old_flags) {
7b6cd1ce
JP
5718 pr_info("device %s %s promiscuous mode\n",
5719 dev->name,
5720 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5721 if (audit_enabled) {
5722 current_uid_gid(&uid, &gid);
7759db82
KHK
5723 audit_log(current->audit_context, GFP_ATOMIC,
5724 AUDIT_ANOM_PROMISCUOUS,
5725 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5726 dev->name, (dev->flags & IFF_PROMISC),
5727 (old_flags & IFF_PROMISC),
e1760bd5 5728 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5729 from_kuid(&init_user_ns, uid),
5730 from_kgid(&init_user_ns, gid),
7759db82 5731 audit_get_sessionid(current));
8192b0c4 5732 }
24023451 5733
b6c40d68 5734 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5735 }
991fb3f7
ND
5736 if (notify)
5737 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5738 return 0;
1da177e4
LT
5739}
5740
4417da66
PM
5741/**
5742 * dev_set_promiscuity - update promiscuity count on a device
5743 * @dev: device
5744 * @inc: modifier
5745 *
5746 * Add or remove promiscuity from a device. While the count in the device
5747 * remains above zero the interface remains promiscuous. Once it hits zero
5748 * the device reverts back to normal filtering operation. A negative inc
5749 * value is used to drop promiscuity on the device.
dad9b335 5750 * Return 0 if successful or a negative errno code on error.
4417da66 5751 */
dad9b335 5752int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5753{
b536db93 5754 unsigned int old_flags = dev->flags;
dad9b335 5755 int err;
4417da66 5756
991fb3f7 5757 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5758 if (err < 0)
dad9b335 5759 return err;
4417da66
PM
5760 if (dev->flags != old_flags)
5761 dev_set_rx_mode(dev);
dad9b335 5762 return err;
4417da66 5763}
d1b19dff 5764EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5765
991fb3f7 5766static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5767{
991fb3f7 5768 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5769
24023451
PM
5770 ASSERT_RTNL();
5771
1da177e4 5772 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5773 dev->allmulti += inc;
5774 if (dev->allmulti == 0) {
5775 /*
5776 * Avoid overflow.
5777 * If inc causes overflow, untouch allmulti and return error.
5778 */
5779 if (inc < 0)
5780 dev->flags &= ~IFF_ALLMULTI;
5781 else {
5782 dev->allmulti -= inc;
7b6cd1ce
JP
5783 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5784 dev->name);
dad9b335
WC
5785 return -EOVERFLOW;
5786 }
5787 }
24023451 5788 if (dev->flags ^ old_flags) {
b6c40d68 5789 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5790 dev_set_rx_mode(dev);
991fb3f7
ND
5791 if (notify)
5792 __dev_notify_flags(dev, old_flags,
5793 dev->gflags ^ old_gflags);
24023451 5794 }
dad9b335 5795 return 0;
4417da66 5796}
991fb3f7
ND
5797
5798/**
5799 * dev_set_allmulti - update allmulti count on a device
5800 * @dev: device
5801 * @inc: modifier
5802 *
5803 * Add or remove reception of all multicast frames to a device. While the
5804 * count in the device remains above zero the interface remains listening
5805 * to all interfaces. Once it hits zero the device reverts back to normal
5806 * filtering operation. A negative @inc value is used to drop the counter
5807 * when releasing a resource needing all multicasts.
5808 * Return 0 if successful or a negative errno code on error.
5809 */
5810
5811int dev_set_allmulti(struct net_device *dev, int inc)
5812{
5813 return __dev_set_allmulti(dev, inc, true);
5814}
d1b19dff 5815EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5816
5817/*
5818 * Upload unicast and multicast address lists to device and
5819 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5820 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5821 * are present.
5822 */
5823void __dev_set_rx_mode(struct net_device *dev)
5824{
d314774c
SH
5825 const struct net_device_ops *ops = dev->netdev_ops;
5826
4417da66
PM
5827 /* dev_open will call this function so the list will stay sane. */
5828 if (!(dev->flags&IFF_UP))
5829 return;
5830
5831 if (!netif_device_present(dev))
40b77c94 5832 return;
4417da66 5833
01789349 5834 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5835 /* Unicast addresses changes may only happen under the rtnl,
5836 * therefore calling __dev_set_promiscuity here is safe.
5837 */
32e7bfc4 5838 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5839 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5840 dev->uc_promisc = true;
32e7bfc4 5841 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5842 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5843 dev->uc_promisc = false;
4417da66 5844 }
4417da66 5845 }
01789349
JP
5846
5847 if (ops->ndo_set_rx_mode)
5848 ops->ndo_set_rx_mode(dev);
4417da66
PM
5849}
5850
5851void dev_set_rx_mode(struct net_device *dev)
5852{
b9e40857 5853 netif_addr_lock_bh(dev);
4417da66 5854 __dev_set_rx_mode(dev);
b9e40857 5855 netif_addr_unlock_bh(dev);
1da177e4
LT
5856}
5857
f0db275a
SH
5858/**
5859 * dev_get_flags - get flags reported to userspace
5860 * @dev: device
5861 *
5862 * Get the combination of flag bits exported through APIs to userspace.
5863 */
95c96174 5864unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5865{
95c96174 5866 unsigned int flags;
1da177e4
LT
5867
5868 flags = (dev->flags & ~(IFF_PROMISC |
5869 IFF_ALLMULTI |
b00055aa
SR
5870 IFF_RUNNING |
5871 IFF_LOWER_UP |
5872 IFF_DORMANT)) |
1da177e4
LT
5873 (dev->gflags & (IFF_PROMISC |
5874 IFF_ALLMULTI));
5875
b00055aa
SR
5876 if (netif_running(dev)) {
5877 if (netif_oper_up(dev))
5878 flags |= IFF_RUNNING;
5879 if (netif_carrier_ok(dev))
5880 flags |= IFF_LOWER_UP;
5881 if (netif_dormant(dev))
5882 flags |= IFF_DORMANT;
5883 }
1da177e4
LT
5884
5885 return flags;
5886}
d1b19dff 5887EXPORT_SYMBOL(dev_get_flags);
1da177e4 5888
bd380811 5889int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5890{
b536db93 5891 unsigned int old_flags = dev->flags;
bd380811 5892 int ret;
1da177e4 5893
24023451
PM
5894 ASSERT_RTNL();
5895
1da177e4
LT
5896 /*
5897 * Set the flags on our device.
5898 */
5899
5900 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5901 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5902 IFF_AUTOMEDIA)) |
5903 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5904 IFF_ALLMULTI));
5905
5906 /*
5907 * Load in the correct multicast list now the flags have changed.
5908 */
5909
b6c40d68
PM
5910 if ((old_flags ^ flags) & IFF_MULTICAST)
5911 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5912
4417da66 5913 dev_set_rx_mode(dev);
1da177e4
LT
5914
5915 /*
5916 * Have we downed the interface. We handle IFF_UP ourselves
5917 * according to user attempts to set it, rather than blindly
5918 * setting it.
5919 */
5920
5921 ret = 0;
d215d10f 5922 if ((old_flags ^ flags) & IFF_UP)
bd380811 5923 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5924
1da177e4 5925 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5926 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5927 unsigned int old_flags = dev->flags;
d1b19dff 5928
1da177e4 5929 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5930
5931 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5932 if (dev->flags != old_flags)
5933 dev_set_rx_mode(dev);
1da177e4
LT
5934 }
5935
5936 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5937 is important. Some (broken) drivers set IFF_PROMISC, when
5938 IFF_ALLMULTI is requested not asking us and not reporting.
5939 */
5940 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5941 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5942
1da177e4 5943 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5944 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5945 }
5946
bd380811
PM
5947 return ret;
5948}
5949
a528c219
ND
5950void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5951 unsigned int gchanges)
bd380811
PM
5952{
5953 unsigned int changes = dev->flags ^ old_flags;
5954
a528c219 5955 if (gchanges)
7f294054 5956 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5957
bd380811
PM
5958 if (changes & IFF_UP) {
5959 if (dev->flags & IFF_UP)
5960 call_netdevice_notifiers(NETDEV_UP, dev);
5961 else
5962 call_netdevice_notifiers(NETDEV_DOWN, dev);
5963 }
5964
5965 if (dev->flags & IFF_UP &&
be9efd36
JP
5966 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5967 struct netdev_notifier_change_info change_info;
5968
5969 change_info.flags_changed = changes;
5970 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5971 &change_info.info);
5972 }
bd380811
PM
5973}
5974
5975/**
5976 * dev_change_flags - change device settings
5977 * @dev: device
5978 * @flags: device state flags
5979 *
5980 * Change settings on device based state flags. The flags are
5981 * in the userspace exported format.
5982 */
b536db93 5983int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5984{
b536db93 5985 int ret;
991fb3f7 5986 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5987
5988 ret = __dev_change_flags(dev, flags);
5989 if (ret < 0)
5990 return ret;
5991
991fb3f7 5992 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5993 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5994 return ret;
5995}
d1b19dff 5996EXPORT_SYMBOL(dev_change_flags);
1da177e4 5997
2315dc91
VF
5998static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5999{
6000 const struct net_device_ops *ops = dev->netdev_ops;
6001
6002 if (ops->ndo_change_mtu)
6003 return ops->ndo_change_mtu(dev, new_mtu);
6004
6005 dev->mtu = new_mtu;
6006 return 0;
6007}
6008
f0db275a
SH
6009/**
6010 * dev_set_mtu - Change maximum transfer unit
6011 * @dev: device
6012 * @new_mtu: new transfer unit
6013 *
6014 * Change the maximum transfer size of the network device.
6015 */
1da177e4
LT
6016int dev_set_mtu(struct net_device *dev, int new_mtu)
6017{
2315dc91 6018 int err, orig_mtu;
1da177e4
LT
6019
6020 if (new_mtu == dev->mtu)
6021 return 0;
6022
6023 /* MTU must be positive. */
6024 if (new_mtu < 0)
6025 return -EINVAL;
6026
6027 if (!netif_device_present(dev))
6028 return -ENODEV;
6029
1d486bfb
VF
6030 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6031 err = notifier_to_errno(err);
6032 if (err)
6033 return err;
d314774c 6034
2315dc91
VF
6035 orig_mtu = dev->mtu;
6036 err = __dev_set_mtu(dev, new_mtu);
d314774c 6037
2315dc91
VF
6038 if (!err) {
6039 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6040 err = notifier_to_errno(err);
6041 if (err) {
6042 /* setting mtu back and notifying everyone again,
6043 * so that they have a chance to revert changes.
6044 */
6045 __dev_set_mtu(dev, orig_mtu);
6046 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6047 }
6048 }
1da177e4
LT
6049 return err;
6050}
d1b19dff 6051EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6052
cbda10fa
VD
6053/**
6054 * dev_set_group - Change group this device belongs to
6055 * @dev: device
6056 * @new_group: group this device should belong to
6057 */
6058void dev_set_group(struct net_device *dev, int new_group)
6059{
6060 dev->group = new_group;
6061}
6062EXPORT_SYMBOL(dev_set_group);
6063
f0db275a
SH
6064/**
6065 * dev_set_mac_address - Change Media Access Control Address
6066 * @dev: device
6067 * @sa: new address
6068 *
6069 * Change the hardware (MAC) address of the device
6070 */
1da177e4
LT
6071int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6072{
d314774c 6073 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6074 int err;
6075
d314774c 6076 if (!ops->ndo_set_mac_address)
1da177e4
LT
6077 return -EOPNOTSUPP;
6078 if (sa->sa_family != dev->type)
6079 return -EINVAL;
6080 if (!netif_device_present(dev))
6081 return -ENODEV;
d314774c 6082 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6083 if (err)
6084 return err;
fbdeca2d 6085 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6086 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6087 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6088 return 0;
1da177e4 6089}
d1b19dff 6090EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6091
4bf84c35
JP
6092/**
6093 * dev_change_carrier - Change device carrier
6094 * @dev: device
691b3b7e 6095 * @new_carrier: new value
4bf84c35
JP
6096 *
6097 * Change device carrier
6098 */
6099int dev_change_carrier(struct net_device *dev, bool new_carrier)
6100{
6101 const struct net_device_ops *ops = dev->netdev_ops;
6102
6103 if (!ops->ndo_change_carrier)
6104 return -EOPNOTSUPP;
6105 if (!netif_device_present(dev))
6106 return -ENODEV;
6107 return ops->ndo_change_carrier(dev, new_carrier);
6108}
6109EXPORT_SYMBOL(dev_change_carrier);
6110
66b52b0d
JP
6111/**
6112 * dev_get_phys_port_id - Get device physical port ID
6113 * @dev: device
6114 * @ppid: port ID
6115 *
6116 * Get device physical port ID
6117 */
6118int dev_get_phys_port_id(struct net_device *dev,
02637fce 6119 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6120{
6121 const struct net_device_ops *ops = dev->netdev_ops;
6122
6123 if (!ops->ndo_get_phys_port_id)
6124 return -EOPNOTSUPP;
6125 return ops->ndo_get_phys_port_id(dev, ppid);
6126}
6127EXPORT_SYMBOL(dev_get_phys_port_id);
6128
db24a904
DA
6129/**
6130 * dev_get_phys_port_name - Get device physical port name
6131 * @dev: device
6132 * @name: port name
6133 *
6134 * Get device physical port name
6135 */
6136int dev_get_phys_port_name(struct net_device *dev,
6137 char *name, size_t len)
6138{
6139 const struct net_device_ops *ops = dev->netdev_ops;
6140
6141 if (!ops->ndo_get_phys_port_name)
6142 return -EOPNOTSUPP;
6143 return ops->ndo_get_phys_port_name(dev, name, len);
6144}
6145EXPORT_SYMBOL(dev_get_phys_port_name);
6146
d746d707
AK
6147/**
6148 * dev_change_proto_down - update protocol port state information
6149 * @dev: device
6150 * @proto_down: new value
6151 *
6152 * This info can be used by switch drivers to set the phys state of the
6153 * port.
6154 */
6155int dev_change_proto_down(struct net_device *dev, bool proto_down)
6156{
6157 const struct net_device_ops *ops = dev->netdev_ops;
6158
6159 if (!ops->ndo_change_proto_down)
6160 return -EOPNOTSUPP;
6161 if (!netif_device_present(dev))
6162 return -ENODEV;
6163 return ops->ndo_change_proto_down(dev, proto_down);
6164}
6165EXPORT_SYMBOL(dev_change_proto_down);
6166
1da177e4
LT
6167/**
6168 * dev_new_index - allocate an ifindex
c4ea43c5 6169 * @net: the applicable net namespace
1da177e4
LT
6170 *
6171 * Returns a suitable unique value for a new device interface
6172 * number. The caller must hold the rtnl semaphore or the
6173 * dev_base_lock to be sure it remains unique.
6174 */
881d966b 6175static int dev_new_index(struct net *net)
1da177e4 6176{
aa79e66e 6177 int ifindex = net->ifindex;
1da177e4
LT
6178 for (;;) {
6179 if (++ifindex <= 0)
6180 ifindex = 1;
881d966b 6181 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6182 return net->ifindex = ifindex;
1da177e4
LT
6183 }
6184}
6185
1da177e4 6186/* Delayed registration/unregisteration */
3b5b34fd 6187static LIST_HEAD(net_todo_list);
200b916f 6188DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6189
6f05f629 6190static void net_set_todo(struct net_device *dev)
1da177e4 6191{
1da177e4 6192 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6193 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6194}
6195
9b5e383c 6196static void rollback_registered_many(struct list_head *head)
93ee31f1 6197{
e93737b0 6198 struct net_device *dev, *tmp;
5cde2829 6199 LIST_HEAD(close_head);
9b5e383c 6200
93ee31f1
DL
6201 BUG_ON(dev_boot_phase);
6202 ASSERT_RTNL();
6203
e93737b0 6204 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6205 /* Some devices call without registering
e93737b0
KK
6206 * for initialization unwind. Remove those
6207 * devices and proceed with the remaining.
9b5e383c
ED
6208 */
6209 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6210 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6211 dev->name, dev);
93ee31f1 6212
9b5e383c 6213 WARN_ON(1);
e93737b0
KK
6214 list_del(&dev->unreg_list);
6215 continue;
9b5e383c 6216 }
449f4544 6217 dev->dismantle = true;
9b5e383c 6218 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6219 }
93ee31f1 6220
44345724 6221 /* If device is running, close it first. */
5cde2829
EB
6222 list_for_each_entry(dev, head, unreg_list)
6223 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6224 dev_close_many(&close_head, true);
93ee31f1 6225
44345724 6226 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6227 /* And unlink it from device chain. */
6228 unlist_netdevice(dev);
93ee31f1 6229
9b5e383c 6230 dev->reg_state = NETREG_UNREGISTERING;
e9e4dd32 6231 on_each_cpu(flush_backlog, dev, 1);
9b5e383c 6232 }
93ee31f1
DL
6233
6234 synchronize_net();
6235
9b5e383c 6236 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6237 struct sk_buff *skb = NULL;
6238
9b5e383c
ED
6239 /* Shutdown queueing discipline. */
6240 dev_shutdown(dev);
93ee31f1
DL
6241
6242
9b5e383c
ED
6243 /* Notify protocols, that we are about to destroy
6244 this device. They should clean all the things.
6245 */
6246 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6247
395eea6c
MB
6248 if (!dev->rtnl_link_ops ||
6249 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6250 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6251 GFP_KERNEL);
6252
9b5e383c
ED
6253 /*
6254 * Flush the unicast and multicast chains
6255 */
a748ee24 6256 dev_uc_flush(dev);
22bedad3 6257 dev_mc_flush(dev);
93ee31f1 6258
9b5e383c
ED
6259 if (dev->netdev_ops->ndo_uninit)
6260 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6261
395eea6c
MB
6262 if (skb)
6263 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6264
9ff162a8
JP
6265 /* Notifier chain MUST detach us all upper devices. */
6266 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6267
9b5e383c
ED
6268 /* Remove entries from kobject tree */
6269 netdev_unregister_kobject(dev);
024e9679
AD
6270#ifdef CONFIG_XPS
6271 /* Remove XPS queueing entries */
6272 netif_reset_xps_queues_gt(dev, 0);
6273#endif
9b5e383c 6274 }
93ee31f1 6275
850a545b 6276 synchronize_net();
395264d5 6277
a5ee1551 6278 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6279 dev_put(dev);
6280}
6281
6282static void rollback_registered(struct net_device *dev)
6283{
6284 LIST_HEAD(single);
6285
6286 list_add(&dev->unreg_list, &single);
6287 rollback_registered_many(&single);
ceaaec98 6288 list_del(&single);
93ee31f1
DL
6289}
6290
c8f44aff
MM
6291static netdev_features_t netdev_fix_features(struct net_device *dev,
6292 netdev_features_t features)
b63365a2 6293{
57422dc5
MM
6294 /* Fix illegal checksum combinations */
6295 if ((features & NETIF_F_HW_CSUM) &&
6296 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6297 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6298 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6299 }
6300
b63365a2 6301 /* TSO requires that SG is present as well. */
ea2d3688 6302 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6303 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6304 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6305 }
6306
ec5f0615
PS
6307 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6308 !(features & NETIF_F_IP_CSUM)) {
6309 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6310 features &= ~NETIF_F_TSO;
6311 features &= ~NETIF_F_TSO_ECN;
6312 }
6313
6314 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6315 !(features & NETIF_F_IPV6_CSUM)) {
6316 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6317 features &= ~NETIF_F_TSO6;
6318 }
6319
31d8b9e0
BH
6320 /* TSO ECN requires that TSO is present as well. */
6321 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6322 features &= ~NETIF_F_TSO_ECN;
6323
212b573f
MM
6324 /* Software GSO depends on SG. */
6325 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6326 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6327 features &= ~NETIF_F_GSO;
6328 }
6329
acd1130e 6330 /* UFO needs SG and checksumming */
b63365a2 6331 if (features & NETIF_F_UFO) {
79032644
MM
6332 /* maybe split UFO into V4 and V6? */
6333 if (!((features & NETIF_F_GEN_CSUM) ||
6334 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6335 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6336 netdev_dbg(dev,
acd1130e 6337 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6338 features &= ~NETIF_F_UFO;
6339 }
6340
6341 if (!(features & NETIF_F_SG)) {
6f404e44 6342 netdev_dbg(dev,
acd1130e 6343 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6344 features &= ~NETIF_F_UFO;
6345 }
6346 }
6347
d0290214
JP
6348#ifdef CONFIG_NET_RX_BUSY_POLL
6349 if (dev->netdev_ops->ndo_busy_poll)
6350 features |= NETIF_F_BUSY_POLL;
6351 else
6352#endif
6353 features &= ~NETIF_F_BUSY_POLL;
6354
b63365a2
HX
6355 return features;
6356}
b63365a2 6357
6cb6a27c 6358int __netdev_update_features(struct net_device *dev)
5455c699 6359{
c8f44aff 6360 netdev_features_t features;
5455c699
MM
6361 int err = 0;
6362
87267485
MM
6363 ASSERT_RTNL();
6364
5455c699
MM
6365 features = netdev_get_wanted_features(dev);
6366
6367 if (dev->netdev_ops->ndo_fix_features)
6368 features = dev->netdev_ops->ndo_fix_features(dev, features);
6369
6370 /* driver might be less strict about feature dependencies */
6371 features = netdev_fix_features(dev, features);
6372
6373 if (dev->features == features)
6cb6a27c 6374 return 0;
5455c699 6375
c8f44aff
MM
6376 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6377 &dev->features, &features);
5455c699
MM
6378
6379 if (dev->netdev_ops->ndo_set_features)
6380 err = dev->netdev_ops->ndo_set_features(dev, features);
6381
6cb6a27c 6382 if (unlikely(err < 0)) {
5455c699 6383 netdev_err(dev,
c8f44aff
MM
6384 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6385 err, &features, &dev->features);
6cb6a27c
MM
6386 return -1;
6387 }
6388
6389 if (!err)
6390 dev->features = features;
6391
6392 return 1;
6393}
6394
afe12cc8
MM
6395/**
6396 * netdev_update_features - recalculate device features
6397 * @dev: the device to check
6398 *
6399 * Recalculate dev->features set and send notifications if it
6400 * has changed. Should be called after driver or hardware dependent
6401 * conditions might have changed that influence the features.
6402 */
6cb6a27c
MM
6403void netdev_update_features(struct net_device *dev)
6404{
6405 if (__netdev_update_features(dev))
6406 netdev_features_change(dev);
5455c699
MM
6407}
6408EXPORT_SYMBOL(netdev_update_features);
6409
afe12cc8
MM
6410/**
6411 * netdev_change_features - recalculate device features
6412 * @dev: the device to check
6413 *
6414 * Recalculate dev->features set and send notifications even
6415 * if they have not changed. Should be called instead of
6416 * netdev_update_features() if also dev->vlan_features might
6417 * have changed to allow the changes to be propagated to stacked
6418 * VLAN devices.
6419 */
6420void netdev_change_features(struct net_device *dev)
6421{
6422 __netdev_update_features(dev);
6423 netdev_features_change(dev);
6424}
6425EXPORT_SYMBOL(netdev_change_features);
6426
fc4a7489
PM
6427/**
6428 * netif_stacked_transfer_operstate - transfer operstate
6429 * @rootdev: the root or lower level device to transfer state from
6430 * @dev: the device to transfer operstate to
6431 *
6432 * Transfer operational state from root to device. This is normally
6433 * called when a stacking relationship exists between the root
6434 * device and the device(a leaf device).
6435 */
6436void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6437 struct net_device *dev)
6438{
6439 if (rootdev->operstate == IF_OPER_DORMANT)
6440 netif_dormant_on(dev);
6441 else
6442 netif_dormant_off(dev);
6443
6444 if (netif_carrier_ok(rootdev)) {
6445 if (!netif_carrier_ok(dev))
6446 netif_carrier_on(dev);
6447 } else {
6448 if (netif_carrier_ok(dev))
6449 netif_carrier_off(dev);
6450 }
6451}
6452EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6453
a953be53 6454#ifdef CONFIG_SYSFS
1b4bf461
ED
6455static int netif_alloc_rx_queues(struct net_device *dev)
6456{
1b4bf461 6457 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6458 struct netdev_rx_queue *rx;
10595902 6459 size_t sz = count * sizeof(*rx);
1b4bf461 6460
bd25fa7b 6461 BUG_ON(count < 1);
1b4bf461 6462
10595902
PG
6463 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6464 if (!rx) {
6465 rx = vzalloc(sz);
6466 if (!rx)
6467 return -ENOMEM;
6468 }
bd25fa7b
TH
6469 dev->_rx = rx;
6470
bd25fa7b 6471 for (i = 0; i < count; i++)
fe822240 6472 rx[i].dev = dev;
1b4bf461
ED
6473 return 0;
6474}
bf264145 6475#endif
1b4bf461 6476
aa942104
CG
6477static void netdev_init_one_queue(struct net_device *dev,
6478 struct netdev_queue *queue, void *_unused)
6479{
6480 /* Initialize queue lock */
6481 spin_lock_init(&queue->_xmit_lock);
6482 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6483 queue->xmit_lock_owner = -1;
b236da69 6484 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6485 queue->dev = dev;
114cf580
TH
6486#ifdef CONFIG_BQL
6487 dql_init(&queue->dql, HZ);
6488#endif
aa942104
CG
6489}
6490
60877a32
ED
6491static void netif_free_tx_queues(struct net_device *dev)
6492{
4cb28970 6493 kvfree(dev->_tx);
60877a32
ED
6494}
6495
e6484930
TH
6496static int netif_alloc_netdev_queues(struct net_device *dev)
6497{
6498 unsigned int count = dev->num_tx_queues;
6499 struct netdev_queue *tx;
60877a32 6500 size_t sz = count * sizeof(*tx);
e6484930 6501
d339727c
ED
6502 if (count < 1 || count > 0xffff)
6503 return -EINVAL;
62b5942a 6504
60877a32
ED
6505 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6506 if (!tx) {
6507 tx = vzalloc(sz);
6508 if (!tx)
6509 return -ENOMEM;
6510 }
e6484930 6511 dev->_tx = tx;
1d24eb48 6512
e6484930
TH
6513 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6514 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6515
6516 return 0;
e6484930
TH
6517}
6518
a2029240
DV
6519void netif_tx_stop_all_queues(struct net_device *dev)
6520{
6521 unsigned int i;
6522
6523 for (i = 0; i < dev->num_tx_queues; i++) {
6524 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6525 netif_tx_stop_queue(txq);
6526 }
6527}
6528EXPORT_SYMBOL(netif_tx_stop_all_queues);
6529
1da177e4
LT
6530/**
6531 * register_netdevice - register a network device
6532 * @dev: device to register
6533 *
6534 * Take a completed network device structure and add it to the kernel
6535 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6536 * chain. 0 is returned on success. A negative errno code is returned
6537 * on a failure to set up the device, or if the name is a duplicate.
6538 *
6539 * Callers must hold the rtnl semaphore. You may want
6540 * register_netdev() instead of this.
6541 *
6542 * BUGS:
6543 * The locking appears insufficient to guarantee two parallel registers
6544 * will not get the same name.
6545 */
6546
6547int register_netdevice(struct net_device *dev)
6548{
1da177e4 6549 int ret;
d314774c 6550 struct net *net = dev_net(dev);
1da177e4
LT
6551
6552 BUG_ON(dev_boot_phase);
6553 ASSERT_RTNL();
6554
b17a7c17
SH
6555 might_sleep();
6556
1da177e4
LT
6557 /* When net_device's are persistent, this will be fatal. */
6558 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6559 BUG_ON(!net);
1da177e4 6560
f1f28aa3 6561 spin_lock_init(&dev->addr_list_lock);
cf508b12 6562 netdev_set_addr_lockdep_class(dev);
1da177e4 6563
828de4f6 6564 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6565 if (ret < 0)
6566 goto out;
6567
1da177e4 6568 /* Init, if this function is available */
d314774c
SH
6569 if (dev->netdev_ops->ndo_init) {
6570 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6571 if (ret) {
6572 if (ret > 0)
6573 ret = -EIO;
90833aa4 6574 goto out;
1da177e4
LT
6575 }
6576 }
4ec93edb 6577
f646968f
PM
6578 if (((dev->hw_features | dev->features) &
6579 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6580 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6581 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6582 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6583 ret = -EINVAL;
6584 goto err_uninit;
6585 }
6586
9c7dafbf
PE
6587 ret = -EBUSY;
6588 if (!dev->ifindex)
6589 dev->ifindex = dev_new_index(net);
6590 else if (__dev_get_by_index(net, dev->ifindex))
6591 goto err_uninit;
6592
5455c699
MM
6593 /* Transfer changeable features to wanted_features and enable
6594 * software offloads (GSO and GRO).
6595 */
6596 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6597 dev->features |= NETIF_F_SOFT_FEATURES;
6598 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6599
34324dc2
MM
6600 if (!(dev->flags & IFF_LOOPBACK)) {
6601 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6602 }
6603
1180e7d6 6604 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6605 */
1180e7d6 6606 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6607
ee579677
PS
6608 /* Make NETIF_F_SG inheritable to tunnel devices.
6609 */
6610 dev->hw_enc_features |= NETIF_F_SG;
6611
0d89d203
SH
6612 /* Make NETIF_F_SG inheritable to MPLS.
6613 */
6614 dev->mpls_features |= NETIF_F_SG;
6615
7ffbe3fd
JB
6616 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6617 ret = notifier_to_errno(ret);
6618 if (ret)
6619 goto err_uninit;
6620
8b41d188 6621 ret = netdev_register_kobject(dev);
b17a7c17 6622 if (ret)
7ce1b0ed 6623 goto err_uninit;
b17a7c17
SH
6624 dev->reg_state = NETREG_REGISTERED;
6625
6cb6a27c 6626 __netdev_update_features(dev);
8e9b59b2 6627
1da177e4
LT
6628 /*
6629 * Default initial state at registry is that the
6630 * device is present.
6631 */
6632
6633 set_bit(__LINK_STATE_PRESENT, &dev->state);
6634
8f4cccbb
BH
6635 linkwatch_init_dev(dev);
6636
1da177e4 6637 dev_init_scheduler(dev);
1da177e4 6638 dev_hold(dev);
ce286d32 6639 list_netdevice(dev);
7bf23575 6640 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6641
948b337e
JP
6642 /* If the device has permanent device address, driver should
6643 * set dev_addr and also addr_assign_type should be set to
6644 * NET_ADDR_PERM (default value).
6645 */
6646 if (dev->addr_assign_type == NET_ADDR_PERM)
6647 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6648
1da177e4 6649 /* Notify protocols, that a new device appeared. */
056925ab 6650 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6651 ret = notifier_to_errno(ret);
93ee31f1
DL
6652 if (ret) {
6653 rollback_registered(dev);
6654 dev->reg_state = NETREG_UNREGISTERED;
6655 }
d90a909e
EB
6656 /*
6657 * Prevent userspace races by waiting until the network
6658 * device is fully setup before sending notifications.
6659 */
a2835763
PM
6660 if (!dev->rtnl_link_ops ||
6661 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6662 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6663
6664out:
6665 return ret;
7ce1b0ed
HX
6666
6667err_uninit:
d314774c
SH
6668 if (dev->netdev_ops->ndo_uninit)
6669 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6670 goto out;
1da177e4 6671}
d1b19dff 6672EXPORT_SYMBOL(register_netdevice);
1da177e4 6673
937f1ba5
BH
6674/**
6675 * init_dummy_netdev - init a dummy network device for NAPI
6676 * @dev: device to init
6677 *
6678 * This takes a network device structure and initialize the minimum
6679 * amount of fields so it can be used to schedule NAPI polls without
6680 * registering a full blown interface. This is to be used by drivers
6681 * that need to tie several hardware interfaces to a single NAPI
6682 * poll scheduler due to HW limitations.
6683 */
6684int init_dummy_netdev(struct net_device *dev)
6685{
6686 /* Clear everything. Note we don't initialize spinlocks
6687 * are they aren't supposed to be taken by any of the
6688 * NAPI code and this dummy netdev is supposed to be
6689 * only ever used for NAPI polls
6690 */
6691 memset(dev, 0, sizeof(struct net_device));
6692
6693 /* make sure we BUG if trying to hit standard
6694 * register/unregister code path
6695 */
6696 dev->reg_state = NETREG_DUMMY;
6697
937f1ba5
BH
6698 /* NAPI wants this */
6699 INIT_LIST_HEAD(&dev->napi_list);
6700
6701 /* a dummy interface is started by default */
6702 set_bit(__LINK_STATE_PRESENT, &dev->state);
6703 set_bit(__LINK_STATE_START, &dev->state);
6704
29b4433d
ED
6705 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6706 * because users of this 'device' dont need to change
6707 * its refcount.
6708 */
6709
937f1ba5
BH
6710 return 0;
6711}
6712EXPORT_SYMBOL_GPL(init_dummy_netdev);
6713
6714
1da177e4
LT
6715/**
6716 * register_netdev - register a network device
6717 * @dev: device to register
6718 *
6719 * Take a completed network device structure and add it to the kernel
6720 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6721 * chain. 0 is returned on success. A negative errno code is returned
6722 * on a failure to set up the device, or if the name is a duplicate.
6723 *
38b4da38 6724 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6725 * and expands the device name if you passed a format string to
6726 * alloc_netdev.
6727 */
6728int register_netdev(struct net_device *dev)
6729{
6730 int err;
6731
6732 rtnl_lock();
1da177e4 6733 err = register_netdevice(dev);
1da177e4
LT
6734 rtnl_unlock();
6735 return err;
6736}
6737EXPORT_SYMBOL(register_netdev);
6738
29b4433d
ED
6739int netdev_refcnt_read(const struct net_device *dev)
6740{
6741 int i, refcnt = 0;
6742
6743 for_each_possible_cpu(i)
6744 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6745 return refcnt;
6746}
6747EXPORT_SYMBOL(netdev_refcnt_read);
6748
2c53040f 6749/**
1da177e4 6750 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6751 * @dev: target net_device
1da177e4
LT
6752 *
6753 * This is called when unregistering network devices.
6754 *
6755 * Any protocol or device that holds a reference should register
6756 * for netdevice notification, and cleanup and put back the
6757 * reference if they receive an UNREGISTER event.
6758 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6759 * call dev_put.
1da177e4
LT
6760 */
6761static void netdev_wait_allrefs(struct net_device *dev)
6762{
6763 unsigned long rebroadcast_time, warning_time;
29b4433d 6764 int refcnt;
1da177e4 6765
e014debe
ED
6766 linkwatch_forget_dev(dev);
6767
1da177e4 6768 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6769 refcnt = netdev_refcnt_read(dev);
6770
6771 while (refcnt != 0) {
1da177e4 6772 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6773 rtnl_lock();
1da177e4
LT
6774
6775 /* Rebroadcast unregister notification */
056925ab 6776 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6777
748e2d93 6778 __rtnl_unlock();
0115e8e3 6779 rcu_barrier();
748e2d93
ED
6780 rtnl_lock();
6781
0115e8e3 6782 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6783 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6784 &dev->state)) {
6785 /* We must not have linkwatch events
6786 * pending on unregister. If this
6787 * happens, we simply run the queue
6788 * unscheduled, resulting in a noop
6789 * for this device.
6790 */
6791 linkwatch_run_queue();
6792 }
6793
6756ae4b 6794 __rtnl_unlock();
1da177e4
LT
6795
6796 rebroadcast_time = jiffies;
6797 }
6798
6799 msleep(250);
6800
29b4433d
ED
6801 refcnt = netdev_refcnt_read(dev);
6802
1da177e4 6803 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6804 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6805 dev->name, refcnt);
1da177e4
LT
6806 warning_time = jiffies;
6807 }
6808 }
6809}
6810
6811/* The sequence is:
6812 *
6813 * rtnl_lock();
6814 * ...
6815 * register_netdevice(x1);
6816 * register_netdevice(x2);
6817 * ...
6818 * unregister_netdevice(y1);
6819 * unregister_netdevice(y2);
6820 * ...
6821 * rtnl_unlock();
6822 * free_netdev(y1);
6823 * free_netdev(y2);
6824 *
58ec3b4d 6825 * We are invoked by rtnl_unlock().
1da177e4 6826 * This allows us to deal with problems:
b17a7c17 6827 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6828 * without deadlocking with linkwatch via keventd.
6829 * 2) Since we run with the RTNL semaphore not held, we can sleep
6830 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6831 *
6832 * We must not return until all unregister events added during
6833 * the interval the lock was held have been completed.
1da177e4 6834 */
1da177e4
LT
6835void netdev_run_todo(void)
6836{
626ab0e6 6837 struct list_head list;
1da177e4 6838
1da177e4 6839 /* Snapshot list, allow later requests */
626ab0e6 6840 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6841
6842 __rtnl_unlock();
626ab0e6 6843
0115e8e3
ED
6844
6845 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6846 if (!list_empty(&list))
6847 rcu_barrier();
6848
1da177e4
LT
6849 while (!list_empty(&list)) {
6850 struct net_device *dev
e5e26d75 6851 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6852 list_del(&dev->todo_list);
6853
748e2d93 6854 rtnl_lock();
0115e8e3 6855 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6856 __rtnl_unlock();
0115e8e3 6857
b17a7c17 6858 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6859 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6860 dev->name, dev->reg_state);
6861 dump_stack();
6862 continue;
6863 }
1da177e4 6864
b17a7c17 6865 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6866
b17a7c17 6867 netdev_wait_allrefs(dev);
1da177e4 6868
b17a7c17 6869 /* paranoia */
29b4433d 6870 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
6871 BUG_ON(!list_empty(&dev->ptype_all));
6872 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
6873 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6874 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6875 WARN_ON(dev->dn_ptr);
1da177e4 6876
b17a7c17
SH
6877 if (dev->destructor)
6878 dev->destructor(dev);
9093bbb2 6879
50624c93
EB
6880 /* Report a network device has been unregistered */
6881 rtnl_lock();
6882 dev_net(dev)->dev_unreg_count--;
6883 __rtnl_unlock();
6884 wake_up(&netdev_unregistering_wq);
6885
9093bbb2
SH
6886 /* Free network device */
6887 kobject_put(&dev->dev.kobj);
1da177e4 6888 }
1da177e4
LT
6889}
6890
3cfde79c
BH
6891/* Convert net_device_stats to rtnl_link_stats64. They have the same
6892 * fields in the same order, with only the type differing.
6893 */
77a1abf5
ED
6894void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6895 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6896{
6897#if BITS_PER_LONG == 64
77a1abf5
ED
6898 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6899 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6900#else
6901 size_t i, n = sizeof(*stats64) / sizeof(u64);
6902 const unsigned long *src = (const unsigned long *)netdev_stats;
6903 u64 *dst = (u64 *)stats64;
6904
6905 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6906 sizeof(*stats64) / sizeof(u64));
6907 for (i = 0; i < n; i++)
6908 dst[i] = src[i];
6909#endif
6910}
77a1abf5 6911EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6912
eeda3fd6
SH
6913/**
6914 * dev_get_stats - get network device statistics
6915 * @dev: device to get statistics from
28172739 6916 * @storage: place to store stats
eeda3fd6 6917 *
d7753516
BH
6918 * Get network statistics from device. Return @storage.
6919 * The device driver may provide its own method by setting
6920 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6921 * otherwise the internal statistics structure is used.
eeda3fd6 6922 */
d7753516
BH
6923struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6924 struct rtnl_link_stats64 *storage)
7004bf25 6925{
eeda3fd6
SH
6926 const struct net_device_ops *ops = dev->netdev_ops;
6927
28172739
ED
6928 if (ops->ndo_get_stats64) {
6929 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6930 ops->ndo_get_stats64(dev, storage);
6931 } else if (ops->ndo_get_stats) {
3cfde79c 6932 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6933 } else {
6934 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6935 }
caf586e5 6936 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6937 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 6938 return storage;
c45d286e 6939}
eeda3fd6 6940EXPORT_SYMBOL(dev_get_stats);
c45d286e 6941
24824a09 6942struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 6943{
24824a09 6944 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 6945
24824a09
ED
6946#ifdef CONFIG_NET_CLS_ACT
6947 if (queue)
6948 return queue;
6949 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6950 if (!queue)
6951 return NULL;
6952 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 6953 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
6954 queue->qdisc_sleeping = &noop_qdisc;
6955 rcu_assign_pointer(dev->ingress_queue, queue);
6956#endif
6957 return queue;
bb949fbd
DM
6958}
6959
2c60db03
ED
6960static const struct ethtool_ops default_ethtool_ops;
6961
d07d7507
SG
6962void netdev_set_default_ethtool_ops(struct net_device *dev,
6963 const struct ethtool_ops *ops)
6964{
6965 if (dev->ethtool_ops == &default_ethtool_ops)
6966 dev->ethtool_ops = ops;
6967}
6968EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6969
74d332c1
ED
6970void netdev_freemem(struct net_device *dev)
6971{
6972 char *addr = (char *)dev - dev->padded;
6973
4cb28970 6974 kvfree(addr);
74d332c1
ED
6975}
6976
1da177e4 6977/**
36909ea4 6978 * alloc_netdev_mqs - allocate network device
c835a677
TG
6979 * @sizeof_priv: size of private data to allocate space for
6980 * @name: device name format string
6981 * @name_assign_type: origin of device name
6982 * @setup: callback to initialize device
6983 * @txqs: the number of TX subqueues to allocate
6984 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
6985 *
6986 * Allocates a struct net_device with private data area for driver use
90e51adf 6987 * and performs basic initialization. Also allocates subqueue structs
36909ea4 6988 * for each queue on the device.
1da177e4 6989 */
36909ea4 6990struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 6991 unsigned char name_assign_type,
36909ea4
TH
6992 void (*setup)(struct net_device *),
6993 unsigned int txqs, unsigned int rxqs)
1da177e4 6994{
1da177e4 6995 struct net_device *dev;
7943986c 6996 size_t alloc_size;
1ce8e7b5 6997 struct net_device *p;
1da177e4 6998
b6fe17d6
SH
6999 BUG_ON(strlen(name) >= sizeof(dev->name));
7000
36909ea4 7001 if (txqs < 1) {
7b6cd1ce 7002 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7003 return NULL;
7004 }
7005
a953be53 7006#ifdef CONFIG_SYSFS
36909ea4 7007 if (rxqs < 1) {
7b6cd1ce 7008 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7009 return NULL;
7010 }
7011#endif
7012
fd2ea0a7 7013 alloc_size = sizeof(struct net_device);
d1643d24
AD
7014 if (sizeof_priv) {
7015 /* ensure 32-byte alignment of private area */
1ce8e7b5 7016 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7017 alloc_size += sizeof_priv;
7018 }
7019 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7020 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7021
74d332c1
ED
7022 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7023 if (!p)
7024 p = vzalloc(alloc_size);
62b5942a 7025 if (!p)
1da177e4 7026 return NULL;
1da177e4 7027
1ce8e7b5 7028 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7029 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7030
29b4433d
ED
7031 dev->pcpu_refcnt = alloc_percpu(int);
7032 if (!dev->pcpu_refcnt)
74d332c1 7033 goto free_dev;
ab9c73cc 7034
ab9c73cc 7035 if (dev_addr_init(dev))
29b4433d 7036 goto free_pcpu;
ab9c73cc 7037
22bedad3 7038 dev_mc_init(dev);
a748ee24 7039 dev_uc_init(dev);
ccffad25 7040
c346dca1 7041 dev_net_set(dev, &init_net);
1da177e4 7042
8d3bdbd5 7043 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7044 dev->gso_max_segs = GSO_MAX_SEGS;
fcbeb976 7045 dev->gso_min_segs = 0;
8d3bdbd5 7046
8d3bdbd5
DM
7047 INIT_LIST_HEAD(&dev->napi_list);
7048 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7049 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7050 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7051 INIT_LIST_HEAD(&dev->adj_list.upper);
7052 INIT_LIST_HEAD(&dev->adj_list.lower);
7053 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7054 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7055 INIT_LIST_HEAD(&dev->ptype_all);
7056 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 7057 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7058 setup(dev);
7059
906470c1 7060 if (!dev->tx_queue_len)
f84bb1ea 7061 dev->priv_flags |= IFF_NO_QUEUE;
906470c1 7062
36909ea4
TH
7063 dev->num_tx_queues = txqs;
7064 dev->real_num_tx_queues = txqs;
ed9af2e8 7065 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7066 goto free_all;
e8a0464c 7067
a953be53 7068#ifdef CONFIG_SYSFS
36909ea4
TH
7069 dev->num_rx_queues = rxqs;
7070 dev->real_num_rx_queues = rxqs;
fe822240 7071 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7072 goto free_all;
df334545 7073#endif
0a9627f2 7074
1da177e4 7075 strcpy(dev->name, name);
c835a677 7076 dev->name_assign_type = name_assign_type;
cbda10fa 7077 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7078 if (!dev->ethtool_ops)
7079 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7080
7081 nf_hook_ingress_init(dev);
7082
1da177e4 7083 return dev;
ab9c73cc 7084
8d3bdbd5
DM
7085free_all:
7086 free_netdev(dev);
7087 return NULL;
7088
29b4433d
ED
7089free_pcpu:
7090 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7091free_dev:
7092 netdev_freemem(dev);
ab9c73cc 7093 return NULL;
1da177e4 7094}
36909ea4 7095EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7096
7097/**
7098 * free_netdev - free network device
7099 * @dev: device
7100 *
4ec93edb
YH
7101 * This function does the last stage of destroying an allocated device
7102 * interface. The reference to the device object is released.
1da177e4
LT
7103 * If this is the last reference then it will be freed.
7104 */
7105void free_netdev(struct net_device *dev)
7106{
d565b0a1
HX
7107 struct napi_struct *p, *n;
7108
60877a32 7109 netif_free_tx_queues(dev);
a953be53 7110#ifdef CONFIG_SYSFS
10595902 7111 kvfree(dev->_rx);
fe822240 7112#endif
e8a0464c 7113
33d480ce 7114 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7115
f001fde5
JP
7116 /* Flush device addresses */
7117 dev_addr_flush(dev);
7118
d565b0a1
HX
7119 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7120 netif_napi_del(p);
7121
29b4433d
ED
7122 free_percpu(dev->pcpu_refcnt);
7123 dev->pcpu_refcnt = NULL;
7124
3041a069 7125 /* Compatibility with error handling in drivers */
1da177e4 7126 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7127 netdev_freemem(dev);
1da177e4
LT
7128 return;
7129 }
7130
7131 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7132 dev->reg_state = NETREG_RELEASED;
7133
43cb76d9
GKH
7134 /* will free via device release */
7135 put_device(&dev->dev);
1da177e4 7136}
d1b19dff 7137EXPORT_SYMBOL(free_netdev);
4ec93edb 7138
f0db275a
SH
7139/**
7140 * synchronize_net - Synchronize with packet receive processing
7141 *
7142 * Wait for packets currently being received to be done.
7143 * Does not block later packets from starting.
7144 */
4ec93edb 7145void synchronize_net(void)
1da177e4
LT
7146{
7147 might_sleep();
be3fc413
ED
7148 if (rtnl_is_locked())
7149 synchronize_rcu_expedited();
7150 else
7151 synchronize_rcu();
1da177e4 7152}
d1b19dff 7153EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7154
7155/**
44a0873d 7156 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7157 * @dev: device
44a0873d 7158 * @head: list
6ebfbc06 7159 *
1da177e4 7160 * This function shuts down a device interface and removes it
d59b54b1 7161 * from the kernel tables.
44a0873d 7162 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7163 *
7164 * Callers must hold the rtnl semaphore. You may want
7165 * unregister_netdev() instead of this.
7166 */
7167
44a0873d 7168void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7169{
a6620712
HX
7170 ASSERT_RTNL();
7171
44a0873d 7172 if (head) {
9fdce099 7173 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7174 } else {
7175 rollback_registered(dev);
7176 /* Finish processing unregister after unlock */
7177 net_set_todo(dev);
7178 }
1da177e4 7179}
44a0873d 7180EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7181
9b5e383c
ED
7182/**
7183 * unregister_netdevice_many - unregister many devices
7184 * @head: list of devices
87757a91
ED
7185 *
7186 * Note: As most callers use a stack allocated list_head,
7187 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7188 */
7189void unregister_netdevice_many(struct list_head *head)
7190{
7191 struct net_device *dev;
7192
7193 if (!list_empty(head)) {
7194 rollback_registered_many(head);
7195 list_for_each_entry(dev, head, unreg_list)
7196 net_set_todo(dev);
87757a91 7197 list_del(head);
9b5e383c
ED
7198 }
7199}
63c8099d 7200EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7201
1da177e4
LT
7202/**
7203 * unregister_netdev - remove device from the kernel
7204 * @dev: device
7205 *
7206 * This function shuts down a device interface and removes it
d59b54b1 7207 * from the kernel tables.
1da177e4
LT
7208 *
7209 * This is just a wrapper for unregister_netdevice that takes
7210 * the rtnl semaphore. In general you want to use this and not
7211 * unregister_netdevice.
7212 */
7213void unregister_netdev(struct net_device *dev)
7214{
7215 rtnl_lock();
7216 unregister_netdevice(dev);
7217 rtnl_unlock();
7218}
1da177e4
LT
7219EXPORT_SYMBOL(unregister_netdev);
7220
ce286d32
EB
7221/**
7222 * dev_change_net_namespace - move device to different nethost namespace
7223 * @dev: device
7224 * @net: network namespace
7225 * @pat: If not NULL name pattern to try if the current device name
7226 * is already taken in the destination network namespace.
7227 *
7228 * This function shuts down a device interface and moves it
7229 * to a new network namespace. On success 0 is returned, on
7230 * a failure a netagive errno code is returned.
7231 *
7232 * Callers must hold the rtnl semaphore.
7233 */
7234
7235int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7236{
ce286d32
EB
7237 int err;
7238
7239 ASSERT_RTNL();
7240
7241 /* Don't allow namespace local devices to be moved. */
7242 err = -EINVAL;
7243 if (dev->features & NETIF_F_NETNS_LOCAL)
7244 goto out;
7245
7246 /* Ensure the device has been registrered */
ce286d32
EB
7247 if (dev->reg_state != NETREG_REGISTERED)
7248 goto out;
7249
7250 /* Get out if there is nothing todo */
7251 err = 0;
878628fb 7252 if (net_eq(dev_net(dev), net))
ce286d32
EB
7253 goto out;
7254
7255 /* Pick the destination device name, and ensure
7256 * we can use it in the destination network namespace.
7257 */
7258 err = -EEXIST;
d9031024 7259 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7260 /* We get here if we can't use the current device name */
7261 if (!pat)
7262 goto out;
828de4f6 7263 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7264 goto out;
7265 }
7266
7267 /*
7268 * And now a mini version of register_netdevice unregister_netdevice.
7269 */
7270
7271 /* If device is running close it first. */
9b772652 7272 dev_close(dev);
ce286d32
EB
7273
7274 /* And unlink it from device chain */
7275 err = -ENODEV;
7276 unlist_netdevice(dev);
7277
7278 synchronize_net();
7279
7280 /* Shutdown queueing discipline. */
7281 dev_shutdown(dev);
7282
7283 /* Notify protocols, that we are about to destroy
7284 this device. They should clean all the things.
3b27e105
DL
7285
7286 Note that dev->reg_state stays at NETREG_REGISTERED.
7287 This is wanted because this way 8021q and macvlan know
7288 the device is just moving and can keep their slaves up.
ce286d32
EB
7289 */
7290 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7291 rcu_barrier();
7292 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7293 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7294
7295 /*
7296 * Flush the unicast and multicast chains
7297 */
a748ee24 7298 dev_uc_flush(dev);
22bedad3 7299 dev_mc_flush(dev);
ce286d32 7300
4e66ae2e
SH
7301 /* Send a netdev-removed uevent to the old namespace */
7302 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7303 netdev_adjacent_del_links(dev);
4e66ae2e 7304
ce286d32 7305 /* Actually switch the network namespace */
c346dca1 7306 dev_net_set(dev, net);
ce286d32 7307
ce286d32 7308 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7309 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7310 dev->ifindex = dev_new_index(net);
ce286d32 7311
4e66ae2e
SH
7312 /* Send a netdev-add uevent to the new namespace */
7313 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7314 netdev_adjacent_add_links(dev);
4e66ae2e 7315
8b41d188 7316 /* Fixup kobjects */
a1b3f594 7317 err = device_rename(&dev->dev, dev->name);
8b41d188 7318 WARN_ON(err);
ce286d32
EB
7319
7320 /* Add the device back in the hashes */
7321 list_netdevice(dev);
7322
7323 /* Notify protocols, that a new device appeared. */
7324 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7325
d90a909e
EB
7326 /*
7327 * Prevent userspace races by waiting until the network
7328 * device is fully setup before sending notifications.
7329 */
7f294054 7330 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7331
ce286d32
EB
7332 synchronize_net();
7333 err = 0;
7334out:
7335 return err;
7336}
463d0183 7337EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7338
1da177e4
LT
7339static int dev_cpu_callback(struct notifier_block *nfb,
7340 unsigned long action,
7341 void *ocpu)
7342{
7343 struct sk_buff **list_skb;
1da177e4
LT
7344 struct sk_buff *skb;
7345 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7346 struct softnet_data *sd, *oldsd;
7347
8bb78442 7348 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7349 return NOTIFY_OK;
7350
7351 local_irq_disable();
7352 cpu = smp_processor_id();
7353 sd = &per_cpu(softnet_data, cpu);
7354 oldsd = &per_cpu(softnet_data, oldcpu);
7355
7356 /* Find end of our completion_queue. */
7357 list_skb = &sd->completion_queue;
7358 while (*list_skb)
7359 list_skb = &(*list_skb)->next;
7360 /* Append completion queue from offline CPU. */
7361 *list_skb = oldsd->completion_queue;
7362 oldsd->completion_queue = NULL;
7363
1da177e4 7364 /* Append output queue from offline CPU. */
a9cbd588
CG
7365 if (oldsd->output_queue) {
7366 *sd->output_queue_tailp = oldsd->output_queue;
7367 sd->output_queue_tailp = oldsd->output_queue_tailp;
7368 oldsd->output_queue = NULL;
7369 oldsd->output_queue_tailp = &oldsd->output_queue;
7370 }
ac64da0b
ED
7371 /* Append NAPI poll list from offline CPU, with one exception :
7372 * process_backlog() must be called by cpu owning percpu backlog.
7373 * We properly handle process_queue & input_pkt_queue later.
7374 */
7375 while (!list_empty(&oldsd->poll_list)) {
7376 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7377 struct napi_struct,
7378 poll_list);
7379
7380 list_del_init(&napi->poll_list);
7381 if (napi->poll == process_backlog)
7382 napi->state = 0;
7383 else
7384 ____napi_schedule(sd, napi);
264524d5 7385 }
1da177e4
LT
7386
7387 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7388 local_irq_enable();
7389
7390 /* Process offline CPU's input_pkt_queue */
76cc8b13 7391 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7392 netif_rx_ni(skb);
76cc8b13 7393 input_queue_head_incr(oldsd);
fec5e652 7394 }
ac64da0b 7395 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7396 netif_rx_ni(skb);
76cc8b13
TH
7397 input_queue_head_incr(oldsd);
7398 }
1da177e4
LT
7399
7400 return NOTIFY_OK;
7401}
1da177e4
LT
7402
7403
7f353bf2 7404/**
b63365a2
HX
7405 * netdev_increment_features - increment feature set by one
7406 * @all: current feature set
7407 * @one: new feature set
7408 * @mask: mask feature set
7f353bf2
HX
7409 *
7410 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7411 * @one to the master device with current feature set @all. Will not
7412 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7413 */
c8f44aff
MM
7414netdev_features_t netdev_increment_features(netdev_features_t all,
7415 netdev_features_t one, netdev_features_t mask)
b63365a2 7416{
1742f183
MM
7417 if (mask & NETIF_F_GEN_CSUM)
7418 mask |= NETIF_F_ALL_CSUM;
7419 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7420
1742f183
MM
7421 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7422 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7423
1742f183
MM
7424 /* If one device supports hw checksumming, set for all. */
7425 if (all & NETIF_F_GEN_CSUM)
7426 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
7427
7428 return all;
7429}
b63365a2 7430EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7431
430f03cd 7432static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7433{
7434 int i;
7435 struct hlist_head *hash;
7436
7437 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7438 if (hash != NULL)
7439 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7440 INIT_HLIST_HEAD(&hash[i]);
7441
7442 return hash;
7443}
7444
881d966b 7445/* Initialize per network namespace state */
4665079c 7446static int __net_init netdev_init(struct net *net)
881d966b 7447{
734b6541
RM
7448 if (net != &init_net)
7449 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7450
30d97d35
PE
7451 net->dev_name_head = netdev_create_hash();
7452 if (net->dev_name_head == NULL)
7453 goto err_name;
881d966b 7454
30d97d35
PE
7455 net->dev_index_head = netdev_create_hash();
7456 if (net->dev_index_head == NULL)
7457 goto err_idx;
881d966b
EB
7458
7459 return 0;
30d97d35
PE
7460
7461err_idx:
7462 kfree(net->dev_name_head);
7463err_name:
7464 return -ENOMEM;
881d966b
EB
7465}
7466
f0db275a
SH
7467/**
7468 * netdev_drivername - network driver for the device
7469 * @dev: network device
f0db275a
SH
7470 *
7471 * Determine network driver for device.
7472 */
3019de12 7473const char *netdev_drivername(const struct net_device *dev)
6579e57b 7474{
cf04a4c7
SH
7475 const struct device_driver *driver;
7476 const struct device *parent;
3019de12 7477 const char *empty = "";
6579e57b
AV
7478
7479 parent = dev->dev.parent;
6579e57b 7480 if (!parent)
3019de12 7481 return empty;
6579e57b
AV
7482
7483 driver = parent->driver;
7484 if (driver && driver->name)
3019de12
DM
7485 return driver->name;
7486 return empty;
6579e57b
AV
7487}
7488
6ea754eb
JP
7489static void __netdev_printk(const char *level, const struct net_device *dev,
7490 struct va_format *vaf)
256df2f3 7491{
b004ff49 7492 if (dev && dev->dev.parent) {
6ea754eb
JP
7493 dev_printk_emit(level[1] - '0',
7494 dev->dev.parent,
7495 "%s %s %s%s: %pV",
7496 dev_driver_string(dev->dev.parent),
7497 dev_name(dev->dev.parent),
7498 netdev_name(dev), netdev_reg_state(dev),
7499 vaf);
b004ff49 7500 } else if (dev) {
6ea754eb
JP
7501 printk("%s%s%s: %pV",
7502 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7503 } else {
6ea754eb 7504 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7505 }
256df2f3
JP
7506}
7507
6ea754eb
JP
7508void netdev_printk(const char *level, const struct net_device *dev,
7509 const char *format, ...)
256df2f3
JP
7510{
7511 struct va_format vaf;
7512 va_list args;
256df2f3
JP
7513
7514 va_start(args, format);
7515
7516 vaf.fmt = format;
7517 vaf.va = &args;
7518
6ea754eb 7519 __netdev_printk(level, dev, &vaf);
b004ff49 7520
256df2f3 7521 va_end(args);
256df2f3
JP
7522}
7523EXPORT_SYMBOL(netdev_printk);
7524
7525#define define_netdev_printk_level(func, level) \
6ea754eb 7526void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7527{ \
256df2f3
JP
7528 struct va_format vaf; \
7529 va_list args; \
7530 \
7531 va_start(args, fmt); \
7532 \
7533 vaf.fmt = fmt; \
7534 vaf.va = &args; \
7535 \
6ea754eb 7536 __netdev_printk(level, dev, &vaf); \
b004ff49 7537 \
256df2f3 7538 va_end(args); \
256df2f3
JP
7539} \
7540EXPORT_SYMBOL(func);
7541
7542define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7543define_netdev_printk_level(netdev_alert, KERN_ALERT);
7544define_netdev_printk_level(netdev_crit, KERN_CRIT);
7545define_netdev_printk_level(netdev_err, KERN_ERR);
7546define_netdev_printk_level(netdev_warn, KERN_WARNING);
7547define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7548define_netdev_printk_level(netdev_info, KERN_INFO);
7549
4665079c 7550static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7551{
7552 kfree(net->dev_name_head);
7553 kfree(net->dev_index_head);
7554}
7555
022cbae6 7556static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7557 .init = netdev_init,
7558 .exit = netdev_exit,
7559};
7560
4665079c 7561static void __net_exit default_device_exit(struct net *net)
ce286d32 7562{
e008b5fc 7563 struct net_device *dev, *aux;
ce286d32 7564 /*
e008b5fc 7565 * Push all migratable network devices back to the
ce286d32
EB
7566 * initial network namespace
7567 */
7568 rtnl_lock();
e008b5fc 7569 for_each_netdev_safe(net, dev, aux) {
ce286d32 7570 int err;
aca51397 7571 char fb_name[IFNAMSIZ];
ce286d32
EB
7572
7573 /* Ignore unmoveable devices (i.e. loopback) */
7574 if (dev->features & NETIF_F_NETNS_LOCAL)
7575 continue;
7576
e008b5fc
EB
7577 /* Leave virtual devices for the generic cleanup */
7578 if (dev->rtnl_link_ops)
7579 continue;
d0c082ce 7580
25985edc 7581 /* Push remaining network devices to init_net */
aca51397
PE
7582 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7583 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7584 if (err) {
7b6cd1ce
JP
7585 pr_emerg("%s: failed to move %s to init_net: %d\n",
7586 __func__, dev->name, err);
aca51397 7587 BUG();
ce286d32
EB
7588 }
7589 }
7590 rtnl_unlock();
7591}
7592
50624c93
EB
7593static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7594{
7595 /* Return with the rtnl_lock held when there are no network
7596 * devices unregistering in any network namespace in net_list.
7597 */
7598 struct net *net;
7599 bool unregistering;
ff960a73 7600 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 7601
ff960a73 7602 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 7603 for (;;) {
50624c93
EB
7604 unregistering = false;
7605 rtnl_lock();
7606 list_for_each_entry(net, net_list, exit_list) {
7607 if (net->dev_unreg_count > 0) {
7608 unregistering = true;
7609 break;
7610 }
7611 }
7612 if (!unregistering)
7613 break;
7614 __rtnl_unlock();
ff960a73
PZ
7615
7616 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 7617 }
ff960a73 7618 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
7619}
7620
04dc7f6b
EB
7621static void __net_exit default_device_exit_batch(struct list_head *net_list)
7622{
7623 /* At exit all network devices most be removed from a network
b595076a 7624 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7625 * Do this across as many network namespaces as possible to
7626 * improve batching efficiency.
7627 */
7628 struct net_device *dev;
7629 struct net *net;
7630 LIST_HEAD(dev_kill_list);
7631
50624c93
EB
7632 /* To prevent network device cleanup code from dereferencing
7633 * loopback devices or network devices that have been freed
7634 * wait here for all pending unregistrations to complete,
7635 * before unregistring the loopback device and allowing the
7636 * network namespace be freed.
7637 *
7638 * The netdev todo list containing all network devices
7639 * unregistrations that happen in default_device_exit_batch
7640 * will run in the rtnl_unlock() at the end of
7641 * default_device_exit_batch.
7642 */
7643 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7644 list_for_each_entry(net, net_list, exit_list) {
7645 for_each_netdev_reverse(net, dev) {
b0ab2fab 7646 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7647 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7648 else
7649 unregister_netdevice_queue(dev, &dev_kill_list);
7650 }
7651 }
7652 unregister_netdevice_many(&dev_kill_list);
7653 rtnl_unlock();
7654}
7655
022cbae6 7656static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7657 .exit = default_device_exit,
04dc7f6b 7658 .exit_batch = default_device_exit_batch,
ce286d32
EB
7659};
7660
1da177e4
LT
7661/*
7662 * Initialize the DEV module. At boot time this walks the device list and
7663 * unhooks any devices that fail to initialise (normally hardware not
7664 * present) and leaves us with a valid list of present and active devices.
7665 *
7666 */
7667
7668/*
7669 * This is called single threaded during boot, so no need
7670 * to take the rtnl semaphore.
7671 */
7672static int __init net_dev_init(void)
7673{
7674 int i, rc = -ENOMEM;
7675
7676 BUG_ON(!dev_boot_phase);
7677
1da177e4
LT
7678 if (dev_proc_init())
7679 goto out;
7680
8b41d188 7681 if (netdev_kobject_init())
1da177e4
LT
7682 goto out;
7683
7684 INIT_LIST_HEAD(&ptype_all);
82d8a867 7685 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7686 INIT_LIST_HEAD(&ptype_base[i]);
7687
62532da9
VY
7688 INIT_LIST_HEAD(&offload_base);
7689
881d966b
EB
7690 if (register_pernet_subsys(&netdev_net_ops))
7691 goto out;
1da177e4
LT
7692
7693 /*
7694 * Initialise the packet receive queues.
7695 */
7696
6f912042 7697 for_each_possible_cpu(i) {
e36fa2f7 7698 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7699
e36fa2f7 7700 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7701 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7702 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7703 sd->output_queue_tailp = &sd->output_queue;
df334545 7704#ifdef CONFIG_RPS
e36fa2f7
ED
7705 sd->csd.func = rps_trigger_softirq;
7706 sd->csd.info = sd;
e36fa2f7 7707 sd->cpu = i;
1e94d72f 7708#endif
0a9627f2 7709
e36fa2f7
ED
7710 sd->backlog.poll = process_backlog;
7711 sd->backlog.weight = weight_p;
1da177e4
LT
7712 }
7713
1da177e4
LT
7714 dev_boot_phase = 0;
7715
505d4f73
EB
7716 /* The loopback device is special if any other network devices
7717 * is present in a network namespace the loopback device must
7718 * be present. Since we now dynamically allocate and free the
7719 * loopback device ensure this invariant is maintained by
7720 * keeping the loopback device as the first device on the
7721 * list of network devices. Ensuring the loopback devices
7722 * is the first device that appears and the last network device
7723 * that disappears.
7724 */
7725 if (register_pernet_device(&loopback_net_ops))
7726 goto out;
7727
7728 if (register_pernet_device(&default_device_ops))
7729 goto out;
7730
962cf36c
CM
7731 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7732 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7733
7734 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 7735 dst_subsys_init();
1da177e4
LT
7736 rc = 0;
7737out:
7738 return rc;
7739}
7740
7741subsys_initcall(net_dev_init);