]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - net/core/dev.c
Merge branch 'bpf-af-xdp-wakeup'
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
1da177e4
LT
82#include <linux/string.h>
83#include <linux/mm.h>
84#include <linux/socket.h>
85#include <linux/sockios.h>
86#include <linux/errno.h>
87#include <linux/interrupt.h>
88#include <linux/if_ether.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
0187bdfb 91#include <linux/ethtool.h>
1da177e4 92#include <linux/skbuff.h>
a7862b45 93#include <linux/bpf.h>
b5cdae32 94#include <linux/bpf_trace.h>
457c4cbc 95#include <net/net_namespace.h>
1da177e4 96#include <net/sock.h>
02d62e86 97#include <net/busy_poll.h>
1da177e4 98#include <linux/rtnetlink.h>
1da177e4 99#include <linux/stat.h>
1da177e4 100#include <net/dst.h>
fc4099f1 101#include <net/dst_metadata.h>
1da177e4 102#include <net/pkt_sched.h>
87d83093 103#include <net/pkt_cls.h>
1da177e4 104#include <net/checksum.h>
44540960 105#include <net/xfrm.h>
1da177e4
LT
106#include <linux/highmem.h>
107#include <linux/init.h>
1da177e4 108#include <linux/module.h>
1da177e4
LT
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
1da177e4 112#include <net/iw_handler.h>
1da177e4 113#include <asm/current.h>
5bdb9886 114#include <linux/audit.h>
db217334 115#include <linux/dmaengine.h>
f6a78bfc 116#include <linux/err.h>
c7fa9d18 117#include <linux/ctype.h>
723e98b7 118#include <linux/if_arp.h>
6de329e2 119#include <linux/if_vlan.h>
8f0f2223 120#include <linux/ip.h>
ad55dcaf 121#include <net/ip.h>
25cd9ba0 122#include <net/mpls.h>
8f0f2223
DM
123#include <linux/ipv6.h>
124#include <linux/in.h>
b6b2fed1
DM
125#include <linux/jhash.h>
126#include <linux/random.h>
9cbc1cb8 127#include <trace/events/napi.h>
cf66ba58 128#include <trace/events/net.h>
07dc22e7 129#include <trace/events/skb.h>
caeda9b9 130#include <linux/inetdevice.h>
c445477d 131#include <linux/cpu_rmap.h>
c5905afb 132#include <linux/static_key.h>
af12fa6e 133#include <linux/hashtable.h>
60877a32 134#include <linux/vmalloc.h>
529d0489 135#include <linux/if_macvlan.h>
e7fd2885 136#include <linux/errqueue.h>
3b47d303 137#include <linux/hrtimer.h>
e687ad60 138#include <linux/netfilter_ingress.h>
40e4e713 139#include <linux/crash_dump.h>
b72b5bf6 140#include <linux/sctp.h>
ae847f40 141#include <net/udp_tunnel.h>
6621dd29 142#include <linux/net_namespace.h>
aaa5d90b 143#include <linux/indirect_call_wrapper.h>
af3836df 144#include <net/devlink.h>
1da177e4 145
342709ef
PE
146#include "net-sysfs.h"
147
d565b0a1
HX
148#define MAX_GRO_SKBS 8
149
5d38a079
HX
150/* This should be increased if a protocol with a bigger head is added. */
151#define GRO_MAX_HEAD (MAX_HEADER + 128)
152
1da177e4 153static DEFINE_SPINLOCK(ptype_lock);
62532da9 154static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156struct list_head ptype_all __read_mostly; /* Taps */
62532da9 157static struct list_head offload_base __read_mostly;
1da177e4 158
ae78dbfa 159static int netif_rx_internal(struct sk_buff *skb);
54951194 160static int call_netdevice_notifiers_info(unsigned long val,
54951194 161 struct netdev_notifier_info *info);
26372605
PM
162static int call_netdevice_notifiers_extack(unsigned long val,
163 struct net_device *dev,
164 struct netlink_ext_ack *extack);
90b602f8 165static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 166
1da177e4 167/*
7562f876 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
169 * semaphore.
170 *
c6d14c84 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
172 *
173 * Writers must hold the rtnl semaphore while they loop through the
7562f876 174 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
177 *
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
181 *
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
184 * semaphore held.
185 */
1da177e4 186DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
187EXPORT_SYMBOL(dev_base_lock);
188
6c557001
FW
189static DEFINE_MUTEX(ifalias_mutex);
190
af12fa6e
ET
191/* protects napi_hash addition/deletion and napi_gen_id */
192static DEFINE_SPINLOCK(napi_hash_lock);
193
52bd2d62 194static unsigned int napi_gen_id = NR_CPUS;
6180d9de 195static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 196
18afa4b0 197static seqcount_t devnet_rename_seq;
c91f6df2 198
4e985ada
TG
199static inline void dev_base_seq_inc(struct net *net)
200{
643aa9cb 201 while (++net->dev_base_seq == 0)
202 ;
4e985ada
TG
203}
204
881d966b 205static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 206{
8387ff25 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 208
08e9897d 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
210}
211
881d966b 212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 213{
7c28bd0b 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
215}
216
e36fa2f7 217static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
e36fa2f7 224static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
225{
226#ifdef CONFIG_RPS
e36fa2f7 227 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
228#endif
229}
230
ce286d32 231/* Device list insertion */
53759be9 232static void list_netdevice(struct net_device *dev)
ce286d32 233{
c346dca1 234 struct net *net = dev_net(dev);
ce286d32
EB
235
236 ASSERT_RTNL();
237
238 write_lock_bh(&dev_base_lock);
c6d14c84 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
241 hlist_add_head_rcu(&dev->index_hlist,
242 dev_index_hash(net, dev->ifindex));
ce286d32 243 write_unlock_bh(&dev_base_lock);
4e985ada
TG
244
245 dev_base_seq_inc(net);
ce286d32
EB
246}
247
fb699dfd
ED
248/* Device list removal
249 * caller must respect a RCU grace period before freeing/reusing dev
250 */
ce286d32
EB
251static void unlist_netdevice(struct net_device *dev)
252{
253 ASSERT_RTNL();
254
255 /* Unlink dev from the device chain */
256 write_lock_bh(&dev_base_lock);
c6d14c84 257 list_del_rcu(&dev->dev_list);
72c9528b 258 hlist_del_rcu(&dev->name_hlist);
fb699dfd 259 hlist_del_rcu(&dev->index_hlist);
ce286d32 260 write_unlock_bh(&dev_base_lock);
4e985ada
TG
261
262 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
263}
264
1da177e4
LT
265/*
266 * Our notifier list
267 */
268
f07d5b94 269static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
270
271/*
272 * Device drivers call our routines to queue packets here. We empty the
273 * queue in the local softnet handler.
274 */
bea3348e 275
9958da05 276DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 277EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 278
cf508b12 279#ifdef CONFIG_LOCKDEP
723e98b7 280/*
c773e847 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
282 * according to dev->type
283 */
643aa9cb 284static const unsigned short netdev_lock_type[] = {
285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 300
643aa9cb 301static const char *const netdev_lock_name[] = {
302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
317
318static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 319static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
320
321static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322{
323 int i;
324
325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 if (netdev_lock_type[i] == dev_type)
327 return i;
328 /* the last key is used by default */
329 return ARRAY_SIZE(netdev_lock_type) - 1;
330}
331
cf508b12
DM
332static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
723e98b7
JP
334{
335 int i;
336
337 i = netdev_lock_pos(dev_type);
338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 netdev_lock_name[i]);
340}
cf508b12
DM
341
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343{
344 int i;
345
346 i = netdev_lock_pos(dev->type);
347 lockdep_set_class_and_name(&dev->addr_list_lock,
348 &netdev_addr_lock_key[i],
349 netdev_lock_name[i]);
350}
723e98b7 351#else
cf508b12
DM
352static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 unsigned short dev_type)
354{
355}
356static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
357{
358}
359#endif
1da177e4
LT
360
361/*******************************************************************************
eb13da1a 362 *
363 * Protocol management and registration routines
364 *
365 *******************************************************************************/
1da177e4 366
1da177e4 367
1da177e4
LT
368/*
369 * Add a protocol ID to the list. Now that the input handler is
370 * smarter we can dispense with all the messy stuff that used to be
371 * here.
372 *
373 * BEWARE!!! Protocol handlers, mangling input packets,
374 * MUST BE last in hash buckets and checking protocol handlers
375 * MUST start from promiscuous ptype_all chain in net_bh.
376 * It is true now, do not change it.
377 * Explanation follows: if protocol handler, mangling packet, will
378 * be the first on list, it is not able to sense, that packet
379 * is cloned and should be copied-on-write, so that it will
380 * change it and subsequent readers will get broken packet.
381 * --ANK (980803)
382 */
383
c07b68e8
ED
384static inline struct list_head *ptype_head(const struct packet_type *pt)
385{
386 if (pt->type == htons(ETH_P_ALL))
7866a621 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 388 else
7866a621
SN
389 return pt->dev ? &pt->dev->ptype_specific :
390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
391}
392
1da177e4
LT
393/**
394 * dev_add_pack - add packet handler
395 * @pt: packet type declaration
396 *
397 * Add a protocol handler to the networking stack. The passed &packet_type
398 * is linked into kernel lists and may not be freed until it has been
399 * removed from the kernel lists.
400 *
4ec93edb 401 * This call does not sleep therefore it can not
1da177e4
LT
402 * guarantee all CPU's that are in middle of receiving packets
403 * will see the new packet type (until the next received packet).
404 */
405
406void dev_add_pack(struct packet_type *pt)
407{
c07b68e8 408 struct list_head *head = ptype_head(pt);
1da177e4 409
c07b68e8
ED
410 spin_lock(&ptype_lock);
411 list_add_rcu(&pt->list, head);
412 spin_unlock(&ptype_lock);
1da177e4 413}
d1b19dff 414EXPORT_SYMBOL(dev_add_pack);
1da177e4 415
1da177e4
LT
416/**
417 * __dev_remove_pack - remove packet handler
418 * @pt: packet type declaration
419 *
420 * Remove a protocol handler that was previously added to the kernel
421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
422 * from the kernel lists and can be freed or reused once this function
4ec93edb 423 * returns.
1da177e4
LT
424 *
425 * The packet type might still be in use by receivers
426 * and must not be freed until after all the CPU's have gone
427 * through a quiescent state.
428 */
429void __dev_remove_pack(struct packet_type *pt)
430{
c07b68e8 431 struct list_head *head = ptype_head(pt);
1da177e4
LT
432 struct packet_type *pt1;
433
c07b68e8 434 spin_lock(&ptype_lock);
1da177e4
LT
435
436 list_for_each_entry(pt1, head, list) {
437 if (pt == pt1) {
438 list_del_rcu(&pt->list);
439 goto out;
440 }
441 }
442
7b6cd1ce 443 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 444out:
c07b68e8 445 spin_unlock(&ptype_lock);
1da177e4 446}
d1b19dff
ED
447EXPORT_SYMBOL(__dev_remove_pack);
448
1da177e4
LT
449/**
450 * dev_remove_pack - remove packet handler
451 * @pt: packet type declaration
452 *
453 * Remove a protocol handler that was previously added to the kernel
454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
455 * from the kernel lists and can be freed or reused once this function
456 * returns.
457 *
458 * This call sleeps to guarantee that no CPU is looking at the packet
459 * type after return.
460 */
461void dev_remove_pack(struct packet_type *pt)
462{
463 __dev_remove_pack(pt);
4ec93edb 464
1da177e4
LT
465 synchronize_net();
466}
d1b19dff 467EXPORT_SYMBOL(dev_remove_pack);
1da177e4 468
62532da9
VY
469
470/**
471 * dev_add_offload - register offload handlers
472 * @po: protocol offload declaration
473 *
474 * Add protocol offload handlers to the networking stack. The passed
475 * &proto_offload is linked into kernel lists and may not be freed until
476 * it has been removed from the kernel lists.
477 *
478 * This call does not sleep therefore it can not
479 * guarantee all CPU's that are in middle of receiving packets
480 * will see the new offload handlers (until the next received packet).
481 */
482void dev_add_offload(struct packet_offload *po)
483{
bdef7de4 484 struct packet_offload *elem;
62532da9
VY
485
486 spin_lock(&offload_lock);
bdef7de4
DM
487 list_for_each_entry(elem, &offload_base, list) {
488 if (po->priority < elem->priority)
489 break;
490 }
491 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
492 spin_unlock(&offload_lock);
493}
494EXPORT_SYMBOL(dev_add_offload);
495
496/**
497 * __dev_remove_offload - remove offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a protocol offload handler that was previously added to the
501 * kernel offload handlers by dev_add_offload(). The passed &offload_type
502 * is removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * The packet type might still be in use by receivers
506 * and must not be freed until after all the CPU's have gone
507 * through a quiescent state.
508 */
1d143d9f 509static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
510{
511 struct list_head *head = &offload_base;
512 struct packet_offload *po1;
513
c53aa505 514 spin_lock(&offload_lock);
62532da9
VY
515
516 list_for_each_entry(po1, head, list) {
517 if (po == po1) {
518 list_del_rcu(&po->list);
519 goto out;
520 }
521 }
522
523 pr_warn("dev_remove_offload: %p not found\n", po);
524out:
c53aa505 525 spin_unlock(&offload_lock);
62532da9 526}
62532da9
VY
527
528/**
529 * dev_remove_offload - remove packet offload handler
530 * @po: packet offload declaration
531 *
532 * Remove a packet offload handler that was previously added to the kernel
533 * offload handlers by dev_add_offload(). The passed &offload_type is
534 * removed from the kernel lists and can be freed or reused once this
535 * function returns.
536 *
537 * This call sleeps to guarantee that no CPU is looking at the packet
538 * type after return.
539 */
540void dev_remove_offload(struct packet_offload *po)
541{
542 __dev_remove_offload(po);
543
544 synchronize_net();
545}
546EXPORT_SYMBOL(dev_remove_offload);
547
1da177e4 548/******************************************************************************
eb13da1a 549 *
550 * Device Boot-time Settings Routines
551 *
552 ******************************************************************************/
1da177e4
LT
553
554/* Boot time configuration table */
555static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557/**
558 * netdev_boot_setup_add - add new setup entry
559 * @name: name of the device
560 * @map: configured settings for the device
561 *
562 * Adds new setup entry to the dev_boot_setup list. The function
563 * returns 0 on error and 1 on success. This is a generic routine to
564 * all netdevices.
565 */
566static int netdev_boot_setup_add(char *name, struct ifmap *map)
567{
568 struct netdev_boot_setup *s;
569 int i;
570
571 s = dev_boot_setup;
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 575 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
576 memcpy(&s[i].map, map, sizeof(s[i].map));
577 break;
578 }
579 }
580
581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582}
583
584/**
722c9a0c 585 * netdev_boot_setup_check - check boot time settings
586 * @dev: the netdevice
1da177e4 587 *
722c9a0c 588 * Check boot time settings for the device.
589 * The found settings are set for the device to be used
590 * later in the device probing.
591 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
592 */
593int netdev_boot_setup_check(struct net_device *dev)
594{
595 struct netdev_boot_setup *s = dev_boot_setup;
596 int i;
597
598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 600 !strcmp(dev->name, s[i].name)) {
722c9a0c 601 dev->irq = s[i].map.irq;
602 dev->base_addr = s[i].map.base_addr;
603 dev->mem_start = s[i].map.mem_start;
604 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
605 return 1;
606 }
607 }
608 return 0;
609}
d1b19dff 610EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
611
612
613/**
722c9a0c 614 * netdev_boot_base - get address from boot time settings
615 * @prefix: prefix for network device
616 * @unit: id for network device
617 *
618 * Check boot time settings for the base address of device.
619 * The found settings are set for the device to be used
620 * later in the device probing.
621 * Returns 0 if no settings found.
1da177e4
LT
622 */
623unsigned long netdev_boot_base(const char *prefix, int unit)
624{
625 const struct netdev_boot_setup *s = dev_boot_setup;
626 char name[IFNAMSIZ];
627 int i;
628
629 sprintf(name, "%s%d", prefix, unit);
630
631 /*
632 * If device already registered then return base of 1
633 * to indicate not to probe for this interface
634 */
881d966b 635 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
636 return 1;
637
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 if (!strcmp(name, s[i].name))
640 return s[i].map.base_addr;
641 return 0;
642}
643
644/*
645 * Saves at boot time configured settings for any netdevice.
646 */
647int __init netdev_boot_setup(char *str)
648{
649 int ints[5];
650 struct ifmap map;
651
652 str = get_options(str, ARRAY_SIZE(ints), ints);
653 if (!str || !*str)
654 return 0;
655
656 /* Save settings */
657 memset(&map, 0, sizeof(map));
658 if (ints[0] > 0)
659 map.irq = ints[1];
660 if (ints[0] > 1)
661 map.base_addr = ints[2];
662 if (ints[0] > 2)
663 map.mem_start = ints[3];
664 if (ints[0] > 3)
665 map.mem_end = ints[4];
666
667 /* Add new entry to the list */
668 return netdev_boot_setup_add(str, &map);
669}
670
671__setup("netdev=", netdev_boot_setup);
672
673/*******************************************************************************
eb13da1a 674 *
675 * Device Interface Subroutines
676 *
677 *******************************************************************************/
1da177e4 678
a54acb3a
ND
679/**
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
682 *
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
685 */
686
687int dev_get_iflink(const struct net_device *dev)
688{
689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 return dev->netdev_ops->ndo_get_iflink(dev);
691
7a66bbc9 692 return dev->ifindex;
a54acb3a
ND
693}
694EXPORT_SYMBOL(dev_get_iflink);
695
fc4099f1
PS
696/**
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
699 * @skb: The packet.
700 *
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
704 */
705int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706{
707 struct ip_tunnel_info *info;
708
709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
710 return -EINVAL;
711
712 info = skb_tunnel_info_unclone(skb);
713 if (!info)
714 return -ENOMEM;
715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 return -EINVAL;
717
718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719}
720EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
1da177e4
LT
722/**
723 * __dev_get_by_name - find a device by its name
c4ea43c5 724 * @net: the applicable net namespace
1da177e4
LT
725 * @name: name to find
726 *
727 * Find an interface by name. Must be called under RTNL semaphore
728 * or @dev_base_lock. If the name is found a pointer to the device
729 * is returned. If the name is not found then %NULL is returned. The
730 * reference counters are not incremented so the caller must be
731 * careful with locks.
732 */
733
881d966b 734struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 735{
0bd8d536
ED
736 struct net_device *dev;
737 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 738
b67bfe0d 739 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
740 if (!strncmp(dev->name, name, IFNAMSIZ))
741 return dev;
0bd8d536 742
1da177e4
LT
743 return NULL;
744}
d1b19dff 745EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 746
72c9528b 747/**
722c9a0c 748 * dev_get_by_name_rcu - find a device by its name
749 * @net: the applicable net namespace
750 * @name: name to find
751 *
752 * Find an interface by name.
753 * If the name is found a pointer to the device is returned.
754 * If the name is not found then %NULL is returned.
755 * The reference counters are not incremented so the caller must be
756 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
757 */
758
759struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760{
72c9528b
ED
761 struct net_device *dev;
762 struct hlist_head *head = dev_name_hash(net, name);
763
b67bfe0d 764 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
765 if (!strncmp(dev->name, name, IFNAMSIZ))
766 return dev;
767
768 return NULL;
769}
770EXPORT_SYMBOL(dev_get_by_name_rcu);
771
1da177e4
LT
772/**
773 * dev_get_by_name - find a device by its name
c4ea43c5 774 * @net: the applicable net namespace
1da177e4
LT
775 * @name: name to find
776 *
777 * Find an interface by name. This can be called from any
778 * context and does its own locking. The returned handle has
779 * the usage count incremented and the caller must use dev_put() to
780 * release it when it is no longer needed. %NULL is returned if no
781 * matching device is found.
782 */
783
881d966b 784struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
785{
786 struct net_device *dev;
787
72c9528b
ED
788 rcu_read_lock();
789 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
790 if (dev)
791 dev_hold(dev);
72c9528b 792 rcu_read_unlock();
1da177e4
LT
793 return dev;
794}
d1b19dff 795EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
796
797/**
798 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 799 * @net: the applicable net namespace
1da177e4
LT
800 * @ifindex: index of device
801 *
802 * Search for an interface by index. Returns %NULL if the device
803 * is not found or a pointer to the device. The device has not
804 * had its reference counter increased so the caller must be careful
805 * about locking. The caller must hold either the RTNL semaphore
806 * or @dev_base_lock.
807 */
808
881d966b 809struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 810{
0bd8d536
ED
811 struct net_device *dev;
812 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 813
b67bfe0d 814 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
815 if (dev->ifindex == ifindex)
816 return dev;
0bd8d536 817
1da177e4
LT
818 return NULL;
819}
d1b19dff 820EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 821
fb699dfd
ED
822/**
823 * dev_get_by_index_rcu - find a device by its ifindex
824 * @net: the applicable net namespace
825 * @ifindex: index of device
826 *
827 * Search for an interface by index. Returns %NULL if the device
828 * is not found or a pointer to the device. The device has not
829 * had its reference counter increased so the caller must be careful
830 * about locking. The caller must hold RCU lock.
831 */
832
833struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834{
fb699dfd
ED
835 struct net_device *dev;
836 struct hlist_head *head = dev_index_hash(net, ifindex);
837
b67bfe0d 838 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
839 if (dev->ifindex == ifindex)
840 return dev;
841
842 return NULL;
843}
844EXPORT_SYMBOL(dev_get_by_index_rcu);
845
1da177e4
LT
846
847/**
848 * dev_get_by_index - find a device by its ifindex
c4ea43c5 849 * @net: the applicable net namespace
1da177e4
LT
850 * @ifindex: index of device
851 *
852 * Search for an interface by index. Returns NULL if the device
853 * is not found or a pointer to the device. The device returned has
854 * had a reference added and the pointer is safe until the user calls
855 * dev_put to indicate they have finished with it.
856 */
857
881d966b 858struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
859{
860 struct net_device *dev;
861
fb699dfd
ED
862 rcu_read_lock();
863 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
864 if (dev)
865 dev_hold(dev);
fb699dfd 866 rcu_read_unlock();
1da177e4
LT
867 return dev;
868}
d1b19dff 869EXPORT_SYMBOL(dev_get_by_index);
1da177e4 870
90b602f8
ML
871/**
872 * dev_get_by_napi_id - find a device by napi_id
873 * @napi_id: ID of the NAPI struct
874 *
875 * Search for an interface by NAPI ID. Returns %NULL if the device
876 * is not found or a pointer to the device. The device has not had
877 * its reference counter increased so the caller must be careful
878 * about locking. The caller must hold RCU lock.
879 */
880
881struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882{
883 struct napi_struct *napi;
884
885 WARN_ON_ONCE(!rcu_read_lock_held());
886
887 if (napi_id < MIN_NAPI_ID)
888 return NULL;
889
890 napi = napi_by_id(napi_id);
891
892 return napi ? napi->dev : NULL;
893}
894EXPORT_SYMBOL(dev_get_by_napi_id);
895
5dbe7c17
NS
896/**
897 * netdev_get_name - get a netdevice name, knowing its ifindex.
898 * @net: network namespace
899 * @name: a pointer to the buffer where the name will be stored.
900 * @ifindex: the ifindex of the interface to get the name from.
901 *
902 * The use of raw_seqcount_begin() and cond_resched() before
903 * retrying is required as we want to give the writers a chance
904 * to complete when CONFIG_PREEMPT is not set.
905 */
906int netdev_get_name(struct net *net, char *name, int ifindex)
907{
908 struct net_device *dev;
909 unsigned int seq;
910
911retry:
912 seq = raw_seqcount_begin(&devnet_rename_seq);
913 rcu_read_lock();
914 dev = dev_get_by_index_rcu(net, ifindex);
915 if (!dev) {
916 rcu_read_unlock();
917 return -ENODEV;
918 }
919
920 strcpy(name, dev->name);
921 rcu_read_unlock();
922 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 cond_resched();
924 goto retry;
925 }
926
927 return 0;
928}
929
1da177e4 930/**
941666c2 931 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 932 * @net: the applicable net namespace
1da177e4
LT
933 * @type: media type of device
934 * @ha: hardware address
935 *
936 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
937 * is not found or a pointer to the device.
938 * The caller must hold RCU or RTNL.
941666c2 939 * The returned device has not had its ref count increased
1da177e4
LT
940 * and the caller must therefore be careful about locking
941 *
1da177e4
LT
942 */
943
941666c2
ED
944struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 const char *ha)
1da177e4
LT
946{
947 struct net_device *dev;
948
941666c2 949 for_each_netdev_rcu(net, dev)
1da177e4
LT
950 if (dev->type == type &&
951 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
952 return dev;
953
954 return NULL;
1da177e4 955}
941666c2 956EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 957
881d966b 958struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
959{
960 struct net_device *dev;
961
4e9cac2b 962 ASSERT_RTNL();
881d966b 963 for_each_netdev(net, dev)
4e9cac2b 964 if (dev->type == type)
7562f876
PE
965 return dev;
966
967 return NULL;
4e9cac2b 968}
4e9cac2b
PM
969EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
881d966b 971struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 972{
99fe3c39 973 struct net_device *dev, *ret = NULL;
4e9cac2b 974
99fe3c39
ED
975 rcu_read_lock();
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type) {
978 dev_hold(dev);
979 ret = dev;
980 break;
981 }
982 rcu_read_unlock();
983 return ret;
1da177e4 984}
1da177e4
LT
985EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987/**
6c555490 988 * __dev_get_by_flags - find any device with given flags
c4ea43c5 989 * @net: the applicable net namespace
1da177e4
LT
990 * @if_flags: IFF_* values
991 * @mask: bitmask of bits in if_flags to check
992 *
993 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 994 * is not found or a pointer to the device. Must be called inside
6c555490 995 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
996 */
997
6c555490
WC
998struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 unsigned short mask)
1da177e4 1000{
7562f876 1001 struct net_device *dev, *ret;
1da177e4 1002
6c555490
WC
1003 ASSERT_RTNL();
1004
7562f876 1005 ret = NULL;
6c555490 1006 for_each_netdev(net, dev) {
1da177e4 1007 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1008 ret = dev;
1da177e4
LT
1009 break;
1010 }
1011 }
7562f876 1012 return ret;
1da177e4 1013}
6c555490 1014EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1015
1016/**
1017 * dev_valid_name - check if name is okay for network device
1018 * @name: name string
1019 *
1020 * Network device names need to be valid file names to
c7fa9d18
DM
1021 * to allow sysfs to work. We also disallow any kind of
1022 * whitespace.
1da177e4 1023 */
95f050bf 1024bool dev_valid_name(const char *name)
1da177e4 1025{
c7fa9d18 1026 if (*name == '\0')
95f050bf 1027 return false;
a9d48205 1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1029 return false;
c7fa9d18 1030 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1031 return false;
c7fa9d18
DM
1032
1033 while (*name) {
a4176a93 1034 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1035 return false;
c7fa9d18
DM
1036 name++;
1037 }
95f050bf 1038 return true;
1da177e4 1039}
d1b19dff 1040EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1041
1042/**
b267b179
EB
1043 * __dev_alloc_name - allocate a name for a device
1044 * @net: network namespace to allocate the device name in
1da177e4 1045 * @name: name format string
b267b179 1046 * @buf: scratch buffer and result name string
1da177e4
LT
1047 *
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1052 * duplicates.
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1055 */
1056
b267b179 1057static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1058{
1059 int i = 0;
1da177e4
LT
1060 const char *p;
1061 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1062 unsigned long *inuse;
1da177e4
LT
1063 struct net_device *d;
1064
93809105
RV
1065 if (!dev_valid_name(name))
1066 return -EINVAL;
1067
51f299dd 1068 p = strchr(name, '%');
1da177e4
LT
1069 if (p) {
1070 /*
1071 * Verify the string as this thing may have come from
1072 * the user. There must be either one "%d" and no other "%"
1073 * characters.
1074 */
1075 if (p[1] != 'd' || strchr(p + 2, '%'))
1076 return -EINVAL;
1077
1078 /* Use one page as a bit array of possible slots */
cfcabdcc 1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1080 if (!inuse)
1081 return -ENOMEM;
1082
881d966b 1083 for_each_netdev(net, d) {
1da177e4
LT
1084 if (!sscanf(d->name, name, &i))
1085 continue;
1086 if (i < 0 || i >= max_netdevices)
1087 continue;
1088
1089 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1090 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1091 if (!strncmp(buf, d->name, IFNAMSIZ))
1092 set_bit(i, inuse);
1093 }
1094
1095 i = find_first_zero_bit(inuse, max_netdevices);
1096 free_page((unsigned long) inuse);
1097 }
1098
6224abda 1099 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1100 if (!__dev_get_by_name(net, buf))
1da177e4 1101 return i;
1da177e4
LT
1102
1103 /* It is possible to run out of possible slots
1104 * when the name is long and there isn't enough space left
1105 * for the digits, or if all bits are used.
1106 */
029b6d14 1107 return -ENFILE;
1da177e4
LT
1108}
1109
2c88b855
RV
1110static int dev_alloc_name_ns(struct net *net,
1111 struct net_device *dev,
1112 const char *name)
1113{
1114 char buf[IFNAMSIZ];
1115 int ret;
1116
c46d7642 1117 BUG_ON(!net);
2c88b855
RV
1118 ret = __dev_alloc_name(net, name, buf);
1119 if (ret >= 0)
1120 strlcpy(dev->name, buf, IFNAMSIZ);
1121 return ret;
1da177e4
LT
1122}
1123
b267b179
EB
1124/**
1125 * dev_alloc_name - allocate a name for a device
1126 * @dev: device
1127 * @name: name format string
1128 *
1129 * Passed a format string - eg "lt%d" it will try and find a suitable
1130 * id. It scans list of devices to build up a free map, then chooses
1131 * the first empty slot. The caller must hold the dev_base or rtnl lock
1132 * while allocating the name and adding the device in order to avoid
1133 * duplicates.
1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135 * Returns the number of the unit assigned or a negative errno code.
1136 */
1137
1138int dev_alloc_name(struct net_device *dev, const char *name)
1139{
c46d7642 1140 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1141}
d1b19dff 1142EXPORT_SYMBOL(dev_alloc_name);
b267b179 1143
0ad646c8
CW
1144int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 const char *name)
828de4f6 1146{
55a5ec9b
DM
1147 BUG_ON(!net);
1148
1149 if (!dev_valid_name(name))
1150 return -EINVAL;
1151
1152 if (strchr(name, '%'))
1153 return dev_alloc_name_ns(net, dev, name);
1154 else if (__dev_get_by_name(net, name))
1155 return -EEXIST;
1156 else if (dev->name != name)
1157 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159 return 0;
d9031024 1160}
0ad646c8 1161EXPORT_SYMBOL(dev_get_valid_name);
1da177e4
LT
1162
1163/**
1164 * dev_change_name - change name of a device
1165 * @dev: device
1166 * @newname: name (or format string) must be at least IFNAMSIZ
1167 *
1168 * Change name of a device, can pass format strings "eth%d".
1169 * for wildcarding.
1170 */
cf04a4c7 1171int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1172{
238fa362 1173 unsigned char old_assign_type;
fcc5a03a 1174 char oldname[IFNAMSIZ];
1da177e4 1175 int err = 0;
fcc5a03a 1176 int ret;
881d966b 1177 struct net *net;
1da177e4
LT
1178
1179 ASSERT_RTNL();
c346dca1 1180 BUG_ON(!dev_net(dev));
1da177e4 1181
c346dca1 1182 net = dev_net(dev);
8065a779
SWL
1183
1184 /* Some auto-enslaved devices e.g. failover slaves are
1185 * special, as userspace might rename the device after
1186 * the interface had been brought up and running since
1187 * the point kernel initiated auto-enslavement. Allow
1188 * live name change even when these slave devices are
1189 * up and running.
1190 *
1191 * Typically, users of these auto-enslaving devices
1192 * don't actually care about slave name change, as
1193 * they are supposed to operate on master interface
1194 * directly.
1195 */
1196 if (dev->flags & IFF_UP &&
1197 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1198 return -EBUSY;
1199
30e6c9fa 1200 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1201
1202 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1203 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1204 return 0;
c91f6df2 1205 }
c8d90dca 1206
fcc5a03a
HX
1207 memcpy(oldname, dev->name, IFNAMSIZ);
1208
828de4f6 1209 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1210 if (err < 0) {
30e6c9fa 1211 write_seqcount_end(&devnet_rename_seq);
d9031024 1212 return err;
c91f6df2 1213 }
1da177e4 1214
6fe82a39
VF
1215 if (oldname[0] && !strchr(oldname, '%'))
1216 netdev_info(dev, "renamed from %s\n", oldname);
1217
238fa362
TG
1218 old_assign_type = dev->name_assign_type;
1219 dev->name_assign_type = NET_NAME_RENAMED;
1220
fcc5a03a 1221rollback:
a1b3f594
EB
1222 ret = device_rename(&dev->dev, dev->name);
1223 if (ret) {
1224 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1225 dev->name_assign_type = old_assign_type;
30e6c9fa 1226 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1227 return ret;
dcc99773 1228 }
7f988eab 1229
30e6c9fa 1230 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1231
5bb025fa
VF
1232 netdev_adjacent_rename_links(dev, oldname);
1233
7f988eab 1234 write_lock_bh(&dev_base_lock);
372b2312 1235 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1236 write_unlock_bh(&dev_base_lock);
1237
1238 synchronize_rcu();
1239
1240 write_lock_bh(&dev_base_lock);
1241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1242 write_unlock_bh(&dev_base_lock);
1243
056925ab 1244 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1245 ret = notifier_to_errno(ret);
1246
1247 if (ret) {
91e9c07b
ED
1248 /* err >= 0 after dev_alloc_name() or stores the first errno */
1249 if (err >= 0) {
fcc5a03a 1250 err = ret;
30e6c9fa 1251 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1252 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1253 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1254 dev->name_assign_type = old_assign_type;
1255 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1256 goto rollback;
91e9c07b 1257 } else {
7b6cd1ce 1258 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1259 dev->name, ret);
fcc5a03a
HX
1260 }
1261 }
1da177e4
LT
1262
1263 return err;
1264}
1265
0b815a1a
SH
1266/**
1267 * dev_set_alias - change ifalias of a device
1268 * @dev: device
1269 * @alias: name up to IFALIASZ
f0db275a 1270 * @len: limit of bytes to copy from info
0b815a1a
SH
1271 *
1272 * Set ifalias for a device,
1273 */
1274int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275{
6c557001 1276 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1277
1278 if (len >= IFALIASZ)
1279 return -EINVAL;
1280
6c557001
FW
1281 if (len) {
1282 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283 if (!new_alias)
1284 return -ENOMEM;
1285
1286 memcpy(new_alias->ifalias, alias, len);
1287 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1288 }
1289
6c557001
FW
1290 mutex_lock(&ifalias_mutex);
1291 rcu_swap_protected(dev->ifalias, new_alias,
1292 mutex_is_locked(&ifalias_mutex));
1293 mutex_unlock(&ifalias_mutex);
1294
1295 if (new_alias)
1296 kfree_rcu(new_alias, rcuhead);
0b815a1a 1297
0b815a1a
SH
1298 return len;
1299}
0fe554a4 1300EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1301
6c557001
FW
1302/**
1303 * dev_get_alias - get ifalias of a device
1304 * @dev: device
20e88320 1305 * @name: buffer to store name of ifalias
6c557001
FW
1306 * @len: size of buffer
1307 *
1308 * get ifalias for a device. Caller must make sure dev cannot go
1309 * away, e.g. rcu read lock or own a reference count to device.
1310 */
1311int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312{
1313 const struct dev_ifalias *alias;
1314 int ret = 0;
1315
1316 rcu_read_lock();
1317 alias = rcu_dereference(dev->ifalias);
1318 if (alias)
1319 ret = snprintf(name, len, "%s", alias->ifalias);
1320 rcu_read_unlock();
1321
1322 return ret;
1323}
0b815a1a 1324
d8a33ac4 1325/**
3041a069 1326 * netdev_features_change - device changes features
d8a33ac4
SH
1327 * @dev: device to cause notification
1328 *
1329 * Called to indicate a device has changed features.
1330 */
1331void netdev_features_change(struct net_device *dev)
1332{
056925ab 1333 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1334}
1335EXPORT_SYMBOL(netdev_features_change);
1336
1da177e4
LT
1337/**
1338 * netdev_state_change - device changes state
1339 * @dev: device to cause notification
1340 *
1341 * Called to indicate a device has changed state. This function calls
1342 * the notifier chains for netdev_chain and sends a NEWLINK message
1343 * to the routing socket.
1344 */
1345void netdev_state_change(struct net_device *dev)
1346{
1347 if (dev->flags & IFF_UP) {
51d0c047
DA
1348 struct netdev_notifier_change_info change_info = {
1349 .info.dev = dev,
1350 };
54951194 1351
51d0c047 1352 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1353 &change_info.info);
7f294054 1354 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1355 }
1356}
d1b19dff 1357EXPORT_SYMBOL(netdev_state_change);
1da177e4 1358
ee89bab1 1359/**
722c9a0c 1360 * netdev_notify_peers - notify network peers about existence of @dev
1361 * @dev: network device
ee89bab1
AW
1362 *
1363 * Generate traffic such that interested network peers are aware of
1364 * @dev, such as by generating a gratuitous ARP. This may be used when
1365 * a device wants to inform the rest of the network about some sort of
1366 * reconfiguration such as a failover event or virtual machine
1367 * migration.
1368 */
1369void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1370{
ee89bab1
AW
1371 rtnl_lock();
1372 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1373 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1374 rtnl_unlock();
c1da4ac7 1375}
ee89bab1 1376EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1377
40c900aa 1378static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1379{
d314774c 1380 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1381 int ret;
1da177e4 1382
e46b66bc
BH
1383 ASSERT_RTNL();
1384
1da177e4
LT
1385 if (!netif_device_present(dev))
1386 return -ENODEV;
1387
ca99ca14
NH
1388 /* Block netpoll from trying to do any rx path servicing.
1389 * If we don't do this there is a chance ndo_poll_controller
1390 * or ndo_poll may be running while we open the device
1391 */
66b5552f 1392 netpoll_poll_disable(dev);
ca99ca14 1393
40c900aa 1394 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1395 ret = notifier_to_errno(ret);
1396 if (ret)
1397 return ret;
1398
1da177e4 1399 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1400
d314774c
SH
1401 if (ops->ndo_validate_addr)
1402 ret = ops->ndo_validate_addr(dev);
bada339b 1403
d314774c
SH
1404 if (!ret && ops->ndo_open)
1405 ret = ops->ndo_open(dev);
1da177e4 1406
66b5552f 1407 netpoll_poll_enable(dev);
ca99ca14 1408
bada339b
JG
1409 if (ret)
1410 clear_bit(__LINK_STATE_START, &dev->state);
1411 else {
1da177e4 1412 dev->flags |= IFF_UP;
4417da66 1413 dev_set_rx_mode(dev);
1da177e4 1414 dev_activate(dev);
7bf23575 1415 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1416 }
bada339b 1417
1da177e4
LT
1418 return ret;
1419}
1420
1421/**
bd380811 1422 * dev_open - prepare an interface for use.
00f54e68
PM
1423 * @dev: device to open
1424 * @extack: netlink extended ack
1da177e4 1425 *
bd380811
PM
1426 * Takes a device from down to up state. The device's private open
1427 * function is invoked and then the multicast lists are loaded. Finally
1428 * the device is moved into the up state and a %NETDEV_UP message is
1429 * sent to the netdev notifier chain.
1430 *
1431 * Calling this function on an active interface is a nop. On a failure
1432 * a negative errno code is returned.
1da177e4 1433 */
00f54e68 1434int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1435{
1436 int ret;
1437
bd380811
PM
1438 if (dev->flags & IFF_UP)
1439 return 0;
1440
40c900aa 1441 ret = __dev_open(dev, extack);
bd380811
PM
1442 if (ret < 0)
1443 return ret;
1444
7f294054 1445 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1446 call_netdevice_notifiers(NETDEV_UP, dev);
1447
1448 return ret;
1449}
1450EXPORT_SYMBOL(dev_open);
1451
7051b88a 1452static void __dev_close_many(struct list_head *head)
1da177e4 1453{
44345724 1454 struct net_device *dev;
e46b66bc 1455
bd380811 1456 ASSERT_RTNL();
9d5010db
DM
1457 might_sleep();
1458
5cde2829 1459 list_for_each_entry(dev, head, close_list) {
3f4df206 1460 /* Temporarily disable netpoll until the interface is down */
66b5552f 1461 netpoll_poll_disable(dev);
3f4df206 1462
44345724 1463 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1464
44345724 1465 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1466
44345724
OP
1467 /* Synchronize to scheduled poll. We cannot touch poll list, it
1468 * can be even on different cpu. So just clear netif_running().
1469 *
1470 * dev->stop() will invoke napi_disable() on all of it's
1471 * napi_struct instances on this device.
1472 */
4e857c58 1473 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1474 }
1da177e4 1475
44345724 1476 dev_deactivate_many(head);
d8b2a4d2 1477
5cde2829 1478 list_for_each_entry(dev, head, close_list) {
44345724 1479 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1480
44345724
OP
1481 /*
1482 * Call the device specific close. This cannot fail.
1483 * Only if device is UP
1484 *
1485 * We allow it to be called even after a DETACH hot-plug
1486 * event.
1487 */
1488 if (ops->ndo_stop)
1489 ops->ndo_stop(dev);
1490
44345724 1491 dev->flags &= ~IFF_UP;
66b5552f 1492 netpoll_poll_enable(dev);
44345724 1493 }
44345724
OP
1494}
1495
7051b88a 1496static void __dev_close(struct net_device *dev)
44345724
OP
1497{
1498 LIST_HEAD(single);
1499
5cde2829 1500 list_add(&dev->close_list, &single);
7051b88a 1501 __dev_close_many(&single);
f87e6f47 1502 list_del(&single);
44345724
OP
1503}
1504
7051b88a 1505void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1506{
1507 struct net_device *dev, *tmp;
1da177e4 1508
5cde2829
EB
1509 /* Remove the devices that don't need to be closed */
1510 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1511 if (!(dev->flags & IFF_UP))
5cde2829 1512 list_del_init(&dev->close_list);
44345724
OP
1513
1514 __dev_close_many(head);
1da177e4 1515
5cde2829 1516 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1517 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1518 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1519 if (unlink)
1520 list_del_init(&dev->close_list);
44345724 1521 }
bd380811 1522}
99c4a26a 1523EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1524
1525/**
1526 * dev_close - shutdown an interface.
1527 * @dev: device to shutdown
1528 *
1529 * This function moves an active device into down state. A
1530 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1532 * chain.
1533 */
7051b88a 1534void dev_close(struct net_device *dev)
bd380811 1535{
e14a5993
ED
1536 if (dev->flags & IFF_UP) {
1537 LIST_HEAD(single);
1da177e4 1538
5cde2829 1539 list_add(&dev->close_list, &single);
99c4a26a 1540 dev_close_many(&single, true);
e14a5993
ED
1541 list_del(&single);
1542 }
1da177e4 1543}
d1b19dff 1544EXPORT_SYMBOL(dev_close);
1da177e4
LT
1545
1546
0187bdfb
BH
1547/**
1548 * dev_disable_lro - disable Large Receive Offload on a device
1549 * @dev: device
1550 *
1551 * Disable Large Receive Offload (LRO) on a net device. Must be
1552 * called under RTNL. This is needed if received packets may be
1553 * forwarded to another interface.
1554 */
1555void dev_disable_lro(struct net_device *dev)
1556{
fbe168ba
MK
1557 struct net_device *lower_dev;
1558 struct list_head *iter;
529d0489 1559
bc5787c6
MM
1560 dev->wanted_features &= ~NETIF_F_LRO;
1561 netdev_update_features(dev);
27660515 1562
22d5969f
MM
1563 if (unlikely(dev->features & NETIF_F_LRO))
1564 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1565
1566 netdev_for_each_lower_dev(dev, lower_dev, iter)
1567 dev_disable_lro(lower_dev);
0187bdfb
BH
1568}
1569EXPORT_SYMBOL(dev_disable_lro);
1570
56f5aa77
MC
1571/**
1572 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1573 * @dev: device
1574 *
1575 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1576 * called under RTNL. This is needed if Generic XDP is installed on
1577 * the device.
1578 */
1579static void dev_disable_gro_hw(struct net_device *dev)
1580{
1581 dev->wanted_features &= ~NETIF_F_GRO_HW;
1582 netdev_update_features(dev);
1583
1584 if (unlikely(dev->features & NETIF_F_GRO_HW))
1585 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1586}
1587
ede2762d
KT
1588const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1589{
1590#define N(val) \
1591 case NETDEV_##val: \
1592 return "NETDEV_" __stringify(val);
1593 switch (cmd) {
1594 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1595 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1596 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1597 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1598 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1599 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1600 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1601 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1602 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1603 N(PRE_CHANGEADDR)
3f5ecd8a 1604 }
ede2762d
KT
1605#undef N
1606 return "UNKNOWN_NETDEV_EVENT";
1607}
1608EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1609
351638e7
JP
1610static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1611 struct net_device *dev)
1612{
51d0c047
DA
1613 struct netdev_notifier_info info = {
1614 .dev = dev,
1615 };
351638e7 1616
351638e7
JP
1617 return nb->notifier_call(nb, val, &info);
1618}
0187bdfb 1619
881d966b
EB
1620static int dev_boot_phase = 1;
1621
1da177e4 1622/**
722c9a0c 1623 * register_netdevice_notifier - register a network notifier block
1624 * @nb: notifier
1da177e4 1625 *
722c9a0c 1626 * Register a notifier to be called when network device events occur.
1627 * The notifier passed is linked into the kernel structures and must
1628 * not be reused until it has been unregistered. A negative errno code
1629 * is returned on a failure.
1da177e4 1630 *
722c9a0c 1631 * When registered all registration and up events are replayed
1632 * to the new notifier to allow device to have a race free
1633 * view of the network device list.
1da177e4
LT
1634 */
1635
1636int register_netdevice_notifier(struct notifier_block *nb)
1637{
1638 struct net_device *dev;
fcc5a03a 1639 struct net_device *last;
881d966b 1640 struct net *net;
1da177e4
LT
1641 int err;
1642
328fbe74
KT
1643 /* Close race with setup_net() and cleanup_net() */
1644 down_write(&pernet_ops_rwsem);
1da177e4 1645 rtnl_lock();
f07d5b94 1646 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1647 if (err)
1648 goto unlock;
881d966b
EB
1649 if (dev_boot_phase)
1650 goto unlock;
1651 for_each_net(net) {
1652 for_each_netdev(net, dev) {
351638e7 1653 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1654 err = notifier_to_errno(err);
1655 if (err)
1656 goto rollback;
1657
1658 if (!(dev->flags & IFF_UP))
1659 continue;
1da177e4 1660
351638e7 1661 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1662 }
1da177e4 1663 }
fcc5a03a
HX
1664
1665unlock:
1da177e4 1666 rtnl_unlock();
328fbe74 1667 up_write(&pernet_ops_rwsem);
1da177e4 1668 return err;
fcc5a03a
HX
1669
1670rollback:
1671 last = dev;
881d966b
EB
1672 for_each_net(net) {
1673 for_each_netdev(net, dev) {
1674 if (dev == last)
8f891489 1675 goto outroll;
fcc5a03a 1676
881d966b 1677 if (dev->flags & IFF_UP) {
351638e7
JP
1678 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1679 dev);
1680 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1681 }
351638e7 1682 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1683 }
fcc5a03a 1684 }
c67625a1 1685
8f891489 1686outroll:
c67625a1 1687 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1688 goto unlock;
1da177e4 1689}
d1b19dff 1690EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1691
1692/**
722c9a0c 1693 * unregister_netdevice_notifier - unregister a network notifier block
1694 * @nb: notifier
1da177e4 1695 *
722c9a0c 1696 * Unregister a notifier previously registered by
1697 * register_netdevice_notifier(). The notifier is unlinked into the
1698 * kernel structures and may then be reused. A negative errno code
1699 * is returned on a failure.
7d3d43da 1700 *
722c9a0c 1701 * After unregistering unregister and down device events are synthesized
1702 * for all devices on the device list to the removed notifier to remove
1703 * the need for special case cleanup code.
1da177e4
LT
1704 */
1705
1706int unregister_netdevice_notifier(struct notifier_block *nb)
1707{
7d3d43da
EB
1708 struct net_device *dev;
1709 struct net *net;
9f514950
HX
1710 int err;
1711
328fbe74
KT
1712 /* Close race with setup_net() and cleanup_net() */
1713 down_write(&pernet_ops_rwsem);
9f514950 1714 rtnl_lock();
f07d5b94 1715 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1716 if (err)
1717 goto unlock;
1718
1719 for_each_net(net) {
1720 for_each_netdev(net, dev) {
1721 if (dev->flags & IFF_UP) {
351638e7
JP
1722 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723 dev);
1724 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1725 }
351638e7 1726 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1727 }
1728 }
1729unlock:
9f514950 1730 rtnl_unlock();
328fbe74 1731 up_write(&pernet_ops_rwsem);
9f514950 1732 return err;
1da177e4 1733}
d1b19dff 1734EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1735
351638e7
JP
1736/**
1737 * call_netdevice_notifiers_info - call all network notifier blocks
1738 * @val: value passed unmodified to notifier function
351638e7
JP
1739 * @info: notifier information data
1740 *
1741 * Call all network notifier blocks. Parameters and return value
1742 * are as for raw_notifier_call_chain().
1743 */
1744
1d143d9f 1745static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1746 struct netdev_notifier_info *info)
351638e7
JP
1747{
1748 ASSERT_RTNL();
351638e7
JP
1749 return raw_notifier_call_chain(&netdev_chain, val, info);
1750}
351638e7 1751
26372605
PM
1752static int call_netdevice_notifiers_extack(unsigned long val,
1753 struct net_device *dev,
1754 struct netlink_ext_ack *extack)
1755{
1756 struct netdev_notifier_info info = {
1757 .dev = dev,
1758 .extack = extack,
1759 };
1760
1761 return call_netdevice_notifiers_info(val, &info);
1762}
1763
1da177e4
LT
1764/**
1765 * call_netdevice_notifiers - call all network notifier blocks
1766 * @val: value passed unmodified to notifier function
c4ea43c5 1767 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1768 *
1769 * Call all network notifier blocks. Parameters and return value
f07d5b94 1770 * are as for raw_notifier_call_chain().
1da177e4
LT
1771 */
1772
ad7379d4 1773int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1774{
26372605 1775 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 1776}
edf947f1 1777EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1778
af7d6cce
SD
1779/**
1780 * call_netdevice_notifiers_mtu - call all network notifier blocks
1781 * @val: value passed unmodified to notifier function
1782 * @dev: net_device pointer passed unmodified to notifier function
1783 * @arg: additional u32 argument passed to the notifier function
1784 *
1785 * Call all network notifier blocks. Parameters and return value
1786 * are as for raw_notifier_call_chain().
1787 */
1788static int call_netdevice_notifiers_mtu(unsigned long val,
1789 struct net_device *dev, u32 arg)
1790{
1791 struct netdev_notifier_info_ext info = {
1792 .info.dev = dev,
1793 .ext.mtu = arg,
1794 };
1795
1796 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1797
1798 return call_netdevice_notifiers_info(val, &info.info);
1799}
1800
1cf51900 1801#ifdef CONFIG_NET_INGRESS
aabf6772 1802static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
1803
1804void net_inc_ingress_queue(void)
1805{
aabf6772 1806 static_branch_inc(&ingress_needed_key);
4577139b
DB
1807}
1808EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1809
1810void net_dec_ingress_queue(void)
1811{
aabf6772 1812 static_branch_dec(&ingress_needed_key);
4577139b
DB
1813}
1814EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1815#endif
1816
1f211a1b 1817#ifdef CONFIG_NET_EGRESS
aabf6772 1818static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
1819
1820void net_inc_egress_queue(void)
1821{
aabf6772 1822 static_branch_inc(&egress_needed_key);
1f211a1b
DB
1823}
1824EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1825
1826void net_dec_egress_queue(void)
1827{
aabf6772 1828 static_branch_dec(&egress_needed_key);
1f211a1b
DB
1829}
1830EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1831#endif
1832
39e83922 1833static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 1834#ifdef CONFIG_JUMP_LABEL
b90e5794 1835static atomic_t netstamp_needed_deferred;
13baa00a 1836static atomic_t netstamp_wanted;
5fa8bbda 1837static void netstamp_clear(struct work_struct *work)
1da177e4 1838{
b90e5794 1839 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1840 int wanted;
b90e5794 1841
13baa00a
ED
1842 wanted = atomic_add_return(deferred, &netstamp_wanted);
1843 if (wanted > 0)
39e83922 1844 static_branch_enable(&netstamp_needed_key);
13baa00a 1845 else
39e83922 1846 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
1847}
1848static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1849#endif
5fa8bbda
ED
1850
1851void net_enable_timestamp(void)
1852{
e9666d10 1853#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
1854 int wanted;
1855
1856 while (1) {
1857 wanted = atomic_read(&netstamp_wanted);
1858 if (wanted <= 0)
1859 break;
1860 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1861 return;
1862 }
1863 atomic_inc(&netstamp_needed_deferred);
1864 schedule_work(&netstamp_work);
1865#else
39e83922 1866 static_branch_inc(&netstamp_needed_key);
13baa00a 1867#endif
1da177e4 1868}
d1b19dff 1869EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1870
1871void net_disable_timestamp(void)
1872{
e9666d10 1873#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
1874 int wanted;
1875
1876 while (1) {
1877 wanted = atomic_read(&netstamp_wanted);
1878 if (wanted <= 1)
1879 break;
1880 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1881 return;
1882 }
1883 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1884 schedule_work(&netstamp_work);
1885#else
39e83922 1886 static_branch_dec(&netstamp_needed_key);
5fa8bbda 1887#endif
1da177e4 1888}
d1b19dff 1889EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1890
3b098e2d 1891static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1892{
2456e855 1893 skb->tstamp = 0;
39e83922 1894 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 1895 __net_timestamp(skb);
1da177e4
LT
1896}
1897
39e83922
DB
1898#define net_timestamp_check(COND, SKB) \
1899 if (static_branch_unlikely(&netstamp_needed_key)) { \
1900 if ((COND) && !(SKB)->tstamp) \
1901 __net_timestamp(SKB); \
1902 } \
3b098e2d 1903
f4b05d27 1904bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1905{
1906 unsigned int len;
1907
1908 if (!(dev->flags & IFF_UP))
1909 return false;
1910
1911 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1912 if (skb->len <= len)
1913 return true;
1914
1915 /* if TSO is enabled, we don't care about the length as the packet
1916 * could be forwarded without being segmented before
1917 */
1918 if (skb_is_gso(skb))
1919 return true;
1920
1921 return false;
1922}
1ee481fb 1923EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1924
a0265d28
HX
1925int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1926{
4e3264d2 1927 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1928
4e3264d2
MKL
1929 if (likely(!ret)) {
1930 skb->protocol = eth_type_trans(skb, dev);
1931 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1932 }
a0265d28 1933
4e3264d2 1934 return ret;
a0265d28
HX
1935}
1936EXPORT_SYMBOL_GPL(__dev_forward_skb);
1937
44540960
AB
1938/**
1939 * dev_forward_skb - loopback an skb to another netif
1940 *
1941 * @dev: destination network device
1942 * @skb: buffer to forward
1943 *
1944 * return values:
1945 * NET_RX_SUCCESS (no congestion)
6ec82562 1946 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1947 *
1948 * dev_forward_skb can be used for injecting an skb from the
1949 * start_xmit function of one device into the receive queue
1950 * of another device.
1951 *
1952 * The receiving device may be in another namespace, so
1953 * we have to clear all information in the skb that could
1954 * impact namespace isolation.
1955 */
1956int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1957{
a0265d28 1958 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1959}
1960EXPORT_SYMBOL_GPL(dev_forward_skb);
1961
71d9dec2
CG
1962static inline int deliver_skb(struct sk_buff *skb,
1963 struct packet_type *pt_prev,
1964 struct net_device *orig_dev)
1965{
1f8b977a 1966 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 1967 return -ENOMEM;
63354797 1968 refcount_inc(&skb->users);
71d9dec2
CG
1969 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1970}
1971
7866a621
SN
1972static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1973 struct packet_type **pt,
fbcb2170
JP
1974 struct net_device *orig_dev,
1975 __be16 type,
7866a621
SN
1976 struct list_head *ptype_list)
1977{
1978 struct packet_type *ptype, *pt_prev = *pt;
1979
1980 list_for_each_entry_rcu(ptype, ptype_list, list) {
1981 if (ptype->type != type)
1982 continue;
1983 if (pt_prev)
fbcb2170 1984 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1985 pt_prev = ptype;
1986 }
1987 *pt = pt_prev;
1988}
1989
c0de08d0
EL
1990static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1991{
a3d744e9 1992 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1993 return false;
1994
1995 if (ptype->id_match)
1996 return ptype->id_match(ptype, skb->sk);
1997 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1998 return true;
1999
2000 return false;
2001}
2002
9f9a742d
MR
2003/**
2004 * dev_nit_active - return true if any network interface taps are in use
2005 *
2006 * @dev: network device to check for the presence of taps
2007 */
2008bool dev_nit_active(struct net_device *dev)
2009{
2010 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2011}
2012EXPORT_SYMBOL_GPL(dev_nit_active);
2013
1da177e4
LT
2014/*
2015 * Support routine. Sends outgoing frames to any network
2016 * taps currently in use.
2017 */
2018
74b20582 2019void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2020{
2021 struct packet_type *ptype;
71d9dec2
CG
2022 struct sk_buff *skb2 = NULL;
2023 struct packet_type *pt_prev = NULL;
7866a621 2024 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2025
1da177e4 2026 rcu_read_lock();
7866a621
SN
2027again:
2028 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2029 if (ptype->ignore_outgoing)
2030 continue;
2031
1da177e4
LT
2032 /* Never send packets back to the socket
2033 * they originated from - MvS (miquels@drinkel.ow.org)
2034 */
7866a621
SN
2035 if (skb_loop_sk(ptype, skb))
2036 continue;
71d9dec2 2037
7866a621
SN
2038 if (pt_prev) {
2039 deliver_skb(skb2, pt_prev, skb->dev);
2040 pt_prev = ptype;
2041 continue;
2042 }
1da177e4 2043
7866a621
SN
2044 /* need to clone skb, done only once */
2045 skb2 = skb_clone(skb, GFP_ATOMIC);
2046 if (!skb2)
2047 goto out_unlock;
70978182 2048
7866a621 2049 net_timestamp_set(skb2);
1da177e4 2050
7866a621
SN
2051 /* skb->nh should be correctly
2052 * set by sender, so that the second statement is
2053 * just protection against buggy protocols.
2054 */
2055 skb_reset_mac_header(skb2);
2056
2057 if (skb_network_header(skb2) < skb2->data ||
2058 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2059 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060 ntohs(skb2->protocol),
2061 dev->name);
2062 skb_reset_network_header(skb2);
1da177e4 2063 }
7866a621
SN
2064
2065 skb2->transport_header = skb2->network_header;
2066 skb2->pkt_type = PACKET_OUTGOING;
2067 pt_prev = ptype;
2068 }
2069
2070 if (ptype_list == &ptype_all) {
2071 ptype_list = &dev->ptype_all;
2072 goto again;
1da177e4 2073 }
7866a621 2074out_unlock:
581fe0ea
WB
2075 if (pt_prev) {
2076 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2077 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2078 else
2079 kfree_skb(skb2);
2080 }
1da177e4
LT
2081 rcu_read_unlock();
2082}
74b20582 2083EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2084
2c53040f
BH
2085/**
2086 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2087 * @dev: Network device
2088 * @txq: number of queues available
2089 *
2090 * If real_num_tx_queues is changed the tc mappings may no longer be
2091 * valid. To resolve this verify the tc mapping remains valid and if
2092 * not NULL the mapping. With no priorities mapping to this
2093 * offset/count pair it will no longer be used. In the worst case TC0
2094 * is invalid nothing can be done so disable priority mappings. If is
2095 * expected that drivers will fix this mapping if they can before
2096 * calling netif_set_real_num_tx_queues.
2097 */
bb134d22 2098static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2099{
2100 int i;
2101 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2102
2103 /* If TC0 is invalidated disable TC mapping */
2104 if (tc->offset + tc->count > txq) {
7b6cd1ce 2105 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2106 dev->num_tc = 0;
2107 return;
2108 }
2109
2110 /* Invalidated prio to tc mappings set to TC0 */
2111 for (i = 1; i < TC_BITMASK + 1; i++) {
2112 int q = netdev_get_prio_tc_map(dev, i);
2113
2114 tc = &dev->tc_to_txq[q];
2115 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2116 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2117 i, q);
4f57c087
JF
2118 netdev_set_prio_tc_map(dev, i, 0);
2119 }
2120 }
2121}
2122
8d059b0f
AD
2123int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2124{
2125 if (dev->num_tc) {
2126 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2127 int i;
2128
ffcfe25b 2129 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2130 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2131 if ((txq - tc->offset) < tc->count)
2132 return i;
2133 }
2134
ffcfe25b 2135 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2136 return -1;
2137 }
2138
2139 return 0;
2140}
8a5f2166 2141EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2142
537c00de 2143#ifdef CONFIG_XPS
04157469
AN
2144struct static_key xps_needed __read_mostly;
2145EXPORT_SYMBOL(xps_needed);
2146struct static_key xps_rxqs_needed __read_mostly;
2147EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2148static DEFINE_MUTEX(xps_map_mutex);
2149#define xmap_dereference(P) \
2150 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2151
6234f874
AD
2152static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2153 int tci, u16 index)
537c00de 2154{
10cdc3f3
AD
2155 struct xps_map *map = NULL;
2156 int pos;
537c00de 2157
10cdc3f3 2158 if (dev_maps)
80d19669 2159 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2160 if (!map)
2161 return false;
537c00de 2162
6234f874
AD
2163 for (pos = map->len; pos--;) {
2164 if (map->queues[pos] != index)
2165 continue;
2166
2167 if (map->len > 1) {
2168 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2169 break;
537c00de 2170 }
6234f874 2171
80d19669 2172 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2173 kfree_rcu(map, rcu);
2174 return false;
537c00de
AD
2175 }
2176
6234f874 2177 return true;
10cdc3f3
AD
2178}
2179
6234f874
AD
2180static bool remove_xps_queue_cpu(struct net_device *dev,
2181 struct xps_dev_maps *dev_maps,
2182 int cpu, u16 offset, u16 count)
2183{
184c449f
AD
2184 int num_tc = dev->num_tc ? : 1;
2185 bool active = false;
2186 int tci;
6234f874 2187
184c449f
AD
2188 for (tci = cpu * num_tc; num_tc--; tci++) {
2189 int i, j;
2190
2191 for (i = count, j = offset; i--; j++) {
6358d49a 2192 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2193 break;
2194 }
2195
2196 active |= i < 0;
6234f874
AD
2197 }
2198
184c449f 2199 return active;
6234f874
AD
2200}
2201
867d0ad4
SD
2202static void reset_xps_maps(struct net_device *dev,
2203 struct xps_dev_maps *dev_maps,
2204 bool is_rxqs_map)
2205{
2206 if (is_rxqs_map) {
2207 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2208 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2209 } else {
2210 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2211 }
2212 static_key_slow_dec_cpuslocked(&xps_needed);
2213 kfree_rcu(dev_maps, rcu);
2214}
2215
80d19669
AN
2216static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2217 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2218 u16 offset, u16 count, bool is_rxqs_map)
2219{
2220 bool active = false;
2221 int i, j;
2222
2223 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2224 j < nr_ids;)
2225 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2226 count);
867d0ad4
SD
2227 if (!active)
2228 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2229
f28c020f
SD
2230 if (!is_rxqs_map) {
2231 for (i = offset + (count - 1); count--; i--) {
2232 netdev_queue_numa_node_write(
2233 netdev_get_tx_queue(dev, i),
2234 NUMA_NO_NODE);
80d19669 2235 }
80d19669
AN
2236 }
2237}
2238
6234f874
AD
2239static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2240 u16 count)
10cdc3f3 2241{
80d19669 2242 const unsigned long *possible_mask = NULL;
10cdc3f3 2243 struct xps_dev_maps *dev_maps;
80d19669 2244 unsigned int nr_ids;
10cdc3f3 2245
04157469
AN
2246 if (!static_key_false(&xps_needed))
2247 return;
10cdc3f3 2248
4d99f660 2249 cpus_read_lock();
04157469 2250 mutex_lock(&xps_map_mutex);
10cdc3f3 2251
04157469
AN
2252 if (static_key_false(&xps_rxqs_needed)) {
2253 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2254 if (dev_maps) {
2255 nr_ids = dev->num_rx_queues;
2256 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2257 offset, count, true);
2258 }
537c00de
AD
2259 }
2260
80d19669
AN
2261 dev_maps = xmap_dereference(dev->xps_cpus_map);
2262 if (!dev_maps)
2263 goto out_no_maps;
2264
2265 if (num_possible_cpus() > 1)
2266 possible_mask = cpumask_bits(cpu_possible_mask);
2267 nr_ids = nr_cpu_ids;
2268 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2269 false);
024e9679 2270
537c00de
AD
2271out_no_maps:
2272 mutex_unlock(&xps_map_mutex);
4d99f660 2273 cpus_read_unlock();
537c00de
AD
2274}
2275
6234f874
AD
2276static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2277{
2278 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2279}
2280
80d19669
AN
2281static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2282 u16 index, bool is_rxqs_map)
01c5f864
AD
2283{
2284 struct xps_map *new_map;
2285 int alloc_len = XPS_MIN_MAP_ALLOC;
2286 int i, pos;
2287
2288 for (pos = 0; map && pos < map->len; pos++) {
2289 if (map->queues[pos] != index)
2290 continue;
2291 return map;
2292 }
2293
80d19669 2294 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2295 if (map) {
2296 if (pos < map->alloc_len)
2297 return map;
2298
2299 alloc_len = map->alloc_len * 2;
2300 }
2301
80d19669
AN
2302 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2303 * map
2304 */
2305 if (is_rxqs_map)
2306 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2307 else
2308 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2309 cpu_to_node(attr_index));
01c5f864
AD
2310 if (!new_map)
2311 return NULL;
2312
2313 for (i = 0; i < pos; i++)
2314 new_map->queues[i] = map->queues[i];
2315 new_map->alloc_len = alloc_len;
2316 new_map->len = pos;
2317
2318 return new_map;
2319}
2320
4d99f660 2321/* Must be called under cpus_read_lock */
80d19669
AN
2322int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2323 u16 index, bool is_rxqs_map)
537c00de 2324{
80d19669 2325 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2326 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2327 int i, j, tci, numa_node_id = -2;
184c449f 2328 int maps_sz, num_tc = 1, tc = 0;
537c00de 2329 struct xps_map *map, *new_map;
01c5f864 2330 bool active = false;
80d19669 2331 unsigned int nr_ids;
537c00de 2332
184c449f 2333 if (dev->num_tc) {
ffcfe25b 2334 /* Do not allow XPS on subordinate device directly */
184c449f 2335 num_tc = dev->num_tc;
ffcfe25b
AD
2336 if (num_tc < 0)
2337 return -EINVAL;
2338
2339 /* If queue belongs to subordinate dev use its map */
2340 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2341
184c449f
AD
2342 tc = netdev_txq_to_tc(dev, index);
2343 if (tc < 0)
2344 return -EINVAL;
2345 }
2346
537c00de 2347 mutex_lock(&xps_map_mutex);
80d19669
AN
2348 if (is_rxqs_map) {
2349 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2350 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2351 nr_ids = dev->num_rx_queues;
2352 } else {
2353 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2354 if (num_possible_cpus() > 1) {
2355 online_mask = cpumask_bits(cpu_online_mask);
2356 possible_mask = cpumask_bits(cpu_possible_mask);
2357 }
2358 dev_maps = xmap_dereference(dev->xps_cpus_map);
2359 nr_ids = nr_cpu_ids;
2360 }
537c00de 2361
80d19669
AN
2362 if (maps_sz < L1_CACHE_BYTES)
2363 maps_sz = L1_CACHE_BYTES;
537c00de 2364
01c5f864 2365 /* allocate memory for queue storage */
80d19669
AN
2366 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2367 j < nr_ids;) {
01c5f864
AD
2368 if (!new_dev_maps)
2369 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2370 if (!new_dev_maps) {
2371 mutex_unlock(&xps_map_mutex);
01c5f864 2372 return -ENOMEM;
2bb60cb9 2373 }
01c5f864 2374
80d19669
AN
2375 tci = j * num_tc + tc;
2376 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2377 NULL;
2378
80d19669 2379 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2380 if (!map)
2381 goto error;
2382
80d19669 2383 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2384 }
2385
2386 if (!new_dev_maps)
2387 goto out_no_new_maps;
2388
867d0ad4
SD
2389 if (!dev_maps) {
2390 /* Increment static keys at most once per type */
2391 static_key_slow_inc_cpuslocked(&xps_needed);
2392 if (is_rxqs_map)
2393 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2394 }
04157469 2395
80d19669
AN
2396 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2397 j < nr_ids;) {
184c449f 2398 /* copy maps belonging to foreign traffic classes */
80d19669 2399 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2400 /* fill in the new device map from the old device map */
80d19669
AN
2401 map = xmap_dereference(dev_maps->attr_map[tci]);
2402 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2403 }
2404
2405 /* We need to explicitly update tci as prevous loop
2406 * could break out early if dev_maps is NULL.
2407 */
80d19669 2408 tci = j * num_tc + tc;
184c449f 2409
80d19669
AN
2410 if (netif_attr_test_mask(j, mask, nr_ids) &&
2411 netif_attr_test_online(j, online_mask, nr_ids)) {
2412 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2413 int pos = 0;
2414
80d19669 2415 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2416 while ((pos < map->len) && (map->queues[pos] != index))
2417 pos++;
2418
2419 if (pos == map->len)
2420 map->queues[map->len++] = index;
537c00de 2421#ifdef CONFIG_NUMA
80d19669
AN
2422 if (!is_rxqs_map) {
2423 if (numa_node_id == -2)
2424 numa_node_id = cpu_to_node(j);
2425 else if (numa_node_id != cpu_to_node(j))
2426 numa_node_id = -1;
2427 }
537c00de 2428#endif
01c5f864
AD
2429 } else if (dev_maps) {
2430 /* fill in the new device map from the old device map */
80d19669
AN
2431 map = xmap_dereference(dev_maps->attr_map[tci]);
2432 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2433 }
01c5f864 2434
184c449f
AD
2435 /* copy maps belonging to foreign traffic classes */
2436 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2437 /* fill in the new device map from the old device map */
80d19669
AN
2438 map = xmap_dereference(dev_maps->attr_map[tci]);
2439 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2440 }
537c00de
AD
2441 }
2442
80d19669
AN
2443 if (is_rxqs_map)
2444 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2445 else
2446 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2447
537c00de 2448 /* Cleanup old maps */
184c449f
AD
2449 if (!dev_maps)
2450 goto out_no_old_maps;
2451
80d19669
AN
2452 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2453 j < nr_ids;) {
2454 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2455 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2456 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2457 if (map && map != new_map)
2458 kfree_rcu(map, rcu);
2459 }
537c00de
AD
2460 }
2461
184c449f
AD
2462 kfree_rcu(dev_maps, rcu);
2463
2464out_no_old_maps:
01c5f864
AD
2465 dev_maps = new_dev_maps;
2466 active = true;
537c00de 2467
01c5f864 2468out_no_new_maps:
80d19669
AN
2469 if (!is_rxqs_map) {
2470 /* update Tx queue numa node */
2471 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2472 (numa_node_id >= 0) ?
2473 numa_node_id : NUMA_NO_NODE);
2474 }
537c00de 2475
01c5f864
AD
2476 if (!dev_maps)
2477 goto out_no_maps;
2478
80d19669
AN
2479 /* removes tx-queue from unused CPUs/rx-queues */
2480 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2481 j < nr_ids;) {
2482 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2483 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2484 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2485 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2486 active |= remove_xps_queue(dev_maps, tci, index);
2487 for (i = num_tc - tc, tci++; --i; tci++)
2488 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2489 }
2490
2491 /* free map if not active */
867d0ad4
SD
2492 if (!active)
2493 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2494
2495out_no_maps:
537c00de
AD
2496 mutex_unlock(&xps_map_mutex);
2497
2498 return 0;
2499error:
01c5f864 2500 /* remove any maps that we added */
80d19669
AN
2501 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2502 j < nr_ids;) {
2503 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2504 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2505 map = dev_maps ?
80d19669 2506 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2507 NULL;
2508 if (new_map && new_map != map)
2509 kfree(new_map);
2510 }
01c5f864
AD
2511 }
2512
537c00de
AD
2513 mutex_unlock(&xps_map_mutex);
2514
537c00de
AD
2515 kfree(new_dev_maps);
2516 return -ENOMEM;
2517}
4d99f660 2518EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2519
2520int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2521 u16 index)
2522{
4d99f660
AV
2523 int ret;
2524
2525 cpus_read_lock();
2526 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2527 cpus_read_unlock();
2528
2529 return ret;
80d19669 2530}
537c00de
AD
2531EXPORT_SYMBOL(netif_set_xps_queue);
2532
2533#endif
ffcfe25b
AD
2534static void netdev_unbind_all_sb_channels(struct net_device *dev)
2535{
2536 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2537
2538 /* Unbind any subordinate channels */
2539 while (txq-- != &dev->_tx[0]) {
2540 if (txq->sb_dev)
2541 netdev_unbind_sb_channel(dev, txq->sb_dev);
2542 }
2543}
2544
9cf1f6a8
AD
2545void netdev_reset_tc(struct net_device *dev)
2546{
6234f874
AD
2547#ifdef CONFIG_XPS
2548 netif_reset_xps_queues_gt(dev, 0);
2549#endif
ffcfe25b
AD
2550 netdev_unbind_all_sb_channels(dev);
2551
2552 /* Reset TC configuration of device */
9cf1f6a8
AD
2553 dev->num_tc = 0;
2554 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2555 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2556}
2557EXPORT_SYMBOL(netdev_reset_tc);
2558
2559int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2560{
2561 if (tc >= dev->num_tc)
2562 return -EINVAL;
2563
6234f874
AD
2564#ifdef CONFIG_XPS
2565 netif_reset_xps_queues(dev, offset, count);
2566#endif
9cf1f6a8
AD
2567 dev->tc_to_txq[tc].count = count;
2568 dev->tc_to_txq[tc].offset = offset;
2569 return 0;
2570}
2571EXPORT_SYMBOL(netdev_set_tc_queue);
2572
2573int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2574{
2575 if (num_tc > TC_MAX_QUEUE)
2576 return -EINVAL;
2577
6234f874
AD
2578#ifdef CONFIG_XPS
2579 netif_reset_xps_queues_gt(dev, 0);
2580#endif
ffcfe25b
AD
2581 netdev_unbind_all_sb_channels(dev);
2582
9cf1f6a8
AD
2583 dev->num_tc = num_tc;
2584 return 0;
2585}
2586EXPORT_SYMBOL(netdev_set_num_tc);
2587
ffcfe25b
AD
2588void netdev_unbind_sb_channel(struct net_device *dev,
2589 struct net_device *sb_dev)
2590{
2591 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2592
2593#ifdef CONFIG_XPS
2594 netif_reset_xps_queues_gt(sb_dev, 0);
2595#endif
2596 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2597 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2598
2599 while (txq-- != &dev->_tx[0]) {
2600 if (txq->sb_dev == sb_dev)
2601 txq->sb_dev = NULL;
2602 }
2603}
2604EXPORT_SYMBOL(netdev_unbind_sb_channel);
2605
2606int netdev_bind_sb_channel_queue(struct net_device *dev,
2607 struct net_device *sb_dev,
2608 u8 tc, u16 count, u16 offset)
2609{
2610 /* Make certain the sb_dev and dev are already configured */
2611 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2612 return -EINVAL;
2613
2614 /* We cannot hand out queues we don't have */
2615 if ((offset + count) > dev->real_num_tx_queues)
2616 return -EINVAL;
2617
2618 /* Record the mapping */
2619 sb_dev->tc_to_txq[tc].count = count;
2620 sb_dev->tc_to_txq[tc].offset = offset;
2621
2622 /* Provide a way for Tx queue to find the tc_to_txq map or
2623 * XPS map for itself.
2624 */
2625 while (count--)
2626 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2627
2628 return 0;
2629}
2630EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2631
2632int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2633{
2634 /* Do not use a multiqueue device to represent a subordinate channel */
2635 if (netif_is_multiqueue(dev))
2636 return -ENODEV;
2637
2638 /* We allow channels 1 - 32767 to be used for subordinate channels.
2639 * Channel 0 is meant to be "native" mode and used only to represent
2640 * the main root device. We allow writing 0 to reset the device back
2641 * to normal mode after being used as a subordinate channel.
2642 */
2643 if (channel > S16_MAX)
2644 return -EINVAL;
2645
2646 dev->num_tc = -channel;
2647
2648 return 0;
2649}
2650EXPORT_SYMBOL(netdev_set_sb_channel);
2651
f0796d5c
JF
2652/*
2653 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2654 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2655 */
e6484930 2656int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2657{
ac5b7019 2658 bool disabling;
1d24eb48
TH
2659 int rc;
2660
ac5b7019
JK
2661 disabling = txq < dev->real_num_tx_queues;
2662
e6484930
TH
2663 if (txq < 1 || txq > dev->num_tx_queues)
2664 return -EINVAL;
f0796d5c 2665
5c56580b
BH
2666 if (dev->reg_state == NETREG_REGISTERED ||
2667 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2668 ASSERT_RTNL();
2669
1d24eb48
TH
2670 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2671 txq);
bf264145
TH
2672 if (rc)
2673 return rc;
2674
4f57c087
JF
2675 if (dev->num_tc)
2676 netif_setup_tc(dev, txq);
2677
ac5b7019
JK
2678 dev->real_num_tx_queues = txq;
2679
2680 if (disabling) {
2681 synchronize_net();
e6484930 2682 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2683#ifdef CONFIG_XPS
2684 netif_reset_xps_queues_gt(dev, txq);
2685#endif
2686 }
ac5b7019
JK
2687 } else {
2688 dev->real_num_tx_queues = txq;
f0796d5c 2689 }
e6484930 2690
e6484930 2691 return 0;
f0796d5c
JF
2692}
2693EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2694
a953be53 2695#ifdef CONFIG_SYSFS
62fe0b40
BH
2696/**
2697 * netif_set_real_num_rx_queues - set actual number of RX queues used
2698 * @dev: Network device
2699 * @rxq: Actual number of RX queues
2700 *
2701 * This must be called either with the rtnl_lock held or before
2702 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2703 * negative error code. If called before registration, it always
2704 * succeeds.
62fe0b40
BH
2705 */
2706int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2707{
2708 int rc;
2709
bd25fa7b
TH
2710 if (rxq < 1 || rxq > dev->num_rx_queues)
2711 return -EINVAL;
2712
62fe0b40
BH
2713 if (dev->reg_state == NETREG_REGISTERED) {
2714 ASSERT_RTNL();
2715
62fe0b40
BH
2716 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2717 rxq);
2718 if (rc)
2719 return rc;
62fe0b40
BH
2720 }
2721
2722 dev->real_num_rx_queues = rxq;
2723 return 0;
2724}
2725EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2726#endif
2727
2c53040f
BH
2728/**
2729 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2730 *
2731 * This routine should set an upper limit on the number of RSS queues
2732 * used by default by multiqueue devices.
2733 */
a55b138b 2734int netif_get_num_default_rss_queues(void)
16917b87 2735{
40e4e713
HS
2736 return is_kdump_kernel() ?
2737 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2738}
2739EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2740
3bcb846c 2741static void __netif_reschedule(struct Qdisc *q)
56079431 2742{
def82a1d
JP
2743 struct softnet_data *sd;
2744 unsigned long flags;
56079431 2745
def82a1d 2746 local_irq_save(flags);
903ceff7 2747 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2748 q->next_sched = NULL;
2749 *sd->output_queue_tailp = q;
2750 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2751 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752 local_irq_restore(flags);
2753}
2754
2755void __netif_schedule(struct Qdisc *q)
2756{
2757 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2758 __netif_reschedule(q);
56079431
DV
2759}
2760EXPORT_SYMBOL(__netif_schedule);
2761
e6247027
ED
2762struct dev_kfree_skb_cb {
2763 enum skb_free_reason reason;
2764};
2765
2766static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2767{
e6247027
ED
2768 return (struct dev_kfree_skb_cb *)skb->cb;
2769}
2770
46e5da40
JF
2771void netif_schedule_queue(struct netdev_queue *txq)
2772{
2773 rcu_read_lock();
2774 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2775 struct Qdisc *q = rcu_dereference(txq->qdisc);
2776
2777 __netif_schedule(q);
2778 }
2779 rcu_read_unlock();
2780}
2781EXPORT_SYMBOL(netif_schedule_queue);
2782
46e5da40
JF
2783void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2784{
2785 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2786 struct Qdisc *q;
2787
2788 rcu_read_lock();
2789 q = rcu_dereference(dev_queue->qdisc);
2790 __netif_schedule(q);
2791 rcu_read_unlock();
2792 }
2793}
2794EXPORT_SYMBOL(netif_tx_wake_queue);
2795
e6247027 2796void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2797{
e6247027 2798 unsigned long flags;
56079431 2799
9899886d
MJ
2800 if (unlikely(!skb))
2801 return;
2802
63354797 2803 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2804 smp_rmb();
63354797
RE
2805 refcount_set(&skb->users, 0);
2806 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2807 return;
bea3348e 2808 }
e6247027
ED
2809 get_kfree_skb_cb(skb)->reason = reason;
2810 local_irq_save(flags);
2811 skb->next = __this_cpu_read(softnet_data.completion_queue);
2812 __this_cpu_write(softnet_data.completion_queue, skb);
2813 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2814 local_irq_restore(flags);
56079431 2815}
e6247027 2816EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2817
e6247027 2818void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2819{
2820 if (in_irq() || irqs_disabled())
e6247027 2821 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2822 else
2823 dev_kfree_skb(skb);
2824}
e6247027 2825EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2826
2827
bea3348e
SH
2828/**
2829 * netif_device_detach - mark device as removed
2830 * @dev: network device
2831 *
2832 * Mark device as removed from system and therefore no longer available.
2833 */
56079431
DV
2834void netif_device_detach(struct net_device *dev)
2835{
2836 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2837 netif_running(dev)) {
d543103a 2838 netif_tx_stop_all_queues(dev);
56079431
DV
2839 }
2840}
2841EXPORT_SYMBOL(netif_device_detach);
2842
bea3348e
SH
2843/**
2844 * netif_device_attach - mark device as attached
2845 * @dev: network device
2846 *
2847 * Mark device as attached from system and restart if needed.
2848 */
56079431
DV
2849void netif_device_attach(struct net_device *dev)
2850{
2851 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2852 netif_running(dev)) {
d543103a 2853 netif_tx_wake_all_queues(dev);
4ec93edb 2854 __netdev_watchdog_up(dev);
56079431
DV
2855 }
2856}
2857EXPORT_SYMBOL(netif_device_attach);
2858
5605c762
JP
2859/*
2860 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861 * to be used as a distribution range.
2862 */
eadec877
AD
2863static u16 skb_tx_hash(const struct net_device *dev,
2864 const struct net_device *sb_dev,
2865 struct sk_buff *skb)
5605c762
JP
2866{
2867 u32 hash;
2868 u16 qoffset = 0;
1b837d48 2869 u16 qcount = dev->real_num_tx_queues;
5605c762 2870
eadec877
AD
2871 if (dev->num_tc) {
2872 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2873
2874 qoffset = sb_dev->tc_to_txq[tc].offset;
2875 qcount = sb_dev->tc_to_txq[tc].count;
2876 }
2877
5605c762
JP
2878 if (skb_rx_queue_recorded(skb)) {
2879 hash = skb_get_rx_queue(skb);
1b837d48
AD
2880 while (unlikely(hash >= qcount))
2881 hash -= qcount;
eadec877 2882 return hash + qoffset;
5605c762
JP
2883 }
2884
2885 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2886}
5605c762 2887
36c92474
BH
2888static void skb_warn_bad_offload(const struct sk_buff *skb)
2889{
84d15ae5 2890 static const netdev_features_t null_features;
36c92474 2891 struct net_device *dev = skb->dev;
88ad4175 2892 const char *name = "";
36c92474 2893
c846ad9b
BG
2894 if (!net_ratelimit())
2895 return;
2896
88ad4175
BM
2897 if (dev) {
2898 if (dev->dev.parent)
2899 name = dev_driver_string(dev->dev.parent);
2900 else
2901 name = netdev_name(dev);
2902 }
6413139d
WB
2903 skb_dump(KERN_WARNING, skb, false);
2904 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 2905 name, dev ? &dev->features : &null_features,
6413139d 2906 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
2907}
2908
1da177e4
LT
2909/*
2910 * Invalidate hardware checksum when packet is to be mangled, and
2911 * complete checksum manually on outgoing path.
2912 */
84fa7933 2913int skb_checksum_help(struct sk_buff *skb)
1da177e4 2914{
d3bc23e7 2915 __wsum csum;
663ead3b 2916 int ret = 0, offset;
1da177e4 2917
84fa7933 2918 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2919 goto out_set_summed;
2920
2921 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2922 skb_warn_bad_offload(skb);
2923 return -EINVAL;
1da177e4
LT
2924 }
2925
cef401de
ED
2926 /* Before computing a checksum, we should make sure no frag could
2927 * be modified by an external entity : checksum could be wrong.
2928 */
2929 if (skb_has_shared_frag(skb)) {
2930 ret = __skb_linearize(skb);
2931 if (ret)
2932 goto out;
2933 }
2934
55508d60 2935 offset = skb_checksum_start_offset(skb);
a030847e
HX
2936 BUG_ON(offset >= skb_headlen(skb));
2937 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2938
2939 offset += skb->csum_offset;
2940 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2941
2942 if (skb_cloned(skb) &&
2943 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2944 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2945 if (ret)
2946 goto out;
2947 }
2948
4f2e4ad5 2949 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2950out_set_summed:
1da177e4 2951 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2952out:
1da177e4
LT
2953 return ret;
2954}
d1b19dff 2955EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2956
b72b5bf6
DC
2957int skb_crc32c_csum_help(struct sk_buff *skb)
2958{
2959 __le32 crc32c_csum;
2960 int ret = 0, offset, start;
2961
2962 if (skb->ip_summed != CHECKSUM_PARTIAL)
2963 goto out;
2964
2965 if (unlikely(skb_is_gso(skb)))
2966 goto out;
2967
2968 /* Before computing a checksum, we should make sure no frag could
2969 * be modified by an external entity : checksum could be wrong.
2970 */
2971 if (unlikely(skb_has_shared_frag(skb))) {
2972 ret = __skb_linearize(skb);
2973 if (ret)
2974 goto out;
2975 }
2976 start = skb_checksum_start_offset(skb);
2977 offset = start + offsetof(struct sctphdr, checksum);
2978 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2979 ret = -EINVAL;
2980 goto out;
2981 }
2982 if (skb_cloned(skb) &&
2983 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2984 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2985 if (ret)
2986 goto out;
2987 }
2988 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2989 skb->len - start, ~(__u32)0,
2990 crc32c_csum_stub));
2991 *(__le32 *)(skb->data + offset) = crc32c_csum;
2992 skb->ip_summed = CHECKSUM_NONE;
dba00306 2993 skb->csum_not_inet = 0;
b72b5bf6
DC
2994out:
2995 return ret;
2996}
2997
53d6471c 2998__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2999{
252e3346 3000 __be16 type = skb->protocol;
f6a78bfc 3001
19acc327
PS
3002 /* Tunnel gso handlers can set protocol to ethernet. */
3003 if (type == htons(ETH_P_TEB)) {
3004 struct ethhdr *eth;
3005
3006 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3007 return 0;
3008
1dfe82eb 3009 eth = (struct ethhdr *)skb->data;
19acc327
PS
3010 type = eth->h_proto;
3011 }
3012
d4bcef3f 3013 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3014}
3015
3016/**
3017 * skb_mac_gso_segment - mac layer segmentation handler.
3018 * @skb: buffer to segment
3019 * @features: features for the output path (see dev->features)
3020 */
3021struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3022 netdev_features_t features)
3023{
3024 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3025 struct packet_offload *ptype;
53d6471c
VY
3026 int vlan_depth = skb->mac_len;
3027 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3028
3029 if (unlikely(!type))
3030 return ERR_PTR(-EINVAL);
3031
53d6471c 3032 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3033
3034 rcu_read_lock();
22061d80 3035 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3036 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3037 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3038 break;
3039 }
3040 }
3041 rcu_read_unlock();
3042
98e399f8 3043 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3044
f6a78bfc
HX
3045 return segs;
3046}
05e8ef4a
PS
3047EXPORT_SYMBOL(skb_mac_gso_segment);
3048
3049
3050/* openvswitch calls this on rx path, so we need a different check.
3051 */
3052static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3053{
3054 if (tx_path)
0c19f846
WB
3055 return skb->ip_summed != CHECKSUM_PARTIAL &&
3056 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3057
3058 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3059}
3060
3061/**
3062 * __skb_gso_segment - Perform segmentation on skb.
3063 * @skb: buffer to segment
3064 * @features: features for the output path (see dev->features)
3065 * @tx_path: whether it is called in TX path
3066 *
3067 * This function segments the given skb and returns a list of segments.
3068 *
3069 * It may return NULL if the skb requires no segmentation. This is
3070 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
3071 *
3072 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3073 */
3074struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3075 netdev_features_t features, bool tx_path)
3076{
b2504a5d
ED
3077 struct sk_buff *segs;
3078
05e8ef4a
PS
3079 if (unlikely(skb_needs_check(skb, tx_path))) {
3080 int err;
3081
b2504a5d 3082 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3083 err = skb_cow_head(skb, 0);
3084 if (err < 0)
05e8ef4a
PS
3085 return ERR_PTR(err);
3086 }
3087
802ab55a
AD
3088 /* Only report GSO partial support if it will enable us to
3089 * support segmentation on this frame without needing additional
3090 * work.
3091 */
3092 if (features & NETIF_F_GSO_PARTIAL) {
3093 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3094 struct net_device *dev = skb->dev;
3095
3096 partial_features |= dev->features & dev->gso_partial_features;
3097 if (!skb_gso_ok(skb, features | partial_features))
3098 features &= ~NETIF_F_GSO_PARTIAL;
3099 }
3100
9207f9d4
KK
3101 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3102 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3103
68c33163 3104 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3105 SKB_GSO_CB(skb)->encap_level = 0;
3106
05e8ef4a
PS
3107 skb_reset_mac_header(skb);
3108 skb_reset_mac_len(skb);
3109
b2504a5d
ED
3110 segs = skb_mac_gso_segment(skb, features);
3111
8d74e9f8 3112 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3113 skb_warn_bad_offload(skb);
3114
3115 return segs;
05e8ef4a 3116}
12b0004d 3117EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3118
fb286bb2
HX
3119/* Take action when hardware reception checksum errors are detected. */
3120#ifdef CONFIG_BUG
7fe50ac8 3121void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3122{
3123 if (net_ratelimit()) {
7b6cd1ce 3124 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
6413139d 3125 skb_dump(KERN_ERR, skb, true);
fb286bb2
HX
3126 dump_stack();
3127 }
3128}
3129EXPORT_SYMBOL(netdev_rx_csum_fault);
3130#endif
3131
ab74cfeb 3132/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3133static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3134{
3d3a8533 3135#ifdef CONFIG_HIGHMEM
1da177e4 3136 int i;
f4563a75 3137
5acbbd42 3138 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3139 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3140 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3141
ea2ab693 3142 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3143 return 1;
ea2ab693 3144 }
5acbbd42 3145 }
3d3a8533 3146#endif
1da177e4
LT
3147 return 0;
3148}
1da177e4 3149
3b392ddb
SH
3150/* If MPLS offload request, verify we are testing hardware MPLS features
3151 * instead of standard features for the netdev.
3152 */
d0edc7bf 3153#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3154static netdev_features_t net_mpls_features(struct sk_buff *skb,
3155 netdev_features_t features,
3156 __be16 type)
3157{
25cd9ba0 3158 if (eth_p_mpls(type))
3b392ddb
SH
3159 features &= skb->dev->mpls_features;
3160
3161 return features;
3162}
3163#else
3164static netdev_features_t net_mpls_features(struct sk_buff *skb,
3165 netdev_features_t features,
3166 __be16 type)
3167{
3168 return features;
3169}
3170#endif
3171
c8f44aff 3172static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3173 netdev_features_t features)
f01a5236 3174{
53d6471c 3175 int tmp;
3b392ddb
SH
3176 __be16 type;
3177
3178 type = skb_network_protocol(skb, &tmp);
3179 features = net_mpls_features(skb, features, type);
53d6471c 3180
c0d680e5 3181 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3182 !can_checksum_protocol(features, type)) {
996e8021 3183 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3184 }
7be2c82c
ED
3185 if (illegal_highdma(skb->dev, skb))
3186 features &= ~NETIF_F_SG;
f01a5236
JG
3187
3188 return features;
3189}
3190
e38f3025
TM
3191netdev_features_t passthru_features_check(struct sk_buff *skb,
3192 struct net_device *dev,
3193 netdev_features_t features)
3194{
3195 return features;
3196}
3197EXPORT_SYMBOL(passthru_features_check);
3198
7ce23672 3199static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3200 struct net_device *dev,
3201 netdev_features_t features)
3202{
3203 return vlan_features_check(skb, features);
3204}
3205
cbc53e08
AD
3206static netdev_features_t gso_features_check(const struct sk_buff *skb,
3207 struct net_device *dev,
3208 netdev_features_t features)
3209{
3210 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3211
3212 if (gso_segs > dev->gso_max_segs)
3213 return features & ~NETIF_F_GSO_MASK;
3214
802ab55a
AD
3215 /* Support for GSO partial features requires software
3216 * intervention before we can actually process the packets
3217 * so we need to strip support for any partial features now
3218 * and we can pull them back in after we have partially
3219 * segmented the frame.
3220 */
3221 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3222 features &= ~dev->gso_partial_features;
3223
3224 /* Make sure to clear the IPv4 ID mangling feature if the
3225 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3226 */
3227 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3228 struct iphdr *iph = skb->encapsulation ?
3229 inner_ip_hdr(skb) : ip_hdr(skb);
3230
3231 if (!(iph->frag_off & htons(IP_DF)))
3232 features &= ~NETIF_F_TSO_MANGLEID;
3233 }
3234
3235 return features;
3236}
3237
c1e756bf 3238netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3239{
5f35227e 3240 struct net_device *dev = skb->dev;
fcbeb976 3241 netdev_features_t features = dev->features;
58e998c6 3242
cbc53e08
AD
3243 if (skb_is_gso(skb))
3244 features = gso_features_check(skb, dev, features);
30b678d8 3245
5f35227e
JG
3246 /* If encapsulation offload request, verify we are testing
3247 * hardware encapsulation features instead of standard
3248 * features for the netdev
3249 */
3250 if (skb->encapsulation)
3251 features &= dev->hw_enc_features;
3252
f5a7fb88
TM
3253 if (skb_vlan_tagged(skb))
3254 features = netdev_intersect_features(features,
3255 dev->vlan_features |
3256 NETIF_F_HW_VLAN_CTAG_TX |
3257 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3258
5f35227e
JG
3259 if (dev->netdev_ops->ndo_features_check)
3260 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3261 features);
8cb65d00
TM
3262 else
3263 features &= dflt_features_check(skb, dev, features);
5f35227e 3264
c1e756bf 3265 return harmonize_features(skb, features);
58e998c6 3266}
c1e756bf 3267EXPORT_SYMBOL(netif_skb_features);
58e998c6 3268
2ea25513 3269static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3270 struct netdev_queue *txq, bool more)
f6a78bfc 3271{
2ea25513
DM
3272 unsigned int len;
3273 int rc;
00829823 3274
9f9a742d 3275 if (dev_nit_active(dev))
2ea25513 3276 dev_queue_xmit_nit(skb, dev);
fc741216 3277
2ea25513
DM
3278 len = skb->len;
3279 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3280 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3281 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3282
2ea25513
DM
3283 return rc;
3284}
7b9c6090 3285
8dcda22a
DM
3286struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3287 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3288{
3289 struct sk_buff *skb = first;
3290 int rc = NETDEV_TX_OK;
7b9c6090 3291
7f2e870f
DM
3292 while (skb) {
3293 struct sk_buff *next = skb->next;
fc70fb64 3294
a8305bff 3295 skb_mark_not_on_list(skb);
95f6b3dd 3296 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3297 if (unlikely(!dev_xmit_complete(rc))) {
3298 skb->next = next;
3299 goto out;
3300 }
6afff0ca 3301
7f2e870f 3302 skb = next;
fe60faa5 3303 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3304 rc = NETDEV_TX_BUSY;
3305 break;
9ccb8975 3306 }
7f2e870f 3307 }
9ccb8975 3308
7f2e870f
DM
3309out:
3310 *ret = rc;
3311 return skb;
3312}
b40863c6 3313
1ff0dc94
ED
3314static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3315 netdev_features_t features)
f6a78bfc 3316{
df8a39de 3317 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3318 !vlan_hw_offload_capable(features, skb->vlan_proto))
3319 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3320 return skb;
3321}
f6a78bfc 3322
43c26a1a
DC
3323int skb_csum_hwoffload_help(struct sk_buff *skb,
3324 const netdev_features_t features)
3325{
3326 if (unlikely(skb->csum_not_inet))
3327 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3328 skb_crc32c_csum_help(skb);
3329
3330 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3331}
3332EXPORT_SYMBOL(skb_csum_hwoffload_help);
3333
f53c7239 3334static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3335{
3336 netdev_features_t features;
f6a78bfc 3337
eae3f88e
DM
3338 features = netif_skb_features(skb);
3339 skb = validate_xmit_vlan(skb, features);
3340 if (unlikely(!skb))
3341 goto out_null;
7b9c6090 3342
ebf4e808
IL
3343 skb = sk_validate_xmit_skb(skb, dev);
3344 if (unlikely(!skb))
3345 goto out_null;
3346
8b86a61d 3347 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3348 struct sk_buff *segs;
3349
3350 segs = skb_gso_segment(skb, features);
cecda693 3351 if (IS_ERR(segs)) {
af6dabc9 3352 goto out_kfree_skb;
cecda693
JW
3353 } else if (segs) {
3354 consume_skb(skb);
3355 skb = segs;
f6a78bfc 3356 }
eae3f88e
DM
3357 } else {
3358 if (skb_needs_linearize(skb, features) &&
3359 __skb_linearize(skb))
3360 goto out_kfree_skb;
4ec93edb 3361
eae3f88e
DM
3362 /* If packet is not checksummed and device does not
3363 * support checksumming for this protocol, complete
3364 * checksumming here.
3365 */
3366 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3367 if (skb->encapsulation)
3368 skb_set_inner_transport_header(skb,
3369 skb_checksum_start_offset(skb));
3370 else
3371 skb_set_transport_header(skb,
3372 skb_checksum_start_offset(skb));
43c26a1a 3373 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3374 goto out_kfree_skb;
7b9c6090 3375 }
0c772159 3376 }
7b9c6090 3377
f53c7239 3378 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3379
eae3f88e 3380 return skb;
fc70fb64 3381
f6a78bfc
HX
3382out_kfree_skb:
3383 kfree_skb(skb);
eae3f88e 3384out_null:
d21fd63e 3385 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3386 return NULL;
3387}
6afff0ca 3388
f53c7239 3389struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3390{
3391 struct sk_buff *next, *head = NULL, *tail;
3392
bec3cfdc 3393 for (; skb != NULL; skb = next) {
55a93b3e 3394 next = skb->next;
a8305bff 3395 skb_mark_not_on_list(skb);
bec3cfdc
ED
3396
3397 /* in case skb wont be segmented, point to itself */
3398 skb->prev = skb;
3399
f53c7239 3400 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3401 if (!skb)
3402 continue;
55a93b3e 3403
bec3cfdc
ED
3404 if (!head)
3405 head = skb;
3406 else
3407 tail->next = skb;
3408 /* If skb was segmented, skb->prev points to
3409 * the last segment. If not, it still contains skb.
3410 */
3411 tail = skb->prev;
55a93b3e
ED
3412 }
3413 return head;
f6a78bfc 3414}
104ba78c 3415EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3416
1def9238
ED
3417static void qdisc_pkt_len_init(struct sk_buff *skb)
3418{
3419 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3420
3421 qdisc_skb_cb(skb)->pkt_len = skb->len;
3422
3423 /* To get more precise estimation of bytes sent on wire,
3424 * we add to pkt_len the headers size of all segments
3425 */
a0dce875 3426 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3427 unsigned int hdr_len;
15e5a030 3428 u16 gso_segs = shinfo->gso_segs;
1def9238 3429
757b8b1d
ED
3430 /* mac layer + network layer */
3431 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3432
3433 /* + transport layer */
7c68d1a6
ED
3434 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3435 const struct tcphdr *th;
3436 struct tcphdr _tcphdr;
3437
3438 th = skb_header_pointer(skb, skb_transport_offset(skb),
3439 sizeof(_tcphdr), &_tcphdr);
3440 if (likely(th))
3441 hdr_len += __tcp_hdrlen(th);
3442 } else {
3443 struct udphdr _udphdr;
3444
3445 if (skb_header_pointer(skb, skb_transport_offset(skb),
3446 sizeof(_udphdr), &_udphdr))
3447 hdr_len += sizeof(struct udphdr);
3448 }
15e5a030
JW
3449
3450 if (shinfo->gso_type & SKB_GSO_DODGY)
3451 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3452 shinfo->gso_size);
3453
3454 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3455 }
3456}
3457
bbd8a0d3
KK
3458static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3459 struct net_device *dev,
3460 struct netdev_queue *txq)
3461{
3462 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3463 struct sk_buff *to_free = NULL;
a2da570d 3464 bool contended;
bbd8a0d3
KK
3465 int rc;
3466
a2da570d 3467 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3468
3469 if (q->flags & TCQ_F_NOLOCK) {
3470 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3471 __qdisc_drop(skb, &to_free);
3472 rc = NET_XMIT_DROP;
ba27b4cd
PA
3473 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3474 qdisc_run_begin(q)) {
3475 qdisc_bstats_cpu_update(q, skb);
3476
3477 if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3478 __qdisc_run(q);
3479
3480 qdisc_run_end(q);
3481 rc = NET_XMIT_SUCCESS;
6b3ba914
JF
3482 } else {
3483 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
32f7b44d 3484 qdisc_run(q);
6b3ba914
JF
3485 }
3486
3487 if (unlikely(to_free))
3488 kfree_skb_list(to_free);
3489 return rc;
3490 }
3491
79640a4c
ED
3492 /*
3493 * Heuristic to force contended enqueues to serialize on a
3494 * separate lock before trying to get qdisc main lock.
f9eb8aea 3495 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3496 * often and dequeue packets faster.
79640a4c 3497 */
a2da570d 3498 contended = qdisc_is_running(q);
79640a4c
ED
3499 if (unlikely(contended))
3500 spin_lock(&q->busylock);
3501
bbd8a0d3
KK
3502 spin_lock(root_lock);
3503 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3504 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3505 rc = NET_XMIT_DROP;
3506 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3507 qdisc_run_begin(q)) {
bbd8a0d3
KK
3508 /*
3509 * This is a work-conserving queue; there are no old skbs
3510 * waiting to be sent out; and the qdisc is not running -
3511 * xmit the skb directly.
3512 */
bfe0d029 3513
bfe0d029
ED
3514 qdisc_bstats_update(q, skb);
3515
55a93b3e 3516 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3517 if (unlikely(contended)) {
3518 spin_unlock(&q->busylock);
3519 contended = false;
3520 }
bbd8a0d3 3521 __qdisc_run(q);
6c148184 3522 }
bbd8a0d3 3523
6c148184 3524 qdisc_run_end(q);
bbd8a0d3
KK
3525 rc = NET_XMIT_SUCCESS;
3526 } else {
520ac30f 3527 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3528 if (qdisc_run_begin(q)) {
3529 if (unlikely(contended)) {
3530 spin_unlock(&q->busylock);
3531 contended = false;
3532 }
3533 __qdisc_run(q);
6c148184 3534 qdisc_run_end(q);
79640a4c 3535 }
bbd8a0d3
KK
3536 }
3537 spin_unlock(root_lock);
520ac30f
ED
3538 if (unlikely(to_free))
3539 kfree_skb_list(to_free);
79640a4c
ED
3540 if (unlikely(contended))
3541 spin_unlock(&q->busylock);
bbd8a0d3
KK
3542 return rc;
3543}
3544
86f8515f 3545#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3546static void skb_update_prio(struct sk_buff *skb)
3547{
4dcb31d4
ED
3548 const struct netprio_map *map;
3549 const struct sock *sk;
3550 unsigned int prioidx;
5bc1421e 3551
4dcb31d4
ED
3552 if (skb->priority)
3553 return;
3554 map = rcu_dereference_bh(skb->dev->priomap);
3555 if (!map)
3556 return;
3557 sk = skb_to_full_sk(skb);
3558 if (!sk)
3559 return;
91c68ce2 3560
4dcb31d4
ED
3561 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3562
3563 if (prioidx < map->priomap_len)
3564 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3565}
3566#else
3567#define skb_update_prio(skb)
3568#endif
3569
95603e22
MM
3570/**
3571 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3572 * @net: network namespace this loopback is happening in
3573 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3574 * @skb: buffer to transmit
3575 */
0c4b51f0 3576int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3577{
3578 skb_reset_mac_header(skb);
3579 __skb_pull(skb, skb_network_offset(skb));
3580 skb->pkt_type = PACKET_LOOPBACK;
3581 skb->ip_summed = CHECKSUM_UNNECESSARY;
3582 WARN_ON(!skb_dst(skb));
3583 skb_dst_force(skb);
3584 netif_rx_ni(skb);
3585 return 0;
3586}
3587EXPORT_SYMBOL(dev_loopback_xmit);
3588
1f211a1b
DB
3589#ifdef CONFIG_NET_EGRESS
3590static struct sk_buff *
3591sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3592{
46209401 3593 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3594 struct tcf_result cl_res;
3595
46209401 3596 if (!miniq)
1f211a1b
DB
3597 return skb;
3598
8dc07fdb 3599 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3600 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3601
46209401 3602 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3603 case TC_ACT_OK:
3604 case TC_ACT_RECLASSIFY:
3605 skb->tc_index = TC_H_MIN(cl_res.classid);
3606 break;
3607 case TC_ACT_SHOT:
46209401 3608 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3609 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3610 kfree_skb(skb);
3611 return NULL;
1f211a1b
DB
3612 case TC_ACT_STOLEN:
3613 case TC_ACT_QUEUED:
e25ea21f 3614 case TC_ACT_TRAP:
1f211a1b 3615 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3616 consume_skb(skb);
1f211a1b
DB
3617 return NULL;
3618 case TC_ACT_REDIRECT:
3619 /* No need to push/pop skb's mac_header here on egress! */
3620 skb_do_redirect(skb);
3621 *ret = NET_XMIT_SUCCESS;
3622 return NULL;
3623 default:
3624 break;
3625 }
3626
3627 return skb;
3628}
3629#endif /* CONFIG_NET_EGRESS */
3630
fc9bab24
AN
3631#ifdef CONFIG_XPS
3632static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3633 struct xps_dev_maps *dev_maps, unsigned int tci)
3634{
3635 struct xps_map *map;
3636 int queue_index = -1;
3637
3638 if (dev->num_tc) {
3639 tci *= dev->num_tc;
3640 tci += netdev_get_prio_tc_map(dev, skb->priority);
3641 }
3642
3643 map = rcu_dereference(dev_maps->attr_map[tci]);
3644 if (map) {
3645 if (map->len == 1)
3646 queue_index = map->queues[0];
3647 else
3648 queue_index = map->queues[reciprocal_scale(
3649 skb_get_hash(skb), map->len)];
3650 if (unlikely(queue_index >= dev->real_num_tx_queues))
3651 queue_index = -1;
3652 }
3653 return queue_index;
3654}
3655#endif
3656
eadec877
AD
3657static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3658 struct sk_buff *skb)
638b2a69
JP
3659{
3660#ifdef CONFIG_XPS
3661 struct xps_dev_maps *dev_maps;
fc9bab24 3662 struct sock *sk = skb->sk;
638b2a69
JP
3663 int queue_index = -1;
3664
04157469
AN
3665 if (!static_key_false(&xps_needed))
3666 return -1;
3667
638b2a69 3668 rcu_read_lock();
fc9bab24
AN
3669 if (!static_key_false(&xps_rxqs_needed))
3670 goto get_cpus_map;
3671
eadec877 3672 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3673 if (dev_maps) {
fc9bab24 3674 int tci = sk_rx_queue_get(sk);
184c449f 3675
fc9bab24
AN
3676 if (tci >= 0 && tci < dev->num_rx_queues)
3677 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3678 tci);
3679 }
184c449f 3680
fc9bab24
AN
3681get_cpus_map:
3682 if (queue_index < 0) {
eadec877 3683 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3684 if (dev_maps) {
3685 unsigned int tci = skb->sender_cpu - 1;
3686
3687 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3688 tci);
638b2a69
JP
3689 }
3690 }
3691 rcu_read_unlock();
3692
3693 return queue_index;
3694#else
3695 return -1;
3696#endif
3697}
3698
a4ea8a3d 3699u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3700 struct net_device *sb_dev)
a4ea8a3d
AD
3701{
3702 return 0;
3703}
3704EXPORT_SYMBOL(dev_pick_tx_zero);
3705
3706u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 3707 struct net_device *sb_dev)
a4ea8a3d
AD
3708{
3709 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3710}
3711EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3712
b71b5837
PA
3713u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3714 struct net_device *sb_dev)
638b2a69
JP
3715{
3716 struct sock *sk = skb->sk;
3717 int queue_index = sk_tx_queue_get(sk);
3718
eadec877
AD
3719 sb_dev = sb_dev ? : dev;
3720
638b2a69
JP
3721 if (queue_index < 0 || skb->ooo_okay ||
3722 queue_index >= dev->real_num_tx_queues) {
eadec877 3723 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 3724
638b2a69 3725 if (new_index < 0)
eadec877 3726 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
3727
3728 if (queue_index != new_index && sk &&
004a5d01 3729 sk_fullsock(sk) &&
638b2a69
JP
3730 rcu_access_pointer(sk->sk_dst_cache))
3731 sk_tx_queue_set(sk, new_index);
3732
3733 queue_index = new_index;
3734 }
3735
3736 return queue_index;
3737}
b71b5837 3738EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 3739
4bd97d51
PA
3740struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3741 struct sk_buff *skb,
3742 struct net_device *sb_dev)
638b2a69
JP
3743{
3744 int queue_index = 0;
3745
3746#ifdef CONFIG_XPS
52bd2d62
ED
3747 u32 sender_cpu = skb->sender_cpu - 1;
3748
3749 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3750 skb->sender_cpu = raw_smp_processor_id() + 1;
3751#endif
3752
3753 if (dev->real_num_tx_queues != 1) {
3754 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3755
638b2a69 3756 if (ops->ndo_select_queue)
a350ecce 3757 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 3758 else
4bd97d51 3759 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 3760
d584527c 3761 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
3762 }
3763
3764 skb_set_queue_mapping(skb, queue_index);
3765 return netdev_get_tx_queue(dev, queue_index);
3766}
3767
d29f749e 3768/**
9d08dd3d 3769 * __dev_queue_xmit - transmit a buffer
d29f749e 3770 * @skb: buffer to transmit
eadec877 3771 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
3772 *
3773 * Queue a buffer for transmission to a network device. The caller must
3774 * have set the device and priority and built the buffer before calling
3775 * this function. The function can be called from an interrupt.
3776 *
3777 * A negative errno code is returned on a failure. A success does not
3778 * guarantee the frame will be transmitted as it may be dropped due
3779 * to congestion or traffic shaping.
3780 *
3781 * -----------------------------------------------------------------------------------
3782 * I notice this method can also return errors from the queue disciplines,
3783 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3784 * be positive.
3785 *
3786 * Regardless of the return value, the skb is consumed, so it is currently
3787 * difficult to retry a send to this method. (You can bump the ref count
3788 * before sending to hold a reference for retry if you are careful.)
3789 *
3790 * When calling this method, interrupts MUST be enabled. This is because
3791 * the BH enable code must have IRQs enabled so that it will not deadlock.
3792 * --BLG
3793 */
eadec877 3794static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
3795{
3796 struct net_device *dev = skb->dev;
dc2b4847 3797 struct netdev_queue *txq;
1da177e4
LT
3798 struct Qdisc *q;
3799 int rc = -ENOMEM;
f53c7239 3800 bool again = false;
1da177e4 3801
6d1ccff6
ED
3802 skb_reset_mac_header(skb);
3803
e7fd2885
WB
3804 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3805 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3806
4ec93edb
YH
3807 /* Disable soft irqs for various locks below. Also
3808 * stops preemption for RCU.
1da177e4 3809 */
4ec93edb 3810 rcu_read_lock_bh();
1da177e4 3811
5bc1421e
NH
3812 skb_update_prio(skb);
3813
1f211a1b
DB
3814 qdisc_pkt_len_init(skb);
3815#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3816 skb->tc_at_ingress = 0;
1f211a1b 3817# ifdef CONFIG_NET_EGRESS
aabf6772 3818 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
3819 skb = sch_handle_egress(skb, &rc, dev);
3820 if (!skb)
3821 goto out;
3822 }
3823# endif
3824#endif
02875878
ED
3825 /* If device/qdisc don't need skb->dst, release it right now while
3826 * its hot in this cpu cache.
3827 */
3828 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3829 skb_dst_drop(skb);
3830 else
3831 skb_dst_force(skb);
3832
4bd97d51 3833 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 3834 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3835
cf66ba58 3836 trace_net_dev_queue(skb);
1da177e4 3837 if (q->enqueue) {
bbd8a0d3 3838 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3839 goto out;
1da177e4
LT
3840 }
3841
3842 /* The device has no queue. Common case for software devices:
eb13da1a 3843 * loopback, all the sorts of tunnels...
1da177e4 3844
eb13da1a 3845 * Really, it is unlikely that netif_tx_lock protection is necessary
3846 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3847 * counters.)
3848 * However, it is possible, that they rely on protection
3849 * made by us here.
1da177e4 3850
eb13da1a 3851 * Check this and shot the lock. It is not prone from deadlocks.
3852 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3853 */
3854 if (dev->flags & IFF_UP) {
3855 int cpu = smp_processor_id(); /* ok because BHs are off */
3856
c773e847 3857 if (txq->xmit_lock_owner != cpu) {
97cdcf37 3858 if (dev_xmit_recursion())
745e20f1
ED
3859 goto recursion_alert;
3860
f53c7239 3861 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 3862 if (!skb)
d21fd63e 3863 goto out;
1f59533f 3864
c773e847 3865 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3866
73466498 3867 if (!netif_xmit_stopped(txq)) {
97cdcf37 3868 dev_xmit_recursion_inc();
ce93718f 3869 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 3870 dev_xmit_recursion_dec();
572a9d7b 3871 if (dev_xmit_complete(rc)) {
c773e847 3872 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3873 goto out;
3874 }
3875 }
c773e847 3876 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3877 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3878 dev->name);
1da177e4
LT
3879 } else {
3880 /* Recursion is detected! It is possible,
745e20f1
ED
3881 * unfortunately
3882 */
3883recursion_alert:
e87cc472
JP
3884 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3885 dev->name);
1da177e4
LT
3886 }
3887 }
3888
3889 rc = -ENETDOWN;
d4828d85 3890 rcu_read_unlock_bh();
1da177e4 3891
015f0688 3892 atomic_long_inc(&dev->tx_dropped);
1f59533f 3893 kfree_skb_list(skb);
1da177e4
LT
3894 return rc;
3895out:
d4828d85 3896 rcu_read_unlock_bh();
1da177e4
LT
3897 return rc;
3898}
f663dd9a 3899
2b4aa3ce 3900int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3901{
3902 return __dev_queue_xmit(skb, NULL);
3903}
2b4aa3ce 3904EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3905
eadec877 3906int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 3907{
eadec877 3908 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
3909}
3910EXPORT_SYMBOL(dev_queue_xmit_accel);
3911
865b03f2
MK
3912int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3913{
3914 struct net_device *dev = skb->dev;
3915 struct sk_buff *orig_skb = skb;
3916 struct netdev_queue *txq;
3917 int ret = NETDEV_TX_BUSY;
3918 bool again = false;
3919
3920 if (unlikely(!netif_running(dev) ||
3921 !netif_carrier_ok(dev)))
3922 goto drop;
3923
3924 skb = validate_xmit_skb_list(skb, dev, &again);
3925 if (skb != orig_skb)
3926 goto drop;
3927
3928 skb_set_queue_mapping(skb, queue_id);
3929 txq = skb_get_tx_queue(dev, skb);
3930
3931 local_bh_disable();
3932
3933 HARD_TX_LOCK(dev, txq, smp_processor_id());
3934 if (!netif_xmit_frozen_or_drv_stopped(txq))
3935 ret = netdev_start_xmit(skb, dev, txq, false);
3936 HARD_TX_UNLOCK(dev, txq);
3937
3938 local_bh_enable();
3939
3940 if (!dev_xmit_complete(ret))
3941 kfree_skb(skb);
3942
3943 return ret;
3944drop:
3945 atomic_long_inc(&dev->tx_dropped);
3946 kfree_skb_list(skb);
3947 return NET_XMIT_DROP;
3948}
3949EXPORT_SYMBOL(dev_direct_xmit);
1da177e4 3950
eb13da1a 3951/*************************************************************************
3952 * Receiver routines
3953 *************************************************************************/
1da177e4 3954
6b2bedc3 3955int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3956EXPORT_SYMBOL(netdev_max_backlog);
3957
3b098e2d 3958int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3959int netdev_budget __read_mostly = 300;
7acf8a1e 3960unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3961int weight_p __read_mostly = 64; /* old backlog weight */
3962int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3963int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3964int dev_rx_weight __read_mostly = 64;
3965int dev_tx_weight __read_mostly = 64;
323ebb61
EC
3966/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
3967int gro_normal_batch __read_mostly = 8;
1da177e4 3968
eecfd7c4
ED
3969/* Called with irq disabled */
3970static inline void ____napi_schedule(struct softnet_data *sd,
3971 struct napi_struct *napi)
3972{
3973 list_add_tail(&napi->poll_list, &sd->poll_list);
3974 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3975}
3976
bfb564e7
KK
3977#ifdef CONFIG_RPS
3978
3979/* One global table that all flow-based protocols share. */
6e3f7faf 3980struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3981EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3982u32 rps_cpu_mask __read_mostly;
3983EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3984
dc05360f 3985struct static_key_false rps_needed __read_mostly;
3df97ba8 3986EXPORT_SYMBOL(rps_needed);
dc05360f 3987struct static_key_false rfs_needed __read_mostly;
13bfff25 3988EXPORT_SYMBOL(rfs_needed);
adc9300e 3989
c445477d
BH
3990static struct rps_dev_flow *
3991set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3992 struct rps_dev_flow *rflow, u16 next_cpu)
3993{
a31196b0 3994 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3995#ifdef CONFIG_RFS_ACCEL
3996 struct netdev_rx_queue *rxqueue;
3997 struct rps_dev_flow_table *flow_table;
3998 struct rps_dev_flow *old_rflow;
3999 u32 flow_id;
4000 u16 rxq_index;
4001 int rc;
4002
4003 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4004 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4005 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4006 goto out;
4007 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4008 if (rxq_index == skb_get_rx_queue(skb))
4009 goto out;
4010
4011 rxqueue = dev->_rx + rxq_index;
4012 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4013 if (!flow_table)
4014 goto out;
61b905da 4015 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4016 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4017 rxq_index, flow_id);
4018 if (rc < 0)
4019 goto out;
4020 old_rflow = rflow;
4021 rflow = &flow_table->flows[flow_id];
c445477d
BH
4022 rflow->filter = rc;
4023 if (old_rflow->filter == rflow->filter)
4024 old_rflow->filter = RPS_NO_FILTER;
4025 out:
4026#endif
4027 rflow->last_qtail =
09994d1b 4028 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4029 }
4030
09994d1b 4031 rflow->cpu = next_cpu;
c445477d
BH
4032 return rflow;
4033}
4034
bfb564e7
KK
4035/*
4036 * get_rps_cpu is called from netif_receive_skb and returns the target
4037 * CPU from the RPS map of the receiving queue for a given skb.
4038 * rcu_read_lock must be held on entry.
4039 */
4040static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4041 struct rps_dev_flow **rflowp)
4042{
567e4b79
ED
4043 const struct rps_sock_flow_table *sock_flow_table;
4044 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4045 struct rps_dev_flow_table *flow_table;
567e4b79 4046 struct rps_map *map;
bfb564e7 4047 int cpu = -1;
567e4b79 4048 u32 tcpu;
61b905da 4049 u32 hash;
bfb564e7
KK
4050
4051 if (skb_rx_queue_recorded(skb)) {
4052 u16 index = skb_get_rx_queue(skb);
567e4b79 4053
62fe0b40
BH
4054 if (unlikely(index >= dev->real_num_rx_queues)) {
4055 WARN_ONCE(dev->real_num_rx_queues > 1,
4056 "%s received packet on queue %u, but number "
4057 "of RX queues is %u\n",
4058 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4059 goto done;
4060 }
567e4b79
ED
4061 rxqueue += index;
4062 }
bfb564e7 4063
567e4b79
ED
4064 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4065
4066 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4067 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4068 if (!flow_table && !map)
bfb564e7
KK
4069 goto done;
4070
2d47b459 4071 skb_reset_network_header(skb);
61b905da
TH
4072 hash = skb_get_hash(skb);
4073 if (!hash)
bfb564e7
KK
4074 goto done;
4075
fec5e652
TH
4076 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4077 if (flow_table && sock_flow_table) {
fec5e652 4078 struct rps_dev_flow *rflow;
567e4b79
ED
4079 u32 next_cpu;
4080 u32 ident;
4081
4082 /* First check into global flow table if there is a match */
4083 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4084 if ((ident ^ hash) & ~rps_cpu_mask)
4085 goto try_rps;
fec5e652 4086
567e4b79
ED
4087 next_cpu = ident & rps_cpu_mask;
4088
4089 /* OK, now we know there is a match,
4090 * we can look at the local (per receive queue) flow table
4091 */
61b905da 4092 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4093 tcpu = rflow->cpu;
4094
fec5e652
TH
4095 /*
4096 * If the desired CPU (where last recvmsg was done) is
4097 * different from current CPU (one in the rx-queue flow
4098 * table entry), switch if one of the following holds:
a31196b0 4099 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4100 * - Current CPU is offline.
4101 * - The current CPU's queue tail has advanced beyond the
4102 * last packet that was enqueued using this table entry.
4103 * This guarantees that all previous packets for the flow
4104 * have been dequeued, thus preserving in order delivery.
4105 */
4106 if (unlikely(tcpu != next_cpu) &&
a31196b0 4107 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4108 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4109 rflow->last_qtail)) >= 0)) {
4110 tcpu = next_cpu;
c445477d 4111 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4112 }
c445477d 4113
a31196b0 4114 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4115 *rflowp = rflow;
4116 cpu = tcpu;
4117 goto done;
4118 }
4119 }
4120
567e4b79
ED
4121try_rps:
4122
0a9627f2 4123 if (map) {
8fc54f68 4124 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4125 if (cpu_online(tcpu)) {
4126 cpu = tcpu;
4127 goto done;
4128 }
4129 }
4130
4131done:
0a9627f2
TH
4132 return cpu;
4133}
4134
c445477d
BH
4135#ifdef CONFIG_RFS_ACCEL
4136
4137/**
4138 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4139 * @dev: Device on which the filter was set
4140 * @rxq_index: RX queue index
4141 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4142 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4143 *
4144 * Drivers that implement ndo_rx_flow_steer() should periodically call
4145 * this function for each installed filter and remove the filters for
4146 * which it returns %true.
4147 */
4148bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4149 u32 flow_id, u16 filter_id)
4150{
4151 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4152 struct rps_dev_flow_table *flow_table;
4153 struct rps_dev_flow *rflow;
4154 bool expire = true;
a31196b0 4155 unsigned int cpu;
c445477d
BH
4156
4157 rcu_read_lock();
4158 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4159 if (flow_table && flow_id <= flow_table->mask) {
4160 rflow = &flow_table->flows[flow_id];
6aa7de05 4161 cpu = READ_ONCE(rflow->cpu);
a31196b0 4162 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4163 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4164 rflow->last_qtail) <
4165 (int)(10 * flow_table->mask)))
4166 expire = false;
4167 }
4168 rcu_read_unlock();
4169 return expire;
4170}
4171EXPORT_SYMBOL(rps_may_expire_flow);
4172
4173#endif /* CONFIG_RFS_ACCEL */
4174
0a9627f2 4175/* Called from hardirq (IPI) context */
e36fa2f7 4176static void rps_trigger_softirq(void *data)
0a9627f2 4177{
e36fa2f7
ED
4178 struct softnet_data *sd = data;
4179
eecfd7c4 4180 ____napi_schedule(sd, &sd->backlog);
dee42870 4181 sd->received_rps++;
0a9627f2 4182}
e36fa2f7 4183
fec5e652 4184#endif /* CONFIG_RPS */
0a9627f2 4185
e36fa2f7
ED
4186/*
4187 * Check if this softnet_data structure is another cpu one
4188 * If yes, queue it to our IPI list and return 1
4189 * If no, return 0
4190 */
4191static int rps_ipi_queued(struct softnet_data *sd)
4192{
4193#ifdef CONFIG_RPS
903ceff7 4194 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4195
4196 if (sd != mysd) {
4197 sd->rps_ipi_next = mysd->rps_ipi_list;
4198 mysd->rps_ipi_list = sd;
4199
4200 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4201 return 1;
4202 }
4203#endif /* CONFIG_RPS */
4204 return 0;
4205}
4206
99bbc707
WB
4207#ifdef CONFIG_NET_FLOW_LIMIT
4208int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4209#endif
4210
4211static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4212{
4213#ifdef CONFIG_NET_FLOW_LIMIT
4214 struct sd_flow_limit *fl;
4215 struct softnet_data *sd;
4216 unsigned int old_flow, new_flow;
4217
4218 if (qlen < (netdev_max_backlog >> 1))
4219 return false;
4220
903ceff7 4221 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4222
4223 rcu_read_lock();
4224 fl = rcu_dereference(sd->flow_limit);
4225 if (fl) {
3958afa1 4226 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4227 old_flow = fl->history[fl->history_head];
4228 fl->history[fl->history_head] = new_flow;
4229
4230 fl->history_head++;
4231 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4232
4233 if (likely(fl->buckets[old_flow]))
4234 fl->buckets[old_flow]--;
4235
4236 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4237 fl->count++;
4238 rcu_read_unlock();
4239 return true;
4240 }
4241 }
4242 rcu_read_unlock();
4243#endif
4244 return false;
4245}
4246
0a9627f2
TH
4247/*
4248 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4249 * queue (may be a remote CPU queue).
4250 */
fec5e652
TH
4251static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4252 unsigned int *qtail)
0a9627f2 4253{
e36fa2f7 4254 struct softnet_data *sd;
0a9627f2 4255 unsigned long flags;
99bbc707 4256 unsigned int qlen;
0a9627f2 4257
e36fa2f7 4258 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4259
4260 local_irq_save(flags);
0a9627f2 4261
e36fa2f7 4262 rps_lock(sd);
e9e4dd32
JA
4263 if (!netif_running(skb->dev))
4264 goto drop;
99bbc707
WB
4265 qlen = skb_queue_len(&sd->input_pkt_queue);
4266 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4267 if (qlen) {
0a9627f2 4268enqueue:
e36fa2f7 4269 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4270 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4271 rps_unlock(sd);
152102c7 4272 local_irq_restore(flags);
0a9627f2
TH
4273 return NET_RX_SUCCESS;
4274 }
4275
ebda37c2
ED
4276 /* Schedule NAPI for backlog device
4277 * We can use non atomic operation since we own the queue lock
4278 */
4279 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4280 if (!rps_ipi_queued(sd))
eecfd7c4 4281 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4282 }
4283 goto enqueue;
4284 }
4285
e9e4dd32 4286drop:
dee42870 4287 sd->dropped++;
e36fa2f7 4288 rps_unlock(sd);
0a9627f2 4289
0a9627f2
TH
4290 local_irq_restore(flags);
4291
caf586e5 4292 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4293 kfree_skb(skb);
4294 return NET_RX_DROP;
4295}
1da177e4 4296
e817f856
JDB
4297static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4298{
4299 struct net_device *dev = skb->dev;
4300 struct netdev_rx_queue *rxqueue;
4301
4302 rxqueue = dev->_rx;
4303
4304 if (skb_rx_queue_recorded(skb)) {
4305 u16 index = skb_get_rx_queue(skb);
4306
4307 if (unlikely(index >= dev->real_num_rx_queues)) {
4308 WARN_ONCE(dev->real_num_rx_queues > 1,
4309 "%s received packet on queue %u, but number "
4310 "of RX queues is %u\n",
4311 dev->name, index, dev->real_num_rx_queues);
4312
4313 return rxqueue; /* Return first rxqueue */
4314 }
4315 rxqueue += index;
4316 }
4317 return rxqueue;
4318}
4319
d4455169 4320static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4321 struct xdp_buff *xdp,
d4455169
JF
4322 struct bpf_prog *xdp_prog)
4323{
e817f856 4324 struct netdev_rx_queue *rxqueue;
198d83bb 4325 void *orig_data, *orig_data_end;
de8f3a83 4326 u32 metalen, act = XDP_DROP;
29724956
JDB
4327 __be16 orig_eth_type;
4328 struct ethhdr *eth;
4329 bool orig_bcast;
d4455169
JF
4330 int hlen, off;
4331 u32 mac_len;
4332
4333 /* Reinjected packets coming from act_mirred or similar should
4334 * not get XDP generic processing.
4335 */
cd11b164 4336 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
d4455169
JF
4337 return XDP_PASS;
4338
de8f3a83
DB
4339 /* XDP packets must be linear and must have sufficient headroom
4340 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4341 * native XDP provides, thus we need to do it here as well.
4342 */
4343 if (skb_is_nonlinear(skb) ||
4344 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4345 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4346 int troom = skb->tail + skb->data_len - skb->end;
4347
4348 /* In case we have to go down the path and also linearize,
4349 * then lets do the pskb_expand_head() work just once here.
4350 */
4351 if (pskb_expand_head(skb,
4352 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4353 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4354 goto do_drop;
2d17d8d7 4355 if (skb_linearize(skb))
de8f3a83
DB
4356 goto do_drop;
4357 }
d4455169
JF
4358
4359 /* The XDP program wants to see the packet starting at the MAC
4360 * header.
4361 */
4362 mac_len = skb->data - skb_mac_header(skb);
4363 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4364 xdp->data = skb->data - mac_len;
4365 xdp->data_meta = xdp->data;
4366 xdp->data_end = xdp->data + hlen;
4367 xdp->data_hard_start = skb->data - skb_headroom(skb);
4368 orig_data_end = xdp->data_end;
4369 orig_data = xdp->data;
29724956
JDB
4370 eth = (struct ethhdr *)xdp->data;
4371 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4372 orig_eth_type = eth->h_proto;
d4455169 4373
e817f856 4374 rxqueue = netif_get_rxqueue(skb);
02671e23 4375 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4376
02671e23 4377 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4378
065af355 4379 /* check if bpf_xdp_adjust_head was used */
02671e23 4380 off = xdp->data - orig_data;
065af355
JDB
4381 if (off) {
4382 if (off > 0)
4383 __skb_pull(skb, off);
4384 else if (off < 0)
4385 __skb_push(skb, -off);
4386
4387 skb->mac_header += off;
4388 skb_reset_network_header(skb);
4389 }
d4455169 4390
198d83bb
NS
4391 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4392 * pckt.
4393 */
02671e23 4394 off = orig_data_end - xdp->data_end;
f7613120 4395 if (off != 0) {
02671e23 4396 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
f7613120 4397 skb->len -= off;
02671e23 4398
f7613120 4399 }
198d83bb 4400
29724956
JDB
4401 /* check if XDP changed eth hdr such SKB needs update */
4402 eth = (struct ethhdr *)xdp->data;
4403 if ((orig_eth_type != eth->h_proto) ||
4404 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4405 __skb_push(skb, ETH_HLEN);
4406 skb->protocol = eth_type_trans(skb, skb->dev);
4407 }
4408
d4455169 4409 switch (act) {
6103aa96 4410 case XDP_REDIRECT:
d4455169
JF
4411 case XDP_TX:
4412 __skb_push(skb, mac_len);
de8f3a83 4413 break;
d4455169 4414 case XDP_PASS:
02671e23 4415 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4416 if (metalen)
4417 skb_metadata_set(skb, metalen);
d4455169 4418 break;
d4455169
JF
4419 default:
4420 bpf_warn_invalid_xdp_action(act);
4421 /* fall through */
4422 case XDP_ABORTED:
4423 trace_xdp_exception(skb->dev, xdp_prog, act);
4424 /* fall through */
4425 case XDP_DROP:
4426 do_drop:
4427 kfree_skb(skb);
4428 break;
4429 }
4430
4431 return act;
4432}
4433
4434/* When doing generic XDP we have to bypass the qdisc layer and the
4435 * network taps in order to match in-driver-XDP behavior.
4436 */
7c497478 4437void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4438{
4439 struct net_device *dev = skb->dev;
4440 struct netdev_queue *txq;
4441 bool free_skb = true;
4442 int cpu, rc;
4443
4bd97d51 4444 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4445 cpu = smp_processor_id();
4446 HARD_TX_LOCK(dev, txq, cpu);
4447 if (!netif_xmit_stopped(txq)) {
4448 rc = netdev_start_xmit(skb, dev, txq, 0);
4449 if (dev_xmit_complete(rc))
4450 free_skb = false;
4451 }
4452 HARD_TX_UNLOCK(dev, txq);
4453 if (free_skb) {
4454 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4455 kfree_skb(skb);
4456 }
4457}
7c497478 4458EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169 4459
02786475 4460static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4461
7c497478 4462int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4463{
d4455169 4464 if (xdp_prog) {
02671e23
BT
4465 struct xdp_buff xdp;
4466 u32 act;
6103aa96 4467 int err;
d4455169 4468
02671e23 4469 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4470 if (act != XDP_PASS) {
6103aa96
JF
4471 switch (act) {
4472 case XDP_REDIRECT:
2facaad6 4473 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4474 &xdp, xdp_prog);
6103aa96
JF
4475 if (err)
4476 goto out_redir;
02671e23 4477 break;
6103aa96 4478 case XDP_TX:
d4455169 4479 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4480 break;
4481 }
d4455169
JF
4482 return XDP_DROP;
4483 }
4484 }
4485 return XDP_PASS;
6103aa96 4486out_redir:
6103aa96
JF
4487 kfree_skb(skb);
4488 return XDP_DROP;
d4455169 4489}
7c497478 4490EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4491
ae78dbfa 4492static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4493{
b0e28f1e 4494 int ret;
1da177e4 4495
588f0330 4496 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4497
cf66ba58 4498 trace_netif_rx(skb);
d4455169 4499
df334545 4500#ifdef CONFIG_RPS
dc05360f 4501 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4502 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4503 int cpu;
4504
cece1945 4505 preempt_disable();
b0e28f1e 4506 rcu_read_lock();
fec5e652
TH
4507
4508 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4509 if (cpu < 0)
4510 cpu = smp_processor_id();
fec5e652
TH
4511
4512 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4513
b0e28f1e 4514 rcu_read_unlock();
cece1945 4515 preempt_enable();
adc9300e
ED
4516 } else
4517#endif
fec5e652
TH
4518 {
4519 unsigned int qtail;
f4563a75 4520
fec5e652
TH
4521 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4522 put_cpu();
4523 }
b0e28f1e 4524 return ret;
1da177e4 4525}
ae78dbfa
BH
4526
4527/**
4528 * netif_rx - post buffer to the network code
4529 * @skb: buffer to post
4530 *
4531 * This function receives a packet from a device driver and queues it for
4532 * the upper (protocol) levels to process. It always succeeds. The buffer
4533 * may be dropped during processing for congestion control or by the
4534 * protocol layers.
4535 *
4536 * return values:
4537 * NET_RX_SUCCESS (no congestion)
4538 * NET_RX_DROP (packet was dropped)
4539 *
4540 */
4541
4542int netif_rx(struct sk_buff *skb)
4543{
b0e3f1bd
GB
4544 int ret;
4545
ae78dbfa
BH
4546 trace_netif_rx_entry(skb);
4547
b0e3f1bd
GB
4548 ret = netif_rx_internal(skb);
4549 trace_netif_rx_exit(ret);
4550
4551 return ret;
ae78dbfa 4552}
d1b19dff 4553EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4554
4555int netif_rx_ni(struct sk_buff *skb)
4556{
4557 int err;
4558
ae78dbfa
BH
4559 trace_netif_rx_ni_entry(skb);
4560
1da177e4 4561 preempt_disable();
ae78dbfa 4562 err = netif_rx_internal(skb);
1da177e4
LT
4563 if (local_softirq_pending())
4564 do_softirq();
4565 preempt_enable();
b0e3f1bd 4566 trace_netif_rx_ni_exit(err);
1da177e4
LT
4567
4568 return err;
4569}
1da177e4
LT
4570EXPORT_SYMBOL(netif_rx_ni);
4571
0766f788 4572static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4573{
903ceff7 4574 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4575
4576 if (sd->completion_queue) {
4577 struct sk_buff *clist;
4578
4579 local_irq_disable();
4580 clist = sd->completion_queue;
4581 sd->completion_queue = NULL;
4582 local_irq_enable();
4583
4584 while (clist) {
4585 struct sk_buff *skb = clist;
f4563a75 4586
1da177e4
LT
4587 clist = clist->next;
4588
63354797 4589 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4590 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4591 trace_consume_skb(skb);
4592 else
4593 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4594
4595 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4596 __kfree_skb(skb);
4597 else
4598 __kfree_skb_defer(skb);
1da177e4 4599 }
15fad714
JDB
4600
4601 __kfree_skb_flush();
1da177e4
LT
4602 }
4603
4604 if (sd->output_queue) {
37437bb2 4605 struct Qdisc *head;
1da177e4
LT
4606
4607 local_irq_disable();
4608 head = sd->output_queue;
4609 sd->output_queue = NULL;
a9cbd588 4610 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4611 local_irq_enable();
4612
4613 while (head) {
37437bb2 4614 struct Qdisc *q = head;
6b3ba914 4615 spinlock_t *root_lock = NULL;
37437bb2 4616
1da177e4
LT
4617 head = head->next_sched;
4618
6b3ba914
JF
4619 if (!(q->flags & TCQ_F_NOLOCK)) {
4620 root_lock = qdisc_lock(q);
4621 spin_lock(root_lock);
4622 }
3bcb846c
ED
4623 /* We need to make sure head->next_sched is read
4624 * before clearing __QDISC_STATE_SCHED
4625 */
4626 smp_mb__before_atomic();
4627 clear_bit(__QDISC_STATE_SCHED, &q->state);
4628 qdisc_run(q);
6b3ba914
JF
4629 if (root_lock)
4630 spin_unlock(root_lock);
1da177e4
LT
4631 }
4632 }
f53c7239
SK
4633
4634 xfrm_dev_backlog(sd);
1da177e4
LT
4635}
4636
181402a5 4637#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4638/* This hook is defined here for ATM LANE */
4639int (*br_fdb_test_addr_hook)(struct net_device *dev,
4640 unsigned char *addr) __read_mostly;
4fb019a0 4641EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4642#endif
1da177e4 4643
1f211a1b
DB
4644static inline struct sk_buff *
4645sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4646 struct net_device *orig_dev)
f697c3e8 4647{
e7582bab 4648#ifdef CONFIG_NET_CLS_ACT
46209401 4649 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4650 struct tcf_result cl_res;
24824a09 4651
c9e99fd0
DB
4652 /* If there's at least one ingress present somewhere (so
4653 * we get here via enabled static key), remaining devices
4654 * that are not configured with an ingress qdisc will bail
d2788d34 4655 * out here.
c9e99fd0 4656 */
46209401 4657 if (!miniq)
4577139b 4658 return skb;
46209401 4659
f697c3e8
HX
4660 if (*pt_prev) {
4661 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4662 *pt_prev = NULL;
1da177e4
LT
4663 }
4664
3365495c 4665 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4666 skb->tc_at_ingress = 1;
46209401 4667 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4668
46209401 4669 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
4670 case TC_ACT_OK:
4671 case TC_ACT_RECLASSIFY:
4672 skb->tc_index = TC_H_MIN(cl_res.classid);
4673 break;
4674 case TC_ACT_SHOT:
46209401 4675 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4676 kfree_skb(skb);
4677 return NULL;
d2788d34
DB
4678 case TC_ACT_STOLEN:
4679 case TC_ACT_QUEUED:
e25ea21f 4680 case TC_ACT_TRAP:
8a3a4c6e 4681 consume_skb(skb);
d2788d34 4682 return NULL;
27b29f63
AS
4683 case TC_ACT_REDIRECT:
4684 /* skb_mac_header check was done by cls/act_bpf, so
4685 * we can safely push the L2 header back before
4686 * redirecting to another netdev
4687 */
4688 __skb_push(skb, skb->mac_len);
4689 skb_do_redirect(skb);
4690 return NULL;
720f22fe 4691 case TC_ACT_CONSUMED:
cd11b164 4692 return NULL;
d2788d34
DB
4693 default:
4694 break;
f697c3e8 4695 }
e7582bab 4696#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4697 return skb;
4698}
1da177e4 4699
24b27fc4
MB
4700/**
4701 * netdev_is_rx_handler_busy - check if receive handler is registered
4702 * @dev: device to check
4703 *
4704 * Check if a receive handler is already registered for a given device.
4705 * Return true if there one.
4706 *
4707 * The caller must hold the rtnl_mutex.
4708 */
4709bool netdev_is_rx_handler_busy(struct net_device *dev)
4710{
4711 ASSERT_RTNL();
4712 return dev && rtnl_dereference(dev->rx_handler);
4713}
4714EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4715
ab95bfe0
JP
4716/**
4717 * netdev_rx_handler_register - register receive handler
4718 * @dev: device to register a handler for
4719 * @rx_handler: receive handler to register
93e2c32b 4720 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4721 *
e227867f 4722 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4723 * called from __netif_receive_skb. A negative errno code is returned
4724 * on a failure.
4725 *
4726 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4727 *
4728 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4729 */
4730int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4731 rx_handler_func_t *rx_handler,
4732 void *rx_handler_data)
ab95bfe0 4733{
1b7cd004 4734 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4735 return -EBUSY;
4736
f5426250
PA
4737 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4738 return -EINVAL;
4739
00cfec37 4740 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4741 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4742 rcu_assign_pointer(dev->rx_handler, rx_handler);
4743
4744 return 0;
4745}
4746EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4747
4748/**
4749 * netdev_rx_handler_unregister - unregister receive handler
4750 * @dev: device to unregister a handler from
4751 *
166ec369 4752 * Unregister a receive handler from a device.
ab95bfe0
JP
4753 *
4754 * The caller must hold the rtnl_mutex.
4755 */
4756void netdev_rx_handler_unregister(struct net_device *dev)
4757{
4758
4759 ASSERT_RTNL();
a9b3cd7f 4760 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4761 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4762 * section has a guarantee to see a non NULL rx_handler_data
4763 * as well.
4764 */
4765 synchronize_net();
a9b3cd7f 4766 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4767}
4768EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4769
b4b9e355
MG
4770/*
4771 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4772 * the special handling of PFMEMALLOC skbs.
4773 */
4774static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4775{
4776 switch (skb->protocol) {
2b8837ae
JP
4777 case htons(ETH_P_ARP):
4778 case htons(ETH_P_IP):
4779 case htons(ETH_P_IPV6):
4780 case htons(ETH_P_8021Q):
4781 case htons(ETH_P_8021AD):
b4b9e355
MG
4782 return true;
4783 default:
4784 return false;
4785 }
4786}
4787
e687ad60
PN
4788static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4789 int *ret, struct net_device *orig_dev)
4790{
e7582bab 4791#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4792 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4793 int ingress_retval;
4794
e687ad60
PN
4795 if (*pt_prev) {
4796 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4797 *pt_prev = NULL;
4798 }
4799
2c1e2703
AC
4800 rcu_read_lock();
4801 ingress_retval = nf_hook_ingress(skb);
4802 rcu_read_unlock();
4803 return ingress_retval;
e687ad60 4804 }
e7582bab 4805#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4806 return 0;
4807}
e687ad60 4808
88eb1944
EC
4809static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4810 struct packet_type **ppt_prev)
1da177e4
LT
4811{
4812 struct packet_type *ptype, *pt_prev;
ab95bfe0 4813 rx_handler_func_t *rx_handler;
f2ccd8fa 4814 struct net_device *orig_dev;
8a4eb573 4815 bool deliver_exact = false;
1da177e4 4816 int ret = NET_RX_DROP;
252e3346 4817 __be16 type;
1da177e4 4818
588f0330 4819 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4820
cf66ba58 4821 trace_netif_receive_skb(skb);
9b22ea56 4822
cc9bd5ce 4823 orig_dev = skb->dev;
8f903c70 4824
c1d2bbe1 4825 skb_reset_network_header(skb);
fda55eca
ED
4826 if (!skb_transport_header_was_set(skb))
4827 skb_reset_transport_header(skb);
0b5c9db1 4828 skb_reset_mac_len(skb);
1da177e4
LT
4829
4830 pt_prev = NULL;
4831
63d8ea7f 4832another_round:
b6858177 4833 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4834
4835 __this_cpu_inc(softnet_data.processed);
4836
458bf2f2
SH
4837 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4838 int ret2;
4839
4840 preempt_disable();
4841 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4842 preempt_enable();
4843
4844 if (ret2 != XDP_PASS)
4845 return NET_RX_DROP;
4846 skb_reset_mac_len(skb);
4847 }
4848
8ad227ff
PM
4849 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4850 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4851 skb = skb_vlan_untag(skb);
bcc6d479 4852 if (unlikely(!skb))
2c17d27c 4853 goto out;
bcc6d479
JP
4854 }
4855
e7246e12
WB
4856 if (skb_skip_tc_classify(skb))
4857 goto skip_classify;
1da177e4 4858
9754e293 4859 if (pfmemalloc)
b4b9e355
MG
4860 goto skip_taps;
4861
1da177e4 4862 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4863 if (pt_prev)
4864 ret = deliver_skb(skb, pt_prev, orig_dev);
4865 pt_prev = ptype;
4866 }
4867
4868 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4869 if (pt_prev)
4870 ret = deliver_skb(skb, pt_prev, orig_dev);
4871 pt_prev = ptype;
1da177e4
LT
4872 }
4873
b4b9e355 4874skip_taps:
1cf51900 4875#ifdef CONFIG_NET_INGRESS
aabf6772 4876 if (static_branch_unlikely(&ingress_needed_key)) {
1f211a1b 4877 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4878 if (!skb)
2c17d27c 4879 goto out;
e687ad60
PN
4880
4881 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4882 goto out;
4577139b 4883 }
1cf51900 4884#endif
a5135bcf 4885 skb_reset_tc(skb);
e7246e12 4886skip_classify:
9754e293 4887 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4888 goto drop;
4889
df8a39de 4890 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4891 if (pt_prev) {
4892 ret = deliver_skb(skb, pt_prev, orig_dev);
4893 pt_prev = NULL;
4894 }
48cc32d3 4895 if (vlan_do_receive(&skb))
2425717b
JF
4896 goto another_round;
4897 else if (unlikely(!skb))
2c17d27c 4898 goto out;
2425717b
JF
4899 }
4900
48cc32d3 4901 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4902 if (rx_handler) {
4903 if (pt_prev) {
4904 ret = deliver_skb(skb, pt_prev, orig_dev);
4905 pt_prev = NULL;
4906 }
8a4eb573
JP
4907 switch (rx_handler(&skb)) {
4908 case RX_HANDLER_CONSUMED:
3bc1b1ad 4909 ret = NET_RX_SUCCESS;
2c17d27c 4910 goto out;
8a4eb573 4911 case RX_HANDLER_ANOTHER:
63d8ea7f 4912 goto another_round;
8a4eb573
JP
4913 case RX_HANDLER_EXACT:
4914 deliver_exact = true;
4915 case RX_HANDLER_PASS:
4916 break;
4917 default:
4918 BUG();
4919 }
ab95bfe0 4920 }
1da177e4 4921
df8a39de 4922 if (unlikely(skb_vlan_tag_present(skb))) {
36b2f61a
GV
4923check_vlan_id:
4924 if (skb_vlan_tag_get_id(skb)) {
4925 /* Vlan id is non 0 and vlan_do_receive() above couldn't
4926 * find vlan device.
4927 */
d4b812de 4928 skb->pkt_type = PACKET_OTHERHOST;
36b2f61a
GV
4929 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4930 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4931 /* Outer header is 802.1P with vlan 0, inner header is
4932 * 802.1Q or 802.1AD and vlan_do_receive() above could
4933 * not find vlan dev for vlan id 0.
4934 */
4935 __vlan_hwaccel_clear_tag(skb);
4936 skb = skb_vlan_untag(skb);
4937 if (unlikely(!skb))
4938 goto out;
4939 if (vlan_do_receive(&skb))
4940 /* After stripping off 802.1P header with vlan 0
4941 * vlan dev is found for inner header.
4942 */
4943 goto another_round;
4944 else if (unlikely(!skb))
4945 goto out;
4946 else
4947 /* We have stripped outer 802.1P vlan 0 header.
4948 * But could not find vlan dev.
4949 * check again for vlan id to set OTHERHOST.
4950 */
4951 goto check_vlan_id;
4952 }
d4b812de
ED
4953 /* Note: we might in the future use prio bits
4954 * and set skb->priority like in vlan_do_receive()
4955 * For the time being, just ignore Priority Code Point
4956 */
b1817524 4957 __vlan_hwaccel_clear_tag(skb);
d4b812de 4958 }
48cc32d3 4959
7866a621
SN
4960 type = skb->protocol;
4961
63d8ea7f 4962 /* deliver only exact match when indicated */
7866a621
SN
4963 if (likely(!deliver_exact)) {
4964 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4965 &ptype_base[ntohs(type) &
4966 PTYPE_HASH_MASK]);
4967 }
1f3c8804 4968
7866a621
SN
4969 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4970 &orig_dev->ptype_specific);
4971
4972 if (unlikely(skb->dev != orig_dev)) {
4973 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4974 &skb->dev->ptype_specific);
1da177e4
LT
4975 }
4976
4977 if (pt_prev) {
1f8b977a 4978 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 4979 goto drop;
88eb1944 4980 *ppt_prev = pt_prev;
1da177e4 4981 } else {
b4b9e355 4982drop:
6e7333d3
JW
4983 if (!deliver_exact)
4984 atomic_long_inc(&skb->dev->rx_dropped);
4985 else
4986 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4987 kfree_skb(skb);
4988 /* Jamal, now you will not able to escape explaining
4989 * me how you were going to use this. :-)
4990 */
4991 ret = NET_RX_DROP;
4992 }
4993
2c17d27c 4994out:
9754e293
DM
4995 return ret;
4996}
4997
88eb1944
EC
4998static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4999{
5000 struct net_device *orig_dev = skb->dev;
5001 struct packet_type *pt_prev = NULL;
5002 int ret;
5003
5004 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5005 if (pt_prev)
f5737cba
PA
5006 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5007 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5008 return ret;
5009}
5010
1c601d82
JDB
5011/**
5012 * netif_receive_skb_core - special purpose version of netif_receive_skb
5013 * @skb: buffer to process
5014 *
5015 * More direct receive version of netif_receive_skb(). It should
5016 * only be used by callers that have a need to skip RPS and Generic XDP.
5017 * Caller must also take care of handling if (page_is_)pfmemalloc.
5018 *
5019 * This function may only be called from softirq context and interrupts
5020 * should be enabled.
5021 *
5022 * Return values (usually ignored):
5023 * NET_RX_SUCCESS: no congestion
5024 * NET_RX_DROP: packet was dropped
5025 */
5026int netif_receive_skb_core(struct sk_buff *skb)
5027{
5028 int ret;
5029
5030 rcu_read_lock();
88eb1944 5031 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5032 rcu_read_unlock();
5033
5034 return ret;
5035}
5036EXPORT_SYMBOL(netif_receive_skb_core);
5037
88eb1944
EC
5038static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5039 struct packet_type *pt_prev,
5040 struct net_device *orig_dev)
4ce0017a
EC
5041{
5042 struct sk_buff *skb, *next;
5043
88eb1944
EC
5044 if (!pt_prev)
5045 return;
5046 if (list_empty(head))
5047 return;
17266ee9 5048 if (pt_prev->list_func != NULL)
fdf71426
PA
5049 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5050 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5051 else
9a5a90d1
AL
5052 list_for_each_entry_safe(skb, next, head, list) {
5053 skb_list_del_init(skb);
fdf71426 5054 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5055 }
88eb1944
EC
5056}
5057
5058static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5059{
5060 /* Fast-path assumptions:
5061 * - There is no RX handler.
5062 * - Only one packet_type matches.
5063 * If either of these fails, we will end up doing some per-packet
5064 * processing in-line, then handling the 'last ptype' for the whole
5065 * sublist. This can't cause out-of-order delivery to any single ptype,
5066 * because the 'last ptype' must be constant across the sublist, and all
5067 * other ptypes are handled per-packet.
5068 */
5069 /* Current (common) ptype of sublist */
5070 struct packet_type *pt_curr = NULL;
5071 /* Current (common) orig_dev of sublist */
5072 struct net_device *od_curr = NULL;
5073 struct list_head sublist;
5074 struct sk_buff *skb, *next;
5075
9af86f93 5076 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5077 list_for_each_entry_safe(skb, next, head, list) {
5078 struct net_device *orig_dev = skb->dev;
5079 struct packet_type *pt_prev = NULL;
5080
22f6bbb7 5081 skb_list_del_init(skb);
88eb1944 5082 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
9af86f93
EC
5083 if (!pt_prev)
5084 continue;
88eb1944
EC
5085 if (pt_curr != pt_prev || od_curr != orig_dev) {
5086 /* dispatch old sublist */
88eb1944
EC
5087 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5088 /* start new sublist */
9af86f93 5089 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5090 pt_curr = pt_prev;
5091 od_curr = orig_dev;
5092 }
9af86f93 5093 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5094 }
5095
5096 /* dispatch final sublist */
9af86f93 5097 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5098}
5099
9754e293
DM
5100static int __netif_receive_skb(struct sk_buff *skb)
5101{
5102 int ret;
5103
5104 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5105 unsigned int noreclaim_flag;
9754e293
DM
5106
5107 /*
5108 * PFMEMALLOC skbs are special, they should
5109 * - be delivered to SOCK_MEMALLOC sockets only
5110 * - stay away from userspace
5111 * - have bounded memory usage
5112 *
5113 * Use PF_MEMALLOC as this saves us from propagating the allocation
5114 * context down to all allocation sites.
5115 */
f1083048 5116 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5117 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5118 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5119 } else
88eb1944 5120 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5121
1da177e4
LT
5122 return ret;
5123}
0a9627f2 5124
4ce0017a
EC
5125static void __netif_receive_skb_list(struct list_head *head)
5126{
5127 unsigned long noreclaim_flag = 0;
5128 struct sk_buff *skb, *next;
5129 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5130
5131 list_for_each_entry_safe(skb, next, head, list) {
5132 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5133 struct list_head sublist;
5134
5135 /* Handle the previous sublist */
5136 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5137 if (!list_empty(&sublist))
5138 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5139 pfmemalloc = !pfmemalloc;
5140 /* See comments in __netif_receive_skb */
5141 if (pfmemalloc)
5142 noreclaim_flag = memalloc_noreclaim_save();
5143 else
5144 memalloc_noreclaim_restore(noreclaim_flag);
5145 }
5146 }
5147 /* Handle the remaining sublist */
b9f463d6
EC
5148 if (!list_empty(head))
5149 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5150 /* Restore pflags */
5151 if (pfmemalloc)
5152 memalloc_noreclaim_restore(noreclaim_flag);
5153}
5154
f4e63525 5155static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5156{
58038695 5157 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5158 struct bpf_prog *new = xdp->prog;
5159 int ret = 0;
5160
5161 switch (xdp->command) {
58038695 5162 case XDP_SETUP_PROG:
b5cdae32
DM
5163 rcu_assign_pointer(dev->xdp_prog, new);
5164 if (old)
5165 bpf_prog_put(old);
5166
5167 if (old && !new) {
02786475 5168 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5169 } else if (new && !old) {
02786475 5170 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5171 dev_disable_lro(dev);
56f5aa77 5172 dev_disable_gro_hw(dev);
b5cdae32
DM
5173 }
5174 break;
b5cdae32
DM
5175
5176 case XDP_QUERY_PROG:
58038695 5177 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
5178 break;
5179
5180 default:
5181 ret = -EINVAL;
5182 break;
5183 }
5184
5185 return ret;
5186}
5187
ae78dbfa 5188static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5189{
2c17d27c
JA
5190 int ret;
5191
588f0330 5192 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5193
c1f19b51
RC
5194 if (skb_defer_rx_timestamp(skb))
5195 return NET_RX_SUCCESS;
5196
bbbe211c 5197 rcu_read_lock();
df334545 5198#ifdef CONFIG_RPS
dc05360f 5199 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5200 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5201 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5202
3b098e2d
ED
5203 if (cpu >= 0) {
5204 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5205 rcu_read_unlock();
adc9300e 5206 return ret;
3b098e2d 5207 }
fec5e652 5208 }
1e94d72f 5209#endif
2c17d27c
JA
5210 ret = __netif_receive_skb(skb);
5211 rcu_read_unlock();
5212 return ret;
0a9627f2 5213}
ae78dbfa 5214
7da517a3
EC
5215static void netif_receive_skb_list_internal(struct list_head *head)
5216{
7da517a3 5217 struct sk_buff *skb, *next;
8c057efa 5218 struct list_head sublist;
7da517a3 5219
8c057efa 5220 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5221 list_for_each_entry_safe(skb, next, head, list) {
5222 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5223 skb_list_del_init(skb);
8c057efa
EC
5224 if (!skb_defer_rx_timestamp(skb))
5225 list_add_tail(&skb->list, &sublist);
7da517a3 5226 }
8c057efa 5227 list_splice_init(&sublist, head);
7da517a3 5228
7da517a3
EC
5229 rcu_read_lock();
5230#ifdef CONFIG_RPS
dc05360f 5231 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5232 list_for_each_entry_safe(skb, next, head, list) {
5233 struct rps_dev_flow voidflow, *rflow = &voidflow;
5234 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5235
5236 if (cpu >= 0) {
8c057efa 5237 /* Will be handled, remove from list */
22f6bbb7 5238 skb_list_del_init(skb);
8c057efa 5239 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5240 }
5241 }
5242 }
5243#endif
5244 __netif_receive_skb_list(head);
5245 rcu_read_unlock();
5246}
5247
ae78dbfa
BH
5248/**
5249 * netif_receive_skb - process receive buffer from network
5250 * @skb: buffer to process
5251 *
5252 * netif_receive_skb() is the main receive data processing function.
5253 * It always succeeds. The buffer may be dropped during processing
5254 * for congestion control or by the protocol layers.
5255 *
5256 * This function may only be called from softirq context and interrupts
5257 * should be enabled.
5258 *
5259 * Return values (usually ignored):
5260 * NET_RX_SUCCESS: no congestion
5261 * NET_RX_DROP: packet was dropped
5262 */
04eb4489 5263int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5264{
b0e3f1bd
GB
5265 int ret;
5266
ae78dbfa
BH
5267 trace_netif_receive_skb_entry(skb);
5268
b0e3f1bd
GB
5269 ret = netif_receive_skb_internal(skb);
5270 trace_netif_receive_skb_exit(ret);
5271
5272 return ret;
ae78dbfa 5273}
04eb4489 5274EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5275
f6ad8c1b
EC
5276/**
5277 * netif_receive_skb_list - process many receive buffers from network
5278 * @head: list of skbs to process.
5279 *
7da517a3
EC
5280 * Since return value of netif_receive_skb() is normally ignored, and
5281 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5282 *
5283 * This function may only be called from softirq context and interrupts
5284 * should be enabled.
5285 */
5286void netif_receive_skb_list(struct list_head *head)
5287{
7da517a3 5288 struct sk_buff *skb;
f6ad8c1b 5289
b9f463d6
EC
5290 if (list_empty(head))
5291 return;
b0e3f1bd
GB
5292 if (trace_netif_receive_skb_list_entry_enabled()) {
5293 list_for_each_entry(skb, head, list)
5294 trace_netif_receive_skb_list_entry(skb);
5295 }
7da517a3 5296 netif_receive_skb_list_internal(head);
b0e3f1bd 5297 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5298}
5299EXPORT_SYMBOL(netif_receive_skb_list);
5300
41852497 5301DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5302
5303/* Network device is going away, flush any packets still pending */
5304static void flush_backlog(struct work_struct *work)
6e583ce5 5305{
6e583ce5 5306 struct sk_buff *skb, *tmp;
145dd5f9
PA
5307 struct softnet_data *sd;
5308
5309 local_bh_disable();
5310 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5311
145dd5f9 5312 local_irq_disable();
e36fa2f7 5313 rps_lock(sd);
6e7676c1 5314 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5315 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5316 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 5317 kfree_skb(skb);
76cc8b13 5318 input_queue_head_incr(sd);
6e583ce5 5319 }
6e7676c1 5320 }
e36fa2f7 5321 rps_unlock(sd);
145dd5f9 5322 local_irq_enable();
6e7676c1
CG
5323
5324 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5325 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5326 __skb_unlink(skb, &sd->process_queue);
5327 kfree_skb(skb);
76cc8b13 5328 input_queue_head_incr(sd);
6e7676c1
CG
5329 }
5330 }
145dd5f9
PA
5331 local_bh_enable();
5332}
5333
41852497 5334static void flush_all_backlogs(void)
145dd5f9
PA
5335{
5336 unsigned int cpu;
5337
5338 get_online_cpus();
5339
41852497
ED
5340 for_each_online_cpu(cpu)
5341 queue_work_on(cpu, system_highpri_wq,
5342 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5343
5344 for_each_online_cpu(cpu)
41852497 5345 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5346
5347 put_online_cpus();
6e583ce5
SH
5348}
5349
aaa5d90b
PA
5350INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5351INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
d565b0a1
HX
5352static int napi_gro_complete(struct sk_buff *skb)
5353{
22061d80 5354 struct packet_offload *ptype;
d565b0a1 5355 __be16 type = skb->protocol;
22061d80 5356 struct list_head *head = &offload_base;
d565b0a1
HX
5357 int err = -ENOENT;
5358
c3c7c254
ED
5359 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5360
fc59f9a3
HX
5361 if (NAPI_GRO_CB(skb)->count == 1) {
5362 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5363 goto out;
fc59f9a3 5364 }
d565b0a1
HX
5365
5366 rcu_read_lock();
5367 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5368 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5369 continue;
5370
aaa5d90b
PA
5371 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5372 ipv6_gro_complete, inet_gro_complete,
5373 skb, 0);
d565b0a1
HX
5374 break;
5375 }
5376 rcu_read_unlock();
5377
5378 if (err) {
5379 WARN_ON(&ptype->list == head);
5380 kfree_skb(skb);
5381 return NET_RX_SUCCESS;
5382 }
5383
5384out:
ae78dbfa 5385 return netif_receive_skb_internal(skb);
d565b0a1
HX
5386}
5387
6312fe77 5388static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5389 bool flush_old)
d565b0a1 5390{
6312fe77 5391 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5392 struct sk_buff *skb, *p;
2e71a6f8 5393
07d78363 5394 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5395 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5396 return;
992cba7e 5397 skb_list_del_init(skb);
d565b0a1 5398 napi_gro_complete(skb);
6312fe77 5399 napi->gro_hash[index].count--;
d565b0a1 5400 }
d9f37d01
LR
5401
5402 if (!napi->gro_hash[index].count)
5403 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5404}
07d78363 5405
6312fe77 5406/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5407 * youngest packets at the head of it.
5408 * Complete skbs in reverse order to reduce latencies.
5409 */
5410void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5411{
42519ede
ED
5412 unsigned long bitmask = napi->gro_bitmask;
5413 unsigned int i, base = ~0U;
07d78363 5414
42519ede
ED
5415 while ((i = ffs(bitmask)) != 0) {
5416 bitmask >>= i;
5417 base += i;
5418 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5419 }
07d78363 5420}
86cac58b 5421EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5422
07d78363
DM
5423static struct list_head *gro_list_prepare(struct napi_struct *napi,
5424 struct sk_buff *skb)
89c5fa33 5425{
89c5fa33 5426 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5427 u32 hash = skb_get_hash_raw(skb);
07d78363 5428 struct list_head *head;
d4546c25 5429 struct sk_buff *p;
89c5fa33 5430
6312fe77 5431 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5432 list_for_each_entry(p, head, list) {
89c5fa33
ED
5433 unsigned long diffs;
5434
0b4cec8c
TH
5435 NAPI_GRO_CB(p)->flush = 0;
5436
5437 if (hash != skb_get_hash_raw(p)) {
5438 NAPI_GRO_CB(p)->same_flow = 0;
5439 continue;
5440 }
5441
89c5fa33 5442 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5443 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5444 if (skb_vlan_tag_present(p))
5445 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 5446 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5447 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5448 if (maclen == ETH_HLEN)
5449 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5450 skb_mac_header(skb));
89c5fa33
ED
5451 else if (!diffs)
5452 diffs = memcmp(skb_mac_header(p),
a50e233c 5453 skb_mac_header(skb),
89c5fa33
ED
5454 maclen);
5455 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5456 }
07d78363
DM
5457
5458 return head;
89c5fa33
ED
5459}
5460
299603e8
JC
5461static void skb_gro_reset_offset(struct sk_buff *skb)
5462{
5463 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5464 const skb_frag_t *frag0 = &pinfo->frags[0];
5465
5466 NAPI_GRO_CB(skb)->data_offset = 0;
5467 NAPI_GRO_CB(skb)->frag0 = NULL;
5468 NAPI_GRO_CB(skb)->frag0_len = 0;
5469
5470 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5471 pinfo->nr_frags &&
5472 !PageHighMem(skb_frag_page(frag0))) {
5473 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5474 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5475 skb_frag_size(frag0),
5476 skb->end - skb->tail);
89c5fa33
ED
5477 }
5478}
5479
a50e233c
ED
5480static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5481{
5482 struct skb_shared_info *pinfo = skb_shinfo(skb);
5483
5484 BUG_ON(skb->end - skb->tail < grow);
5485
5486 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5487
5488 skb->data_len -= grow;
5489 skb->tail += grow;
5490
b54c9d5b 5491 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
5492 skb_frag_size_sub(&pinfo->frags[0], grow);
5493
5494 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5495 skb_frag_unref(skb, 0);
5496 memmove(pinfo->frags, pinfo->frags + 1,
5497 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5498 }
5499}
5500
6312fe77 5501static void gro_flush_oldest(struct list_head *head)
07d78363 5502{
6312fe77 5503 struct sk_buff *oldest;
07d78363 5504
6312fe77 5505 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5506
6312fe77 5507 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5508 * impossible.
5509 */
5510 if (WARN_ON_ONCE(!oldest))
5511 return;
5512
d9f37d01
LR
5513 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5514 * SKB to the chain.
07d78363 5515 */
ece23711 5516 skb_list_del_init(oldest);
07d78363
DM
5517 napi_gro_complete(oldest);
5518}
5519
aaa5d90b
PA
5520INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5521 struct sk_buff *));
5522INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5523 struct sk_buff *));
bb728820 5524static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5525{
6312fe77 5526 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5527 struct list_head *head = &offload_base;
22061d80 5528 struct packet_offload *ptype;
d565b0a1 5529 __be16 type = skb->protocol;
07d78363 5530 struct list_head *gro_head;
d4546c25 5531 struct sk_buff *pp = NULL;
5b252f0c 5532 enum gro_result ret;
d4546c25 5533 int same_flow;
a50e233c 5534 int grow;
d565b0a1 5535
b5cdae32 5536 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5537 goto normal;
5538
07d78363 5539 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5540
d565b0a1
HX
5541 rcu_read_lock();
5542 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5543 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5544 continue;
5545
86911732 5546 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5547 skb_reset_mac_len(skb);
d565b0a1 5548 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5549 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5550 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5551 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5552 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5553 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5554 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5555 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5556
662880f4
TH
5557 /* Setup for GRO checksum validation */
5558 switch (skb->ip_summed) {
5559 case CHECKSUM_COMPLETE:
5560 NAPI_GRO_CB(skb)->csum = skb->csum;
5561 NAPI_GRO_CB(skb)->csum_valid = 1;
5562 NAPI_GRO_CB(skb)->csum_cnt = 0;
5563 break;
5564 case CHECKSUM_UNNECESSARY:
5565 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5566 NAPI_GRO_CB(skb)->csum_valid = 0;
5567 break;
5568 default:
5569 NAPI_GRO_CB(skb)->csum_cnt = 0;
5570 NAPI_GRO_CB(skb)->csum_valid = 0;
5571 }
d565b0a1 5572
aaa5d90b
PA
5573 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5574 ipv6_gro_receive, inet_gro_receive,
5575 gro_head, skb);
d565b0a1
HX
5576 break;
5577 }
5578 rcu_read_unlock();
5579
5580 if (&ptype->list == head)
5581 goto normal;
5582
25393d3f
SK
5583 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5584 ret = GRO_CONSUMED;
5585 goto ok;
5586 }
5587
0da2afd5 5588 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5589 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5590
d565b0a1 5591 if (pp) {
992cba7e 5592 skb_list_del_init(pp);
d4546c25 5593 napi_gro_complete(pp);
6312fe77 5594 napi->gro_hash[hash].count--;
d565b0a1
HX
5595 }
5596
0da2afd5 5597 if (same_flow)
d565b0a1
HX
5598 goto ok;
5599
600adc18 5600 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5601 goto normal;
d565b0a1 5602
6312fe77
LR
5603 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5604 gro_flush_oldest(gro_head);
600adc18 5605 } else {
6312fe77 5606 napi->gro_hash[hash].count++;
600adc18 5607 }
d565b0a1 5608 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 5609 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 5610 NAPI_GRO_CB(skb)->last = skb;
86911732 5611 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 5612 list_add(&skb->list, gro_head);
5d0d9be8 5613 ret = GRO_HELD;
d565b0a1 5614
ad0f9904 5615pull:
a50e233c
ED
5616 grow = skb_gro_offset(skb) - skb_headlen(skb);
5617 if (grow > 0)
5618 gro_pull_from_frag0(skb, grow);
d565b0a1 5619ok:
d9f37d01
LR
5620 if (napi->gro_hash[hash].count) {
5621 if (!test_bit(hash, &napi->gro_bitmask))
5622 __set_bit(hash, &napi->gro_bitmask);
5623 } else if (test_bit(hash, &napi->gro_bitmask)) {
5624 __clear_bit(hash, &napi->gro_bitmask);
5625 }
5626
5d0d9be8 5627 return ret;
d565b0a1
HX
5628
5629normal:
ad0f9904
HX
5630 ret = GRO_NORMAL;
5631 goto pull;
5d38a079 5632}
96e93eab 5633
bf5a755f
JC
5634struct packet_offload *gro_find_receive_by_type(__be16 type)
5635{
5636 struct list_head *offload_head = &offload_base;
5637 struct packet_offload *ptype;
5638
5639 list_for_each_entry_rcu(ptype, offload_head, list) {
5640 if (ptype->type != type || !ptype->callbacks.gro_receive)
5641 continue;
5642 return ptype;
5643 }
5644 return NULL;
5645}
e27a2f83 5646EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
5647
5648struct packet_offload *gro_find_complete_by_type(__be16 type)
5649{
5650 struct list_head *offload_head = &offload_base;
5651 struct packet_offload *ptype;
5652
5653 list_for_each_entry_rcu(ptype, offload_head, list) {
5654 if (ptype->type != type || !ptype->callbacks.gro_complete)
5655 continue;
5656 return ptype;
5657 }
5658 return NULL;
5659}
e27a2f83 5660EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 5661
e44699d2
MK
5662static void napi_skb_free_stolen_head(struct sk_buff *skb)
5663{
5664 skb_dst_drop(skb);
5665 secpath_reset(skb);
5666 kmem_cache_free(skbuff_head_cache, skb);
5667}
5668
bb728820 5669static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 5670{
5d0d9be8
HX
5671 switch (ret) {
5672 case GRO_NORMAL:
ae78dbfa 5673 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
5674 ret = GRO_DROP;
5675 break;
5d38a079 5676
5d0d9be8 5677 case GRO_DROP:
5d38a079
HX
5678 kfree_skb(skb);
5679 break;
5b252f0c 5680
daa86548 5681 case GRO_MERGED_FREE:
e44699d2
MK
5682 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5683 napi_skb_free_stolen_head(skb);
5684 else
d7e8883c 5685 __kfree_skb(skb);
daa86548
ED
5686 break;
5687
5b252f0c
BH
5688 case GRO_HELD:
5689 case GRO_MERGED:
25393d3f 5690 case GRO_CONSUMED:
5b252f0c 5691 break;
5d38a079
HX
5692 }
5693
c7c4b3b6 5694 return ret;
5d0d9be8 5695}
5d0d9be8 5696
c7c4b3b6 5697gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 5698{
b0e3f1bd
GB
5699 gro_result_t ret;
5700
93f93a44 5701 skb_mark_napi_id(skb, napi);
ae78dbfa 5702 trace_napi_gro_receive_entry(skb);
86911732 5703
a50e233c
ED
5704 skb_gro_reset_offset(skb);
5705
b0e3f1bd
GB
5706 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5707 trace_napi_gro_receive_exit(ret);
5708
5709 return ret;
d565b0a1
HX
5710}
5711EXPORT_SYMBOL(napi_gro_receive);
5712
d0c2b0d2 5713static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 5714{
93a35f59
ED
5715 if (unlikely(skb->pfmemalloc)) {
5716 consume_skb(skb);
5717 return;
5718 }
96e93eab 5719 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
5720 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5721 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 5722 __vlan_hwaccel_clear_tag(skb);
66c46d74 5723 skb->dev = napi->dev;
6d152e23 5724 skb->skb_iif = 0;
33d9a2c7
ED
5725
5726 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5727 skb->pkt_type = PACKET_HOST;
5728
c3caf119
JC
5729 skb->encapsulation = 0;
5730 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 5731 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 5732 secpath_reset(skb);
96e93eab
HX
5733
5734 napi->skb = skb;
5735}
96e93eab 5736
76620aaf 5737struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5738{
5d38a079 5739 struct sk_buff *skb = napi->skb;
5d38a079
HX
5740
5741 if (!skb) {
fd11a83d 5742 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5743 if (skb) {
5744 napi->skb = skb;
5745 skb_mark_napi_id(skb, napi);
5746 }
80595d59 5747 }
96e93eab
HX
5748 return skb;
5749}
76620aaf 5750EXPORT_SYMBOL(napi_get_frags);
96e93eab 5751
323ebb61
EC
5752/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5753static void gro_normal_list(struct napi_struct *napi)
5754{
5755 if (!napi->rx_count)
5756 return;
5757 netif_receive_skb_list_internal(&napi->rx_list);
5758 INIT_LIST_HEAD(&napi->rx_list);
5759 napi->rx_count = 0;
5760}
5761
5762/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5763 * pass the whole batch up to the stack.
5764 */
5765static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5766{
5767 list_add_tail(&skb->list, &napi->rx_list);
5768 if (++napi->rx_count >= gro_normal_batch)
5769 gro_normal_list(napi);
5770}
5771
a50e233c
ED
5772static gro_result_t napi_frags_finish(struct napi_struct *napi,
5773 struct sk_buff *skb,
5774 gro_result_t ret)
96e93eab 5775{
5d0d9be8
HX
5776 switch (ret) {
5777 case GRO_NORMAL:
a50e233c
ED
5778 case GRO_HELD:
5779 __skb_push(skb, ETH_HLEN);
5780 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61
EC
5781 if (ret == GRO_NORMAL)
5782 gro_normal_one(napi, skb);
86911732 5783 break;
5d38a079 5784
5d0d9be8 5785 case GRO_DROP:
5d0d9be8
HX
5786 napi_reuse_skb(napi, skb);
5787 break;
5b252f0c 5788
e44699d2
MK
5789 case GRO_MERGED_FREE:
5790 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5791 napi_skb_free_stolen_head(skb);
5792 else
5793 napi_reuse_skb(napi, skb);
5794 break;
5795
5b252f0c 5796 case GRO_MERGED:
25393d3f 5797 case GRO_CONSUMED:
5b252f0c 5798 break;
5d0d9be8 5799 }
5d38a079 5800
c7c4b3b6 5801 return ret;
5d38a079 5802}
5d0d9be8 5803
a50e233c
ED
5804/* Upper GRO stack assumes network header starts at gro_offset=0
5805 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5806 * We copy ethernet header into skb->data to have a common layout.
5807 */
4adb9c4a 5808static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5809{
5810 struct sk_buff *skb = napi->skb;
a50e233c
ED
5811 const struct ethhdr *eth;
5812 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5813
5814 napi->skb = NULL;
5815
a50e233c
ED
5816 skb_reset_mac_header(skb);
5817 skb_gro_reset_offset(skb);
5818
a50e233c
ED
5819 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5820 eth = skb_gro_header_slow(skb, hlen, 0);
5821 if (unlikely(!eth)) {
4da46ceb
AC
5822 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5823 __func__, napi->dev->name);
a50e233c
ED
5824 napi_reuse_skb(napi, skb);
5825 return NULL;
5826 }
5827 } else {
a4270d67 5828 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
5829 gro_pull_from_frag0(skb, hlen);
5830 NAPI_GRO_CB(skb)->frag0 += hlen;
5831 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5832 }
a50e233c
ED
5833 __skb_pull(skb, hlen);
5834
5835 /*
5836 * This works because the only protocols we care about don't require
5837 * special handling.
5838 * We'll fix it up properly in napi_frags_finish()
5839 */
5840 skb->protocol = eth->h_proto;
76620aaf 5841
76620aaf
HX
5842 return skb;
5843}
76620aaf 5844
c7c4b3b6 5845gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5846{
b0e3f1bd 5847 gro_result_t ret;
76620aaf 5848 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5849
5850 if (!skb)
c7c4b3b6 5851 return GRO_DROP;
5d0d9be8 5852
ae78dbfa
BH
5853 trace_napi_gro_frags_entry(skb);
5854
b0e3f1bd
GB
5855 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5856 trace_napi_gro_frags_exit(ret);
5857
5858 return ret;
5d0d9be8 5859}
5d38a079
HX
5860EXPORT_SYMBOL(napi_gro_frags);
5861
573e8fca
TH
5862/* Compute the checksum from gro_offset and return the folded value
5863 * after adding in any pseudo checksum.
5864 */
5865__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5866{
5867 __wsum wsum;
5868 __sum16 sum;
5869
5870 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5871
5872 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5873 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 5874 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
5875 if (likely(!sum)) {
5876 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5877 !skb->csum_complete_sw)
7fe50ac8 5878 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
5879 }
5880
5881 NAPI_GRO_CB(skb)->csum = wsum;
5882 NAPI_GRO_CB(skb)->csum_valid = 1;
5883
5884 return sum;
5885}
5886EXPORT_SYMBOL(__skb_gro_checksum_complete);
5887
773fc8f6 5888static void net_rps_send_ipi(struct softnet_data *remsd)
5889{
5890#ifdef CONFIG_RPS
5891 while (remsd) {
5892 struct softnet_data *next = remsd->rps_ipi_next;
5893
5894 if (cpu_online(remsd->cpu))
5895 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5896 remsd = next;
5897 }
5898#endif
5899}
5900
e326bed2 5901/*
855abcf0 5902 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5903 * Note: called with local irq disabled, but exits with local irq enabled.
5904 */
5905static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5906{
5907#ifdef CONFIG_RPS
5908 struct softnet_data *remsd = sd->rps_ipi_list;
5909
5910 if (remsd) {
5911 sd->rps_ipi_list = NULL;
5912
5913 local_irq_enable();
5914
5915 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5916 net_rps_send_ipi(remsd);
e326bed2
ED
5917 } else
5918#endif
5919 local_irq_enable();
5920}
5921
d75b1ade
ED
5922static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5923{
5924#ifdef CONFIG_RPS
5925 return sd->rps_ipi_list != NULL;
5926#else
5927 return false;
5928#endif
5929}
5930
bea3348e 5931static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5932{
eecfd7c4 5933 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5934 bool again = true;
5935 int work = 0;
1da177e4 5936
e326bed2
ED
5937 /* Check if we have pending ipi, its better to send them now,
5938 * not waiting net_rx_action() end.
5939 */
d75b1ade 5940 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5941 local_irq_disable();
5942 net_rps_action_and_irq_enable(sd);
5943 }
d75b1ade 5944
3d48b53f 5945 napi->weight = dev_rx_weight;
145dd5f9 5946 while (again) {
1da177e4 5947 struct sk_buff *skb;
6e7676c1
CG
5948
5949 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5950 rcu_read_lock();
6e7676c1 5951 __netif_receive_skb(skb);
2c17d27c 5952 rcu_read_unlock();
76cc8b13 5953 input_queue_head_incr(sd);
145dd5f9 5954 if (++work >= quota)
76cc8b13 5955 return work;
145dd5f9 5956
6e7676c1 5957 }
1da177e4 5958
145dd5f9 5959 local_irq_disable();
e36fa2f7 5960 rps_lock(sd);
11ef7a89 5961 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5962 /*
5963 * Inline a custom version of __napi_complete().
5964 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5965 * and NAPI_STATE_SCHED is the only possible flag set
5966 * on backlog.
5967 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5968 * and we dont need an smp_mb() memory barrier.
5969 */
eecfd7c4 5970 napi->state = 0;
145dd5f9
PA
5971 again = false;
5972 } else {
5973 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5974 &sd->process_queue);
bea3348e 5975 }
e36fa2f7 5976 rps_unlock(sd);
145dd5f9 5977 local_irq_enable();
6e7676c1 5978 }
1da177e4 5979
bea3348e
SH
5980 return work;
5981}
1da177e4 5982
bea3348e
SH
5983/**
5984 * __napi_schedule - schedule for receive
c4ea43c5 5985 * @n: entry to schedule
bea3348e 5986 *
bc9ad166
ED
5987 * The entry's receive function will be scheduled to run.
5988 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5989 */
b5606c2d 5990void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5991{
5992 unsigned long flags;
1da177e4 5993
bea3348e 5994 local_irq_save(flags);
903ceff7 5995 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5996 local_irq_restore(flags);
1da177e4 5997}
bea3348e
SH
5998EXPORT_SYMBOL(__napi_schedule);
5999
39e6c820
ED
6000/**
6001 * napi_schedule_prep - check if napi can be scheduled
6002 * @n: napi context
6003 *
6004 * Test if NAPI routine is already running, and if not mark
6005 * it as running. This is used as a condition variable
6006 * insure only one NAPI poll instance runs. We also make
6007 * sure there is no pending NAPI disable.
6008 */
6009bool napi_schedule_prep(struct napi_struct *n)
6010{
6011 unsigned long val, new;
6012
6013 do {
6014 val = READ_ONCE(n->state);
6015 if (unlikely(val & NAPIF_STATE_DISABLE))
6016 return false;
6017 new = val | NAPIF_STATE_SCHED;
6018
6019 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6020 * This was suggested by Alexander Duyck, as compiler
6021 * emits better code than :
6022 * if (val & NAPIF_STATE_SCHED)
6023 * new |= NAPIF_STATE_MISSED;
6024 */
6025 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6026 NAPIF_STATE_MISSED;
6027 } while (cmpxchg(&n->state, val, new) != val);
6028
6029 return !(val & NAPIF_STATE_SCHED);
6030}
6031EXPORT_SYMBOL(napi_schedule_prep);
6032
bc9ad166
ED
6033/**
6034 * __napi_schedule_irqoff - schedule for receive
6035 * @n: entry to schedule
6036 *
6037 * Variant of __napi_schedule() assuming hard irqs are masked
6038 */
6039void __napi_schedule_irqoff(struct napi_struct *n)
6040{
6041 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6042}
6043EXPORT_SYMBOL(__napi_schedule_irqoff);
6044
364b6055 6045bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6046{
39e6c820 6047 unsigned long flags, val, new;
d565b0a1
HX
6048
6049 /*
217f6974
ED
6050 * 1) Don't let napi dequeue from the cpu poll list
6051 * just in case its running on a different cpu.
6052 * 2) If we are busy polling, do nothing here, we have
6053 * the guarantee we will be called later.
d565b0a1 6054 */
217f6974
ED
6055 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6056 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6057 return false;
d565b0a1 6058
323ebb61
EC
6059 gro_normal_list(n);
6060
d9f37d01 6061 if (n->gro_bitmask) {
3b47d303 6062 unsigned long timeout = 0;
d75b1ade 6063
3b47d303
ED
6064 if (work_done)
6065 timeout = n->dev->gro_flush_timeout;
6066
605108ac
PA
6067 /* When the NAPI instance uses a timeout and keeps postponing
6068 * it, we need to bound somehow the time packets are kept in
6069 * the GRO layer
6070 */
6071 napi_gro_flush(n, !!timeout);
3b47d303
ED
6072 if (timeout)
6073 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6074 HRTIMER_MODE_REL_PINNED);
3b47d303 6075 }
02c1602e 6076 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6077 /* If n->poll_list is not empty, we need to mask irqs */
6078 local_irq_save(flags);
02c1602e 6079 list_del_init(&n->poll_list);
d75b1ade
ED
6080 local_irq_restore(flags);
6081 }
39e6c820
ED
6082
6083 do {
6084 val = READ_ONCE(n->state);
6085
6086 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6087
6088 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6089
6090 /* If STATE_MISSED was set, leave STATE_SCHED set,
6091 * because we will call napi->poll() one more time.
6092 * This C code was suggested by Alexander Duyck to help gcc.
6093 */
6094 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6095 NAPIF_STATE_SCHED;
6096 } while (cmpxchg(&n->state, val, new) != val);
6097
6098 if (unlikely(val & NAPIF_STATE_MISSED)) {
6099 __napi_schedule(n);
6100 return false;
6101 }
6102
364b6055 6103 return true;
d565b0a1 6104}
3b47d303 6105EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6106
af12fa6e 6107/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6108static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6109{
6110 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6111 struct napi_struct *napi;
6112
6113 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6114 if (napi->napi_id == napi_id)
6115 return napi;
6116
6117 return NULL;
6118}
02d62e86
ED
6119
6120#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6121
ce6aea93 6122#define BUSY_POLL_BUDGET 8
217f6974
ED
6123
6124static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6125{
6126 int rc;
6127
39e6c820
ED
6128 /* Busy polling means there is a high chance device driver hard irq
6129 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6130 * set in napi_schedule_prep().
6131 * Since we are about to call napi->poll() once more, we can safely
6132 * clear NAPI_STATE_MISSED.
6133 *
6134 * Note: x86 could use a single "lock and ..." instruction
6135 * to perform these two clear_bit()
6136 */
6137 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6138 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6139
6140 local_bh_disable();
6141
6142 /* All we really want here is to re-enable device interrupts.
6143 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6144 */
6145 rc = napi->poll(napi, BUSY_POLL_BUDGET);
323ebb61
EC
6146 /* We can't gro_normal_list() here, because napi->poll() might have
6147 * rearmed the napi (napi_complete_done()) in which case it could
6148 * already be running on another CPU.
6149 */
1e22391e 6150 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974 6151 netpoll_poll_unlock(have_poll_lock);
323ebb61
EC
6152 if (rc == BUSY_POLL_BUDGET) {
6153 /* As the whole budget was spent, we still own the napi so can
6154 * safely handle the rx_list.
6155 */
6156 gro_normal_list(napi);
217f6974 6157 __napi_schedule(napi);
323ebb61 6158 }
217f6974 6159 local_bh_enable();
217f6974
ED
6160}
6161
7db6b048
SS
6162void napi_busy_loop(unsigned int napi_id,
6163 bool (*loop_end)(void *, unsigned long),
6164 void *loop_end_arg)
02d62e86 6165{
7db6b048 6166 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6167 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6168 void *have_poll_lock = NULL;
02d62e86 6169 struct napi_struct *napi;
217f6974
ED
6170
6171restart:
217f6974 6172 napi_poll = NULL;
02d62e86 6173
2a028ecb 6174 rcu_read_lock();
02d62e86 6175
545cd5e5 6176 napi = napi_by_id(napi_id);
02d62e86
ED
6177 if (!napi)
6178 goto out;
6179
217f6974
ED
6180 preempt_disable();
6181 for (;;) {
2b5cd0df
AD
6182 int work = 0;
6183
2a028ecb 6184 local_bh_disable();
217f6974
ED
6185 if (!napi_poll) {
6186 unsigned long val = READ_ONCE(napi->state);
6187
6188 /* If multiple threads are competing for this napi,
6189 * we avoid dirtying napi->state as much as we can.
6190 */
6191 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6192 NAPIF_STATE_IN_BUSY_POLL))
6193 goto count;
6194 if (cmpxchg(&napi->state, val,
6195 val | NAPIF_STATE_IN_BUSY_POLL |
6196 NAPIF_STATE_SCHED) != val)
6197 goto count;
6198 have_poll_lock = netpoll_poll_lock(napi);
6199 napi_poll = napi->poll;
6200 }
2b5cd0df
AD
6201 work = napi_poll(napi, BUSY_POLL_BUDGET);
6202 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
323ebb61 6203 gro_normal_list(napi);
217f6974 6204count:
2b5cd0df 6205 if (work > 0)
7db6b048 6206 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6207 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6208 local_bh_enable();
02d62e86 6209
7db6b048 6210 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6211 break;
02d62e86 6212
217f6974
ED
6213 if (unlikely(need_resched())) {
6214 if (napi_poll)
6215 busy_poll_stop(napi, have_poll_lock);
6216 preempt_enable();
6217 rcu_read_unlock();
6218 cond_resched();
7db6b048 6219 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6220 return;
217f6974
ED
6221 goto restart;
6222 }
6cdf89b1 6223 cpu_relax();
217f6974
ED
6224 }
6225 if (napi_poll)
6226 busy_poll_stop(napi, have_poll_lock);
6227 preempt_enable();
02d62e86 6228out:
2a028ecb 6229 rcu_read_unlock();
02d62e86 6230}
7db6b048 6231EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6232
6233#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6234
149d6ad8 6235static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6236{
d64b5e85
ED
6237 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6238 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 6239 return;
af12fa6e 6240
52bd2d62 6241 spin_lock(&napi_hash_lock);
af12fa6e 6242
545cd5e5 6243 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6244 do {
545cd5e5
AD
6245 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6246 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6247 } while (napi_by_id(napi_gen_id));
6248 napi->napi_id = napi_gen_id;
af12fa6e 6249
52bd2d62
ED
6250 hlist_add_head_rcu(&napi->napi_hash_node,
6251 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6252
52bd2d62 6253 spin_unlock(&napi_hash_lock);
af12fa6e 6254}
af12fa6e
ET
6255
6256/* Warning : caller is responsible to make sure rcu grace period
6257 * is respected before freeing memory containing @napi
6258 */
34cbe27e 6259bool napi_hash_del(struct napi_struct *napi)
af12fa6e 6260{
34cbe27e
ED
6261 bool rcu_sync_needed = false;
6262
af12fa6e
ET
6263 spin_lock(&napi_hash_lock);
6264
34cbe27e
ED
6265 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6266 rcu_sync_needed = true;
af12fa6e 6267 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 6268 }
af12fa6e 6269 spin_unlock(&napi_hash_lock);
34cbe27e 6270 return rcu_sync_needed;
af12fa6e
ET
6271}
6272EXPORT_SYMBOL_GPL(napi_hash_del);
6273
3b47d303
ED
6274static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6275{
6276 struct napi_struct *napi;
6277
6278 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6279
6280 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6281 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6282 */
d9f37d01 6283 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
39e6c820
ED
6284 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6285 __napi_schedule_irqoff(napi);
3b47d303
ED
6286
6287 return HRTIMER_NORESTART;
6288}
6289
7c4ec749 6290static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6291{
07d78363
DM
6292 int i;
6293
6312fe77
LR
6294 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6295 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6296 napi->gro_hash[i].count = 0;
6297 }
7c4ec749
DM
6298 napi->gro_bitmask = 0;
6299}
6300
6301void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6302 int (*poll)(struct napi_struct *, int), int weight)
6303{
6304 INIT_LIST_HEAD(&napi->poll_list);
6305 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6306 napi->timer.function = napi_watchdog;
6307 init_gro_hash(napi);
5d38a079 6308 napi->skb = NULL;
323ebb61
EC
6309 INIT_LIST_HEAD(&napi->rx_list);
6310 napi->rx_count = 0;
d565b0a1 6311 napi->poll = poll;
82dc3c63 6312 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6313 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6314 weight);
d565b0a1
HX
6315 napi->weight = weight;
6316 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 6317 napi->dev = dev;
5d38a079 6318#ifdef CONFIG_NETPOLL
d565b0a1
HX
6319 napi->poll_owner = -1;
6320#endif
6321 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 6322 napi_hash_add(napi);
d565b0a1
HX
6323}
6324EXPORT_SYMBOL(netif_napi_add);
6325
3b47d303
ED
6326void napi_disable(struct napi_struct *n)
6327{
6328 might_sleep();
6329 set_bit(NAPI_STATE_DISABLE, &n->state);
6330
6331 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6332 msleep(1);
2d8bff12
NH
6333 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6334 msleep(1);
3b47d303
ED
6335
6336 hrtimer_cancel(&n->timer);
6337
6338 clear_bit(NAPI_STATE_DISABLE, &n->state);
6339}
6340EXPORT_SYMBOL(napi_disable);
6341
07d78363 6342static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6343{
07d78363 6344 int i;
d4546c25 6345
07d78363
DM
6346 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6347 struct sk_buff *skb, *n;
6348
6312fe77 6349 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6350 kfree_skb(skb);
6312fe77 6351 napi->gro_hash[i].count = 0;
07d78363 6352 }
d4546c25
DM
6353}
6354
93d05d4a 6355/* Must be called in process context */
d565b0a1
HX
6356void netif_napi_del(struct napi_struct *napi)
6357{
93d05d4a
ED
6358 might_sleep();
6359 if (napi_hash_del(napi))
6360 synchronize_net();
d7b06636 6361 list_del_init(&napi->dev_list);
76620aaf 6362 napi_free_frags(napi);
d565b0a1 6363
07d78363 6364 flush_gro_hash(napi);
d9f37d01 6365 napi->gro_bitmask = 0;
d565b0a1
HX
6366}
6367EXPORT_SYMBOL(netif_napi_del);
6368
726ce70e
HX
6369static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6370{
6371 void *have;
6372 int work, weight;
6373
6374 list_del_init(&n->poll_list);
6375
6376 have = netpoll_poll_lock(n);
6377
6378 weight = n->weight;
6379
6380 /* This NAPI_STATE_SCHED test is for avoiding a race
6381 * with netpoll's poll_napi(). Only the entity which
6382 * obtains the lock and sees NAPI_STATE_SCHED set will
6383 * actually make the ->poll() call. Therefore we avoid
6384 * accidentally calling ->poll() when NAPI is not scheduled.
6385 */
6386 work = 0;
6387 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6388 work = n->poll(n, weight);
1db19db7 6389 trace_napi_poll(n, work, weight);
726ce70e
HX
6390 }
6391
6392 WARN_ON_ONCE(work > weight);
6393
6394 if (likely(work < weight))
6395 goto out_unlock;
6396
6397 /* Drivers must not modify the NAPI state if they
6398 * consume the entire weight. In such cases this code
6399 * still "owns" the NAPI instance and therefore can
6400 * move the instance around on the list at-will.
6401 */
6402 if (unlikely(napi_disable_pending(n))) {
6403 napi_complete(n);
6404 goto out_unlock;
6405 }
6406
323ebb61
EC
6407 gro_normal_list(n);
6408
d9f37d01 6409 if (n->gro_bitmask) {
726ce70e
HX
6410 /* flush too old packets
6411 * If HZ < 1000, flush all packets.
6412 */
6413 napi_gro_flush(n, HZ >= 1000);
6414 }
6415
001ce546
HX
6416 /* Some drivers may have called napi_schedule
6417 * prior to exhausting their budget.
6418 */
6419 if (unlikely(!list_empty(&n->poll_list))) {
6420 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6421 n->dev ? n->dev->name : "backlog");
6422 goto out_unlock;
6423 }
6424
726ce70e
HX
6425 list_add_tail(&n->poll_list, repoll);
6426
6427out_unlock:
6428 netpoll_poll_unlock(have);
6429
6430 return work;
6431}
6432
0766f788 6433static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6434{
903ceff7 6435 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6436 unsigned long time_limit = jiffies +
6437 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6438 int budget = netdev_budget;
d75b1ade
ED
6439 LIST_HEAD(list);
6440 LIST_HEAD(repoll);
53fb95d3 6441
1da177e4 6442 local_irq_disable();
d75b1ade
ED
6443 list_splice_init(&sd->poll_list, &list);
6444 local_irq_enable();
1da177e4 6445
ceb8d5bf 6446 for (;;) {
bea3348e 6447 struct napi_struct *n;
1da177e4 6448
ceb8d5bf
HX
6449 if (list_empty(&list)) {
6450 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6451 goto out;
ceb8d5bf
HX
6452 break;
6453 }
6454
6bd373eb
HX
6455 n = list_first_entry(&list, struct napi_struct, poll_list);
6456 budget -= napi_poll(n, &repoll);
6457
d75b1ade 6458 /* If softirq window is exhausted then punt.
24f8b238
SH
6459 * Allow this to run for 2 jiffies since which will allow
6460 * an average latency of 1.5/HZ.
bea3348e 6461 */
ceb8d5bf
HX
6462 if (unlikely(budget <= 0 ||
6463 time_after_eq(jiffies, time_limit))) {
6464 sd->time_squeeze++;
6465 break;
6466 }
1da177e4 6467 }
d75b1ade 6468
d75b1ade
ED
6469 local_irq_disable();
6470
6471 list_splice_tail_init(&sd->poll_list, &list);
6472 list_splice_tail(&repoll, &list);
6473 list_splice(&list, &sd->poll_list);
6474 if (!list_empty(&sd->poll_list))
6475 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6476
e326bed2 6477 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6478out:
6479 __kfree_skb_flush();
1da177e4
LT
6480}
6481
aa9d8560 6482struct netdev_adjacent {
9ff162a8 6483 struct net_device *dev;
5d261913
VF
6484
6485 /* upper master flag, there can only be one master device per list */
9ff162a8 6486 bool master;
5d261913 6487
5d261913
VF
6488 /* counter for the number of times this device was added to us */
6489 u16 ref_nr;
6490
402dae96
VF
6491 /* private field for the users */
6492 void *private;
6493
9ff162a8
JP
6494 struct list_head list;
6495 struct rcu_head rcu;
9ff162a8
JP
6496};
6497
6ea29da1 6498static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6499 struct list_head *adj_list)
9ff162a8 6500{
5d261913 6501 struct netdev_adjacent *adj;
5d261913 6502
2f268f12 6503 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6504 if (adj->dev == adj_dev)
6505 return adj;
9ff162a8
JP
6506 }
6507 return NULL;
6508}
6509
f1170fd4
DA
6510static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6511{
6512 struct net_device *dev = data;
6513
6514 return upper_dev == dev;
6515}
6516
9ff162a8
JP
6517/**
6518 * netdev_has_upper_dev - Check if device is linked to an upper device
6519 * @dev: device
6520 * @upper_dev: upper device to check
6521 *
6522 * Find out if a device is linked to specified upper device and return true
6523 * in case it is. Note that this checks only immediate upper device,
6524 * not through a complete stack of devices. The caller must hold the RTNL lock.
6525 */
6526bool netdev_has_upper_dev(struct net_device *dev,
6527 struct net_device *upper_dev)
6528{
6529 ASSERT_RTNL();
6530
f1170fd4
DA
6531 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6532 upper_dev);
9ff162a8
JP
6533}
6534EXPORT_SYMBOL(netdev_has_upper_dev);
6535
1a3f060c
DA
6536/**
6537 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6538 * @dev: device
6539 * @upper_dev: upper device to check
6540 *
6541 * Find out if a device is linked to specified upper device and return true
6542 * in case it is. Note that this checks the entire upper device chain.
6543 * The caller must hold rcu lock.
6544 */
6545
1a3f060c
DA
6546bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6547 struct net_device *upper_dev)
6548{
6549 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6550 upper_dev);
6551}
6552EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6553
9ff162a8
JP
6554/**
6555 * netdev_has_any_upper_dev - Check if device is linked to some device
6556 * @dev: device
6557 *
6558 * Find out if a device is linked to an upper device and return true in case
6559 * it is. The caller must hold the RTNL lock.
6560 */
25cc72a3 6561bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6562{
6563 ASSERT_RTNL();
6564
f1170fd4 6565 return !list_empty(&dev->adj_list.upper);
9ff162a8 6566}
25cc72a3 6567EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6568
6569/**
6570 * netdev_master_upper_dev_get - Get master upper device
6571 * @dev: device
6572 *
6573 * Find a master upper device and return pointer to it or NULL in case
6574 * it's not there. The caller must hold the RTNL lock.
6575 */
6576struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6577{
aa9d8560 6578 struct netdev_adjacent *upper;
9ff162a8
JP
6579
6580 ASSERT_RTNL();
6581
2f268f12 6582 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6583 return NULL;
6584
2f268f12 6585 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6586 struct netdev_adjacent, list);
9ff162a8
JP
6587 if (likely(upper->master))
6588 return upper->dev;
6589 return NULL;
6590}
6591EXPORT_SYMBOL(netdev_master_upper_dev_get);
6592
0f524a80
DA
6593/**
6594 * netdev_has_any_lower_dev - Check if device is linked to some device
6595 * @dev: device
6596 *
6597 * Find out if a device is linked to a lower device and return true in case
6598 * it is. The caller must hold the RTNL lock.
6599 */
6600static bool netdev_has_any_lower_dev(struct net_device *dev)
6601{
6602 ASSERT_RTNL();
6603
6604 return !list_empty(&dev->adj_list.lower);
6605}
6606
b6ccba4c
VF
6607void *netdev_adjacent_get_private(struct list_head *adj_list)
6608{
6609 struct netdev_adjacent *adj;
6610
6611 adj = list_entry(adj_list, struct netdev_adjacent, list);
6612
6613 return adj->private;
6614}
6615EXPORT_SYMBOL(netdev_adjacent_get_private);
6616
44a40855
VY
6617/**
6618 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6619 * @dev: device
6620 * @iter: list_head ** of the current position
6621 *
6622 * Gets the next device from the dev's upper list, starting from iter
6623 * position. The caller must hold RCU read lock.
6624 */
6625struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6626 struct list_head **iter)
6627{
6628 struct netdev_adjacent *upper;
6629
6630 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6631
6632 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6633
6634 if (&upper->list == &dev->adj_list.upper)
6635 return NULL;
6636
6637 *iter = &upper->list;
6638
6639 return upper->dev;
6640}
6641EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6642
1a3f060c
DA
6643static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6644 struct list_head **iter)
6645{
6646 struct netdev_adjacent *upper;
6647
6648 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6649
6650 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6651
6652 if (&upper->list == &dev->adj_list.upper)
6653 return NULL;
6654
6655 *iter = &upper->list;
6656
6657 return upper->dev;
6658}
6659
6660int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6661 int (*fn)(struct net_device *dev,
6662 void *data),
6663 void *data)
6664{
6665 struct net_device *udev;
6666 struct list_head *iter;
6667 int ret;
6668
6669 for (iter = &dev->adj_list.upper,
6670 udev = netdev_next_upper_dev_rcu(dev, &iter);
6671 udev;
6672 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6673 /* first is the upper device itself */
6674 ret = fn(udev, data);
6675 if (ret)
6676 return ret;
6677
6678 /* then look at all of its upper devices */
6679 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6680 if (ret)
6681 return ret;
6682 }
6683
6684 return 0;
6685}
6686EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6687
31088a11
VF
6688/**
6689 * netdev_lower_get_next_private - Get the next ->private from the
6690 * lower neighbour list
6691 * @dev: device
6692 * @iter: list_head ** of the current position
6693 *
6694 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6695 * list, starting from iter position. The caller must hold either hold the
6696 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 6697 * list will remain unchanged.
31088a11
VF
6698 */
6699void *netdev_lower_get_next_private(struct net_device *dev,
6700 struct list_head **iter)
6701{
6702 struct netdev_adjacent *lower;
6703
6704 lower = list_entry(*iter, struct netdev_adjacent, list);
6705
6706 if (&lower->list == &dev->adj_list.lower)
6707 return NULL;
6708
6859e7df 6709 *iter = lower->list.next;
31088a11
VF
6710
6711 return lower->private;
6712}
6713EXPORT_SYMBOL(netdev_lower_get_next_private);
6714
6715/**
6716 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6717 * lower neighbour list, RCU
6718 * variant
6719 * @dev: device
6720 * @iter: list_head ** of the current position
6721 *
6722 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6723 * list, starting from iter position. The caller must hold RCU read lock.
6724 */
6725void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6726 struct list_head **iter)
6727{
6728 struct netdev_adjacent *lower;
6729
6730 WARN_ON_ONCE(!rcu_read_lock_held());
6731
6732 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6733
6734 if (&lower->list == &dev->adj_list.lower)
6735 return NULL;
6736
6859e7df 6737 *iter = &lower->list;
31088a11
VF
6738
6739 return lower->private;
6740}
6741EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6742
4085ebe8
VY
6743/**
6744 * netdev_lower_get_next - Get the next device from the lower neighbour
6745 * list
6746 * @dev: device
6747 * @iter: list_head ** of the current position
6748 *
6749 * Gets the next netdev_adjacent from the dev's lower neighbour
6750 * list, starting from iter position. The caller must hold RTNL lock or
6751 * its own locking that guarantees that the neighbour lower
b469139e 6752 * list will remain unchanged.
4085ebe8
VY
6753 */
6754void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6755{
6756 struct netdev_adjacent *lower;
6757
cfdd28be 6758 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
6759
6760 if (&lower->list == &dev->adj_list.lower)
6761 return NULL;
6762
cfdd28be 6763 *iter = lower->list.next;
4085ebe8
VY
6764
6765 return lower->dev;
6766}
6767EXPORT_SYMBOL(netdev_lower_get_next);
6768
1a3f060c
DA
6769static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6770 struct list_head **iter)
6771{
6772 struct netdev_adjacent *lower;
6773
46b5ab1a 6774 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
6775
6776 if (&lower->list == &dev->adj_list.lower)
6777 return NULL;
6778
46b5ab1a 6779 *iter = &lower->list;
1a3f060c
DA
6780
6781 return lower->dev;
6782}
6783
6784int netdev_walk_all_lower_dev(struct net_device *dev,
6785 int (*fn)(struct net_device *dev,
6786 void *data),
6787 void *data)
6788{
6789 struct net_device *ldev;
6790 struct list_head *iter;
6791 int ret;
6792
6793 for (iter = &dev->adj_list.lower,
6794 ldev = netdev_next_lower_dev(dev, &iter);
6795 ldev;
6796 ldev = netdev_next_lower_dev(dev, &iter)) {
6797 /* first is the lower device itself */
6798 ret = fn(ldev, data);
6799 if (ret)
6800 return ret;
6801
6802 /* then look at all of its lower devices */
6803 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6804 if (ret)
6805 return ret;
6806 }
6807
6808 return 0;
6809}
6810EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6811
1a3f060c
DA
6812static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6813 struct list_head **iter)
6814{
6815 struct netdev_adjacent *lower;
6816
6817 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6818 if (&lower->list == &dev->adj_list.lower)
6819 return NULL;
6820
6821 *iter = &lower->list;
6822
6823 return lower->dev;
6824}
6825
6826int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6827 int (*fn)(struct net_device *dev,
6828 void *data),
6829 void *data)
6830{
6831 struct net_device *ldev;
6832 struct list_head *iter;
6833 int ret;
6834
6835 for (iter = &dev->adj_list.lower,
6836 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6837 ldev;
6838 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6839 /* first is the lower device itself */
6840 ret = fn(ldev, data);
6841 if (ret)
6842 return ret;
6843
6844 /* then look at all of its lower devices */
6845 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6846 if (ret)
6847 return ret;
6848 }
6849
6850 return 0;
6851}
6852EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6853
e001bfad 6854/**
6855 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6856 * lower neighbour list, RCU
6857 * variant
6858 * @dev: device
6859 *
6860 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6861 * list. The caller must hold RCU read lock.
6862 */
6863void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6864{
6865 struct netdev_adjacent *lower;
6866
6867 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6868 struct netdev_adjacent, list);
6869 if (lower)
6870 return lower->private;
6871 return NULL;
6872}
6873EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6874
9ff162a8
JP
6875/**
6876 * netdev_master_upper_dev_get_rcu - Get master upper device
6877 * @dev: device
6878 *
6879 * Find a master upper device and return pointer to it or NULL in case
6880 * it's not there. The caller must hold the RCU read lock.
6881 */
6882struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6883{
aa9d8560 6884 struct netdev_adjacent *upper;
9ff162a8 6885
2f268f12 6886 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 6887 struct netdev_adjacent, list);
9ff162a8
JP
6888 if (upper && likely(upper->master))
6889 return upper->dev;
6890 return NULL;
6891}
6892EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6893
0a59f3a9 6894static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
6895 struct net_device *adj_dev,
6896 struct list_head *dev_list)
6897{
6898 char linkname[IFNAMSIZ+7];
f4563a75 6899
3ee32707
VF
6900 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6901 "upper_%s" : "lower_%s", adj_dev->name);
6902 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6903 linkname);
6904}
0a59f3a9 6905static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
6906 char *name,
6907 struct list_head *dev_list)
6908{
6909 char linkname[IFNAMSIZ+7];
f4563a75 6910
3ee32707
VF
6911 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6912 "upper_%s" : "lower_%s", name);
6913 sysfs_remove_link(&(dev->dev.kobj), linkname);
6914}
6915
7ce64c79
AF
6916static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6917 struct net_device *adj_dev,
6918 struct list_head *dev_list)
6919{
6920 return (dev_list == &dev->adj_list.upper ||
6921 dev_list == &dev->adj_list.lower) &&
6922 net_eq(dev_net(dev), dev_net(adj_dev));
6923}
3ee32707 6924
5d261913
VF
6925static int __netdev_adjacent_dev_insert(struct net_device *dev,
6926 struct net_device *adj_dev,
7863c054 6927 struct list_head *dev_list,
402dae96 6928 void *private, bool master)
5d261913
VF
6929{
6930 struct netdev_adjacent *adj;
842d67a7 6931 int ret;
5d261913 6932
6ea29da1 6933 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6934
6935 if (adj) {
790510d9 6936 adj->ref_nr += 1;
67b62f98
DA
6937 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6938 dev->name, adj_dev->name, adj->ref_nr);
6939
5d261913
VF
6940 return 0;
6941 }
6942
6943 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6944 if (!adj)
6945 return -ENOMEM;
6946
6947 adj->dev = adj_dev;
6948 adj->master = master;
790510d9 6949 adj->ref_nr = 1;
402dae96 6950 adj->private = private;
5d261913 6951 dev_hold(adj_dev);
2f268f12 6952
67b62f98
DA
6953 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6954 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 6955
7ce64c79 6956 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 6957 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
6958 if (ret)
6959 goto free_adj;
6960 }
6961
7863c054 6962 /* Ensure that master link is always the first item in list. */
842d67a7
VF
6963 if (master) {
6964 ret = sysfs_create_link(&(dev->dev.kobj),
6965 &(adj_dev->dev.kobj), "master");
6966 if (ret)
5831d66e 6967 goto remove_symlinks;
842d67a7 6968
7863c054 6969 list_add_rcu(&adj->list, dev_list);
842d67a7 6970 } else {
7863c054 6971 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 6972 }
5d261913
VF
6973
6974 return 0;
842d67a7 6975
5831d66e 6976remove_symlinks:
7ce64c79 6977 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6978 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6979free_adj:
6980 kfree(adj);
974daef7 6981 dev_put(adj_dev);
842d67a7
VF
6982
6983 return ret;
5d261913
VF
6984}
6985
1d143d9f 6986static void __netdev_adjacent_dev_remove(struct net_device *dev,
6987 struct net_device *adj_dev,
93409033 6988 u16 ref_nr,
1d143d9f 6989 struct list_head *dev_list)
5d261913
VF
6990{
6991 struct netdev_adjacent *adj;
6992
67b62f98
DA
6993 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6994 dev->name, adj_dev->name, ref_nr);
6995
6ea29da1 6996 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6997
2f268f12 6998 if (!adj) {
67b62f98 6999 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7000 dev->name, adj_dev->name);
67b62f98
DA
7001 WARN_ON(1);
7002 return;
2f268f12 7003 }
5d261913 7004
93409033 7005 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7006 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7007 dev->name, adj_dev->name, ref_nr,
7008 adj->ref_nr - ref_nr);
93409033 7009 adj->ref_nr -= ref_nr;
5d261913
VF
7010 return;
7011 }
7012
842d67a7
VF
7013 if (adj->master)
7014 sysfs_remove_link(&(dev->dev.kobj), "master");
7015
7ce64c79 7016 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7017 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7018
5d261913 7019 list_del_rcu(&adj->list);
67b62f98 7020 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7021 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
7022 dev_put(adj_dev);
7023 kfree_rcu(adj, rcu);
7024}
7025
1d143d9f 7026static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7027 struct net_device *upper_dev,
7028 struct list_head *up_list,
7029 struct list_head *down_list,
7030 void *private, bool master)
5d261913
VF
7031{
7032 int ret;
7033
790510d9 7034 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7035 private, master);
5d261913
VF
7036 if (ret)
7037 return ret;
7038
790510d9 7039 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7040 private, false);
5d261913 7041 if (ret) {
790510d9 7042 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7043 return ret;
7044 }
7045
7046 return 0;
7047}
7048
1d143d9f 7049static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7050 struct net_device *upper_dev,
93409033 7051 u16 ref_nr,
1d143d9f 7052 struct list_head *up_list,
7053 struct list_head *down_list)
5d261913 7054{
93409033
AC
7055 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7056 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7057}
7058
1d143d9f 7059static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7060 struct net_device *upper_dev,
7061 void *private, bool master)
2f268f12 7062{
f1170fd4
DA
7063 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7064 &dev->adj_list.upper,
7065 &upper_dev->adj_list.lower,
7066 private, master);
5d261913
VF
7067}
7068
1d143d9f 7069static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7070 struct net_device *upper_dev)
2f268f12 7071{
93409033 7072 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7073 &dev->adj_list.upper,
7074 &upper_dev->adj_list.lower);
7075}
5d261913 7076
9ff162a8 7077static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7078 struct net_device *upper_dev, bool master,
42ab19ee
DA
7079 void *upper_priv, void *upper_info,
7080 struct netlink_ext_ack *extack)
9ff162a8 7081{
51d0c047
DA
7082 struct netdev_notifier_changeupper_info changeupper_info = {
7083 .info = {
7084 .dev = dev,
42ab19ee 7085 .extack = extack,
51d0c047
DA
7086 },
7087 .upper_dev = upper_dev,
7088 .master = master,
7089 .linking = true,
7090 .upper_info = upper_info,
7091 };
50d629e7 7092 struct net_device *master_dev;
5d261913 7093 int ret = 0;
9ff162a8
JP
7094
7095 ASSERT_RTNL();
7096
7097 if (dev == upper_dev)
7098 return -EBUSY;
7099
7100 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 7101 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7102 return -EBUSY;
7103
50d629e7
MM
7104 if (!master) {
7105 if (netdev_has_upper_dev(dev, upper_dev))
7106 return -EEXIST;
7107 } else {
7108 master_dev = netdev_master_upper_dev_get(dev);
7109 if (master_dev)
7110 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7111 }
9ff162a8 7112
51d0c047 7113 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7114 &changeupper_info.info);
7115 ret = notifier_to_errno(ret);
7116 if (ret)
7117 return ret;
7118
6dffb044 7119 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7120 master);
5d261913
VF
7121 if (ret)
7122 return ret;
9ff162a8 7123
51d0c047 7124 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7125 &changeupper_info.info);
7126 ret = notifier_to_errno(ret);
7127 if (ret)
f1170fd4 7128 goto rollback;
b03804e7 7129
9ff162a8 7130 return 0;
5d261913 7131
f1170fd4 7132rollback:
2f268f12 7133 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7134
7135 return ret;
9ff162a8
JP
7136}
7137
7138/**
7139 * netdev_upper_dev_link - Add a link to the upper device
7140 * @dev: device
7141 * @upper_dev: new upper device
7a006d59 7142 * @extack: netlink extended ack
9ff162a8
JP
7143 *
7144 * Adds a link to device which is upper to this one. The caller must hold
7145 * the RTNL lock. On a failure a negative errno code is returned.
7146 * On success the reference counts are adjusted and the function
7147 * returns zero.
7148 */
7149int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7150 struct net_device *upper_dev,
7151 struct netlink_ext_ack *extack)
9ff162a8 7152{
42ab19ee
DA
7153 return __netdev_upper_dev_link(dev, upper_dev, false,
7154 NULL, NULL, extack);
9ff162a8
JP
7155}
7156EXPORT_SYMBOL(netdev_upper_dev_link);
7157
7158/**
7159 * netdev_master_upper_dev_link - Add a master link to the upper device
7160 * @dev: device
7161 * @upper_dev: new upper device
6dffb044 7162 * @upper_priv: upper device private
29bf24af 7163 * @upper_info: upper info to be passed down via notifier
7a006d59 7164 * @extack: netlink extended ack
9ff162a8
JP
7165 *
7166 * Adds a link to device which is upper to this one. In this case, only
7167 * one master upper device can be linked, although other non-master devices
7168 * might be linked as well. The caller must hold the RTNL lock.
7169 * On a failure a negative errno code is returned. On success the reference
7170 * counts are adjusted and the function returns zero.
7171 */
7172int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7173 struct net_device *upper_dev,
42ab19ee
DA
7174 void *upper_priv, void *upper_info,
7175 struct netlink_ext_ack *extack)
9ff162a8 7176{
29bf24af 7177 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 7178 upper_priv, upper_info, extack);
9ff162a8
JP
7179}
7180EXPORT_SYMBOL(netdev_master_upper_dev_link);
7181
7182/**
7183 * netdev_upper_dev_unlink - Removes a link to upper device
7184 * @dev: device
7185 * @upper_dev: new upper device
7186 *
7187 * Removes a link to device which is upper to this one. The caller must hold
7188 * the RTNL lock.
7189 */
7190void netdev_upper_dev_unlink(struct net_device *dev,
7191 struct net_device *upper_dev)
7192{
51d0c047
DA
7193 struct netdev_notifier_changeupper_info changeupper_info = {
7194 .info = {
7195 .dev = dev,
7196 },
7197 .upper_dev = upper_dev,
7198 .linking = false,
7199 };
f4563a75 7200
9ff162a8
JP
7201 ASSERT_RTNL();
7202
0e4ead9d 7203 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7204
51d0c047 7205 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7206 &changeupper_info.info);
7207
2f268f12 7208 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7209
51d0c047 7210 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7211 &changeupper_info.info);
9ff162a8
JP
7212}
7213EXPORT_SYMBOL(netdev_upper_dev_unlink);
7214
61bd3857
MS
7215/**
7216 * netdev_bonding_info_change - Dispatch event about slave change
7217 * @dev: device
4a26e453 7218 * @bonding_info: info to dispatch
61bd3857
MS
7219 *
7220 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7221 * The caller must hold the RTNL lock.
7222 */
7223void netdev_bonding_info_change(struct net_device *dev,
7224 struct netdev_bonding_info *bonding_info)
7225{
51d0c047
DA
7226 struct netdev_notifier_bonding_info info = {
7227 .info.dev = dev,
7228 };
61bd3857
MS
7229
7230 memcpy(&info.bonding_info, bonding_info,
7231 sizeof(struct netdev_bonding_info));
51d0c047 7232 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7233 &info.info);
7234}
7235EXPORT_SYMBOL(netdev_bonding_info_change);
7236
2ce1ee17 7237static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
7238{
7239 struct netdev_adjacent *iter;
7240
7241 struct net *net = dev_net(dev);
7242
7243 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7244 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7245 continue;
7246 netdev_adjacent_sysfs_add(iter->dev, dev,
7247 &iter->dev->adj_list.lower);
7248 netdev_adjacent_sysfs_add(dev, iter->dev,
7249 &dev->adj_list.upper);
7250 }
7251
7252 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7253 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7254 continue;
7255 netdev_adjacent_sysfs_add(iter->dev, dev,
7256 &iter->dev->adj_list.upper);
7257 netdev_adjacent_sysfs_add(dev, iter->dev,
7258 &dev->adj_list.lower);
7259 }
7260}
7261
2ce1ee17 7262static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
7263{
7264 struct netdev_adjacent *iter;
7265
7266 struct net *net = dev_net(dev);
7267
7268 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7269 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7270 continue;
7271 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7272 &iter->dev->adj_list.lower);
7273 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7274 &dev->adj_list.upper);
7275 }
7276
7277 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7278 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7279 continue;
7280 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7281 &iter->dev->adj_list.upper);
7282 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7283 &dev->adj_list.lower);
7284 }
7285}
7286
5bb025fa 7287void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 7288{
5bb025fa 7289 struct netdev_adjacent *iter;
402dae96 7290
4c75431a
AF
7291 struct net *net = dev_net(dev);
7292
5bb025fa 7293 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7294 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7295 continue;
5bb025fa
VF
7296 netdev_adjacent_sysfs_del(iter->dev, oldname,
7297 &iter->dev->adj_list.lower);
7298 netdev_adjacent_sysfs_add(iter->dev, dev,
7299 &iter->dev->adj_list.lower);
7300 }
402dae96 7301
5bb025fa 7302 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7303 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7304 continue;
5bb025fa
VF
7305 netdev_adjacent_sysfs_del(iter->dev, oldname,
7306 &iter->dev->adj_list.upper);
7307 netdev_adjacent_sysfs_add(iter->dev, dev,
7308 &iter->dev->adj_list.upper);
7309 }
402dae96 7310}
402dae96
VF
7311
7312void *netdev_lower_dev_get_private(struct net_device *dev,
7313 struct net_device *lower_dev)
7314{
7315 struct netdev_adjacent *lower;
7316
7317 if (!lower_dev)
7318 return NULL;
6ea29da1 7319 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
7320 if (!lower)
7321 return NULL;
7322
7323 return lower->private;
7324}
7325EXPORT_SYMBOL(netdev_lower_dev_get_private);
7326
4085ebe8 7327
952fcfd0 7328int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
7329{
7330 struct net_device *lower = NULL;
7331 struct list_head *iter;
7332 int max_nest = -1;
7333 int nest;
7334
7335 ASSERT_RTNL();
7336
7337 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 7338 nest = dev_get_nest_level(lower);
4085ebe8
VY
7339 if (max_nest < nest)
7340 max_nest = nest;
7341 }
7342
952fcfd0 7343 return max_nest + 1;
4085ebe8
VY
7344}
7345EXPORT_SYMBOL(dev_get_nest_level);
7346
04d48266
JP
7347/**
7348 * netdev_lower_change - Dispatch event about lower device state change
7349 * @lower_dev: device
7350 * @lower_state_info: state to dispatch
7351 *
7352 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7353 * The caller must hold the RTNL lock.
7354 */
7355void netdev_lower_state_changed(struct net_device *lower_dev,
7356 void *lower_state_info)
7357{
51d0c047
DA
7358 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7359 .info.dev = lower_dev,
7360 };
04d48266
JP
7361
7362 ASSERT_RTNL();
7363 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 7364 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
7365 &changelowerstate_info.info);
7366}
7367EXPORT_SYMBOL(netdev_lower_state_changed);
7368
b6c40d68
PM
7369static void dev_change_rx_flags(struct net_device *dev, int flags)
7370{
d314774c
SH
7371 const struct net_device_ops *ops = dev->netdev_ops;
7372
d2615bf4 7373 if (ops->ndo_change_rx_flags)
d314774c 7374 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
7375}
7376
991fb3f7 7377static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 7378{
b536db93 7379 unsigned int old_flags = dev->flags;
d04a48b0
EB
7380 kuid_t uid;
7381 kgid_t gid;
1da177e4 7382
24023451
PM
7383 ASSERT_RTNL();
7384
dad9b335
WC
7385 dev->flags |= IFF_PROMISC;
7386 dev->promiscuity += inc;
7387 if (dev->promiscuity == 0) {
7388 /*
7389 * Avoid overflow.
7390 * If inc causes overflow, untouch promisc and return error.
7391 */
7392 if (inc < 0)
7393 dev->flags &= ~IFF_PROMISC;
7394 else {
7395 dev->promiscuity -= inc;
7b6cd1ce
JP
7396 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7397 dev->name);
dad9b335
WC
7398 return -EOVERFLOW;
7399 }
7400 }
52609c0b 7401 if (dev->flags != old_flags) {
7b6cd1ce
JP
7402 pr_info("device %s %s promiscuous mode\n",
7403 dev->name,
7404 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
7405 if (audit_enabled) {
7406 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
7407 audit_log(audit_context(), GFP_ATOMIC,
7408 AUDIT_ANOM_PROMISCUOUS,
7409 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7410 dev->name, (dev->flags & IFF_PROMISC),
7411 (old_flags & IFF_PROMISC),
7412 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7413 from_kuid(&init_user_ns, uid),
7414 from_kgid(&init_user_ns, gid),
7415 audit_get_sessionid(current));
8192b0c4 7416 }
24023451 7417
b6c40d68 7418 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 7419 }
991fb3f7
ND
7420 if (notify)
7421 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 7422 return 0;
1da177e4
LT
7423}
7424
4417da66
PM
7425/**
7426 * dev_set_promiscuity - update promiscuity count on a device
7427 * @dev: device
7428 * @inc: modifier
7429 *
7430 * Add or remove promiscuity from a device. While the count in the device
7431 * remains above zero the interface remains promiscuous. Once it hits zero
7432 * the device reverts back to normal filtering operation. A negative inc
7433 * value is used to drop promiscuity on the device.
dad9b335 7434 * Return 0 if successful or a negative errno code on error.
4417da66 7435 */
dad9b335 7436int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 7437{
b536db93 7438 unsigned int old_flags = dev->flags;
dad9b335 7439 int err;
4417da66 7440
991fb3f7 7441 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 7442 if (err < 0)
dad9b335 7443 return err;
4417da66
PM
7444 if (dev->flags != old_flags)
7445 dev_set_rx_mode(dev);
dad9b335 7446 return err;
4417da66 7447}
d1b19dff 7448EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 7449
991fb3f7 7450static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 7451{
991fb3f7 7452 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 7453
24023451
PM
7454 ASSERT_RTNL();
7455
1da177e4 7456 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
7457 dev->allmulti += inc;
7458 if (dev->allmulti == 0) {
7459 /*
7460 * Avoid overflow.
7461 * If inc causes overflow, untouch allmulti and return error.
7462 */
7463 if (inc < 0)
7464 dev->flags &= ~IFF_ALLMULTI;
7465 else {
7466 dev->allmulti -= inc;
7b6cd1ce
JP
7467 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7468 dev->name);
dad9b335
WC
7469 return -EOVERFLOW;
7470 }
7471 }
24023451 7472 if (dev->flags ^ old_flags) {
b6c40d68 7473 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 7474 dev_set_rx_mode(dev);
991fb3f7
ND
7475 if (notify)
7476 __dev_notify_flags(dev, old_flags,
7477 dev->gflags ^ old_gflags);
24023451 7478 }
dad9b335 7479 return 0;
4417da66 7480}
991fb3f7
ND
7481
7482/**
7483 * dev_set_allmulti - update allmulti count on a device
7484 * @dev: device
7485 * @inc: modifier
7486 *
7487 * Add or remove reception of all multicast frames to a device. While the
7488 * count in the device remains above zero the interface remains listening
7489 * to all interfaces. Once it hits zero the device reverts back to normal
7490 * filtering operation. A negative @inc value is used to drop the counter
7491 * when releasing a resource needing all multicasts.
7492 * Return 0 if successful or a negative errno code on error.
7493 */
7494
7495int dev_set_allmulti(struct net_device *dev, int inc)
7496{
7497 return __dev_set_allmulti(dev, inc, true);
7498}
d1b19dff 7499EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
7500
7501/*
7502 * Upload unicast and multicast address lists to device and
7503 * configure RX filtering. When the device doesn't support unicast
53ccaae1 7504 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
7505 * are present.
7506 */
7507void __dev_set_rx_mode(struct net_device *dev)
7508{
d314774c
SH
7509 const struct net_device_ops *ops = dev->netdev_ops;
7510
4417da66
PM
7511 /* dev_open will call this function so the list will stay sane. */
7512 if (!(dev->flags&IFF_UP))
7513 return;
7514
7515 if (!netif_device_present(dev))
40b77c94 7516 return;
4417da66 7517
01789349 7518 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
7519 /* Unicast addresses changes may only happen under the rtnl,
7520 * therefore calling __dev_set_promiscuity here is safe.
7521 */
32e7bfc4 7522 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 7523 __dev_set_promiscuity(dev, 1, false);
2d348d1f 7524 dev->uc_promisc = true;
32e7bfc4 7525 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 7526 __dev_set_promiscuity(dev, -1, false);
2d348d1f 7527 dev->uc_promisc = false;
4417da66 7528 }
4417da66 7529 }
01789349
JP
7530
7531 if (ops->ndo_set_rx_mode)
7532 ops->ndo_set_rx_mode(dev);
4417da66
PM
7533}
7534
7535void dev_set_rx_mode(struct net_device *dev)
7536{
b9e40857 7537 netif_addr_lock_bh(dev);
4417da66 7538 __dev_set_rx_mode(dev);
b9e40857 7539 netif_addr_unlock_bh(dev);
1da177e4
LT
7540}
7541
f0db275a
SH
7542/**
7543 * dev_get_flags - get flags reported to userspace
7544 * @dev: device
7545 *
7546 * Get the combination of flag bits exported through APIs to userspace.
7547 */
95c96174 7548unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 7549{
95c96174 7550 unsigned int flags;
1da177e4
LT
7551
7552 flags = (dev->flags & ~(IFF_PROMISC |
7553 IFF_ALLMULTI |
b00055aa
SR
7554 IFF_RUNNING |
7555 IFF_LOWER_UP |
7556 IFF_DORMANT)) |
1da177e4
LT
7557 (dev->gflags & (IFF_PROMISC |
7558 IFF_ALLMULTI));
7559
b00055aa
SR
7560 if (netif_running(dev)) {
7561 if (netif_oper_up(dev))
7562 flags |= IFF_RUNNING;
7563 if (netif_carrier_ok(dev))
7564 flags |= IFF_LOWER_UP;
7565 if (netif_dormant(dev))
7566 flags |= IFF_DORMANT;
7567 }
1da177e4
LT
7568
7569 return flags;
7570}
d1b19dff 7571EXPORT_SYMBOL(dev_get_flags);
1da177e4 7572
6d040321
PM
7573int __dev_change_flags(struct net_device *dev, unsigned int flags,
7574 struct netlink_ext_ack *extack)
1da177e4 7575{
b536db93 7576 unsigned int old_flags = dev->flags;
bd380811 7577 int ret;
1da177e4 7578
24023451
PM
7579 ASSERT_RTNL();
7580
1da177e4
LT
7581 /*
7582 * Set the flags on our device.
7583 */
7584
7585 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7586 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7587 IFF_AUTOMEDIA)) |
7588 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7589 IFF_ALLMULTI));
7590
7591 /*
7592 * Load in the correct multicast list now the flags have changed.
7593 */
7594
b6c40d68
PM
7595 if ((old_flags ^ flags) & IFF_MULTICAST)
7596 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 7597
4417da66 7598 dev_set_rx_mode(dev);
1da177e4
LT
7599
7600 /*
7601 * Have we downed the interface. We handle IFF_UP ourselves
7602 * according to user attempts to set it, rather than blindly
7603 * setting it.
7604 */
7605
7606 ret = 0;
7051b88a 7607 if ((old_flags ^ flags) & IFF_UP) {
7608 if (old_flags & IFF_UP)
7609 __dev_close(dev);
7610 else
40c900aa 7611 ret = __dev_open(dev, extack);
7051b88a 7612 }
1da177e4 7613
1da177e4 7614 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 7615 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 7616 unsigned int old_flags = dev->flags;
d1b19dff 7617
1da177e4 7618 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
7619
7620 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7621 if (dev->flags != old_flags)
7622 dev_set_rx_mode(dev);
1da177e4
LT
7623 }
7624
7625 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 7626 * is important. Some (broken) drivers set IFF_PROMISC, when
7627 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
7628 */
7629 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
7630 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7631
1da177e4 7632 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 7633 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
7634 }
7635
bd380811
PM
7636 return ret;
7637}
7638
a528c219
ND
7639void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7640 unsigned int gchanges)
bd380811
PM
7641{
7642 unsigned int changes = dev->flags ^ old_flags;
7643
a528c219 7644 if (gchanges)
7f294054 7645 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 7646
bd380811
PM
7647 if (changes & IFF_UP) {
7648 if (dev->flags & IFF_UP)
7649 call_netdevice_notifiers(NETDEV_UP, dev);
7650 else
7651 call_netdevice_notifiers(NETDEV_DOWN, dev);
7652 }
7653
7654 if (dev->flags & IFF_UP &&
be9efd36 7655 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
7656 struct netdev_notifier_change_info change_info = {
7657 .info = {
7658 .dev = dev,
7659 },
7660 .flags_changed = changes,
7661 };
be9efd36 7662
51d0c047 7663 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 7664 }
bd380811
PM
7665}
7666
7667/**
7668 * dev_change_flags - change device settings
7669 * @dev: device
7670 * @flags: device state flags
567c5e13 7671 * @extack: netlink extended ack
bd380811
PM
7672 *
7673 * Change settings on device based state flags. The flags are
7674 * in the userspace exported format.
7675 */
567c5e13
PM
7676int dev_change_flags(struct net_device *dev, unsigned int flags,
7677 struct netlink_ext_ack *extack)
bd380811 7678{
b536db93 7679 int ret;
991fb3f7 7680 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 7681
6d040321 7682 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
7683 if (ret < 0)
7684 return ret;
7685
991fb3f7 7686 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 7687 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
7688 return ret;
7689}
d1b19dff 7690EXPORT_SYMBOL(dev_change_flags);
1da177e4 7691
f51048c3 7692int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
7693{
7694 const struct net_device_ops *ops = dev->netdev_ops;
7695
7696 if (ops->ndo_change_mtu)
7697 return ops->ndo_change_mtu(dev, new_mtu);
7698
7699 dev->mtu = new_mtu;
7700 return 0;
7701}
f51048c3 7702EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 7703
f0db275a 7704/**
7a4c53be 7705 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
7706 * @dev: device
7707 * @new_mtu: new transfer unit
7a4c53be 7708 * @extack: netlink extended ack
f0db275a
SH
7709 *
7710 * Change the maximum transfer size of the network device.
7711 */
7a4c53be
SH
7712int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7713 struct netlink_ext_ack *extack)
1da177e4 7714{
2315dc91 7715 int err, orig_mtu;
1da177e4
LT
7716
7717 if (new_mtu == dev->mtu)
7718 return 0;
7719
61e84623
JW
7720 /* MTU must be positive, and in range */
7721 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7a4c53be 7722 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
1da177e4 7723 return -EINVAL;
61e84623
JW
7724 }
7725
7726 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7a4c53be 7727 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
61e84623
JW
7728 return -EINVAL;
7729 }
1da177e4
LT
7730
7731 if (!netif_device_present(dev))
7732 return -ENODEV;
7733
1d486bfb
VF
7734 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7735 err = notifier_to_errno(err);
7736 if (err)
7737 return err;
d314774c 7738
2315dc91
VF
7739 orig_mtu = dev->mtu;
7740 err = __dev_set_mtu(dev, new_mtu);
d314774c 7741
2315dc91 7742 if (!err) {
af7d6cce
SD
7743 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7744 orig_mtu);
2315dc91
VF
7745 err = notifier_to_errno(err);
7746 if (err) {
7747 /* setting mtu back and notifying everyone again,
7748 * so that they have a chance to revert changes.
7749 */
7750 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
7751 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7752 new_mtu);
2315dc91
VF
7753 }
7754 }
1da177e4
LT
7755 return err;
7756}
7a4c53be
SH
7757
7758int dev_set_mtu(struct net_device *dev, int new_mtu)
7759{
7760 struct netlink_ext_ack extack;
7761 int err;
7762
a6bcfc89 7763 memset(&extack, 0, sizeof(extack));
7a4c53be 7764 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 7765 if (err && extack._msg)
7a4c53be
SH
7766 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7767 return err;
7768}
d1b19dff 7769EXPORT_SYMBOL(dev_set_mtu);
1da177e4 7770
6a643ddb
CW
7771/**
7772 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7773 * @dev: device
7774 * @new_len: new tx queue length
7775 */
7776int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7777{
7778 unsigned int orig_len = dev->tx_queue_len;
7779 int res;
7780
7781 if (new_len != (unsigned int)new_len)
7782 return -ERANGE;
7783
7784 if (new_len != orig_len) {
7785 dev->tx_queue_len = new_len;
7786 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7787 res = notifier_to_errno(res);
7effaf06
TT
7788 if (res)
7789 goto err_rollback;
7790 res = dev_qdisc_change_tx_queue_len(dev);
7791 if (res)
7792 goto err_rollback;
6a643ddb
CW
7793 }
7794
7795 return 0;
7effaf06
TT
7796
7797err_rollback:
7798 netdev_err(dev, "refused to change device tx_queue_len\n");
7799 dev->tx_queue_len = orig_len;
7800 return res;
6a643ddb
CW
7801}
7802
cbda10fa
VD
7803/**
7804 * dev_set_group - Change group this device belongs to
7805 * @dev: device
7806 * @new_group: group this device should belong to
7807 */
7808void dev_set_group(struct net_device *dev, int new_group)
7809{
7810 dev->group = new_group;
7811}
7812EXPORT_SYMBOL(dev_set_group);
7813
d59cdf94
PM
7814/**
7815 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7816 * @dev: device
7817 * @addr: new address
7818 * @extack: netlink extended ack
7819 */
7820int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7821 struct netlink_ext_ack *extack)
7822{
7823 struct netdev_notifier_pre_changeaddr_info info = {
7824 .info.dev = dev,
7825 .info.extack = extack,
7826 .dev_addr = addr,
7827 };
7828 int rc;
7829
7830 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7831 return notifier_to_errno(rc);
7832}
7833EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7834
f0db275a
SH
7835/**
7836 * dev_set_mac_address - Change Media Access Control Address
7837 * @dev: device
7838 * @sa: new address
3a37a963 7839 * @extack: netlink extended ack
f0db275a
SH
7840 *
7841 * Change the hardware (MAC) address of the device
7842 */
3a37a963
PM
7843int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7844 struct netlink_ext_ack *extack)
1da177e4 7845{
d314774c 7846 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
7847 int err;
7848
d314774c 7849 if (!ops->ndo_set_mac_address)
1da177e4
LT
7850 return -EOPNOTSUPP;
7851 if (sa->sa_family != dev->type)
7852 return -EINVAL;
7853 if (!netif_device_present(dev))
7854 return -ENODEV;
d59cdf94
PM
7855 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7856 if (err)
7857 return err;
d314774c 7858 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
7859 if (err)
7860 return err;
fbdeca2d 7861 dev->addr_assign_type = NET_ADDR_SET;
f6521516 7862 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 7863 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 7864 return 0;
1da177e4 7865}
d1b19dff 7866EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 7867
4bf84c35
JP
7868/**
7869 * dev_change_carrier - Change device carrier
7870 * @dev: device
691b3b7e 7871 * @new_carrier: new value
4bf84c35
JP
7872 *
7873 * Change device carrier
7874 */
7875int dev_change_carrier(struct net_device *dev, bool new_carrier)
7876{
7877 const struct net_device_ops *ops = dev->netdev_ops;
7878
7879 if (!ops->ndo_change_carrier)
7880 return -EOPNOTSUPP;
7881 if (!netif_device_present(dev))
7882 return -ENODEV;
7883 return ops->ndo_change_carrier(dev, new_carrier);
7884}
7885EXPORT_SYMBOL(dev_change_carrier);
7886
66b52b0d
JP
7887/**
7888 * dev_get_phys_port_id - Get device physical port ID
7889 * @dev: device
7890 * @ppid: port ID
7891 *
7892 * Get device physical port ID
7893 */
7894int dev_get_phys_port_id(struct net_device *dev,
02637fce 7895 struct netdev_phys_item_id *ppid)
66b52b0d
JP
7896{
7897 const struct net_device_ops *ops = dev->netdev_ops;
7898
7899 if (!ops->ndo_get_phys_port_id)
7900 return -EOPNOTSUPP;
7901 return ops->ndo_get_phys_port_id(dev, ppid);
7902}
7903EXPORT_SYMBOL(dev_get_phys_port_id);
7904
db24a904
DA
7905/**
7906 * dev_get_phys_port_name - Get device physical port name
7907 * @dev: device
7908 * @name: port name
ed49e650 7909 * @len: limit of bytes to copy to name
db24a904
DA
7910 *
7911 * Get device physical port name
7912 */
7913int dev_get_phys_port_name(struct net_device *dev,
7914 char *name, size_t len)
7915{
7916 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 7917 int err;
db24a904 7918
af3836df
JP
7919 if (ops->ndo_get_phys_port_name) {
7920 err = ops->ndo_get_phys_port_name(dev, name, len);
7921 if (err != -EOPNOTSUPP)
7922 return err;
7923 }
7924 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
7925}
7926EXPORT_SYMBOL(dev_get_phys_port_name);
7927
d6abc596
FF
7928/**
7929 * dev_get_port_parent_id - Get the device's port parent identifier
7930 * @dev: network device
7931 * @ppid: pointer to a storage for the port's parent identifier
7932 * @recurse: allow/disallow recursion to lower devices
7933 *
7934 * Get the devices's port parent identifier
7935 */
7936int dev_get_port_parent_id(struct net_device *dev,
7937 struct netdev_phys_item_id *ppid,
7938 bool recurse)
7939{
7940 const struct net_device_ops *ops = dev->netdev_ops;
7941 struct netdev_phys_item_id first = { };
7942 struct net_device *lower_dev;
7943 struct list_head *iter;
7e1146e8
JP
7944 int err;
7945
7946 if (ops->ndo_get_port_parent_id) {
7947 err = ops->ndo_get_port_parent_id(dev, ppid);
7948 if (err != -EOPNOTSUPP)
7949 return err;
7950 }
d6abc596 7951
7e1146e8
JP
7952 err = devlink_compat_switch_id_get(dev, ppid);
7953 if (!err || err != -EOPNOTSUPP)
7954 return err;
d6abc596
FF
7955
7956 if (!recurse)
7e1146e8 7957 return -EOPNOTSUPP;
d6abc596
FF
7958
7959 netdev_for_each_lower_dev(dev, lower_dev, iter) {
7960 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7961 if (err)
7962 break;
7963 if (!first.id_len)
7964 first = *ppid;
7965 else if (memcmp(&first, ppid, sizeof(*ppid)))
7966 return -ENODATA;
7967 }
7968
7969 return err;
7970}
7971EXPORT_SYMBOL(dev_get_port_parent_id);
7972
7973/**
7974 * netdev_port_same_parent_id - Indicate if two network devices have
7975 * the same port parent identifier
7976 * @a: first network device
7977 * @b: second network device
7978 */
7979bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7980{
7981 struct netdev_phys_item_id a_id = { };
7982 struct netdev_phys_item_id b_id = { };
7983
7984 if (dev_get_port_parent_id(a, &a_id, true) ||
7985 dev_get_port_parent_id(b, &b_id, true))
7986 return false;
7987
7988 return netdev_phys_item_id_same(&a_id, &b_id);
7989}
7990EXPORT_SYMBOL(netdev_port_same_parent_id);
7991
d746d707
AK
7992/**
7993 * dev_change_proto_down - update protocol port state information
7994 * @dev: device
7995 * @proto_down: new value
7996 *
7997 * This info can be used by switch drivers to set the phys state of the
7998 * port.
7999 */
8000int dev_change_proto_down(struct net_device *dev, bool proto_down)
8001{
8002 const struct net_device_ops *ops = dev->netdev_ops;
8003
8004 if (!ops->ndo_change_proto_down)
8005 return -EOPNOTSUPP;
8006 if (!netif_device_present(dev))
8007 return -ENODEV;
8008 return ops->ndo_change_proto_down(dev, proto_down);
8009}
8010EXPORT_SYMBOL(dev_change_proto_down);
8011
b5899679
AR
8012/**
8013 * dev_change_proto_down_generic - generic implementation for
8014 * ndo_change_proto_down that sets carrier according to
8015 * proto_down.
8016 *
8017 * @dev: device
8018 * @proto_down: new value
8019 */
8020int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8021{
8022 if (proto_down)
8023 netif_carrier_off(dev);
8024 else
8025 netif_carrier_on(dev);
8026 dev->proto_down = proto_down;
8027 return 0;
8028}
8029EXPORT_SYMBOL(dev_change_proto_down_generic);
8030
a25717d2
JK
8031u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8032 enum bpf_netdev_command cmd)
d67b9cd2 8033{
a25717d2 8034 struct netdev_bpf xdp;
d67b9cd2 8035
a25717d2
JK
8036 if (!bpf_op)
8037 return 0;
118b4aa2 8038
a25717d2
JK
8039 memset(&xdp, 0, sizeof(xdp));
8040 xdp.command = cmd;
118b4aa2 8041
a25717d2
JK
8042 /* Query must always succeed. */
8043 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
58038695 8044
6b867589 8045 return xdp.prog_id;
d67b9cd2
DB
8046}
8047
f4e63525 8048static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
32d60277 8049 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
8050 struct bpf_prog *prog)
8051{
f4e63525 8052 struct netdev_bpf xdp;
d67b9cd2
DB
8053
8054 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
8055 if (flags & XDP_FLAGS_HW_MODE)
8056 xdp.command = XDP_SETUP_PROG_HW;
8057 else
8058 xdp.command = XDP_SETUP_PROG;
d67b9cd2 8059 xdp.extack = extack;
32d60277 8060 xdp.flags = flags;
d67b9cd2
DB
8061 xdp.prog = prog;
8062
f4e63525 8063 return bpf_op(dev, &xdp);
d67b9cd2
DB
8064}
8065
bd0b2e7f
JK
8066static void dev_xdp_uninstall(struct net_device *dev)
8067{
8068 struct netdev_bpf xdp;
8069 bpf_op_t ndo_bpf;
8070
8071 /* Remove generic XDP */
8072 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8073
8074 /* Remove from the driver */
8075 ndo_bpf = dev->netdev_ops->ndo_bpf;
8076 if (!ndo_bpf)
8077 return;
8078
a25717d2
JK
8079 memset(&xdp, 0, sizeof(xdp));
8080 xdp.command = XDP_QUERY_PROG;
8081 WARN_ON(ndo_bpf(dev, &xdp));
8082 if (xdp.prog_id)
8083 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8084 NULL));
bd0b2e7f 8085
a25717d2
JK
8086 /* Remove HW offload */
8087 memset(&xdp, 0, sizeof(xdp));
8088 xdp.command = XDP_QUERY_PROG_HW;
8089 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8090 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8091 NULL));
bd0b2e7f
JK
8092}
8093
a7862b45
BB
8094/**
8095 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8096 * @dev: device
b5d60989 8097 * @extack: netlink extended ack
a7862b45 8098 * @fd: new program fd or negative value to clear
85de8576 8099 * @flags: xdp-related flags
a7862b45
BB
8100 *
8101 * Set or clear a bpf program for a device
8102 */
ddf9f970
JK
8103int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8104 int fd, u32 flags)
a7862b45
BB
8105{
8106 const struct net_device_ops *ops = dev->netdev_ops;
a25717d2 8107 enum bpf_netdev_command query;
a7862b45 8108 struct bpf_prog *prog = NULL;
f4e63525 8109 bpf_op_t bpf_op, bpf_chk;
9ee963d6 8110 bool offload;
a7862b45
BB
8111 int err;
8112
85de8576
DB
8113 ASSERT_RTNL();
8114
9ee963d6
JK
8115 offload = flags & XDP_FLAGS_HW_MODE;
8116 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
a25717d2 8117
f4e63525 8118 bpf_op = bpf_chk = ops->ndo_bpf;
01dde20c
MF
8119 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8120 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
0489df9a 8121 return -EOPNOTSUPP;
01dde20c 8122 }
f4e63525
JK
8123 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8124 bpf_op = generic_xdp_install;
8125 if (bpf_op == bpf_chk)
8126 bpf_chk = generic_xdp_install;
b5cdae32 8127
a7862b45 8128 if (fd >= 0) {
9ee963d6 8129 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
01dde20c 8130 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
d67b9cd2 8131 return -EEXIST;
01dde20c 8132 }
d67b9cd2 8133 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
01dde20c
MF
8134 __dev_xdp_query(dev, bpf_op, query)) {
8135 NL_SET_ERR_MSG(extack, "XDP program already attached");
d67b9cd2 8136 return -EBUSY;
01dde20c 8137 }
85de8576 8138
288b3de5
JK
8139 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8140 bpf_op == ops->ndo_bpf);
a7862b45
BB
8141 if (IS_ERR(prog))
8142 return PTR_ERR(prog);
441a3303 8143
9ee963d6 8144 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
441a3303
JK
8145 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8146 bpf_prog_put(prog);
8147 return -EINVAL;
8148 }
a7862b45
BB
8149 }
8150
f4e63525 8151 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
a7862b45
BB
8152 if (err < 0 && prog)
8153 bpf_prog_put(prog);
8154
8155 return err;
8156}
a7862b45 8157
1da177e4
LT
8158/**
8159 * dev_new_index - allocate an ifindex
c4ea43c5 8160 * @net: the applicable net namespace
1da177e4
LT
8161 *
8162 * Returns a suitable unique value for a new device interface
8163 * number. The caller must hold the rtnl semaphore or the
8164 * dev_base_lock to be sure it remains unique.
8165 */
881d966b 8166static int dev_new_index(struct net *net)
1da177e4 8167{
aa79e66e 8168 int ifindex = net->ifindex;
f4563a75 8169
1da177e4
LT
8170 for (;;) {
8171 if (++ifindex <= 0)
8172 ifindex = 1;
881d966b 8173 if (!__dev_get_by_index(net, ifindex))
aa79e66e 8174 return net->ifindex = ifindex;
1da177e4
LT
8175 }
8176}
8177
1da177e4 8178/* Delayed registration/unregisteration */
3b5b34fd 8179static LIST_HEAD(net_todo_list);
200b916f 8180DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 8181
6f05f629 8182static void net_set_todo(struct net_device *dev)
1da177e4 8183{
1da177e4 8184 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 8185 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
8186}
8187
9b5e383c 8188static void rollback_registered_many(struct list_head *head)
93ee31f1 8189{
e93737b0 8190 struct net_device *dev, *tmp;
5cde2829 8191 LIST_HEAD(close_head);
9b5e383c 8192
93ee31f1
DL
8193 BUG_ON(dev_boot_phase);
8194 ASSERT_RTNL();
8195
e93737b0 8196 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 8197 /* Some devices call without registering
e93737b0
KK
8198 * for initialization unwind. Remove those
8199 * devices and proceed with the remaining.
9b5e383c
ED
8200 */
8201 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
8202 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8203 dev->name, dev);
93ee31f1 8204
9b5e383c 8205 WARN_ON(1);
e93737b0
KK
8206 list_del(&dev->unreg_list);
8207 continue;
9b5e383c 8208 }
449f4544 8209 dev->dismantle = true;
9b5e383c 8210 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 8211 }
93ee31f1 8212
44345724 8213 /* If device is running, close it first. */
5cde2829
EB
8214 list_for_each_entry(dev, head, unreg_list)
8215 list_add_tail(&dev->close_list, &close_head);
99c4a26a 8216 dev_close_many(&close_head, true);
93ee31f1 8217
44345724 8218 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
8219 /* And unlink it from device chain. */
8220 unlist_netdevice(dev);
93ee31f1 8221
9b5e383c
ED
8222 dev->reg_state = NETREG_UNREGISTERING;
8223 }
41852497 8224 flush_all_backlogs();
93ee31f1
DL
8225
8226 synchronize_net();
8227
9b5e383c 8228 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
8229 struct sk_buff *skb = NULL;
8230
9b5e383c
ED
8231 /* Shutdown queueing discipline. */
8232 dev_shutdown(dev);
93ee31f1 8233
bd0b2e7f 8234 dev_xdp_uninstall(dev);
93ee31f1 8235
9b5e383c 8236 /* Notify protocols, that we are about to destroy
eb13da1a 8237 * this device. They should clean all the things.
8238 */
9b5e383c 8239 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 8240
395eea6c
MB
8241 if (!dev->rtnl_link_ops ||
8242 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 8243 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 8244 GFP_KERNEL, NULL, 0);
395eea6c 8245
9b5e383c
ED
8246 /*
8247 * Flush the unicast and multicast chains
8248 */
a748ee24 8249 dev_uc_flush(dev);
22bedad3 8250 dev_mc_flush(dev);
93ee31f1 8251
9b5e383c
ED
8252 if (dev->netdev_ops->ndo_uninit)
8253 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 8254
395eea6c
MB
8255 if (skb)
8256 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 8257
9ff162a8
JP
8258 /* Notifier chain MUST detach us all upper devices. */
8259 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 8260 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 8261
9b5e383c
ED
8262 /* Remove entries from kobject tree */
8263 netdev_unregister_kobject(dev);
024e9679
AD
8264#ifdef CONFIG_XPS
8265 /* Remove XPS queueing entries */
8266 netif_reset_xps_queues_gt(dev, 0);
8267#endif
9b5e383c 8268 }
93ee31f1 8269
850a545b 8270 synchronize_net();
395264d5 8271
a5ee1551 8272 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
8273 dev_put(dev);
8274}
8275
8276static void rollback_registered(struct net_device *dev)
8277{
8278 LIST_HEAD(single);
8279
8280 list_add(&dev->unreg_list, &single);
8281 rollback_registered_many(&single);
ceaaec98 8282 list_del(&single);
93ee31f1
DL
8283}
8284
fd867d51
JW
8285static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8286 struct net_device *upper, netdev_features_t features)
8287{
8288 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8289 netdev_features_t feature;
5ba3f7d6 8290 int feature_bit;
fd867d51 8291
3b89ea9c 8292 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8293 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8294 if (!(upper->wanted_features & feature)
8295 && (features & feature)) {
8296 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8297 &feature, upper->name);
8298 features &= ~feature;
8299 }
8300 }
8301
8302 return features;
8303}
8304
8305static void netdev_sync_lower_features(struct net_device *upper,
8306 struct net_device *lower, netdev_features_t features)
8307{
8308 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8309 netdev_features_t feature;
5ba3f7d6 8310 int feature_bit;
fd867d51 8311
3b89ea9c 8312 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8313 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8314 if (!(features & feature) && (lower->features & feature)) {
8315 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8316 &feature, lower->name);
8317 lower->wanted_features &= ~feature;
8318 netdev_update_features(lower);
8319
8320 if (unlikely(lower->features & feature))
8321 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8322 &feature, lower->name);
8323 }
8324 }
8325}
8326
c8f44aff
MM
8327static netdev_features_t netdev_fix_features(struct net_device *dev,
8328 netdev_features_t features)
b63365a2 8329{
57422dc5
MM
8330 /* Fix illegal checksum combinations */
8331 if ((features & NETIF_F_HW_CSUM) &&
8332 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 8333 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
8334 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8335 }
8336
b63365a2 8337 /* TSO requires that SG is present as well. */
ea2d3688 8338 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 8339 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 8340 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
8341 }
8342
ec5f0615
PS
8343 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8344 !(features & NETIF_F_IP_CSUM)) {
8345 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8346 features &= ~NETIF_F_TSO;
8347 features &= ~NETIF_F_TSO_ECN;
8348 }
8349
8350 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8351 !(features & NETIF_F_IPV6_CSUM)) {
8352 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8353 features &= ~NETIF_F_TSO6;
8354 }
8355
b1dc497b
AD
8356 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8357 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8358 features &= ~NETIF_F_TSO_MANGLEID;
8359
31d8b9e0
BH
8360 /* TSO ECN requires that TSO is present as well. */
8361 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8362 features &= ~NETIF_F_TSO_ECN;
8363
212b573f
MM
8364 /* Software GSO depends on SG. */
8365 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 8366 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
8367 features &= ~NETIF_F_GSO;
8368 }
8369
802ab55a
AD
8370 /* GSO partial features require GSO partial be set */
8371 if ((features & dev->gso_partial_features) &&
8372 !(features & NETIF_F_GSO_PARTIAL)) {
8373 netdev_dbg(dev,
8374 "Dropping partially supported GSO features since no GSO partial.\n");
8375 features &= ~dev->gso_partial_features;
8376 }
8377
fb1f5f79
MC
8378 if (!(features & NETIF_F_RXCSUM)) {
8379 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8380 * successfully merged by hardware must also have the
8381 * checksum verified by hardware. If the user does not
8382 * want to enable RXCSUM, logically, we should disable GRO_HW.
8383 */
8384 if (features & NETIF_F_GRO_HW) {
8385 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8386 features &= ~NETIF_F_GRO_HW;
8387 }
8388 }
8389
de8d5ab2
GP
8390 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8391 if (features & NETIF_F_RXFCS) {
8392 if (features & NETIF_F_LRO) {
8393 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8394 features &= ~NETIF_F_LRO;
8395 }
8396
8397 if (features & NETIF_F_GRO_HW) {
8398 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8399 features &= ~NETIF_F_GRO_HW;
8400 }
e6c6a929
GP
8401 }
8402
b63365a2
HX
8403 return features;
8404}
b63365a2 8405
6cb6a27c 8406int __netdev_update_features(struct net_device *dev)
5455c699 8407{
fd867d51 8408 struct net_device *upper, *lower;
c8f44aff 8409 netdev_features_t features;
fd867d51 8410 struct list_head *iter;
e7868a85 8411 int err = -1;
5455c699 8412
87267485
MM
8413 ASSERT_RTNL();
8414
5455c699
MM
8415 features = netdev_get_wanted_features(dev);
8416
8417 if (dev->netdev_ops->ndo_fix_features)
8418 features = dev->netdev_ops->ndo_fix_features(dev, features);
8419
8420 /* driver might be less strict about feature dependencies */
8421 features = netdev_fix_features(dev, features);
8422
fd867d51
JW
8423 /* some features can't be enabled if they're off an an upper device */
8424 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8425 features = netdev_sync_upper_features(dev, upper, features);
8426
5455c699 8427 if (dev->features == features)
e7868a85 8428 goto sync_lower;
5455c699 8429
c8f44aff
MM
8430 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8431 &dev->features, &features);
5455c699
MM
8432
8433 if (dev->netdev_ops->ndo_set_features)
8434 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
8435 else
8436 err = 0;
5455c699 8437
6cb6a27c 8438 if (unlikely(err < 0)) {
5455c699 8439 netdev_err(dev,
c8f44aff
MM
8440 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8441 err, &features, &dev->features);
17b85d29
NA
8442 /* return non-0 since some features might have changed and
8443 * it's better to fire a spurious notification than miss it
8444 */
8445 return -1;
6cb6a27c
MM
8446 }
8447
e7868a85 8448sync_lower:
fd867d51
JW
8449 /* some features must be disabled on lower devices when disabled
8450 * on an upper device (think: bonding master or bridge)
8451 */
8452 netdev_for_each_lower_dev(dev, lower, iter)
8453 netdev_sync_lower_features(dev, lower, features);
8454
ae847f40
SD
8455 if (!err) {
8456 netdev_features_t diff = features ^ dev->features;
8457
8458 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8459 /* udp_tunnel_{get,drop}_rx_info both need
8460 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8461 * device, or they won't do anything.
8462 * Thus we need to update dev->features
8463 * *before* calling udp_tunnel_get_rx_info,
8464 * but *after* calling udp_tunnel_drop_rx_info.
8465 */
8466 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8467 dev->features = features;
8468 udp_tunnel_get_rx_info(dev);
8469 } else {
8470 udp_tunnel_drop_rx_info(dev);
8471 }
8472 }
8473
9daae9bd
GP
8474 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8475 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8476 dev->features = features;
8477 err |= vlan_get_rx_ctag_filter_info(dev);
8478 } else {
8479 vlan_drop_rx_ctag_filter_info(dev);
8480 }
8481 }
8482
8483 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8484 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8485 dev->features = features;
8486 err |= vlan_get_rx_stag_filter_info(dev);
8487 } else {
8488 vlan_drop_rx_stag_filter_info(dev);
8489 }
8490 }
8491
6cb6a27c 8492 dev->features = features;
ae847f40 8493 }
6cb6a27c 8494
e7868a85 8495 return err < 0 ? 0 : 1;
6cb6a27c
MM
8496}
8497
afe12cc8
MM
8498/**
8499 * netdev_update_features - recalculate device features
8500 * @dev: the device to check
8501 *
8502 * Recalculate dev->features set and send notifications if it
8503 * has changed. Should be called after driver or hardware dependent
8504 * conditions might have changed that influence the features.
8505 */
6cb6a27c
MM
8506void netdev_update_features(struct net_device *dev)
8507{
8508 if (__netdev_update_features(dev))
8509 netdev_features_change(dev);
5455c699
MM
8510}
8511EXPORT_SYMBOL(netdev_update_features);
8512
afe12cc8
MM
8513/**
8514 * netdev_change_features - recalculate device features
8515 * @dev: the device to check
8516 *
8517 * Recalculate dev->features set and send notifications even
8518 * if they have not changed. Should be called instead of
8519 * netdev_update_features() if also dev->vlan_features might
8520 * have changed to allow the changes to be propagated to stacked
8521 * VLAN devices.
8522 */
8523void netdev_change_features(struct net_device *dev)
8524{
8525 __netdev_update_features(dev);
8526 netdev_features_change(dev);
8527}
8528EXPORT_SYMBOL(netdev_change_features);
8529
fc4a7489
PM
8530/**
8531 * netif_stacked_transfer_operstate - transfer operstate
8532 * @rootdev: the root or lower level device to transfer state from
8533 * @dev: the device to transfer operstate to
8534 *
8535 * Transfer operational state from root to device. This is normally
8536 * called when a stacking relationship exists between the root
8537 * device and the device(a leaf device).
8538 */
8539void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8540 struct net_device *dev)
8541{
8542 if (rootdev->operstate == IF_OPER_DORMANT)
8543 netif_dormant_on(dev);
8544 else
8545 netif_dormant_off(dev);
8546
0575c86b
ZS
8547 if (netif_carrier_ok(rootdev))
8548 netif_carrier_on(dev);
8549 else
8550 netif_carrier_off(dev);
fc4a7489
PM
8551}
8552EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8553
1b4bf461
ED
8554static int netif_alloc_rx_queues(struct net_device *dev)
8555{
1b4bf461 8556 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 8557 struct netdev_rx_queue *rx;
10595902 8558 size_t sz = count * sizeof(*rx);
e817f856 8559 int err = 0;
1b4bf461 8560
bd25fa7b 8561 BUG_ON(count < 1);
1b4bf461 8562
dcda9b04 8563 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
8564 if (!rx)
8565 return -ENOMEM;
8566
bd25fa7b
TH
8567 dev->_rx = rx;
8568
e817f856 8569 for (i = 0; i < count; i++) {
fe822240 8570 rx[i].dev = dev;
e817f856
JDB
8571
8572 /* XDP RX-queue setup */
8573 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8574 if (err < 0)
8575 goto err_rxq_info;
8576 }
1b4bf461 8577 return 0;
e817f856
JDB
8578
8579err_rxq_info:
8580 /* Rollback successful reg's and free other resources */
8581 while (i--)
8582 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 8583 kvfree(dev->_rx);
e817f856
JDB
8584 dev->_rx = NULL;
8585 return err;
8586}
8587
8588static void netif_free_rx_queues(struct net_device *dev)
8589{
8590 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
8591
8592 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8593 if (!dev->_rx)
8594 return;
8595
e817f856 8596 for (i = 0; i < count; i++)
82aaff2f
JK
8597 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8598
8599 kvfree(dev->_rx);
1b4bf461
ED
8600}
8601
aa942104
CG
8602static void netdev_init_one_queue(struct net_device *dev,
8603 struct netdev_queue *queue, void *_unused)
8604{
8605 /* Initialize queue lock */
8606 spin_lock_init(&queue->_xmit_lock);
8607 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8608 queue->xmit_lock_owner = -1;
b236da69 8609 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 8610 queue->dev = dev;
114cf580
TH
8611#ifdef CONFIG_BQL
8612 dql_init(&queue->dql, HZ);
8613#endif
aa942104
CG
8614}
8615
60877a32
ED
8616static void netif_free_tx_queues(struct net_device *dev)
8617{
4cb28970 8618 kvfree(dev->_tx);
60877a32
ED
8619}
8620
e6484930
TH
8621static int netif_alloc_netdev_queues(struct net_device *dev)
8622{
8623 unsigned int count = dev->num_tx_queues;
8624 struct netdev_queue *tx;
60877a32 8625 size_t sz = count * sizeof(*tx);
e6484930 8626
d339727c
ED
8627 if (count < 1 || count > 0xffff)
8628 return -EINVAL;
62b5942a 8629
dcda9b04 8630 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
8631 if (!tx)
8632 return -ENOMEM;
8633
e6484930 8634 dev->_tx = tx;
1d24eb48 8635
e6484930
TH
8636 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8637 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
8638
8639 return 0;
e6484930
TH
8640}
8641
a2029240
DV
8642void netif_tx_stop_all_queues(struct net_device *dev)
8643{
8644 unsigned int i;
8645
8646 for (i = 0; i < dev->num_tx_queues; i++) {
8647 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 8648
a2029240
DV
8649 netif_tx_stop_queue(txq);
8650 }
8651}
8652EXPORT_SYMBOL(netif_tx_stop_all_queues);
8653
1da177e4
LT
8654/**
8655 * register_netdevice - register a network device
8656 * @dev: device to register
8657 *
8658 * Take a completed network device structure and add it to the kernel
8659 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8660 * chain. 0 is returned on success. A negative errno code is returned
8661 * on a failure to set up the device, or if the name is a duplicate.
8662 *
8663 * Callers must hold the rtnl semaphore. You may want
8664 * register_netdev() instead of this.
8665 *
8666 * BUGS:
8667 * The locking appears insufficient to guarantee two parallel registers
8668 * will not get the same name.
8669 */
8670
8671int register_netdevice(struct net_device *dev)
8672{
1da177e4 8673 int ret;
d314774c 8674 struct net *net = dev_net(dev);
1da177e4 8675
e283de3a
FF
8676 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8677 NETDEV_FEATURE_COUNT);
1da177e4
LT
8678 BUG_ON(dev_boot_phase);
8679 ASSERT_RTNL();
8680
b17a7c17
SH
8681 might_sleep();
8682
1da177e4
LT
8683 /* When net_device's are persistent, this will be fatal. */
8684 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 8685 BUG_ON(!net);
1da177e4 8686
f1f28aa3 8687 spin_lock_init(&dev->addr_list_lock);
cf508b12 8688 netdev_set_addr_lockdep_class(dev);
1da177e4 8689
828de4f6 8690 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
8691 if (ret < 0)
8692 goto out;
8693
1da177e4 8694 /* Init, if this function is available */
d314774c
SH
8695 if (dev->netdev_ops->ndo_init) {
8696 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
8697 if (ret) {
8698 if (ret > 0)
8699 ret = -EIO;
90833aa4 8700 goto out;
1da177e4
LT
8701 }
8702 }
4ec93edb 8703
f646968f
PM
8704 if (((dev->hw_features | dev->features) &
8705 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
8706 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8707 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8708 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8709 ret = -EINVAL;
8710 goto err_uninit;
8711 }
8712
9c7dafbf
PE
8713 ret = -EBUSY;
8714 if (!dev->ifindex)
8715 dev->ifindex = dev_new_index(net);
8716 else if (__dev_get_by_index(net, dev->ifindex))
8717 goto err_uninit;
8718
5455c699
MM
8719 /* Transfer changeable features to wanted_features and enable
8720 * software offloads (GSO and GRO).
8721 */
8722 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f 8723 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
8724
8725 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8726 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8727 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8728 }
8729
14d1232f 8730 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 8731
cbc53e08 8732 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 8733 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 8734
7f348a60
AD
8735 /* If IPv4 TCP segmentation offload is supported we should also
8736 * allow the device to enable segmenting the frame with the option
8737 * of ignoring a static IP ID value. This doesn't enable the
8738 * feature itself but allows the user to enable it later.
8739 */
cbc53e08
AD
8740 if (dev->hw_features & NETIF_F_TSO)
8741 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
8742 if (dev->vlan_features & NETIF_F_TSO)
8743 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8744 if (dev->mpls_features & NETIF_F_TSO)
8745 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8746 if (dev->hw_enc_features & NETIF_F_TSO)
8747 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 8748
1180e7d6 8749 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 8750 */
1180e7d6 8751 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 8752
ee579677
PS
8753 /* Make NETIF_F_SG inheritable to tunnel devices.
8754 */
802ab55a 8755 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 8756
0d89d203
SH
8757 /* Make NETIF_F_SG inheritable to MPLS.
8758 */
8759 dev->mpls_features |= NETIF_F_SG;
8760
7ffbe3fd
JB
8761 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8762 ret = notifier_to_errno(ret);
8763 if (ret)
8764 goto err_uninit;
8765
8b41d188 8766 ret = netdev_register_kobject(dev);
b17a7c17 8767 if (ret)
7ce1b0ed 8768 goto err_uninit;
b17a7c17
SH
8769 dev->reg_state = NETREG_REGISTERED;
8770
6cb6a27c 8771 __netdev_update_features(dev);
8e9b59b2 8772
1da177e4
LT
8773 /*
8774 * Default initial state at registry is that the
8775 * device is present.
8776 */
8777
8778 set_bit(__LINK_STATE_PRESENT, &dev->state);
8779
8f4cccbb
BH
8780 linkwatch_init_dev(dev);
8781
1da177e4 8782 dev_init_scheduler(dev);
1da177e4 8783 dev_hold(dev);
ce286d32 8784 list_netdevice(dev);
7bf23575 8785 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 8786
948b337e
JP
8787 /* If the device has permanent device address, driver should
8788 * set dev_addr and also addr_assign_type should be set to
8789 * NET_ADDR_PERM (default value).
8790 */
8791 if (dev->addr_assign_type == NET_ADDR_PERM)
8792 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8793
1da177e4 8794 /* Notify protocols, that a new device appeared. */
056925ab 8795 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 8796 ret = notifier_to_errno(ret);
93ee31f1
DL
8797 if (ret) {
8798 rollback_registered(dev);
8799 dev->reg_state = NETREG_UNREGISTERED;
8800 }
d90a909e
EB
8801 /*
8802 * Prevent userspace races by waiting until the network
8803 * device is fully setup before sending notifications.
8804 */
a2835763
PM
8805 if (!dev->rtnl_link_ops ||
8806 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 8807 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
8808
8809out:
8810 return ret;
7ce1b0ed
HX
8811
8812err_uninit:
d314774c
SH
8813 if (dev->netdev_ops->ndo_uninit)
8814 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
8815 if (dev->priv_destructor)
8816 dev->priv_destructor(dev);
7ce1b0ed 8817 goto out;
1da177e4 8818}
d1b19dff 8819EXPORT_SYMBOL(register_netdevice);
1da177e4 8820
937f1ba5
BH
8821/**
8822 * init_dummy_netdev - init a dummy network device for NAPI
8823 * @dev: device to init
8824 *
8825 * This takes a network device structure and initialize the minimum
8826 * amount of fields so it can be used to schedule NAPI polls without
8827 * registering a full blown interface. This is to be used by drivers
8828 * that need to tie several hardware interfaces to a single NAPI
8829 * poll scheduler due to HW limitations.
8830 */
8831int init_dummy_netdev(struct net_device *dev)
8832{
8833 /* Clear everything. Note we don't initialize spinlocks
8834 * are they aren't supposed to be taken by any of the
8835 * NAPI code and this dummy netdev is supposed to be
8836 * only ever used for NAPI polls
8837 */
8838 memset(dev, 0, sizeof(struct net_device));
8839
8840 /* make sure we BUG if trying to hit standard
8841 * register/unregister code path
8842 */
8843 dev->reg_state = NETREG_DUMMY;
8844
937f1ba5
BH
8845 /* NAPI wants this */
8846 INIT_LIST_HEAD(&dev->napi_list);
8847
8848 /* a dummy interface is started by default */
8849 set_bit(__LINK_STATE_PRESENT, &dev->state);
8850 set_bit(__LINK_STATE_START, &dev->state);
8851
35edfdc7
JE
8852 /* napi_busy_loop stats accounting wants this */
8853 dev_net_set(dev, &init_net);
8854
29b4433d
ED
8855 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8856 * because users of this 'device' dont need to change
8857 * its refcount.
8858 */
8859
937f1ba5
BH
8860 return 0;
8861}
8862EXPORT_SYMBOL_GPL(init_dummy_netdev);
8863
8864
1da177e4
LT
8865/**
8866 * register_netdev - register a network device
8867 * @dev: device to register
8868 *
8869 * Take a completed network device structure and add it to the kernel
8870 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8871 * chain. 0 is returned on success. A negative errno code is returned
8872 * on a failure to set up the device, or if the name is a duplicate.
8873 *
38b4da38 8874 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
8875 * and expands the device name if you passed a format string to
8876 * alloc_netdev.
8877 */
8878int register_netdev(struct net_device *dev)
8879{
8880 int err;
8881
b0f3debc
KT
8882 if (rtnl_lock_killable())
8883 return -EINTR;
1da177e4 8884 err = register_netdevice(dev);
1da177e4
LT
8885 rtnl_unlock();
8886 return err;
8887}
8888EXPORT_SYMBOL(register_netdev);
8889
29b4433d
ED
8890int netdev_refcnt_read(const struct net_device *dev)
8891{
8892 int i, refcnt = 0;
8893
8894 for_each_possible_cpu(i)
8895 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8896 return refcnt;
8897}
8898EXPORT_SYMBOL(netdev_refcnt_read);
8899
2c53040f 8900/**
1da177e4 8901 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 8902 * @dev: target net_device
1da177e4
LT
8903 *
8904 * This is called when unregistering network devices.
8905 *
8906 * Any protocol or device that holds a reference should register
8907 * for netdevice notification, and cleanup and put back the
8908 * reference if they receive an UNREGISTER event.
8909 * We can get stuck here if buggy protocols don't correctly
4ec93edb 8910 * call dev_put.
1da177e4
LT
8911 */
8912static void netdev_wait_allrefs(struct net_device *dev)
8913{
8914 unsigned long rebroadcast_time, warning_time;
29b4433d 8915 int refcnt;
1da177e4 8916
e014debe
ED
8917 linkwatch_forget_dev(dev);
8918
1da177e4 8919 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
8920 refcnt = netdev_refcnt_read(dev);
8921
8922 while (refcnt != 0) {
1da177e4 8923 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 8924 rtnl_lock();
1da177e4
LT
8925
8926 /* Rebroadcast unregister notification */
056925ab 8927 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 8928
748e2d93 8929 __rtnl_unlock();
0115e8e3 8930 rcu_barrier();
748e2d93
ED
8931 rtnl_lock();
8932
1da177e4
LT
8933 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8934 &dev->state)) {
8935 /* We must not have linkwatch events
8936 * pending on unregister. If this
8937 * happens, we simply run the queue
8938 * unscheduled, resulting in a noop
8939 * for this device.
8940 */
8941 linkwatch_run_queue();
8942 }
8943
6756ae4b 8944 __rtnl_unlock();
1da177e4
LT
8945
8946 rebroadcast_time = jiffies;
8947 }
8948
8949 msleep(250);
8950
29b4433d
ED
8951 refcnt = netdev_refcnt_read(dev);
8952
d7c04b05 8953 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
8954 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8955 dev->name, refcnt);
1da177e4
LT
8956 warning_time = jiffies;
8957 }
8958 }
8959}
8960
8961/* The sequence is:
8962 *
8963 * rtnl_lock();
8964 * ...
8965 * register_netdevice(x1);
8966 * register_netdevice(x2);
8967 * ...
8968 * unregister_netdevice(y1);
8969 * unregister_netdevice(y2);
8970 * ...
8971 * rtnl_unlock();
8972 * free_netdev(y1);
8973 * free_netdev(y2);
8974 *
58ec3b4d 8975 * We are invoked by rtnl_unlock().
1da177e4 8976 * This allows us to deal with problems:
b17a7c17 8977 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
8978 * without deadlocking with linkwatch via keventd.
8979 * 2) Since we run with the RTNL semaphore not held, we can sleep
8980 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
8981 *
8982 * We must not return until all unregister events added during
8983 * the interval the lock was held have been completed.
1da177e4 8984 */
1da177e4
LT
8985void netdev_run_todo(void)
8986{
626ab0e6 8987 struct list_head list;
1da177e4 8988
1da177e4 8989 /* Snapshot list, allow later requests */
626ab0e6 8990 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
8991
8992 __rtnl_unlock();
626ab0e6 8993
0115e8e3
ED
8994
8995 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
8996 if (!list_empty(&list))
8997 rcu_barrier();
8998
1da177e4
LT
8999 while (!list_empty(&list)) {
9000 struct net_device *dev
e5e26d75 9001 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
9002 list_del(&dev->todo_list);
9003
b17a7c17 9004 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 9005 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
9006 dev->name, dev->reg_state);
9007 dump_stack();
9008 continue;
9009 }
1da177e4 9010
b17a7c17 9011 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 9012
b17a7c17 9013 netdev_wait_allrefs(dev);
1da177e4 9014
b17a7c17 9015 /* paranoia */
29b4433d 9016 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
9017 BUG_ON(!list_empty(&dev->ptype_all));
9018 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
9019 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9020 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 9021#if IS_ENABLED(CONFIG_DECNET)
547b792c 9022 WARN_ON(dev->dn_ptr);
330c7272 9023#endif
cf124db5
DM
9024 if (dev->priv_destructor)
9025 dev->priv_destructor(dev);
9026 if (dev->needs_free_netdev)
9027 free_netdev(dev);
9093bbb2 9028
50624c93
EB
9029 /* Report a network device has been unregistered */
9030 rtnl_lock();
9031 dev_net(dev)->dev_unreg_count--;
9032 __rtnl_unlock();
9033 wake_up(&netdev_unregistering_wq);
9034
9093bbb2
SH
9035 /* Free network device */
9036 kobject_put(&dev->dev.kobj);
1da177e4 9037 }
1da177e4
LT
9038}
9039
9256645a
JW
9040/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9041 * all the same fields in the same order as net_device_stats, with only
9042 * the type differing, but rtnl_link_stats64 may have additional fields
9043 * at the end for newer counters.
3cfde79c 9044 */
77a1abf5
ED
9045void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9046 const struct net_device_stats *netdev_stats)
3cfde79c
BH
9047{
9048#if BITS_PER_LONG == 64
9256645a 9049 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 9050 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
9051 /* zero out counters that only exist in rtnl_link_stats64 */
9052 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9053 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 9054#else
9256645a 9055 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
9056 const unsigned long *src = (const unsigned long *)netdev_stats;
9057 u64 *dst = (u64 *)stats64;
9058
9256645a 9059 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
9060 for (i = 0; i < n; i++)
9061 dst[i] = src[i];
9256645a
JW
9062 /* zero out counters that only exist in rtnl_link_stats64 */
9063 memset((char *)stats64 + n * sizeof(u64), 0,
9064 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
9065#endif
9066}
77a1abf5 9067EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 9068
eeda3fd6
SH
9069/**
9070 * dev_get_stats - get network device statistics
9071 * @dev: device to get statistics from
28172739 9072 * @storage: place to store stats
eeda3fd6 9073 *
d7753516
BH
9074 * Get network statistics from device. Return @storage.
9075 * The device driver may provide its own method by setting
9076 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9077 * otherwise the internal statistics structure is used.
eeda3fd6 9078 */
d7753516
BH
9079struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9080 struct rtnl_link_stats64 *storage)
7004bf25 9081{
eeda3fd6
SH
9082 const struct net_device_ops *ops = dev->netdev_ops;
9083
28172739
ED
9084 if (ops->ndo_get_stats64) {
9085 memset(storage, 0, sizeof(*storage));
caf586e5
ED
9086 ops->ndo_get_stats64(dev, storage);
9087 } else if (ops->ndo_get_stats) {
3cfde79c 9088 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
9089 } else {
9090 netdev_stats_to_stats64(storage, &dev->stats);
28172739 9091 }
6f64ec74
ED
9092 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9093 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9094 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 9095 return storage;
c45d286e 9096}
eeda3fd6 9097EXPORT_SYMBOL(dev_get_stats);
c45d286e 9098
24824a09 9099struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 9100{
24824a09 9101 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 9102
24824a09
ED
9103#ifdef CONFIG_NET_CLS_ACT
9104 if (queue)
9105 return queue;
9106 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9107 if (!queue)
9108 return NULL;
9109 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 9110 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
9111 queue->qdisc_sleeping = &noop_qdisc;
9112 rcu_assign_pointer(dev->ingress_queue, queue);
9113#endif
9114 return queue;
bb949fbd
DM
9115}
9116
2c60db03
ED
9117static const struct ethtool_ops default_ethtool_ops;
9118
d07d7507
SG
9119void netdev_set_default_ethtool_ops(struct net_device *dev,
9120 const struct ethtool_ops *ops)
9121{
9122 if (dev->ethtool_ops == &default_ethtool_ops)
9123 dev->ethtool_ops = ops;
9124}
9125EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9126
74d332c1
ED
9127void netdev_freemem(struct net_device *dev)
9128{
9129 char *addr = (char *)dev - dev->padded;
9130
4cb28970 9131 kvfree(addr);
74d332c1
ED
9132}
9133
1da177e4 9134/**
722c9a0c 9135 * alloc_netdev_mqs - allocate network device
9136 * @sizeof_priv: size of private data to allocate space for
9137 * @name: device name format string
9138 * @name_assign_type: origin of device name
9139 * @setup: callback to initialize device
9140 * @txqs: the number of TX subqueues to allocate
9141 * @rxqs: the number of RX subqueues to allocate
9142 *
9143 * Allocates a struct net_device with private data area for driver use
9144 * and performs basic initialization. Also allocates subqueue structs
9145 * for each queue on the device.
1da177e4 9146 */
36909ea4 9147struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 9148 unsigned char name_assign_type,
36909ea4
TH
9149 void (*setup)(struct net_device *),
9150 unsigned int txqs, unsigned int rxqs)
1da177e4 9151{
1da177e4 9152 struct net_device *dev;
52a59bd5 9153 unsigned int alloc_size;
1ce8e7b5 9154 struct net_device *p;
1da177e4 9155
b6fe17d6
SH
9156 BUG_ON(strlen(name) >= sizeof(dev->name));
9157
36909ea4 9158 if (txqs < 1) {
7b6cd1ce 9159 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
9160 return NULL;
9161 }
9162
36909ea4 9163 if (rxqs < 1) {
7b6cd1ce 9164 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
9165 return NULL;
9166 }
36909ea4 9167
fd2ea0a7 9168 alloc_size = sizeof(struct net_device);
d1643d24
AD
9169 if (sizeof_priv) {
9170 /* ensure 32-byte alignment of private area */
1ce8e7b5 9171 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
9172 alloc_size += sizeof_priv;
9173 }
9174 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 9175 alloc_size += NETDEV_ALIGN - 1;
1da177e4 9176
dcda9b04 9177 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 9178 if (!p)
1da177e4 9179 return NULL;
1da177e4 9180
1ce8e7b5 9181 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 9182 dev->padded = (char *)dev - (char *)p;
ab9c73cc 9183
29b4433d
ED
9184 dev->pcpu_refcnt = alloc_percpu(int);
9185 if (!dev->pcpu_refcnt)
74d332c1 9186 goto free_dev;
ab9c73cc 9187
ab9c73cc 9188 if (dev_addr_init(dev))
29b4433d 9189 goto free_pcpu;
ab9c73cc 9190
22bedad3 9191 dev_mc_init(dev);
a748ee24 9192 dev_uc_init(dev);
ccffad25 9193
c346dca1 9194 dev_net_set(dev, &init_net);
1da177e4 9195
8d3bdbd5 9196 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 9197 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 9198
8d3bdbd5
DM
9199 INIT_LIST_HEAD(&dev->napi_list);
9200 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 9201 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 9202 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
9203 INIT_LIST_HEAD(&dev->adj_list.upper);
9204 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
9205 INIT_LIST_HEAD(&dev->ptype_all);
9206 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
9207#ifdef CONFIG_NET_SCHED
9208 hash_init(dev->qdisc_hash);
9209#endif
02875878 9210 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
9211 setup(dev);
9212
a813104d 9213 if (!dev->tx_queue_len) {
f84bb1ea 9214 dev->priv_flags |= IFF_NO_QUEUE;
11597084 9215 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 9216 }
906470c1 9217
36909ea4
TH
9218 dev->num_tx_queues = txqs;
9219 dev->real_num_tx_queues = txqs;
ed9af2e8 9220 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 9221 goto free_all;
e8a0464c 9222
36909ea4
TH
9223 dev->num_rx_queues = rxqs;
9224 dev->real_num_rx_queues = rxqs;
fe822240 9225 if (netif_alloc_rx_queues(dev))
8d3bdbd5 9226 goto free_all;
0a9627f2 9227
1da177e4 9228 strcpy(dev->name, name);
c835a677 9229 dev->name_assign_type = name_assign_type;
cbda10fa 9230 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
9231 if (!dev->ethtool_ops)
9232 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
9233
9234 nf_hook_ingress_init(dev);
9235
1da177e4 9236 return dev;
ab9c73cc 9237
8d3bdbd5
DM
9238free_all:
9239 free_netdev(dev);
9240 return NULL;
9241
29b4433d
ED
9242free_pcpu:
9243 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
9244free_dev:
9245 netdev_freemem(dev);
ab9c73cc 9246 return NULL;
1da177e4 9247}
36909ea4 9248EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
9249
9250/**
722c9a0c 9251 * free_netdev - free network device
9252 * @dev: device
1da177e4 9253 *
722c9a0c 9254 * This function does the last stage of destroying an allocated device
9255 * interface. The reference to the device object is released. If this
9256 * is the last reference then it will be freed.Must be called in process
9257 * context.
1da177e4
LT
9258 */
9259void free_netdev(struct net_device *dev)
9260{
d565b0a1
HX
9261 struct napi_struct *p, *n;
9262
93d05d4a 9263 might_sleep();
60877a32 9264 netif_free_tx_queues(dev);
e817f856 9265 netif_free_rx_queues(dev);
e8a0464c 9266
33d480ce 9267 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 9268
f001fde5
JP
9269 /* Flush device addresses */
9270 dev_addr_flush(dev);
9271
d565b0a1
HX
9272 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9273 netif_napi_del(p);
9274
29b4433d
ED
9275 free_percpu(dev->pcpu_refcnt);
9276 dev->pcpu_refcnt = NULL;
9277
3041a069 9278 /* Compatibility with error handling in drivers */
1da177e4 9279 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 9280 netdev_freemem(dev);
1da177e4
LT
9281 return;
9282 }
9283
9284 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9285 dev->reg_state = NETREG_RELEASED;
9286
43cb76d9
GKH
9287 /* will free via device release */
9288 put_device(&dev->dev);
1da177e4 9289}
d1b19dff 9290EXPORT_SYMBOL(free_netdev);
4ec93edb 9291
f0db275a
SH
9292/**
9293 * synchronize_net - Synchronize with packet receive processing
9294 *
9295 * Wait for packets currently being received to be done.
9296 * Does not block later packets from starting.
9297 */
4ec93edb 9298void synchronize_net(void)
1da177e4
LT
9299{
9300 might_sleep();
be3fc413
ED
9301 if (rtnl_is_locked())
9302 synchronize_rcu_expedited();
9303 else
9304 synchronize_rcu();
1da177e4 9305}
d1b19dff 9306EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
9307
9308/**
44a0873d 9309 * unregister_netdevice_queue - remove device from the kernel
1da177e4 9310 * @dev: device
44a0873d 9311 * @head: list
6ebfbc06 9312 *
1da177e4 9313 * This function shuts down a device interface and removes it
d59b54b1 9314 * from the kernel tables.
44a0873d 9315 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
9316 *
9317 * Callers must hold the rtnl semaphore. You may want
9318 * unregister_netdev() instead of this.
9319 */
9320
44a0873d 9321void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 9322{
a6620712
HX
9323 ASSERT_RTNL();
9324
44a0873d 9325 if (head) {
9fdce099 9326 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
9327 } else {
9328 rollback_registered(dev);
9329 /* Finish processing unregister after unlock */
9330 net_set_todo(dev);
9331 }
1da177e4 9332}
44a0873d 9333EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 9334
9b5e383c
ED
9335/**
9336 * unregister_netdevice_many - unregister many devices
9337 * @head: list of devices
87757a91
ED
9338 *
9339 * Note: As most callers use a stack allocated list_head,
9340 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
9341 */
9342void unregister_netdevice_many(struct list_head *head)
9343{
9344 struct net_device *dev;
9345
9346 if (!list_empty(head)) {
9347 rollback_registered_many(head);
9348 list_for_each_entry(dev, head, unreg_list)
9349 net_set_todo(dev);
87757a91 9350 list_del(head);
9b5e383c
ED
9351 }
9352}
63c8099d 9353EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 9354
1da177e4
LT
9355/**
9356 * unregister_netdev - remove device from the kernel
9357 * @dev: device
9358 *
9359 * This function shuts down a device interface and removes it
d59b54b1 9360 * from the kernel tables.
1da177e4
LT
9361 *
9362 * This is just a wrapper for unregister_netdevice that takes
9363 * the rtnl semaphore. In general you want to use this and not
9364 * unregister_netdevice.
9365 */
9366void unregister_netdev(struct net_device *dev)
9367{
9368 rtnl_lock();
9369 unregister_netdevice(dev);
9370 rtnl_unlock();
9371}
1da177e4
LT
9372EXPORT_SYMBOL(unregister_netdev);
9373
ce286d32
EB
9374/**
9375 * dev_change_net_namespace - move device to different nethost namespace
9376 * @dev: device
9377 * @net: network namespace
9378 * @pat: If not NULL name pattern to try if the current device name
9379 * is already taken in the destination network namespace.
9380 *
9381 * This function shuts down a device interface and moves it
9382 * to a new network namespace. On success 0 is returned, on
9383 * a failure a netagive errno code is returned.
9384 *
9385 * Callers must hold the rtnl semaphore.
9386 */
9387
9388int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9389{
38e01b30 9390 int err, new_nsid, new_ifindex;
ce286d32
EB
9391
9392 ASSERT_RTNL();
9393
9394 /* Don't allow namespace local devices to be moved. */
9395 err = -EINVAL;
9396 if (dev->features & NETIF_F_NETNS_LOCAL)
9397 goto out;
9398
9399 /* Ensure the device has been registrered */
ce286d32
EB
9400 if (dev->reg_state != NETREG_REGISTERED)
9401 goto out;
9402
9403 /* Get out if there is nothing todo */
9404 err = 0;
878628fb 9405 if (net_eq(dev_net(dev), net))
ce286d32
EB
9406 goto out;
9407
9408 /* Pick the destination device name, and ensure
9409 * we can use it in the destination network namespace.
9410 */
9411 err = -EEXIST;
d9031024 9412 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
9413 /* We get here if we can't use the current device name */
9414 if (!pat)
9415 goto out;
7892bd08
LR
9416 err = dev_get_valid_name(net, dev, pat);
9417 if (err < 0)
ce286d32
EB
9418 goto out;
9419 }
9420
9421 /*
9422 * And now a mini version of register_netdevice unregister_netdevice.
9423 */
9424
9425 /* If device is running close it first. */
9b772652 9426 dev_close(dev);
ce286d32
EB
9427
9428 /* And unlink it from device chain */
ce286d32
EB
9429 unlist_netdevice(dev);
9430
9431 synchronize_net();
9432
9433 /* Shutdown queueing discipline. */
9434 dev_shutdown(dev);
9435
9436 /* Notify protocols, that we are about to destroy
eb13da1a 9437 * this device. They should clean all the things.
9438 *
9439 * Note that dev->reg_state stays at NETREG_REGISTERED.
9440 * This is wanted because this way 8021q and macvlan know
9441 * the device is just moving and can keep their slaves up.
9442 */
ce286d32 9443 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 9444 rcu_barrier();
38e01b30 9445
c36ac8e2 9446 new_nsid = peernet2id_alloc(dev_net(dev), net);
38e01b30
ND
9447 /* If there is an ifindex conflict assign a new one */
9448 if (__dev_get_by_index(net, dev->ifindex))
9449 new_ifindex = dev_new_index(net);
9450 else
9451 new_ifindex = dev->ifindex;
9452
9453 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9454 new_ifindex);
ce286d32
EB
9455
9456 /*
9457 * Flush the unicast and multicast chains
9458 */
a748ee24 9459 dev_uc_flush(dev);
22bedad3 9460 dev_mc_flush(dev);
ce286d32 9461
4e66ae2e
SH
9462 /* Send a netdev-removed uevent to the old namespace */
9463 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 9464 netdev_adjacent_del_links(dev);
4e66ae2e 9465
ce286d32 9466 /* Actually switch the network namespace */
c346dca1 9467 dev_net_set(dev, net);
38e01b30 9468 dev->ifindex = new_ifindex;
ce286d32 9469
4e66ae2e
SH
9470 /* Send a netdev-add uevent to the new namespace */
9471 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 9472 netdev_adjacent_add_links(dev);
4e66ae2e 9473
8b41d188 9474 /* Fixup kobjects */
a1b3f594 9475 err = device_rename(&dev->dev, dev->name);
8b41d188 9476 WARN_ON(err);
ce286d32
EB
9477
9478 /* Add the device back in the hashes */
9479 list_netdevice(dev);
9480
9481 /* Notify protocols, that a new device appeared. */
9482 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9483
d90a909e
EB
9484 /*
9485 * Prevent userspace races by waiting until the network
9486 * device is fully setup before sending notifications.
9487 */
7f294054 9488 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 9489
ce286d32
EB
9490 synchronize_net();
9491 err = 0;
9492out:
9493 return err;
9494}
463d0183 9495EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 9496
f0bf90de 9497static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
9498{
9499 struct sk_buff **list_skb;
1da177e4 9500 struct sk_buff *skb;
f0bf90de 9501 unsigned int cpu;
97d8b6e3 9502 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 9503
1da177e4
LT
9504 local_irq_disable();
9505 cpu = smp_processor_id();
9506 sd = &per_cpu(softnet_data, cpu);
9507 oldsd = &per_cpu(softnet_data, oldcpu);
9508
9509 /* Find end of our completion_queue. */
9510 list_skb = &sd->completion_queue;
9511 while (*list_skb)
9512 list_skb = &(*list_skb)->next;
9513 /* Append completion queue from offline CPU. */
9514 *list_skb = oldsd->completion_queue;
9515 oldsd->completion_queue = NULL;
9516
1da177e4 9517 /* Append output queue from offline CPU. */
a9cbd588
CG
9518 if (oldsd->output_queue) {
9519 *sd->output_queue_tailp = oldsd->output_queue;
9520 sd->output_queue_tailp = oldsd->output_queue_tailp;
9521 oldsd->output_queue = NULL;
9522 oldsd->output_queue_tailp = &oldsd->output_queue;
9523 }
ac64da0b
ED
9524 /* Append NAPI poll list from offline CPU, with one exception :
9525 * process_backlog() must be called by cpu owning percpu backlog.
9526 * We properly handle process_queue & input_pkt_queue later.
9527 */
9528 while (!list_empty(&oldsd->poll_list)) {
9529 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9530 struct napi_struct,
9531 poll_list);
9532
9533 list_del_init(&napi->poll_list);
9534 if (napi->poll == process_backlog)
9535 napi->state = 0;
9536 else
9537 ____napi_schedule(sd, napi);
264524d5 9538 }
1da177e4
LT
9539
9540 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9541 local_irq_enable();
9542
773fc8f6 9543#ifdef CONFIG_RPS
9544 remsd = oldsd->rps_ipi_list;
9545 oldsd->rps_ipi_list = NULL;
9546#endif
9547 /* send out pending IPI's on offline CPU */
9548 net_rps_send_ipi(remsd);
9549
1da177e4 9550 /* Process offline CPU's input_pkt_queue */
76cc8b13 9551 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 9552 netif_rx_ni(skb);
76cc8b13 9553 input_queue_head_incr(oldsd);
fec5e652 9554 }
ac64da0b 9555 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 9556 netif_rx_ni(skb);
76cc8b13
TH
9557 input_queue_head_incr(oldsd);
9558 }
1da177e4 9559
f0bf90de 9560 return 0;
1da177e4 9561}
1da177e4 9562
7f353bf2 9563/**
b63365a2
HX
9564 * netdev_increment_features - increment feature set by one
9565 * @all: current feature set
9566 * @one: new feature set
9567 * @mask: mask feature set
7f353bf2
HX
9568 *
9569 * Computes a new feature set after adding a device with feature set
b63365a2
HX
9570 * @one to the master device with current feature set @all. Will not
9571 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 9572 */
c8f44aff
MM
9573netdev_features_t netdev_increment_features(netdev_features_t all,
9574 netdev_features_t one, netdev_features_t mask)
b63365a2 9575{
c8cd0989 9576 if (mask & NETIF_F_HW_CSUM)
a188222b 9577 mask |= NETIF_F_CSUM_MASK;
1742f183 9578 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 9579
a188222b 9580 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 9581 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 9582
1742f183 9583 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
9584 if (all & NETIF_F_HW_CSUM)
9585 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
9586
9587 return all;
9588}
b63365a2 9589EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 9590
430f03cd 9591static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
9592{
9593 int i;
9594 struct hlist_head *hash;
9595
6da2ec56 9596 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
9597 if (hash != NULL)
9598 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9599 INIT_HLIST_HEAD(&hash[i]);
9600
9601 return hash;
9602}
9603
881d966b 9604/* Initialize per network namespace state */
4665079c 9605static int __net_init netdev_init(struct net *net)
881d966b 9606{
d9f37d01 9607 BUILD_BUG_ON(GRO_HASH_BUCKETS >
ccdb5171 9608 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
d9f37d01 9609
734b6541
RM
9610 if (net != &init_net)
9611 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 9612
30d97d35
PE
9613 net->dev_name_head = netdev_create_hash();
9614 if (net->dev_name_head == NULL)
9615 goto err_name;
881d966b 9616
30d97d35
PE
9617 net->dev_index_head = netdev_create_hash();
9618 if (net->dev_index_head == NULL)
9619 goto err_idx;
881d966b
EB
9620
9621 return 0;
30d97d35
PE
9622
9623err_idx:
9624 kfree(net->dev_name_head);
9625err_name:
9626 return -ENOMEM;
881d966b
EB
9627}
9628
f0db275a
SH
9629/**
9630 * netdev_drivername - network driver for the device
9631 * @dev: network device
f0db275a
SH
9632 *
9633 * Determine network driver for device.
9634 */
3019de12 9635const char *netdev_drivername(const struct net_device *dev)
6579e57b 9636{
cf04a4c7
SH
9637 const struct device_driver *driver;
9638 const struct device *parent;
3019de12 9639 const char *empty = "";
6579e57b
AV
9640
9641 parent = dev->dev.parent;
6579e57b 9642 if (!parent)
3019de12 9643 return empty;
6579e57b
AV
9644
9645 driver = parent->driver;
9646 if (driver && driver->name)
3019de12
DM
9647 return driver->name;
9648 return empty;
6579e57b
AV
9649}
9650
6ea754eb
JP
9651static void __netdev_printk(const char *level, const struct net_device *dev,
9652 struct va_format *vaf)
256df2f3 9653{
b004ff49 9654 if (dev && dev->dev.parent) {
6ea754eb
JP
9655 dev_printk_emit(level[1] - '0',
9656 dev->dev.parent,
9657 "%s %s %s%s: %pV",
9658 dev_driver_string(dev->dev.parent),
9659 dev_name(dev->dev.parent),
9660 netdev_name(dev), netdev_reg_state(dev),
9661 vaf);
b004ff49 9662 } else if (dev) {
6ea754eb
JP
9663 printk("%s%s%s: %pV",
9664 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 9665 } else {
6ea754eb 9666 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 9667 }
256df2f3
JP
9668}
9669
6ea754eb
JP
9670void netdev_printk(const char *level, const struct net_device *dev,
9671 const char *format, ...)
256df2f3
JP
9672{
9673 struct va_format vaf;
9674 va_list args;
256df2f3
JP
9675
9676 va_start(args, format);
9677
9678 vaf.fmt = format;
9679 vaf.va = &args;
9680
6ea754eb 9681 __netdev_printk(level, dev, &vaf);
b004ff49 9682
256df2f3 9683 va_end(args);
256df2f3
JP
9684}
9685EXPORT_SYMBOL(netdev_printk);
9686
9687#define define_netdev_printk_level(func, level) \
6ea754eb 9688void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 9689{ \
256df2f3
JP
9690 struct va_format vaf; \
9691 va_list args; \
9692 \
9693 va_start(args, fmt); \
9694 \
9695 vaf.fmt = fmt; \
9696 vaf.va = &args; \
9697 \
6ea754eb 9698 __netdev_printk(level, dev, &vaf); \
b004ff49 9699 \
256df2f3 9700 va_end(args); \
256df2f3
JP
9701} \
9702EXPORT_SYMBOL(func);
9703
9704define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9705define_netdev_printk_level(netdev_alert, KERN_ALERT);
9706define_netdev_printk_level(netdev_crit, KERN_CRIT);
9707define_netdev_printk_level(netdev_err, KERN_ERR);
9708define_netdev_printk_level(netdev_warn, KERN_WARNING);
9709define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9710define_netdev_printk_level(netdev_info, KERN_INFO);
9711
4665079c 9712static void __net_exit netdev_exit(struct net *net)
881d966b
EB
9713{
9714 kfree(net->dev_name_head);
9715 kfree(net->dev_index_head);
ee21b18b
VA
9716 if (net != &init_net)
9717 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
9718}
9719
022cbae6 9720static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
9721 .init = netdev_init,
9722 .exit = netdev_exit,
9723};
9724
4665079c 9725static void __net_exit default_device_exit(struct net *net)
ce286d32 9726{
e008b5fc 9727 struct net_device *dev, *aux;
ce286d32 9728 /*
e008b5fc 9729 * Push all migratable network devices back to the
ce286d32
EB
9730 * initial network namespace
9731 */
9732 rtnl_lock();
e008b5fc 9733 for_each_netdev_safe(net, dev, aux) {
ce286d32 9734 int err;
aca51397 9735 char fb_name[IFNAMSIZ];
ce286d32
EB
9736
9737 /* Ignore unmoveable devices (i.e. loopback) */
9738 if (dev->features & NETIF_F_NETNS_LOCAL)
9739 continue;
9740
e008b5fc
EB
9741 /* Leave virtual devices for the generic cleanup */
9742 if (dev->rtnl_link_ops)
9743 continue;
d0c082ce 9744
25985edc 9745 /* Push remaining network devices to init_net */
aca51397 9746 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
9747 if (__dev_get_by_name(&init_net, fb_name))
9748 snprintf(fb_name, IFNAMSIZ, "dev%%d");
aca51397 9749 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 9750 if (err) {
7b6cd1ce
JP
9751 pr_emerg("%s: failed to move %s to init_net: %d\n",
9752 __func__, dev->name, err);
aca51397 9753 BUG();
ce286d32
EB
9754 }
9755 }
9756 rtnl_unlock();
9757}
9758
50624c93
EB
9759static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9760{
9761 /* Return with the rtnl_lock held when there are no network
9762 * devices unregistering in any network namespace in net_list.
9763 */
9764 struct net *net;
9765 bool unregistering;
ff960a73 9766 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 9767
ff960a73 9768 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 9769 for (;;) {
50624c93
EB
9770 unregistering = false;
9771 rtnl_lock();
9772 list_for_each_entry(net, net_list, exit_list) {
9773 if (net->dev_unreg_count > 0) {
9774 unregistering = true;
9775 break;
9776 }
9777 }
9778 if (!unregistering)
9779 break;
9780 __rtnl_unlock();
ff960a73
PZ
9781
9782 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 9783 }
ff960a73 9784 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
9785}
9786
04dc7f6b
EB
9787static void __net_exit default_device_exit_batch(struct list_head *net_list)
9788{
9789 /* At exit all network devices most be removed from a network
b595076a 9790 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
9791 * Do this across as many network namespaces as possible to
9792 * improve batching efficiency.
9793 */
9794 struct net_device *dev;
9795 struct net *net;
9796 LIST_HEAD(dev_kill_list);
9797
50624c93
EB
9798 /* To prevent network device cleanup code from dereferencing
9799 * loopback devices or network devices that have been freed
9800 * wait here for all pending unregistrations to complete,
9801 * before unregistring the loopback device and allowing the
9802 * network namespace be freed.
9803 *
9804 * The netdev todo list containing all network devices
9805 * unregistrations that happen in default_device_exit_batch
9806 * will run in the rtnl_unlock() at the end of
9807 * default_device_exit_batch.
9808 */
9809 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
9810 list_for_each_entry(net, net_list, exit_list) {
9811 for_each_netdev_reverse(net, dev) {
b0ab2fab 9812 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
9813 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9814 else
9815 unregister_netdevice_queue(dev, &dev_kill_list);
9816 }
9817 }
9818 unregister_netdevice_many(&dev_kill_list);
9819 rtnl_unlock();
9820}
9821
022cbae6 9822static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 9823 .exit = default_device_exit,
04dc7f6b 9824 .exit_batch = default_device_exit_batch,
ce286d32
EB
9825};
9826
1da177e4
LT
9827/*
9828 * Initialize the DEV module. At boot time this walks the device list and
9829 * unhooks any devices that fail to initialise (normally hardware not
9830 * present) and leaves us with a valid list of present and active devices.
9831 *
9832 */
9833
9834/*
9835 * This is called single threaded during boot, so no need
9836 * to take the rtnl semaphore.
9837 */
9838static int __init net_dev_init(void)
9839{
9840 int i, rc = -ENOMEM;
9841
9842 BUG_ON(!dev_boot_phase);
9843
1da177e4
LT
9844 if (dev_proc_init())
9845 goto out;
9846
8b41d188 9847 if (netdev_kobject_init())
1da177e4
LT
9848 goto out;
9849
9850 INIT_LIST_HEAD(&ptype_all);
82d8a867 9851 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
9852 INIT_LIST_HEAD(&ptype_base[i]);
9853
62532da9
VY
9854 INIT_LIST_HEAD(&offload_base);
9855
881d966b
EB
9856 if (register_pernet_subsys(&netdev_net_ops))
9857 goto out;
1da177e4
LT
9858
9859 /*
9860 * Initialise the packet receive queues.
9861 */
9862
6f912042 9863 for_each_possible_cpu(i) {
41852497 9864 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 9865 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 9866
41852497
ED
9867 INIT_WORK(flush, flush_backlog);
9868
e36fa2f7 9869 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 9870 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
9871#ifdef CONFIG_XFRM_OFFLOAD
9872 skb_queue_head_init(&sd->xfrm_backlog);
9873#endif
e36fa2f7 9874 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 9875 sd->output_queue_tailp = &sd->output_queue;
df334545 9876#ifdef CONFIG_RPS
e36fa2f7
ED
9877 sd->csd.func = rps_trigger_softirq;
9878 sd->csd.info = sd;
e36fa2f7 9879 sd->cpu = i;
1e94d72f 9880#endif
0a9627f2 9881
7c4ec749 9882 init_gro_hash(&sd->backlog);
e36fa2f7
ED
9883 sd->backlog.poll = process_backlog;
9884 sd->backlog.weight = weight_p;
1da177e4
LT
9885 }
9886
1da177e4
LT
9887 dev_boot_phase = 0;
9888
505d4f73
EB
9889 /* The loopback device is special if any other network devices
9890 * is present in a network namespace the loopback device must
9891 * be present. Since we now dynamically allocate and free the
9892 * loopback device ensure this invariant is maintained by
9893 * keeping the loopback device as the first device on the
9894 * list of network devices. Ensuring the loopback devices
9895 * is the first device that appears and the last network device
9896 * that disappears.
9897 */
9898 if (register_pernet_device(&loopback_net_ops))
9899 goto out;
9900
9901 if (register_pernet_device(&default_device_ops))
9902 goto out;
9903
962cf36c
CM
9904 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9905 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 9906
f0bf90de
SAS
9907 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9908 NULL, dev_cpu_dead);
9909 WARN_ON(rc < 0);
1da177e4
LT
9910 rc = 0;
9911out:
9912 return rc;
9913}
9914
9915subsys_initcall(net_dev_init);