]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/core/dev.c
net: sched: consolidate handle_ing and ing_filter
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4
LT
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
44540960 104#include <net/xfrm.h>
1da177e4
LT
105#include <linux/highmem.h>
106#include <linux/init.h>
1da177e4 107#include <linux/module.h>
1da177e4
LT
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
1da177e4 111#include <net/iw_handler.h>
1da177e4 112#include <asm/current.h>
5bdb9886 113#include <linux/audit.h>
db217334 114#include <linux/dmaengine.h>
f6a78bfc 115#include <linux/err.h>
c7fa9d18 116#include <linux/ctype.h>
723e98b7 117#include <linux/if_arp.h>
6de329e2 118#include <linux/if_vlan.h>
8f0f2223 119#include <linux/ip.h>
ad55dcaf 120#include <net/ip.h>
25cd9ba0 121#include <net/mpls.h>
8f0f2223
DM
122#include <linux/ipv6.h>
123#include <linux/in.h>
b6b2fed1
DM
124#include <linux/jhash.h>
125#include <linux/random.h>
9cbc1cb8 126#include <trace/events/napi.h>
cf66ba58 127#include <trace/events/net.h>
07dc22e7 128#include <trace/events/skb.h>
5acbbd42 129#include <linux/pci.h>
caeda9b9 130#include <linux/inetdevice.h>
c445477d 131#include <linux/cpu_rmap.h>
c5905afb 132#include <linux/static_key.h>
af12fa6e 133#include <linux/hashtable.h>
60877a32 134#include <linux/vmalloc.h>
529d0489 135#include <linux/if_macvlan.h>
e7fd2885 136#include <linux/errqueue.h>
3b47d303 137#include <linux/hrtimer.h>
1da177e4 138
342709ef
PE
139#include "net-sysfs.h"
140
d565b0a1
HX
141/* Instead of increasing this, you should create a hash table. */
142#define MAX_GRO_SKBS 8
143
5d38a079
HX
144/* This should be increased if a protocol with a bigger head is added. */
145#define GRO_MAX_HEAD (MAX_HEADER + 128)
146
1da177e4 147static DEFINE_SPINLOCK(ptype_lock);
62532da9 148static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
149struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150struct list_head ptype_all __read_mostly; /* Taps */
62532da9 151static struct list_head offload_base __read_mostly;
1da177e4 152
ae78dbfa 153static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
154static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
ae78dbfa 157
1da177e4 158/*
7562f876 159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
160 * semaphore.
161 *
c6d14c84 162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
7562f876 165 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
1da177e4 177DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
178EXPORT_SYMBOL(dev_base_lock);
179
af12fa6e
ET
180/* protects napi_hash addition/deletion and napi_gen_id */
181static DEFINE_SPINLOCK(napi_hash_lock);
182
183static unsigned int napi_gen_id;
184static DEFINE_HASHTABLE(napi_hash, 8);
185
18afa4b0 186static seqcount_t devnet_rename_seq;
c91f6df2 187
4e985ada
TG
188static inline void dev_base_seq_inc(struct net *net)
189{
190 while (++net->dev_base_seq == 0);
191}
192
881d966b 193static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 194{
95c96174
ED
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
08e9897d 197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
198}
199
881d966b 200static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 201{
7c28bd0b 202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
203}
204
e36fa2f7 205static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
206{
207#ifdef CONFIG_RPS
e36fa2f7 208 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
209#endif
210}
211
e36fa2f7 212static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
213{
214#ifdef CONFIG_RPS
e36fa2f7 215 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
216#endif
217}
218
ce286d32 219/* Device list insertion */
53759be9 220static void list_netdevice(struct net_device *dev)
ce286d32 221{
c346dca1 222 struct net *net = dev_net(dev);
ce286d32
EB
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
c6d14c84 227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
ce286d32 231 write_unlock_bh(&dev_base_lock);
4e985ada
TG
232
233 dev_base_seq_inc(net);
ce286d32
EB
234}
235
fb699dfd
ED
236/* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
ce286d32
EB
239static void unlist_netdevice(struct net_device *dev)
240{
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
c6d14c84 245 list_del_rcu(&dev->dev_list);
72c9528b 246 hlist_del_rcu(&dev->name_hlist);
fb699dfd 247 hlist_del_rcu(&dev->index_hlist);
ce286d32 248 write_unlock_bh(&dev_base_lock);
4e985ada
TG
249
250 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
251}
252
1da177e4
LT
253/*
254 * Our notifier list
255 */
256
f07d5b94 257static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
258
259/*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
bea3348e 263
9958da05 264DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 265EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 266
cf508b12 267#ifdef CONFIG_LOCKDEP
723e98b7 268/*
c773e847 269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
270 * according to dev->type
271 */
272static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 288
36cbd3dc 289static const char *const netdev_lock_name[] =
723e98b7
JP
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
305
306static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 307static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
308
309static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310{
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318}
319
cf508b12
DM
320static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
723e98b7
JP
322{
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328}
cf508b12
DM
329
330static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331{
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338}
723e98b7 339#else
cf508b12
DM
340static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342{
343}
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
345{
346}
347#endif
1da177e4
LT
348
349/*******************************************************************************
350
351 Protocol management and registration routines
352
353*******************************************************************************/
354
1da177e4
LT
355/*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
c07b68e8
ED
371static inline struct list_head *ptype_head(const struct packet_type *pt)
372{
373 if (pt->type == htons(ETH_P_ALL))
7866a621 374 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 375 else
7866a621
SN
376 return pt->dev ? &pt->dev->ptype_specific :
377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
378}
379
1da177e4
LT
380/**
381 * dev_add_pack - add packet handler
382 * @pt: packet type declaration
383 *
384 * Add a protocol handler to the networking stack. The passed &packet_type
385 * is linked into kernel lists and may not be freed until it has been
386 * removed from the kernel lists.
387 *
4ec93edb 388 * This call does not sleep therefore it can not
1da177e4
LT
389 * guarantee all CPU's that are in middle of receiving packets
390 * will see the new packet type (until the next received packet).
391 */
392
393void dev_add_pack(struct packet_type *pt)
394{
c07b68e8 395 struct list_head *head = ptype_head(pt);
1da177e4 396
c07b68e8
ED
397 spin_lock(&ptype_lock);
398 list_add_rcu(&pt->list, head);
399 spin_unlock(&ptype_lock);
1da177e4 400}
d1b19dff 401EXPORT_SYMBOL(dev_add_pack);
1da177e4 402
1da177e4
LT
403/**
404 * __dev_remove_pack - remove packet handler
405 * @pt: packet type declaration
406 *
407 * Remove a protocol handler that was previously added to the kernel
408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
409 * from the kernel lists and can be freed or reused once this function
4ec93edb 410 * returns.
1da177e4
LT
411 *
412 * The packet type might still be in use by receivers
413 * and must not be freed until after all the CPU's have gone
414 * through a quiescent state.
415 */
416void __dev_remove_pack(struct packet_type *pt)
417{
c07b68e8 418 struct list_head *head = ptype_head(pt);
1da177e4
LT
419 struct packet_type *pt1;
420
c07b68e8 421 spin_lock(&ptype_lock);
1da177e4
LT
422
423 list_for_each_entry(pt1, head, list) {
424 if (pt == pt1) {
425 list_del_rcu(&pt->list);
426 goto out;
427 }
428 }
429
7b6cd1ce 430 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 431out:
c07b68e8 432 spin_unlock(&ptype_lock);
1da177e4 433}
d1b19dff
ED
434EXPORT_SYMBOL(__dev_remove_pack);
435
1da177e4
LT
436/**
437 * dev_remove_pack - remove packet handler
438 * @pt: packet type declaration
439 *
440 * Remove a protocol handler that was previously added to the kernel
441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
442 * from the kernel lists and can be freed or reused once this function
443 * returns.
444 *
445 * This call sleeps to guarantee that no CPU is looking at the packet
446 * type after return.
447 */
448void dev_remove_pack(struct packet_type *pt)
449{
450 __dev_remove_pack(pt);
4ec93edb 451
1da177e4
LT
452 synchronize_net();
453}
d1b19dff 454EXPORT_SYMBOL(dev_remove_pack);
1da177e4 455
62532da9
VY
456
457/**
458 * dev_add_offload - register offload handlers
459 * @po: protocol offload declaration
460 *
461 * Add protocol offload handlers to the networking stack. The passed
462 * &proto_offload is linked into kernel lists and may not be freed until
463 * it has been removed from the kernel lists.
464 *
465 * This call does not sleep therefore it can not
466 * guarantee all CPU's that are in middle of receiving packets
467 * will see the new offload handlers (until the next received packet).
468 */
469void dev_add_offload(struct packet_offload *po)
470{
471 struct list_head *head = &offload_base;
472
473 spin_lock(&offload_lock);
474 list_add_rcu(&po->list, head);
475 spin_unlock(&offload_lock);
476}
477EXPORT_SYMBOL(dev_add_offload);
478
479/**
480 * __dev_remove_offload - remove offload handler
481 * @po: packet offload declaration
482 *
483 * Remove a protocol offload handler that was previously added to the
484 * kernel offload handlers by dev_add_offload(). The passed &offload_type
485 * is removed from the kernel lists and can be freed or reused once this
486 * function returns.
487 *
488 * The packet type might still be in use by receivers
489 * and must not be freed until after all the CPU's have gone
490 * through a quiescent state.
491 */
1d143d9f 492static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
493{
494 struct list_head *head = &offload_base;
495 struct packet_offload *po1;
496
c53aa505 497 spin_lock(&offload_lock);
62532da9
VY
498
499 list_for_each_entry(po1, head, list) {
500 if (po == po1) {
501 list_del_rcu(&po->list);
502 goto out;
503 }
504 }
505
506 pr_warn("dev_remove_offload: %p not found\n", po);
507out:
c53aa505 508 spin_unlock(&offload_lock);
62532da9 509}
62532da9
VY
510
511/**
512 * dev_remove_offload - remove packet offload handler
513 * @po: packet offload declaration
514 *
515 * Remove a packet offload handler that was previously added to the kernel
516 * offload handlers by dev_add_offload(). The passed &offload_type is
517 * removed from the kernel lists and can be freed or reused once this
518 * function returns.
519 *
520 * This call sleeps to guarantee that no CPU is looking at the packet
521 * type after return.
522 */
523void dev_remove_offload(struct packet_offload *po)
524{
525 __dev_remove_offload(po);
526
527 synchronize_net();
528}
529EXPORT_SYMBOL(dev_remove_offload);
530
1da177e4
LT
531/******************************************************************************
532
533 Device Boot-time Settings Routines
534
535*******************************************************************************/
536
537/* Boot time configuration table */
538static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539
540/**
541 * netdev_boot_setup_add - add new setup entry
542 * @name: name of the device
543 * @map: configured settings for the device
544 *
545 * Adds new setup entry to the dev_boot_setup list. The function
546 * returns 0 on error and 1 on success. This is a generic routine to
547 * all netdevices.
548 */
549static int netdev_boot_setup_add(char *name, struct ifmap *map)
550{
551 struct netdev_boot_setup *s;
552 int i;
553
554 s = dev_boot_setup;
555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 558 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
559 memcpy(&s[i].map, map, sizeof(s[i].map));
560 break;
561 }
562 }
563
564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565}
566
567/**
568 * netdev_boot_setup_check - check boot time settings
569 * @dev: the netdevice
570 *
571 * Check boot time settings for the device.
572 * The found settings are set for the device to be used
573 * later in the device probing.
574 * Returns 0 if no settings found, 1 if they are.
575 */
576int netdev_boot_setup_check(struct net_device *dev)
577{
578 struct netdev_boot_setup *s = dev_boot_setup;
579 int i;
580
581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 583 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
584 dev->irq = s[i].map.irq;
585 dev->base_addr = s[i].map.base_addr;
586 dev->mem_start = s[i].map.mem_start;
587 dev->mem_end = s[i].map.mem_end;
588 return 1;
589 }
590 }
591 return 0;
592}
d1b19dff 593EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
594
595
596/**
597 * netdev_boot_base - get address from boot time settings
598 * @prefix: prefix for network device
599 * @unit: id for network device
600 *
601 * Check boot time settings for the base address of device.
602 * The found settings are set for the device to be used
603 * later in the device probing.
604 * Returns 0 if no settings found.
605 */
606unsigned long netdev_boot_base(const char *prefix, int unit)
607{
608 const struct netdev_boot_setup *s = dev_boot_setup;
609 char name[IFNAMSIZ];
610 int i;
611
612 sprintf(name, "%s%d", prefix, unit);
613
614 /*
615 * If device already registered then return base of 1
616 * to indicate not to probe for this interface
617 */
881d966b 618 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
619 return 1;
620
621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 if (!strcmp(name, s[i].name))
623 return s[i].map.base_addr;
624 return 0;
625}
626
627/*
628 * Saves at boot time configured settings for any netdevice.
629 */
630int __init netdev_boot_setup(char *str)
631{
632 int ints[5];
633 struct ifmap map;
634
635 str = get_options(str, ARRAY_SIZE(ints), ints);
636 if (!str || !*str)
637 return 0;
638
639 /* Save settings */
640 memset(&map, 0, sizeof(map));
641 if (ints[0] > 0)
642 map.irq = ints[1];
643 if (ints[0] > 1)
644 map.base_addr = ints[2];
645 if (ints[0] > 2)
646 map.mem_start = ints[3];
647 if (ints[0] > 3)
648 map.mem_end = ints[4];
649
650 /* Add new entry to the list */
651 return netdev_boot_setup_add(str, &map);
652}
653
654__setup("netdev=", netdev_boot_setup);
655
656/*******************************************************************************
657
658 Device Interface Subroutines
659
660*******************************************************************************/
661
a54acb3a
ND
662/**
663 * dev_get_iflink - get 'iflink' value of a interface
664 * @dev: targeted interface
665 *
666 * Indicates the ifindex the interface is linked to.
667 * Physical interfaces have the same 'ifindex' and 'iflink' values.
668 */
669
670int dev_get_iflink(const struct net_device *dev)
671{
672 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673 return dev->netdev_ops->ndo_get_iflink(dev);
674
e1622baf
ND
675 /* If dev->rtnl_link_ops is set, it's a virtual interface. */
676 if (dev->rtnl_link_ops)
677 return 0;
678
7a66bbc9 679 return dev->ifindex;
a54acb3a
ND
680}
681EXPORT_SYMBOL(dev_get_iflink);
682
1da177e4
LT
683/**
684 * __dev_get_by_name - find a device by its name
c4ea43c5 685 * @net: the applicable net namespace
1da177e4
LT
686 * @name: name to find
687 *
688 * Find an interface by name. Must be called under RTNL semaphore
689 * or @dev_base_lock. If the name is found a pointer to the device
690 * is returned. If the name is not found then %NULL is returned. The
691 * reference counters are not incremented so the caller must be
692 * careful with locks.
693 */
694
881d966b 695struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 696{
0bd8d536
ED
697 struct net_device *dev;
698 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 699
b67bfe0d 700 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
701 if (!strncmp(dev->name, name, IFNAMSIZ))
702 return dev;
0bd8d536 703
1da177e4
LT
704 return NULL;
705}
d1b19dff 706EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 707
72c9528b
ED
708/**
709 * dev_get_by_name_rcu - find a device by its name
710 * @net: the applicable net namespace
711 * @name: name to find
712 *
713 * Find an interface by name.
714 * If the name is found a pointer to the device is returned.
715 * If the name is not found then %NULL is returned.
716 * The reference counters are not incremented so the caller must be
717 * careful with locks. The caller must hold RCU lock.
718 */
719
720struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
721{
72c9528b
ED
722 struct net_device *dev;
723 struct hlist_head *head = dev_name_hash(net, name);
724
b67bfe0d 725 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
726 if (!strncmp(dev->name, name, IFNAMSIZ))
727 return dev;
728
729 return NULL;
730}
731EXPORT_SYMBOL(dev_get_by_name_rcu);
732
1da177e4
LT
733/**
734 * dev_get_by_name - find a device by its name
c4ea43c5 735 * @net: the applicable net namespace
1da177e4
LT
736 * @name: name to find
737 *
738 * Find an interface by name. This can be called from any
739 * context and does its own locking. The returned handle has
740 * the usage count incremented and the caller must use dev_put() to
741 * release it when it is no longer needed. %NULL is returned if no
742 * matching device is found.
743 */
744
881d966b 745struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
746{
747 struct net_device *dev;
748
72c9528b
ED
749 rcu_read_lock();
750 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
751 if (dev)
752 dev_hold(dev);
72c9528b 753 rcu_read_unlock();
1da177e4
LT
754 return dev;
755}
d1b19dff 756EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
757
758/**
759 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 760 * @net: the applicable net namespace
1da177e4
LT
761 * @ifindex: index of device
762 *
763 * Search for an interface by index. Returns %NULL if the device
764 * is not found or a pointer to the device. The device has not
765 * had its reference counter increased so the caller must be careful
766 * about locking. The caller must hold either the RTNL semaphore
767 * or @dev_base_lock.
768 */
769
881d966b 770struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 771{
0bd8d536
ED
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 774
b67bfe0d 775 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
776 if (dev->ifindex == ifindex)
777 return dev;
0bd8d536 778
1da177e4
LT
779 return NULL;
780}
d1b19dff 781EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 782
fb699dfd
ED
783/**
784 * dev_get_by_index_rcu - find a device by its ifindex
785 * @net: the applicable net namespace
786 * @ifindex: index of device
787 *
788 * Search for an interface by index. Returns %NULL if the device
789 * is not found or a pointer to the device. The device has not
790 * had its reference counter increased so the caller must be careful
791 * about locking. The caller must hold RCU lock.
792 */
793
794struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
795{
fb699dfd
ED
796 struct net_device *dev;
797 struct hlist_head *head = dev_index_hash(net, ifindex);
798
b67bfe0d 799 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
800 if (dev->ifindex == ifindex)
801 return dev;
802
803 return NULL;
804}
805EXPORT_SYMBOL(dev_get_by_index_rcu);
806
1da177e4
LT
807
808/**
809 * dev_get_by_index - find a device by its ifindex
c4ea43c5 810 * @net: the applicable net namespace
1da177e4
LT
811 * @ifindex: index of device
812 *
813 * Search for an interface by index. Returns NULL if the device
814 * is not found or a pointer to the device. The device returned has
815 * had a reference added and the pointer is safe until the user calls
816 * dev_put to indicate they have finished with it.
817 */
818
881d966b 819struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
820{
821 struct net_device *dev;
822
fb699dfd
ED
823 rcu_read_lock();
824 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
825 if (dev)
826 dev_hold(dev);
fb699dfd 827 rcu_read_unlock();
1da177e4
LT
828 return dev;
829}
d1b19dff 830EXPORT_SYMBOL(dev_get_by_index);
1da177e4 831
5dbe7c17
NS
832/**
833 * netdev_get_name - get a netdevice name, knowing its ifindex.
834 * @net: network namespace
835 * @name: a pointer to the buffer where the name will be stored.
836 * @ifindex: the ifindex of the interface to get the name from.
837 *
838 * The use of raw_seqcount_begin() and cond_resched() before
839 * retrying is required as we want to give the writers a chance
840 * to complete when CONFIG_PREEMPT is not set.
841 */
842int netdev_get_name(struct net *net, char *name, int ifindex)
843{
844 struct net_device *dev;
845 unsigned int seq;
846
847retry:
848 seq = raw_seqcount_begin(&devnet_rename_seq);
849 rcu_read_lock();
850 dev = dev_get_by_index_rcu(net, ifindex);
851 if (!dev) {
852 rcu_read_unlock();
853 return -ENODEV;
854 }
855
856 strcpy(name, dev->name);
857 rcu_read_unlock();
858 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
859 cond_resched();
860 goto retry;
861 }
862
863 return 0;
864}
865
1da177e4 866/**
941666c2 867 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 868 * @net: the applicable net namespace
1da177e4
LT
869 * @type: media type of device
870 * @ha: hardware address
871 *
872 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
873 * is not found or a pointer to the device.
874 * The caller must hold RCU or RTNL.
941666c2 875 * The returned device has not had its ref count increased
1da177e4
LT
876 * and the caller must therefore be careful about locking
877 *
1da177e4
LT
878 */
879
941666c2
ED
880struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
881 const char *ha)
1da177e4
LT
882{
883 struct net_device *dev;
884
941666c2 885 for_each_netdev_rcu(net, dev)
1da177e4
LT
886 if (dev->type == type &&
887 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
888 return dev;
889
890 return NULL;
1da177e4 891}
941666c2 892EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 893
881d966b 894struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
895{
896 struct net_device *dev;
897
4e9cac2b 898 ASSERT_RTNL();
881d966b 899 for_each_netdev(net, dev)
4e9cac2b 900 if (dev->type == type)
7562f876
PE
901 return dev;
902
903 return NULL;
4e9cac2b 904}
4e9cac2b
PM
905EXPORT_SYMBOL(__dev_getfirstbyhwtype);
906
881d966b 907struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 908{
99fe3c39 909 struct net_device *dev, *ret = NULL;
4e9cac2b 910
99fe3c39
ED
911 rcu_read_lock();
912 for_each_netdev_rcu(net, dev)
913 if (dev->type == type) {
914 dev_hold(dev);
915 ret = dev;
916 break;
917 }
918 rcu_read_unlock();
919 return ret;
1da177e4 920}
1da177e4
LT
921EXPORT_SYMBOL(dev_getfirstbyhwtype);
922
923/**
6c555490 924 * __dev_get_by_flags - find any device with given flags
c4ea43c5 925 * @net: the applicable net namespace
1da177e4
LT
926 * @if_flags: IFF_* values
927 * @mask: bitmask of bits in if_flags to check
928 *
929 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 930 * is not found or a pointer to the device. Must be called inside
6c555490 931 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
932 */
933
6c555490
WC
934struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
935 unsigned short mask)
1da177e4 936{
7562f876 937 struct net_device *dev, *ret;
1da177e4 938
6c555490
WC
939 ASSERT_RTNL();
940
7562f876 941 ret = NULL;
6c555490 942 for_each_netdev(net, dev) {
1da177e4 943 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 944 ret = dev;
1da177e4
LT
945 break;
946 }
947 }
7562f876 948 return ret;
1da177e4 949}
6c555490 950EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
951
952/**
953 * dev_valid_name - check if name is okay for network device
954 * @name: name string
955 *
956 * Network device names need to be valid file names to
c7fa9d18
DM
957 * to allow sysfs to work. We also disallow any kind of
958 * whitespace.
1da177e4 959 */
95f050bf 960bool dev_valid_name(const char *name)
1da177e4 961{
c7fa9d18 962 if (*name == '\0')
95f050bf 963 return false;
b6fe17d6 964 if (strlen(name) >= IFNAMSIZ)
95f050bf 965 return false;
c7fa9d18 966 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 967 return false;
c7fa9d18
DM
968
969 while (*name) {
a4176a93 970 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 971 return false;
c7fa9d18
DM
972 name++;
973 }
95f050bf 974 return true;
1da177e4 975}
d1b19dff 976EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
977
978/**
b267b179
EB
979 * __dev_alloc_name - allocate a name for a device
980 * @net: network namespace to allocate the device name in
1da177e4 981 * @name: name format string
b267b179 982 * @buf: scratch buffer and result name string
1da177e4
LT
983 *
984 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
985 * id. It scans list of devices to build up a free map, then chooses
986 * the first empty slot. The caller must hold the dev_base or rtnl lock
987 * while allocating the name and adding the device in order to avoid
988 * duplicates.
989 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
990 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
991 */
992
b267b179 993static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
994{
995 int i = 0;
1da177e4
LT
996 const char *p;
997 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 998 unsigned long *inuse;
1da177e4
LT
999 struct net_device *d;
1000
1001 p = strnchr(name, IFNAMSIZ-1, '%');
1002 if (p) {
1003 /*
1004 * Verify the string as this thing may have come from
1005 * the user. There must be either one "%d" and no other "%"
1006 * characters.
1007 */
1008 if (p[1] != 'd' || strchr(p + 2, '%'))
1009 return -EINVAL;
1010
1011 /* Use one page as a bit array of possible slots */
cfcabdcc 1012 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1013 if (!inuse)
1014 return -ENOMEM;
1015
881d966b 1016 for_each_netdev(net, d) {
1da177e4
LT
1017 if (!sscanf(d->name, name, &i))
1018 continue;
1019 if (i < 0 || i >= max_netdevices)
1020 continue;
1021
1022 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1023 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1024 if (!strncmp(buf, d->name, IFNAMSIZ))
1025 set_bit(i, inuse);
1026 }
1027
1028 i = find_first_zero_bit(inuse, max_netdevices);
1029 free_page((unsigned long) inuse);
1030 }
1031
d9031024
OP
1032 if (buf != name)
1033 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1034 if (!__dev_get_by_name(net, buf))
1da177e4 1035 return i;
1da177e4
LT
1036
1037 /* It is possible to run out of possible slots
1038 * when the name is long and there isn't enough space left
1039 * for the digits, or if all bits are used.
1040 */
1041 return -ENFILE;
1042}
1043
b267b179
EB
1044/**
1045 * dev_alloc_name - allocate a name for a device
1046 * @dev: device
1047 * @name: name format string
1048 *
1049 * Passed a format string - eg "lt%d" it will try and find a suitable
1050 * id. It scans list of devices to build up a free map, then chooses
1051 * the first empty slot. The caller must hold the dev_base or rtnl lock
1052 * while allocating the name and adding the device in order to avoid
1053 * duplicates.
1054 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055 * Returns the number of the unit assigned or a negative errno code.
1056 */
1057
1058int dev_alloc_name(struct net_device *dev, const char *name)
1059{
1060 char buf[IFNAMSIZ];
1061 struct net *net;
1062 int ret;
1063
c346dca1
YH
1064 BUG_ON(!dev_net(dev));
1065 net = dev_net(dev);
b267b179
EB
1066 ret = __dev_alloc_name(net, name, buf);
1067 if (ret >= 0)
1068 strlcpy(dev->name, buf, IFNAMSIZ);
1069 return ret;
1070}
d1b19dff 1071EXPORT_SYMBOL(dev_alloc_name);
b267b179 1072
828de4f6
G
1073static int dev_alloc_name_ns(struct net *net,
1074 struct net_device *dev,
1075 const char *name)
d9031024 1076{
828de4f6
G
1077 char buf[IFNAMSIZ];
1078 int ret;
8ce6cebc 1079
828de4f6
G
1080 ret = __dev_alloc_name(net, name, buf);
1081 if (ret >= 0)
1082 strlcpy(dev->name, buf, IFNAMSIZ);
1083 return ret;
1084}
1085
1086static int dev_get_valid_name(struct net *net,
1087 struct net_device *dev,
1088 const char *name)
1089{
1090 BUG_ON(!net);
8ce6cebc 1091
d9031024
OP
1092 if (!dev_valid_name(name))
1093 return -EINVAL;
1094
1c5cae81 1095 if (strchr(name, '%'))
828de4f6 1096 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1097 else if (__dev_get_by_name(net, name))
1098 return -EEXIST;
8ce6cebc
DL
1099 else if (dev->name != name)
1100 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1101
1102 return 0;
1103}
1da177e4
LT
1104
1105/**
1106 * dev_change_name - change name of a device
1107 * @dev: device
1108 * @newname: name (or format string) must be at least IFNAMSIZ
1109 *
1110 * Change name of a device, can pass format strings "eth%d".
1111 * for wildcarding.
1112 */
cf04a4c7 1113int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1114{
238fa362 1115 unsigned char old_assign_type;
fcc5a03a 1116 char oldname[IFNAMSIZ];
1da177e4 1117 int err = 0;
fcc5a03a 1118 int ret;
881d966b 1119 struct net *net;
1da177e4
LT
1120
1121 ASSERT_RTNL();
c346dca1 1122 BUG_ON(!dev_net(dev));
1da177e4 1123
c346dca1 1124 net = dev_net(dev);
1da177e4
LT
1125 if (dev->flags & IFF_UP)
1126 return -EBUSY;
1127
30e6c9fa 1128 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1129
1130 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1131 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1132 return 0;
c91f6df2 1133 }
c8d90dca 1134
fcc5a03a
HX
1135 memcpy(oldname, dev->name, IFNAMSIZ);
1136
828de4f6 1137 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1138 if (err < 0) {
30e6c9fa 1139 write_seqcount_end(&devnet_rename_seq);
d9031024 1140 return err;
c91f6df2 1141 }
1da177e4 1142
6fe82a39
VF
1143 if (oldname[0] && !strchr(oldname, '%'))
1144 netdev_info(dev, "renamed from %s\n", oldname);
1145
238fa362
TG
1146 old_assign_type = dev->name_assign_type;
1147 dev->name_assign_type = NET_NAME_RENAMED;
1148
fcc5a03a 1149rollback:
a1b3f594
EB
1150 ret = device_rename(&dev->dev, dev->name);
1151 if (ret) {
1152 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1153 dev->name_assign_type = old_assign_type;
30e6c9fa 1154 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1155 return ret;
dcc99773 1156 }
7f988eab 1157
30e6c9fa 1158 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1159
5bb025fa
VF
1160 netdev_adjacent_rename_links(dev, oldname);
1161
7f988eab 1162 write_lock_bh(&dev_base_lock);
372b2312 1163 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1164 write_unlock_bh(&dev_base_lock);
1165
1166 synchronize_rcu();
1167
1168 write_lock_bh(&dev_base_lock);
1169 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1170 write_unlock_bh(&dev_base_lock);
1171
056925ab 1172 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1173 ret = notifier_to_errno(ret);
1174
1175 if (ret) {
91e9c07b
ED
1176 /* err >= 0 after dev_alloc_name() or stores the first errno */
1177 if (err >= 0) {
fcc5a03a 1178 err = ret;
30e6c9fa 1179 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1180 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1181 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1182 dev->name_assign_type = old_assign_type;
1183 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1184 goto rollback;
91e9c07b 1185 } else {
7b6cd1ce 1186 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1187 dev->name, ret);
fcc5a03a
HX
1188 }
1189 }
1da177e4
LT
1190
1191 return err;
1192}
1193
0b815a1a
SH
1194/**
1195 * dev_set_alias - change ifalias of a device
1196 * @dev: device
1197 * @alias: name up to IFALIASZ
f0db275a 1198 * @len: limit of bytes to copy from info
0b815a1a
SH
1199 *
1200 * Set ifalias for a device,
1201 */
1202int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1203{
7364e445
AK
1204 char *new_ifalias;
1205
0b815a1a
SH
1206 ASSERT_RTNL();
1207
1208 if (len >= IFALIASZ)
1209 return -EINVAL;
1210
96ca4a2c 1211 if (!len) {
388dfc2d
SK
1212 kfree(dev->ifalias);
1213 dev->ifalias = NULL;
96ca4a2c
OH
1214 return 0;
1215 }
1216
7364e445
AK
1217 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1218 if (!new_ifalias)
0b815a1a 1219 return -ENOMEM;
7364e445 1220 dev->ifalias = new_ifalias;
0b815a1a
SH
1221
1222 strlcpy(dev->ifalias, alias, len+1);
1223 return len;
1224}
1225
1226
d8a33ac4 1227/**
3041a069 1228 * netdev_features_change - device changes features
d8a33ac4
SH
1229 * @dev: device to cause notification
1230 *
1231 * Called to indicate a device has changed features.
1232 */
1233void netdev_features_change(struct net_device *dev)
1234{
056925ab 1235 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1236}
1237EXPORT_SYMBOL(netdev_features_change);
1238
1da177e4
LT
1239/**
1240 * netdev_state_change - device changes state
1241 * @dev: device to cause notification
1242 *
1243 * Called to indicate a device has changed state. This function calls
1244 * the notifier chains for netdev_chain and sends a NEWLINK message
1245 * to the routing socket.
1246 */
1247void netdev_state_change(struct net_device *dev)
1248{
1249 if (dev->flags & IFF_UP) {
54951194
LP
1250 struct netdev_notifier_change_info change_info;
1251
1252 change_info.flags_changed = 0;
1253 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1254 &change_info.info);
7f294054 1255 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1256 }
1257}
d1b19dff 1258EXPORT_SYMBOL(netdev_state_change);
1da177e4 1259
ee89bab1
AW
1260/**
1261 * netdev_notify_peers - notify network peers about existence of @dev
1262 * @dev: network device
1263 *
1264 * Generate traffic such that interested network peers are aware of
1265 * @dev, such as by generating a gratuitous ARP. This may be used when
1266 * a device wants to inform the rest of the network about some sort of
1267 * reconfiguration such as a failover event or virtual machine
1268 * migration.
1269 */
1270void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1271{
ee89bab1
AW
1272 rtnl_lock();
1273 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1274 rtnl_unlock();
c1da4ac7 1275}
ee89bab1 1276EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1277
bd380811 1278static int __dev_open(struct net_device *dev)
1da177e4 1279{
d314774c 1280 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1281 int ret;
1da177e4 1282
e46b66bc
BH
1283 ASSERT_RTNL();
1284
1da177e4
LT
1285 if (!netif_device_present(dev))
1286 return -ENODEV;
1287
ca99ca14
NH
1288 /* Block netpoll from trying to do any rx path servicing.
1289 * If we don't do this there is a chance ndo_poll_controller
1290 * or ndo_poll may be running while we open the device
1291 */
66b5552f 1292 netpoll_poll_disable(dev);
ca99ca14 1293
3b8bcfd5
JB
1294 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1295 ret = notifier_to_errno(ret);
1296 if (ret)
1297 return ret;
1298
1da177e4 1299 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1300
d314774c
SH
1301 if (ops->ndo_validate_addr)
1302 ret = ops->ndo_validate_addr(dev);
bada339b 1303
d314774c
SH
1304 if (!ret && ops->ndo_open)
1305 ret = ops->ndo_open(dev);
1da177e4 1306
66b5552f 1307 netpoll_poll_enable(dev);
ca99ca14 1308
bada339b
JG
1309 if (ret)
1310 clear_bit(__LINK_STATE_START, &dev->state);
1311 else {
1da177e4 1312 dev->flags |= IFF_UP;
4417da66 1313 dev_set_rx_mode(dev);
1da177e4 1314 dev_activate(dev);
7bf23575 1315 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1316 }
bada339b 1317
1da177e4
LT
1318 return ret;
1319}
1320
1321/**
bd380811
PM
1322 * dev_open - prepare an interface for use.
1323 * @dev: device to open
1da177e4 1324 *
bd380811
PM
1325 * Takes a device from down to up state. The device's private open
1326 * function is invoked and then the multicast lists are loaded. Finally
1327 * the device is moved into the up state and a %NETDEV_UP message is
1328 * sent to the netdev notifier chain.
1329 *
1330 * Calling this function on an active interface is a nop. On a failure
1331 * a negative errno code is returned.
1da177e4 1332 */
bd380811
PM
1333int dev_open(struct net_device *dev)
1334{
1335 int ret;
1336
bd380811
PM
1337 if (dev->flags & IFF_UP)
1338 return 0;
1339
bd380811
PM
1340 ret = __dev_open(dev);
1341 if (ret < 0)
1342 return ret;
1343
7f294054 1344 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1345 call_netdevice_notifiers(NETDEV_UP, dev);
1346
1347 return ret;
1348}
1349EXPORT_SYMBOL(dev_open);
1350
44345724 1351static int __dev_close_many(struct list_head *head)
1da177e4 1352{
44345724 1353 struct net_device *dev;
e46b66bc 1354
bd380811 1355 ASSERT_RTNL();
9d5010db
DM
1356 might_sleep();
1357
5cde2829 1358 list_for_each_entry(dev, head, close_list) {
3f4df206 1359 /* Temporarily disable netpoll until the interface is down */
66b5552f 1360 netpoll_poll_disable(dev);
3f4df206 1361
44345724 1362 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1363
44345724 1364 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1365
44345724
OP
1366 /* Synchronize to scheduled poll. We cannot touch poll list, it
1367 * can be even on different cpu. So just clear netif_running().
1368 *
1369 * dev->stop() will invoke napi_disable() on all of it's
1370 * napi_struct instances on this device.
1371 */
4e857c58 1372 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1373 }
1da177e4 1374
44345724 1375 dev_deactivate_many(head);
d8b2a4d2 1376
5cde2829 1377 list_for_each_entry(dev, head, close_list) {
44345724 1378 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1379
44345724
OP
1380 /*
1381 * Call the device specific close. This cannot fail.
1382 * Only if device is UP
1383 *
1384 * We allow it to be called even after a DETACH hot-plug
1385 * event.
1386 */
1387 if (ops->ndo_stop)
1388 ops->ndo_stop(dev);
1389
44345724 1390 dev->flags &= ~IFF_UP;
66b5552f 1391 netpoll_poll_enable(dev);
44345724
OP
1392 }
1393
1394 return 0;
1395}
1396
1397static int __dev_close(struct net_device *dev)
1398{
f87e6f47 1399 int retval;
44345724
OP
1400 LIST_HEAD(single);
1401
5cde2829 1402 list_add(&dev->close_list, &single);
f87e6f47
LT
1403 retval = __dev_close_many(&single);
1404 list_del(&single);
ca99ca14 1405
f87e6f47 1406 return retval;
44345724
OP
1407}
1408
99c4a26a 1409int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1410{
1411 struct net_device *dev, *tmp;
1da177e4 1412
5cde2829
EB
1413 /* Remove the devices that don't need to be closed */
1414 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1415 if (!(dev->flags & IFF_UP))
5cde2829 1416 list_del_init(&dev->close_list);
44345724
OP
1417
1418 __dev_close_many(head);
1da177e4 1419
5cde2829 1420 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1421 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1422 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1423 if (unlink)
1424 list_del_init(&dev->close_list);
44345724 1425 }
bd380811
PM
1426
1427 return 0;
1428}
99c4a26a 1429EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1430
1431/**
1432 * dev_close - shutdown an interface.
1433 * @dev: device to shutdown
1434 *
1435 * This function moves an active device into down state. A
1436 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1437 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1438 * chain.
1439 */
1440int dev_close(struct net_device *dev)
1441{
e14a5993
ED
1442 if (dev->flags & IFF_UP) {
1443 LIST_HEAD(single);
1da177e4 1444
5cde2829 1445 list_add(&dev->close_list, &single);
99c4a26a 1446 dev_close_many(&single, true);
e14a5993
ED
1447 list_del(&single);
1448 }
da6e378b 1449 return 0;
1da177e4 1450}
d1b19dff 1451EXPORT_SYMBOL(dev_close);
1da177e4
LT
1452
1453
0187bdfb
BH
1454/**
1455 * dev_disable_lro - disable Large Receive Offload on a device
1456 * @dev: device
1457 *
1458 * Disable Large Receive Offload (LRO) on a net device. Must be
1459 * called under RTNL. This is needed if received packets may be
1460 * forwarded to another interface.
1461 */
1462void dev_disable_lro(struct net_device *dev)
1463{
fbe168ba
MK
1464 struct net_device *lower_dev;
1465 struct list_head *iter;
529d0489 1466
bc5787c6
MM
1467 dev->wanted_features &= ~NETIF_F_LRO;
1468 netdev_update_features(dev);
27660515 1469
22d5969f
MM
1470 if (unlikely(dev->features & NETIF_F_LRO))
1471 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1472
1473 netdev_for_each_lower_dev(dev, lower_dev, iter)
1474 dev_disable_lro(lower_dev);
0187bdfb
BH
1475}
1476EXPORT_SYMBOL(dev_disable_lro);
1477
351638e7
JP
1478static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1479 struct net_device *dev)
1480{
1481 struct netdev_notifier_info info;
1482
1483 netdev_notifier_info_init(&info, dev);
1484 return nb->notifier_call(nb, val, &info);
1485}
0187bdfb 1486
881d966b
EB
1487static int dev_boot_phase = 1;
1488
1da177e4
LT
1489/**
1490 * register_netdevice_notifier - register a network notifier block
1491 * @nb: notifier
1492 *
1493 * Register a notifier to be called when network device events occur.
1494 * The notifier passed is linked into the kernel structures and must
1495 * not be reused until it has been unregistered. A negative errno code
1496 * is returned on a failure.
1497 *
1498 * When registered all registration and up events are replayed
4ec93edb 1499 * to the new notifier to allow device to have a race free
1da177e4
LT
1500 * view of the network device list.
1501 */
1502
1503int register_netdevice_notifier(struct notifier_block *nb)
1504{
1505 struct net_device *dev;
fcc5a03a 1506 struct net_device *last;
881d966b 1507 struct net *net;
1da177e4
LT
1508 int err;
1509
1510 rtnl_lock();
f07d5b94 1511 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1512 if (err)
1513 goto unlock;
881d966b
EB
1514 if (dev_boot_phase)
1515 goto unlock;
1516 for_each_net(net) {
1517 for_each_netdev(net, dev) {
351638e7 1518 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1519 err = notifier_to_errno(err);
1520 if (err)
1521 goto rollback;
1522
1523 if (!(dev->flags & IFF_UP))
1524 continue;
1da177e4 1525
351638e7 1526 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1527 }
1da177e4 1528 }
fcc5a03a
HX
1529
1530unlock:
1da177e4
LT
1531 rtnl_unlock();
1532 return err;
fcc5a03a
HX
1533
1534rollback:
1535 last = dev;
881d966b
EB
1536 for_each_net(net) {
1537 for_each_netdev(net, dev) {
1538 if (dev == last)
8f891489 1539 goto outroll;
fcc5a03a 1540
881d966b 1541 if (dev->flags & IFF_UP) {
351638e7
JP
1542 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1543 dev);
1544 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1545 }
351638e7 1546 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1547 }
fcc5a03a 1548 }
c67625a1 1549
8f891489 1550outroll:
c67625a1 1551 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1552 goto unlock;
1da177e4 1553}
d1b19dff 1554EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1555
1556/**
1557 * unregister_netdevice_notifier - unregister a network notifier block
1558 * @nb: notifier
1559 *
1560 * Unregister a notifier previously registered by
1561 * register_netdevice_notifier(). The notifier is unlinked into the
1562 * kernel structures and may then be reused. A negative errno code
1563 * is returned on a failure.
7d3d43da
EB
1564 *
1565 * After unregistering unregister and down device events are synthesized
1566 * for all devices on the device list to the removed notifier to remove
1567 * the need for special case cleanup code.
1da177e4
LT
1568 */
1569
1570int unregister_netdevice_notifier(struct notifier_block *nb)
1571{
7d3d43da
EB
1572 struct net_device *dev;
1573 struct net *net;
9f514950
HX
1574 int err;
1575
1576 rtnl_lock();
f07d5b94 1577 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1578 if (err)
1579 goto unlock;
1580
1581 for_each_net(net) {
1582 for_each_netdev(net, dev) {
1583 if (dev->flags & IFF_UP) {
351638e7
JP
1584 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1585 dev);
1586 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1587 }
351638e7 1588 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1589 }
1590 }
1591unlock:
9f514950
HX
1592 rtnl_unlock();
1593 return err;
1da177e4 1594}
d1b19dff 1595EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1596
351638e7
JP
1597/**
1598 * call_netdevice_notifiers_info - call all network notifier blocks
1599 * @val: value passed unmodified to notifier function
1600 * @dev: net_device pointer passed unmodified to notifier function
1601 * @info: notifier information data
1602 *
1603 * Call all network notifier blocks. Parameters and return value
1604 * are as for raw_notifier_call_chain().
1605 */
1606
1d143d9f 1607static int call_netdevice_notifiers_info(unsigned long val,
1608 struct net_device *dev,
1609 struct netdev_notifier_info *info)
351638e7
JP
1610{
1611 ASSERT_RTNL();
1612 netdev_notifier_info_init(info, dev);
1613 return raw_notifier_call_chain(&netdev_chain, val, info);
1614}
351638e7 1615
1da177e4
LT
1616/**
1617 * call_netdevice_notifiers - call all network notifier blocks
1618 * @val: value passed unmodified to notifier function
c4ea43c5 1619 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1620 *
1621 * Call all network notifier blocks. Parameters and return value
f07d5b94 1622 * are as for raw_notifier_call_chain().
1da177e4
LT
1623 */
1624
ad7379d4 1625int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1626{
351638e7
JP
1627 struct netdev_notifier_info info;
1628
1629 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1630}
edf947f1 1631EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1632
4577139b
DB
1633#ifdef CONFIG_NET_CLS_ACT
1634static struct static_key ingress_needed __read_mostly;
1635
1636void net_inc_ingress_queue(void)
1637{
1638 static_key_slow_inc(&ingress_needed);
1639}
1640EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1641
1642void net_dec_ingress_queue(void)
1643{
1644 static_key_slow_dec(&ingress_needed);
1645}
1646EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1647#endif
1648
c5905afb 1649static struct static_key netstamp_needed __read_mostly;
b90e5794 1650#ifdef HAVE_JUMP_LABEL
c5905afb 1651/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1652 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1653 * static_key_slow_dec() calls.
b90e5794
ED
1654 */
1655static atomic_t netstamp_needed_deferred;
1656#endif
1da177e4
LT
1657
1658void net_enable_timestamp(void)
1659{
b90e5794
ED
1660#ifdef HAVE_JUMP_LABEL
1661 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1662
1663 if (deferred) {
1664 while (--deferred)
c5905afb 1665 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1666 return;
1667 }
1668#endif
c5905afb 1669 static_key_slow_inc(&netstamp_needed);
1da177e4 1670}
d1b19dff 1671EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1672
1673void net_disable_timestamp(void)
1674{
b90e5794
ED
1675#ifdef HAVE_JUMP_LABEL
1676 if (in_interrupt()) {
1677 atomic_inc(&netstamp_needed_deferred);
1678 return;
1679 }
1680#endif
c5905afb 1681 static_key_slow_dec(&netstamp_needed);
1da177e4 1682}
d1b19dff 1683EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1684
3b098e2d 1685static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1686{
588f0330 1687 skb->tstamp.tv64 = 0;
c5905afb 1688 if (static_key_false(&netstamp_needed))
a61bbcf2 1689 __net_timestamp(skb);
1da177e4
LT
1690}
1691
588f0330 1692#define net_timestamp_check(COND, SKB) \
c5905afb 1693 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1694 if ((COND) && !(SKB)->tstamp.tv64) \
1695 __net_timestamp(SKB); \
1696 } \
3b098e2d 1697
1ee481fb 1698bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1699{
1700 unsigned int len;
1701
1702 if (!(dev->flags & IFF_UP))
1703 return false;
1704
1705 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1706 if (skb->len <= len)
1707 return true;
1708
1709 /* if TSO is enabled, we don't care about the length as the packet
1710 * could be forwarded without being segmented before
1711 */
1712 if (skb_is_gso(skb))
1713 return true;
1714
1715 return false;
1716}
1ee481fb 1717EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1718
a0265d28
HX
1719int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1720{
1721 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1722 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1723 atomic_long_inc(&dev->rx_dropped);
1724 kfree_skb(skb);
1725 return NET_RX_DROP;
1726 }
1727 }
1728
1729 if (unlikely(!is_skb_forwardable(dev, skb))) {
1730 atomic_long_inc(&dev->rx_dropped);
1731 kfree_skb(skb);
1732 return NET_RX_DROP;
1733 }
1734
1735 skb_scrub_packet(skb, true);
08b4b8ea 1736 skb->priority = 0;
a0265d28 1737 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1738 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1739
1740 return 0;
1741}
1742EXPORT_SYMBOL_GPL(__dev_forward_skb);
1743
44540960
AB
1744/**
1745 * dev_forward_skb - loopback an skb to another netif
1746 *
1747 * @dev: destination network device
1748 * @skb: buffer to forward
1749 *
1750 * return values:
1751 * NET_RX_SUCCESS (no congestion)
6ec82562 1752 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1753 *
1754 * dev_forward_skb can be used for injecting an skb from the
1755 * start_xmit function of one device into the receive queue
1756 * of another device.
1757 *
1758 * The receiving device may be in another namespace, so
1759 * we have to clear all information in the skb that could
1760 * impact namespace isolation.
1761 */
1762int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1763{
a0265d28 1764 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1765}
1766EXPORT_SYMBOL_GPL(dev_forward_skb);
1767
71d9dec2
CG
1768static inline int deliver_skb(struct sk_buff *skb,
1769 struct packet_type *pt_prev,
1770 struct net_device *orig_dev)
1771{
1080e512
MT
1772 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1773 return -ENOMEM;
71d9dec2
CG
1774 atomic_inc(&skb->users);
1775 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1776}
1777
7866a621
SN
1778static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1779 struct packet_type **pt,
fbcb2170
JP
1780 struct net_device *orig_dev,
1781 __be16 type,
7866a621
SN
1782 struct list_head *ptype_list)
1783{
1784 struct packet_type *ptype, *pt_prev = *pt;
1785
1786 list_for_each_entry_rcu(ptype, ptype_list, list) {
1787 if (ptype->type != type)
1788 continue;
1789 if (pt_prev)
fbcb2170 1790 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1791 pt_prev = ptype;
1792 }
1793 *pt = pt_prev;
1794}
1795
c0de08d0
EL
1796static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1797{
a3d744e9 1798 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1799 return false;
1800
1801 if (ptype->id_match)
1802 return ptype->id_match(ptype, skb->sk);
1803 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1804 return true;
1805
1806 return false;
1807}
1808
1da177e4
LT
1809/*
1810 * Support routine. Sends outgoing frames to any network
1811 * taps currently in use.
1812 */
1813
f6a78bfc 1814static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1815{
1816 struct packet_type *ptype;
71d9dec2
CG
1817 struct sk_buff *skb2 = NULL;
1818 struct packet_type *pt_prev = NULL;
7866a621 1819 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1820
1da177e4 1821 rcu_read_lock();
7866a621
SN
1822again:
1823 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1824 /* Never send packets back to the socket
1825 * they originated from - MvS (miquels@drinkel.ow.org)
1826 */
7866a621
SN
1827 if (skb_loop_sk(ptype, skb))
1828 continue;
71d9dec2 1829
7866a621
SN
1830 if (pt_prev) {
1831 deliver_skb(skb2, pt_prev, skb->dev);
1832 pt_prev = ptype;
1833 continue;
1834 }
1da177e4 1835
7866a621
SN
1836 /* need to clone skb, done only once */
1837 skb2 = skb_clone(skb, GFP_ATOMIC);
1838 if (!skb2)
1839 goto out_unlock;
70978182 1840
7866a621 1841 net_timestamp_set(skb2);
1da177e4 1842
7866a621
SN
1843 /* skb->nh should be correctly
1844 * set by sender, so that the second statement is
1845 * just protection against buggy protocols.
1846 */
1847 skb_reset_mac_header(skb2);
1848
1849 if (skb_network_header(skb2) < skb2->data ||
1850 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1851 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1852 ntohs(skb2->protocol),
1853 dev->name);
1854 skb_reset_network_header(skb2);
1da177e4 1855 }
7866a621
SN
1856
1857 skb2->transport_header = skb2->network_header;
1858 skb2->pkt_type = PACKET_OUTGOING;
1859 pt_prev = ptype;
1860 }
1861
1862 if (ptype_list == &ptype_all) {
1863 ptype_list = &dev->ptype_all;
1864 goto again;
1da177e4 1865 }
7866a621 1866out_unlock:
71d9dec2
CG
1867 if (pt_prev)
1868 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1869 rcu_read_unlock();
1870}
1871
2c53040f
BH
1872/**
1873 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1874 * @dev: Network device
1875 * @txq: number of queues available
1876 *
1877 * If real_num_tx_queues is changed the tc mappings may no longer be
1878 * valid. To resolve this verify the tc mapping remains valid and if
1879 * not NULL the mapping. With no priorities mapping to this
1880 * offset/count pair it will no longer be used. In the worst case TC0
1881 * is invalid nothing can be done so disable priority mappings. If is
1882 * expected that drivers will fix this mapping if they can before
1883 * calling netif_set_real_num_tx_queues.
1884 */
bb134d22 1885static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1886{
1887 int i;
1888 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1889
1890 /* If TC0 is invalidated disable TC mapping */
1891 if (tc->offset + tc->count > txq) {
7b6cd1ce 1892 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1893 dev->num_tc = 0;
1894 return;
1895 }
1896
1897 /* Invalidated prio to tc mappings set to TC0 */
1898 for (i = 1; i < TC_BITMASK + 1; i++) {
1899 int q = netdev_get_prio_tc_map(dev, i);
1900
1901 tc = &dev->tc_to_txq[q];
1902 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1903 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1904 i, q);
4f57c087
JF
1905 netdev_set_prio_tc_map(dev, i, 0);
1906 }
1907 }
1908}
1909
537c00de
AD
1910#ifdef CONFIG_XPS
1911static DEFINE_MUTEX(xps_map_mutex);
1912#define xmap_dereference(P) \
1913 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1914
10cdc3f3
AD
1915static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1916 int cpu, u16 index)
537c00de 1917{
10cdc3f3
AD
1918 struct xps_map *map = NULL;
1919 int pos;
537c00de 1920
10cdc3f3
AD
1921 if (dev_maps)
1922 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1923
10cdc3f3
AD
1924 for (pos = 0; map && pos < map->len; pos++) {
1925 if (map->queues[pos] == index) {
537c00de
AD
1926 if (map->len > 1) {
1927 map->queues[pos] = map->queues[--map->len];
1928 } else {
10cdc3f3 1929 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1930 kfree_rcu(map, rcu);
1931 map = NULL;
1932 }
10cdc3f3 1933 break;
537c00de 1934 }
537c00de
AD
1935 }
1936
10cdc3f3
AD
1937 return map;
1938}
1939
024e9679 1940static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1941{
1942 struct xps_dev_maps *dev_maps;
024e9679 1943 int cpu, i;
10cdc3f3
AD
1944 bool active = false;
1945
1946 mutex_lock(&xps_map_mutex);
1947 dev_maps = xmap_dereference(dev->xps_maps);
1948
1949 if (!dev_maps)
1950 goto out_no_maps;
1951
1952 for_each_possible_cpu(cpu) {
024e9679
AD
1953 for (i = index; i < dev->num_tx_queues; i++) {
1954 if (!remove_xps_queue(dev_maps, cpu, i))
1955 break;
1956 }
1957 if (i == dev->num_tx_queues)
10cdc3f3
AD
1958 active = true;
1959 }
1960
1961 if (!active) {
537c00de
AD
1962 RCU_INIT_POINTER(dev->xps_maps, NULL);
1963 kfree_rcu(dev_maps, rcu);
1964 }
1965
024e9679
AD
1966 for (i = index; i < dev->num_tx_queues; i++)
1967 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1968 NUMA_NO_NODE);
1969
537c00de
AD
1970out_no_maps:
1971 mutex_unlock(&xps_map_mutex);
1972}
1973
01c5f864
AD
1974static struct xps_map *expand_xps_map(struct xps_map *map,
1975 int cpu, u16 index)
1976{
1977 struct xps_map *new_map;
1978 int alloc_len = XPS_MIN_MAP_ALLOC;
1979 int i, pos;
1980
1981 for (pos = 0; map && pos < map->len; pos++) {
1982 if (map->queues[pos] != index)
1983 continue;
1984 return map;
1985 }
1986
1987 /* Need to add queue to this CPU's existing map */
1988 if (map) {
1989 if (pos < map->alloc_len)
1990 return map;
1991
1992 alloc_len = map->alloc_len * 2;
1993 }
1994
1995 /* Need to allocate new map to store queue on this CPU's map */
1996 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1997 cpu_to_node(cpu));
1998 if (!new_map)
1999 return NULL;
2000
2001 for (i = 0; i < pos; i++)
2002 new_map->queues[i] = map->queues[i];
2003 new_map->alloc_len = alloc_len;
2004 new_map->len = pos;
2005
2006 return new_map;
2007}
2008
3573540c
MT
2009int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2010 u16 index)
537c00de 2011{
01c5f864 2012 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2013 struct xps_map *map, *new_map;
537c00de 2014 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2015 int cpu, numa_node_id = -2;
2016 bool active = false;
537c00de
AD
2017
2018 mutex_lock(&xps_map_mutex);
2019
2020 dev_maps = xmap_dereference(dev->xps_maps);
2021
01c5f864
AD
2022 /* allocate memory for queue storage */
2023 for_each_online_cpu(cpu) {
2024 if (!cpumask_test_cpu(cpu, mask))
2025 continue;
2026
2027 if (!new_dev_maps)
2028 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2029 if (!new_dev_maps) {
2030 mutex_unlock(&xps_map_mutex);
01c5f864 2031 return -ENOMEM;
2bb60cb9 2032 }
01c5f864
AD
2033
2034 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2035 NULL;
2036
2037 map = expand_xps_map(map, cpu, index);
2038 if (!map)
2039 goto error;
2040
2041 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2042 }
2043
2044 if (!new_dev_maps)
2045 goto out_no_new_maps;
2046
537c00de 2047 for_each_possible_cpu(cpu) {
01c5f864
AD
2048 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2049 /* add queue to CPU maps */
2050 int pos = 0;
2051
2052 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2053 while ((pos < map->len) && (map->queues[pos] != index))
2054 pos++;
2055
2056 if (pos == map->len)
2057 map->queues[map->len++] = index;
537c00de 2058#ifdef CONFIG_NUMA
537c00de
AD
2059 if (numa_node_id == -2)
2060 numa_node_id = cpu_to_node(cpu);
2061 else if (numa_node_id != cpu_to_node(cpu))
2062 numa_node_id = -1;
537c00de 2063#endif
01c5f864
AD
2064 } else if (dev_maps) {
2065 /* fill in the new device map from the old device map */
2066 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2067 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2068 }
01c5f864 2069
537c00de
AD
2070 }
2071
01c5f864
AD
2072 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2073
537c00de 2074 /* Cleanup old maps */
01c5f864
AD
2075 if (dev_maps) {
2076 for_each_possible_cpu(cpu) {
2077 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2078 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2079 if (map && map != new_map)
2080 kfree_rcu(map, rcu);
2081 }
537c00de 2082
01c5f864 2083 kfree_rcu(dev_maps, rcu);
537c00de
AD
2084 }
2085
01c5f864
AD
2086 dev_maps = new_dev_maps;
2087 active = true;
537c00de 2088
01c5f864
AD
2089out_no_new_maps:
2090 /* update Tx queue numa node */
537c00de
AD
2091 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2092 (numa_node_id >= 0) ? numa_node_id :
2093 NUMA_NO_NODE);
2094
01c5f864
AD
2095 if (!dev_maps)
2096 goto out_no_maps;
2097
2098 /* removes queue from unused CPUs */
2099 for_each_possible_cpu(cpu) {
2100 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2101 continue;
2102
2103 if (remove_xps_queue(dev_maps, cpu, index))
2104 active = true;
2105 }
2106
2107 /* free map if not active */
2108 if (!active) {
2109 RCU_INIT_POINTER(dev->xps_maps, NULL);
2110 kfree_rcu(dev_maps, rcu);
2111 }
2112
2113out_no_maps:
537c00de
AD
2114 mutex_unlock(&xps_map_mutex);
2115
2116 return 0;
2117error:
01c5f864
AD
2118 /* remove any maps that we added */
2119 for_each_possible_cpu(cpu) {
2120 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2121 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2122 NULL;
2123 if (new_map && new_map != map)
2124 kfree(new_map);
2125 }
2126
537c00de
AD
2127 mutex_unlock(&xps_map_mutex);
2128
537c00de
AD
2129 kfree(new_dev_maps);
2130 return -ENOMEM;
2131}
2132EXPORT_SYMBOL(netif_set_xps_queue);
2133
2134#endif
f0796d5c
JF
2135/*
2136 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2137 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2138 */
e6484930 2139int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2140{
1d24eb48
TH
2141 int rc;
2142
e6484930
TH
2143 if (txq < 1 || txq > dev->num_tx_queues)
2144 return -EINVAL;
f0796d5c 2145
5c56580b
BH
2146 if (dev->reg_state == NETREG_REGISTERED ||
2147 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2148 ASSERT_RTNL();
2149
1d24eb48
TH
2150 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2151 txq);
bf264145
TH
2152 if (rc)
2153 return rc;
2154
4f57c087
JF
2155 if (dev->num_tc)
2156 netif_setup_tc(dev, txq);
2157
024e9679 2158 if (txq < dev->real_num_tx_queues) {
e6484930 2159 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2160#ifdef CONFIG_XPS
2161 netif_reset_xps_queues_gt(dev, txq);
2162#endif
2163 }
f0796d5c 2164 }
e6484930
TH
2165
2166 dev->real_num_tx_queues = txq;
2167 return 0;
f0796d5c
JF
2168}
2169EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2170
a953be53 2171#ifdef CONFIG_SYSFS
62fe0b40
BH
2172/**
2173 * netif_set_real_num_rx_queues - set actual number of RX queues used
2174 * @dev: Network device
2175 * @rxq: Actual number of RX queues
2176 *
2177 * This must be called either with the rtnl_lock held or before
2178 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2179 * negative error code. If called before registration, it always
2180 * succeeds.
62fe0b40
BH
2181 */
2182int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2183{
2184 int rc;
2185
bd25fa7b
TH
2186 if (rxq < 1 || rxq > dev->num_rx_queues)
2187 return -EINVAL;
2188
62fe0b40
BH
2189 if (dev->reg_state == NETREG_REGISTERED) {
2190 ASSERT_RTNL();
2191
62fe0b40
BH
2192 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2193 rxq);
2194 if (rc)
2195 return rc;
62fe0b40
BH
2196 }
2197
2198 dev->real_num_rx_queues = rxq;
2199 return 0;
2200}
2201EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2202#endif
2203
2c53040f
BH
2204/**
2205 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2206 *
2207 * This routine should set an upper limit on the number of RSS queues
2208 * used by default by multiqueue devices.
2209 */
a55b138b 2210int netif_get_num_default_rss_queues(void)
16917b87
YM
2211{
2212 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2213}
2214EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2215
def82a1d 2216static inline void __netif_reschedule(struct Qdisc *q)
56079431 2217{
def82a1d
JP
2218 struct softnet_data *sd;
2219 unsigned long flags;
56079431 2220
def82a1d 2221 local_irq_save(flags);
903ceff7 2222 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2223 q->next_sched = NULL;
2224 *sd->output_queue_tailp = q;
2225 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2226 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2227 local_irq_restore(flags);
2228}
2229
2230void __netif_schedule(struct Qdisc *q)
2231{
2232 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2233 __netif_reschedule(q);
56079431
DV
2234}
2235EXPORT_SYMBOL(__netif_schedule);
2236
e6247027
ED
2237struct dev_kfree_skb_cb {
2238 enum skb_free_reason reason;
2239};
2240
2241static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2242{
e6247027
ED
2243 return (struct dev_kfree_skb_cb *)skb->cb;
2244}
2245
46e5da40
JF
2246void netif_schedule_queue(struct netdev_queue *txq)
2247{
2248 rcu_read_lock();
2249 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2250 struct Qdisc *q = rcu_dereference(txq->qdisc);
2251
2252 __netif_schedule(q);
2253 }
2254 rcu_read_unlock();
2255}
2256EXPORT_SYMBOL(netif_schedule_queue);
2257
2258/**
2259 * netif_wake_subqueue - allow sending packets on subqueue
2260 * @dev: network device
2261 * @queue_index: sub queue index
2262 *
2263 * Resume individual transmit queue of a device with multiple transmit queues.
2264 */
2265void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2266{
2267 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2268
2269 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2270 struct Qdisc *q;
2271
2272 rcu_read_lock();
2273 q = rcu_dereference(txq->qdisc);
2274 __netif_schedule(q);
2275 rcu_read_unlock();
2276 }
2277}
2278EXPORT_SYMBOL(netif_wake_subqueue);
2279
2280void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2281{
2282 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2283 struct Qdisc *q;
2284
2285 rcu_read_lock();
2286 q = rcu_dereference(dev_queue->qdisc);
2287 __netif_schedule(q);
2288 rcu_read_unlock();
2289 }
2290}
2291EXPORT_SYMBOL(netif_tx_wake_queue);
2292
e6247027 2293void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2294{
e6247027 2295 unsigned long flags;
56079431 2296
e6247027
ED
2297 if (likely(atomic_read(&skb->users) == 1)) {
2298 smp_rmb();
2299 atomic_set(&skb->users, 0);
2300 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2301 return;
bea3348e 2302 }
e6247027
ED
2303 get_kfree_skb_cb(skb)->reason = reason;
2304 local_irq_save(flags);
2305 skb->next = __this_cpu_read(softnet_data.completion_queue);
2306 __this_cpu_write(softnet_data.completion_queue, skb);
2307 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2308 local_irq_restore(flags);
56079431 2309}
e6247027 2310EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2311
e6247027 2312void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2313{
2314 if (in_irq() || irqs_disabled())
e6247027 2315 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2316 else
2317 dev_kfree_skb(skb);
2318}
e6247027 2319EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2320
2321
bea3348e
SH
2322/**
2323 * netif_device_detach - mark device as removed
2324 * @dev: network device
2325 *
2326 * Mark device as removed from system and therefore no longer available.
2327 */
56079431
DV
2328void netif_device_detach(struct net_device *dev)
2329{
2330 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2331 netif_running(dev)) {
d543103a 2332 netif_tx_stop_all_queues(dev);
56079431
DV
2333 }
2334}
2335EXPORT_SYMBOL(netif_device_detach);
2336
bea3348e
SH
2337/**
2338 * netif_device_attach - mark device as attached
2339 * @dev: network device
2340 *
2341 * Mark device as attached from system and restart if needed.
2342 */
56079431
DV
2343void netif_device_attach(struct net_device *dev)
2344{
2345 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2346 netif_running(dev)) {
d543103a 2347 netif_tx_wake_all_queues(dev);
4ec93edb 2348 __netdev_watchdog_up(dev);
56079431
DV
2349 }
2350}
2351EXPORT_SYMBOL(netif_device_attach);
2352
36c92474
BH
2353static void skb_warn_bad_offload(const struct sk_buff *skb)
2354{
65e9d2fa 2355 static const netdev_features_t null_features = 0;
36c92474
BH
2356 struct net_device *dev = skb->dev;
2357 const char *driver = "";
2358
c846ad9b
BG
2359 if (!net_ratelimit())
2360 return;
2361
36c92474
BH
2362 if (dev && dev->dev.parent)
2363 driver = dev_driver_string(dev->dev.parent);
2364
2365 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2366 "gso_type=%d ip_summed=%d\n",
65e9d2fa
MM
2367 driver, dev ? &dev->features : &null_features,
2368 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2369 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2370 skb_shinfo(skb)->gso_type, skb->ip_summed);
2371}
2372
1da177e4
LT
2373/*
2374 * Invalidate hardware checksum when packet is to be mangled, and
2375 * complete checksum manually on outgoing path.
2376 */
84fa7933 2377int skb_checksum_help(struct sk_buff *skb)
1da177e4 2378{
d3bc23e7 2379 __wsum csum;
663ead3b 2380 int ret = 0, offset;
1da177e4 2381
84fa7933 2382 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2383 goto out_set_summed;
2384
2385 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2386 skb_warn_bad_offload(skb);
2387 return -EINVAL;
1da177e4
LT
2388 }
2389
cef401de
ED
2390 /* Before computing a checksum, we should make sure no frag could
2391 * be modified by an external entity : checksum could be wrong.
2392 */
2393 if (skb_has_shared_frag(skb)) {
2394 ret = __skb_linearize(skb);
2395 if (ret)
2396 goto out;
2397 }
2398
55508d60 2399 offset = skb_checksum_start_offset(skb);
a030847e
HX
2400 BUG_ON(offset >= skb_headlen(skb));
2401 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2402
2403 offset += skb->csum_offset;
2404 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2405
2406 if (skb_cloned(skb) &&
2407 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2408 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2409 if (ret)
2410 goto out;
2411 }
2412
a030847e 2413 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2414out_set_summed:
1da177e4 2415 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2416out:
1da177e4
LT
2417 return ret;
2418}
d1b19dff 2419EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2420
53d6471c 2421__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2422{
252e3346 2423 __be16 type = skb->protocol;
f6a78bfc 2424
19acc327
PS
2425 /* Tunnel gso handlers can set protocol to ethernet. */
2426 if (type == htons(ETH_P_TEB)) {
2427 struct ethhdr *eth;
2428
2429 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2430 return 0;
2431
2432 eth = (struct ethhdr *)skb_mac_header(skb);
2433 type = eth->h_proto;
2434 }
2435
d4bcef3f 2436 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2437}
2438
2439/**
2440 * skb_mac_gso_segment - mac layer segmentation handler.
2441 * @skb: buffer to segment
2442 * @features: features for the output path (see dev->features)
2443 */
2444struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2445 netdev_features_t features)
2446{
2447 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2448 struct packet_offload *ptype;
53d6471c
VY
2449 int vlan_depth = skb->mac_len;
2450 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2451
2452 if (unlikely(!type))
2453 return ERR_PTR(-EINVAL);
2454
53d6471c 2455 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2456
2457 rcu_read_lock();
22061d80 2458 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2459 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2460 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2461 break;
2462 }
2463 }
2464 rcu_read_unlock();
2465
98e399f8 2466 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2467
f6a78bfc
HX
2468 return segs;
2469}
05e8ef4a
PS
2470EXPORT_SYMBOL(skb_mac_gso_segment);
2471
2472
2473/* openvswitch calls this on rx path, so we need a different check.
2474 */
2475static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2476{
2477 if (tx_path)
2478 return skb->ip_summed != CHECKSUM_PARTIAL;
2479 else
2480 return skb->ip_summed == CHECKSUM_NONE;
2481}
2482
2483/**
2484 * __skb_gso_segment - Perform segmentation on skb.
2485 * @skb: buffer to segment
2486 * @features: features for the output path (see dev->features)
2487 * @tx_path: whether it is called in TX path
2488 *
2489 * This function segments the given skb and returns a list of segments.
2490 *
2491 * It may return NULL if the skb requires no segmentation. This is
2492 * only possible when GSO is used for verifying header integrity.
2493 */
2494struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2495 netdev_features_t features, bool tx_path)
2496{
2497 if (unlikely(skb_needs_check(skb, tx_path))) {
2498 int err;
2499
2500 skb_warn_bad_offload(skb);
2501
a40e0a66 2502 err = skb_cow_head(skb, 0);
2503 if (err < 0)
05e8ef4a
PS
2504 return ERR_PTR(err);
2505 }
2506
68c33163 2507 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2508 SKB_GSO_CB(skb)->encap_level = 0;
2509
05e8ef4a
PS
2510 skb_reset_mac_header(skb);
2511 skb_reset_mac_len(skb);
2512
2513 return skb_mac_gso_segment(skb, features);
2514}
12b0004d 2515EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2516
fb286bb2
HX
2517/* Take action when hardware reception checksum errors are detected. */
2518#ifdef CONFIG_BUG
2519void netdev_rx_csum_fault(struct net_device *dev)
2520{
2521 if (net_ratelimit()) {
7b6cd1ce 2522 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2523 dump_stack();
2524 }
2525}
2526EXPORT_SYMBOL(netdev_rx_csum_fault);
2527#endif
2528
1da177e4
LT
2529/* Actually, we should eliminate this check as soon as we know, that:
2530 * 1. IOMMU is present and allows to map all the memory.
2531 * 2. No high memory really exists on this machine.
2532 */
2533
c1e756bf 2534static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2535{
3d3a8533 2536#ifdef CONFIG_HIGHMEM
1da177e4 2537 int i;
5acbbd42 2538 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2539 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2540 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2541 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2542 return 1;
ea2ab693 2543 }
5acbbd42 2544 }
1da177e4 2545
5acbbd42
FT
2546 if (PCI_DMA_BUS_IS_PHYS) {
2547 struct device *pdev = dev->dev.parent;
1da177e4 2548
9092c658
ED
2549 if (!pdev)
2550 return 0;
5acbbd42 2551 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2552 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2553 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2554 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2555 return 1;
2556 }
2557 }
3d3a8533 2558#endif
1da177e4
LT
2559 return 0;
2560}
1da177e4 2561
3b392ddb
SH
2562/* If MPLS offload request, verify we are testing hardware MPLS features
2563 * instead of standard features for the netdev.
2564 */
d0edc7bf 2565#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2566static netdev_features_t net_mpls_features(struct sk_buff *skb,
2567 netdev_features_t features,
2568 __be16 type)
2569{
25cd9ba0 2570 if (eth_p_mpls(type))
3b392ddb
SH
2571 features &= skb->dev->mpls_features;
2572
2573 return features;
2574}
2575#else
2576static netdev_features_t net_mpls_features(struct sk_buff *skb,
2577 netdev_features_t features,
2578 __be16 type)
2579{
2580 return features;
2581}
2582#endif
2583
c8f44aff 2584static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2585 netdev_features_t features)
f01a5236 2586{
53d6471c 2587 int tmp;
3b392ddb
SH
2588 __be16 type;
2589
2590 type = skb_network_protocol(skb, &tmp);
2591 features = net_mpls_features(skb, features, type);
53d6471c 2592
c0d680e5 2593 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2594 !can_checksum_protocol(features, type)) {
f01a5236 2595 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2596 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2597 features &= ~NETIF_F_SG;
2598 }
2599
2600 return features;
2601}
2602
e38f3025
TM
2603netdev_features_t passthru_features_check(struct sk_buff *skb,
2604 struct net_device *dev,
2605 netdev_features_t features)
2606{
2607 return features;
2608}
2609EXPORT_SYMBOL(passthru_features_check);
2610
8cb65d00
TM
2611static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2612 struct net_device *dev,
2613 netdev_features_t features)
2614{
2615 return vlan_features_check(skb, features);
2616}
2617
c1e756bf 2618netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2619{
5f35227e 2620 struct net_device *dev = skb->dev;
fcbeb976
ED
2621 netdev_features_t features = dev->features;
2622 u16 gso_segs = skb_shinfo(skb)->gso_segs;
58e998c6 2623
fcbeb976 2624 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
30b678d8
BH
2625 features &= ~NETIF_F_GSO_MASK;
2626
5f35227e
JG
2627 /* If encapsulation offload request, verify we are testing
2628 * hardware encapsulation features instead of standard
2629 * features for the netdev
2630 */
2631 if (skb->encapsulation)
2632 features &= dev->hw_enc_features;
2633
f5a7fb88
TM
2634 if (skb_vlan_tagged(skb))
2635 features = netdev_intersect_features(features,
2636 dev->vlan_features |
2637 NETIF_F_HW_VLAN_CTAG_TX |
2638 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2639
5f35227e
JG
2640 if (dev->netdev_ops->ndo_features_check)
2641 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2642 features);
8cb65d00
TM
2643 else
2644 features &= dflt_features_check(skb, dev, features);
5f35227e 2645
c1e756bf 2646 return harmonize_features(skb, features);
58e998c6 2647}
c1e756bf 2648EXPORT_SYMBOL(netif_skb_features);
58e998c6 2649
2ea25513 2650static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2651 struct netdev_queue *txq, bool more)
f6a78bfc 2652{
2ea25513
DM
2653 unsigned int len;
2654 int rc;
00829823 2655
7866a621 2656 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2657 dev_queue_xmit_nit(skb, dev);
fc741216 2658
2ea25513
DM
2659 len = skb->len;
2660 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2661 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2662 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2663
2ea25513
DM
2664 return rc;
2665}
7b9c6090 2666
8dcda22a
DM
2667struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2668 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2669{
2670 struct sk_buff *skb = first;
2671 int rc = NETDEV_TX_OK;
7b9c6090 2672
7f2e870f
DM
2673 while (skb) {
2674 struct sk_buff *next = skb->next;
fc70fb64 2675
7f2e870f 2676 skb->next = NULL;
95f6b3dd 2677 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2678 if (unlikely(!dev_xmit_complete(rc))) {
2679 skb->next = next;
2680 goto out;
2681 }
6afff0ca 2682
7f2e870f
DM
2683 skb = next;
2684 if (netif_xmit_stopped(txq) && skb) {
2685 rc = NETDEV_TX_BUSY;
2686 break;
9ccb8975 2687 }
7f2e870f 2688 }
9ccb8975 2689
7f2e870f
DM
2690out:
2691 *ret = rc;
2692 return skb;
2693}
b40863c6 2694
1ff0dc94
ED
2695static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2696 netdev_features_t features)
f6a78bfc 2697{
df8a39de 2698 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2699 !vlan_hw_offload_capable(features, skb->vlan_proto))
2700 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2701 return skb;
2702}
f6a78bfc 2703
55a93b3e 2704static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2705{
2706 netdev_features_t features;
f6a78bfc 2707
eae3f88e
DM
2708 if (skb->next)
2709 return skb;
068a2de5 2710
eae3f88e
DM
2711 features = netif_skb_features(skb);
2712 skb = validate_xmit_vlan(skb, features);
2713 if (unlikely(!skb))
2714 goto out_null;
7b9c6090 2715
8b86a61d 2716 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2717 struct sk_buff *segs;
2718
2719 segs = skb_gso_segment(skb, features);
cecda693 2720 if (IS_ERR(segs)) {
af6dabc9 2721 goto out_kfree_skb;
cecda693
JW
2722 } else if (segs) {
2723 consume_skb(skb);
2724 skb = segs;
f6a78bfc 2725 }
eae3f88e
DM
2726 } else {
2727 if (skb_needs_linearize(skb, features) &&
2728 __skb_linearize(skb))
2729 goto out_kfree_skb;
4ec93edb 2730
eae3f88e
DM
2731 /* If packet is not checksummed and device does not
2732 * support checksumming for this protocol, complete
2733 * checksumming here.
2734 */
2735 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2736 if (skb->encapsulation)
2737 skb_set_inner_transport_header(skb,
2738 skb_checksum_start_offset(skb));
2739 else
2740 skb_set_transport_header(skb,
2741 skb_checksum_start_offset(skb));
2742 if (!(features & NETIF_F_ALL_CSUM) &&
2743 skb_checksum_help(skb))
2744 goto out_kfree_skb;
7b9c6090 2745 }
0c772159 2746 }
7b9c6090 2747
eae3f88e 2748 return skb;
fc70fb64 2749
f6a78bfc
HX
2750out_kfree_skb:
2751 kfree_skb(skb);
eae3f88e
DM
2752out_null:
2753 return NULL;
2754}
6afff0ca 2755
55a93b3e
ED
2756struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2757{
2758 struct sk_buff *next, *head = NULL, *tail;
2759
bec3cfdc 2760 for (; skb != NULL; skb = next) {
55a93b3e
ED
2761 next = skb->next;
2762 skb->next = NULL;
bec3cfdc
ED
2763
2764 /* in case skb wont be segmented, point to itself */
2765 skb->prev = skb;
2766
55a93b3e 2767 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2768 if (!skb)
2769 continue;
55a93b3e 2770
bec3cfdc
ED
2771 if (!head)
2772 head = skb;
2773 else
2774 tail->next = skb;
2775 /* If skb was segmented, skb->prev points to
2776 * the last segment. If not, it still contains skb.
2777 */
2778 tail = skb->prev;
55a93b3e
ED
2779 }
2780 return head;
f6a78bfc
HX
2781}
2782
1def9238
ED
2783static void qdisc_pkt_len_init(struct sk_buff *skb)
2784{
2785 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2786
2787 qdisc_skb_cb(skb)->pkt_len = skb->len;
2788
2789 /* To get more precise estimation of bytes sent on wire,
2790 * we add to pkt_len the headers size of all segments
2791 */
2792 if (shinfo->gso_size) {
757b8b1d 2793 unsigned int hdr_len;
15e5a030 2794 u16 gso_segs = shinfo->gso_segs;
1def9238 2795
757b8b1d
ED
2796 /* mac layer + network layer */
2797 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2798
2799 /* + transport layer */
1def9238
ED
2800 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2801 hdr_len += tcp_hdrlen(skb);
2802 else
2803 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2804
2805 if (shinfo->gso_type & SKB_GSO_DODGY)
2806 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2807 shinfo->gso_size);
2808
2809 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2810 }
2811}
2812
bbd8a0d3
KK
2813static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2814 struct net_device *dev,
2815 struct netdev_queue *txq)
2816{
2817 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2818 bool contended;
bbd8a0d3
KK
2819 int rc;
2820
1def9238 2821 qdisc_pkt_len_init(skb);
a2da570d 2822 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2823 /*
2824 * Heuristic to force contended enqueues to serialize on a
2825 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2826 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2827 * often and dequeue packets faster.
79640a4c 2828 */
a2da570d 2829 contended = qdisc_is_running(q);
79640a4c
ED
2830 if (unlikely(contended))
2831 spin_lock(&q->busylock);
2832
bbd8a0d3
KK
2833 spin_lock(root_lock);
2834 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2835 kfree_skb(skb);
2836 rc = NET_XMIT_DROP;
2837 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2838 qdisc_run_begin(q)) {
bbd8a0d3
KK
2839 /*
2840 * This is a work-conserving queue; there are no old skbs
2841 * waiting to be sent out; and the qdisc is not running -
2842 * xmit the skb directly.
2843 */
bfe0d029 2844
bfe0d029
ED
2845 qdisc_bstats_update(q, skb);
2846
55a93b3e 2847 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
2848 if (unlikely(contended)) {
2849 spin_unlock(&q->busylock);
2850 contended = false;
2851 }
bbd8a0d3 2852 __qdisc_run(q);
79640a4c 2853 } else
bc135b23 2854 qdisc_run_end(q);
bbd8a0d3
KK
2855
2856 rc = NET_XMIT_SUCCESS;
2857 } else {
a2da570d 2858 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2859 if (qdisc_run_begin(q)) {
2860 if (unlikely(contended)) {
2861 spin_unlock(&q->busylock);
2862 contended = false;
2863 }
2864 __qdisc_run(q);
2865 }
bbd8a0d3
KK
2866 }
2867 spin_unlock(root_lock);
79640a4c
ED
2868 if (unlikely(contended))
2869 spin_unlock(&q->busylock);
bbd8a0d3
KK
2870 return rc;
2871}
2872
86f8515f 2873#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2874static void skb_update_prio(struct sk_buff *skb)
2875{
6977a79d 2876 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2877
91c68ce2
ED
2878 if (!skb->priority && skb->sk && map) {
2879 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2880
2881 if (prioidx < map->priomap_len)
2882 skb->priority = map->priomap[prioidx];
2883 }
5bc1421e
NH
2884}
2885#else
2886#define skb_update_prio(skb)
2887#endif
2888
f60e5990 2889DEFINE_PER_CPU(int, xmit_recursion);
2890EXPORT_SYMBOL(xmit_recursion);
2891
11a766ce 2892#define RECURSION_LIMIT 10
745e20f1 2893
95603e22
MM
2894/**
2895 * dev_loopback_xmit - loop back @skb
2896 * @skb: buffer to transmit
2897 */
7026b1dd 2898int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
95603e22
MM
2899{
2900 skb_reset_mac_header(skb);
2901 __skb_pull(skb, skb_network_offset(skb));
2902 skb->pkt_type = PACKET_LOOPBACK;
2903 skb->ip_summed = CHECKSUM_UNNECESSARY;
2904 WARN_ON(!skb_dst(skb));
2905 skb_dst_force(skb);
2906 netif_rx_ni(skb);
2907 return 0;
2908}
2909EXPORT_SYMBOL(dev_loopback_xmit);
2910
d29f749e 2911/**
9d08dd3d 2912 * __dev_queue_xmit - transmit a buffer
d29f749e 2913 * @skb: buffer to transmit
9d08dd3d 2914 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
2915 *
2916 * Queue a buffer for transmission to a network device. The caller must
2917 * have set the device and priority and built the buffer before calling
2918 * this function. The function can be called from an interrupt.
2919 *
2920 * A negative errno code is returned on a failure. A success does not
2921 * guarantee the frame will be transmitted as it may be dropped due
2922 * to congestion or traffic shaping.
2923 *
2924 * -----------------------------------------------------------------------------------
2925 * I notice this method can also return errors from the queue disciplines,
2926 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2927 * be positive.
2928 *
2929 * Regardless of the return value, the skb is consumed, so it is currently
2930 * difficult to retry a send to this method. (You can bump the ref count
2931 * before sending to hold a reference for retry if you are careful.)
2932 *
2933 * When calling this method, interrupts MUST be enabled. This is because
2934 * the BH enable code must have IRQs enabled so that it will not deadlock.
2935 * --BLG
2936 */
0a59f3a9 2937static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
2938{
2939 struct net_device *dev = skb->dev;
dc2b4847 2940 struct netdev_queue *txq;
1da177e4
LT
2941 struct Qdisc *q;
2942 int rc = -ENOMEM;
2943
6d1ccff6
ED
2944 skb_reset_mac_header(skb);
2945
e7fd2885
WB
2946 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2947 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2948
4ec93edb
YH
2949 /* Disable soft irqs for various locks below. Also
2950 * stops preemption for RCU.
1da177e4 2951 */
4ec93edb 2952 rcu_read_lock_bh();
1da177e4 2953
5bc1421e
NH
2954 skb_update_prio(skb);
2955
02875878
ED
2956 /* If device/qdisc don't need skb->dst, release it right now while
2957 * its hot in this cpu cache.
2958 */
2959 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2960 skb_dst_drop(skb);
2961 else
2962 skb_dst_force(skb);
2963
f663dd9a 2964 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 2965 q = rcu_dereference_bh(txq->qdisc);
37437bb2 2966
1da177e4 2967#ifdef CONFIG_NET_CLS_ACT
d1b19dff 2968 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 2969#endif
cf66ba58 2970 trace_net_dev_queue(skb);
1da177e4 2971 if (q->enqueue) {
bbd8a0d3 2972 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 2973 goto out;
1da177e4
LT
2974 }
2975
2976 /* The device has no queue. Common case for software devices:
2977 loopback, all the sorts of tunnels...
2978
932ff279
HX
2979 Really, it is unlikely that netif_tx_lock protection is necessary
2980 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
2981 counters.)
2982 However, it is possible, that they rely on protection
2983 made by us here.
2984
2985 Check this and shot the lock. It is not prone from deadlocks.
2986 Either shot noqueue qdisc, it is even simpler 8)
2987 */
2988 if (dev->flags & IFF_UP) {
2989 int cpu = smp_processor_id(); /* ok because BHs are off */
2990
c773e847 2991 if (txq->xmit_lock_owner != cpu) {
1da177e4 2992
745e20f1
ED
2993 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2994 goto recursion_alert;
2995
1f59533f
JDB
2996 skb = validate_xmit_skb(skb, dev);
2997 if (!skb)
2998 goto drop;
2999
c773e847 3000 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3001
73466498 3002 if (!netif_xmit_stopped(txq)) {
745e20f1 3003 __this_cpu_inc(xmit_recursion);
ce93718f 3004 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3005 __this_cpu_dec(xmit_recursion);
572a9d7b 3006 if (dev_xmit_complete(rc)) {
c773e847 3007 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3008 goto out;
3009 }
3010 }
c773e847 3011 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3012 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3013 dev->name);
1da177e4
LT
3014 } else {
3015 /* Recursion is detected! It is possible,
745e20f1
ED
3016 * unfortunately
3017 */
3018recursion_alert:
e87cc472
JP
3019 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3020 dev->name);
1da177e4
LT
3021 }
3022 }
3023
3024 rc = -ENETDOWN;
1f59533f 3025drop:
d4828d85 3026 rcu_read_unlock_bh();
1da177e4 3027
015f0688 3028 atomic_long_inc(&dev->tx_dropped);
1f59533f 3029 kfree_skb_list(skb);
1da177e4
LT
3030 return rc;
3031out:
d4828d85 3032 rcu_read_unlock_bh();
1da177e4
LT
3033 return rc;
3034}
f663dd9a 3035
7026b1dd 3036int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
f663dd9a
JW
3037{
3038 return __dev_queue_xmit(skb, NULL);
3039}
7026b1dd 3040EXPORT_SYMBOL(dev_queue_xmit_sk);
1da177e4 3041
f663dd9a
JW
3042int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3043{
3044 return __dev_queue_xmit(skb, accel_priv);
3045}
3046EXPORT_SYMBOL(dev_queue_xmit_accel);
3047
1da177e4
LT
3048
3049/*=======================================================================
3050 Receiver routines
3051 =======================================================================*/
3052
6b2bedc3 3053int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3054EXPORT_SYMBOL(netdev_max_backlog);
3055
3b098e2d 3056int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3057int netdev_budget __read_mostly = 300;
3058int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3059
eecfd7c4
ED
3060/* Called with irq disabled */
3061static inline void ____napi_schedule(struct softnet_data *sd,
3062 struct napi_struct *napi)
3063{
3064 list_add_tail(&napi->poll_list, &sd->poll_list);
3065 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3066}
3067
bfb564e7
KK
3068#ifdef CONFIG_RPS
3069
3070/* One global table that all flow-based protocols share. */
6e3f7faf 3071struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3072EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3073u32 rps_cpu_mask __read_mostly;
3074EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3075
c5905afb 3076struct static_key rps_needed __read_mostly;
adc9300e 3077
c445477d
BH
3078static struct rps_dev_flow *
3079set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3080 struct rps_dev_flow *rflow, u16 next_cpu)
3081{
a31196b0 3082 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3083#ifdef CONFIG_RFS_ACCEL
3084 struct netdev_rx_queue *rxqueue;
3085 struct rps_dev_flow_table *flow_table;
3086 struct rps_dev_flow *old_rflow;
3087 u32 flow_id;
3088 u16 rxq_index;
3089 int rc;
3090
3091 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3092 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3093 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3094 goto out;
3095 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3096 if (rxq_index == skb_get_rx_queue(skb))
3097 goto out;
3098
3099 rxqueue = dev->_rx + rxq_index;
3100 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3101 if (!flow_table)
3102 goto out;
61b905da 3103 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3104 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3105 rxq_index, flow_id);
3106 if (rc < 0)
3107 goto out;
3108 old_rflow = rflow;
3109 rflow = &flow_table->flows[flow_id];
c445477d
BH
3110 rflow->filter = rc;
3111 if (old_rflow->filter == rflow->filter)
3112 old_rflow->filter = RPS_NO_FILTER;
3113 out:
3114#endif
3115 rflow->last_qtail =
09994d1b 3116 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3117 }
3118
09994d1b 3119 rflow->cpu = next_cpu;
c445477d
BH
3120 return rflow;
3121}
3122
bfb564e7
KK
3123/*
3124 * get_rps_cpu is called from netif_receive_skb and returns the target
3125 * CPU from the RPS map of the receiving queue for a given skb.
3126 * rcu_read_lock must be held on entry.
3127 */
3128static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3129 struct rps_dev_flow **rflowp)
3130{
567e4b79
ED
3131 const struct rps_sock_flow_table *sock_flow_table;
3132 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3133 struct rps_dev_flow_table *flow_table;
567e4b79 3134 struct rps_map *map;
bfb564e7 3135 int cpu = -1;
567e4b79 3136 u32 tcpu;
61b905da 3137 u32 hash;
bfb564e7
KK
3138
3139 if (skb_rx_queue_recorded(skb)) {
3140 u16 index = skb_get_rx_queue(skb);
567e4b79 3141
62fe0b40
BH
3142 if (unlikely(index >= dev->real_num_rx_queues)) {
3143 WARN_ONCE(dev->real_num_rx_queues > 1,
3144 "%s received packet on queue %u, but number "
3145 "of RX queues is %u\n",
3146 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3147 goto done;
3148 }
567e4b79
ED
3149 rxqueue += index;
3150 }
bfb564e7 3151
567e4b79
ED
3152 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3153
3154 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3155 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3156 if (!flow_table && !map)
bfb564e7
KK
3157 goto done;
3158
2d47b459 3159 skb_reset_network_header(skb);
61b905da
TH
3160 hash = skb_get_hash(skb);
3161 if (!hash)
bfb564e7
KK
3162 goto done;
3163
fec5e652
TH
3164 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3165 if (flow_table && sock_flow_table) {
fec5e652 3166 struct rps_dev_flow *rflow;
567e4b79
ED
3167 u32 next_cpu;
3168 u32 ident;
3169
3170 /* First check into global flow table if there is a match */
3171 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3172 if ((ident ^ hash) & ~rps_cpu_mask)
3173 goto try_rps;
fec5e652 3174
567e4b79
ED
3175 next_cpu = ident & rps_cpu_mask;
3176
3177 /* OK, now we know there is a match,
3178 * we can look at the local (per receive queue) flow table
3179 */
61b905da 3180 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3181 tcpu = rflow->cpu;
3182
fec5e652
TH
3183 /*
3184 * If the desired CPU (where last recvmsg was done) is
3185 * different from current CPU (one in the rx-queue flow
3186 * table entry), switch if one of the following holds:
a31196b0 3187 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3188 * - Current CPU is offline.
3189 * - The current CPU's queue tail has advanced beyond the
3190 * last packet that was enqueued using this table entry.
3191 * This guarantees that all previous packets for the flow
3192 * have been dequeued, thus preserving in order delivery.
3193 */
3194 if (unlikely(tcpu != next_cpu) &&
a31196b0 3195 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3196 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3197 rflow->last_qtail)) >= 0)) {
3198 tcpu = next_cpu;
c445477d 3199 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3200 }
c445477d 3201
a31196b0 3202 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3203 *rflowp = rflow;
3204 cpu = tcpu;
3205 goto done;
3206 }
3207 }
3208
567e4b79
ED
3209try_rps:
3210
0a9627f2 3211 if (map) {
8fc54f68 3212 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3213 if (cpu_online(tcpu)) {
3214 cpu = tcpu;
3215 goto done;
3216 }
3217 }
3218
3219done:
0a9627f2
TH
3220 return cpu;
3221}
3222
c445477d
BH
3223#ifdef CONFIG_RFS_ACCEL
3224
3225/**
3226 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3227 * @dev: Device on which the filter was set
3228 * @rxq_index: RX queue index
3229 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3230 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3231 *
3232 * Drivers that implement ndo_rx_flow_steer() should periodically call
3233 * this function for each installed filter and remove the filters for
3234 * which it returns %true.
3235 */
3236bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3237 u32 flow_id, u16 filter_id)
3238{
3239 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3240 struct rps_dev_flow_table *flow_table;
3241 struct rps_dev_flow *rflow;
3242 bool expire = true;
a31196b0 3243 unsigned int cpu;
c445477d
BH
3244
3245 rcu_read_lock();
3246 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3247 if (flow_table && flow_id <= flow_table->mask) {
3248 rflow = &flow_table->flows[flow_id];
3249 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3250 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3251 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3252 rflow->last_qtail) <
3253 (int)(10 * flow_table->mask)))
3254 expire = false;
3255 }
3256 rcu_read_unlock();
3257 return expire;
3258}
3259EXPORT_SYMBOL(rps_may_expire_flow);
3260
3261#endif /* CONFIG_RFS_ACCEL */
3262
0a9627f2 3263/* Called from hardirq (IPI) context */
e36fa2f7 3264static void rps_trigger_softirq(void *data)
0a9627f2 3265{
e36fa2f7
ED
3266 struct softnet_data *sd = data;
3267
eecfd7c4 3268 ____napi_schedule(sd, &sd->backlog);
dee42870 3269 sd->received_rps++;
0a9627f2 3270}
e36fa2f7 3271
fec5e652 3272#endif /* CONFIG_RPS */
0a9627f2 3273
e36fa2f7
ED
3274/*
3275 * Check if this softnet_data structure is another cpu one
3276 * If yes, queue it to our IPI list and return 1
3277 * If no, return 0
3278 */
3279static int rps_ipi_queued(struct softnet_data *sd)
3280{
3281#ifdef CONFIG_RPS
903ceff7 3282 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3283
3284 if (sd != mysd) {
3285 sd->rps_ipi_next = mysd->rps_ipi_list;
3286 mysd->rps_ipi_list = sd;
3287
3288 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3289 return 1;
3290 }
3291#endif /* CONFIG_RPS */
3292 return 0;
3293}
3294
99bbc707
WB
3295#ifdef CONFIG_NET_FLOW_LIMIT
3296int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3297#endif
3298
3299static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3300{
3301#ifdef CONFIG_NET_FLOW_LIMIT
3302 struct sd_flow_limit *fl;
3303 struct softnet_data *sd;
3304 unsigned int old_flow, new_flow;
3305
3306 if (qlen < (netdev_max_backlog >> 1))
3307 return false;
3308
903ceff7 3309 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3310
3311 rcu_read_lock();
3312 fl = rcu_dereference(sd->flow_limit);
3313 if (fl) {
3958afa1 3314 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3315 old_flow = fl->history[fl->history_head];
3316 fl->history[fl->history_head] = new_flow;
3317
3318 fl->history_head++;
3319 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3320
3321 if (likely(fl->buckets[old_flow]))
3322 fl->buckets[old_flow]--;
3323
3324 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3325 fl->count++;
3326 rcu_read_unlock();
3327 return true;
3328 }
3329 }
3330 rcu_read_unlock();
3331#endif
3332 return false;
3333}
3334
0a9627f2
TH
3335/*
3336 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3337 * queue (may be a remote CPU queue).
3338 */
fec5e652
TH
3339static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3340 unsigned int *qtail)
0a9627f2 3341{
e36fa2f7 3342 struct softnet_data *sd;
0a9627f2 3343 unsigned long flags;
99bbc707 3344 unsigned int qlen;
0a9627f2 3345
e36fa2f7 3346 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3347
3348 local_irq_save(flags);
0a9627f2 3349
e36fa2f7 3350 rps_lock(sd);
99bbc707
WB
3351 qlen = skb_queue_len(&sd->input_pkt_queue);
3352 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3353 if (qlen) {
0a9627f2 3354enqueue:
e36fa2f7 3355 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3356 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3357 rps_unlock(sd);
152102c7 3358 local_irq_restore(flags);
0a9627f2
TH
3359 return NET_RX_SUCCESS;
3360 }
3361
ebda37c2
ED
3362 /* Schedule NAPI for backlog device
3363 * We can use non atomic operation since we own the queue lock
3364 */
3365 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3366 if (!rps_ipi_queued(sd))
eecfd7c4 3367 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3368 }
3369 goto enqueue;
3370 }
3371
dee42870 3372 sd->dropped++;
e36fa2f7 3373 rps_unlock(sd);
0a9627f2 3374
0a9627f2
TH
3375 local_irq_restore(flags);
3376
caf586e5 3377 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3378 kfree_skb(skb);
3379 return NET_RX_DROP;
3380}
1da177e4 3381
ae78dbfa 3382static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3383{
b0e28f1e 3384 int ret;
1da177e4 3385
588f0330 3386 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3387
cf66ba58 3388 trace_netif_rx(skb);
df334545 3389#ifdef CONFIG_RPS
c5905afb 3390 if (static_key_false(&rps_needed)) {
fec5e652 3391 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3392 int cpu;
3393
cece1945 3394 preempt_disable();
b0e28f1e 3395 rcu_read_lock();
fec5e652
TH
3396
3397 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3398 if (cpu < 0)
3399 cpu = smp_processor_id();
fec5e652
TH
3400
3401 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3402
b0e28f1e 3403 rcu_read_unlock();
cece1945 3404 preempt_enable();
adc9300e
ED
3405 } else
3406#endif
fec5e652
TH
3407 {
3408 unsigned int qtail;
3409 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3410 put_cpu();
3411 }
b0e28f1e 3412 return ret;
1da177e4 3413}
ae78dbfa
BH
3414
3415/**
3416 * netif_rx - post buffer to the network code
3417 * @skb: buffer to post
3418 *
3419 * This function receives a packet from a device driver and queues it for
3420 * the upper (protocol) levels to process. It always succeeds. The buffer
3421 * may be dropped during processing for congestion control or by the
3422 * protocol layers.
3423 *
3424 * return values:
3425 * NET_RX_SUCCESS (no congestion)
3426 * NET_RX_DROP (packet was dropped)
3427 *
3428 */
3429
3430int netif_rx(struct sk_buff *skb)
3431{
3432 trace_netif_rx_entry(skb);
3433
3434 return netif_rx_internal(skb);
3435}
d1b19dff 3436EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3437
3438int netif_rx_ni(struct sk_buff *skb)
3439{
3440 int err;
3441
ae78dbfa
BH
3442 trace_netif_rx_ni_entry(skb);
3443
1da177e4 3444 preempt_disable();
ae78dbfa 3445 err = netif_rx_internal(skb);
1da177e4
LT
3446 if (local_softirq_pending())
3447 do_softirq();
3448 preempt_enable();
3449
3450 return err;
3451}
1da177e4
LT
3452EXPORT_SYMBOL(netif_rx_ni);
3453
1da177e4
LT
3454static void net_tx_action(struct softirq_action *h)
3455{
903ceff7 3456 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3457
3458 if (sd->completion_queue) {
3459 struct sk_buff *clist;
3460
3461 local_irq_disable();
3462 clist = sd->completion_queue;
3463 sd->completion_queue = NULL;
3464 local_irq_enable();
3465
3466 while (clist) {
3467 struct sk_buff *skb = clist;
3468 clist = clist->next;
3469
547b792c 3470 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3471 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3472 trace_consume_skb(skb);
3473 else
3474 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3475 __kfree_skb(skb);
3476 }
3477 }
3478
3479 if (sd->output_queue) {
37437bb2 3480 struct Qdisc *head;
1da177e4
LT
3481
3482 local_irq_disable();
3483 head = sd->output_queue;
3484 sd->output_queue = NULL;
a9cbd588 3485 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3486 local_irq_enable();
3487
3488 while (head) {
37437bb2
DM
3489 struct Qdisc *q = head;
3490 spinlock_t *root_lock;
3491
1da177e4
LT
3492 head = head->next_sched;
3493
5fb66229 3494 root_lock = qdisc_lock(q);
37437bb2 3495 if (spin_trylock(root_lock)) {
4e857c58 3496 smp_mb__before_atomic();
def82a1d
JP
3497 clear_bit(__QDISC_STATE_SCHED,
3498 &q->state);
37437bb2
DM
3499 qdisc_run(q);
3500 spin_unlock(root_lock);
1da177e4 3501 } else {
195648bb 3502 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3503 &q->state)) {
195648bb 3504 __netif_reschedule(q);
e8a83e10 3505 } else {
4e857c58 3506 smp_mb__before_atomic();
e8a83e10
JP
3507 clear_bit(__QDISC_STATE_SCHED,
3508 &q->state);
3509 }
1da177e4
LT
3510 }
3511 }
3512 }
3513}
3514
ab95bfe0
JP
3515#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3516 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3517/* This hook is defined here for ATM LANE */
3518int (*br_fdb_test_addr_hook)(struct net_device *dev,
3519 unsigned char *addr) __read_mostly;
4fb019a0 3520EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3521#endif
1da177e4 3522
1da177e4 3523#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
3524static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3525 struct packet_type **pt_prev,
3526 int *ret, struct net_device *orig_dev)
3527{
24824a09 3528 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
c9e99fd0 3529 struct Qdisc *q;
24824a09 3530
c9e99fd0
DB
3531 /* If there's at least one ingress present somewhere (so
3532 * we get here via enabled static key), remaining devices
3533 * that are not configured with an ingress qdisc will bail
3534 * out w/o the rcu_dereference().
3535 */
3536 if (!rxq || (q = rcu_dereference(rxq->qdisc)) == &noop_qdisc)
4577139b 3537 return skb;
1da177e4 3538
f697c3e8
HX
3539 if (*pt_prev) {
3540 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3541 *pt_prev = NULL;
1da177e4
LT
3542 }
3543
c9e99fd0
DB
3544 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3545
3546 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3547 switch (qdisc_enqueue_root(skb, q)) {
3548 case TC_ACT_SHOT:
3549 case TC_ACT_STOLEN:
3550 kfree_skb(skb);
3551 return NULL;
3552 }
f697c3e8
HX
3553 }
3554
f697c3e8 3555 return skb;
1da177e4
LT
3556}
3557#endif
3558
ab95bfe0
JP
3559/**
3560 * netdev_rx_handler_register - register receive handler
3561 * @dev: device to register a handler for
3562 * @rx_handler: receive handler to register
93e2c32b 3563 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3564 *
e227867f 3565 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3566 * called from __netif_receive_skb. A negative errno code is returned
3567 * on a failure.
3568 *
3569 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3570 *
3571 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3572 */
3573int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3574 rx_handler_func_t *rx_handler,
3575 void *rx_handler_data)
ab95bfe0
JP
3576{
3577 ASSERT_RTNL();
3578
3579 if (dev->rx_handler)
3580 return -EBUSY;
3581
00cfec37 3582 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3583 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3584 rcu_assign_pointer(dev->rx_handler, rx_handler);
3585
3586 return 0;
3587}
3588EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3589
3590/**
3591 * netdev_rx_handler_unregister - unregister receive handler
3592 * @dev: device to unregister a handler from
3593 *
166ec369 3594 * Unregister a receive handler from a device.
ab95bfe0
JP
3595 *
3596 * The caller must hold the rtnl_mutex.
3597 */
3598void netdev_rx_handler_unregister(struct net_device *dev)
3599{
3600
3601 ASSERT_RTNL();
a9b3cd7f 3602 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3603 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3604 * section has a guarantee to see a non NULL rx_handler_data
3605 * as well.
3606 */
3607 synchronize_net();
a9b3cd7f 3608 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3609}
3610EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3611
b4b9e355
MG
3612/*
3613 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3614 * the special handling of PFMEMALLOC skbs.
3615 */
3616static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3617{
3618 switch (skb->protocol) {
2b8837ae
JP
3619 case htons(ETH_P_ARP):
3620 case htons(ETH_P_IP):
3621 case htons(ETH_P_IPV6):
3622 case htons(ETH_P_8021Q):
3623 case htons(ETH_P_8021AD):
b4b9e355
MG
3624 return true;
3625 default:
3626 return false;
3627 }
3628}
3629
9754e293 3630static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3631{
3632 struct packet_type *ptype, *pt_prev;
ab95bfe0 3633 rx_handler_func_t *rx_handler;
f2ccd8fa 3634 struct net_device *orig_dev;
8a4eb573 3635 bool deliver_exact = false;
1da177e4 3636 int ret = NET_RX_DROP;
252e3346 3637 __be16 type;
1da177e4 3638
588f0330 3639 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3640
cf66ba58 3641 trace_netif_receive_skb(skb);
9b22ea56 3642
cc9bd5ce 3643 orig_dev = skb->dev;
8f903c70 3644
c1d2bbe1 3645 skb_reset_network_header(skb);
fda55eca
ED
3646 if (!skb_transport_header_was_set(skb))
3647 skb_reset_transport_header(skb);
0b5c9db1 3648 skb_reset_mac_len(skb);
1da177e4
LT
3649
3650 pt_prev = NULL;
3651
3652 rcu_read_lock();
3653
63d8ea7f 3654another_round:
b6858177 3655 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3656
3657 __this_cpu_inc(softnet_data.processed);
3658
8ad227ff
PM
3659 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3660 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3661 skb = skb_vlan_untag(skb);
bcc6d479 3662 if (unlikely(!skb))
b4b9e355 3663 goto unlock;
bcc6d479
JP
3664 }
3665
1da177e4
LT
3666#ifdef CONFIG_NET_CLS_ACT
3667 if (skb->tc_verd & TC_NCLS) {
3668 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3669 goto ncls;
3670 }
3671#endif
3672
9754e293 3673 if (pfmemalloc)
b4b9e355
MG
3674 goto skip_taps;
3675
1da177e4 3676 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
3677 if (pt_prev)
3678 ret = deliver_skb(skb, pt_prev, orig_dev);
3679 pt_prev = ptype;
3680 }
3681
3682 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3683 if (pt_prev)
3684 ret = deliver_skb(skb, pt_prev, orig_dev);
3685 pt_prev = ptype;
1da177e4
LT
3686 }
3687
b4b9e355 3688skip_taps:
1da177e4 3689#ifdef CONFIG_NET_CLS_ACT
4577139b
DB
3690 if (static_key_false(&ingress_needed)) {
3691 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3692 if (!skb)
3693 goto unlock;
3694 }
3695
3696 skb->tc_verd = 0;
1da177e4
LT
3697ncls:
3698#endif
9754e293 3699 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3700 goto drop;
3701
df8a39de 3702 if (skb_vlan_tag_present(skb)) {
2425717b
JF
3703 if (pt_prev) {
3704 ret = deliver_skb(skb, pt_prev, orig_dev);
3705 pt_prev = NULL;
3706 }
48cc32d3 3707 if (vlan_do_receive(&skb))
2425717b
JF
3708 goto another_round;
3709 else if (unlikely(!skb))
b4b9e355 3710 goto unlock;
2425717b
JF
3711 }
3712
48cc32d3 3713 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3714 if (rx_handler) {
3715 if (pt_prev) {
3716 ret = deliver_skb(skb, pt_prev, orig_dev);
3717 pt_prev = NULL;
3718 }
8a4eb573
JP
3719 switch (rx_handler(&skb)) {
3720 case RX_HANDLER_CONSUMED:
3bc1b1ad 3721 ret = NET_RX_SUCCESS;
b4b9e355 3722 goto unlock;
8a4eb573 3723 case RX_HANDLER_ANOTHER:
63d8ea7f 3724 goto another_round;
8a4eb573
JP
3725 case RX_HANDLER_EXACT:
3726 deliver_exact = true;
3727 case RX_HANDLER_PASS:
3728 break;
3729 default:
3730 BUG();
3731 }
ab95bfe0 3732 }
1da177e4 3733
df8a39de
JP
3734 if (unlikely(skb_vlan_tag_present(skb))) {
3735 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
3736 skb->pkt_type = PACKET_OTHERHOST;
3737 /* Note: we might in the future use prio bits
3738 * and set skb->priority like in vlan_do_receive()
3739 * For the time being, just ignore Priority Code Point
3740 */
3741 skb->vlan_tci = 0;
3742 }
48cc32d3 3743
7866a621
SN
3744 type = skb->protocol;
3745
63d8ea7f 3746 /* deliver only exact match when indicated */
7866a621
SN
3747 if (likely(!deliver_exact)) {
3748 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3749 &ptype_base[ntohs(type) &
3750 PTYPE_HASH_MASK]);
3751 }
1f3c8804 3752
7866a621
SN
3753 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3754 &orig_dev->ptype_specific);
3755
3756 if (unlikely(skb->dev != orig_dev)) {
3757 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3758 &skb->dev->ptype_specific);
1da177e4
LT
3759 }
3760
3761 if (pt_prev) {
1080e512 3762 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3763 goto drop;
1080e512
MT
3764 else
3765 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3766 } else {
b4b9e355 3767drop:
caf586e5 3768 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3769 kfree_skb(skb);
3770 /* Jamal, now you will not able to escape explaining
3771 * me how you were going to use this. :-)
3772 */
3773 ret = NET_RX_DROP;
3774 }
3775
b4b9e355 3776unlock:
1da177e4 3777 rcu_read_unlock();
9754e293
DM
3778 return ret;
3779}
3780
3781static int __netif_receive_skb(struct sk_buff *skb)
3782{
3783 int ret;
3784
3785 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3786 unsigned long pflags = current->flags;
3787
3788 /*
3789 * PFMEMALLOC skbs are special, they should
3790 * - be delivered to SOCK_MEMALLOC sockets only
3791 * - stay away from userspace
3792 * - have bounded memory usage
3793 *
3794 * Use PF_MEMALLOC as this saves us from propagating the allocation
3795 * context down to all allocation sites.
3796 */
3797 current->flags |= PF_MEMALLOC;
3798 ret = __netif_receive_skb_core(skb, true);
3799 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3800 } else
3801 ret = __netif_receive_skb_core(skb, false);
3802
1da177e4
LT
3803 return ret;
3804}
0a9627f2 3805
ae78dbfa 3806static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3807{
588f0330 3808 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3809
c1f19b51
RC
3810 if (skb_defer_rx_timestamp(skb))
3811 return NET_RX_SUCCESS;
3812
df334545 3813#ifdef CONFIG_RPS
c5905afb 3814 if (static_key_false(&rps_needed)) {
3b098e2d
ED
3815 struct rps_dev_flow voidflow, *rflow = &voidflow;
3816 int cpu, ret;
fec5e652 3817
3b098e2d
ED
3818 rcu_read_lock();
3819
3820 cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3821
3b098e2d
ED
3822 if (cpu >= 0) {
3823 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3824 rcu_read_unlock();
adc9300e 3825 return ret;
3b098e2d 3826 }
adc9300e 3827 rcu_read_unlock();
fec5e652 3828 }
1e94d72f 3829#endif
adc9300e 3830 return __netif_receive_skb(skb);
0a9627f2 3831}
ae78dbfa
BH
3832
3833/**
3834 * netif_receive_skb - process receive buffer from network
3835 * @skb: buffer to process
3836 *
3837 * netif_receive_skb() is the main receive data processing function.
3838 * It always succeeds. The buffer may be dropped during processing
3839 * for congestion control or by the protocol layers.
3840 *
3841 * This function may only be called from softirq context and interrupts
3842 * should be enabled.
3843 *
3844 * Return values (usually ignored):
3845 * NET_RX_SUCCESS: no congestion
3846 * NET_RX_DROP: packet was dropped
3847 */
7026b1dd 3848int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
ae78dbfa
BH
3849{
3850 trace_netif_receive_skb_entry(skb);
3851
3852 return netif_receive_skb_internal(skb);
3853}
7026b1dd 3854EXPORT_SYMBOL(netif_receive_skb_sk);
1da177e4 3855
88751275
ED
3856/* Network device is going away, flush any packets still pending
3857 * Called with irqs disabled.
3858 */
152102c7 3859static void flush_backlog(void *arg)
6e583ce5 3860{
152102c7 3861 struct net_device *dev = arg;
903ceff7 3862 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
3863 struct sk_buff *skb, *tmp;
3864
e36fa2f7 3865 rps_lock(sd);
6e7676c1 3866 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 3867 if (skb->dev == dev) {
e36fa2f7 3868 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 3869 kfree_skb(skb);
76cc8b13 3870 input_queue_head_incr(sd);
6e583ce5 3871 }
6e7676c1 3872 }
e36fa2f7 3873 rps_unlock(sd);
6e7676c1
CG
3874
3875 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3876 if (skb->dev == dev) {
3877 __skb_unlink(skb, &sd->process_queue);
3878 kfree_skb(skb);
76cc8b13 3879 input_queue_head_incr(sd);
6e7676c1
CG
3880 }
3881 }
6e583ce5
SH
3882}
3883
d565b0a1
HX
3884static int napi_gro_complete(struct sk_buff *skb)
3885{
22061d80 3886 struct packet_offload *ptype;
d565b0a1 3887 __be16 type = skb->protocol;
22061d80 3888 struct list_head *head = &offload_base;
d565b0a1
HX
3889 int err = -ENOENT;
3890
c3c7c254
ED
3891 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3892
fc59f9a3
HX
3893 if (NAPI_GRO_CB(skb)->count == 1) {
3894 skb_shinfo(skb)->gso_size = 0;
d565b0a1 3895 goto out;
fc59f9a3 3896 }
d565b0a1
HX
3897
3898 rcu_read_lock();
3899 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 3900 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
3901 continue;
3902
299603e8 3903 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
3904 break;
3905 }
3906 rcu_read_unlock();
3907
3908 if (err) {
3909 WARN_ON(&ptype->list == head);
3910 kfree_skb(skb);
3911 return NET_RX_SUCCESS;
3912 }
3913
3914out:
ae78dbfa 3915 return netif_receive_skb_internal(skb);
d565b0a1
HX
3916}
3917
2e71a6f8
ED
3918/* napi->gro_list contains packets ordered by age.
3919 * youngest packets at the head of it.
3920 * Complete skbs in reverse order to reduce latencies.
3921 */
3922void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 3923{
2e71a6f8 3924 struct sk_buff *skb, *prev = NULL;
d565b0a1 3925
2e71a6f8
ED
3926 /* scan list and build reverse chain */
3927 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3928 skb->prev = prev;
3929 prev = skb;
3930 }
3931
3932 for (skb = prev; skb; skb = prev) {
d565b0a1 3933 skb->next = NULL;
2e71a6f8
ED
3934
3935 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3936 return;
3937
3938 prev = skb->prev;
d565b0a1 3939 napi_gro_complete(skb);
2e71a6f8 3940 napi->gro_count--;
d565b0a1
HX
3941 }
3942
3943 napi->gro_list = NULL;
3944}
86cac58b 3945EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 3946
89c5fa33
ED
3947static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3948{
3949 struct sk_buff *p;
3950 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 3951 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
3952
3953 for (p = napi->gro_list; p; p = p->next) {
3954 unsigned long diffs;
3955
0b4cec8c
TH
3956 NAPI_GRO_CB(p)->flush = 0;
3957
3958 if (hash != skb_get_hash_raw(p)) {
3959 NAPI_GRO_CB(p)->same_flow = 0;
3960 continue;
3961 }
3962
89c5fa33
ED
3963 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3964 diffs |= p->vlan_tci ^ skb->vlan_tci;
3965 if (maclen == ETH_HLEN)
3966 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 3967 skb_mac_header(skb));
89c5fa33
ED
3968 else if (!diffs)
3969 diffs = memcmp(skb_mac_header(p),
a50e233c 3970 skb_mac_header(skb),
89c5fa33
ED
3971 maclen);
3972 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
3973 }
3974}
3975
299603e8
JC
3976static void skb_gro_reset_offset(struct sk_buff *skb)
3977{
3978 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3979 const skb_frag_t *frag0 = &pinfo->frags[0];
3980
3981 NAPI_GRO_CB(skb)->data_offset = 0;
3982 NAPI_GRO_CB(skb)->frag0 = NULL;
3983 NAPI_GRO_CB(skb)->frag0_len = 0;
3984
3985 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3986 pinfo->nr_frags &&
3987 !PageHighMem(skb_frag_page(frag0))) {
3988 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3989 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
3990 }
3991}
3992
a50e233c
ED
3993static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3994{
3995 struct skb_shared_info *pinfo = skb_shinfo(skb);
3996
3997 BUG_ON(skb->end - skb->tail < grow);
3998
3999 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4000
4001 skb->data_len -= grow;
4002 skb->tail += grow;
4003
4004 pinfo->frags[0].page_offset += grow;
4005 skb_frag_size_sub(&pinfo->frags[0], grow);
4006
4007 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4008 skb_frag_unref(skb, 0);
4009 memmove(pinfo->frags, pinfo->frags + 1,
4010 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4011 }
4012}
4013
bb728820 4014static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4015{
4016 struct sk_buff **pp = NULL;
22061d80 4017 struct packet_offload *ptype;
d565b0a1 4018 __be16 type = skb->protocol;
22061d80 4019 struct list_head *head = &offload_base;
0da2afd5 4020 int same_flow;
5b252f0c 4021 enum gro_result ret;
a50e233c 4022 int grow;
d565b0a1 4023
9c62a68d 4024 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4025 goto normal;
4026
5a212329 4027 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4028 goto normal;
4029
89c5fa33
ED
4030 gro_list_prepare(napi, skb);
4031
d565b0a1
HX
4032 rcu_read_lock();
4033 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4034 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4035 continue;
4036
86911732 4037 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4038 skb_reset_mac_len(skb);
d565b0a1
HX
4039 NAPI_GRO_CB(skb)->same_flow = 0;
4040 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4041 NAPI_GRO_CB(skb)->free = 0;
b582ef09 4042 NAPI_GRO_CB(skb)->udp_mark = 0;
15e2396d 4043 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4044
662880f4
TH
4045 /* Setup for GRO checksum validation */
4046 switch (skb->ip_summed) {
4047 case CHECKSUM_COMPLETE:
4048 NAPI_GRO_CB(skb)->csum = skb->csum;
4049 NAPI_GRO_CB(skb)->csum_valid = 1;
4050 NAPI_GRO_CB(skb)->csum_cnt = 0;
4051 break;
4052 case CHECKSUM_UNNECESSARY:
4053 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4054 NAPI_GRO_CB(skb)->csum_valid = 0;
4055 break;
4056 default:
4057 NAPI_GRO_CB(skb)->csum_cnt = 0;
4058 NAPI_GRO_CB(skb)->csum_valid = 0;
4059 }
d565b0a1 4060
f191a1d1 4061 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4062 break;
4063 }
4064 rcu_read_unlock();
4065
4066 if (&ptype->list == head)
4067 goto normal;
4068
0da2afd5 4069 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4070 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4071
d565b0a1
HX
4072 if (pp) {
4073 struct sk_buff *nskb = *pp;
4074
4075 *pp = nskb->next;
4076 nskb->next = NULL;
4077 napi_gro_complete(nskb);
4ae5544f 4078 napi->gro_count--;
d565b0a1
HX
4079 }
4080
0da2afd5 4081 if (same_flow)
d565b0a1
HX
4082 goto ok;
4083
600adc18 4084 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4085 goto normal;
d565b0a1 4086
600adc18
ED
4087 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4088 struct sk_buff *nskb = napi->gro_list;
4089
4090 /* locate the end of the list to select the 'oldest' flow */
4091 while (nskb->next) {
4092 pp = &nskb->next;
4093 nskb = *pp;
4094 }
4095 *pp = NULL;
4096 nskb->next = NULL;
4097 napi_gro_complete(nskb);
4098 } else {
4099 napi->gro_count++;
4100 }
d565b0a1 4101 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4102 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4103 NAPI_GRO_CB(skb)->last = skb;
86911732 4104 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4105 skb->next = napi->gro_list;
4106 napi->gro_list = skb;
5d0d9be8 4107 ret = GRO_HELD;
d565b0a1 4108
ad0f9904 4109pull:
a50e233c
ED
4110 grow = skb_gro_offset(skb) - skb_headlen(skb);
4111 if (grow > 0)
4112 gro_pull_from_frag0(skb, grow);
d565b0a1 4113ok:
5d0d9be8 4114 return ret;
d565b0a1
HX
4115
4116normal:
ad0f9904
HX
4117 ret = GRO_NORMAL;
4118 goto pull;
5d38a079 4119}
96e93eab 4120
bf5a755f
JC
4121struct packet_offload *gro_find_receive_by_type(__be16 type)
4122{
4123 struct list_head *offload_head = &offload_base;
4124 struct packet_offload *ptype;
4125
4126 list_for_each_entry_rcu(ptype, offload_head, list) {
4127 if (ptype->type != type || !ptype->callbacks.gro_receive)
4128 continue;
4129 return ptype;
4130 }
4131 return NULL;
4132}
e27a2f83 4133EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4134
4135struct packet_offload *gro_find_complete_by_type(__be16 type)
4136{
4137 struct list_head *offload_head = &offload_base;
4138 struct packet_offload *ptype;
4139
4140 list_for_each_entry_rcu(ptype, offload_head, list) {
4141 if (ptype->type != type || !ptype->callbacks.gro_complete)
4142 continue;
4143 return ptype;
4144 }
4145 return NULL;
4146}
e27a2f83 4147EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4148
bb728820 4149static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4150{
5d0d9be8
HX
4151 switch (ret) {
4152 case GRO_NORMAL:
ae78dbfa 4153 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4154 ret = GRO_DROP;
4155 break;
5d38a079 4156
5d0d9be8 4157 case GRO_DROP:
5d38a079
HX
4158 kfree_skb(skb);
4159 break;
5b252f0c 4160
daa86548 4161 case GRO_MERGED_FREE:
d7e8883c
ED
4162 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4163 kmem_cache_free(skbuff_head_cache, skb);
4164 else
4165 __kfree_skb(skb);
daa86548
ED
4166 break;
4167
5b252f0c
BH
4168 case GRO_HELD:
4169 case GRO_MERGED:
4170 break;
5d38a079
HX
4171 }
4172
c7c4b3b6 4173 return ret;
5d0d9be8 4174}
5d0d9be8 4175
c7c4b3b6 4176gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4177{
ae78dbfa 4178 trace_napi_gro_receive_entry(skb);
86911732 4179
a50e233c
ED
4180 skb_gro_reset_offset(skb);
4181
89c5fa33 4182 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4183}
4184EXPORT_SYMBOL(napi_gro_receive);
4185
d0c2b0d2 4186static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4187{
93a35f59
ED
4188 if (unlikely(skb->pfmemalloc)) {
4189 consume_skb(skb);
4190 return;
4191 }
96e93eab 4192 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4193 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4194 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4195 skb->vlan_tci = 0;
66c46d74 4196 skb->dev = napi->dev;
6d152e23 4197 skb->skb_iif = 0;
c3caf119
JC
4198 skb->encapsulation = 0;
4199 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4200 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4201
4202 napi->skb = skb;
4203}
96e93eab 4204
76620aaf 4205struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4206{
5d38a079 4207 struct sk_buff *skb = napi->skb;
5d38a079
HX
4208
4209 if (!skb) {
fd11a83d 4210 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
84b9cd63 4211 napi->skb = skb;
80595d59 4212 }
96e93eab
HX
4213 return skb;
4214}
76620aaf 4215EXPORT_SYMBOL(napi_get_frags);
96e93eab 4216
a50e233c
ED
4217static gro_result_t napi_frags_finish(struct napi_struct *napi,
4218 struct sk_buff *skb,
4219 gro_result_t ret)
96e93eab 4220{
5d0d9be8
HX
4221 switch (ret) {
4222 case GRO_NORMAL:
a50e233c
ED
4223 case GRO_HELD:
4224 __skb_push(skb, ETH_HLEN);
4225 skb->protocol = eth_type_trans(skb, skb->dev);
4226 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4227 ret = GRO_DROP;
86911732 4228 break;
5d38a079 4229
5d0d9be8 4230 case GRO_DROP:
5d0d9be8
HX
4231 case GRO_MERGED_FREE:
4232 napi_reuse_skb(napi, skb);
4233 break;
5b252f0c
BH
4234
4235 case GRO_MERGED:
4236 break;
5d0d9be8 4237 }
5d38a079 4238
c7c4b3b6 4239 return ret;
5d38a079 4240}
5d0d9be8 4241
a50e233c
ED
4242/* Upper GRO stack assumes network header starts at gro_offset=0
4243 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4244 * We copy ethernet header into skb->data to have a common layout.
4245 */
4adb9c4a 4246static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4247{
4248 struct sk_buff *skb = napi->skb;
a50e233c
ED
4249 const struct ethhdr *eth;
4250 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4251
4252 napi->skb = NULL;
4253
a50e233c
ED
4254 skb_reset_mac_header(skb);
4255 skb_gro_reset_offset(skb);
4256
4257 eth = skb_gro_header_fast(skb, 0);
4258 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4259 eth = skb_gro_header_slow(skb, hlen, 0);
4260 if (unlikely(!eth)) {
4261 napi_reuse_skb(napi, skb);
4262 return NULL;
4263 }
4264 } else {
4265 gro_pull_from_frag0(skb, hlen);
4266 NAPI_GRO_CB(skb)->frag0 += hlen;
4267 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4268 }
a50e233c
ED
4269 __skb_pull(skb, hlen);
4270
4271 /*
4272 * This works because the only protocols we care about don't require
4273 * special handling.
4274 * We'll fix it up properly in napi_frags_finish()
4275 */
4276 skb->protocol = eth->h_proto;
76620aaf 4277
76620aaf
HX
4278 return skb;
4279}
76620aaf 4280
c7c4b3b6 4281gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4282{
76620aaf 4283 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4284
4285 if (!skb)
c7c4b3b6 4286 return GRO_DROP;
5d0d9be8 4287
ae78dbfa
BH
4288 trace_napi_gro_frags_entry(skb);
4289
89c5fa33 4290 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4291}
5d38a079
HX
4292EXPORT_SYMBOL(napi_gro_frags);
4293
573e8fca
TH
4294/* Compute the checksum from gro_offset and return the folded value
4295 * after adding in any pseudo checksum.
4296 */
4297__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4298{
4299 __wsum wsum;
4300 __sum16 sum;
4301
4302 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4303
4304 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4305 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4306 if (likely(!sum)) {
4307 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4308 !skb->csum_complete_sw)
4309 netdev_rx_csum_fault(skb->dev);
4310 }
4311
4312 NAPI_GRO_CB(skb)->csum = wsum;
4313 NAPI_GRO_CB(skb)->csum_valid = 1;
4314
4315 return sum;
4316}
4317EXPORT_SYMBOL(__skb_gro_checksum_complete);
4318
e326bed2 4319/*
855abcf0 4320 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4321 * Note: called with local irq disabled, but exits with local irq enabled.
4322 */
4323static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4324{
4325#ifdef CONFIG_RPS
4326 struct softnet_data *remsd = sd->rps_ipi_list;
4327
4328 if (remsd) {
4329 sd->rps_ipi_list = NULL;
4330
4331 local_irq_enable();
4332
4333 /* Send pending IPI's to kick RPS processing on remote cpus. */
4334 while (remsd) {
4335 struct softnet_data *next = remsd->rps_ipi_next;
4336
4337 if (cpu_online(remsd->cpu))
c46fff2a 4338 smp_call_function_single_async(remsd->cpu,
fce8ad15 4339 &remsd->csd);
e326bed2
ED
4340 remsd = next;
4341 }
4342 } else
4343#endif
4344 local_irq_enable();
4345}
4346
d75b1ade
ED
4347static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4348{
4349#ifdef CONFIG_RPS
4350 return sd->rps_ipi_list != NULL;
4351#else
4352 return false;
4353#endif
4354}
4355
bea3348e 4356static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4357{
4358 int work = 0;
eecfd7c4 4359 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4360
e326bed2
ED
4361 /* Check if we have pending ipi, its better to send them now,
4362 * not waiting net_rx_action() end.
4363 */
d75b1ade 4364 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4365 local_irq_disable();
4366 net_rps_action_and_irq_enable(sd);
4367 }
d75b1ade 4368
bea3348e 4369 napi->weight = weight_p;
6e7676c1 4370 local_irq_disable();
11ef7a89 4371 while (1) {
1da177e4 4372 struct sk_buff *skb;
6e7676c1
CG
4373
4374 while ((skb = __skb_dequeue(&sd->process_queue))) {
4375 local_irq_enable();
4376 __netif_receive_skb(skb);
6e7676c1 4377 local_irq_disable();
76cc8b13
TH
4378 input_queue_head_incr(sd);
4379 if (++work >= quota) {
4380 local_irq_enable();
4381 return work;
4382 }
6e7676c1 4383 }
1da177e4 4384
e36fa2f7 4385 rps_lock(sd);
11ef7a89 4386 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4387 /*
4388 * Inline a custom version of __napi_complete().
4389 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4390 * and NAPI_STATE_SCHED is the only possible flag set
4391 * on backlog.
4392 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4393 * and we dont need an smp_mb() memory barrier.
4394 */
eecfd7c4 4395 napi->state = 0;
11ef7a89 4396 rps_unlock(sd);
eecfd7c4 4397
11ef7a89 4398 break;
bea3348e 4399 }
11ef7a89
TH
4400
4401 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4402 &sd->process_queue);
e36fa2f7 4403 rps_unlock(sd);
6e7676c1
CG
4404 }
4405 local_irq_enable();
1da177e4 4406
bea3348e
SH
4407 return work;
4408}
1da177e4 4409
bea3348e
SH
4410/**
4411 * __napi_schedule - schedule for receive
c4ea43c5 4412 * @n: entry to schedule
bea3348e 4413 *
bc9ad166
ED
4414 * The entry's receive function will be scheduled to run.
4415 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4416 */
b5606c2d 4417void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4418{
4419 unsigned long flags;
1da177e4 4420
bea3348e 4421 local_irq_save(flags);
903ceff7 4422 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4423 local_irq_restore(flags);
1da177e4 4424}
bea3348e
SH
4425EXPORT_SYMBOL(__napi_schedule);
4426
bc9ad166
ED
4427/**
4428 * __napi_schedule_irqoff - schedule for receive
4429 * @n: entry to schedule
4430 *
4431 * Variant of __napi_schedule() assuming hard irqs are masked
4432 */
4433void __napi_schedule_irqoff(struct napi_struct *n)
4434{
4435 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4436}
4437EXPORT_SYMBOL(__napi_schedule_irqoff);
4438
d565b0a1
HX
4439void __napi_complete(struct napi_struct *n)
4440{
4441 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4442
d75b1ade 4443 list_del_init(&n->poll_list);
4e857c58 4444 smp_mb__before_atomic();
d565b0a1
HX
4445 clear_bit(NAPI_STATE_SCHED, &n->state);
4446}
4447EXPORT_SYMBOL(__napi_complete);
4448
3b47d303 4449void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4450{
4451 unsigned long flags;
4452
4453 /*
4454 * don't let napi dequeue from the cpu poll list
4455 * just in case its running on a different cpu
4456 */
4457 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4458 return;
4459
3b47d303
ED
4460 if (n->gro_list) {
4461 unsigned long timeout = 0;
d75b1ade 4462
3b47d303
ED
4463 if (work_done)
4464 timeout = n->dev->gro_flush_timeout;
4465
4466 if (timeout)
4467 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4468 HRTIMER_MODE_REL_PINNED);
4469 else
4470 napi_gro_flush(n, false);
4471 }
d75b1ade
ED
4472 if (likely(list_empty(&n->poll_list))) {
4473 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4474 } else {
4475 /* If n->poll_list is not empty, we need to mask irqs */
4476 local_irq_save(flags);
4477 __napi_complete(n);
4478 local_irq_restore(flags);
4479 }
d565b0a1 4480}
3b47d303 4481EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4482
af12fa6e
ET
4483/* must be called under rcu_read_lock(), as we dont take a reference */
4484struct napi_struct *napi_by_id(unsigned int napi_id)
4485{
4486 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4487 struct napi_struct *napi;
4488
4489 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4490 if (napi->napi_id == napi_id)
4491 return napi;
4492
4493 return NULL;
4494}
4495EXPORT_SYMBOL_GPL(napi_by_id);
4496
4497void napi_hash_add(struct napi_struct *napi)
4498{
4499 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4500
4501 spin_lock(&napi_hash_lock);
4502
4503 /* 0 is not a valid id, we also skip an id that is taken
4504 * we expect both events to be extremely rare
4505 */
4506 napi->napi_id = 0;
4507 while (!napi->napi_id) {
4508 napi->napi_id = ++napi_gen_id;
4509 if (napi_by_id(napi->napi_id))
4510 napi->napi_id = 0;
4511 }
4512
4513 hlist_add_head_rcu(&napi->napi_hash_node,
4514 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4515
4516 spin_unlock(&napi_hash_lock);
4517 }
4518}
4519EXPORT_SYMBOL_GPL(napi_hash_add);
4520
4521/* Warning : caller is responsible to make sure rcu grace period
4522 * is respected before freeing memory containing @napi
4523 */
4524void napi_hash_del(struct napi_struct *napi)
4525{
4526 spin_lock(&napi_hash_lock);
4527
4528 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4529 hlist_del_rcu(&napi->napi_hash_node);
4530
4531 spin_unlock(&napi_hash_lock);
4532}
4533EXPORT_SYMBOL_GPL(napi_hash_del);
4534
3b47d303
ED
4535static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4536{
4537 struct napi_struct *napi;
4538
4539 napi = container_of(timer, struct napi_struct, timer);
4540 if (napi->gro_list)
4541 napi_schedule(napi);
4542
4543 return HRTIMER_NORESTART;
4544}
4545
d565b0a1
HX
4546void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4547 int (*poll)(struct napi_struct *, int), int weight)
4548{
4549 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
4550 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4551 napi->timer.function = napi_watchdog;
4ae5544f 4552 napi->gro_count = 0;
d565b0a1 4553 napi->gro_list = NULL;
5d38a079 4554 napi->skb = NULL;
d565b0a1 4555 napi->poll = poll;
82dc3c63
ED
4556 if (weight > NAPI_POLL_WEIGHT)
4557 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4558 weight, dev->name);
d565b0a1
HX
4559 napi->weight = weight;
4560 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4561 napi->dev = dev;
5d38a079 4562#ifdef CONFIG_NETPOLL
d565b0a1
HX
4563 spin_lock_init(&napi->poll_lock);
4564 napi->poll_owner = -1;
4565#endif
4566 set_bit(NAPI_STATE_SCHED, &napi->state);
4567}
4568EXPORT_SYMBOL(netif_napi_add);
4569
3b47d303
ED
4570void napi_disable(struct napi_struct *n)
4571{
4572 might_sleep();
4573 set_bit(NAPI_STATE_DISABLE, &n->state);
4574
4575 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4576 msleep(1);
4577
4578 hrtimer_cancel(&n->timer);
4579
4580 clear_bit(NAPI_STATE_DISABLE, &n->state);
4581}
4582EXPORT_SYMBOL(napi_disable);
4583
d565b0a1
HX
4584void netif_napi_del(struct napi_struct *napi)
4585{
d7b06636 4586 list_del_init(&napi->dev_list);
76620aaf 4587 napi_free_frags(napi);
d565b0a1 4588
289dccbe 4589 kfree_skb_list(napi->gro_list);
d565b0a1 4590 napi->gro_list = NULL;
4ae5544f 4591 napi->gro_count = 0;
d565b0a1
HX
4592}
4593EXPORT_SYMBOL(netif_napi_del);
4594
726ce70e
HX
4595static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4596{
4597 void *have;
4598 int work, weight;
4599
4600 list_del_init(&n->poll_list);
4601
4602 have = netpoll_poll_lock(n);
4603
4604 weight = n->weight;
4605
4606 /* This NAPI_STATE_SCHED test is for avoiding a race
4607 * with netpoll's poll_napi(). Only the entity which
4608 * obtains the lock and sees NAPI_STATE_SCHED set will
4609 * actually make the ->poll() call. Therefore we avoid
4610 * accidentally calling ->poll() when NAPI is not scheduled.
4611 */
4612 work = 0;
4613 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4614 work = n->poll(n, weight);
4615 trace_napi_poll(n);
4616 }
4617
4618 WARN_ON_ONCE(work > weight);
4619
4620 if (likely(work < weight))
4621 goto out_unlock;
4622
4623 /* Drivers must not modify the NAPI state if they
4624 * consume the entire weight. In such cases this code
4625 * still "owns" the NAPI instance and therefore can
4626 * move the instance around on the list at-will.
4627 */
4628 if (unlikely(napi_disable_pending(n))) {
4629 napi_complete(n);
4630 goto out_unlock;
4631 }
4632
4633 if (n->gro_list) {
4634 /* flush too old packets
4635 * If HZ < 1000, flush all packets.
4636 */
4637 napi_gro_flush(n, HZ >= 1000);
4638 }
4639
001ce546
HX
4640 /* Some drivers may have called napi_schedule
4641 * prior to exhausting their budget.
4642 */
4643 if (unlikely(!list_empty(&n->poll_list))) {
4644 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4645 n->dev ? n->dev->name : "backlog");
4646 goto out_unlock;
4647 }
4648
726ce70e
HX
4649 list_add_tail(&n->poll_list, repoll);
4650
4651out_unlock:
4652 netpoll_poll_unlock(have);
4653
4654 return work;
4655}
4656
1da177e4
LT
4657static void net_rx_action(struct softirq_action *h)
4658{
903ceff7 4659 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 4660 unsigned long time_limit = jiffies + 2;
51b0bded 4661 int budget = netdev_budget;
d75b1ade
ED
4662 LIST_HEAD(list);
4663 LIST_HEAD(repoll);
53fb95d3 4664
1da177e4 4665 local_irq_disable();
d75b1ade
ED
4666 list_splice_init(&sd->poll_list, &list);
4667 local_irq_enable();
1da177e4 4668
ceb8d5bf 4669 for (;;) {
bea3348e 4670 struct napi_struct *n;
1da177e4 4671
ceb8d5bf
HX
4672 if (list_empty(&list)) {
4673 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4674 return;
4675 break;
4676 }
4677
6bd373eb
HX
4678 n = list_first_entry(&list, struct napi_struct, poll_list);
4679 budget -= napi_poll(n, &repoll);
4680
d75b1ade 4681 /* If softirq window is exhausted then punt.
24f8b238
SH
4682 * Allow this to run for 2 jiffies since which will allow
4683 * an average latency of 1.5/HZ.
bea3348e 4684 */
ceb8d5bf
HX
4685 if (unlikely(budget <= 0 ||
4686 time_after_eq(jiffies, time_limit))) {
4687 sd->time_squeeze++;
4688 break;
4689 }
1da177e4 4690 }
d75b1ade 4691
d75b1ade
ED
4692 local_irq_disable();
4693
4694 list_splice_tail_init(&sd->poll_list, &list);
4695 list_splice_tail(&repoll, &list);
4696 list_splice(&list, &sd->poll_list);
4697 if (!list_empty(&sd->poll_list))
4698 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4699
e326bed2 4700 net_rps_action_and_irq_enable(sd);
1da177e4
LT
4701}
4702
aa9d8560 4703struct netdev_adjacent {
9ff162a8 4704 struct net_device *dev;
5d261913
VF
4705
4706 /* upper master flag, there can only be one master device per list */
9ff162a8 4707 bool master;
5d261913 4708
5d261913
VF
4709 /* counter for the number of times this device was added to us */
4710 u16 ref_nr;
4711
402dae96
VF
4712 /* private field for the users */
4713 void *private;
4714
9ff162a8
JP
4715 struct list_head list;
4716 struct rcu_head rcu;
9ff162a8
JP
4717};
4718
5d261913
VF
4719static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4720 struct net_device *adj_dev,
2f268f12 4721 struct list_head *adj_list)
9ff162a8 4722{
5d261913 4723 struct netdev_adjacent *adj;
5d261913 4724
2f268f12 4725 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4726 if (adj->dev == adj_dev)
4727 return adj;
9ff162a8
JP
4728 }
4729 return NULL;
4730}
4731
4732/**
4733 * netdev_has_upper_dev - Check if device is linked to an upper device
4734 * @dev: device
4735 * @upper_dev: upper device to check
4736 *
4737 * Find out if a device is linked to specified upper device and return true
4738 * in case it is. Note that this checks only immediate upper device,
4739 * not through a complete stack of devices. The caller must hold the RTNL lock.
4740 */
4741bool netdev_has_upper_dev(struct net_device *dev,
4742 struct net_device *upper_dev)
4743{
4744 ASSERT_RTNL();
4745
2f268f12 4746 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4747}
4748EXPORT_SYMBOL(netdev_has_upper_dev);
4749
4750/**
4751 * netdev_has_any_upper_dev - Check if device is linked to some device
4752 * @dev: device
4753 *
4754 * Find out if a device is linked to an upper device and return true in case
4755 * it is. The caller must hold the RTNL lock.
4756 */
1d143d9f 4757static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4758{
4759 ASSERT_RTNL();
4760
2f268f12 4761 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4762}
9ff162a8
JP
4763
4764/**
4765 * netdev_master_upper_dev_get - Get master upper device
4766 * @dev: device
4767 *
4768 * Find a master upper device and return pointer to it or NULL in case
4769 * it's not there. The caller must hold the RTNL lock.
4770 */
4771struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4772{
aa9d8560 4773 struct netdev_adjacent *upper;
9ff162a8
JP
4774
4775 ASSERT_RTNL();
4776
2f268f12 4777 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4778 return NULL;
4779
2f268f12 4780 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4781 struct netdev_adjacent, list);
9ff162a8
JP
4782 if (likely(upper->master))
4783 return upper->dev;
4784 return NULL;
4785}
4786EXPORT_SYMBOL(netdev_master_upper_dev_get);
4787
b6ccba4c
VF
4788void *netdev_adjacent_get_private(struct list_head *adj_list)
4789{
4790 struct netdev_adjacent *adj;
4791
4792 adj = list_entry(adj_list, struct netdev_adjacent, list);
4793
4794 return adj->private;
4795}
4796EXPORT_SYMBOL(netdev_adjacent_get_private);
4797
44a40855
VY
4798/**
4799 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4800 * @dev: device
4801 * @iter: list_head ** of the current position
4802 *
4803 * Gets the next device from the dev's upper list, starting from iter
4804 * position. The caller must hold RCU read lock.
4805 */
4806struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4807 struct list_head **iter)
4808{
4809 struct netdev_adjacent *upper;
4810
4811 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4812
4813 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4814
4815 if (&upper->list == &dev->adj_list.upper)
4816 return NULL;
4817
4818 *iter = &upper->list;
4819
4820 return upper->dev;
4821}
4822EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4823
31088a11
VF
4824/**
4825 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
4826 * @dev: device
4827 * @iter: list_head ** of the current position
4828 *
4829 * Gets the next device from the dev's upper list, starting from iter
4830 * position. The caller must hold RCU read lock.
4831 */
2f268f12
VF
4832struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4833 struct list_head **iter)
48311f46
VF
4834{
4835 struct netdev_adjacent *upper;
4836
85328240 4837 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
4838
4839 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4840
2f268f12 4841 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
4842 return NULL;
4843
4844 *iter = &upper->list;
4845
4846 return upper->dev;
4847}
2f268f12 4848EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 4849
31088a11
VF
4850/**
4851 * netdev_lower_get_next_private - Get the next ->private from the
4852 * lower neighbour list
4853 * @dev: device
4854 * @iter: list_head ** of the current position
4855 *
4856 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4857 * list, starting from iter position. The caller must hold either hold the
4858 * RTNL lock or its own locking that guarantees that the neighbour lower
4859 * list will remain unchainged.
4860 */
4861void *netdev_lower_get_next_private(struct net_device *dev,
4862 struct list_head **iter)
4863{
4864 struct netdev_adjacent *lower;
4865
4866 lower = list_entry(*iter, struct netdev_adjacent, list);
4867
4868 if (&lower->list == &dev->adj_list.lower)
4869 return NULL;
4870
6859e7df 4871 *iter = lower->list.next;
31088a11
VF
4872
4873 return lower->private;
4874}
4875EXPORT_SYMBOL(netdev_lower_get_next_private);
4876
4877/**
4878 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4879 * lower neighbour list, RCU
4880 * variant
4881 * @dev: device
4882 * @iter: list_head ** of the current position
4883 *
4884 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4885 * list, starting from iter position. The caller must hold RCU read lock.
4886 */
4887void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4888 struct list_head **iter)
4889{
4890 struct netdev_adjacent *lower;
4891
4892 WARN_ON_ONCE(!rcu_read_lock_held());
4893
4894 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4895
4896 if (&lower->list == &dev->adj_list.lower)
4897 return NULL;
4898
6859e7df 4899 *iter = &lower->list;
31088a11
VF
4900
4901 return lower->private;
4902}
4903EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4904
4085ebe8
VY
4905/**
4906 * netdev_lower_get_next - Get the next device from the lower neighbour
4907 * list
4908 * @dev: device
4909 * @iter: list_head ** of the current position
4910 *
4911 * Gets the next netdev_adjacent from the dev's lower neighbour
4912 * list, starting from iter position. The caller must hold RTNL lock or
4913 * its own locking that guarantees that the neighbour lower
4914 * list will remain unchainged.
4915 */
4916void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4917{
4918 struct netdev_adjacent *lower;
4919
4920 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4921
4922 if (&lower->list == &dev->adj_list.lower)
4923 return NULL;
4924
4925 *iter = &lower->list;
4926
4927 return lower->dev;
4928}
4929EXPORT_SYMBOL(netdev_lower_get_next);
4930
e001bfad 4931/**
4932 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4933 * lower neighbour list, RCU
4934 * variant
4935 * @dev: device
4936 *
4937 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4938 * list. The caller must hold RCU read lock.
4939 */
4940void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4941{
4942 struct netdev_adjacent *lower;
4943
4944 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4945 struct netdev_adjacent, list);
4946 if (lower)
4947 return lower->private;
4948 return NULL;
4949}
4950EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4951
9ff162a8
JP
4952/**
4953 * netdev_master_upper_dev_get_rcu - Get master upper device
4954 * @dev: device
4955 *
4956 * Find a master upper device and return pointer to it or NULL in case
4957 * it's not there. The caller must hold the RCU read lock.
4958 */
4959struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4960{
aa9d8560 4961 struct netdev_adjacent *upper;
9ff162a8 4962
2f268f12 4963 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 4964 struct netdev_adjacent, list);
9ff162a8
JP
4965 if (upper && likely(upper->master))
4966 return upper->dev;
4967 return NULL;
4968}
4969EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4970
0a59f3a9 4971static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
4972 struct net_device *adj_dev,
4973 struct list_head *dev_list)
4974{
4975 char linkname[IFNAMSIZ+7];
4976 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4977 "upper_%s" : "lower_%s", adj_dev->name);
4978 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4979 linkname);
4980}
0a59f3a9 4981static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
4982 char *name,
4983 struct list_head *dev_list)
4984{
4985 char linkname[IFNAMSIZ+7];
4986 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4987 "upper_%s" : "lower_%s", name);
4988 sysfs_remove_link(&(dev->dev.kobj), linkname);
4989}
4990
7ce64c79
AF
4991static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4992 struct net_device *adj_dev,
4993 struct list_head *dev_list)
4994{
4995 return (dev_list == &dev->adj_list.upper ||
4996 dev_list == &dev->adj_list.lower) &&
4997 net_eq(dev_net(dev), dev_net(adj_dev));
4998}
3ee32707 4999
5d261913
VF
5000static int __netdev_adjacent_dev_insert(struct net_device *dev,
5001 struct net_device *adj_dev,
7863c054 5002 struct list_head *dev_list,
402dae96 5003 void *private, bool master)
5d261913
VF
5004{
5005 struct netdev_adjacent *adj;
842d67a7 5006 int ret;
5d261913 5007
7863c054 5008 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913
VF
5009
5010 if (adj) {
5d261913
VF
5011 adj->ref_nr++;
5012 return 0;
5013 }
5014
5015 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5016 if (!adj)
5017 return -ENOMEM;
5018
5019 adj->dev = adj_dev;
5020 adj->master = master;
5d261913 5021 adj->ref_nr = 1;
402dae96 5022 adj->private = private;
5d261913 5023 dev_hold(adj_dev);
2f268f12
VF
5024
5025 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5026 adj_dev->name, dev->name, adj_dev->name);
5d261913 5027
7ce64c79 5028 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5029 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5030 if (ret)
5031 goto free_adj;
5032 }
5033
7863c054 5034 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5035 if (master) {
5036 ret = sysfs_create_link(&(dev->dev.kobj),
5037 &(adj_dev->dev.kobj), "master");
5038 if (ret)
5831d66e 5039 goto remove_symlinks;
842d67a7 5040
7863c054 5041 list_add_rcu(&adj->list, dev_list);
842d67a7 5042 } else {
7863c054 5043 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5044 }
5d261913
VF
5045
5046 return 0;
842d67a7 5047
5831d66e 5048remove_symlinks:
7ce64c79 5049 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5050 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5051free_adj:
5052 kfree(adj);
974daef7 5053 dev_put(adj_dev);
842d67a7
VF
5054
5055 return ret;
5d261913
VF
5056}
5057
1d143d9f 5058static void __netdev_adjacent_dev_remove(struct net_device *dev,
5059 struct net_device *adj_dev,
5060 struct list_head *dev_list)
5d261913
VF
5061{
5062 struct netdev_adjacent *adj;
5063
7863c054 5064 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913 5065
2f268f12
VF
5066 if (!adj) {
5067 pr_err("tried to remove device %s from %s\n",
5068 dev->name, adj_dev->name);
5d261913 5069 BUG();
2f268f12 5070 }
5d261913
VF
5071
5072 if (adj->ref_nr > 1) {
2f268f12
VF
5073 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5074 adj->ref_nr-1);
5d261913
VF
5075 adj->ref_nr--;
5076 return;
5077 }
5078
842d67a7
VF
5079 if (adj->master)
5080 sysfs_remove_link(&(dev->dev.kobj), "master");
5081
7ce64c79 5082 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5083 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5084
5d261913 5085 list_del_rcu(&adj->list);
2f268f12
VF
5086 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5087 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5088 dev_put(adj_dev);
5089 kfree_rcu(adj, rcu);
5090}
5091
1d143d9f 5092static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5093 struct net_device *upper_dev,
5094 struct list_head *up_list,
5095 struct list_head *down_list,
5096 void *private, bool master)
5d261913
VF
5097{
5098 int ret;
5099
402dae96
VF
5100 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5101 master);
5d261913
VF
5102 if (ret)
5103 return ret;
5104
402dae96
VF
5105 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5106 false);
5d261913 5107 if (ret) {
2f268f12 5108 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5109 return ret;
5110 }
5111
5112 return 0;
5113}
5114
1d143d9f 5115static int __netdev_adjacent_dev_link(struct net_device *dev,
5116 struct net_device *upper_dev)
5d261913 5117{
2f268f12
VF
5118 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5119 &dev->all_adj_list.upper,
5120 &upper_dev->all_adj_list.lower,
402dae96 5121 NULL, false);
5d261913
VF
5122}
5123
1d143d9f 5124static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5125 struct net_device *upper_dev,
5126 struct list_head *up_list,
5127 struct list_head *down_list)
5d261913 5128{
2f268f12
VF
5129 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5130 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5131}
5132
1d143d9f 5133static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5134 struct net_device *upper_dev)
5d261913 5135{
2f268f12
VF
5136 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5137 &dev->all_adj_list.upper,
5138 &upper_dev->all_adj_list.lower);
5139}
5140
1d143d9f 5141static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5142 struct net_device *upper_dev,
5143 void *private, bool master)
2f268f12
VF
5144{
5145 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5146
5147 if (ret)
5148 return ret;
5149
5150 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5151 &dev->adj_list.upper,
5152 &upper_dev->adj_list.lower,
402dae96 5153 private, master);
2f268f12
VF
5154 if (ret) {
5155 __netdev_adjacent_dev_unlink(dev, upper_dev);
5156 return ret;
5157 }
5158
5159 return 0;
5d261913
VF
5160}
5161
1d143d9f 5162static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5163 struct net_device *upper_dev)
2f268f12
VF
5164{
5165 __netdev_adjacent_dev_unlink(dev, upper_dev);
5166 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5167 &dev->adj_list.upper,
5168 &upper_dev->adj_list.lower);
5169}
5d261913 5170
9ff162a8 5171static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
5172 struct net_device *upper_dev, bool master,
5173 void *private)
9ff162a8 5174{
5d261913
VF
5175 struct netdev_adjacent *i, *j, *to_i, *to_j;
5176 int ret = 0;
9ff162a8
JP
5177
5178 ASSERT_RTNL();
5179
5180 if (dev == upper_dev)
5181 return -EBUSY;
5182
5183 /* To prevent loops, check if dev is not upper device to upper_dev. */
2f268f12 5184 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5185 return -EBUSY;
5186
2f268f12 5187 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
9ff162a8
JP
5188 return -EEXIST;
5189
5190 if (master && netdev_master_upper_dev_get(dev))
5191 return -EBUSY;
5192
402dae96
VF
5193 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5194 master);
5d261913
VF
5195 if (ret)
5196 return ret;
9ff162a8 5197
5d261913 5198 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5199 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5200 * versa, and don't forget the devices itself. All of these
5201 * links are non-neighbours.
5202 */
2f268f12
VF
5203 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5204 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5205 pr_debug("Interlinking %s with %s, non-neighbour\n",
5206 i->dev->name, j->dev->name);
5d261913
VF
5207 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5208 if (ret)
5209 goto rollback_mesh;
5210 }
5211 }
5212
5213 /* add dev to every upper_dev's upper device */
2f268f12
VF
5214 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5215 pr_debug("linking %s's upper device %s with %s\n",
5216 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5217 ret = __netdev_adjacent_dev_link(dev, i->dev);
5218 if (ret)
5219 goto rollback_upper_mesh;
5220 }
5221
5222 /* add upper_dev to every dev's lower device */
2f268f12
VF
5223 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5224 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5225 i->dev->name, upper_dev->name);
5d261913
VF
5226 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5227 if (ret)
5228 goto rollback_lower_mesh;
5229 }
9ff162a8 5230
42e52bf9 5231 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8 5232 return 0;
5d261913
VF
5233
5234rollback_lower_mesh:
5235 to_i = i;
2f268f12 5236 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5237 if (i == to_i)
5238 break;
5239 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5240 }
5241
5242 i = NULL;
5243
5244rollback_upper_mesh:
5245 to_i = i;
2f268f12 5246 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5247 if (i == to_i)
5248 break;
5249 __netdev_adjacent_dev_unlink(dev, i->dev);
5250 }
5251
5252 i = j = NULL;
5253
5254rollback_mesh:
5255 to_i = i;
5256 to_j = j;
2f268f12
VF
5257 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5258 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5259 if (i == to_i && j == to_j)
5260 break;
5261 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5262 }
5263 if (i == to_i)
5264 break;
5265 }
5266
2f268f12 5267 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5268
5269 return ret;
9ff162a8
JP
5270}
5271
5272/**
5273 * netdev_upper_dev_link - Add a link to the upper device
5274 * @dev: device
5275 * @upper_dev: new upper device
5276 *
5277 * Adds a link to device which is upper to this one. The caller must hold
5278 * the RTNL lock. On a failure a negative errno code is returned.
5279 * On success the reference counts are adjusted and the function
5280 * returns zero.
5281 */
5282int netdev_upper_dev_link(struct net_device *dev,
5283 struct net_device *upper_dev)
5284{
402dae96 5285 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5286}
5287EXPORT_SYMBOL(netdev_upper_dev_link);
5288
5289/**
5290 * netdev_master_upper_dev_link - Add a master link to the upper device
5291 * @dev: device
5292 * @upper_dev: new upper device
5293 *
5294 * Adds a link to device which is upper to this one. In this case, only
5295 * one master upper device can be linked, although other non-master devices
5296 * might be linked as well. The caller must hold the RTNL lock.
5297 * On a failure a negative errno code is returned. On success the reference
5298 * counts are adjusted and the function returns zero.
5299 */
5300int netdev_master_upper_dev_link(struct net_device *dev,
5301 struct net_device *upper_dev)
5302{
402dae96 5303 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5304}
5305EXPORT_SYMBOL(netdev_master_upper_dev_link);
5306
402dae96
VF
5307int netdev_master_upper_dev_link_private(struct net_device *dev,
5308 struct net_device *upper_dev,
5309 void *private)
5310{
5311 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5312}
5313EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5314
9ff162a8
JP
5315/**
5316 * netdev_upper_dev_unlink - Removes a link to upper device
5317 * @dev: device
5318 * @upper_dev: new upper device
5319 *
5320 * Removes a link to device which is upper to this one. The caller must hold
5321 * the RTNL lock.
5322 */
5323void netdev_upper_dev_unlink(struct net_device *dev,
5324 struct net_device *upper_dev)
5325{
5d261913 5326 struct netdev_adjacent *i, *j;
9ff162a8
JP
5327 ASSERT_RTNL();
5328
2f268f12 5329 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5330
5331 /* Here is the tricky part. We must remove all dev's lower
5332 * devices from all upper_dev's upper devices and vice
5333 * versa, to maintain the graph relationship.
5334 */
2f268f12
VF
5335 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5336 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5337 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5338
5339 /* remove also the devices itself from lower/upper device
5340 * list
5341 */
2f268f12 5342 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5343 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5344
2f268f12 5345 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5346 __netdev_adjacent_dev_unlink(dev, i->dev);
5347
42e52bf9 5348 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8
JP
5349}
5350EXPORT_SYMBOL(netdev_upper_dev_unlink);
5351
61bd3857
MS
5352/**
5353 * netdev_bonding_info_change - Dispatch event about slave change
5354 * @dev: device
4a26e453 5355 * @bonding_info: info to dispatch
61bd3857
MS
5356 *
5357 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5358 * The caller must hold the RTNL lock.
5359 */
5360void netdev_bonding_info_change(struct net_device *dev,
5361 struct netdev_bonding_info *bonding_info)
5362{
5363 struct netdev_notifier_bonding_info info;
5364
5365 memcpy(&info.bonding_info, bonding_info,
5366 sizeof(struct netdev_bonding_info));
5367 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5368 &info.info);
5369}
5370EXPORT_SYMBOL(netdev_bonding_info_change);
5371
2ce1ee17 5372static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5373{
5374 struct netdev_adjacent *iter;
5375
5376 struct net *net = dev_net(dev);
5377
5378 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5379 if (!net_eq(net,dev_net(iter->dev)))
5380 continue;
5381 netdev_adjacent_sysfs_add(iter->dev, dev,
5382 &iter->dev->adj_list.lower);
5383 netdev_adjacent_sysfs_add(dev, iter->dev,
5384 &dev->adj_list.upper);
5385 }
5386
5387 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5388 if (!net_eq(net,dev_net(iter->dev)))
5389 continue;
5390 netdev_adjacent_sysfs_add(iter->dev, dev,
5391 &iter->dev->adj_list.upper);
5392 netdev_adjacent_sysfs_add(dev, iter->dev,
5393 &dev->adj_list.lower);
5394 }
5395}
5396
2ce1ee17 5397static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5398{
5399 struct netdev_adjacent *iter;
5400
5401 struct net *net = dev_net(dev);
5402
5403 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5404 if (!net_eq(net,dev_net(iter->dev)))
5405 continue;
5406 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5407 &iter->dev->adj_list.lower);
5408 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5409 &dev->adj_list.upper);
5410 }
5411
5412 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5413 if (!net_eq(net,dev_net(iter->dev)))
5414 continue;
5415 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5416 &iter->dev->adj_list.upper);
5417 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5418 &dev->adj_list.lower);
5419 }
5420}
5421
5bb025fa 5422void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5423{
5bb025fa 5424 struct netdev_adjacent *iter;
402dae96 5425
4c75431a
AF
5426 struct net *net = dev_net(dev);
5427
5bb025fa 5428 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5429 if (!net_eq(net,dev_net(iter->dev)))
5430 continue;
5bb025fa
VF
5431 netdev_adjacent_sysfs_del(iter->dev, oldname,
5432 &iter->dev->adj_list.lower);
5433 netdev_adjacent_sysfs_add(iter->dev, dev,
5434 &iter->dev->adj_list.lower);
5435 }
402dae96 5436
5bb025fa 5437 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5438 if (!net_eq(net,dev_net(iter->dev)))
5439 continue;
5bb025fa
VF
5440 netdev_adjacent_sysfs_del(iter->dev, oldname,
5441 &iter->dev->adj_list.upper);
5442 netdev_adjacent_sysfs_add(iter->dev, dev,
5443 &iter->dev->adj_list.upper);
5444 }
402dae96 5445}
402dae96
VF
5446
5447void *netdev_lower_dev_get_private(struct net_device *dev,
5448 struct net_device *lower_dev)
5449{
5450 struct netdev_adjacent *lower;
5451
5452 if (!lower_dev)
5453 return NULL;
5454 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5455 if (!lower)
5456 return NULL;
5457
5458 return lower->private;
5459}
5460EXPORT_SYMBOL(netdev_lower_dev_get_private);
5461
4085ebe8
VY
5462
5463int dev_get_nest_level(struct net_device *dev,
5464 bool (*type_check)(struct net_device *dev))
5465{
5466 struct net_device *lower = NULL;
5467 struct list_head *iter;
5468 int max_nest = -1;
5469 int nest;
5470
5471 ASSERT_RTNL();
5472
5473 netdev_for_each_lower_dev(dev, lower, iter) {
5474 nest = dev_get_nest_level(lower, type_check);
5475 if (max_nest < nest)
5476 max_nest = nest;
5477 }
5478
5479 if (type_check(dev))
5480 max_nest++;
5481
5482 return max_nest;
5483}
5484EXPORT_SYMBOL(dev_get_nest_level);
5485
b6c40d68
PM
5486static void dev_change_rx_flags(struct net_device *dev, int flags)
5487{
d314774c
SH
5488 const struct net_device_ops *ops = dev->netdev_ops;
5489
d2615bf4 5490 if (ops->ndo_change_rx_flags)
d314774c 5491 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5492}
5493
991fb3f7 5494static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5495{
b536db93 5496 unsigned int old_flags = dev->flags;
d04a48b0
EB
5497 kuid_t uid;
5498 kgid_t gid;
1da177e4 5499
24023451
PM
5500 ASSERT_RTNL();
5501
dad9b335
WC
5502 dev->flags |= IFF_PROMISC;
5503 dev->promiscuity += inc;
5504 if (dev->promiscuity == 0) {
5505 /*
5506 * Avoid overflow.
5507 * If inc causes overflow, untouch promisc and return error.
5508 */
5509 if (inc < 0)
5510 dev->flags &= ~IFF_PROMISC;
5511 else {
5512 dev->promiscuity -= inc;
7b6cd1ce
JP
5513 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5514 dev->name);
dad9b335
WC
5515 return -EOVERFLOW;
5516 }
5517 }
52609c0b 5518 if (dev->flags != old_flags) {
7b6cd1ce
JP
5519 pr_info("device %s %s promiscuous mode\n",
5520 dev->name,
5521 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5522 if (audit_enabled) {
5523 current_uid_gid(&uid, &gid);
7759db82
KHK
5524 audit_log(current->audit_context, GFP_ATOMIC,
5525 AUDIT_ANOM_PROMISCUOUS,
5526 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5527 dev->name, (dev->flags & IFF_PROMISC),
5528 (old_flags & IFF_PROMISC),
e1760bd5 5529 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5530 from_kuid(&init_user_ns, uid),
5531 from_kgid(&init_user_ns, gid),
7759db82 5532 audit_get_sessionid(current));
8192b0c4 5533 }
24023451 5534
b6c40d68 5535 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5536 }
991fb3f7
ND
5537 if (notify)
5538 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5539 return 0;
1da177e4
LT
5540}
5541
4417da66
PM
5542/**
5543 * dev_set_promiscuity - update promiscuity count on a device
5544 * @dev: device
5545 * @inc: modifier
5546 *
5547 * Add or remove promiscuity from a device. While the count in the device
5548 * remains above zero the interface remains promiscuous. Once it hits zero
5549 * the device reverts back to normal filtering operation. A negative inc
5550 * value is used to drop promiscuity on the device.
dad9b335 5551 * Return 0 if successful or a negative errno code on error.
4417da66 5552 */
dad9b335 5553int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5554{
b536db93 5555 unsigned int old_flags = dev->flags;
dad9b335 5556 int err;
4417da66 5557
991fb3f7 5558 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5559 if (err < 0)
dad9b335 5560 return err;
4417da66
PM
5561 if (dev->flags != old_flags)
5562 dev_set_rx_mode(dev);
dad9b335 5563 return err;
4417da66 5564}
d1b19dff 5565EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5566
991fb3f7 5567static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5568{
991fb3f7 5569 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5570
24023451
PM
5571 ASSERT_RTNL();
5572
1da177e4 5573 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5574 dev->allmulti += inc;
5575 if (dev->allmulti == 0) {
5576 /*
5577 * Avoid overflow.
5578 * If inc causes overflow, untouch allmulti and return error.
5579 */
5580 if (inc < 0)
5581 dev->flags &= ~IFF_ALLMULTI;
5582 else {
5583 dev->allmulti -= inc;
7b6cd1ce
JP
5584 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5585 dev->name);
dad9b335
WC
5586 return -EOVERFLOW;
5587 }
5588 }
24023451 5589 if (dev->flags ^ old_flags) {
b6c40d68 5590 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5591 dev_set_rx_mode(dev);
991fb3f7
ND
5592 if (notify)
5593 __dev_notify_flags(dev, old_flags,
5594 dev->gflags ^ old_gflags);
24023451 5595 }
dad9b335 5596 return 0;
4417da66 5597}
991fb3f7
ND
5598
5599/**
5600 * dev_set_allmulti - update allmulti count on a device
5601 * @dev: device
5602 * @inc: modifier
5603 *
5604 * Add or remove reception of all multicast frames to a device. While the
5605 * count in the device remains above zero the interface remains listening
5606 * to all interfaces. Once it hits zero the device reverts back to normal
5607 * filtering operation. A negative @inc value is used to drop the counter
5608 * when releasing a resource needing all multicasts.
5609 * Return 0 if successful or a negative errno code on error.
5610 */
5611
5612int dev_set_allmulti(struct net_device *dev, int inc)
5613{
5614 return __dev_set_allmulti(dev, inc, true);
5615}
d1b19dff 5616EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5617
5618/*
5619 * Upload unicast and multicast address lists to device and
5620 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5621 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5622 * are present.
5623 */
5624void __dev_set_rx_mode(struct net_device *dev)
5625{
d314774c
SH
5626 const struct net_device_ops *ops = dev->netdev_ops;
5627
4417da66
PM
5628 /* dev_open will call this function so the list will stay sane. */
5629 if (!(dev->flags&IFF_UP))
5630 return;
5631
5632 if (!netif_device_present(dev))
40b77c94 5633 return;
4417da66 5634
01789349 5635 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5636 /* Unicast addresses changes may only happen under the rtnl,
5637 * therefore calling __dev_set_promiscuity here is safe.
5638 */
32e7bfc4 5639 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5640 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5641 dev->uc_promisc = true;
32e7bfc4 5642 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5643 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5644 dev->uc_promisc = false;
4417da66 5645 }
4417da66 5646 }
01789349
JP
5647
5648 if (ops->ndo_set_rx_mode)
5649 ops->ndo_set_rx_mode(dev);
4417da66
PM
5650}
5651
5652void dev_set_rx_mode(struct net_device *dev)
5653{
b9e40857 5654 netif_addr_lock_bh(dev);
4417da66 5655 __dev_set_rx_mode(dev);
b9e40857 5656 netif_addr_unlock_bh(dev);
1da177e4
LT
5657}
5658
f0db275a
SH
5659/**
5660 * dev_get_flags - get flags reported to userspace
5661 * @dev: device
5662 *
5663 * Get the combination of flag bits exported through APIs to userspace.
5664 */
95c96174 5665unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5666{
95c96174 5667 unsigned int flags;
1da177e4
LT
5668
5669 flags = (dev->flags & ~(IFF_PROMISC |
5670 IFF_ALLMULTI |
b00055aa
SR
5671 IFF_RUNNING |
5672 IFF_LOWER_UP |
5673 IFF_DORMANT)) |
1da177e4
LT
5674 (dev->gflags & (IFF_PROMISC |
5675 IFF_ALLMULTI));
5676
b00055aa
SR
5677 if (netif_running(dev)) {
5678 if (netif_oper_up(dev))
5679 flags |= IFF_RUNNING;
5680 if (netif_carrier_ok(dev))
5681 flags |= IFF_LOWER_UP;
5682 if (netif_dormant(dev))
5683 flags |= IFF_DORMANT;
5684 }
1da177e4
LT
5685
5686 return flags;
5687}
d1b19dff 5688EXPORT_SYMBOL(dev_get_flags);
1da177e4 5689
bd380811 5690int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5691{
b536db93 5692 unsigned int old_flags = dev->flags;
bd380811 5693 int ret;
1da177e4 5694
24023451
PM
5695 ASSERT_RTNL();
5696
1da177e4
LT
5697 /*
5698 * Set the flags on our device.
5699 */
5700
5701 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5702 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5703 IFF_AUTOMEDIA)) |
5704 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5705 IFF_ALLMULTI));
5706
5707 /*
5708 * Load in the correct multicast list now the flags have changed.
5709 */
5710
b6c40d68
PM
5711 if ((old_flags ^ flags) & IFF_MULTICAST)
5712 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5713
4417da66 5714 dev_set_rx_mode(dev);
1da177e4
LT
5715
5716 /*
5717 * Have we downed the interface. We handle IFF_UP ourselves
5718 * according to user attempts to set it, rather than blindly
5719 * setting it.
5720 */
5721
5722 ret = 0;
d215d10f 5723 if ((old_flags ^ flags) & IFF_UP)
bd380811 5724 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5725
1da177e4 5726 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5727 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5728 unsigned int old_flags = dev->flags;
d1b19dff 5729
1da177e4 5730 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5731
5732 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5733 if (dev->flags != old_flags)
5734 dev_set_rx_mode(dev);
1da177e4
LT
5735 }
5736
5737 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5738 is important. Some (broken) drivers set IFF_PROMISC, when
5739 IFF_ALLMULTI is requested not asking us and not reporting.
5740 */
5741 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5742 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5743
1da177e4 5744 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5745 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5746 }
5747
bd380811
PM
5748 return ret;
5749}
5750
a528c219
ND
5751void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5752 unsigned int gchanges)
bd380811
PM
5753{
5754 unsigned int changes = dev->flags ^ old_flags;
5755
a528c219 5756 if (gchanges)
7f294054 5757 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5758
bd380811
PM
5759 if (changes & IFF_UP) {
5760 if (dev->flags & IFF_UP)
5761 call_netdevice_notifiers(NETDEV_UP, dev);
5762 else
5763 call_netdevice_notifiers(NETDEV_DOWN, dev);
5764 }
5765
5766 if (dev->flags & IFF_UP &&
be9efd36
JP
5767 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5768 struct netdev_notifier_change_info change_info;
5769
5770 change_info.flags_changed = changes;
5771 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5772 &change_info.info);
5773 }
bd380811
PM
5774}
5775
5776/**
5777 * dev_change_flags - change device settings
5778 * @dev: device
5779 * @flags: device state flags
5780 *
5781 * Change settings on device based state flags. The flags are
5782 * in the userspace exported format.
5783 */
b536db93 5784int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5785{
b536db93 5786 int ret;
991fb3f7 5787 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5788
5789 ret = __dev_change_flags(dev, flags);
5790 if (ret < 0)
5791 return ret;
5792
991fb3f7 5793 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5794 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5795 return ret;
5796}
d1b19dff 5797EXPORT_SYMBOL(dev_change_flags);
1da177e4 5798
2315dc91
VF
5799static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5800{
5801 const struct net_device_ops *ops = dev->netdev_ops;
5802
5803 if (ops->ndo_change_mtu)
5804 return ops->ndo_change_mtu(dev, new_mtu);
5805
5806 dev->mtu = new_mtu;
5807 return 0;
5808}
5809
f0db275a
SH
5810/**
5811 * dev_set_mtu - Change maximum transfer unit
5812 * @dev: device
5813 * @new_mtu: new transfer unit
5814 *
5815 * Change the maximum transfer size of the network device.
5816 */
1da177e4
LT
5817int dev_set_mtu(struct net_device *dev, int new_mtu)
5818{
2315dc91 5819 int err, orig_mtu;
1da177e4
LT
5820
5821 if (new_mtu == dev->mtu)
5822 return 0;
5823
5824 /* MTU must be positive. */
5825 if (new_mtu < 0)
5826 return -EINVAL;
5827
5828 if (!netif_device_present(dev))
5829 return -ENODEV;
5830
1d486bfb
VF
5831 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5832 err = notifier_to_errno(err);
5833 if (err)
5834 return err;
d314774c 5835
2315dc91
VF
5836 orig_mtu = dev->mtu;
5837 err = __dev_set_mtu(dev, new_mtu);
d314774c 5838
2315dc91
VF
5839 if (!err) {
5840 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5841 err = notifier_to_errno(err);
5842 if (err) {
5843 /* setting mtu back and notifying everyone again,
5844 * so that they have a chance to revert changes.
5845 */
5846 __dev_set_mtu(dev, orig_mtu);
5847 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5848 }
5849 }
1da177e4
LT
5850 return err;
5851}
d1b19dff 5852EXPORT_SYMBOL(dev_set_mtu);
1da177e4 5853
cbda10fa
VD
5854/**
5855 * dev_set_group - Change group this device belongs to
5856 * @dev: device
5857 * @new_group: group this device should belong to
5858 */
5859void dev_set_group(struct net_device *dev, int new_group)
5860{
5861 dev->group = new_group;
5862}
5863EXPORT_SYMBOL(dev_set_group);
5864
f0db275a
SH
5865/**
5866 * dev_set_mac_address - Change Media Access Control Address
5867 * @dev: device
5868 * @sa: new address
5869 *
5870 * Change the hardware (MAC) address of the device
5871 */
1da177e4
LT
5872int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5873{
d314774c 5874 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
5875 int err;
5876
d314774c 5877 if (!ops->ndo_set_mac_address)
1da177e4
LT
5878 return -EOPNOTSUPP;
5879 if (sa->sa_family != dev->type)
5880 return -EINVAL;
5881 if (!netif_device_present(dev))
5882 return -ENODEV;
d314774c 5883 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
5884 if (err)
5885 return err;
fbdeca2d 5886 dev->addr_assign_type = NET_ADDR_SET;
f6521516 5887 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 5888 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 5889 return 0;
1da177e4 5890}
d1b19dff 5891EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 5892
4bf84c35
JP
5893/**
5894 * dev_change_carrier - Change device carrier
5895 * @dev: device
691b3b7e 5896 * @new_carrier: new value
4bf84c35
JP
5897 *
5898 * Change device carrier
5899 */
5900int dev_change_carrier(struct net_device *dev, bool new_carrier)
5901{
5902 const struct net_device_ops *ops = dev->netdev_ops;
5903
5904 if (!ops->ndo_change_carrier)
5905 return -EOPNOTSUPP;
5906 if (!netif_device_present(dev))
5907 return -ENODEV;
5908 return ops->ndo_change_carrier(dev, new_carrier);
5909}
5910EXPORT_SYMBOL(dev_change_carrier);
5911
66b52b0d
JP
5912/**
5913 * dev_get_phys_port_id - Get device physical port ID
5914 * @dev: device
5915 * @ppid: port ID
5916 *
5917 * Get device physical port ID
5918 */
5919int dev_get_phys_port_id(struct net_device *dev,
02637fce 5920 struct netdev_phys_item_id *ppid)
66b52b0d
JP
5921{
5922 const struct net_device_ops *ops = dev->netdev_ops;
5923
5924 if (!ops->ndo_get_phys_port_id)
5925 return -EOPNOTSUPP;
5926 return ops->ndo_get_phys_port_id(dev, ppid);
5927}
5928EXPORT_SYMBOL(dev_get_phys_port_id);
5929
db24a904
DA
5930/**
5931 * dev_get_phys_port_name - Get device physical port name
5932 * @dev: device
5933 * @name: port name
5934 *
5935 * Get device physical port name
5936 */
5937int dev_get_phys_port_name(struct net_device *dev,
5938 char *name, size_t len)
5939{
5940 const struct net_device_ops *ops = dev->netdev_ops;
5941
5942 if (!ops->ndo_get_phys_port_name)
5943 return -EOPNOTSUPP;
5944 return ops->ndo_get_phys_port_name(dev, name, len);
5945}
5946EXPORT_SYMBOL(dev_get_phys_port_name);
5947
1da177e4
LT
5948/**
5949 * dev_new_index - allocate an ifindex
c4ea43c5 5950 * @net: the applicable net namespace
1da177e4
LT
5951 *
5952 * Returns a suitable unique value for a new device interface
5953 * number. The caller must hold the rtnl semaphore or the
5954 * dev_base_lock to be sure it remains unique.
5955 */
881d966b 5956static int dev_new_index(struct net *net)
1da177e4 5957{
aa79e66e 5958 int ifindex = net->ifindex;
1da177e4
LT
5959 for (;;) {
5960 if (++ifindex <= 0)
5961 ifindex = 1;
881d966b 5962 if (!__dev_get_by_index(net, ifindex))
aa79e66e 5963 return net->ifindex = ifindex;
1da177e4
LT
5964 }
5965}
5966
1da177e4 5967/* Delayed registration/unregisteration */
3b5b34fd 5968static LIST_HEAD(net_todo_list);
200b916f 5969DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 5970
6f05f629 5971static void net_set_todo(struct net_device *dev)
1da177e4 5972{
1da177e4 5973 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 5974 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
5975}
5976
9b5e383c 5977static void rollback_registered_many(struct list_head *head)
93ee31f1 5978{
e93737b0 5979 struct net_device *dev, *tmp;
5cde2829 5980 LIST_HEAD(close_head);
9b5e383c 5981
93ee31f1
DL
5982 BUG_ON(dev_boot_phase);
5983 ASSERT_RTNL();
5984
e93737b0 5985 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 5986 /* Some devices call without registering
e93737b0
KK
5987 * for initialization unwind. Remove those
5988 * devices and proceed with the remaining.
9b5e383c
ED
5989 */
5990 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
5991 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5992 dev->name, dev);
93ee31f1 5993
9b5e383c 5994 WARN_ON(1);
e93737b0
KK
5995 list_del(&dev->unreg_list);
5996 continue;
9b5e383c 5997 }
449f4544 5998 dev->dismantle = true;
9b5e383c 5999 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6000 }
93ee31f1 6001
44345724 6002 /* If device is running, close it first. */
5cde2829
EB
6003 list_for_each_entry(dev, head, unreg_list)
6004 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6005 dev_close_many(&close_head, true);
93ee31f1 6006
44345724 6007 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6008 /* And unlink it from device chain. */
6009 unlist_netdevice(dev);
93ee31f1 6010
9b5e383c
ED
6011 dev->reg_state = NETREG_UNREGISTERING;
6012 }
93ee31f1
DL
6013
6014 synchronize_net();
6015
9b5e383c 6016 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6017 struct sk_buff *skb = NULL;
6018
9b5e383c
ED
6019 /* Shutdown queueing discipline. */
6020 dev_shutdown(dev);
93ee31f1
DL
6021
6022
9b5e383c
ED
6023 /* Notify protocols, that we are about to destroy
6024 this device. They should clean all the things.
6025 */
6026 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6027
395eea6c
MB
6028 if (!dev->rtnl_link_ops ||
6029 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6030 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6031 GFP_KERNEL);
6032
9b5e383c
ED
6033 /*
6034 * Flush the unicast and multicast chains
6035 */
a748ee24 6036 dev_uc_flush(dev);
22bedad3 6037 dev_mc_flush(dev);
93ee31f1 6038
9b5e383c
ED
6039 if (dev->netdev_ops->ndo_uninit)
6040 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6041
395eea6c
MB
6042 if (skb)
6043 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6044
9ff162a8
JP
6045 /* Notifier chain MUST detach us all upper devices. */
6046 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6047
9b5e383c
ED
6048 /* Remove entries from kobject tree */
6049 netdev_unregister_kobject(dev);
024e9679
AD
6050#ifdef CONFIG_XPS
6051 /* Remove XPS queueing entries */
6052 netif_reset_xps_queues_gt(dev, 0);
6053#endif
9b5e383c 6054 }
93ee31f1 6055
850a545b 6056 synchronize_net();
395264d5 6057
a5ee1551 6058 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6059 dev_put(dev);
6060}
6061
6062static void rollback_registered(struct net_device *dev)
6063{
6064 LIST_HEAD(single);
6065
6066 list_add(&dev->unreg_list, &single);
6067 rollback_registered_many(&single);
ceaaec98 6068 list_del(&single);
93ee31f1
DL
6069}
6070
c8f44aff
MM
6071static netdev_features_t netdev_fix_features(struct net_device *dev,
6072 netdev_features_t features)
b63365a2 6073{
57422dc5
MM
6074 /* Fix illegal checksum combinations */
6075 if ((features & NETIF_F_HW_CSUM) &&
6076 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6077 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6078 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6079 }
6080
b63365a2 6081 /* TSO requires that SG is present as well. */
ea2d3688 6082 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6083 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6084 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6085 }
6086
ec5f0615
PS
6087 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6088 !(features & NETIF_F_IP_CSUM)) {
6089 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6090 features &= ~NETIF_F_TSO;
6091 features &= ~NETIF_F_TSO_ECN;
6092 }
6093
6094 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6095 !(features & NETIF_F_IPV6_CSUM)) {
6096 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6097 features &= ~NETIF_F_TSO6;
6098 }
6099
31d8b9e0
BH
6100 /* TSO ECN requires that TSO is present as well. */
6101 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6102 features &= ~NETIF_F_TSO_ECN;
6103
212b573f
MM
6104 /* Software GSO depends on SG. */
6105 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6106 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6107 features &= ~NETIF_F_GSO;
6108 }
6109
acd1130e 6110 /* UFO needs SG and checksumming */
b63365a2 6111 if (features & NETIF_F_UFO) {
79032644
MM
6112 /* maybe split UFO into V4 and V6? */
6113 if (!((features & NETIF_F_GEN_CSUM) ||
6114 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6115 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6116 netdev_dbg(dev,
acd1130e 6117 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6118 features &= ~NETIF_F_UFO;
6119 }
6120
6121 if (!(features & NETIF_F_SG)) {
6f404e44 6122 netdev_dbg(dev,
acd1130e 6123 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6124 features &= ~NETIF_F_UFO;
6125 }
6126 }
6127
d0290214
JP
6128#ifdef CONFIG_NET_RX_BUSY_POLL
6129 if (dev->netdev_ops->ndo_busy_poll)
6130 features |= NETIF_F_BUSY_POLL;
6131 else
6132#endif
6133 features &= ~NETIF_F_BUSY_POLL;
6134
b63365a2
HX
6135 return features;
6136}
b63365a2 6137
6cb6a27c 6138int __netdev_update_features(struct net_device *dev)
5455c699 6139{
c8f44aff 6140 netdev_features_t features;
5455c699
MM
6141 int err = 0;
6142
87267485
MM
6143 ASSERT_RTNL();
6144
5455c699
MM
6145 features = netdev_get_wanted_features(dev);
6146
6147 if (dev->netdev_ops->ndo_fix_features)
6148 features = dev->netdev_ops->ndo_fix_features(dev, features);
6149
6150 /* driver might be less strict about feature dependencies */
6151 features = netdev_fix_features(dev, features);
6152
6153 if (dev->features == features)
6cb6a27c 6154 return 0;
5455c699 6155
c8f44aff
MM
6156 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6157 &dev->features, &features);
5455c699
MM
6158
6159 if (dev->netdev_ops->ndo_set_features)
6160 err = dev->netdev_ops->ndo_set_features(dev, features);
6161
6cb6a27c 6162 if (unlikely(err < 0)) {
5455c699 6163 netdev_err(dev,
c8f44aff
MM
6164 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6165 err, &features, &dev->features);
6cb6a27c
MM
6166 return -1;
6167 }
6168
6169 if (!err)
6170 dev->features = features;
6171
6172 return 1;
6173}
6174
afe12cc8
MM
6175/**
6176 * netdev_update_features - recalculate device features
6177 * @dev: the device to check
6178 *
6179 * Recalculate dev->features set and send notifications if it
6180 * has changed. Should be called after driver or hardware dependent
6181 * conditions might have changed that influence the features.
6182 */
6cb6a27c
MM
6183void netdev_update_features(struct net_device *dev)
6184{
6185 if (__netdev_update_features(dev))
6186 netdev_features_change(dev);
5455c699
MM
6187}
6188EXPORT_SYMBOL(netdev_update_features);
6189
afe12cc8
MM
6190/**
6191 * netdev_change_features - recalculate device features
6192 * @dev: the device to check
6193 *
6194 * Recalculate dev->features set and send notifications even
6195 * if they have not changed. Should be called instead of
6196 * netdev_update_features() if also dev->vlan_features might
6197 * have changed to allow the changes to be propagated to stacked
6198 * VLAN devices.
6199 */
6200void netdev_change_features(struct net_device *dev)
6201{
6202 __netdev_update_features(dev);
6203 netdev_features_change(dev);
6204}
6205EXPORT_SYMBOL(netdev_change_features);
6206
fc4a7489
PM
6207/**
6208 * netif_stacked_transfer_operstate - transfer operstate
6209 * @rootdev: the root or lower level device to transfer state from
6210 * @dev: the device to transfer operstate to
6211 *
6212 * Transfer operational state from root to device. This is normally
6213 * called when a stacking relationship exists between the root
6214 * device and the device(a leaf device).
6215 */
6216void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6217 struct net_device *dev)
6218{
6219 if (rootdev->operstate == IF_OPER_DORMANT)
6220 netif_dormant_on(dev);
6221 else
6222 netif_dormant_off(dev);
6223
6224 if (netif_carrier_ok(rootdev)) {
6225 if (!netif_carrier_ok(dev))
6226 netif_carrier_on(dev);
6227 } else {
6228 if (netif_carrier_ok(dev))
6229 netif_carrier_off(dev);
6230 }
6231}
6232EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6233
a953be53 6234#ifdef CONFIG_SYSFS
1b4bf461
ED
6235static int netif_alloc_rx_queues(struct net_device *dev)
6236{
1b4bf461 6237 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6238 struct netdev_rx_queue *rx;
10595902 6239 size_t sz = count * sizeof(*rx);
1b4bf461 6240
bd25fa7b 6241 BUG_ON(count < 1);
1b4bf461 6242
10595902
PG
6243 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6244 if (!rx) {
6245 rx = vzalloc(sz);
6246 if (!rx)
6247 return -ENOMEM;
6248 }
bd25fa7b
TH
6249 dev->_rx = rx;
6250
bd25fa7b 6251 for (i = 0; i < count; i++)
fe822240 6252 rx[i].dev = dev;
1b4bf461
ED
6253 return 0;
6254}
bf264145 6255#endif
1b4bf461 6256
aa942104
CG
6257static void netdev_init_one_queue(struct net_device *dev,
6258 struct netdev_queue *queue, void *_unused)
6259{
6260 /* Initialize queue lock */
6261 spin_lock_init(&queue->_xmit_lock);
6262 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6263 queue->xmit_lock_owner = -1;
b236da69 6264 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6265 queue->dev = dev;
114cf580
TH
6266#ifdef CONFIG_BQL
6267 dql_init(&queue->dql, HZ);
6268#endif
aa942104
CG
6269}
6270
60877a32
ED
6271static void netif_free_tx_queues(struct net_device *dev)
6272{
4cb28970 6273 kvfree(dev->_tx);
60877a32
ED
6274}
6275
e6484930
TH
6276static int netif_alloc_netdev_queues(struct net_device *dev)
6277{
6278 unsigned int count = dev->num_tx_queues;
6279 struct netdev_queue *tx;
60877a32 6280 size_t sz = count * sizeof(*tx);
e6484930 6281
60877a32 6282 BUG_ON(count < 1 || count > 0xffff);
62b5942a 6283
60877a32
ED
6284 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6285 if (!tx) {
6286 tx = vzalloc(sz);
6287 if (!tx)
6288 return -ENOMEM;
6289 }
e6484930 6290 dev->_tx = tx;
1d24eb48 6291
e6484930
TH
6292 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6293 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6294
6295 return 0;
e6484930
TH
6296}
6297
1da177e4
LT
6298/**
6299 * register_netdevice - register a network device
6300 * @dev: device to register
6301 *
6302 * Take a completed network device structure and add it to the kernel
6303 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6304 * chain. 0 is returned on success. A negative errno code is returned
6305 * on a failure to set up the device, or if the name is a duplicate.
6306 *
6307 * Callers must hold the rtnl semaphore. You may want
6308 * register_netdev() instead of this.
6309 *
6310 * BUGS:
6311 * The locking appears insufficient to guarantee two parallel registers
6312 * will not get the same name.
6313 */
6314
6315int register_netdevice(struct net_device *dev)
6316{
1da177e4 6317 int ret;
d314774c 6318 struct net *net = dev_net(dev);
1da177e4
LT
6319
6320 BUG_ON(dev_boot_phase);
6321 ASSERT_RTNL();
6322
b17a7c17
SH
6323 might_sleep();
6324
1da177e4
LT
6325 /* When net_device's are persistent, this will be fatal. */
6326 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6327 BUG_ON(!net);
1da177e4 6328
f1f28aa3 6329 spin_lock_init(&dev->addr_list_lock);
cf508b12 6330 netdev_set_addr_lockdep_class(dev);
1da177e4 6331
828de4f6 6332 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6333 if (ret < 0)
6334 goto out;
6335
1da177e4 6336 /* Init, if this function is available */
d314774c
SH
6337 if (dev->netdev_ops->ndo_init) {
6338 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6339 if (ret) {
6340 if (ret > 0)
6341 ret = -EIO;
90833aa4 6342 goto out;
1da177e4
LT
6343 }
6344 }
4ec93edb 6345
f646968f
PM
6346 if (((dev->hw_features | dev->features) &
6347 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6348 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6349 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6350 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6351 ret = -EINVAL;
6352 goto err_uninit;
6353 }
6354
9c7dafbf
PE
6355 ret = -EBUSY;
6356 if (!dev->ifindex)
6357 dev->ifindex = dev_new_index(net);
6358 else if (__dev_get_by_index(net, dev->ifindex))
6359 goto err_uninit;
6360
5455c699
MM
6361 /* Transfer changeable features to wanted_features and enable
6362 * software offloads (GSO and GRO).
6363 */
6364 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6365 dev->features |= NETIF_F_SOFT_FEATURES;
6366 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6367
34324dc2
MM
6368 if (!(dev->flags & IFF_LOOPBACK)) {
6369 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6370 }
6371
1180e7d6 6372 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6373 */
1180e7d6 6374 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6375
ee579677
PS
6376 /* Make NETIF_F_SG inheritable to tunnel devices.
6377 */
6378 dev->hw_enc_features |= NETIF_F_SG;
6379
0d89d203
SH
6380 /* Make NETIF_F_SG inheritable to MPLS.
6381 */
6382 dev->mpls_features |= NETIF_F_SG;
6383
7ffbe3fd
JB
6384 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6385 ret = notifier_to_errno(ret);
6386 if (ret)
6387 goto err_uninit;
6388
8b41d188 6389 ret = netdev_register_kobject(dev);
b17a7c17 6390 if (ret)
7ce1b0ed 6391 goto err_uninit;
b17a7c17
SH
6392 dev->reg_state = NETREG_REGISTERED;
6393
6cb6a27c 6394 __netdev_update_features(dev);
8e9b59b2 6395
1da177e4
LT
6396 /*
6397 * Default initial state at registry is that the
6398 * device is present.
6399 */
6400
6401 set_bit(__LINK_STATE_PRESENT, &dev->state);
6402
8f4cccbb
BH
6403 linkwatch_init_dev(dev);
6404
1da177e4 6405 dev_init_scheduler(dev);
1da177e4 6406 dev_hold(dev);
ce286d32 6407 list_netdevice(dev);
7bf23575 6408 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6409
948b337e
JP
6410 /* If the device has permanent device address, driver should
6411 * set dev_addr and also addr_assign_type should be set to
6412 * NET_ADDR_PERM (default value).
6413 */
6414 if (dev->addr_assign_type == NET_ADDR_PERM)
6415 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6416
1da177e4 6417 /* Notify protocols, that a new device appeared. */
056925ab 6418 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6419 ret = notifier_to_errno(ret);
93ee31f1
DL
6420 if (ret) {
6421 rollback_registered(dev);
6422 dev->reg_state = NETREG_UNREGISTERED;
6423 }
d90a909e
EB
6424 /*
6425 * Prevent userspace races by waiting until the network
6426 * device is fully setup before sending notifications.
6427 */
a2835763
PM
6428 if (!dev->rtnl_link_ops ||
6429 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6430 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6431
6432out:
6433 return ret;
7ce1b0ed
HX
6434
6435err_uninit:
d314774c
SH
6436 if (dev->netdev_ops->ndo_uninit)
6437 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6438 goto out;
1da177e4 6439}
d1b19dff 6440EXPORT_SYMBOL(register_netdevice);
1da177e4 6441
937f1ba5
BH
6442/**
6443 * init_dummy_netdev - init a dummy network device for NAPI
6444 * @dev: device to init
6445 *
6446 * This takes a network device structure and initialize the minimum
6447 * amount of fields so it can be used to schedule NAPI polls without
6448 * registering a full blown interface. This is to be used by drivers
6449 * that need to tie several hardware interfaces to a single NAPI
6450 * poll scheduler due to HW limitations.
6451 */
6452int init_dummy_netdev(struct net_device *dev)
6453{
6454 /* Clear everything. Note we don't initialize spinlocks
6455 * are they aren't supposed to be taken by any of the
6456 * NAPI code and this dummy netdev is supposed to be
6457 * only ever used for NAPI polls
6458 */
6459 memset(dev, 0, sizeof(struct net_device));
6460
6461 /* make sure we BUG if trying to hit standard
6462 * register/unregister code path
6463 */
6464 dev->reg_state = NETREG_DUMMY;
6465
937f1ba5
BH
6466 /* NAPI wants this */
6467 INIT_LIST_HEAD(&dev->napi_list);
6468
6469 /* a dummy interface is started by default */
6470 set_bit(__LINK_STATE_PRESENT, &dev->state);
6471 set_bit(__LINK_STATE_START, &dev->state);
6472
29b4433d
ED
6473 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6474 * because users of this 'device' dont need to change
6475 * its refcount.
6476 */
6477
937f1ba5
BH
6478 return 0;
6479}
6480EXPORT_SYMBOL_GPL(init_dummy_netdev);
6481
6482
1da177e4
LT
6483/**
6484 * register_netdev - register a network device
6485 * @dev: device to register
6486 *
6487 * Take a completed network device structure and add it to the kernel
6488 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6489 * chain. 0 is returned on success. A negative errno code is returned
6490 * on a failure to set up the device, or if the name is a duplicate.
6491 *
38b4da38 6492 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6493 * and expands the device name if you passed a format string to
6494 * alloc_netdev.
6495 */
6496int register_netdev(struct net_device *dev)
6497{
6498 int err;
6499
6500 rtnl_lock();
1da177e4 6501 err = register_netdevice(dev);
1da177e4
LT
6502 rtnl_unlock();
6503 return err;
6504}
6505EXPORT_SYMBOL(register_netdev);
6506
29b4433d
ED
6507int netdev_refcnt_read(const struct net_device *dev)
6508{
6509 int i, refcnt = 0;
6510
6511 for_each_possible_cpu(i)
6512 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6513 return refcnt;
6514}
6515EXPORT_SYMBOL(netdev_refcnt_read);
6516
2c53040f 6517/**
1da177e4 6518 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6519 * @dev: target net_device
1da177e4
LT
6520 *
6521 * This is called when unregistering network devices.
6522 *
6523 * Any protocol or device that holds a reference should register
6524 * for netdevice notification, and cleanup and put back the
6525 * reference if they receive an UNREGISTER event.
6526 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6527 * call dev_put.
1da177e4
LT
6528 */
6529static void netdev_wait_allrefs(struct net_device *dev)
6530{
6531 unsigned long rebroadcast_time, warning_time;
29b4433d 6532 int refcnt;
1da177e4 6533
e014debe
ED
6534 linkwatch_forget_dev(dev);
6535
1da177e4 6536 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6537 refcnt = netdev_refcnt_read(dev);
6538
6539 while (refcnt != 0) {
1da177e4 6540 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6541 rtnl_lock();
1da177e4
LT
6542
6543 /* Rebroadcast unregister notification */
056925ab 6544 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6545
748e2d93 6546 __rtnl_unlock();
0115e8e3 6547 rcu_barrier();
748e2d93
ED
6548 rtnl_lock();
6549
0115e8e3 6550 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6551 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6552 &dev->state)) {
6553 /* We must not have linkwatch events
6554 * pending on unregister. If this
6555 * happens, we simply run the queue
6556 * unscheduled, resulting in a noop
6557 * for this device.
6558 */
6559 linkwatch_run_queue();
6560 }
6561
6756ae4b 6562 __rtnl_unlock();
1da177e4
LT
6563
6564 rebroadcast_time = jiffies;
6565 }
6566
6567 msleep(250);
6568
29b4433d
ED
6569 refcnt = netdev_refcnt_read(dev);
6570
1da177e4 6571 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6572 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6573 dev->name, refcnt);
1da177e4
LT
6574 warning_time = jiffies;
6575 }
6576 }
6577}
6578
6579/* The sequence is:
6580 *
6581 * rtnl_lock();
6582 * ...
6583 * register_netdevice(x1);
6584 * register_netdevice(x2);
6585 * ...
6586 * unregister_netdevice(y1);
6587 * unregister_netdevice(y2);
6588 * ...
6589 * rtnl_unlock();
6590 * free_netdev(y1);
6591 * free_netdev(y2);
6592 *
58ec3b4d 6593 * We are invoked by rtnl_unlock().
1da177e4 6594 * This allows us to deal with problems:
b17a7c17 6595 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6596 * without deadlocking with linkwatch via keventd.
6597 * 2) Since we run with the RTNL semaphore not held, we can sleep
6598 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6599 *
6600 * We must not return until all unregister events added during
6601 * the interval the lock was held have been completed.
1da177e4 6602 */
1da177e4
LT
6603void netdev_run_todo(void)
6604{
626ab0e6 6605 struct list_head list;
1da177e4 6606
1da177e4 6607 /* Snapshot list, allow later requests */
626ab0e6 6608 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6609
6610 __rtnl_unlock();
626ab0e6 6611
0115e8e3
ED
6612
6613 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6614 if (!list_empty(&list))
6615 rcu_barrier();
6616
1da177e4
LT
6617 while (!list_empty(&list)) {
6618 struct net_device *dev
e5e26d75 6619 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6620 list_del(&dev->todo_list);
6621
748e2d93 6622 rtnl_lock();
0115e8e3 6623 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6624 __rtnl_unlock();
0115e8e3 6625
b17a7c17 6626 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6627 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6628 dev->name, dev->reg_state);
6629 dump_stack();
6630 continue;
6631 }
1da177e4 6632
b17a7c17 6633 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6634
152102c7 6635 on_each_cpu(flush_backlog, dev, 1);
6e583ce5 6636
b17a7c17 6637 netdev_wait_allrefs(dev);
1da177e4 6638
b17a7c17 6639 /* paranoia */
29b4433d 6640 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
6641 BUG_ON(!list_empty(&dev->ptype_all));
6642 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
6643 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6644 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6645 WARN_ON(dev->dn_ptr);
1da177e4 6646
b17a7c17
SH
6647 if (dev->destructor)
6648 dev->destructor(dev);
9093bbb2 6649
50624c93
EB
6650 /* Report a network device has been unregistered */
6651 rtnl_lock();
6652 dev_net(dev)->dev_unreg_count--;
6653 __rtnl_unlock();
6654 wake_up(&netdev_unregistering_wq);
6655
9093bbb2
SH
6656 /* Free network device */
6657 kobject_put(&dev->dev.kobj);
1da177e4 6658 }
1da177e4
LT
6659}
6660
3cfde79c
BH
6661/* Convert net_device_stats to rtnl_link_stats64. They have the same
6662 * fields in the same order, with only the type differing.
6663 */
77a1abf5
ED
6664void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6665 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6666{
6667#if BITS_PER_LONG == 64
77a1abf5
ED
6668 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6669 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6670#else
6671 size_t i, n = sizeof(*stats64) / sizeof(u64);
6672 const unsigned long *src = (const unsigned long *)netdev_stats;
6673 u64 *dst = (u64 *)stats64;
6674
6675 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6676 sizeof(*stats64) / sizeof(u64));
6677 for (i = 0; i < n; i++)
6678 dst[i] = src[i];
6679#endif
6680}
77a1abf5 6681EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6682
eeda3fd6
SH
6683/**
6684 * dev_get_stats - get network device statistics
6685 * @dev: device to get statistics from
28172739 6686 * @storage: place to store stats
eeda3fd6 6687 *
d7753516
BH
6688 * Get network statistics from device. Return @storage.
6689 * The device driver may provide its own method by setting
6690 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6691 * otherwise the internal statistics structure is used.
eeda3fd6 6692 */
d7753516
BH
6693struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6694 struct rtnl_link_stats64 *storage)
7004bf25 6695{
eeda3fd6
SH
6696 const struct net_device_ops *ops = dev->netdev_ops;
6697
28172739
ED
6698 if (ops->ndo_get_stats64) {
6699 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6700 ops->ndo_get_stats64(dev, storage);
6701 } else if (ops->ndo_get_stats) {
3cfde79c 6702 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6703 } else {
6704 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6705 }
caf586e5 6706 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6707 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 6708 return storage;
c45d286e 6709}
eeda3fd6 6710EXPORT_SYMBOL(dev_get_stats);
c45d286e 6711
24824a09 6712struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 6713{
24824a09 6714 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 6715
24824a09
ED
6716#ifdef CONFIG_NET_CLS_ACT
6717 if (queue)
6718 return queue;
6719 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6720 if (!queue)
6721 return NULL;
6722 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 6723 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
6724 queue->qdisc_sleeping = &noop_qdisc;
6725 rcu_assign_pointer(dev->ingress_queue, queue);
6726#endif
6727 return queue;
bb949fbd
DM
6728}
6729
2c60db03
ED
6730static const struct ethtool_ops default_ethtool_ops;
6731
d07d7507
SG
6732void netdev_set_default_ethtool_ops(struct net_device *dev,
6733 const struct ethtool_ops *ops)
6734{
6735 if (dev->ethtool_ops == &default_ethtool_ops)
6736 dev->ethtool_ops = ops;
6737}
6738EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6739
74d332c1
ED
6740void netdev_freemem(struct net_device *dev)
6741{
6742 char *addr = (char *)dev - dev->padded;
6743
4cb28970 6744 kvfree(addr);
74d332c1
ED
6745}
6746
1da177e4 6747/**
36909ea4 6748 * alloc_netdev_mqs - allocate network device
c835a677
TG
6749 * @sizeof_priv: size of private data to allocate space for
6750 * @name: device name format string
6751 * @name_assign_type: origin of device name
6752 * @setup: callback to initialize device
6753 * @txqs: the number of TX subqueues to allocate
6754 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
6755 *
6756 * Allocates a struct net_device with private data area for driver use
90e51adf 6757 * and performs basic initialization. Also allocates subqueue structs
36909ea4 6758 * for each queue on the device.
1da177e4 6759 */
36909ea4 6760struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 6761 unsigned char name_assign_type,
36909ea4
TH
6762 void (*setup)(struct net_device *),
6763 unsigned int txqs, unsigned int rxqs)
1da177e4 6764{
1da177e4 6765 struct net_device *dev;
7943986c 6766 size_t alloc_size;
1ce8e7b5 6767 struct net_device *p;
1da177e4 6768
b6fe17d6
SH
6769 BUG_ON(strlen(name) >= sizeof(dev->name));
6770
36909ea4 6771 if (txqs < 1) {
7b6cd1ce 6772 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
6773 return NULL;
6774 }
6775
a953be53 6776#ifdef CONFIG_SYSFS
36909ea4 6777 if (rxqs < 1) {
7b6cd1ce 6778 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
6779 return NULL;
6780 }
6781#endif
6782
fd2ea0a7 6783 alloc_size = sizeof(struct net_device);
d1643d24
AD
6784 if (sizeof_priv) {
6785 /* ensure 32-byte alignment of private area */
1ce8e7b5 6786 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
6787 alloc_size += sizeof_priv;
6788 }
6789 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 6790 alloc_size += NETDEV_ALIGN - 1;
1da177e4 6791
74d332c1
ED
6792 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6793 if (!p)
6794 p = vzalloc(alloc_size);
62b5942a 6795 if (!p)
1da177e4 6796 return NULL;
1da177e4 6797
1ce8e7b5 6798 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 6799 dev->padded = (char *)dev - (char *)p;
ab9c73cc 6800
29b4433d
ED
6801 dev->pcpu_refcnt = alloc_percpu(int);
6802 if (!dev->pcpu_refcnt)
74d332c1 6803 goto free_dev;
ab9c73cc 6804
ab9c73cc 6805 if (dev_addr_init(dev))
29b4433d 6806 goto free_pcpu;
ab9c73cc 6807
22bedad3 6808 dev_mc_init(dev);
a748ee24 6809 dev_uc_init(dev);
ccffad25 6810
c346dca1 6811 dev_net_set(dev, &init_net);
1da177e4 6812
8d3bdbd5 6813 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 6814 dev->gso_max_segs = GSO_MAX_SEGS;
fcbeb976 6815 dev->gso_min_segs = 0;
8d3bdbd5 6816
8d3bdbd5
DM
6817 INIT_LIST_HEAD(&dev->napi_list);
6818 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 6819 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 6820 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
6821 INIT_LIST_HEAD(&dev->adj_list.upper);
6822 INIT_LIST_HEAD(&dev->adj_list.lower);
6823 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6824 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
6825 INIT_LIST_HEAD(&dev->ptype_all);
6826 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 6827 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
6828 setup(dev);
6829
36909ea4
TH
6830 dev->num_tx_queues = txqs;
6831 dev->real_num_tx_queues = txqs;
ed9af2e8 6832 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 6833 goto free_all;
e8a0464c 6834
a953be53 6835#ifdef CONFIG_SYSFS
36909ea4
TH
6836 dev->num_rx_queues = rxqs;
6837 dev->real_num_rx_queues = rxqs;
fe822240 6838 if (netif_alloc_rx_queues(dev))
8d3bdbd5 6839 goto free_all;
df334545 6840#endif
0a9627f2 6841
1da177e4 6842 strcpy(dev->name, name);
c835a677 6843 dev->name_assign_type = name_assign_type;
cbda10fa 6844 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
6845 if (!dev->ethtool_ops)
6846 dev->ethtool_ops = &default_ethtool_ops;
1da177e4 6847 return dev;
ab9c73cc 6848
8d3bdbd5
DM
6849free_all:
6850 free_netdev(dev);
6851 return NULL;
6852
29b4433d
ED
6853free_pcpu:
6854 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
6855free_dev:
6856 netdev_freemem(dev);
ab9c73cc 6857 return NULL;
1da177e4 6858}
36909ea4 6859EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
6860
6861/**
6862 * free_netdev - free network device
6863 * @dev: device
6864 *
4ec93edb
YH
6865 * This function does the last stage of destroying an allocated device
6866 * interface. The reference to the device object is released.
1da177e4
LT
6867 * If this is the last reference then it will be freed.
6868 */
6869void free_netdev(struct net_device *dev)
6870{
d565b0a1
HX
6871 struct napi_struct *p, *n;
6872
60877a32 6873 netif_free_tx_queues(dev);
a953be53 6874#ifdef CONFIG_SYSFS
10595902 6875 kvfree(dev->_rx);
fe822240 6876#endif
e8a0464c 6877
33d480ce 6878 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 6879
f001fde5
JP
6880 /* Flush device addresses */
6881 dev_addr_flush(dev);
6882
d565b0a1
HX
6883 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6884 netif_napi_del(p);
6885
29b4433d
ED
6886 free_percpu(dev->pcpu_refcnt);
6887 dev->pcpu_refcnt = NULL;
6888
3041a069 6889 /* Compatibility with error handling in drivers */
1da177e4 6890 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 6891 netdev_freemem(dev);
1da177e4
LT
6892 return;
6893 }
6894
6895 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6896 dev->reg_state = NETREG_RELEASED;
6897
43cb76d9
GKH
6898 /* will free via device release */
6899 put_device(&dev->dev);
1da177e4 6900}
d1b19dff 6901EXPORT_SYMBOL(free_netdev);
4ec93edb 6902
f0db275a
SH
6903/**
6904 * synchronize_net - Synchronize with packet receive processing
6905 *
6906 * Wait for packets currently being received to be done.
6907 * Does not block later packets from starting.
6908 */
4ec93edb 6909void synchronize_net(void)
1da177e4
LT
6910{
6911 might_sleep();
be3fc413
ED
6912 if (rtnl_is_locked())
6913 synchronize_rcu_expedited();
6914 else
6915 synchronize_rcu();
1da177e4 6916}
d1b19dff 6917EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
6918
6919/**
44a0873d 6920 * unregister_netdevice_queue - remove device from the kernel
1da177e4 6921 * @dev: device
44a0873d 6922 * @head: list
6ebfbc06 6923 *
1da177e4 6924 * This function shuts down a device interface and removes it
d59b54b1 6925 * from the kernel tables.
44a0873d 6926 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
6927 *
6928 * Callers must hold the rtnl semaphore. You may want
6929 * unregister_netdev() instead of this.
6930 */
6931
44a0873d 6932void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 6933{
a6620712
HX
6934 ASSERT_RTNL();
6935
44a0873d 6936 if (head) {
9fdce099 6937 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
6938 } else {
6939 rollback_registered(dev);
6940 /* Finish processing unregister after unlock */
6941 net_set_todo(dev);
6942 }
1da177e4 6943}
44a0873d 6944EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 6945
9b5e383c
ED
6946/**
6947 * unregister_netdevice_many - unregister many devices
6948 * @head: list of devices
87757a91
ED
6949 *
6950 * Note: As most callers use a stack allocated list_head,
6951 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
6952 */
6953void unregister_netdevice_many(struct list_head *head)
6954{
6955 struct net_device *dev;
6956
6957 if (!list_empty(head)) {
6958 rollback_registered_many(head);
6959 list_for_each_entry(dev, head, unreg_list)
6960 net_set_todo(dev);
87757a91 6961 list_del(head);
9b5e383c
ED
6962 }
6963}
63c8099d 6964EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 6965
1da177e4
LT
6966/**
6967 * unregister_netdev - remove device from the kernel
6968 * @dev: device
6969 *
6970 * This function shuts down a device interface and removes it
d59b54b1 6971 * from the kernel tables.
1da177e4
LT
6972 *
6973 * This is just a wrapper for unregister_netdevice that takes
6974 * the rtnl semaphore. In general you want to use this and not
6975 * unregister_netdevice.
6976 */
6977void unregister_netdev(struct net_device *dev)
6978{
6979 rtnl_lock();
6980 unregister_netdevice(dev);
6981 rtnl_unlock();
6982}
1da177e4
LT
6983EXPORT_SYMBOL(unregister_netdev);
6984
ce286d32
EB
6985/**
6986 * dev_change_net_namespace - move device to different nethost namespace
6987 * @dev: device
6988 * @net: network namespace
6989 * @pat: If not NULL name pattern to try if the current device name
6990 * is already taken in the destination network namespace.
6991 *
6992 * This function shuts down a device interface and moves it
6993 * to a new network namespace. On success 0 is returned, on
6994 * a failure a netagive errno code is returned.
6995 *
6996 * Callers must hold the rtnl semaphore.
6997 */
6998
6999int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7000{
ce286d32
EB
7001 int err;
7002
7003 ASSERT_RTNL();
7004
7005 /* Don't allow namespace local devices to be moved. */
7006 err = -EINVAL;
7007 if (dev->features & NETIF_F_NETNS_LOCAL)
7008 goto out;
7009
7010 /* Ensure the device has been registrered */
ce286d32
EB
7011 if (dev->reg_state != NETREG_REGISTERED)
7012 goto out;
7013
7014 /* Get out if there is nothing todo */
7015 err = 0;
878628fb 7016 if (net_eq(dev_net(dev), net))
ce286d32
EB
7017 goto out;
7018
7019 /* Pick the destination device name, and ensure
7020 * we can use it in the destination network namespace.
7021 */
7022 err = -EEXIST;
d9031024 7023 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7024 /* We get here if we can't use the current device name */
7025 if (!pat)
7026 goto out;
828de4f6 7027 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7028 goto out;
7029 }
7030
7031 /*
7032 * And now a mini version of register_netdevice unregister_netdevice.
7033 */
7034
7035 /* If device is running close it first. */
9b772652 7036 dev_close(dev);
ce286d32
EB
7037
7038 /* And unlink it from device chain */
7039 err = -ENODEV;
7040 unlist_netdevice(dev);
7041
7042 synchronize_net();
7043
7044 /* Shutdown queueing discipline. */
7045 dev_shutdown(dev);
7046
7047 /* Notify protocols, that we are about to destroy
7048 this device. They should clean all the things.
3b27e105
DL
7049
7050 Note that dev->reg_state stays at NETREG_REGISTERED.
7051 This is wanted because this way 8021q and macvlan know
7052 the device is just moving and can keep their slaves up.
ce286d32
EB
7053 */
7054 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7055 rcu_barrier();
7056 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7057 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7058
7059 /*
7060 * Flush the unicast and multicast chains
7061 */
a748ee24 7062 dev_uc_flush(dev);
22bedad3 7063 dev_mc_flush(dev);
ce286d32 7064
4e66ae2e
SH
7065 /* Send a netdev-removed uevent to the old namespace */
7066 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7067 netdev_adjacent_del_links(dev);
4e66ae2e 7068
ce286d32 7069 /* Actually switch the network namespace */
c346dca1 7070 dev_net_set(dev, net);
ce286d32 7071
ce286d32 7072 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7073 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7074 dev->ifindex = dev_new_index(net);
ce286d32 7075
4e66ae2e
SH
7076 /* Send a netdev-add uevent to the new namespace */
7077 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7078 netdev_adjacent_add_links(dev);
4e66ae2e 7079
8b41d188 7080 /* Fixup kobjects */
a1b3f594 7081 err = device_rename(&dev->dev, dev->name);
8b41d188 7082 WARN_ON(err);
ce286d32
EB
7083
7084 /* Add the device back in the hashes */
7085 list_netdevice(dev);
7086
7087 /* Notify protocols, that a new device appeared. */
7088 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7089
d90a909e
EB
7090 /*
7091 * Prevent userspace races by waiting until the network
7092 * device is fully setup before sending notifications.
7093 */
7f294054 7094 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7095
ce286d32
EB
7096 synchronize_net();
7097 err = 0;
7098out:
7099 return err;
7100}
463d0183 7101EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7102
1da177e4
LT
7103static int dev_cpu_callback(struct notifier_block *nfb,
7104 unsigned long action,
7105 void *ocpu)
7106{
7107 struct sk_buff **list_skb;
1da177e4
LT
7108 struct sk_buff *skb;
7109 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7110 struct softnet_data *sd, *oldsd;
7111
8bb78442 7112 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7113 return NOTIFY_OK;
7114
7115 local_irq_disable();
7116 cpu = smp_processor_id();
7117 sd = &per_cpu(softnet_data, cpu);
7118 oldsd = &per_cpu(softnet_data, oldcpu);
7119
7120 /* Find end of our completion_queue. */
7121 list_skb = &sd->completion_queue;
7122 while (*list_skb)
7123 list_skb = &(*list_skb)->next;
7124 /* Append completion queue from offline CPU. */
7125 *list_skb = oldsd->completion_queue;
7126 oldsd->completion_queue = NULL;
7127
1da177e4 7128 /* Append output queue from offline CPU. */
a9cbd588
CG
7129 if (oldsd->output_queue) {
7130 *sd->output_queue_tailp = oldsd->output_queue;
7131 sd->output_queue_tailp = oldsd->output_queue_tailp;
7132 oldsd->output_queue = NULL;
7133 oldsd->output_queue_tailp = &oldsd->output_queue;
7134 }
ac64da0b
ED
7135 /* Append NAPI poll list from offline CPU, with one exception :
7136 * process_backlog() must be called by cpu owning percpu backlog.
7137 * We properly handle process_queue & input_pkt_queue later.
7138 */
7139 while (!list_empty(&oldsd->poll_list)) {
7140 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7141 struct napi_struct,
7142 poll_list);
7143
7144 list_del_init(&napi->poll_list);
7145 if (napi->poll == process_backlog)
7146 napi->state = 0;
7147 else
7148 ____napi_schedule(sd, napi);
264524d5 7149 }
1da177e4
LT
7150
7151 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7152 local_irq_enable();
7153
7154 /* Process offline CPU's input_pkt_queue */
76cc8b13 7155 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7156 netif_rx_ni(skb);
76cc8b13 7157 input_queue_head_incr(oldsd);
fec5e652 7158 }
ac64da0b 7159 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7160 netif_rx_ni(skb);
76cc8b13
TH
7161 input_queue_head_incr(oldsd);
7162 }
1da177e4
LT
7163
7164 return NOTIFY_OK;
7165}
1da177e4
LT
7166
7167
7f353bf2 7168/**
b63365a2
HX
7169 * netdev_increment_features - increment feature set by one
7170 * @all: current feature set
7171 * @one: new feature set
7172 * @mask: mask feature set
7f353bf2
HX
7173 *
7174 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7175 * @one to the master device with current feature set @all. Will not
7176 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7177 */
c8f44aff
MM
7178netdev_features_t netdev_increment_features(netdev_features_t all,
7179 netdev_features_t one, netdev_features_t mask)
b63365a2 7180{
1742f183
MM
7181 if (mask & NETIF_F_GEN_CSUM)
7182 mask |= NETIF_F_ALL_CSUM;
7183 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7184
1742f183
MM
7185 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7186 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7187
1742f183
MM
7188 /* If one device supports hw checksumming, set for all. */
7189 if (all & NETIF_F_GEN_CSUM)
7190 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
7191
7192 return all;
7193}
b63365a2 7194EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7195
430f03cd 7196static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7197{
7198 int i;
7199 struct hlist_head *hash;
7200
7201 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7202 if (hash != NULL)
7203 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7204 INIT_HLIST_HEAD(&hash[i]);
7205
7206 return hash;
7207}
7208
881d966b 7209/* Initialize per network namespace state */
4665079c 7210static int __net_init netdev_init(struct net *net)
881d966b 7211{
734b6541
RM
7212 if (net != &init_net)
7213 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7214
30d97d35
PE
7215 net->dev_name_head = netdev_create_hash();
7216 if (net->dev_name_head == NULL)
7217 goto err_name;
881d966b 7218
30d97d35
PE
7219 net->dev_index_head = netdev_create_hash();
7220 if (net->dev_index_head == NULL)
7221 goto err_idx;
881d966b
EB
7222
7223 return 0;
30d97d35
PE
7224
7225err_idx:
7226 kfree(net->dev_name_head);
7227err_name:
7228 return -ENOMEM;
881d966b
EB
7229}
7230
f0db275a
SH
7231/**
7232 * netdev_drivername - network driver for the device
7233 * @dev: network device
f0db275a
SH
7234 *
7235 * Determine network driver for device.
7236 */
3019de12 7237const char *netdev_drivername(const struct net_device *dev)
6579e57b 7238{
cf04a4c7
SH
7239 const struct device_driver *driver;
7240 const struct device *parent;
3019de12 7241 const char *empty = "";
6579e57b
AV
7242
7243 parent = dev->dev.parent;
6579e57b 7244 if (!parent)
3019de12 7245 return empty;
6579e57b
AV
7246
7247 driver = parent->driver;
7248 if (driver && driver->name)
3019de12
DM
7249 return driver->name;
7250 return empty;
6579e57b
AV
7251}
7252
6ea754eb
JP
7253static void __netdev_printk(const char *level, const struct net_device *dev,
7254 struct va_format *vaf)
256df2f3 7255{
b004ff49 7256 if (dev && dev->dev.parent) {
6ea754eb
JP
7257 dev_printk_emit(level[1] - '0',
7258 dev->dev.parent,
7259 "%s %s %s%s: %pV",
7260 dev_driver_string(dev->dev.parent),
7261 dev_name(dev->dev.parent),
7262 netdev_name(dev), netdev_reg_state(dev),
7263 vaf);
b004ff49 7264 } else if (dev) {
6ea754eb
JP
7265 printk("%s%s%s: %pV",
7266 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7267 } else {
6ea754eb 7268 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7269 }
256df2f3
JP
7270}
7271
6ea754eb
JP
7272void netdev_printk(const char *level, const struct net_device *dev,
7273 const char *format, ...)
256df2f3
JP
7274{
7275 struct va_format vaf;
7276 va_list args;
256df2f3
JP
7277
7278 va_start(args, format);
7279
7280 vaf.fmt = format;
7281 vaf.va = &args;
7282
6ea754eb 7283 __netdev_printk(level, dev, &vaf);
b004ff49 7284
256df2f3 7285 va_end(args);
256df2f3
JP
7286}
7287EXPORT_SYMBOL(netdev_printk);
7288
7289#define define_netdev_printk_level(func, level) \
6ea754eb 7290void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7291{ \
256df2f3
JP
7292 struct va_format vaf; \
7293 va_list args; \
7294 \
7295 va_start(args, fmt); \
7296 \
7297 vaf.fmt = fmt; \
7298 vaf.va = &args; \
7299 \
6ea754eb 7300 __netdev_printk(level, dev, &vaf); \
b004ff49 7301 \
256df2f3 7302 va_end(args); \
256df2f3
JP
7303} \
7304EXPORT_SYMBOL(func);
7305
7306define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7307define_netdev_printk_level(netdev_alert, KERN_ALERT);
7308define_netdev_printk_level(netdev_crit, KERN_CRIT);
7309define_netdev_printk_level(netdev_err, KERN_ERR);
7310define_netdev_printk_level(netdev_warn, KERN_WARNING);
7311define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7312define_netdev_printk_level(netdev_info, KERN_INFO);
7313
4665079c 7314static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7315{
7316 kfree(net->dev_name_head);
7317 kfree(net->dev_index_head);
7318}
7319
022cbae6 7320static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7321 .init = netdev_init,
7322 .exit = netdev_exit,
7323};
7324
4665079c 7325static void __net_exit default_device_exit(struct net *net)
ce286d32 7326{
e008b5fc 7327 struct net_device *dev, *aux;
ce286d32 7328 /*
e008b5fc 7329 * Push all migratable network devices back to the
ce286d32
EB
7330 * initial network namespace
7331 */
7332 rtnl_lock();
e008b5fc 7333 for_each_netdev_safe(net, dev, aux) {
ce286d32 7334 int err;
aca51397 7335 char fb_name[IFNAMSIZ];
ce286d32
EB
7336
7337 /* Ignore unmoveable devices (i.e. loopback) */
7338 if (dev->features & NETIF_F_NETNS_LOCAL)
7339 continue;
7340
e008b5fc
EB
7341 /* Leave virtual devices for the generic cleanup */
7342 if (dev->rtnl_link_ops)
7343 continue;
d0c082ce 7344
25985edc 7345 /* Push remaining network devices to init_net */
aca51397
PE
7346 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7347 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7348 if (err) {
7b6cd1ce
JP
7349 pr_emerg("%s: failed to move %s to init_net: %d\n",
7350 __func__, dev->name, err);
aca51397 7351 BUG();
ce286d32
EB
7352 }
7353 }
7354 rtnl_unlock();
7355}
7356
50624c93
EB
7357static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7358{
7359 /* Return with the rtnl_lock held when there are no network
7360 * devices unregistering in any network namespace in net_list.
7361 */
7362 struct net *net;
7363 bool unregistering;
ff960a73 7364 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 7365
ff960a73 7366 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 7367 for (;;) {
50624c93
EB
7368 unregistering = false;
7369 rtnl_lock();
7370 list_for_each_entry(net, net_list, exit_list) {
7371 if (net->dev_unreg_count > 0) {
7372 unregistering = true;
7373 break;
7374 }
7375 }
7376 if (!unregistering)
7377 break;
7378 __rtnl_unlock();
ff960a73
PZ
7379
7380 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 7381 }
ff960a73 7382 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
7383}
7384
04dc7f6b
EB
7385static void __net_exit default_device_exit_batch(struct list_head *net_list)
7386{
7387 /* At exit all network devices most be removed from a network
b595076a 7388 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7389 * Do this across as many network namespaces as possible to
7390 * improve batching efficiency.
7391 */
7392 struct net_device *dev;
7393 struct net *net;
7394 LIST_HEAD(dev_kill_list);
7395
50624c93
EB
7396 /* To prevent network device cleanup code from dereferencing
7397 * loopback devices or network devices that have been freed
7398 * wait here for all pending unregistrations to complete,
7399 * before unregistring the loopback device and allowing the
7400 * network namespace be freed.
7401 *
7402 * The netdev todo list containing all network devices
7403 * unregistrations that happen in default_device_exit_batch
7404 * will run in the rtnl_unlock() at the end of
7405 * default_device_exit_batch.
7406 */
7407 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7408 list_for_each_entry(net, net_list, exit_list) {
7409 for_each_netdev_reverse(net, dev) {
b0ab2fab 7410 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7411 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7412 else
7413 unregister_netdevice_queue(dev, &dev_kill_list);
7414 }
7415 }
7416 unregister_netdevice_many(&dev_kill_list);
7417 rtnl_unlock();
7418}
7419
022cbae6 7420static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7421 .exit = default_device_exit,
04dc7f6b 7422 .exit_batch = default_device_exit_batch,
ce286d32
EB
7423};
7424
1da177e4
LT
7425/*
7426 * Initialize the DEV module. At boot time this walks the device list and
7427 * unhooks any devices that fail to initialise (normally hardware not
7428 * present) and leaves us with a valid list of present and active devices.
7429 *
7430 */
7431
7432/*
7433 * This is called single threaded during boot, so no need
7434 * to take the rtnl semaphore.
7435 */
7436static int __init net_dev_init(void)
7437{
7438 int i, rc = -ENOMEM;
7439
7440 BUG_ON(!dev_boot_phase);
7441
1da177e4
LT
7442 if (dev_proc_init())
7443 goto out;
7444
8b41d188 7445 if (netdev_kobject_init())
1da177e4
LT
7446 goto out;
7447
7448 INIT_LIST_HEAD(&ptype_all);
82d8a867 7449 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7450 INIT_LIST_HEAD(&ptype_base[i]);
7451
62532da9
VY
7452 INIT_LIST_HEAD(&offload_base);
7453
881d966b
EB
7454 if (register_pernet_subsys(&netdev_net_ops))
7455 goto out;
1da177e4
LT
7456
7457 /*
7458 * Initialise the packet receive queues.
7459 */
7460
6f912042 7461 for_each_possible_cpu(i) {
e36fa2f7 7462 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7463
e36fa2f7 7464 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7465 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7466 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7467 sd->output_queue_tailp = &sd->output_queue;
df334545 7468#ifdef CONFIG_RPS
e36fa2f7
ED
7469 sd->csd.func = rps_trigger_softirq;
7470 sd->csd.info = sd;
e36fa2f7 7471 sd->cpu = i;
1e94d72f 7472#endif
0a9627f2 7473
e36fa2f7
ED
7474 sd->backlog.poll = process_backlog;
7475 sd->backlog.weight = weight_p;
1da177e4
LT
7476 }
7477
1da177e4
LT
7478 dev_boot_phase = 0;
7479
505d4f73
EB
7480 /* The loopback device is special if any other network devices
7481 * is present in a network namespace the loopback device must
7482 * be present. Since we now dynamically allocate and free the
7483 * loopback device ensure this invariant is maintained by
7484 * keeping the loopback device as the first device on the
7485 * list of network devices. Ensuring the loopback devices
7486 * is the first device that appears and the last network device
7487 * that disappears.
7488 */
7489 if (register_pernet_device(&loopback_net_ops))
7490 goto out;
7491
7492 if (register_pernet_device(&default_device_ops))
7493 goto out;
7494
962cf36c
CM
7495 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7496 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7497
7498 hotcpu_notifier(dev_cpu_callback, 0);
7499 dst_init();
1da177e4
LT
7500 rc = 0;
7501out:
7502 return rc;
7503}
7504
7505subsys_initcall(net_dev_init);