]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/core/dev.c
net: make default TX queue length a defined constant
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
40e4e713 142#include <linux/crash_dump.h>
1da177e4 143
342709ef
PE
144#include "net-sysfs.h"
145
d565b0a1
HX
146/* Instead of increasing this, you should create a hash table. */
147#define MAX_GRO_SKBS 8
148
5d38a079
HX
149/* This should be increased if a protocol with a bigger head is added. */
150#define GRO_MAX_HEAD (MAX_HEADER + 128)
151
1da177e4 152static DEFINE_SPINLOCK(ptype_lock);
62532da9 153static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
154struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155struct list_head ptype_all __read_mostly; /* Taps */
62532da9 156static struct list_head offload_base __read_mostly;
1da177e4 157
ae78dbfa 158static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
159static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
ae78dbfa 162
1da177e4 163/*
7562f876 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
165 * semaphore.
166 *
c6d14c84 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
7562f876 170 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
1da177e4 182DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
183EXPORT_SYMBOL(dev_base_lock);
184
af12fa6e
ET
185/* protects napi_hash addition/deletion and napi_gen_id */
186static DEFINE_SPINLOCK(napi_hash_lock);
187
52bd2d62 188static unsigned int napi_gen_id = NR_CPUS;
6180d9de 189static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 190
18afa4b0 191static seqcount_t devnet_rename_seq;
c91f6df2 192
4e985ada
TG
193static inline void dev_base_seq_inc(struct net *net)
194{
195 while (++net->dev_base_seq == 0);
196}
197
881d966b 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 199{
8387ff25 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 201
08e9897d 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
203}
204
881d966b 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 206{
7c28bd0b 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
208}
209
e36fa2f7 210static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
211{
212#ifdef CONFIG_RPS
e36fa2f7 213 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
214#endif
215}
216
e36fa2f7 217static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
ce286d32 224/* Device list insertion */
53759be9 225static void list_netdevice(struct net_device *dev)
ce286d32 226{
c346dca1 227 struct net *net = dev_net(dev);
ce286d32
EB
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
c6d14c84 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
ce286d32 236 write_unlock_bh(&dev_base_lock);
4e985ada
TG
237
238 dev_base_seq_inc(net);
ce286d32
EB
239}
240
fb699dfd
ED
241/* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
ce286d32
EB
244static void unlist_netdevice(struct net_device *dev)
245{
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
c6d14c84 250 list_del_rcu(&dev->dev_list);
72c9528b 251 hlist_del_rcu(&dev->name_hlist);
fb699dfd 252 hlist_del_rcu(&dev->index_hlist);
ce286d32 253 write_unlock_bh(&dev_base_lock);
4e985ada
TG
254
255 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
256}
257
1da177e4
LT
258/*
259 * Our notifier list
260 */
261
f07d5b94 262static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
263
264/*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
bea3348e 268
9958da05 269DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 270EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 271
cf508b12 272#ifdef CONFIG_LOCKDEP
723e98b7 273/*
c773e847 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
275 * according to dev->type
276 */
277static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 293
36cbd3dc 294static const char *const netdev_lock_name[] =
723e98b7
JP
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
310
311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
313
314static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315{
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323}
324
cf508b12
DM
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
723e98b7
JP
327{
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333}
cf508b12
DM
334
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336{
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343}
723e98b7 344#else
cf508b12
DM
345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347{
348}
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
350{
351}
352#endif
1da177e4
LT
353
354/*******************************************************************************
355
356 Protocol management and registration routines
357
358*******************************************************************************/
359
1da177e4
LT
360/*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
c07b68e8
ED
376static inline struct list_head *ptype_head(const struct packet_type *pt)
377{
378 if (pt->type == htons(ETH_P_ALL))
7866a621 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 380 else
7866a621
SN
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
383}
384
1da177e4
LT
385/**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
4ec93edb 393 * This call does not sleep therefore it can not
1da177e4
LT
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398void dev_add_pack(struct packet_type *pt)
399{
c07b68e8 400 struct list_head *head = ptype_head(pt);
1da177e4 401
c07b68e8
ED
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
1da177e4 405}
d1b19dff 406EXPORT_SYMBOL(dev_add_pack);
1da177e4 407
1da177e4
LT
408/**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
4ec93edb 415 * returns.
1da177e4
LT
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421void __dev_remove_pack(struct packet_type *pt)
422{
c07b68e8 423 struct list_head *head = ptype_head(pt);
1da177e4
LT
424 struct packet_type *pt1;
425
c07b68e8 426 spin_lock(&ptype_lock);
1da177e4
LT
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
7b6cd1ce 435 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 436out:
c07b68e8 437 spin_unlock(&ptype_lock);
1da177e4 438}
d1b19dff
ED
439EXPORT_SYMBOL(__dev_remove_pack);
440
1da177e4
LT
441/**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453void dev_remove_pack(struct packet_type *pt)
454{
455 __dev_remove_pack(pt);
4ec93edb 456
1da177e4
LT
457 synchronize_net();
458}
d1b19dff 459EXPORT_SYMBOL(dev_remove_pack);
1da177e4 460
62532da9
VY
461
462/**
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
465 *
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
469 *
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
473 */
474void dev_add_offload(struct packet_offload *po)
475{
bdef7de4 476 struct packet_offload *elem;
62532da9
VY
477
478 spin_lock(&offload_lock);
bdef7de4
DM
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
482 }
483 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
484 spin_unlock(&offload_lock);
485}
486EXPORT_SYMBOL(dev_add_offload);
487
488/**
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
491 *
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
496 *
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
500 */
1d143d9f 501static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
502{
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
505
c53aa505 506 spin_lock(&offload_lock);
62532da9
VY
507
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
512 }
513 }
514
515 pr_warn("dev_remove_offload: %p not found\n", po);
516out:
c53aa505 517 spin_unlock(&offload_lock);
62532da9 518}
62532da9
VY
519
520/**
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
523 *
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
528 *
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
531 */
532void dev_remove_offload(struct packet_offload *po)
533{
534 __dev_remove_offload(po);
535
536 synchronize_net();
537}
538EXPORT_SYMBOL(dev_remove_offload);
539
1da177e4
LT
540/******************************************************************************
541
542 Device Boot-time Settings Routines
543
544*******************************************************************************/
545
546/* Boot time configuration table */
547static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549/**
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
553 *
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
557 */
558static int netdev_boot_setup_add(char *name, struct ifmap *map)
559{
560 struct netdev_boot_setup *s;
561 int i;
562
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 567 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
570 }
571 }
572
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574}
575
576/**
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
579 *
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
584 */
585int netdev_boot_setup_check(struct net_device *dev)
586{
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
589
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 592 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
598 }
599 }
600 return 0;
601}
d1b19dff 602EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
603
604
605/**
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
609 *
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
614 */
615unsigned long netdev_boot_base(const char *prefix, int unit)
616{
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
620
621 sprintf(name, "%s%d", prefix, unit);
622
623 /*
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
626 */
881d966b 627 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
628 return 1;
629
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
634}
635
636/*
637 * Saves at boot time configured settings for any netdevice.
638 */
639int __init netdev_boot_setup(char *str)
640{
641 int ints[5];
642 struct ifmap map;
643
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
647
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
658
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
661}
662
663__setup("netdev=", netdev_boot_setup);
664
665/*******************************************************************************
666
667 Device Interface Subroutines
668
669*******************************************************************************/
670
a54acb3a
ND
671/**
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
674 *
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
677 */
678
679int dev_get_iflink(const struct net_device *dev)
680{
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
683
7a66bbc9 684 return dev->ifindex;
a54acb3a
ND
685}
686EXPORT_SYMBOL(dev_get_iflink);
687
fc4099f1
PS
688/**
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
692 *
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
696 */
697int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698{
699 struct ip_tunnel_info *info;
700
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
703
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
709
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711}
712EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
1da177e4
LT
714/**
715 * __dev_get_by_name - find a device by its name
c4ea43c5 716 * @net: the applicable net namespace
1da177e4
LT
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
881d966b 726struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 727{
0bd8d536
ED
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 730
b67bfe0d 731 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
0bd8d536 734
1da177e4
LT
735 return NULL;
736}
d1b19dff 737EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 738
72c9528b
ED
739/**
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
749 */
750
751struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752{
72c9528b
ED
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
755
b67bfe0d 756 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
759
760 return NULL;
761}
762EXPORT_SYMBOL(dev_get_by_name_rcu);
763
1da177e4
LT
764/**
765 * dev_get_by_name - find a device by its name
c4ea43c5 766 * @net: the applicable net namespace
1da177e4
LT
767 * @name: name to find
768 *
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
774 */
775
881d966b 776struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
777{
778 struct net_device *dev;
779
72c9528b
ED
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
782 if (dev)
783 dev_hold(dev);
72c9528b 784 rcu_read_unlock();
1da177e4
LT
785 return dev;
786}
d1b19dff 787EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
788
789/**
790 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 791 * @net: the applicable net namespace
1da177e4
LT
792 * @ifindex: index of device
793 *
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
799 */
800
881d966b 801struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 802{
0bd8d536
ED
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 805
b67bfe0d 806 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
807 if (dev->ifindex == ifindex)
808 return dev;
0bd8d536 809
1da177e4
LT
810 return NULL;
811}
d1b19dff 812EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 813
fb699dfd
ED
814/**
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
818 *
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
823 */
824
825struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826{
fb699dfd
ED
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
829
b67bfe0d 830 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
831 if (dev->ifindex == ifindex)
832 return dev;
833
834 return NULL;
835}
836EXPORT_SYMBOL(dev_get_by_index_rcu);
837
1da177e4
LT
838
839/**
840 * dev_get_by_index - find a device by its ifindex
c4ea43c5 841 * @net: the applicable net namespace
1da177e4
LT
842 * @ifindex: index of device
843 *
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
848 */
849
881d966b 850struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
851{
852 struct net_device *dev;
853
fb699dfd
ED
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
856 if (dev)
857 dev_hold(dev);
fb699dfd 858 rcu_read_unlock();
1da177e4
LT
859 return dev;
860}
d1b19dff 861EXPORT_SYMBOL(dev_get_by_index);
1da177e4 862
5dbe7c17
NS
863/**
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
868 *
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
872 */
873int netdev_get_name(struct net *net, char *name, int ifindex)
874{
875 struct net_device *dev;
876 unsigned int seq;
877
878retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
885 }
886
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
892 }
893
894 return 0;
895}
896
1da177e4 897/**
941666c2 898 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 899 * @net: the applicable net namespace
1da177e4
LT
900 * @type: media type of device
901 * @ha: hardware address
902 *
903 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
941666c2 906 * The returned device has not had its ref count increased
1da177e4
LT
907 * and the caller must therefore be careful about locking
908 *
1da177e4
LT
909 */
910
941666c2
ED
911struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
1da177e4
LT
913{
914 struct net_device *dev;
915
941666c2 916 for_each_netdev_rcu(net, dev)
1da177e4
LT
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
919 return dev;
920
921 return NULL;
1da177e4 922}
941666c2 923EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 924
881d966b 925struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
926{
927 struct net_device *dev;
928
4e9cac2b 929 ASSERT_RTNL();
881d966b 930 for_each_netdev(net, dev)
4e9cac2b 931 if (dev->type == type)
7562f876
PE
932 return dev;
933
934 return NULL;
4e9cac2b 935}
4e9cac2b
PM
936EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
881d966b 938struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 939{
99fe3c39 940 struct net_device *dev, *ret = NULL;
4e9cac2b 941
99fe3c39
ED
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
948 }
949 rcu_read_unlock();
950 return ret;
1da177e4 951}
1da177e4
LT
952EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954/**
6c555490 955 * __dev_get_by_flags - find any device with given flags
c4ea43c5 956 * @net: the applicable net namespace
1da177e4
LT
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
959 *
960 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 961 * is not found or a pointer to the device. Must be called inside
6c555490 962 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
963 */
964
6c555490
WC
965struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
1da177e4 967{
7562f876 968 struct net_device *dev, *ret;
1da177e4 969
6c555490
WC
970 ASSERT_RTNL();
971
7562f876 972 ret = NULL;
6c555490 973 for_each_netdev(net, dev) {
1da177e4 974 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 975 ret = dev;
1da177e4
LT
976 break;
977 }
978 }
7562f876 979 return ret;
1da177e4 980}
6c555490 981EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
982
983/**
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
986 *
987 * Network device names need to be valid file names to
c7fa9d18
DM
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
1da177e4 990 */
95f050bf 991bool dev_valid_name(const char *name)
1da177e4 992{
c7fa9d18 993 if (*name == '\0')
95f050bf 994 return false;
b6fe17d6 995 if (strlen(name) >= IFNAMSIZ)
95f050bf 996 return false;
c7fa9d18 997 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 998 return false;
c7fa9d18
DM
999
1000 while (*name) {
a4176a93 1001 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1002 return false;
c7fa9d18
DM
1003 name++;
1004 }
95f050bf 1005 return true;
1da177e4 1006}
d1b19dff 1007EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1008
1009/**
b267b179
EB
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1da177e4 1012 * @name: name format string
b267b179 1013 * @buf: scratch buffer and result name string
1da177e4
LT
1014 *
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1022 */
1023
b267b179 1024static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1025{
1026 int i = 0;
1da177e4
LT
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1029 unsigned long *inuse;
1da177e4
LT
1030 struct net_device *d;
1031
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
cfcabdcc 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1044 if (!inuse)
1045 return -ENOMEM;
1046
881d966b 1047 for_each_netdev(net, d) {
1da177e4
LT
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1052
1053 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1054 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1057 }
1058
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1061 }
1062
d9031024
OP
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1065 if (!__dev_get_by_name(net, buf))
1da177e4 1066 return i;
1da177e4
LT
1067
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1071 */
1072 return -ENFILE;
1073}
1074
b267b179
EB
1075/**
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089int dev_alloc_name(struct net_device *dev, const char *name)
1090{
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1094
c346dca1
YH
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
b267b179
EB
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1101}
d1b19dff 1102EXPORT_SYMBOL(dev_alloc_name);
b267b179 1103
828de4f6
G
1104static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
d9031024 1107{
828de4f6
G
1108 char buf[IFNAMSIZ];
1109 int ret;
8ce6cebc 1110
828de4f6
G
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1115}
1116
1117static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1120{
1121 BUG_ON(!net);
8ce6cebc 1122
d9031024
OP
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1125
1c5cae81 1126 if (strchr(name, '%'))
828de4f6 1127 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
8ce6cebc
DL
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1132
1133 return 0;
1134}
1da177e4
LT
1135
1136/**
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1140 *
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1143 */
cf04a4c7 1144int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1145{
238fa362 1146 unsigned char old_assign_type;
fcc5a03a 1147 char oldname[IFNAMSIZ];
1da177e4 1148 int err = 0;
fcc5a03a 1149 int ret;
881d966b 1150 struct net *net;
1da177e4
LT
1151
1152 ASSERT_RTNL();
c346dca1 1153 BUG_ON(!dev_net(dev));
1da177e4 1154
c346dca1 1155 net = dev_net(dev);
1da177e4
LT
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1158
30e6c9fa 1159 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1160
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1162 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1163 return 0;
c91f6df2 1164 }
c8d90dca 1165
fcc5a03a
HX
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1167
828de4f6 1168 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1169 if (err < 0) {
30e6c9fa 1170 write_seqcount_end(&devnet_rename_seq);
d9031024 1171 return err;
c91f6df2 1172 }
1da177e4 1173
6fe82a39
VF
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1176
238fa362
TG
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1179
fcc5a03a 1180rollback:
a1b3f594
EB
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1184 dev->name_assign_type = old_assign_type;
30e6c9fa 1185 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1186 return ret;
dcc99773 1187 }
7f988eab 1188
30e6c9fa 1189 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1190
5bb025fa
VF
1191 netdev_adjacent_rename_links(dev, oldname);
1192
7f988eab 1193 write_lock_bh(&dev_base_lock);
372b2312 1194 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1195 write_unlock_bh(&dev_base_lock);
1196
1197 synchronize_rcu();
1198
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1201 write_unlock_bh(&dev_base_lock);
1202
056925ab 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1204 ret = notifier_to_errno(ret);
1205
1206 if (ret) {
91e9c07b
ED
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
fcc5a03a 1209 err = ret;
30e6c9fa 1210 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1211 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1212 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1215 goto rollback;
91e9c07b 1216 } else {
7b6cd1ce 1217 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1218 dev->name, ret);
fcc5a03a
HX
1219 }
1220 }
1da177e4
LT
1221
1222 return err;
1223}
1224
0b815a1a
SH
1225/**
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
f0db275a 1229 * @len: limit of bytes to copy from info
0b815a1a
SH
1230 *
1231 * Set ifalias for a device,
1232 */
1233int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234{
7364e445
AK
1235 char *new_ifalias;
1236
0b815a1a
SH
1237 ASSERT_RTNL();
1238
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1241
96ca4a2c 1242 if (!len) {
388dfc2d
SK
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
96ca4a2c
OH
1245 return 0;
1246 }
1247
7364e445
AK
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
0b815a1a 1250 return -ENOMEM;
7364e445 1251 dev->ifalias = new_ifalias;
0b815a1a
SH
1252
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1255}
1256
1257
d8a33ac4 1258/**
3041a069 1259 * netdev_features_change - device changes features
d8a33ac4
SH
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed features.
1263 */
1264void netdev_features_change(struct net_device *dev)
1265{
056925ab 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1267}
1268EXPORT_SYMBOL(netdev_features_change);
1269
1da177e4
LT
1270/**
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1273 *
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1277 */
1278void netdev_state_change(struct net_device *dev)
1279{
1280 if (dev->flags & IFF_UP) {
54951194
LP
1281 struct netdev_notifier_change_info change_info;
1282
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
7f294054 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1287 }
1288}
d1b19dff 1289EXPORT_SYMBOL(netdev_state_change);
1da177e4 1290
ee89bab1
AW
1291/**
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1294 *
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1300 */
1301void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1302{
ee89bab1
AW
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
c1da4ac7 1306}
ee89bab1 1307EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1308
bd380811 1309static int __dev_open(struct net_device *dev)
1da177e4 1310{
d314774c 1311 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1312 int ret;
1da177e4 1313
e46b66bc
BH
1314 ASSERT_RTNL();
1315
1da177e4
LT
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1318
ca99ca14
NH
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1322 */
66b5552f 1323 netpoll_poll_disable(dev);
ca99ca14 1324
3b8bcfd5
JB
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1329
1da177e4 1330 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1331
d314774c
SH
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
bada339b 1334
d314774c
SH
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1da177e4 1337
66b5552f 1338 netpoll_poll_enable(dev);
ca99ca14 1339
bada339b
JG
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1da177e4 1343 dev->flags |= IFF_UP;
4417da66 1344 dev_set_rx_mode(dev);
1da177e4 1345 dev_activate(dev);
7bf23575 1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1347 }
bada339b 1348
1da177e4
LT
1349 return ret;
1350}
1351
1352/**
bd380811
PM
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1da177e4 1355 *
bd380811
PM
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1360 *
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1da177e4 1363 */
bd380811
PM
1364int dev_open(struct net_device *dev)
1365{
1366 int ret;
1367
bd380811
PM
1368 if (dev->flags & IFF_UP)
1369 return 0;
1370
bd380811
PM
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1374
7f294054 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378 return ret;
1379}
1380EXPORT_SYMBOL(dev_open);
1381
44345724 1382static int __dev_close_many(struct list_head *head)
1da177e4 1383{
44345724 1384 struct net_device *dev;
e46b66bc 1385
bd380811 1386 ASSERT_RTNL();
9d5010db
DM
1387 might_sleep();
1388
5cde2829 1389 list_for_each_entry(dev, head, close_list) {
3f4df206 1390 /* Temporarily disable netpoll until the interface is down */
66b5552f 1391 netpoll_poll_disable(dev);
3f4df206 1392
44345724 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1394
44345724 1395 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1396
44345724
OP
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1399 *
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1402 */
4e857c58 1403 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1404 }
1da177e4 1405
44345724 1406 dev_deactivate_many(head);
d8b2a4d2 1407
5cde2829 1408 list_for_each_entry(dev, head, close_list) {
44345724 1409 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1410
44345724
OP
1411 /*
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1414 *
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1417 */
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1420
44345724 1421 dev->flags &= ~IFF_UP;
66b5552f 1422 netpoll_poll_enable(dev);
44345724
OP
1423 }
1424
1425 return 0;
1426}
1427
1428static int __dev_close(struct net_device *dev)
1429{
f87e6f47 1430 int retval;
44345724
OP
1431 LIST_HEAD(single);
1432
5cde2829 1433 list_add(&dev->close_list, &single);
f87e6f47
LT
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
ca99ca14 1436
f87e6f47 1437 return retval;
44345724
OP
1438}
1439
99c4a26a 1440int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1441{
1442 struct net_device *dev, *tmp;
1da177e4 1443
5cde2829
EB
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1446 if (!(dev->flags & IFF_UP))
5cde2829 1447 list_del_init(&dev->close_list);
44345724
OP
1448
1449 __dev_close_many(head);
1da177e4 1450
5cde2829 1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1454 if (unlink)
1455 list_del_init(&dev->close_list);
44345724 1456 }
bd380811
PM
1457
1458 return 0;
1459}
99c4a26a 1460EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1461
1462/**
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1465 *
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1470 */
1471int dev_close(struct net_device *dev)
1472{
e14a5993
ED
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1da177e4 1475
5cde2829 1476 list_add(&dev->close_list, &single);
99c4a26a 1477 dev_close_many(&single, true);
e14a5993
ED
1478 list_del(&single);
1479 }
da6e378b 1480 return 0;
1da177e4 1481}
d1b19dff 1482EXPORT_SYMBOL(dev_close);
1da177e4
LT
1483
1484
0187bdfb
BH
1485/**
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1492 */
1493void dev_disable_lro(struct net_device *dev)
1494{
fbe168ba
MK
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
529d0489 1497
bc5787c6
MM
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
27660515 1500
22d5969f
MM
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1503
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
0187bdfb
BH
1506}
1507EXPORT_SYMBOL(dev_disable_lro);
1508
351638e7
JP
1509static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1511{
1512 struct netdev_notifier_info info;
1513
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1516}
0187bdfb 1517
881d966b
EB
1518static int dev_boot_phase = 1;
1519
1da177e4
LT
1520/**
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1523 *
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1528 *
1529 * When registered all registration and up events are replayed
4ec93edb 1530 * to the new notifier to allow device to have a race free
1da177e4
LT
1531 * view of the network device list.
1532 */
1533
1534int register_netdevice_notifier(struct notifier_block *nb)
1535{
1536 struct net_device *dev;
fcc5a03a 1537 struct net_device *last;
881d966b 1538 struct net *net;
1da177e4
LT
1539 int err;
1540
1541 rtnl_lock();
f07d5b94 1542 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1543 if (err)
1544 goto unlock;
881d966b
EB
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
351638e7 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1553
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1da177e4 1556
351638e7 1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1558 }
1da177e4 1559 }
fcc5a03a
HX
1560
1561unlock:
1da177e4
LT
1562 rtnl_unlock();
1563 return err;
fcc5a03a
HX
1564
1565rollback:
1566 last = dev;
881d966b
EB
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
8f891489 1570 goto outroll;
fcc5a03a 1571
881d966b 1572 if (dev->flags & IFF_UP) {
351638e7
JP
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1576 }
351638e7 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1578 }
fcc5a03a 1579 }
c67625a1 1580
8f891489 1581outroll:
c67625a1 1582 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1583 goto unlock;
1da177e4 1584}
d1b19dff 1585EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1586
1587/**
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1590 *
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
7d3d43da
EB
1595 *
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1da177e4
LT
1599 */
1600
1601int unregister_netdevice_notifier(struct notifier_block *nb)
1602{
7d3d43da
EB
1603 struct net_device *dev;
1604 struct net *net;
9f514950
HX
1605 int err;
1606
1607 rtnl_lock();
f07d5b94 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1609 if (err)
1610 goto unlock;
1611
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
351638e7
JP
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1618 }
351638e7 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1620 }
1621 }
1622unlock:
9f514950
HX
1623 rtnl_unlock();
1624 return err;
1da177e4 1625}
d1b19dff 1626EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1627
351638e7
JP
1628/**
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1633 *
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1636 */
1637
1d143d9f 1638static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
351638e7
JP
1641{
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1645}
351638e7 1646
1da177e4
LT
1647/**
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
c4ea43c5 1650 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1651 *
1652 * Call all network notifier blocks. Parameters and return value
f07d5b94 1653 * are as for raw_notifier_call_chain().
1da177e4
LT
1654 */
1655
ad7379d4 1656int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1657{
351638e7
JP
1658 struct netdev_notifier_info info;
1659
1660 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1661}
edf947f1 1662EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1663
1cf51900 1664#ifdef CONFIG_NET_INGRESS
4577139b
DB
1665static struct static_key ingress_needed __read_mostly;
1666
1667void net_inc_ingress_queue(void)
1668{
1669 static_key_slow_inc(&ingress_needed);
1670}
1671EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673void net_dec_ingress_queue(void)
1674{
1675 static_key_slow_dec(&ingress_needed);
1676}
1677EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678#endif
1679
1f211a1b
DB
1680#ifdef CONFIG_NET_EGRESS
1681static struct static_key egress_needed __read_mostly;
1682
1683void net_inc_egress_queue(void)
1684{
1685 static_key_slow_inc(&egress_needed);
1686}
1687EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689void net_dec_egress_queue(void)
1690{
1691 static_key_slow_dec(&egress_needed);
1692}
1693EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694#endif
1695
c5905afb 1696static struct static_key netstamp_needed __read_mostly;
b90e5794 1697#ifdef HAVE_JUMP_LABEL
c5905afb 1698/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1699 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1700 * static_key_slow_dec() calls.
b90e5794
ED
1701 */
1702static atomic_t netstamp_needed_deferred;
1703#endif
1da177e4
LT
1704
1705void net_enable_timestamp(void)
1706{
b90e5794
ED
1707#ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710 if (deferred) {
1711 while (--deferred)
c5905afb 1712 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1713 return;
1714 }
1715#endif
c5905afb 1716 static_key_slow_inc(&netstamp_needed);
1da177e4 1717}
d1b19dff 1718EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1719
1720void net_disable_timestamp(void)
1721{
b90e5794
ED
1722#ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1725 return;
1726 }
1727#endif
c5905afb 1728 static_key_slow_dec(&netstamp_needed);
1da177e4 1729}
d1b19dff 1730EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1731
3b098e2d 1732static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1733{
588f0330 1734 skb->tstamp.tv64 = 0;
c5905afb 1735 if (static_key_false(&netstamp_needed))
a61bbcf2 1736 __net_timestamp(skb);
1da177e4
LT
1737}
1738
588f0330 1739#define net_timestamp_check(COND, SKB) \
c5905afb 1740 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1741 if ((COND) && !(SKB)->tstamp.tv64) \
1742 __net_timestamp(SKB); \
1743 } \
3b098e2d 1744
f4b05d27 1745bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1746{
1747 unsigned int len;
1748
1749 if (!(dev->flags & IFF_UP))
1750 return false;
1751
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1754 return true;
1755
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1758 */
1759 if (skb_is_gso(skb))
1760 return true;
1761
1762 return false;
1763}
1ee481fb 1764EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1765
a0265d28
HX
1766int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767{
bbbf2df0
WB
1768 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1769 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1770 atomic_long_inc(&dev->rx_dropped);
1771 kfree_skb(skb);
1772 return NET_RX_DROP;
1773 }
1774
1775 skb_scrub_packet(skb, true);
08b4b8ea 1776 skb->priority = 0;
a0265d28 1777 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1778 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1779
1780 return 0;
1781}
1782EXPORT_SYMBOL_GPL(__dev_forward_skb);
1783
44540960
AB
1784/**
1785 * dev_forward_skb - loopback an skb to another netif
1786 *
1787 * @dev: destination network device
1788 * @skb: buffer to forward
1789 *
1790 * return values:
1791 * NET_RX_SUCCESS (no congestion)
6ec82562 1792 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1793 *
1794 * dev_forward_skb can be used for injecting an skb from the
1795 * start_xmit function of one device into the receive queue
1796 * of another device.
1797 *
1798 * The receiving device may be in another namespace, so
1799 * we have to clear all information in the skb that could
1800 * impact namespace isolation.
1801 */
1802int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1803{
a0265d28 1804 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1805}
1806EXPORT_SYMBOL_GPL(dev_forward_skb);
1807
71d9dec2
CG
1808static inline int deliver_skb(struct sk_buff *skb,
1809 struct packet_type *pt_prev,
1810 struct net_device *orig_dev)
1811{
1080e512
MT
1812 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1813 return -ENOMEM;
71d9dec2
CG
1814 atomic_inc(&skb->users);
1815 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1816}
1817
7866a621
SN
1818static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1819 struct packet_type **pt,
fbcb2170
JP
1820 struct net_device *orig_dev,
1821 __be16 type,
7866a621
SN
1822 struct list_head *ptype_list)
1823{
1824 struct packet_type *ptype, *pt_prev = *pt;
1825
1826 list_for_each_entry_rcu(ptype, ptype_list, list) {
1827 if (ptype->type != type)
1828 continue;
1829 if (pt_prev)
fbcb2170 1830 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1831 pt_prev = ptype;
1832 }
1833 *pt = pt_prev;
1834}
1835
c0de08d0
EL
1836static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1837{
a3d744e9 1838 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1839 return false;
1840
1841 if (ptype->id_match)
1842 return ptype->id_match(ptype, skb->sk);
1843 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1844 return true;
1845
1846 return false;
1847}
1848
1da177e4
LT
1849/*
1850 * Support routine. Sends outgoing frames to any network
1851 * taps currently in use.
1852 */
1853
74b20582 1854void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1855{
1856 struct packet_type *ptype;
71d9dec2
CG
1857 struct sk_buff *skb2 = NULL;
1858 struct packet_type *pt_prev = NULL;
7866a621 1859 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1860
1da177e4 1861 rcu_read_lock();
7866a621
SN
1862again:
1863 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1864 /* Never send packets back to the socket
1865 * they originated from - MvS (miquels@drinkel.ow.org)
1866 */
7866a621
SN
1867 if (skb_loop_sk(ptype, skb))
1868 continue;
71d9dec2 1869
7866a621
SN
1870 if (pt_prev) {
1871 deliver_skb(skb2, pt_prev, skb->dev);
1872 pt_prev = ptype;
1873 continue;
1874 }
1da177e4 1875
7866a621
SN
1876 /* need to clone skb, done only once */
1877 skb2 = skb_clone(skb, GFP_ATOMIC);
1878 if (!skb2)
1879 goto out_unlock;
70978182 1880
7866a621 1881 net_timestamp_set(skb2);
1da177e4 1882
7866a621
SN
1883 /* skb->nh should be correctly
1884 * set by sender, so that the second statement is
1885 * just protection against buggy protocols.
1886 */
1887 skb_reset_mac_header(skb2);
1888
1889 if (skb_network_header(skb2) < skb2->data ||
1890 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1891 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1892 ntohs(skb2->protocol),
1893 dev->name);
1894 skb_reset_network_header(skb2);
1da177e4 1895 }
7866a621
SN
1896
1897 skb2->transport_header = skb2->network_header;
1898 skb2->pkt_type = PACKET_OUTGOING;
1899 pt_prev = ptype;
1900 }
1901
1902 if (ptype_list == &ptype_all) {
1903 ptype_list = &dev->ptype_all;
1904 goto again;
1da177e4 1905 }
7866a621 1906out_unlock:
71d9dec2
CG
1907 if (pt_prev)
1908 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1909 rcu_read_unlock();
1910}
74b20582 1911EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1912
2c53040f
BH
1913/**
1914 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1915 * @dev: Network device
1916 * @txq: number of queues available
1917 *
1918 * If real_num_tx_queues is changed the tc mappings may no longer be
1919 * valid. To resolve this verify the tc mapping remains valid and if
1920 * not NULL the mapping. With no priorities mapping to this
1921 * offset/count pair it will no longer be used. In the worst case TC0
1922 * is invalid nothing can be done so disable priority mappings. If is
1923 * expected that drivers will fix this mapping if they can before
1924 * calling netif_set_real_num_tx_queues.
1925 */
bb134d22 1926static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1927{
1928 int i;
1929 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1930
1931 /* If TC0 is invalidated disable TC mapping */
1932 if (tc->offset + tc->count > txq) {
7b6cd1ce 1933 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1934 dev->num_tc = 0;
1935 return;
1936 }
1937
1938 /* Invalidated prio to tc mappings set to TC0 */
1939 for (i = 1; i < TC_BITMASK + 1; i++) {
1940 int q = netdev_get_prio_tc_map(dev, i);
1941
1942 tc = &dev->tc_to_txq[q];
1943 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1944 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1945 i, q);
4f57c087
JF
1946 netdev_set_prio_tc_map(dev, i, 0);
1947 }
1948 }
1949}
1950
8d059b0f
AD
1951int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1952{
1953 if (dev->num_tc) {
1954 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1955 int i;
1956
1957 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1958 if ((txq - tc->offset) < tc->count)
1959 return i;
1960 }
1961
1962 return -1;
1963 }
1964
1965 return 0;
1966}
1967
537c00de
AD
1968#ifdef CONFIG_XPS
1969static DEFINE_MUTEX(xps_map_mutex);
1970#define xmap_dereference(P) \
1971 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1972
6234f874
AD
1973static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1974 int tci, u16 index)
537c00de 1975{
10cdc3f3
AD
1976 struct xps_map *map = NULL;
1977 int pos;
537c00de 1978
10cdc3f3 1979 if (dev_maps)
6234f874
AD
1980 map = xmap_dereference(dev_maps->cpu_map[tci]);
1981 if (!map)
1982 return false;
537c00de 1983
6234f874
AD
1984 for (pos = map->len; pos--;) {
1985 if (map->queues[pos] != index)
1986 continue;
1987
1988 if (map->len > 1) {
1989 map->queues[pos] = map->queues[--map->len];
10cdc3f3 1990 break;
537c00de 1991 }
6234f874
AD
1992
1993 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1994 kfree_rcu(map, rcu);
1995 return false;
537c00de
AD
1996 }
1997
6234f874 1998 return true;
10cdc3f3
AD
1999}
2000
6234f874
AD
2001static bool remove_xps_queue_cpu(struct net_device *dev,
2002 struct xps_dev_maps *dev_maps,
2003 int cpu, u16 offset, u16 count)
2004{
184c449f
AD
2005 int num_tc = dev->num_tc ? : 1;
2006 bool active = false;
2007 int tci;
6234f874 2008
184c449f
AD
2009 for (tci = cpu * num_tc; num_tc--; tci++) {
2010 int i, j;
2011
2012 for (i = count, j = offset; i--; j++) {
2013 if (!remove_xps_queue(dev_maps, cpu, j))
2014 break;
2015 }
2016
2017 active |= i < 0;
6234f874
AD
2018 }
2019
184c449f 2020 return active;
6234f874
AD
2021}
2022
2023static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2024 u16 count)
10cdc3f3
AD
2025{
2026 struct xps_dev_maps *dev_maps;
024e9679 2027 int cpu, i;
10cdc3f3
AD
2028 bool active = false;
2029
2030 mutex_lock(&xps_map_mutex);
2031 dev_maps = xmap_dereference(dev->xps_maps);
2032
2033 if (!dev_maps)
2034 goto out_no_maps;
2035
6234f874
AD
2036 for_each_possible_cpu(cpu)
2037 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2038 offset, count);
10cdc3f3
AD
2039
2040 if (!active) {
537c00de
AD
2041 RCU_INIT_POINTER(dev->xps_maps, NULL);
2042 kfree_rcu(dev_maps, rcu);
2043 }
2044
6234f874 2045 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2046 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2047 NUMA_NO_NODE);
2048
537c00de
AD
2049out_no_maps:
2050 mutex_unlock(&xps_map_mutex);
2051}
2052
6234f874
AD
2053static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2054{
2055 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2056}
2057
01c5f864
AD
2058static struct xps_map *expand_xps_map(struct xps_map *map,
2059 int cpu, u16 index)
2060{
2061 struct xps_map *new_map;
2062 int alloc_len = XPS_MIN_MAP_ALLOC;
2063 int i, pos;
2064
2065 for (pos = 0; map && pos < map->len; pos++) {
2066 if (map->queues[pos] != index)
2067 continue;
2068 return map;
2069 }
2070
2071 /* Need to add queue to this CPU's existing map */
2072 if (map) {
2073 if (pos < map->alloc_len)
2074 return map;
2075
2076 alloc_len = map->alloc_len * 2;
2077 }
2078
2079 /* Need to allocate new map to store queue on this CPU's map */
2080 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2081 cpu_to_node(cpu));
2082 if (!new_map)
2083 return NULL;
2084
2085 for (i = 0; i < pos; i++)
2086 new_map->queues[i] = map->queues[i];
2087 new_map->alloc_len = alloc_len;
2088 new_map->len = pos;
2089
2090 return new_map;
2091}
2092
3573540c
MT
2093int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2094 u16 index)
537c00de 2095{
01c5f864 2096 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2097 int i, cpu, tci, numa_node_id = -2;
2098 int maps_sz, num_tc = 1, tc = 0;
537c00de 2099 struct xps_map *map, *new_map;
01c5f864 2100 bool active = false;
537c00de 2101
184c449f
AD
2102 if (dev->num_tc) {
2103 num_tc = dev->num_tc;
2104 tc = netdev_txq_to_tc(dev, index);
2105 if (tc < 0)
2106 return -EINVAL;
2107 }
2108
2109 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2110 if (maps_sz < L1_CACHE_BYTES)
2111 maps_sz = L1_CACHE_BYTES;
2112
537c00de
AD
2113 mutex_lock(&xps_map_mutex);
2114
2115 dev_maps = xmap_dereference(dev->xps_maps);
2116
01c5f864 2117 /* allocate memory for queue storage */
184c449f 2118 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2119 if (!new_dev_maps)
2120 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2121 if (!new_dev_maps) {
2122 mutex_unlock(&xps_map_mutex);
01c5f864 2123 return -ENOMEM;
2bb60cb9 2124 }
01c5f864 2125
184c449f
AD
2126 tci = cpu * num_tc + tc;
2127 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2128 NULL;
2129
2130 map = expand_xps_map(map, cpu, index);
2131 if (!map)
2132 goto error;
2133
184c449f 2134 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2135 }
2136
2137 if (!new_dev_maps)
2138 goto out_no_new_maps;
2139
537c00de 2140 for_each_possible_cpu(cpu) {
184c449f
AD
2141 /* copy maps belonging to foreign traffic classes */
2142 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2143 /* fill in the new device map from the old device map */
2144 map = xmap_dereference(dev_maps->cpu_map[tci]);
2145 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2146 }
2147
2148 /* We need to explicitly update tci as prevous loop
2149 * could break out early if dev_maps is NULL.
2150 */
2151 tci = cpu * num_tc + tc;
2152
01c5f864
AD
2153 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2154 /* add queue to CPU maps */
2155 int pos = 0;
2156
184c449f 2157 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2158 while ((pos < map->len) && (map->queues[pos] != index))
2159 pos++;
2160
2161 if (pos == map->len)
2162 map->queues[map->len++] = index;
537c00de 2163#ifdef CONFIG_NUMA
537c00de
AD
2164 if (numa_node_id == -2)
2165 numa_node_id = cpu_to_node(cpu);
2166 else if (numa_node_id != cpu_to_node(cpu))
2167 numa_node_id = -1;
537c00de 2168#endif
01c5f864
AD
2169 } else if (dev_maps) {
2170 /* fill in the new device map from the old device map */
184c449f
AD
2171 map = xmap_dereference(dev_maps->cpu_map[tci]);
2172 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2173 }
01c5f864 2174
184c449f
AD
2175 /* copy maps belonging to foreign traffic classes */
2176 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2177 /* fill in the new device map from the old device map */
2178 map = xmap_dereference(dev_maps->cpu_map[tci]);
2179 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2180 }
537c00de
AD
2181 }
2182
01c5f864
AD
2183 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2184
537c00de 2185 /* Cleanup old maps */
184c449f
AD
2186 if (!dev_maps)
2187 goto out_no_old_maps;
2188
2189 for_each_possible_cpu(cpu) {
2190 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2191 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2192 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2193 if (map && map != new_map)
2194 kfree_rcu(map, rcu);
2195 }
537c00de
AD
2196 }
2197
184c449f
AD
2198 kfree_rcu(dev_maps, rcu);
2199
2200out_no_old_maps:
01c5f864
AD
2201 dev_maps = new_dev_maps;
2202 active = true;
537c00de 2203
01c5f864
AD
2204out_no_new_maps:
2205 /* update Tx queue numa node */
537c00de
AD
2206 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2207 (numa_node_id >= 0) ? numa_node_id :
2208 NUMA_NO_NODE);
2209
01c5f864
AD
2210 if (!dev_maps)
2211 goto out_no_maps;
2212
2213 /* removes queue from unused CPUs */
2214 for_each_possible_cpu(cpu) {
184c449f
AD
2215 for (i = tc, tci = cpu * num_tc; i--; tci++)
2216 active |= remove_xps_queue(dev_maps, tci, index);
2217 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2218 active |= remove_xps_queue(dev_maps, tci, index);
2219 for (i = num_tc - tc, tci++; --i; tci++)
2220 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2221 }
2222
2223 /* free map if not active */
2224 if (!active) {
2225 RCU_INIT_POINTER(dev->xps_maps, NULL);
2226 kfree_rcu(dev_maps, rcu);
2227 }
2228
2229out_no_maps:
537c00de
AD
2230 mutex_unlock(&xps_map_mutex);
2231
2232 return 0;
2233error:
01c5f864
AD
2234 /* remove any maps that we added */
2235 for_each_possible_cpu(cpu) {
184c449f
AD
2236 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2237 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2238 map = dev_maps ?
2239 xmap_dereference(dev_maps->cpu_map[tci]) :
2240 NULL;
2241 if (new_map && new_map != map)
2242 kfree(new_map);
2243 }
01c5f864
AD
2244 }
2245
537c00de
AD
2246 mutex_unlock(&xps_map_mutex);
2247
537c00de
AD
2248 kfree(new_dev_maps);
2249 return -ENOMEM;
2250}
2251EXPORT_SYMBOL(netif_set_xps_queue);
2252
2253#endif
9cf1f6a8
AD
2254void netdev_reset_tc(struct net_device *dev)
2255{
6234f874
AD
2256#ifdef CONFIG_XPS
2257 netif_reset_xps_queues_gt(dev, 0);
2258#endif
9cf1f6a8
AD
2259 dev->num_tc = 0;
2260 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2261 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2262}
2263EXPORT_SYMBOL(netdev_reset_tc);
2264
2265int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2266{
2267 if (tc >= dev->num_tc)
2268 return -EINVAL;
2269
6234f874
AD
2270#ifdef CONFIG_XPS
2271 netif_reset_xps_queues(dev, offset, count);
2272#endif
9cf1f6a8
AD
2273 dev->tc_to_txq[tc].count = count;
2274 dev->tc_to_txq[tc].offset = offset;
2275 return 0;
2276}
2277EXPORT_SYMBOL(netdev_set_tc_queue);
2278
2279int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2280{
2281 if (num_tc > TC_MAX_QUEUE)
2282 return -EINVAL;
2283
6234f874
AD
2284#ifdef CONFIG_XPS
2285 netif_reset_xps_queues_gt(dev, 0);
2286#endif
9cf1f6a8
AD
2287 dev->num_tc = num_tc;
2288 return 0;
2289}
2290EXPORT_SYMBOL(netdev_set_num_tc);
2291
f0796d5c
JF
2292/*
2293 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2294 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2295 */
e6484930 2296int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2297{
1d24eb48
TH
2298 int rc;
2299
e6484930
TH
2300 if (txq < 1 || txq > dev->num_tx_queues)
2301 return -EINVAL;
f0796d5c 2302
5c56580b
BH
2303 if (dev->reg_state == NETREG_REGISTERED ||
2304 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2305 ASSERT_RTNL();
2306
1d24eb48
TH
2307 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2308 txq);
bf264145
TH
2309 if (rc)
2310 return rc;
2311
4f57c087
JF
2312 if (dev->num_tc)
2313 netif_setup_tc(dev, txq);
2314
024e9679 2315 if (txq < dev->real_num_tx_queues) {
e6484930 2316 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2317#ifdef CONFIG_XPS
2318 netif_reset_xps_queues_gt(dev, txq);
2319#endif
2320 }
f0796d5c 2321 }
e6484930
TH
2322
2323 dev->real_num_tx_queues = txq;
2324 return 0;
f0796d5c
JF
2325}
2326EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2327
a953be53 2328#ifdef CONFIG_SYSFS
62fe0b40
BH
2329/**
2330 * netif_set_real_num_rx_queues - set actual number of RX queues used
2331 * @dev: Network device
2332 * @rxq: Actual number of RX queues
2333 *
2334 * This must be called either with the rtnl_lock held or before
2335 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2336 * negative error code. If called before registration, it always
2337 * succeeds.
62fe0b40
BH
2338 */
2339int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2340{
2341 int rc;
2342
bd25fa7b
TH
2343 if (rxq < 1 || rxq > dev->num_rx_queues)
2344 return -EINVAL;
2345
62fe0b40
BH
2346 if (dev->reg_state == NETREG_REGISTERED) {
2347 ASSERT_RTNL();
2348
62fe0b40
BH
2349 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2350 rxq);
2351 if (rc)
2352 return rc;
62fe0b40
BH
2353 }
2354
2355 dev->real_num_rx_queues = rxq;
2356 return 0;
2357}
2358EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2359#endif
2360
2c53040f
BH
2361/**
2362 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2363 *
2364 * This routine should set an upper limit on the number of RSS queues
2365 * used by default by multiqueue devices.
2366 */
a55b138b 2367int netif_get_num_default_rss_queues(void)
16917b87 2368{
40e4e713
HS
2369 return is_kdump_kernel() ?
2370 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2371}
2372EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2373
3bcb846c 2374static void __netif_reschedule(struct Qdisc *q)
56079431 2375{
def82a1d
JP
2376 struct softnet_data *sd;
2377 unsigned long flags;
56079431 2378
def82a1d 2379 local_irq_save(flags);
903ceff7 2380 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2381 q->next_sched = NULL;
2382 *sd->output_queue_tailp = q;
2383 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2384 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2385 local_irq_restore(flags);
2386}
2387
2388void __netif_schedule(struct Qdisc *q)
2389{
2390 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2391 __netif_reschedule(q);
56079431
DV
2392}
2393EXPORT_SYMBOL(__netif_schedule);
2394
e6247027
ED
2395struct dev_kfree_skb_cb {
2396 enum skb_free_reason reason;
2397};
2398
2399static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2400{
e6247027
ED
2401 return (struct dev_kfree_skb_cb *)skb->cb;
2402}
2403
46e5da40
JF
2404void netif_schedule_queue(struct netdev_queue *txq)
2405{
2406 rcu_read_lock();
2407 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2408 struct Qdisc *q = rcu_dereference(txq->qdisc);
2409
2410 __netif_schedule(q);
2411 }
2412 rcu_read_unlock();
2413}
2414EXPORT_SYMBOL(netif_schedule_queue);
2415
2416/**
2417 * netif_wake_subqueue - allow sending packets on subqueue
2418 * @dev: network device
2419 * @queue_index: sub queue index
2420 *
2421 * Resume individual transmit queue of a device with multiple transmit queues.
2422 */
2423void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2424{
2425 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2426
2427 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2428 struct Qdisc *q;
2429
2430 rcu_read_lock();
2431 q = rcu_dereference(txq->qdisc);
2432 __netif_schedule(q);
2433 rcu_read_unlock();
2434 }
2435}
2436EXPORT_SYMBOL(netif_wake_subqueue);
2437
2438void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2439{
2440 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2441 struct Qdisc *q;
2442
2443 rcu_read_lock();
2444 q = rcu_dereference(dev_queue->qdisc);
2445 __netif_schedule(q);
2446 rcu_read_unlock();
2447 }
2448}
2449EXPORT_SYMBOL(netif_tx_wake_queue);
2450
e6247027 2451void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2452{
e6247027 2453 unsigned long flags;
56079431 2454
e6247027
ED
2455 if (likely(atomic_read(&skb->users) == 1)) {
2456 smp_rmb();
2457 atomic_set(&skb->users, 0);
2458 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2459 return;
bea3348e 2460 }
e6247027
ED
2461 get_kfree_skb_cb(skb)->reason = reason;
2462 local_irq_save(flags);
2463 skb->next = __this_cpu_read(softnet_data.completion_queue);
2464 __this_cpu_write(softnet_data.completion_queue, skb);
2465 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2466 local_irq_restore(flags);
56079431 2467}
e6247027 2468EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2469
e6247027 2470void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2471{
2472 if (in_irq() || irqs_disabled())
e6247027 2473 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2474 else
2475 dev_kfree_skb(skb);
2476}
e6247027 2477EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2478
2479
bea3348e
SH
2480/**
2481 * netif_device_detach - mark device as removed
2482 * @dev: network device
2483 *
2484 * Mark device as removed from system and therefore no longer available.
2485 */
56079431
DV
2486void netif_device_detach(struct net_device *dev)
2487{
2488 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2489 netif_running(dev)) {
d543103a 2490 netif_tx_stop_all_queues(dev);
56079431
DV
2491 }
2492}
2493EXPORT_SYMBOL(netif_device_detach);
2494
bea3348e
SH
2495/**
2496 * netif_device_attach - mark device as attached
2497 * @dev: network device
2498 *
2499 * Mark device as attached from system and restart if needed.
2500 */
56079431
DV
2501void netif_device_attach(struct net_device *dev)
2502{
2503 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2504 netif_running(dev)) {
d543103a 2505 netif_tx_wake_all_queues(dev);
4ec93edb 2506 __netdev_watchdog_up(dev);
56079431
DV
2507 }
2508}
2509EXPORT_SYMBOL(netif_device_attach);
2510
5605c762
JP
2511/*
2512 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2513 * to be used as a distribution range.
2514 */
2515u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2516 unsigned int num_tx_queues)
2517{
2518 u32 hash;
2519 u16 qoffset = 0;
2520 u16 qcount = num_tx_queues;
2521
2522 if (skb_rx_queue_recorded(skb)) {
2523 hash = skb_get_rx_queue(skb);
2524 while (unlikely(hash >= num_tx_queues))
2525 hash -= num_tx_queues;
2526 return hash;
2527 }
2528
2529 if (dev->num_tc) {
2530 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2531 qoffset = dev->tc_to_txq[tc].offset;
2532 qcount = dev->tc_to_txq[tc].count;
2533 }
2534
2535 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2536}
2537EXPORT_SYMBOL(__skb_tx_hash);
2538
36c92474
BH
2539static void skb_warn_bad_offload(const struct sk_buff *skb)
2540{
84d15ae5 2541 static const netdev_features_t null_features;
36c92474 2542 struct net_device *dev = skb->dev;
88ad4175 2543 const char *name = "";
36c92474 2544
c846ad9b
BG
2545 if (!net_ratelimit())
2546 return;
2547
88ad4175
BM
2548 if (dev) {
2549 if (dev->dev.parent)
2550 name = dev_driver_string(dev->dev.parent);
2551 else
2552 name = netdev_name(dev);
2553 }
36c92474
BH
2554 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2555 "gso_type=%d ip_summed=%d\n",
88ad4175 2556 name, dev ? &dev->features : &null_features,
65e9d2fa 2557 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2558 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2559 skb_shinfo(skb)->gso_type, skb->ip_summed);
2560}
2561
1da177e4
LT
2562/*
2563 * Invalidate hardware checksum when packet is to be mangled, and
2564 * complete checksum manually on outgoing path.
2565 */
84fa7933 2566int skb_checksum_help(struct sk_buff *skb)
1da177e4 2567{
d3bc23e7 2568 __wsum csum;
663ead3b 2569 int ret = 0, offset;
1da177e4 2570
84fa7933 2571 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2572 goto out_set_summed;
2573
2574 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2575 skb_warn_bad_offload(skb);
2576 return -EINVAL;
1da177e4
LT
2577 }
2578
cef401de
ED
2579 /* Before computing a checksum, we should make sure no frag could
2580 * be modified by an external entity : checksum could be wrong.
2581 */
2582 if (skb_has_shared_frag(skb)) {
2583 ret = __skb_linearize(skb);
2584 if (ret)
2585 goto out;
2586 }
2587
55508d60 2588 offset = skb_checksum_start_offset(skb);
a030847e
HX
2589 BUG_ON(offset >= skb_headlen(skb));
2590 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2591
2592 offset += skb->csum_offset;
2593 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2594
2595 if (skb_cloned(skb) &&
2596 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2597 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2598 if (ret)
2599 goto out;
2600 }
2601
a030847e 2602 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2603out_set_summed:
1da177e4 2604 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2605out:
1da177e4
LT
2606 return ret;
2607}
d1b19dff 2608EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2609
53d6471c 2610__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2611{
252e3346 2612 __be16 type = skb->protocol;
f6a78bfc 2613
19acc327
PS
2614 /* Tunnel gso handlers can set protocol to ethernet. */
2615 if (type == htons(ETH_P_TEB)) {
2616 struct ethhdr *eth;
2617
2618 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2619 return 0;
2620
2621 eth = (struct ethhdr *)skb_mac_header(skb);
2622 type = eth->h_proto;
2623 }
2624
d4bcef3f 2625 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2626}
2627
2628/**
2629 * skb_mac_gso_segment - mac layer segmentation handler.
2630 * @skb: buffer to segment
2631 * @features: features for the output path (see dev->features)
2632 */
2633struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2634 netdev_features_t features)
2635{
2636 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2637 struct packet_offload *ptype;
53d6471c
VY
2638 int vlan_depth = skb->mac_len;
2639 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2640
2641 if (unlikely(!type))
2642 return ERR_PTR(-EINVAL);
2643
53d6471c 2644 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2645
2646 rcu_read_lock();
22061d80 2647 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2648 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2649 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2650 break;
2651 }
2652 }
2653 rcu_read_unlock();
2654
98e399f8 2655 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2656
f6a78bfc
HX
2657 return segs;
2658}
05e8ef4a
PS
2659EXPORT_SYMBOL(skb_mac_gso_segment);
2660
2661
2662/* openvswitch calls this on rx path, so we need a different check.
2663 */
2664static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2665{
2666 if (tx_path)
2667 return skb->ip_summed != CHECKSUM_PARTIAL;
2668 else
2669 return skb->ip_summed == CHECKSUM_NONE;
2670}
2671
2672/**
2673 * __skb_gso_segment - Perform segmentation on skb.
2674 * @skb: buffer to segment
2675 * @features: features for the output path (see dev->features)
2676 * @tx_path: whether it is called in TX path
2677 *
2678 * This function segments the given skb and returns a list of segments.
2679 *
2680 * It may return NULL if the skb requires no segmentation. This is
2681 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2682 *
2683 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2684 */
2685struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2686 netdev_features_t features, bool tx_path)
2687{
2688 if (unlikely(skb_needs_check(skb, tx_path))) {
2689 int err;
2690
2691 skb_warn_bad_offload(skb);
2692
a40e0a66 2693 err = skb_cow_head(skb, 0);
2694 if (err < 0)
05e8ef4a
PS
2695 return ERR_PTR(err);
2696 }
2697
802ab55a
AD
2698 /* Only report GSO partial support if it will enable us to
2699 * support segmentation on this frame without needing additional
2700 * work.
2701 */
2702 if (features & NETIF_F_GSO_PARTIAL) {
2703 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2704 struct net_device *dev = skb->dev;
2705
2706 partial_features |= dev->features & dev->gso_partial_features;
2707 if (!skb_gso_ok(skb, features | partial_features))
2708 features &= ~NETIF_F_GSO_PARTIAL;
2709 }
2710
9207f9d4
KK
2711 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2712 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2713
68c33163 2714 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2715 SKB_GSO_CB(skb)->encap_level = 0;
2716
05e8ef4a
PS
2717 skb_reset_mac_header(skb);
2718 skb_reset_mac_len(skb);
2719
2720 return skb_mac_gso_segment(skb, features);
2721}
12b0004d 2722EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2723
fb286bb2
HX
2724/* Take action when hardware reception checksum errors are detected. */
2725#ifdef CONFIG_BUG
2726void netdev_rx_csum_fault(struct net_device *dev)
2727{
2728 if (net_ratelimit()) {
7b6cd1ce 2729 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2730 dump_stack();
2731 }
2732}
2733EXPORT_SYMBOL(netdev_rx_csum_fault);
2734#endif
2735
1da177e4
LT
2736/* Actually, we should eliminate this check as soon as we know, that:
2737 * 1. IOMMU is present and allows to map all the memory.
2738 * 2. No high memory really exists on this machine.
2739 */
2740
c1e756bf 2741static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2742{
3d3a8533 2743#ifdef CONFIG_HIGHMEM
1da177e4 2744 int i;
5acbbd42 2745 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2746 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2747 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2748 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2749 return 1;
ea2ab693 2750 }
5acbbd42 2751 }
1da177e4 2752
5acbbd42
FT
2753 if (PCI_DMA_BUS_IS_PHYS) {
2754 struct device *pdev = dev->dev.parent;
1da177e4 2755
9092c658
ED
2756 if (!pdev)
2757 return 0;
5acbbd42 2758 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2759 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2760 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2761 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2762 return 1;
2763 }
2764 }
3d3a8533 2765#endif
1da177e4
LT
2766 return 0;
2767}
1da177e4 2768
3b392ddb
SH
2769/* If MPLS offload request, verify we are testing hardware MPLS features
2770 * instead of standard features for the netdev.
2771 */
d0edc7bf 2772#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2773static netdev_features_t net_mpls_features(struct sk_buff *skb,
2774 netdev_features_t features,
2775 __be16 type)
2776{
25cd9ba0 2777 if (eth_p_mpls(type))
3b392ddb
SH
2778 features &= skb->dev->mpls_features;
2779
2780 return features;
2781}
2782#else
2783static netdev_features_t net_mpls_features(struct sk_buff *skb,
2784 netdev_features_t features,
2785 __be16 type)
2786{
2787 return features;
2788}
2789#endif
2790
c8f44aff 2791static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2792 netdev_features_t features)
f01a5236 2793{
53d6471c 2794 int tmp;
3b392ddb
SH
2795 __be16 type;
2796
2797 type = skb_network_protocol(skb, &tmp);
2798 features = net_mpls_features(skb, features, type);
53d6471c 2799
c0d680e5 2800 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2801 !can_checksum_protocol(features, type)) {
996e8021 2802 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2803 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2804 features &= ~NETIF_F_SG;
2805 }
2806
2807 return features;
2808}
2809
e38f3025
TM
2810netdev_features_t passthru_features_check(struct sk_buff *skb,
2811 struct net_device *dev,
2812 netdev_features_t features)
2813{
2814 return features;
2815}
2816EXPORT_SYMBOL(passthru_features_check);
2817
8cb65d00
TM
2818static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2819 struct net_device *dev,
2820 netdev_features_t features)
2821{
2822 return vlan_features_check(skb, features);
2823}
2824
cbc53e08
AD
2825static netdev_features_t gso_features_check(const struct sk_buff *skb,
2826 struct net_device *dev,
2827 netdev_features_t features)
2828{
2829 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2830
2831 if (gso_segs > dev->gso_max_segs)
2832 return features & ~NETIF_F_GSO_MASK;
2833
802ab55a
AD
2834 /* Support for GSO partial features requires software
2835 * intervention before we can actually process the packets
2836 * so we need to strip support for any partial features now
2837 * and we can pull them back in after we have partially
2838 * segmented the frame.
2839 */
2840 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2841 features &= ~dev->gso_partial_features;
2842
2843 /* Make sure to clear the IPv4 ID mangling feature if the
2844 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2845 */
2846 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2847 struct iphdr *iph = skb->encapsulation ?
2848 inner_ip_hdr(skb) : ip_hdr(skb);
2849
2850 if (!(iph->frag_off & htons(IP_DF)))
2851 features &= ~NETIF_F_TSO_MANGLEID;
2852 }
2853
2854 return features;
2855}
2856
c1e756bf 2857netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2858{
5f35227e 2859 struct net_device *dev = skb->dev;
fcbeb976 2860 netdev_features_t features = dev->features;
58e998c6 2861
cbc53e08
AD
2862 if (skb_is_gso(skb))
2863 features = gso_features_check(skb, dev, features);
30b678d8 2864
5f35227e
JG
2865 /* If encapsulation offload request, verify we are testing
2866 * hardware encapsulation features instead of standard
2867 * features for the netdev
2868 */
2869 if (skb->encapsulation)
2870 features &= dev->hw_enc_features;
2871
f5a7fb88
TM
2872 if (skb_vlan_tagged(skb))
2873 features = netdev_intersect_features(features,
2874 dev->vlan_features |
2875 NETIF_F_HW_VLAN_CTAG_TX |
2876 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2877
5f35227e
JG
2878 if (dev->netdev_ops->ndo_features_check)
2879 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2880 features);
8cb65d00
TM
2881 else
2882 features &= dflt_features_check(skb, dev, features);
5f35227e 2883
c1e756bf 2884 return harmonize_features(skb, features);
58e998c6 2885}
c1e756bf 2886EXPORT_SYMBOL(netif_skb_features);
58e998c6 2887
2ea25513 2888static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2889 struct netdev_queue *txq, bool more)
f6a78bfc 2890{
2ea25513
DM
2891 unsigned int len;
2892 int rc;
00829823 2893
7866a621 2894 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2895 dev_queue_xmit_nit(skb, dev);
fc741216 2896
2ea25513
DM
2897 len = skb->len;
2898 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2899 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2900 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2901
2ea25513
DM
2902 return rc;
2903}
7b9c6090 2904
8dcda22a
DM
2905struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2906 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2907{
2908 struct sk_buff *skb = first;
2909 int rc = NETDEV_TX_OK;
7b9c6090 2910
7f2e870f
DM
2911 while (skb) {
2912 struct sk_buff *next = skb->next;
fc70fb64 2913
7f2e870f 2914 skb->next = NULL;
95f6b3dd 2915 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2916 if (unlikely(!dev_xmit_complete(rc))) {
2917 skb->next = next;
2918 goto out;
2919 }
6afff0ca 2920
7f2e870f
DM
2921 skb = next;
2922 if (netif_xmit_stopped(txq) && skb) {
2923 rc = NETDEV_TX_BUSY;
2924 break;
9ccb8975 2925 }
7f2e870f 2926 }
9ccb8975 2927
7f2e870f
DM
2928out:
2929 *ret = rc;
2930 return skb;
2931}
b40863c6 2932
1ff0dc94
ED
2933static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2934 netdev_features_t features)
f6a78bfc 2935{
df8a39de 2936 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2937 !vlan_hw_offload_capable(features, skb->vlan_proto))
2938 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2939 return skb;
2940}
f6a78bfc 2941
55a93b3e 2942static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2943{
2944 netdev_features_t features;
f6a78bfc 2945
eae3f88e
DM
2946 features = netif_skb_features(skb);
2947 skb = validate_xmit_vlan(skb, features);
2948 if (unlikely(!skb))
2949 goto out_null;
7b9c6090 2950
8b86a61d 2951 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2952 struct sk_buff *segs;
2953
2954 segs = skb_gso_segment(skb, features);
cecda693 2955 if (IS_ERR(segs)) {
af6dabc9 2956 goto out_kfree_skb;
cecda693
JW
2957 } else if (segs) {
2958 consume_skb(skb);
2959 skb = segs;
f6a78bfc 2960 }
eae3f88e
DM
2961 } else {
2962 if (skb_needs_linearize(skb, features) &&
2963 __skb_linearize(skb))
2964 goto out_kfree_skb;
4ec93edb 2965
eae3f88e
DM
2966 /* If packet is not checksummed and device does not
2967 * support checksumming for this protocol, complete
2968 * checksumming here.
2969 */
2970 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2971 if (skb->encapsulation)
2972 skb_set_inner_transport_header(skb,
2973 skb_checksum_start_offset(skb));
2974 else
2975 skb_set_transport_header(skb,
2976 skb_checksum_start_offset(skb));
a188222b 2977 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2978 skb_checksum_help(skb))
2979 goto out_kfree_skb;
7b9c6090 2980 }
0c772159 2981 }
7b9c6090 2982
eae3f88e 2983 return skb;
fc70fb64 2984
f6a78bfc
HX
2985out_kfree_skb:
2986 kfree_skb(skb);
eae3f88e 2987out_null:
d21fd63e 2988 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
2989 return NULL;
2990}
6afff0ca 2991
55a93b3e
ED
2992struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2993{
2994 struct sk_buff *next, *head = NULL, *tail;
2995
bec3cfdc 2996 for (; skb != NULL; skb = next) {
55a93b3e
ED
2997 next = skb->next;
2998 skb->next = NULL;
bec3cfdc
ED
2999
3000 /* in case skb wont be segmented, point to itself */
3001 skb->prev = skb;
3002
55a93b3e 3003 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3004 if (!skb)
3005 continue;
55a93b3e 3006
bec3cfdc
ED
3007 if (!head)
3008 head = skb;
3009 else
3010 tail->next = skb;
3011 /* If skb was segmented, skb->prev points to
3012 * the last segment. If not, it still contains skb.
3013 */
3014 tail = skb->prev;
55a93b3e
ED
3015 }
3016 return head;
f6a78bfc 3017}
104ba78c 3018EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3019
1def9238
ED
3020static void qdisc_pkt_len_init(struct sk_buff *skb)
3021{
3022 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3023
3024 qdisc_skb_cb(skb)->pkt_len = skb->len;
3025
3026 /* To get more precise estimation of bytes sent on wire,
3027 * we add to pkt_len the headers size of all segments
3028 */
3029 if (shinfo->gso_size) {
757b8b1d 3030 unsigned int hdr_len;
15e5a030 3031 u16 gso_segs = shinfo->gso_segs;
1def9238 3032
757b8b1d
ED
3033 /* mac layer + network layer */
3034 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3035
3036 /* + transport layer */
1def9238
ED
3037 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3038 hdr_len += tcp_hdrlen(skb);
3039 else
3040 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3041
3042 if (shinfo->gso_type & SKB_GSO_DODGY)
3043 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3044 shinfo->gso_size);
3045
3046 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3047 }
3048}
3049
bbd8a0d3
KK
3050static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3051 struct net_device *dev,
3052 struct netdev_queue *txq)
3053{
3054 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3055 struct sk_buff *to_free = NULL;
a2da570d 3056 bool contended;
bbd8a0d3
KK
3057 int rc;
3058
a2da570d 3059 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3060 /*
3061 * Heuristic to force contended enqueues to serialize on a
3062 * separate lock before trying to get qdisc main lock.
f9eb8aea 3063 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3064 * often and dequeue packets faster.
79640a4c 3065 */
a2da570d 3066 contended = qdisc_is_running(q);
79640a4c
ED
3067 if (unlikely(contended))
3068 spin_lock(&q->busylock);
3069
bbd8a0d3
KK
3070 spin_lock(root_lock);
3071 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3072 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3073 rc = NET_XMIT_DROP;
3074 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3075 qdisc_run_begin(q)) {
bbd8a0d3
KK
3076 /*
3077 * This is a work-conserving queue; there are no old skbs
3078 * waiting to be sent out; and the qdisc is not running -
3079 * xmit the skb directly.
3080 */
bfe0d029 3081
bfe0d029
ED
3082 qdisc_bstats_update(q, skb);
3083
55a93b3e 3084 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3085 if (unlikely(contended)) {
3086 spin_unlock(&q->busylock);
3087 contended = false;
3088 }
bbd8a0d3 3089 __qdisc_run(q);
79640a4c 3090 } else
bc135b23 3091 qdisc_run_end(q);
bbd8a0d3
KK
3092
3093 rc = NET_XMIT_SUCCESS;
3094 } else {
520ac30f 3095 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3096 if (qdisc_run_begin(q)) {
3097 if (unlikely(contended)) {
3098 spin_unlock(&q->busylock);
3099 contended = false;
3100 }
3101 __qdisc_run(q);
3102 }
bbd8a0d3
KK
3103 }
3104 spin_unlock(root_lock);
520ac30f
ED
3105 if (unlikely(to_free))
3106 kfree_skb_list(to_free);
79640a4c
ED
3107 if (unlikely(contended))
3108 spin_unlock(&q->busylock);
bbd8a0d3
KK
3109 return rc;
3110}
3111
86f8515f 3112#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3113static void skb_update_prio(struct sk_buff *skb)
3114{
6977a79d 3115 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3116
91c68ce2 3117 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3118 unsigned int prioidx =
3119 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3120
3121 if (prioidx < map->priomap_len)
3122 skb->priority = map->priomap[prioidx];
3123 }
5bc1421e
NH
3124}
3125#else
3126#define skb_update_prio(skb)
3127#endif
3128
f60e5990 3129DEFINE_PER_CPU(int, xmit_recursion);
3130EXPORT_SYMBOL(xmit_recursion);
3131
95603e22
MM
3132/**
3133 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3134 * @net: network namespace this loopback is happening in
3135 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3136 * @skb: buffer to transmit
3137 */
0c4b51f0 3138int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3139{
3140 skb_reset_mac_header(skb);
3141 __skb_pull(skb, skb_network_offset(skb));
3142 skb->pkt_type = PACKET_LOOPBACK;
3143 skb->ip_summed = CHECKSUM_UNNECESSARY;
3144 WARN_ON(!skb_dst(skb));
3145 skb_dst_force(skb);
3146 netif_rx_ni(skb);
3147 return 0;
3148}
3149EXPORT_SYMBOL(dev_loopback_xmit);
3150
1f211a1b
DB
3151#ifdef CONFIG_NET_EGRESS
3152static struct sk_buff *
3153sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3154{
3155 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3156 struct tcf_result cl_res;
3157
3158 if (!cl)
3159 return skb;
3160
3161 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3162 * earlier by the caller.
3163 */
3164 qdisc_bstats_cpu_update(cl->q, skb);
3165
3166 switch (tc_classify(skb, cl, &cl_res, false)) {
3167 case TC_ACT_OK:
3168 case TC_ACT_RECLASSIFY:
3169 skb->tc_index = TC_H_MIN(cl_res.classid);
3170 break;
3171 case TC_ACT_SHOT:
3172 qdisc_qstats_cpu_drop(cl->q);
3173 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3174 kfree_skb(skb);
3175 return NULL;
1f211a1b
DB
3176 case TC_ACT_STOLEN:
3177 case TC_ACT_QUEUED:
3178 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3179 consume_skb(skb);
1f211a1b
DB
3180 return NULL;
3181 case TC_ACT_REDIRECT:
3182 /* No need to push/pop skb's mac_header here on egress! */
3183 skb_do_redirect(skb);
3184 *ret = NET_XMIT_SUCCESS;
3185 return NULL;
3186 default:
3187 break;
3188 }
3189
3190 return skb;
3191}
3192#endif /* CONFIG_NET_EGRESS */
3193
638b2a69
JP
3194static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3195{
3196#ifdef CONFIG_XPS
3197 struct xps_dev_maps *dev_maps;
3198 struct xps_map *map;
3199 int queue_index = -1;
3200
3201 rcu_read_lock();
3202 dev_maps = rcu_dereference(dev->xps_maps);
3203 if (dev_maps) {
184c449f
AD
3204 unsigned int tci = skb->sender_cpu - 1;
3205
3206 if (dev->num_tc) {
3207 tci *= dev->num_tc;
3208 tci += netdev_get_prio_tc_map(dev, skb->priority);
3209 }
3210
3211 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3212 if (map) {
3213 if (map->len == 1)
3214 queue_index = map->queues[0];
3215 else
3216 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3217 map->len)];
3218 if (unlikely(queue_index >= dev->real_num_tx_queues))
3219 queue_index = -1;
3220 }
3221 }
3222 rcu_read_unlock();
3223
3224 return queue_index;
3225#else
3226 return -1;
3227#endif
3228}
3229
3230static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3231{
3232 struct sock *sk = skb->sk;
3233 int queue_index = sk_tx_queue_get(sk);
3234
3235 if (queue_index < 0 || skb->ooo_okay ||
3236 queue_index >= dev->real_num_tx_queues) {
3237 int new_index = get_xps_queue(dev, skb);
3238 if (new_index < 0)
3239 new_index = skb_tx_hash(dev, skb);
3240
3241 if (queue_index != new_index && sk &&
004a5d01 3242 sk_fullsock(sk) &&
638b2a69
JP
3243 rcu_access_pointer(sk->sk_dst_cache))
3244 sk_tx_queue_set(sk, new_index);
3245
3246 queue_index = new_index;
3247 }
3248
3249 return queue_index;
3250}
3251
3252struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3253 struct sk_buff *skb,
3254 void *accel_priv)
3255{
3256 int queue_index = 0;
3257
3258#ifdef CONFIG_XPS
52bd2d62
ED
3259 u32 sender_cpu = skb->sender_cpu - 1;
3260
3261 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3262 skb->sender_cpu = raw_smp_processor_id() + 1;
3263#endif
3264
3265 if (dev->real_num_tx_queues != 1) {
3266 const struct net_device_ops *ops = dev->netdev_ops;
3267 if (ops->ndo_select_queue)
3268 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3269 __netdev_pick_tx);
3270 else
3271 queue_index = __netdev_pick_tx(dev, skb);
3272
3273 if (!accel_priv)
3274 queue_index = netdev_cap_txqueue(dev, queue_index);
3275 }
3276
3277 skb_set_queue_mapping(skb, queue_index);
3278 return netdev_get_tx_queue(dev, queue_index);
3279}
3280
d29f749e 3281/**
9d08dd3d 3282 * __dev_queue_xmit - transmit a buffer
d29f749e 3283 * @skb: buffer to transmit
9d08dd3d 3284 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3285 *
3286 * Queue a buffer for transmission to a network device. The caller must
3287 * have set the device and priority and built the buffer before calling
3288 * this function. The function can be called from an interrupt.
3289 *
3290 * A negative errno code is returned on a failure. A success does not
3291 * guarantee the frame will be transmitted as it may be dropped due
3292 * to congestion or traffic shaping.
3293 *
3294 * -----------------------------------------------------------------------------------
3295 * I notice this method can also return errors from the queue disciplines,
3296 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3297 * be positive.
3298 *
3299 * Regardless of the return value, the skb is consumed, so it is currently
3300 * difficult to retry a send to this method. (You can bump the ref count
3301 * before sending to hold a reference for retry if you are careful.)
3302 *
3303 * When calling this method, interrupts MUST be enabled. This is because
3304 * the BH enable code must have IRQs enabled so that it will not deadlock.
3305 * --BLG
3306 */
0a59f3a9 3307static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3308{
3309 struct net_device *dev = skb->dev;
dc2b4847 3310 struct netdev_queue *txq;
1da177e4
LT
3311 struct Qdisc *q;
3312 int rc = -ENOMEM;
3313
6d1ccff6
ED
3314 skb_reset_mac_header(skb);
3315
e7fd2885
WB
3316 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3317 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3318
4ec93edb
YH
3319 /* Disable soft irqs for various locks below. Also
3320 * stops preemption for RCU.
1da177e4 3321 */
4ec93edb 3322 rcu_read_lock_bh();
1da177e4 3323
5bc1421e
NH
3324 skb_update_prio(skb);
3325
1f211a1b
DB
3326 qdisc_pkt_len_init(skb);
3327#ifdef CONFIG_NET_CLS_ACT
3328 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3329# ifdef CONFIG_NET_EGRESS
3330 if (static_key_false(&egress_needed)) {
3331 skb = sch_handle_egress(skb, &rc, dev);
3332 if (!skb)
3333 goto out;
3334 }
3335# endif
3336#endif
02875878
ED
3337 /* If device/qdisc don't need skb->dst, release it right now while
3338 * its hot in this cpu cache.
3339 */
3340 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3341 skb_dst_drop(skb);
3342 else
3343 skb_dst_force(skb);
3344
f663dd9a 3345 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3346 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3347
cf66ba58 3348 trace_net_dev_queue(skb);
1da177e4 3349 if (q->enqueue) {
bbd8a0d3 3350 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3351 goto out;
1da177e4
LT
3352 }
3353
3354 /* The device has no queue. Common case for software devices:
3355 loopback, all the sorts of tunnels...
3356
932ff279
HX
3357 Really, it is unlikely that netif_tx_lock protection is necessary
3358 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3359 counters.)
3360 However, it is possible, that they rely on protection
3361 made by us here.
3362
3363 Check this and shot the lock. It is not prone from deadlocks.
3364 Either shot noqueue qdisc, it is even simpler 8)
3365 */
3366 if (dev->flags & IFF_UP) {
3367 int cpu = smp_processor_id(); /* ok because BHs are off */
3368
c773e847 3369 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3370 if (unlikely(__this_cpu_read(xmit_recursion) >
3371 XMIT_RECURSION_LIMIT))
745e20f1
ED
3372 goto recursion_alert;
3373
1f59533f
JDB
3374 skb = validate_xmit_skb(skb, dev);
3375 if (!skb)
d21fd63e 3376 goto out;
1f59533f 3377
c773e847 3378 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3379
73466498 3380 if (!netif_xmit_stopped(txq)) {
745e20f1 3381 __this_cpu_inc(xmit_recursion);
ce93718f 3382 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3383 __this_cpu_dec(xmit_recursion);
572a9d7b 3384 if (dev_xmit_complete(rc)) {
c773e847 3385 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3386 goto out;
3387 }
3388 }
c773e847 3389 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3390 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3391 dev->name);
1da177e4
LT
3392 } else {
3393 /* Recursion is detected! It is possible,
745e20f1
ED
3394 * unfortunately
3395 */
3396recursion_alert:
e87cc472
JP
3397 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3398 dev->name);
1da177e4
LT
3399 }
3400 }
3401
3402 rc = -ENETDOWN;
d4828d85 3403 rcu_read_unlock_bh();
1da177e4 3404
015f0688 3405 atomic_long_inc(&dev->tx_dropped);
1f59533f 3406 kfree_skb_list(skb);
1da177e4
LT
3407 return rc;
3408out:
d4828d85 3409 rcu_read_unlock_bh();
1da177e4
LT
3410 return rc;
3411}
f663dd9a 3412
2b4aa3ce 3413int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3414{
3415 return __dev_queue_xmit(skb, NULL);
3416}
2b4aa3ce 3417EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3418
f663dd9a
JW
3419int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3420{
3421 return __dev_queue_xmit(skb, accel_priv);
3422}
3423EXPORT_SYMBOL(dev_queue_xmit_accel);
3424
1da177e4
LT
3425
3426/*=======================================================================
3427 Receiver routines
3428 =======================================================================*/
3429
6b2bedc3 3430int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3431EXPORT_SYMBOL(netdev_max_backlog);
3432
3b098e2d 3433int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3434int netdev_budget __read_mostly = 300;
3435int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3436
eecfd7c4
ED
3437/* Called with irq disabled */
3438static inline void ____napi_schedule(struct softnet_data *sd,
3439 struct napi_struct *napi)
3440{
3441 list_add_tail(&napi->poll_list, &sd->poll_list);
3442 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3443}
3444
bfb564e7
KK
3445#ifdef CONFIG_RPS
3446
3447/* One global table that all flow-based protocols share. */
6e3f7faf 3448struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3449EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3450u32 rps_cpu_mask __read_mostly;
3451EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3452
c5905afb 3453struct static_key rps_needed __read_mostly;
3df97ba8 3454EXPORT_SYMBOL(rps_needed);
adc9300e 3455
c445477d
BH
3456static struct rps_dev_flow *
3457set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3458 struct rps_dev_flow *rflow, u16 next_cpu)
3459{
a31196b0 3460 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3461#ifdef CONFIG_RFS_ACCEL
3462 struct netdev_rx_queue *rxqueue;
3463 struct rps_dev_flow_table *flow_table;
3464 struct rps_dev_flow *old_rflow;
3465 u32 flow_id;
3466 u16 rxq_index;
3467 int rc;
3468
3469 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3470 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3471 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3472 goto out;
3473 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3474 if (rxq_index == skb_get_rx_queue(skb))
3475 goto out;
3476
3477 rxqueue = dev->_rx + rxq_index;
3478 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3479 if (!flow_table)
3480 goto out;
61b905da 3481 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3482 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3483 rxq_index, flow_id);
3484 if (rc < 0)
3485 goto out;
3486 old_rflow = rflow;
3487 rflow = &flow_table->flows[flow_id];
c445477d
BH
3488 rflow->filter = rc;
3489 if (old_rflow->filter == rflow->filter)
3490 old_rflow->filter = RPS_NO_FILTER;
3491 out:
3492#endif
3493 rflow->last_qtail =
09994d1b 3494 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3495 }
3496
09994d1b 3497 rflow->cpu = next_cpu;
c445477d
BH
3498 return rflow;
3499}
3500
bfb564e7
KK
3501/*
3502 * get_rps_cpu is called from netif_receive_skb and returns the target
3503 * CPU from the RPS map of the receiving queue for a given skb.
3504 * rcu_read_lock must be held on entry.
3505 */
3506static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3507 struct rps_dev_flow **rflowp)
3508{
567e4b79
ED
3509 const struct rps_sock_flow_table *sock_flow_table;
3510 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3511 struct rps_dev_flow_table *flow_table;
567e4b79 3512 struct rps_map *map;
bfb564e7 3513 int cpu = -1;
567e4b79 3514 u32 tcpu;
61b905da 3515 u32 hash;
bfb564e7
KK
3516
3517 if (skb_rx_queue_recorded(skb)) {
3518 u16 index = skb_get_rx_queue(skb);
567e4b79 3519
62fe0b40
BH
3520 if (unlikely(index >= dev->real_num_rx_queues)) {
3521 WARN_ONCE(dev->real_num_rx_queues > 1,
3522 "%s received packet on queue %u, but number "
3523 "of RX queues is %u\n",
3524 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3525 goto done;
3526 }
567e4b79
ED
3527 rxqueue += index;
3528 }
bfb564e7 3529
567e4b79
ED
3530 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3531
3532 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3533 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3534 if (!flow_table && !map)
bfb564e7
KK
3535 goto done;
3536
2d47b459 3537 skb_reset_network_header(skb);
61b905da
TH
3538 hash = skb_get_hash(skb);
3539 if (!hash)
bfb564e7
KK
3540 goto done;
3541
fec5e652
TH
3542 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3543 if (flow_table && sock_flow_table) {
fec5e652 3544 struct rps_dev_flow *rflow;
567e4b79
ED
3545 u32 next_cpu;
3546 u32 ident;
3547
3548 /* First check into global flow table if there is a match */
3549 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3550 if ((ident ^ hash) & ~rps_cpu_mask)
3551 goto try_rps;
fec5e652 3552
567e4b79
ED
3553 next_cpu = ident & rps_cpu_mask;
3554
3555 /* OK, now we know there is a match,
3556 * we can look at the local (per receive queue) flow table
3557 */
61b905da 3558 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3559 tcpu = rflow->cpu;
3560
fec5e652
TH
3561 /*
3562 * If the desired CPU (where last recvmsg was done) is
3563 * different from current CPU (one in the rx-queue flow
3564 * table entry), switch if one of the following holds:
a31196b0 3565 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3566 * - Current CPU is offline.
3567 * - The current CPU's queue tail has advanced beyond the
3568 * last packet that was enqueued using this table entry.
3569 * This guarantees that all previous packets for the flow
3570 * have been dequeued, thus preserving in order delivery.
3571 */
3572 if (unlikely(tcpu != next_cpu) &&
a31196b0 3573 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3574 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3575 rflow->last_qtail)) >= 0)) {
3576 tcpu = next_cpu;
c445477d 3577 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3578 }
c445477d 3579
a31196b0 3580 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3581 *rflowp = rflow;
3582 cpu = tcpu;
3583 goto done;
3584 }
3585 }
3586
567e4b79
ED
3587try_rps:
3588
0a9627f2 3589 if (map) {
8fc54f68 3590 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3591 if (cpu_online(tcpu)) {
3592 cpu = tcpu;
3593 goto done;
3594 }
3595 }
3596
3597done:
0a9627f2
TH
3598 return cpu;
3599}
3600
c445477d
BH
3601#ifdef CONFIG_RFS_ACCEL
3602
3603/**
3604 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3605 * @dev: Device on which the filter was set
3606 * @rxq_index: RX queue index
3607 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3608 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3609 *
3610 * Drivers that implement ndo_rx_flow_steer() should periodically call
3611 * this function for each installed filter and remove the filters for
3612 * which it returns %true.
3613 */
3614bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3615 u32 flow_id, u16 filter_id)
3616{
3617 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3618 struct rps_dev_flow_table *flow_table;
3619 struct rps_dev_flow *rflow;
3620 bool expire = true;
a31196b0 3621 unsigned int cpu;
c445477d
BH
3622
3623 rcu_read_lock();
3624 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3625 if (flow_table && flow_id <= flow_table->mask) {
3626 rflow = &flow_table->flows[flow_id];
3627 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3628 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3629 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3630 rflow->last_qtail) <
3631 (int)(10 * flow_table->mask)))
3632 expire = false;
3633 }
3634 rcu_read_unlock();
3635 return expire;
3636}
3637EXPORT_SYMBOL(rps_may_expire_flow);
3638
3639#endif /* CONFIG_RFS_ACCEL */
3640
0a9627f2 3641/* Called from hardirq (IPI) context */
e36fa2f7 3642static void rps_trigger_softirq(void *data)
0a9627f2 3643{
e36fa2f7
ED
3644 struct softnet_data *sd = data;
3645
eecfd7c4 3646 ____napi_schedule(sd, &sd->backlog);
dee42870 3647 sd->received_rps++;
0a9627f2 3648}
e36fa2f7 3649
fec5e652 3650#endif /* CONFIG_RPS */
0a9627f2 3651
e36fa2f7
ED
3652/*
3653 * Check if this softnet_data structure is another cpu one
3654 * If yes, queue it to our IPI list and return 1
3655 * If no, return 0
3656 */
3657static int rps_ipi_queued(struct softnet_data *sd)
3658{
3659#ifdef CONFIG_RPS
903ceff7 3660 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3661
3662 if (sd != mysd) {
3663 sd->rps_ipi_next = mysd->rps_ipi_list;
3664 mysd->rps_ipi_list = sd;
3665
3666 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3667 return 1;
3668 }
3669#endif /* CONFIG_RPS */
3670 return 0;
3671}
3672
99bbc707
WB
3673#ifdef CONFIG_NET_FLOW_LIMIT
3674int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3675#endif
3676
3677static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3678{
3679#ifdef CONFIG_NET_FLOW_LIMIT
3680 struct sd_flow_limit *fl;
3681 struct softnet_data *sd;
3682 unsigned int old_flow, new_flow;
3683
3684 if (qlen < (netdev_max_backlog >> 1))
3685 return false;
3686
903ceff7 3687 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3688
3689 rcu_read_lock();
3690 fl = rcu_dereference(sd->flow_limit);
3691 if (fl) {
3958afa1 3692 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3693 old_flow = fl->history[fl->history_head];
3694 fl->history[fl->history_head] = new_flow;
3695
3696 fl->history_head++;
3697 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3698
3699 if (likely(fl->buckets[old_flow]))
3700 fl->buckets[old_flow]--;
3701
3702 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3703 fl->count++;
3704 rcu_read_unlock();
3705 return true;
3706 }
3707 }
3708 rcu_read_unlock();
3709#endif
3710 return false;
3711}
3712
0a9627f2
TH
3713/*
3714 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3715 * queue (may be a remote CPU queue).
3716 */
fec5e652
TH
3717static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3718 unsigned int *qtail)
0a9627f2 3719{
e36fa2f7 3720 struct softnet_data *sd;
0a9627f2 3721 unsigned long flags;
99bbc707 3722 unsigned int qlen;
0a9627f2 3723
e36fa2f7 3724 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3725
3726 local_irq_save(flags);
0a9627f2 3727
e36fa2f7 3728 rps_lock(sd);
e9e4dd32
JA
3729 if (!netif_running(skb->dev))
3730 goto drop;
99bbc707
WB
3731 qlen = skb_queue_len(&sd->input_pkt_queue);
3732 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3733 if (qlen) {
0a9627f2 3734enqueue:
e36fa2f7 3735 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3736 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3737 rps_unlock(sd);
152102c7 3738 local_irq_restore(flags);
0a9627f2
TH
3739 return NET_RX_SUCCESS;
3740 }
3741
ebda37c2
ED
3742 /* Schedule NAPI for backlog device
3743 * We can use non atomic operation since we own the queue lock
3744 */
3745 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3746 if (!rps_ipi_queued(sd))
eecfd7c4 3747 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3748 }
3749 goto enqueue;
3750 }
3751
e9e4dd32 3752drop:
dee42870 3753 sd->dropped++;
e36fa2f7 3754 rps_unlock(sd);
0a9627f2 3755
0a9627f2
TH
3756 local_irq_restore(flags);
3757
caf586e5 3758 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3759 kfree_skb(skb);
3760 return NET_RX_DROP;
3761}
1da177e4 3762
ae78dbfa 3763static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3764{
b0e28f1e 3765 int ret;
1da177e4 3766
588f0330 3767 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3768
cf66ba58 3769 trace_netif_rx(skb);
df334545 3770#ifdef CONFIG_RPS
c5905afb 3771 if (static_key_false(&rps_needed)) {
fec5e652 3772 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3773 int cpu;
3774
cece1945 3775 preempt_disable();
b0e28f1e 3776 rcu_read_lock();
fec5e652
TH
3777
3778 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3779 if (cpu < 0)
3780 cpu = smp_processor_id();
fec5e652
TH
3781
3782 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3783
b0e28f1e 3784 rcu_read_unlock();
cece1945 3785 preempt_enable();
adc9300e
ED
3786 } else
3787#endif
fec5e652
TH
3788 {
3789 unsigned int qtail;
3790 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3791 put_cpu();
3792 }
b0e28f1e 3793 return ret;
1da177e4 3794}
ae78dbfa
BH
3795
3796/**
3797 * netif_rx - post buffer to the network code
3798 * @skb: buffer to post
3799 *
3800 * This function receives a packet from a device driver and queues it for
3801 * the upper (protocol) levels to process. It always succeeds. The buffer
3802 * may be dropped during processing for congestion control or by the
3803 * protocol layers.
3804 *
3805 * return values:
3806 * NET_RX_SUCCESS (no congestion)
3807 * NET_RX_DROP (packet was dropped)
3808 *
3809 */
3810
3811int netif_rx(struct sk_buff *skb)
3812{
3813 trace_netif_rx_entry(skb);
3814
3815 return netif_rx_internal(skb);
3816}
d1b19dff 3817EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3818
3819int netif_rx_ni(struct sk_buff *skb)
3820{
3821 int err;
3822
ae78dbfa
BH
3823 trace_netif_rx_ni_entry(skb);
3824
1da177e4 3825 preempt_disable();
ae78dbfa 3826 err = netif_rx_internal(skb);
1da177e4
LT
3827 if (local_softirq_pending())
3828 do_softirq();
3829 preempt_enable();
3830
3831 return err;
3832}
1da177e4
LT
3833EXPORT_SYMBOL(netif_rx_ni);
3834
0766f788 3835static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3836{
903ceff7 3837 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3838
3839 if (sd->completion_queue) {
3840 struct sk_buff *clist;
3841
3842 local_irq_disable();
3843 clist = sd->completion_queue;
3844 sd->completion_queue = NULL;
3845 local_irq_enable();
3846
3847 while (clist) {
3848 struct sk_buff *skb = clist;
3849 clist = clist->next;
3850
547b792c 3851 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3852 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3853 trace_consume_skb(skb);
3854 else
3855 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3856
3857 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3858 __kfree_skb(skb);
3859 else
3860 __kfree_skb_defer(skb);
1da177e4 3861 }
15fad714
JDB
3862
3863 __kfree_skb_flush();
1da177e4
LT
3864 }
3865
3866 if (sd->output_queue) {
37437bb2 3867 struct Qdisc *head;
1da177e4
LT
3868
3869 local_irq_disable();
3870 head = sd->output_queue;
3871 sd->output_queue = NULL;
a9cbd588 3872 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3873 local_irq_enable();
3874
3875 while (head) {
37437bb2
DM
3876 struct Qdisc *q = head;
3877 spinlock_t *root_lock;
3878
1da177e4
LT
3879 head = head->next_sched;
3880
5fb66229 3881 root_lock = qdisc_lock(q);
3bcb846c
ED
3882 spin_lock(root_lock);
3883 /* We need to make sure head->next_sched is read
3884 * before clearing __QDISC_STATE_SCHED
3885 */
3886 smp_mb__before_atomic();
3887 clear_bit(__QDISC_STATE_SCHED, &q->state);
3888 qdisc_run(q);
3889 spin_unlock(root_lock);
1da177e4
LT
3890 }
3891 }
3892}
3893
181402a5 3894#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3895/* This hook is defined here for ATM LANE */
3896int (*br_fdb_test_addr_hook)(struct net_device *dev,
3897 unsigned char *addr) __read_mostly;
4fb019a0 3898EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3899#endif
1da177e4 3900
1f211a1b
DB
3901static inline struct sk_buff *
3902sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3903 struct net_device *orig_dev)
f697c3e8 3904{
e7582bab 3905#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3906 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3907 struct tcf_result cl_res;
24824a09 3908
c9e99fd0
DB
3909 /* If there's at least one ingress present somewhere (so
3910 * we get here via enabled static key), remaining devices
3911 * that are not configured with an ingress qdisc will bail
d2788d34 3912 * out here.
c9e99fd0 3913 */
d2788d34 3914 if (!cl)
4577139b 3915 return skb;
f697c3e8
HX
3916 if (*pt_prev) {
3917 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3918 *pt_prev = NULL;
1da177e4
LT
3919 }
3920
3365495c 3921 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3922 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3923 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3924
3b3ae880 3925 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3926 case TC_ACT_OK:
3927 case TC_ACT_RECLASSIFY:
3928 skb->tc_index = TC_H_MIN(cl_res.classid);
3929 break;
3930 case TC_ACT_SHOT:
24ea591d 3931 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3932 kfree_skb(skb);
3933 return NULL;
d2788d34
DB
3934 case TC_ACT_STOLEN:
3935 case TC_ACT_QUEUED:
8a3a4c6e 3936 consume_skb(skb);
d2788d34 3937 return NULL;
27b29f63
AS
3938 case TC_ACT_REDIRECT:
3939 /* skb_mac_header check was done by cls/act_bpf, so
3940 * we can safely push the L2 header back before
3941 * redirecting to another netdev
3942 */
3943 __skb_push(skb, skb->mac_len);
3944 skb_do_redirect(skb);
3945 return NULL;
d2788d34
DB
3946 default:
3947 break;
f697c3e8 3948 }
e7582bab 3949#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3950 return skb;
3951}
1da177e4 3952
24b27fc4
MB
3953/**
3954 * netdev_is_rx_handler_busy - check if receive handler is registered
3955 * @dev: device to check
3956 *
3957 * Check if a receive handler is already registered for a given device.
3958 * Return true if there one.
3959 *
3960 * The caller must hold the rtnl_mutex.
3961 */
3962bool netdev_is_rx_handler_busy(struct net_device *dev)
3963{
3964 ASSERT_RTNL();
3965 return dev && rtnl_dereference(dev->rx_handler);
3966}
3967EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3968
ab95bfe0
JP
3969/**
3970 * netdev_rx_handler_register - register receive handler
3971 * @dev: device to register a handler for
3972 * @rx_handler: receive handler to register
93e2c32b 3973 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3974 *
e227867f 3975 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3976 * called from __netif_receive_skb. A negative errno code is returned
3977 * on a failure.
3978 *
3979 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3980 *
3981 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3982 */
3983int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3984 rx_handler_func_t *rx_handler,
3985 void *rx_handler_data)
ab95bfe0
JP
3986{
3987 ASSERT_RTNL();
3988
3989 if (dev->rx_handler)
3990 return -EBUSY;
3991
00cfec37 3992 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3993 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3994 rcu_assign_pointer(dev->rx_handler, rx_handler);
3995
3996 return 0;
3997}
3998EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3999
4000/**
4001 * netdev_rx_handler_unregister - unregister receive handler
4002 * @dev: device to unregister a handler from
4003 *
166ec369 4004 * Unregister a receive handler from a device.
ab95bfe0
JP
4005 *
4006 * The caller must hold the rtnl_mutex.
4007 */
4008void netdev_rx_handler_unregister(struct net_device *dev)
4009{
4010
4011 ASSERT_RTNL();
a9b3cd7f 4012 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4013 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4014 * section has a guarantee to see a non NULL rx_handler_data
4015 * as well.
4016 */
4017 synchronize_net();
a9b3cd7f 4018 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4019}
4020EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4021
b4b9e355
MG
4022/*
4023 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4024 * the special handling of PFMEMALLOC skbs.
4025 */
4026static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4027{
4028 switch (skb->protocol) {
2b8837ae
JP
4029 case htons(ETH_P_ARP):
4030 case htons(ETH_P_IP):
4031 case htons(ETH_P_IPV6):
4032 case htons(ETH_P_8021Q):
4033 case htons(ETH_P_8021AD):
b4b9e355
MG
4034 return true;
4035 default:
4036 return false;
4037 }
4038}
4039
e687ad60
PN
4040static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4041 int *ret, struct net_device *orig_dev)
4042{
e7582bab 4043#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4044 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4045 int ingress_retval;
4046
e687ad60
PN
4047 if (*pt_prev) {
4048 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4049 *pt_prev = NULL;
4050 }
4051
2c1e2703
AC
4052 rcu_read_lock();
4053 ingress_retval = nf_hook_ingress(skb);
4054 rcu_read_unlock();
4055 return ingress_retval;
e687ad60 4056 }
e7582bab 4057#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4058 return 0;
4059}
e687ad60 4060
9754e293 4061static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4062{
4063 struct packet_type *ptype, *pt_prev;
ab95bfe0 4064 rx_handler_func_t *rx_handler;
f2ccd8fa 4065 struct net_device *orig_dev;
8a4eb573 4066 bool deliver_exact = false;
1da177e4 4067 int ret = NET_RX_DROP;
252e3346 4068 __be16 type;
1da177e4 4069
588f0330 4070 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4071
cf66ba58 4072 trace_netif_receive_skb(skb);
9b22ea56 4073
cc9bd5ce 4074 orig_dev = skb->dev;
8f903c70 4075
c1d2bbe1 4076 skb_reset_network_header(skb);
fda55eca
ED
4077 if (!skb_transport_header_was_set(skb))
4078 skb_reset_transport_header(skb);
0b5c9db1 4079 skb_reset_mac_len(skb);
1da177e4
LT
4080
4081 pt_prev = NULL;
4082
63d8ea7f 4083another_round:
b6858177 4084 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4085
4086 __this_cpu_inc(softnet_data.processed);
4087
8ad227ff
PM
4088 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4089 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4090 skb = skb_vlan_untag(skb);
bcc6d479 4091 if (unlikely(!skb))
2c17d27c 4092 goto out;
bcc6d479
JP
4093 }
4094
1da177e4
LT
4095#ifdef CONFIG_NET_CLS_ACT
4096 if (skb->tc_verd & TC_NCLS) {
4097 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4098 goto ncls;
4099 }
4100#endif
4101
9754e293 4102 if (pfmemalloc)
b4b9e355
MG
4103 goto skip_taps;
4104
1da177e4 4105 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4106 if (pt_prev)
4107 ret = deliver_skb(skb, pt_prev, orig_dev);
4108 pt_prev = ptype;
4109 }
4110
4111 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4112 if (pt_prev)
4113 ret = deliver_skb(skb, pt_prev, orig_dev);
4114 pt_prev = ptype;
1da177e4
LT
4115 }
4116
b4b9e355 4117skip_taps:
1cf51900 4118#ifdef CONFIG_NET_INGRESS
4577139b 4119 if (static_key_false(&ingress_needed)) {
1f211a1b 4120 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4121 if (!skb)
2c17d27c 4122 goto out;
e687ad60
PN
4123
4124 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4125 goto out;
4577139b 4126 }
1cf51900
PN
4127#endif
4128#ifdef CONFIG_NET_CLS_ACT
4577139b 4129 skb->tc_verd = 0;
1da177e4
LT
4130ncls:
4131#endif
9754e293 4132 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4133 goto drop;
4134
df8a39de 4135 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4136 if (pt_prev) {
4137 ret = deliver_skb(skb, pt_prev, orig_dev);
4138 pt_prev = NULL;
4139 }
48cc32d3 4140 if (vlan_do_receive(&skb))
2425717b
JF
4141 goto another_round;
4142 else if (unlikely(!skb))
2c17d27c 4143 goto out;
2425717b
JF
4144 }
4145
48cc32d3 4146 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4147 if (rx_handler) {
4148 if (pt_prev) {
4149 ret = deliver_skb(skb, pt_prev, orig_dev);
4150 pt_prev = NULL;
4151 }
8a4eb573
JP
4152 switch (rx_handler(&skb)) {
4153 case RX_HANDLER_CONSUMED:
3bc1b1ad 4154 ret = NET_RX_SUCCESS;
2c17d27c 4155 goto out;
8a4eb573 4156 case RX_HANDLER_ANOTHER:
63d8ea7f 4157 goto another_round;
8a4eb573
JP
4158 case RX_HANDLER_EXACT:
4159 deliver_exact = true;
4160 case RX_HANDLER_PASS:
4161 break;
4162 default:
4163 BUG();
4164 }
ab95bfe0 4165 }
1da177e4 4166
df8a39de
JP
4167 if (unlikely(skb_vlan_tag_present(skb))) {
4168 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4169 skb->pkt_type = PACKET_OTHERHOST;
4170 /* Note: we might in the future use prio bits
4171 * and set skb->priority like in vlan_do_receive()
4172 * For the time being, just ignore Priority Code Point
4173 */
4174 skb->vlan_tci = 0;
4175 }
48cc32d3 4176
7866a621
SN
4177 type = skb->protocol;
4178
63d8ea7f 4179 /* deliver only exact match when indicated */
7866a621
SN
4180 if (likely(!deliver_exact)) {
4181 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4182 &ptype_base[ntohs(type) &
4183 PTYPE_HASH_MASK]);
4184 }
1f3c8804 4185
7866a621
SN
4186 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4187 &orig_dev->ptype_specific);
4188
4189 if (unlikely(skb->dev != orig_dev)) {
4190 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4191 &skb->dev->ptype_specific);
1da177e4
LT
4192 }
4193
4194 if (pt_prev) {
1080e512 4195 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4196 goto drop;
1080e512
MT
4197 else
4198 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4199 } else {
b4b9e355 4200drop:
6e7333d3
JW
4201 if (!deliver_exact)
4202 atomic_long_inc(&skb->dev->rx_dropped);
4203 else
4204 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4205 kfree_skb(skb);
4206 /* Jamal, now you will not able to escape explaining
4207 * me how you were going to use this. :-)
4208 */
4209 ret = NET_RX_DROP;
4210 }
4211
2c17d27c 4212out:
9754e293
DM
4213 return ret;
4214}
4215
4216static int __netif_receive_skb(struct sk_buff *skb)
4217{
4218 int ret;
4219
4220 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4221 unsigned long pflags = current->flags;
4222
4223 /*
4224 * PFMEMALLOC skbs are special, they should
4225 * - be delivered to SOCK_MEMALLOC sockets only
4226 * - stay away from userspace
4227 * - have bounded memory usage
4228 *
4229 * Use PF_MEMALLOC as this saves us from propagating the allocation
4230 * context down to all allocation sites.
4231 */
4232 current->flags |= PF_MEMALLOC;
4233 ret = __netif_receive_skb_core(skb, true);
4234 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4235 } else
4236 ret = __netif_receive_skb_core(skb, false);
4237
1da177e4
LT
4238 return ret;
4239}
0a9627f2 4240
ae78dbfa 4241static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4242{
2c17d27c
JA
4243 int ret;
4244
588f0330 4245 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4246
c1f19b51
RC
4247 if (skb_defer_rx_timestamp(skb))
4248 return NET_RX_SUCCESS;
4249
2c17d27c
JA
4250 rcu_read_lock();
4251
df334545 4252#ifdef CONFIG_RPS
c5905afb 4253 if (static_key_false(&rps_needed)) {
3b098e2d 4254 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4255 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4256
3b098e2d
ED
4257 if (cpu >= 0) {
4258 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4259 rcu_read_unlock();
adc9300e 4260 return ret;
3b098e2d 4261 }
fec5e652 4262 }
1e94d72f 4263#endif
2c17d27c
JA
4264 ret = __netif_receive_skb(skb);
4265 rcu_read_unlock();
4266 return ret;
0a9627f2 4267}
ae78dbfa
BH
4268
4269/**
4270 * netif_receive_skb - process receive buffer from network
4271 * @skb: buffer to process
4272 *
4273 * netif_receive_skb() is the main receive data processing function.
4274 * It always succeeds. The buffer may be dropped during processing
4275 * for congestion control or by the protocol layers.
4276 *
4277 * This function may only be called from softirq context and interrupts
4278 * should be enabled.
4279 *
4280 * Return values (usually ignored):
4281 * NET_RX_SUCCESS: no congestion
4282 * NET_RX_DROP: packet was dropped
4283 */
04eb4489 4284int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4285{
4286 trace_netif_receive_skb_entry(skb);
4287
4288 return netif_receive_skb_internal(skb);
4289}
04eb4489 4290EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4291
41852497 4292DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4293
4294/* Network device is going away, flush any packets still pending */
4295static void flush_backlog(struct work_struct *work)
6e583ce5 4296{
6e583ce5 4297 struct sk_buff *skb, *tmp;
145dd5f9
PA
4298 struct softnet_data *sd;
4299
4300 local_bh_disable();
4301 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4302
145dd5f9 4303 local_irq_disable();
e36fa2f7 4304 rps_lock(sd);
6e7676c1 4305 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4306 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4307 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4308 kfree_skb(skb);
76cc8b13 4309 input_queue_head_incr(sd);
6e583ce5 4310 }
6e7676c1 4311 }
e36fa2f7 4312 rps_unlock(sd);
145dd5f9 4313 local_irq_enable();
6e7676c1
CG
4314
4315 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4316 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4317 __skb_unlink(skb, &sd->process_queue);
4318 kfree_skb(skb);
76cc8b13 4319 input_queue_head_incr(sd);
6e7676c1
CG
4320 }
4321 }
145dd5f9
PA
4322 local_bh_enable();
4323}
4324
41852497 4325static void flush_all_backlogs(void)
145dd5f9
PA
4326{
4327 unsigned int cpu;
4328
4329 get_online_cpus();
4330
41852497
ED
4331 for_each_online_cpu(cpu)
4332 queue_work_on(cpu, system_highpri_wq,
4333 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4334
4335 for_each_online_cpu(cpu)
41852497 4336 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4337
4338 put_online_cpus();
6e583ce5
SH
4339}
4340
d565b0a1
HX
4341static int napi_gro_complete(struct sk_buff *skb)
4342{
22061d80 4343 struct packet_offload *ptype;
d565b0a1 4344 __be16 type = skb->protocol;
22061d80 4345 struct list_head *head = &offload_base;
d565b0a1
HX
4346 int err = -ENOENT;
4347
c3c7c254
ED
4348 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4349
fc59f9a3
HX
4350 if (NAPI_GRO_CB(skb)->count == 1) {
4351 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4352 goto out;
fc59f9a3 4353 }
d565b0a1
HX
4354
4355 rcu_read_lock();
4356 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4357 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4358 continue;
4359
299603e8 4360 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4361 break;
4362 }
4363 rcu_read_unlock();
4364
4365 if (err) {
4366 WARN_ON(&ptype->list == head);
4367 kfree_skb(skb);
4368 return NET_RX_SUCCESS;
4369 }
4370
4371out:
ae78dbfa 4372 return netif_receive_skb_internal(skb);
d565b0a1
HX
4373}
4374
2e71a6f8
ED
4375/* napi->gro_list contains packets ordered by age.
4376 * youngest packets at the head of it.
4377 * Complete skbs in reverse order to reduce latencies.
4378 */
4379void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4380{
2e71a6f8 4381 struct sk_buff *skb, *prev = NULL;
d565b0a1 4382
2e71a6f8
ED
4383 /* scan list and build reverse chain */
4384 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4385 skb->prev = prev;
4386 prev = skb;
4387 }
4388
4389 for (skb = prev; skb; skb = prev) {
d565b0a1 4390 skb->next = NULL;
2e71a6f8
ED
4391
4392 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4393 return;
4394
4395 prev = skb->prev;
d565b0a1 4396 napi_gro_complete(skb);
2e71a6f8 4397 napi->gro_count--;
d565b0a1
HX
4398 }
4399
4400 napi->gro_list = NULL;
4401}
86cac58b 4402EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4403
89c5fa33
ED
4404static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4405{
4406 struct sk_buff *p;
4407 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4408 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4409
4410 for (p = napi->gro_list; p; p = p->next) {
4411 unsigned long diffs;
4412
0b4cec8c
TH
4413 NAPI_GRO_CB(p)->flush = 0;
4414
4415 if (hash != skb_get_hash_raw(p)) {
4416 NAPI_GRO_CB(p)->same_flow = 0;
4417 continue;
4418 }
4419
89c5fa33
ED
4420 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4421 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4422 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4423 if (maclen == ETH_HLEN)
4424 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4425 skb_mac_header(skb));
89c5fa33
ED
4426 else if (!diffs)
4427 diffs = memcmp(skb_mac_header(p),
a50e233c 4428 skb_mac_header(skb),
89c5fa33
ED
4429 maclen);
4430 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4431 }
4432}
4433
299603e8
JC
4434static void skb_gro_reset_offset(struct sk_buff *skb)
4435{
4436 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4437 const skb_frag_t *frag0 = &pinfo->frags[0];
4438
4439 NAPI_GRO_CB(skb)->data_offset = 0;
4440 NAPI_GRO_CB(skb)->frag0 = NULL;
4441 NAPI_GRO_CB(skb)->frag0_len = 0;
4442
4443 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4444 pinfo->nr_frags &&
4445 !PageHighMem(skb_frag_page(frag0))) {
4446 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4447 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4448 }
4449}
4450
a50e233c
ED
4451static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4452{
4453 struct skb_shared_info *pinfo = skb_shinfo(skb);
4454
4455 BUG_ON(skb->end - skb->tail < grow);
4456
4457 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4458
4459 skb->data_len -= grow;
4460 skb->tail += grow;
4461
4462 pinfo->frags[0].page_offset += grow;
4463 skb_frag_size_sub(&pinfo->frags[0], grow);
4464
4465 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4466 skb_frag_unref(skb, 0);
4467 memmove(pinfo->frags, pinfo->frags + 1,
4468 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4469 }
4470}
4471
bb728820 4472static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4473{
4474 struct sk_buff **pp = NULL;
22061d80 4475 struct packet_offload *ptype;
d565b0a1 4476 __be16 type = skb->protocol;
22061d80 4477 struct list_head *head = &offload_base;
0da2afd5 4478 int same_flow;
5b252f0c 4479 enum gro_result ret;
a50e233c 4480 int grow;
d565b0a1 4481
9c62a68d 4482 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4483 goto normal;
4484
5a212329 4485 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4486 goto normal;
4487
89c5fa33
ED
4488 gro_list_prepare(napi, skb);
4489
d565b0a1
HX
4490 rcu_read_lock();
4491 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4492 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4493 continue;
4494
86911732 4495 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4496 skb_reset_mac_len(skb);
d565b0a1
HX
4497 NAPI_GRO_CB(skb)->same_flow = 0;
4498 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4499 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4500 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4501 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4502 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4503 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4504 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4505
662880f4
TH
4506 /* Setup for GRO checksum validation */
4507 switch (skb->ip_summed) {
4508 case CHECKSUM_COMPLETE:
4509 NAPI_GRO_CB(skb)->csum = skb->csum;
4510 NAPI_GRO_CB(skb)->csum_valid = 1;
4511 NAPI_GRO_CB(skb)->csum_cnt = 0;
4512 break;
4513 case CHECKSUM_UNNECESSARY:
4514 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4515 NAPI_GRO_CB(skb)->csum_valid = 0;
4516 break;
4517 default:
4518 NAPI_GRO_CB(skb)->csum_cnt = 0;
4519 NAPI_GRO_CB(skb)->csum_valid = 0;
4520 }
d565b0a1 4521
f191a1d1 4522 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4523 break;
4524 }
4525 rcu_read_unlock();
4526
4527 if (&ptype->list == head)
4528 goto normal;
4529
0da2afd5 4530 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4531 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4532
d565b0a1
HX
4533 if (pp) {
4534 struct sk_buff *nskb = *pp;
4535
4536 *pp = nskb->next;
4537 nskb->next = NULL;
4538 napi_gro_complete(nskb);
4ae5544f 4539 napi->gro_count--;
d565b0a1
HX
4540 }
4541
0da2afd5 4542 if (same_flow)
d565b0a1
HX
4543 goto ok;
4544
600adc18 4545 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4546 goto normal;
d565b0a1 4547
600adc18
ED
4548 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4549 struct sk_buff *nskb = napi->gro_list;
4550
4551 /* locate the end of the list to select the 'oldest' flow */
4552 while (nskb->next) {
4553 pp = &nskb->next;
4554 nskb = *pp;
4555 }
4556 *pp = NULL;
4557 nskb->next = NULL;
4558 napi_gro_complete(nskb);
4559 } else {
4560 napi->gro_count++;
4561 }
d565b0a1 4562 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4563 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4564 NAPI_GRO_CB(skb)->last = skb;
86911732 4565 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4566 skb->next = napi->gro_list;
4567 napi->gro_list = skb;
5d0d9be8 4568 ret = GRO_HELD;
d565b0a1 4569
ad0f9904 4570pull:
a50e233c
ED
4571 grow = skb_gro_offset(skb) - skb_headlen(skb);
4572 if (grow > 0)
4573 gro_pull_from_frag0(skb, grow);
d565b0a1 4574ok:
5d0d9be8 4575 return ret;
d565b0a1
HX
4576
4577normal:
ad0f9904
HX
4578 ret = GRO_NORMAL;
4579 goto pull;
5d38a079 4580}
96e93eab 4581
bf5a755f
JC
4582struct packet_offload *gro_find_receive_by_type(__be16 type)
4583{
4584 struct list_head *offload_head = &offload_base;
4585 struct packet_offload *ptype;
4586
4587 list_for_each_entry_rcu(ptype, offload_head, list) {
4588 if (ptype->type != type || !ptype->callbacks.gro_receive)
4589 continue;
4590 return ptype;
4591 }
4592 return NULL;
4593}
e27a2f83 4594EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4595
4596struct packet_offload *gro_find_complete_by_type(__be16 type)
4597{
4598 struct list_head *offload_head = &offload_base;
4599 struct packet_offload *ptype;
4600
4601 list_for_each_entry_rcu(ptype, offload_head, list) {
4602 if (ptype->type != type || !ptype->callbacks.gro_complete)
4603 continue;
4604 return ptype;
4605 }
4606 return NULL;
4607}
e27a2f83 4608EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4609
bb728820 4610static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4611{
5d0d9be8
HX
4612 switch (ret) {
4613 case GRO_NORMAL:
ae78dbfa 4614 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4615 ret = GRO_DROP;
4616 break;
5d38a079 4617
5d0d9be8 4618 case GRO_DROP:
5d38a079
HX
4619 kfree_skb(skb);
4620 break;
5b252f0c 4621
daa86548 4622 case GRO_MERGED_FREE:
ce87fc6c
JG
4623 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4624 skb_dst_drop(skb);
d7e8883c 4625 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4626 } else {
d7e8883c 4627 __kfree_skb(skb);
ce87fc6c 4628 }
daa86548
ED
4629 break;
4630
5b252f0c
BH
4631 case GRO_HELD:
4632 case GRO_MERGED:
4633 break;
5d38a079
HX
4634 }
4635
c7c4b3b6 4636 return ret;
5d0d9be8 4637}
5d0d9be8 4638
c7c4b3b6 4639gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4640{
93f93a44 4641 skb_mark_napi_id(skb, napi);
ae78dbfa 4642 trace_napi_gro_receive_entry(skb);
86911732 4643
a50e233c
ED
4644 skb_gro_reset_offset(skb);
4645
89c5fa33 4646 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4647}
4648EXPORT_SYMBOL(napi_gro_receive);
4649
d0c2b0d2 4650static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4651{
93a35f59
ED
4652 if (unlikely(skb->pfmemalloc)) {
4653 consume_skb(skb);
4654 return;
4655 }
96e93eab 4656 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4657 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4658 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4659 skb->vlan_tci = 0;
66c46d74 4660 skb->dev = napi->dev;
6d152e23 4661 skb->skb_iif = 0;
c3caf119
JC
4662 skb->encapsulation = 0;
4663 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4664 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4665
4666 napi->skb = skb;
4667}
96e93eab 4668
76620aaf 4669struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4670{
5d38a079 4671 struct sk_buff *skb = napi->skb;
5d38a079
HX
4672
4673 if (!skb) {
fd11a83d 4674 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4675 if (skb) {
4676 napi->skb = skb;
4677 skb_mark_napi_id(skb, napi);
4678 }
80595d59 4679 }
96e93eab
HX
4680 return skb;
4681}
76620aaf 4682EXPORT_SYMBOL(napi_get_frags);
96e93eab 4683
a50e233c
ED
4684static gro_result_t napi_frags_finish(struct napi_struct *napi,
4685 struct sk_buff *skb,
4686 gro_result_t ret)
96e93eab 4687{
5d0d9be8
HX
4688 switch (ret) {
4689 case GRO_NORMAL:
a50e233c
ED
4690 case GRO_HELD:
4691 __skb_push(skb, ETH_HLEN);
4692 skb->protocol = eth_type_trans(skb, skb->dev);
4693 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4694 ret = GRO_DROP;
86911732 4695 break;
5d38a079 4696
5d0d9be8 4697 case GRO_DROP:
5d0d9be8
HX
4698 case GRO_MERGED_FREE:
4699 napi_reuse_skb(napi, skb);
4700 break;
5b252f0c
BH
4701
4702 case GRO_MERGED:
4703 break;
5d0d9be8 4704 }
5d38a079 4705
c7c4b3b6 4706 return ret;
5d38a079 4707}
5d0d9be8 4708
a50e233c
ED
4709/* Upper GRO stack assumes network header starts at gro_offset=0
4710 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4711 * We copy ethernet header into skb->data to have a common layout.
4712 */
4adb9c4a 4713static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4714{
4715 struct sk_buff *skb = napi->skb;
a50e233c
ED
4716 const struct ethhdr *eth;
4717 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4718
4719 napi->skb = NULL;
4720
a50e233c
ED
4721 skb_reset_mac_header(skb);
4722 skb_gro_reset_offset(skb);
4723
4724 eth = skb_gro_header_fast(skb, 0);
4725 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4726 eth = skb_gro_header_slow(skb, hlen, 0);
4727 if (unlikely(!eth)) {
4da46ceb
AC
4728 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4729 __func__, napi->dev->name);
a50e233c
ED
4730 napi_reuse_skb(napi, skb);
4731 return NULL;
4732 }
4733 } else {
4734 gro_pull_from_frag0(skb, hlen);
4735 NAPI_GRO_CB(skb)->frag0 += hlen;
4736 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4737 }
a50e233c
ED
4738 __skb_pull(skb, hlen);
4739
4740 /*
4741 * This works because the only protocols we care about don't require
4742 * special handling.
4743 * We'll fix it up properly in napi_frags_finish()
4744 */
4745 skb->protocol = eth->h_proto;
76620aaf 4746
76620aaf
HX
4747 return skb;
4748}
76620aaf 4749
c7c4b3b6 4750gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4751{
76620aaf 4752 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4753
4754 if (!skb)
c7c4b3b6 4755 return GRO_DROP;
5d0d9be8 4756
ae78dbfa
BH
4757 trace_napi_gro_frags_entry(skb);
4758
89c5fa33 4759 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4760}
5d38a079
HX
4761EXPORT_SYMBOL(napi_gro_frags);
4762
573e8fca
TH
4763/* Compute the checksum from gro_offset and return the folded value
4764 * after adding in any pseudo checksum.
4765 */
4766__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4767{
4768 __wsum wsum;
4769 __sum16 sum;
4770
4771 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4772
4773 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4774 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4775 if (likely(!sum)) {
4776 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4777 !skb->csum_complete_sw)
4778 netdev_rx_csum_fault(skb->dev);
4779 }
4780
4781 NAPI_GRO_CB(skb)->csum = wsum;
4782 NAPI_GRO_CB(skb)->csum_valid = 1;
4783
4784 return sum;
4785}
4786EXPORT_SYMBOL(__skb_gro_checksum_complete);
4787
e326bed2 4788/*
855abcf0 4789 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4790 * Note: called with local irq disabled, but exits with local irq enabled.
4791 */
4792static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4793{
4794#ifdef CONFIG_RPS
4795 struct softnet_data *remsd = sd->rps_ipi_list;
4796
4797 if (remsd) {
4798 sd->rps_ipi_list = NULL;
4799
4800 local_irq_enable();
4801
4802 /* Send pending IPI's to kick RPS processing on remote cpus. */
4803 while (remsd) {
4804 struct softnet_data *next = remsd->rps_ipi_next;
4805
4806 if (cpu_online(remsd->cpu))
c46fff2a 4807 smp_call_function_single_async(remsd->cpu,
fce8ad15 4808 &remsd->csd);
e326bed2
ED
4809 remsd = next;
4810 }
4811 } else
4812#endif
4813 local_irq_enable();
4814}
4815
d75b1ade
ED
4816static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4817{
4818#ifdef CONFIG_RPS
4819 return sd->rps_ipi_list != NULL;
4820#else
4821 return false;
4822#endif
4823}
4824
bea3348e 4825static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4826{
eecfd7c4 4827 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4828 bool again = true;
4829 int work = 0;
1da177e4 4830
e326bed2
ED
4831 /* Check if we have pending ipi, its better to send them now,
4832 * not waiting net_rx_action() end.
4833 */
d75b1ade 4834 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4835 local_irq_disable();
4836 net_rps_action_and_irq_enable(sd);
4837 }
d75b1ade 4838
bea3348e 4839 napi->weight = weight_p;
145dd5f9 4840 while (again) {
1da177e4 4841 struct sk_buff *skb;
6e7676c1
CG
4842
4843 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4844 rcu_read_lock();
6e7676c1 4845 __netif_receive_skb(skb);
2c17d27c 4846 rcu_read_unlock();
76cc8b13 4847 input_queue_head_incr(sd);
145dd5f9 4848 if (++work >= quota)
76cc8b13 4849 return work;
145dd5f9 4850
6e7676c1 4851 }
1da177e4 4852
145dd5f9 4853 local_irq_disable();
e36fa2f7 4854 rps_lock(sd);
11ef7a89 4855 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4856 /*
4857 * Inline a custom version of __napi_complete().
4858 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4859 * and NAPI_STATE_SCHED is the only possible flag set
4860 * on backlog.
4861 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4862 * and we dont need an smp_mb() memory barrier.
4863 */
eecfd7c4 4864 napi->state = 0;
145dd5f9
PA
4865 again = false;
4866 } else {
4867 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4868 &sd->process_queue);
bea3348e 4869 }
e36fa2f7 4870 rps_unlock(sd);
145dd5f9 4871 local_irq_enable();
6e7676c1 4872 }
1da177e4 4873
bea3348e
SH
4874 return work;
4875}
1da177e4 4876
bea3348e
SH
4877/**
4878 * __napi_schedule - schedule for receive
c4ea43c5 4879 * @n: entry to schedule
bea3348e 4880 *
bc9ad166
ED
4881 * The entry's receive function will be scheduled to run.
4882 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4883 */
b5606c2d 4884void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4885{
4886 unsigned long flags;
1da177e4 4887
bea3348e 4888 local_irq_save(flags);
903ceff7 4889 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4890 local_irq_restore(flags);
1da177e4 4891}
bea3348e
SH
4892EXPORT_SYMBOL(__napi_schedule);
4893
bc9ad166
ED
4894/**
4895 * __napi_schedule_irqoff - schedule for receive
4896 * @n: entry to schedule
4897 *
4898 * Variant of __napi_schedule() assuming hard irqs are masked
4899 */
4900void __napi_schedule_irqoff(struct napi_struct *n)
4901{
4902 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4903}
4904EXPORT_SYMBOL(__napi_schedule_irqoff);
4905
d565b0a1
HX
4906void __napi_complete(struct napi_struct *n)
4907{
4908 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4909
d75b1ade 4910 list_del_init(&n->poll_list);
4e857c58 4911 smp_mb__before_atomic();
d565b0a1
HX
4912 clear_bit(NAPI_STATE_SCHED, &n->state);
4913}
4914EXPORT_SYMBOL(__napi_complete);
4915
3b47d303 4916void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4917{
4918 unsigned long flags;
4919
4920 /*
4921 * don't let napi dequeue from the cpu poll list
4922 * just in case its running on a different cpu
4923 */
4924 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4925 return;
4926
3b47d303
ED
4927 if (n->gro_list) {
4928 unsigned long timeout = 0;
d75b1ade 4929
3b47d303
ED
4930 if (work_done)
4931 timeout = n->dev->gro_flush_timeout;
4932
4933 if (timeout)
4934 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4935 HRTIMER_MODE_REL_PINNED);
4936 else
4937 napi_gro_flush(n, false);
4938 }
d75b1ade
ED
4939 if (likely(list_empty(&n->poll_list))) {
4940 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4941 } else {
4942 /* If n->poll_list is not empty, we need to mask irqs */
4943 local_irq_save(flags);
4944 __napi_complete(n);
4945 local_irq_restore(flags);
4946 }
d565b0a1 4947}
3b47d303 4948EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4949
af12fa6e 4950/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4951static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4952{
4953 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4954 struct napi_struct *napi;
4955
4956 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4957 if (napi->napi_id == napi_id)
4958 return napi;
4959
4960 return NULL;
4961}
02d62e86
ED
4962
4963#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4964#define BUSY_POLL_BUDGET 8
02d62e86
ED
4965bool sk_busy_loop(struct sock *sk, int nonblock)
4966{
4967 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4968 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4969 struct napi_struct *napi;
4970 int rc = false;
4971
2a028ecb 4972 rcu_read_lock();
02d62e86
ED
4973
4974 napi = napi_by_id(sk->sk_napi_id);
4975 if (!napi)
4976 goto out;
4977
ce6aea93
ED
4978 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4979 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4980
4981 do {
ce6aea93 4982 rc = 0;
2a028ecb 4983 local_bh_disable();
ce6aea93
ED
4984 if (busy_poll) {
4985 rc = busy_poll(napi);
4986 } else if (napi_schedule_prep(napi)) {
4987 void *have = netpoll_poll_lock(napi);
4988
4989 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4990 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1db19db7 4991 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
ce6aea93
ED
4992 if (rc == BUSY_POLL_BUDGET) {
4993 napi_complete_done(napi, rc);
4994 napi_schedule(napi);
4995 }
4996 }
4997 netpoll_poll_unlock(have);
4998 }
2a028ecb 4999 if (rc > 0)
02a1d6e7
ED
5000 __NET_ADD_STATS(sock_net(sk),
5001 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 5002 local_bh_enable();
02d62e86
ED
5003
5004 if (rc == LL_FLUSH_FAILED)
5005 break; /* permanent failure */
5006
02d62e86 5007 cpu_relax();
02d62e86
ED
5008 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5009 !need_resched() && !busy_loop_timeout(end_time));
5010
5011 rc = !skb_queue_empty(&sk->sk_receive_queue);
5012out:
2a028ecb 5013 rcu_read_unlock();
02d62e86
ED
5014 return rc;
5015}
5016EXPORT_SYMBOL(sk_busy_loop);
5017
5018#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
5019
5020void napi_hash_add(struct napi_struct *napi)
5021{
d64b5e85
ED
5022 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5023 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5024 return;
af12fa6e 5025
52bd2d62 5026 spin_lock(&napi_hash_lock);
af12fa6e 5027
52bd2d62
ED
5028 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5029 do {
5030 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5031 napi_gen_id = NR_CPUS + 1;
5032 } while (napi_by_id(napi_gen_id));
5033 napi->napi_id = napi_gen_id;
af12fa6e 5034
52bd2d62
ED
5035 hlist_add_head_rcu(&napi->napi_hash_node,
5036 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5037
52bd2d62 5038 spin_unlock(&napi_hash_lock);
af12fa6e
ET
5039}
5040EXPORT_SYMBOL_GPL(napi_hash_add);
5041
5042/* Warning : caller is responsible to make sure rcu grace period
5043 * is respected before freeing memory containing @napi
5044 */
34cbe27e 5045bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5046{
34cbe27e
ED
5047 bool rcu_sync_needed = false;
5048
af12fa6e
ET
5049 spin_lock(&napi_hash_lock);
5050
34cbe27e
ED
5051 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5052 rcu_sync_needed = true;
af12fa6e 5053 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5054 }
af12fa6e 5055 spin_unlock(&napi_hash_lock);
34cbe27e 5056 return rcu_sync_needed;
af12fa6e
ET
5057}
5058EXPORT_SYMBOL_GPL(napi_hash_del);
5059
3b47d303
ED
5060static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5061{
5062 struct napi_struct *napi;
5063
5064 napi = container_of(timer, struct napi_struct, timer);
5065 if (napi->gro_list)
5066 napi_schedule(napi);
5067
5068 return HRTIMER_NORESTART;
5069}
5070
d565b0a1
HX
5071void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5072 int (*poll)(struct napi_struct *, int), int weight)
5073{
5074 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5075 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5076 napi->timer.function = napi_watchdog;
4ae5544f 5077 napi->gro_count = 0;
d565b0a1 5078 napi->gro_list = NULL;
5d38a079 5079 napi->skb = NULL;
d565b0a1 5080 napi->poll = poll;
82dc3c63
ED
5081 if (weight > NAPI_POLL_WEIGHT)
5082 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5083 weight, dev->name);
d565b0a1
HX
5084 napi->weight = weight;
5085 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5086 napi->dev = dev;
5d38a079 5087#ifdef CONFIG_NETPOLL
d565b0a1
HX
5088 spin_lock_init(&napi->poll_lock);
5089 napi->poll_owner = -1;
5090#endif
5091 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5092 napi_hash_add(napi);
d565b0a1
HX
5093}
5094EXPORT_SYMBOL(netif_napi_add);
5095
3b47d303
ED
5096void napi_disable(struct napi_struct *n)
5097{
5098 might_sleep();
5099 set_bit(NAPI_STATE_DISABLE, &n->state);
5100
5101 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5102 msleep(1);
2d8bff12
NH
5103 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5104 msleep(1);
3b47d303
ED
5105
5106 hrtimer_cancel(&n->timer);
5107
5108 clear_bit(NAPI_STATE_DISABLE, &n->state);
5109}
5110EXPORT_SYMBOL(napi_disable);
5111
93d05d4a 5112/* Must be called in process context */
d565b0a1
HX
5113void netif_napi_del(struct napi_struct *napi)
5114{
93d05d4a
ED
5115 might_sleep();
5116 if (napi_hash_del(napi))
5117 synchronize_net();
d7b06636 5118 list_del_init(&napi->dev_list);
76620aaf 5119 napi_free_frags(napi);
d565b0a1 5120
289dccbe 5121 kfree_skb_list(napi->gro_list);
d565b0a1 5122 napi->gro_list = NULL;
4ae5544f 5123 napi->gro_count = 0;
d565b0a1
HX
5124}
5125EXPORT_SYMBOL(netif_napi_del);
5126
726ce70e
HX
5127static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5128{
5129 void *have;
5130 int work, weight;
5131
5132 list_del_init(&n->poll_list);
5133
5134 have = netpoll_poll_lock(n);
5135
5136 weight = n->weight;
5137
5138 /* This NAPI_STATE_SCHED test is for avoiding a race
5139 * with netpoll's poll_napi(). Only the entity which
5140 * obtains the lock and sees NAPI_STATE_SCHED set will
5141 * actually make the ->poll() call. Therefore we avoid
5142 * accidentally calling ->poll() when NAPI is not scheduled.
5143 */
5144 work = 0;
5145 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5146 work = n->poll(n, weight);
1db19db7 5147 trace_napi_poll(n, work, weight);
726ce70e
HX
5148 }
5149
5150 WARN_ON_ONCE(work > weight);
5151
5152 if (likely(work < weight))
5153 goto out_unlock;
5154
5155 /* Drivers must not modify the NAPI state if they
5156 * consume the entire weight. In such cases this code
5157 * still "owns" the NAPI instance and therefore can
5158 * move the instance around on the list at-will.
5159 */
5160 if (unlikely(napi_disable_pending(n))) {
5161 napi_complete(n);
5162 goto out_unlock;
5163 }
5164
5165 if (n->gro_list) {
5166 /* flush too old packets
5167 * If HZ < 1000, flush all packets.
5168 */
5169 napi_gro_flush(n, HZ >= 1000);
5170 }
5171
001ce546
HX
5172 /* Some drivers may have called napi_schedule
5173 * prior to exhausting their budget.
5174 */
5175 if (unlikely(!list_empty(&n->poll_list))) {
5176 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5177 n->dev ? n->dev->name : "backlog");
5178 goto out_unlock;
5179 }
5180
726ce70e
HX
5181 list_add_tail(&n->poll_list, repoll);
5182
5183out_unlock:
5184 netpoll_poll_unlock(have);
5185
5186 return work;
5187}
5188
0766f788 5189static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5190{
903ceff7 5191 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5192 unsigned long time_limit = jiffies + 2;
51b0bded 5193 int budget = netdev_budget;
d75b1ade
ED
5194 LIST_HEAD(list);
5195 LIST_HEAD(repoll);
53fb95d3 5196
1da177e4 5197 local_irq_disable();
d75b1ade
ED
5198 list_splice_init(&sd->poll_list, &list);
5199 local_irq_enable();
1da177e4 5200
ceb8d5bf 5201 for (;;) {
bea3348e 5202 struct napi_struct *n;
1da177e4 5203
ceb8d5bf
HX
5204 if (list_empty(&list)) {
5205 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5206 return;
5207 break;
5208 }
5209
6bd373eb
HX
5210 n = list_first_entry(&list, struct napi_struct, poll_list);
5211 budget -= napi_poll(n, &repoll);
5212
d75b1ade 5213 /* If softirq window is exhausted then punt.
24f8b238
SH
5214 * Allow this to run for 2 jiffies since which will allow
5215 * an average latency of 1.5/HZ.
bea3348e 5216 */
ceb8d5bf
HX
5217 if (unlikely(budget <= 0 ||
5218 time_after_eq(jiffies, time_limit))) {
5219 sd->time_squeeze++;
5220 break;
5221 }
1da177e4 5222 }
d75b1ade 5223
795bb1c0 5224 __kfree_skb_flush();
d75b1ade
ED
5225 local_irq_disable();
5226
5227 list_splice_tail_init(&sd->poll_list, &list);
5228 list_splice_tail(&repoll, &list);
5229 list_splice(&list, &sd->poll_list);
5230 if (!list_empty(&sd->poll_list))
5231 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5232
e326bed2 5233 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5234}
5235
aa9d8560 5236struct netdev_adjacent {
9ff162a8 5237 struct net_device *dev;
5d261913
VF
5238
5239 /* upper master flag, there can only be one master device per list */
9ff162a8 5240 bool master;
5d261913 5241
5d261913
VF
5242 /* counter for the number of times this device was added to us */
5243 u16 ref_nr;
5244
402dae96
VF
5245 /* private field for the users */
5246 void *private;
5247
9ff162a8
JP
5248 struct list_head list;
5249 struct rcu_head rcu;
9ff162a8
JP
5250};
5251
6ea29da1 5252static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5253 struct list_head *adj_list)
9ff162a8 5254{
5d261913 5255 struct netdev_adjacent *adj;
5d261913 5256
2f268f12 5257 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5258 if (adj->dev == adj_dev)
5259 return adj;
9ff162a8
JP
5260 }
5261 return NULL;
5262}
5263
f1170fd4
DA
5264static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5265{
5266 struct net_device *dev = data;
5267
5268 return upper_dev == dev;
5269}
5270
9ff162a8
JP
5271/**
5272 * netdev_has_upper_dev - Check if device is linked to an upper device
5273 * @dev: device
5274 * @upper_dev: upper device to check
5275 *
5276 * Find out if a device is linked to specified upper device and return true
5277 * in case it is. Note that this checks only immediate upper device,
5278 * not through a complete stack of devices. The caller must hold the RTNL lock.
5279 */
5280bool netdev_has_upper_dev(struct net_device *dev,
5281 struct net_device *upper_dev)
5282{
5283 ASSERT_RTNL();
5284
f1170fd4
DA
5285 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5286 upper_dev);
9ff162a8
JP
5287}
5288EXPORT_SYMBOL(netdev_has_upper_dev);
5289
1a3f060c
DA
5290/**
5291 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5292 * @dev: device
5293 * @upper_dev: upper device to check
5294 *
5295 * Find out if a device is linked to specified upper device and return true
5296 * in case it is. Note that this checks the entire upper device chain.
5297 * The caller must hold rcu lock.
5298 */
5299
1a3f060c
DA
5300bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5301 struct net_device *upper_dev)
5302{
5303 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5304 upper_dev);
5305}
5306EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5307
9ff162a8
JP
5308/**
5309 * netdev_has_any_upper_dev - Check if device is linked to some device
5310 * @dev: device
5311 *
5312 * Find out if a device is linked to an upper device and return true in case
5313 * it is. The caller must hold the RTNL lock.
5314 */
1d143d9f 5315static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5316{
5317 ASSERT_RTNL();
5318
f1170fd4 5319 return !list_empty(&dev->adj_list.upper);
9ff162a8 5320}
9ff162a8
JP
5321
5322/**
5323 * netdev_master_upper_dev_get - Get master upper device
5324 * @dev: device
5325 *
5326 * Find a master upper device and return pointer to it or NULL in case
5327 * it's not there. The caller must hold the RTNL lock.
5328 */
5329struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5330{
aa9d8560 5331 struct netdev_adjacent *upper;
9ff162a8
JP
5332
5333 ASSERT_RTNL();
5334
2f268f12 5335 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5336 return NULL;
5337
2f268f12 5338 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5339 struct netdev_adjacent, list);
9ff162a8
JP
5340 if (likely(upper->master))
5341 return upper->dev;
5342 return NULL;
5343}
5344EXPORT_SYMBOL(netdev_master_upper_dev_get);
5345
0f524a80
DA
5346/**
5347 * netdev_has_any_lower_dev - Check if device is linked to some device
5348 * @dev: device
5349 *
5350 * Find out if a device is linked to a lower device and return true in case
5351 * it is. The caller must hold the RTNL lock.
5352 */
5353static bool netdev_has_any_lower_dev(struct net_device *dev)
5354{
5355 ASSERT_RTNL();
5356
5357 return !list_empty(&dev->adj_list.lower);
5358}
5359
b6ccba4c
VF
5360void *netdev_adjacent_get_private(struct list_head *adj_list)
5361{
5362 struct netdev_adjacent *adj;
5363
5364 adj = list_entry(adj_list, struct netdev_adjacent, list);
5365
5366 return adj->private;
5367}
5368EXPORT_SYMBOL(netdev_adjacent_get_private);
5369
44a40855
VY
5370/**
5371 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5372 * @dev: device
5373 * @iter: list_head ** of the current position
5374 *
5375 * Gets the next device from the dev's upper list, starting from iter
5376 * position. The caller must hold RCU read lock.
5377 */
5378struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5379 struct list_head **iter)
5380{
5381 struct netdev_adjacent *upper;
5382
5383 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5384
5385 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5386
5387 if (&upper->list == &dev->adj_list.upper)
5388 return NULL;
5389
5390 *iter = &upper->list;
5391
5392 return upper->dev;
5393}
5394EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5395
1a3f060c
DA
5396static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5397 struct list_head **iter)
5398{
5399 struct netdev_adjacent *upper;
5400
5401 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5402
5403 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5404
5405 if (&upper->list == &dev->adj_list.upper)
5406 return NULL;
5407
5408 *iter = &upper->list;
5409
5410 return upper->dev;
5411}
5412
5413int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5414 int (*fn)(struct net_device *dev,
5415 void *data),
5416 void *data)
5417{
5418 struct net_device *udev;
5419 struct list_head *iter;
5420 int ret;
5421
5422 for (iter = &dev->adj_list.upper,
5423 udev = netdev_next_upper_dev_rcu(dev, &iter);
5424 udev;
5425 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5426 /* first is the upper device itself */
5427 ret = fn(udev, data);
5428 if (ret)
5429 return ret;
5430
5431 /* then look at all of its upper devices */
5432 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5433 if (ret)
5434 return ret;
5435 }
5436
5437 return 0;
5438}
5439EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5440
31088a11
VF
5441/**
5442 * netdev_lower_get_next_private - Get the next ->private from the
5443 * lower neighbour list
5444 * @dev: device
5445 * @iter: list_head ** of the current position
5446 *
5447 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5448 * list, starting from iter position. The caller must hold either hold the
5449 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5450 * list will remain unchanged.
31088a11
VF
5451 */
5452void *netdev_lower_get_next_private(struct net_device *dev,
5453 struct list_head **iter)
5454{
5455 struct netdev_adjacent *lower;
5456
5457 lower = list_entry(*iter, struct netdev_adjacent, list);
5458
5459 if (&lower->list == &dev->adj_list.lower)
5460 return NULL;
5461
6859e7df 5462 *iter = lower->list.next;
31088a11
VF
5463
5464 return lower->private;
5465}
5466EXPORT_SYMBOL(netdev_lower_get_next_private);
5467
5468/**
5469 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5470 * lower neighbour list, RCU
5471 * variant
5472 * @dev: device
5473 * @iter: list_head ** of the current position
5474 *
5475 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5476 * list, starting from iter position. The caller must hold RCU read lock.
5477 */
5478void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5479 struct list_head **iter)
5480{
5481 struct netdev_adjacent *lower;
5482
5483 WARN_ON_ONCE(!rcu_read_lock_held());
5484
5485 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5486
5487 if (&lower->list == &dev->adj_list.lower)
5488 return NULL;
5489
6859e7df 5490 *iter = &lower->list;
31088a11
VF
5491
5492 return lower->private;
5493}
5494EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5495
4085ebe8
VY
5496/**
5497 * netdev_lower_get_next - Get the next device from the lower neighbour
5498 * list
5499 * @dev: device
5500 * @iter: list_head ** of the current position
5501 *
5502 * Gets the next netdev_adjacent from the dev's lower neighbour
5503 * list, starting from iter position. The caller must hold RTNL lock or
5504 * its own locking that guarantees that the neighbour lower
b469139e 5505 * list will remain unchanged.
4085ebe8
VY
5506 */
5507void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5508{
5509 struct netdev_adjacent *lower;
5510
cfdd28be 5511 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5512
5513 if (&lower->list == &dev->adj_list.lower)
5514 return NULL;
5515
cfdd28be 5516 *iter = lower->list.next;
4085ebe8
VY
5517
5518 return lower->dev;
5519}
5520EXPORT_SYMBOL(netdev_lower_get_next);
5521
1a3f060c
DA
5522static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5523 struct list_head **iter)
5524{
5525 struct netdev_adjacent *lower;
5526
46b5ab1a 5527 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5528
5529 if (&lower->list == &dev->adj_list.lower)
5530 return NULL;
5531
46b5ab1a 5532 *iter = &lower->list;
1a3f060c
DA
5533
5534 return lower->dev;
5535}
5536
5537int netdev_walk_all_lower_dev(struct net_device *dev,
5538 int (*fn)(struct net_device *dev,
5539 void *data),
5540 void *data)
5541{
5542 struct net_device *ldev;
5543 struct list_head *iter;
5544 int ret;
5545
5546 for (iter = &dev->adj_list.lower,
5547 ldev = netdev_next_lower_dev(dev, &iter);
5548 ldev;
5549 ldev = netdev_next_lower_dev(dev, &iter)) {
5550 /* first is the lower device itself */
5551 ret = fn(ldev, data);
5552 if (ret)
5553 return ret;
5554
5555 /* then look at all of its lower devices */
5556 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5557 if (ret)
5558 return ret;
5559 }
5560
5561 return 0;
5562}
5563EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5564
1a3f060c
DA
5565static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5566 struct list_head **iter)
5567{
5568 struct netdev_adjacent *lower;
5569
5570 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5571 if (&lower->list == &dev->adj_list.lower)
5572 return NULL;
5573
5574 *iter = &lower->list;
5575
5576 return lower->dev;
5577}
5578
5579int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5580 int (*fn)(struct net_device *dev,
5581 void *data),
5582 void *data)
5583{
5584 struct net_device *ldev;
5585 struct list_head *iter;
5586 int ret;
5587
5588 for (iter = &dev->adj_list.lower,
5589 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5590 ldev;
5591 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5592 /* first is the lower device itself */
5593 ret = fn(ldev, data);
5594 if (ret)
5595 return ret;
5596
5597 /* then look at all of its lower devices */
5598 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5599 if (ret)
5600 return ret;
5601 }
5602
5603 return 0;
5604}
5605EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5606
e001bfad 5607/**
5608 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5609 * lower neighbour list, RCU
5610 * variant
5611 * @dev: device
5612 *
5613 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5614 * list. The caller must hold RCU read lock.
5615 */
5616void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5617{
5618 struct netdev_adjacent *lower;
5619
5620 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5621 struct netdev_adjacent, list);
5622 if (lower)
5623 return lower->private;
5624 return NULL;
5625}
5626EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5627
9ff162a8
JP
5628/**
5629 * netdev_master_upper_dev_get_rcu - Get master upper device
5630 * @dev: device
5631 *
5632 * Find a master upper device and return pointer to it or NULL in case
5633 * it's not there. The caller must hold the RCU read lock.
5634 */
5635struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5636{
aa9d8560 5637 struct netdev_adjacent *upper;
9ff162a8 5638
2f268f12 5639 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5640 struct netdev_adjacent, list);
9ff162a8
JP
5641 if (upper && likely(upper->master))
5642 return upper->dev;
5643 return NULL;
5644}
5645EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5646
0a59f3a9 5647static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5648 struct net_device *adj_dev,
5649 struct list_head *dev_list)
5650{
5651 char linkname[IFNAMSIZ+7];
5652 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5653 "upper_%s" : "lower_%s", adj_dev->name);
5654 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5655 linkname);
5656}
0a59f3a9 5657static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5658 char *name,
5659 struct list_head *dev_list)
5660{
5661 char linkname[IFNAMSIZ+7];
5662 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5663 "upper_%s" : "lower_%s", name);
5664 sysfs_remove_link(&(dev->dev.kobj), linkname);
5665}
5666
7ce64c79
AF
5667static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5668 struct net_device *adj_dev,
5669 struct list_head *dev_list)
5670{
5671 return (dev_list == &dev->adj_list.upper ||
5672 dev_list == &dev->adj_list.lower) &&
5673 net_eq(dev_net(dev), dev_net(adj_dev));
5674}
3ee32707 5675
5d261913
VF
5676static int __netdev_adjacent_dev_insert(struct net_device *dev,
5677 struct net_device *adj_dev,
7863c054 5678 struct list_head *dev_list,
402dae96 5679 void *private, bool master)
5d261913
VF
5680{
5681 struct netdev_adjacent *adj;
842d67a7 5682 int ret;
5d261913 5683
6ea29da1 5684 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5685
5686 if (adj) {
790510d9 5687 adj->ref_nr += 1;
67b62f98
DA
5688 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5689 dev->name, adj_dev->name, adj->ref_nr);
5690
5d261913
VF
5691 return 0;
5692 }
5693
5694 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5695 if (!adj)
5696 return -ENOMEM;
5697
5698 adj->dev = adj_dev;
5699 adj->master = master;
790510d9 5700 adj->ref_nr = 1;
402dae96 5701 adj->private = private;
5d261913 5702 dev_hold(adj_dev);
2f268f12 5703
67b62f98
DA
5704 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5705 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 5706
7ce64c79 5707 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5708 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5709 if (ret)
5710 goto free_adj;
5711 }
5712
7863c054 5713 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5714 if (master) {
5715 ret = sysfs_create_link(&(dev->dev.kobj),
5716 &(adj_dev->dev.kobj), "master");
5717 if (ret)
5831d66e 5718 goto remove_symlinks;
842d67a7 5719
7863c054 5720 list_add_rcu(&adj->list, dev_list);
842d67a7 5721 } else {
7863c054 5722 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5723 }
5d261913
VF
5724
5725 return 0;
842d67a7 5726
5831d66e 5727remove_symlinks:
7ce64c79 5728 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5729 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5730free_adj:
5731 kfree(adj);
974daef7 5732 dev_put(adj_dev);
842d67a7
VF
5733
5734 return ret;
5d261913
VF
5735}
5736
1d143d9f 5737static void __netdev_adjacent_dev_remove(struct net_device *dev,
5738 struct net_device *adj_dev,
93409033 5739 u16 ref_nr,
1d143d9f 5740 struct list_head *dev_list)
5d261913
VF
5741{
5742 struct netdev_adjacent *adj;
5743
67b62f98
DA
5744 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5745 dev->name, adj_dev->name, ref_nr);
5746
6ea29da1 5747 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5748
2f268f12 5749 if (!adj) {
67b62f98 5750 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 5751 dev->name, adj_dev->name);
67b62f98
DA
5752 WARN_ON(1);
5753 return;
2f268f12 5754 }
5d261913 5755
93409033 5756 if (adj->ref_nr > ref_nr) {
67b62f98
DA
5757 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5758 dev->name, adj_dev->name, ref_nr,
5759 adj->ref_nr - ref_nr);
93409033 5760 adj->ref_nr -= ref_nr;
5d261913
VF
5761 return;
5762 }
5763
842d67a7
VF
5764 if (adj->master)
5765 sysfs_remove_link(&(dev->dev.kobj), "master");
5766
7ce64c79 5767 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5768 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5769
5d261913 5770 list_del_rcu(&adj->list);
67b62f98 5771 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 5772 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5773 dev_put(adj_dev);
5774 kfree_rcu(adj, rcu);
5775}
5776
1d143d9f 5777static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5778 struct net_device *upper_dev,
5779 struct list_head *up_list,
5780 struct list_head *down_list,
5781 void *private, bool master)
5d261913
VF
5782{
5783 int ret;
5784
790510d9 5785 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 5786 private, master);
5d261913
VF
5787 if (ret)
5788 return ret;
5789
790510d9 5790 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 5791 private, false);
5d261913 5792 if (ret) {
790510d9 5793 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
5794 return ret;
5795 }
5796
5797 return 0;
5798}
5799
1d143d9f 5800static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5801 struct net_device *upper_dev,
93409033 5802 u16 ref_nr,
1d143d9f 5803 struct list_head *up_list,
5804 struct list_head *down_list)
5d261913 5805{
93409033
AC
5806 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5807 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
5808}
5809
1d143d9f 5810static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5811 struct net_device *upper_dev,
5812 void *private, bool master)
2f268f12 5813{
f1170fd4
DA
5814 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5815 &dev->adj_list.upper,
5816 &upper_dev->adj_list.lower,
5817 private, master);
5d261913
VF
5818}
5819
1d143d9f 5820static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5821 struct net_device *upper_dev)
2f268f12 5822{
93409033 5823 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
5824 &dev->adj_list.upper,
5825 &upper_dev->adj_list.lower);
5826}
5d261913 5827
9ff162a8 5828static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5829 struct net_device *upper_dev, bool master,
29bf24af 5830 void *upper_priv, void *upper_info)
9ff162a8 5831{
0e4ead9d 5832 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5833 int ret = 0;
9ff162a8
JP
5834
5835 ASSERT_RTNL();
5836
5837 if (dev == upper_dev)
5838 return -EBUSY;
5839
5840 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 5841 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
5842 return -EBUSY;
5843
f1170fd4 5844 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
5845 return -EEXIST;
5846
5847 if (master && netdev_master_upper_dev_get(dev))
5848 return -EBUSY;
5849
0e4ead9d
JP
5850 changeupper_info.upper_dev = upper_dev;
5851 changeupper_info.master = master;
5852 changeupper_info.linking = true;
29bf24af 5853 changeupper_info.upper_info = upper_info;
0e4ead9d 5854
573c7ba0
JP
5855 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5856 &changeupper_info.info);
5857 ret = notifier_to_errno(ret);
5858 if (ret)
5859 return ret;
5860
6dffb044 5861 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5862 master);
5d261913
VF
5863 if (ret)
5864 return ret;
9ff162a8 5865
b03804e7
IS
5866 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5867 &changeupper_info.info);
5868 ret = notifier_to_errno(ret);
5869 if (ret)
f1170fd4 5870 goto rollback;
b03804e7 5871
9ff162a8 5872 return 0;
5d261913 5873
f1170fd4 5874rollback:
2f268f12 5875 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5876
5877 return ret;
9ff162a8
JP
5878}
5879
5880/**
5881 * netdev_upper_dev_link - Add a link to the upper device
5882 * @dev: device
5883 * @upper_dev: new upper device
5884 *
5885 * Adds a link to device which is upper to this one. The caller must hold
5886 * the RTNL lock. On a failure a negative errno code is returned.
5887 * On success the reference counts are adjusted and the function
5888 * returns zero.
5889 */
5890int netdev_upper_dev_link(struct net_device *dev,
5891 struct net_device *upper_dev)
5892{
29bf24af 5893 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5894}
5895EXPORT_SYMBOL(netdev_upper_dev_link);
5896
5897/**
5898 * netdev_master_upper_dev_link - Add a master link to the upper device
5899 * @dev: device
5900 * @upper_dev: new upper device
6dffb044 5901 * @upper_priv: upper device private
29bf24af 5902 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5903 *
5904 * Adds a link to device which is upper to this one. In this case, only
5905 * one master upper device can be linked, although other non-master devices
5906 * might be linked as well. The caller must hold the RTNL lock.
5907 * On a failure a negative errno code is returned. On success the reference
5908 * counts are adjusted and the function returns zero.
5909 */
5910int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5911 struct net_device *upper_dev,
29bf24af 5912 void *upper_priv, void *upper_info)
9ff162a8 5913{
29bf24af
JP
5914 return __netdev_upper_dev_link(dev, upper_dev, true,
5915 upper_priv, upper_info);
9ff162a8
JP
5916}
5917EXPORT_SYMBOL(netdev_master_upper_dev_link);
5918
5919/**
5920 * netdev_upper_dev_unlink - Removes a link to upper device
5921 * @dev: device
5922 * @upper_dev: new upper device
5923 *
5924 * Removes a link to device which is upper to this one. The caller must hold
5925 * the RTNL lock.
5926 */
5927void netdev_upper_dev_unlink(struct net_device *dev,
5928 struct net_device *upper_dev)
5929{
0e4ead9d 5930 struct netdev_notifier_changeupper_info changeupper_info;
9ff162a8
JP
5931 ASSERT_RTNL();
5932
0e4ead9d
JP
5933 changeupper_info.upper_dev = upper_dev;
5934 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5935 changeupper_info.linking = false;
5936
573c7ba0
JP
5937 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5938 &changeupper_info.info);
5939
2f268f12 5940 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 5941
0e4ead9d
JP
5942 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5943 &changeupper_info.info);
9ff162a8
JP
5944}
5945EXPORT_SYMBOL(netdev_upper_dev_unlink);
5946
61bd3857
MS
5947/**
5948 * netdev_bonding_info_change - Dispatch event about slave change
5949 * @dev: device
4a26e453 5950 * @bonding_info: info to dispatch
61bd3857
MS
5951 *
5952 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5953 * The caller must hold the RTNL lock.
5954 */
5955void netdev_bonding_info_change(struct net_device *dev,
5956 struct netdev_bonding_info *bonding_info)
5957{
5958 struct netdev_notifier_bonding_info info;
5959
5960 memcpy(&info.bonding_info, bonding_info,
5961 sizeof(struct netdev_bonding_info));
5962 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5963 &info.info);
5964}
5965EXPORT_SYMBOL(netdev_bonding_info_change);
5966
2ce1ee17 5967static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5968{
5969 struct netdev_adjacent *iter;
5970
5971 struct net *net = dev_net(dev);
5972
5973 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5974 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5975 continue;
5976 netdev_adjacent_sysfs_add(iter->dev, dev,
5977 &iter->dev->adj_list.lower);
5978 netdev_adjacent_sysfs_add(dev, iter->dev,
5979 &dev->adj_list.upper);
5980 }
5981
5982 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5983 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5984 continue;
5985 netdev_adjacent_sysfs_add(iter->dev, dev,
5986 &iter->dev->adj_list.upper);
5987 netdev_adjacent_sysfs_add(dev, iter->dev,
5988 &dev->adj_list.lower);
5989 }
5990}
5991
2ce1ee17 5992static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5993{
5994 struct netdev_adjacent *iter;
5995
5996 struct net *net = dev_net(dev);
5997
5998 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5999 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6000 continue;
6001 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6002 &iter->dev->adj_list.lower);
6003 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6004 &dev->adj_list.upper);
6005 }
6006
6007 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6008 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6009 continue;
6010 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6011 &iter->dev->adj_list.upper);
6012 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6013 &dev->adj_list.lower);
6014 }
6015}
6016
5bb025fa 6017void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6018{
5bb025fa 6019 struct netdev_adjacent *iter;
402dae96 6020
4c75431a
AF
6021 struct net *net = dev_net(dev);
6022
5bb025fa 6023 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6024 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6025 continue;
5bb025fa
VF
6026 netdev_adjacent_sysfs_del(iter->dev, oldname,
6027 &iter->dev->adj_list.lower);
6028 netdev_adjacent_sysfs_add(iter->dev, dev,
6029 &iter->dev->adj_list.lower);
6030 }
402dae96 6031
5bb025fa 6032 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6033 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6034 continue;
5bb025fa
VF
6035 netdev_adjacent_sysfs_del(iter->dev, oldname,
6036 &iter->dev->adj_list.upper);
6037 netdev_adjacent_sysfs_add(iter->dev, dev,
6038 &iter->dev->adj_list.upper);
6039 }
402dae96 6040}
402dae96
VF
6041
6042void *netdev_lower_dev_get_private(struct net_device *dev,
6043 struct net_device *lower_dev)
6044{
6045 struct netdev_adjacent *lower;
6046
6047 if (!lower_dev)
6048 return NULL;
6ea29da1 6049 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6050 if (!lower)
6051 return NULL;
6052
6053 return lower->private;
6054}
6055EXPORT_SYMBOL(netdev_lower_dev_get_private);
6056
4085ebe8 6057
952fcfd0 6058int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6059{
6060 struct net_device *lower = NULL;
6061 struct list_head *iter;
6062 int max_nest = -1;
6063 int nest;
6064
6065 ASSERT_RTNL();
6066
6067 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6068 nest = dev_get_nest_level(lower);
4085ebe8
VY
6069 if (max_nest < nest)
6070 max_nest = nest;
6071 }
6072
952fcfd0 6073 return max_nest + 1;
4085ebe8
VY
6074}
6075EXPORT_SYMBOL(dev_get_nest_level);
6076
04d48266
JP
6077/**
6078 * netdev_lower_change - Dispatch event about lower device state change
6079 * @lower_dev: device
6080 * @lower_state_info: state to dispatch
6081 *
6082 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6083 * The caller must hold the RTNL lock.
6084 */
6085void netdev_lower_state_changed(struct net_device *lower_dev,
6086 void *lower_state_info)
6087{
6088 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6089
6090 ASSERT_RTNL();
6091 changelowerstate_info.lower_state_info = lower_state_info;
6092 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6093 &changelowerstate_info.info);
6094}
6095EXPORT_SYMBOL(netdev_lower_state_changed);
6096
18bfb924
JP
6097int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6098 struct neighbour *n)
6099{
6100 struct net_device *lower_dev, *stop_dev;
6101 struct list_head *iter;
6102 int err;
6103
6104 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6105 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6106 continue;
6107 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6108 if (err) {
6109 stop_dev = lower_dev;
6110 goto rollback;
6111 }
6112 }
6113 return 0;
6114
6115rollback:
6116 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6117 if (lower_dev == stop_dev)
6118 break;
6119 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6120 continue;
6121 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6122 }
6123 return err;
6124}
6125EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6126
6127void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6128 struct neighbour *n)
6129{
6130 struct net_device *lower_dev;
6131 struct list_head *iter;
6132
6133 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6134 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6135 continue;
6136 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6137 }
6138}
6139EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6140
b6c40d68
PM
6141static void dev_change_rx_flags(struct net_device *dev, int flags)
6142{
d314774c
SH
6143 const struct net_device_ops *ops = dev->netdev_ops;
6144
d2615bf4 6145 if (ops->ndo_change_rx_flags)
d314774c 6146 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6147}
6148
991fb3f7 6149static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6150{
b536db93 6151 unsigned int old_flags = dev->flags;
d04a48b0
EB
6152 kuid_t uid;
6153 kgid_t gid;
1da177e4 6154
24023451
PM
6155 ASSERT_RTNL();
6156
dad9b335
WC
6157 dev->flags |= IFF_PROMISC;
6158 dev->promiscuity += inc;
6159 if (dev->promiscuity == 0) {
6160 /*
6161 * Avoid overflow.
6162 * If inc causes overflow, untouch promisc and return error.
6163 */
6164 if (inc < 0)
6165 dev->flags &= ~IFF_PROMISC;
6166 else {
6167 dev->promiscuity -= inc;
7b6cd1ce
JP
6168 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6169 dev->name);
dad9b335
WC
6170 return -EOVERFLOW;
6171 }
6172 }
52609c0b 6173 if (dev->flags != old_flags) {
7b6cd1ce
JP
6174 pr_info("device %s %s promiscuous mode\n",
6175 dev->name,
6176 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6177 if (audit_enabled) {
6178 current_uid_gid(&uid, &gid);
7759db82
KHK
6179 audit_log(current->audit_context, GFP_ATOMIC,
6180 AUDIT_ANOM_PROMISCUOUS,
6181 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6182 dev->name, (dev->flags & IFF_PROMISC),
6183 (old_flags & IFF_PROMISC),
e1760bd5 6184 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6185 from_kuid(&init_user_ns, uid),
6186 from_kgid(&init_user_ns, gid),
7759db82 6187 audit_get_sessionid(current));
8192b0c4 6188 }
24023451 6189
b6c40d68 6190 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6191 }
991fb3f7
ND
6192 if (notify)
6193 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6194 return 0;
1da177e4
LT
6195}
6196
4417da66
PM
6197/**
6198 * dev_set_promiscuity - update promiscuity count on a device
6199 * @dev: device
6200 * @inc: modifier
6201 *
6202 * Add or remove promiscuity from a device. While the count in the device
6203 * remains above zero the interface remains promiscuous. Once it hits zero
6204 * the device reverts back to normal filtering operation. A negative inc
6205 * value is used to drop promiscuity on the device.
dad9b335 6206 * Return 0 if successful or a negative errno code on error.
4417da66 6207 */
dad9b335 6208int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6209{
b536db93 6210 unsigned int old_flags = dev->flags;
dad9b335 6211 int err;
4417da66 6212
991fb3f7 6213 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6214 if (err < 0)
dad9b335 6215 return err;
4417da66
PM
6216 if (dev->flags != old_flags)
6217 dev_set_rx_mode(dev);
dad9b335 6218 return err;
4417da66 6219}
d1b19dff 6220EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6221
991fb3f7 6222static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6223{
991fb3f7 6224 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6225
24023451
PM
6226 ASSERT_RTNL();
6227
1da177e4 6228 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6229 dev->allmulti += inc;
6230 if (dev->allmulti == 0) {
6231 /*
6232 * Avoid overflow.
6233 * If inc causes overflow, untouch allmulti and return error.
6234 */
6235 if (inc < 0)
6236 dev->flags &= ~IFF_ALLMULTI;
6237 else {
6238 dev->allmulti -= inc;
7b6cd1ce
JP
6239 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6240 dev->name);
dad9b335
WC
6241 return -EOVERFLOW;
6242 }
6243 }
24023451 6244 if (dev->flags ^ old_flags) {
b6c40d68 6245 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6246 dev_set_rx_mode(dev);
991fb3f7
ND
6247 if (notify)
6248 __dev_notify_flags(dev, old_flags,
6249 dev->gflags ^ old_gflags);
24023451 6250 }
dad9b335 6251 return 0;
4417da66 6252}
991fb3f7
ND
6253
6254/**
6255 * dev_set_allmulti - update allmulti count on a device
6256 * @dev: device
6257 * @inc: modifier
6258 *
6259 * Add or remove reception of all multicast frames to a device. While the
6260 * count in the device remains above zero the interface remains listening
6261 * to all interfaces. Once it hits zero the device reverts back to normal
6262 * filtering operation. A negative @inc value is used to drop the counter
6263 * when releasing a resource needing all multicasts.
6264 * Return 0 if successful or a negative errno code on error.
6265 */
6266
6267int dev_set_allmulti(struct net_device *dev, int inc)
6268{
6269 return __dev_set_allmulti(dev, inc, true);
6270}
d1b19dff 6271EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6272
6273/*
6274 * Upload unicast and multicast address lists to device and
6275 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6276 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6277 * are present.
6278 */
6279void __dev_set_rx_mode(struct net_device *dev)
6280{
d314774c
SH
6281 const struct net_device_ops *ops = dev->netdev_ops;
6282
4417da66
PM
6283 /* dev_open will call this function so the list will stay sane. */
6284 if (!(dev->flags&IFF_UP))
6285 return;
6286
6287 if (!netif_device_present(dev))
40b77c94 6288 return;
4417da66 6289
01789349 6290 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6291 /* Unicast addresses changes may only happen under the rtnl,
6292 * therefore calling __dev_set_promiscuity here is safe.
6293 */
32e7bfc4 6294 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6295 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6296 dev->uc_promisc = true;
32e7bfc4 6297 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6298 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6299 dev->uc_promisc = false;
4417da66 6300 }
4417da66 6301 }
01789349
JP
6302
6303 if (ops->ndo_set_rx_mode)
6304 ops->ndo_set_rx_mode(dev);
4417da66
PM
6305}
6306
6307void dev_set_rx_mode(struct net_device *dev)
6308{
b9e40857 6309 netif_addr_lock_bh(dev);
4417da66 6310 __dev_set_rx_mode(dev);
b9e40857 6311 netif_addr_unlock_bh(dev);
1da177e4
LT
6312}
6313
f0db275a
SH
6314/**
6315 * dev_get_flags - get flags reported to userspace
6316 * @dev: device
6317 *
6318 * Get the combination of flag bits exported through APIs to userspace.
6319 */
95c96174 6320unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6321{
95c96174 6322 unsigned int flags;
1da177e4
LT
6323
6324 flags = (dev->flags & ~(IFF_PROMISC |
6325 IFF_ALLMULTI |
b00055aa
SR
6326 IFF_RUNNING |
6327 IFF_LOWER_UP |
6328 IFF_DORMANT)) |
1da177e4
LT
6329 (dev->gflags & (IFF_PROMISC |
6330 IFF_ALLMULTI));
6331
b00055aa
SR
6332 if (netif_running(dev)) {
6333 if (netif_oper_up(dev))
6334 flags |= IFF_RUNNING;
6335 if (netif_carrier_ok(dev))
6336 flags |= IFF_LOWER_UP;
6337 if (netif_dormant(dev))
6338 flags |= IFF_DORMANT;
6339 }
1da177e4
LT
6340
6341 return flags;
6342}
d1b19dff 6343EXPORT_SYMBOL(dev_get_flags);
1da177e4 6344
bd380811 6345int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6346{
b536db93 6347 unsigned int old_flags = dev->flags;
bd380811 6348 int ret;
1da177e4 6349
24023451
PM
6350 ASSERT_RTNL();
6351
1da177e4
LT
6352 /*
6353 * Set the flags on our device.
6354 */
6355
6356 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6357 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6358 IFF_AUTOMEDIA)) |
6359 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6360 IFF_ALLMULTI));
6361
6362 /*
6363 * Load in the correct multicast list now the flags have changed.
6364 */
6365
b6c40d68
PM
6366 if ((old_flags ^ flags) & IFF_MULTICAST)
6367 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6368
4417da66 6369 dev_set_rx_mode(dev);
1da177e4
LT
6370
6371 /*
6372 * Have we downed the interface. We handle IFF_UP ourselves
6373 * according to user attempts to set it, rather than blindly
6374 * setting it.
6375 */
6376
6377 ret = 0;
d215d10f 6378 if ((old_flags ^ flags) & IFF_UP)
bd380811 6379 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6380
1da177e4 6381 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6382 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6383 unsigned int old_flags = dev->flags;
d1b19dff 6384
1da177e4 6385 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6386
6387 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6388 if (dev->flags != old_flags)
6389 dev_set_rx_mode(dev);
1da177e4
LT
6390 }
6391
6392 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6393 is important. Some (broken) drivers set IFF_PROMISC, when
6394 IFF_ALLMULTI is requested not asking us and not reporting.
6395 */
6396 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6397 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6398
1da177e4 6399 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6400 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6401 }
6402
bd380811
PM
6403 return ret;
6404}
6405
a528c219
ND
6406void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6407 unsigned int gchanges)
bd380811
PM
6408{
6409 unsigned int changes = dev->flags ^ old_flags;
6410
a528c219 6411 if (gchanges)
7f294054 6412 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6413
bd380811
PM
6414 if (changes & IFF_UP) {
6415 if (dev->flags & IFF_UP)
6416 call_netdevice_notifiers(NETDEV_UP, dev);
6417 else
6418 call_netdevice_notifiers(NETDEV_DOWN, dev);
6419 }
6420
6421 if (dev->flags & IFF_UP &&
be9efd36
JP
6422 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6423 struct netdev_notifier_change_info change_info;
6424
6425 change_info.flags_changed = changes;
6426 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6427 &change_info.info);
6428 }
bd380811
PM
6429}
6430
6431/**
6432 * dev_change_flags - change device settings
6433 * @dev: device
6434 * @flags: device state flags
6435 *
6436 * Change settings on device based state flags. The flags are
6437 * in the userspace exported format.
6438 */
b536db93 6439int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6440{
b536db93 6441 int ret;
991fb3f7 6442 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6443
6444 ret = __dev_change_flags(dev, flags);
6445 if (ret < 0)
6446 return ret;
6447
991fb3f7 6448 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6449 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6450 return ret;
6451}
d1b19dff 6452EXPORT_SYMBOL(dev_change_flags);
1da177e4 6453
2315dc91
VF
6454static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6455{
6456 const struct net_device_ops *ops = dev->netdev_ops;
6457
6458 if (ops->ndo_change_mtu)
6459 return ops->ndo_change_mtu(dev, new_mtu);
6460
6461 dev->mtu = new_mtu;
6462 return 0;
6463}
6464
f0db275a
SH
6465/**
6466 * dev_set_mtu - Change maximum transfer unit
6467 * @dev: device
6468 * @new_mtu: new transfer unit
6469 *
6470 * Change the maximum transfer size of the network device.
6471 */
1da177e4
LT
6472int dev_set_mtu(struct net_device *dev, int new_mtu)
6473{
2315dc91 6474 int err, orig_mtu;
1da177e4
LT
6475
6476 if (new_mtu == dev->mtu)
6477 return 0;
6478
61e84623
JW
6479 /* MTU must be positive, and in range */
6480 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6481 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6482 dev->name, new_mtu, dev->min_mtu);
1da177e4 6483 return -EINVAL;
61e84623
JW
6484 }
6485
6486 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6487 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6488 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6489 return -EINVAL;
6490 }
1da177e4
LT
6491
6492 if (!netif_device_present(dev))
6493 return -ENODEV;
6494
1d486bfb
VF
6495 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6496 err = notifier_to_errno(err);
6497 if (err)
6498 return err;
d314774c 6499
2315dc91
VF
6500 orig_mtu = dev->mtu;
6501 err = __dev_set_mtu(dev, new_mtu);
d314774c 6502
2315dc91
VF
6503 if (!err) {
6504 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6505 err = notifier_to_errno(err);
6506 if (err) {
6507 /* setting mtu back and notifying everyone again,
6508 * so that they have a chance to revert changes.
6509 */
6510 __dev_set_mtu(dev, orig_mtu);
6511 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6512 }
6513 }
1da177e4
LT
6514 return err;
6515}
d1b19dff 6516EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6517
cbda10fa
VD
6518/**
6519 * dev_set_group - Change group this device belongs to
6520 * @dev: device
6521 * @new_group: group this device should belong to
6522 */
6523void dev_set_group(struct net_device *dev, int new_group)
6524{
6525 dev->group = new_group;
6526}
6527EXPORT_SYMBOL(dev_set_group);
6528
f0db275a
SH
6529/**
6530 * dev_set_mac_address - Change Media Access Control Address
6531 * @dev: device
6532 * @sa: new address
6533 *
6534 * Change the hardware (MAC) address of the device
6535 */
1da177e4
LT
6536int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6537{
d314774c 6538 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6539 int err;
6540
d314774c 6541 if (!ops->ndo_set_mac_address)
1da177e4
LT
6542 return -EOPNOTSUPP;
6543 if (sa->sa_family != dev->type)
6544 return -EINVAL;
6545 if (!netif_device_present(dev))
6546 return -ENODEV;
d314774c 6547 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6548 if (err)
6549 return err;
fbdeca2d 6550 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6551 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6552 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6553 return 0;
1da177e4 6554}
d1b19dff 6555EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6556
4bf84c35
JP
6557/**
6558 * dev_change_carrier - Change device carrier
6559 * @dev: device
691b3b7e 6560 * @new_carrier: new value
4bf84c35
JP
6561 *
6562 * Change device carrier
6563 */
6564int dev_change_carrier(struct net_device *dev, bool new_carrier)
6565{
6566 const struct net_device_ops *ops = dev->netdev_ops;
6567
6568 if (!ops->ndo_change_carrier)
6569 return -EOPNOTSUPP;
6570 if (!netif_device_present(dev))
6571 return -ENODEV;
6572 return ops->ndo_change_carrier(dev, new_carrier);
6573}
6574EXPORT_SYMBOL(dev_change_carrier);
6575
66b52b0d
JP
6576/**
6577 * dev_get_phys_port_id - Get device physical port ID
6578 * @dev: device
6579 * @ppid: port ID
6580 *
6581 * Get device physical port ID
6582 */
6583int dev_get_phys_port_id(struct net_device *dev,
02637fce 6584 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6585{
6586 const struct net_device_ops *ops = dev->netdev_ops;
6587
6588 if (!ops->ndo_get_phys_port_id)
6589 return -EOPNOTSUPP;
6590 return ops->ndo_get_phys_port_id(dev, ppid);
6591}
6592EXPORT_SYMBOL(dev_get_phys_port_id);
6593
db24a904
DA
6594/**
6595 * dev_get_phys_port_name - Get device physical port name
6596 * @dev: device
6597 * @name: port name
ed49e650 6598 * @len: limit of bytes to copy to name
db24a904
DA
6599 *
6600 * Get device physical port name
6601 */
6602int dev_get_phys_port_name(struct net_device *dev,
6603 char *name, size_t len)
6604{
6605 const struct net_device_ops *ops = dev->netdev_ops;
6606
6607 if (!ops->ndo_get_phys_port_name)
6608 return -EOPNOTSUPP;
6609 return ops->ndo_get_phys_port_name(dev, name, len);
6610}
6611EXPORT_SYMBOL(dev_get_phys_port_name);
6612
d746d707
AK
6613/**
6614 * dev_change_proto_down - update protocol port state information
6615 * @dev: device
6616 * @proto_down: new value
6617 *
6618 * This info can be used by switch drivers to set the phys state of the
6619 * port.
6620 */
6621int dev_change_proto_down(struct net_device *dev, bool proto_down)
6622{
6623 const struct net_device_ops *ops = dev->netdev_ops;
6624
6625 if (!ops->ndo_change_proto_down)
6626 return -EOPNOTSUPP;
6627 if (!netif_device_present(dev))
6628 return -ENODEV;
6629 return ops->ndo_change_proto_down(dev, proto_down);
6630}
6631EXPORT_SYMBOL(dev_change_proto_down);
6632
a7862b45
BB
6633/**
6634 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6635 * @dev: device
6636 * @fd: new program fd or negative value to clear
6637 *
6638 * Set or clear a bpf program for a device
6639 */
6640int dev_change_xdp_fd(struct net_device *dev, int fd)
6641{
6642 const struct net_device_ops *ops = dev->netdev_ops;
6643 struct bpf_prog *prog = NULL;
6644 struct netdev_xdp xdp = {};
6645 int err;
6646
6647 if (!ops->ndo_xdp)
6648 return -EOPNOTSUPP;
6649 if (fd >= 0) {
6650 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6651 if (IS_ERR(prog))
6652 return PTR_ERR(prog);
6653 }
6654
6655 xdp.command = XDP_SETUP_PROG;
6656 xdp.prog = prog;
6657 err = ops->ndo_xdp(dev, &xdp);
6658 if (err < 0 && prog)
6659 bpf_prog_put(prog);
6660
6661 return err;
6662}
6663EXPORT_SYMBOL(dev_change_xdp_fd);
6664
1da177e4
LT
6665/**
6666 * dev_new_index - allocate an ifindex
c4ea43c5 6667 * @net: the applicable net namespace
1da177e4
LT
6668 *
6669 * Returns a suitable unique value for a new device interface
6670 * number. The caller must hold the rtnl semaphore or the
6671 * dev_base_lock to be sure it remains unique.
6672 */
881d966b 6673static int dev_new_index(struct net *net)
1da177e4 6674{
aa79e66e 6675 int ifindex = net->ifindex;
1da177e4
LT
6676 for (;;) {
6677 if (++ifindex <= 0)
6678 ifindex = 1;
881d966b 6679 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6680 return net->ifindex = ifindex;
1da177e4
LT
6681 }
6682}
6683
1da177e4 6684/* Delayed registration/unregisteration */
3b5b34fd 6685static LIST_HEAD(net_todo_list);
200b916f 6686DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6687
6f05f629 6688static void net_set_todo(struct net_device *dev)
1da177e4 6689{
1da177e4 6690 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6691 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6692}
6693
9b5e383c 6694static void rollback_registered_many(struct list_head *head)
93ee31f1 6695{
e93737b0 6696 struct net_device *dev, *tmp;
5cde2829 6697 LIST_HEAD(close_head);
9b5e383c 6698
93ee31f1
DL
6699 BUG_ON(dev_boot_phase);
6700 ASSERT_RTNL();
6701
e93737b0 6702 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6703 /* Some devices call without registering
e93737b0
KK
6704 * for initialization unwind. Remove those
6705 * devices and proceed with the remaining.
9b5e383c
ED
6706 */
6707 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6708 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6709 dev->name, dev);
93ee31f1 6710
9b5e383c 6711 WARN_ON(1);
e93737b0
KK
6712 list_del(&dev->unreg_list);
6713 continue;
9b5e383c 6714 }
449f4544 6715 dev->dismantle = true;
9b5e383c 6716 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6717 }
93ee31f1 6718
44345724 6719 /* If device is running, close it first. */
5cde2829
EB
6720 list_for_each_entry(dev, head, unreg_list)
6721 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6722 dev_close_many(&close_head, true);
93ee31f1 6723
44345724 6724 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6725 /* And unlink it from device chain. */
6726 unlist_netdevice(dev);
93ee31f1 6727
9b5e383c
ED
6728 dev->reg_state = NETREG_UNREGISTERING;
6729 }
41852497 6730 flush_all_backlogs();
93ee31f1
DL
6731
6732 synchronize_net();
6733
9b5e383c 6734 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6735 struct sk_buff *skb = NULL;
6736
9b5e383c
ED
6737 /* Shutdown queueing discipline. */
6738 dev_shutdown(dev);
93ee31f1
DL
6739
6740
9b5e383c
ED
6741 /* Notify protocols, that we are about to destroy
6742 this device. They should clean all the things.
6743 */
6744 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6745
395eea6c
MB
6746 if (!dev->rtnl_link_ops ||
6747 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6748 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6749 GFP_KERNEL);
6750
9b5e383c
ED
6751 /*
6752 * Flush the unicast and multicast chains
6753 */
a748ee24 6754 dev_uc_flush(dev);
22bedad3 6755 dev_mc_flush(dev);
93ee31f1 6756
9b5e383c
ED
6757 if (dev->netdev_ops->ndo_uninit)
6758 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6759
395eea6c
MB
6760 if (skb)
6761 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6762
9ff162a8
JP
6763 /* Notifier chain MUST detach us all upper devices. */
6764 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 6765 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 6766
9b5e383c
ED
6767 /* Remove entries from kobject tree */
6768 netdev_unregister_kobject(dev);
024e9679
AD
6769#ifdef CONFIG_XPS
6770 /* Remove XPS queueing entries */
6771 netif_reset_xps_queues_gt(dev, 0);
6772#endif
9b5e383c 6773 }
93ee31f1 6774
850a545b 6775 synchronize_net();
395264d5 6776
a5ee1551 6777 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6778 dev_put(dev);
6779}
6780
6781static void rollback_registered(struct net_device *dev)
6782{
6783 LIST_HEAD(single);
6784
6785 list_add(&dev->unreg_list, &single);
6786 rollback_registered_many(&single);
ceaaec98 6787 list_del(&single);
93ee31f1
DL
6788}
6789
fd867d51
JW
6790static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6791 struct net_device *upper, netdev_features_t features)
6792{
6793 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6794 netdev_features_t feature;
5ba3f7d6 6795 int feature_bit;
fd867d51 6796
5ba3f7d6
JW
6797 for_each_netdev_feature(&upper_disables, feature_bit) {
6798 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6799 if (!(upper->wanted_features & feature)
6800 && (features & feature)) {
6801 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6802 &feature, upper->name);
6803 features &= ~feature;
6804 }
6805 }
6806
6807 return features;
6808}
6809
6810static void netdev_sync_lower_features(struct net_device *upper,
6811 struct net_device *lower, netdev_features_t features)
6812{
6813 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6814 netdev_features_t feature;
5ba3f7d6 6815 int feature_bit;
fd867d51 6816
5ba3f7d6
JW
6817 for_each_netdev_feature(&upper_disables, feature_bit) {
6818 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6819 if (!(features & feature) && (lower->features & feature)) {
6820 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6821 &feature, lower->name);
6822 lower->wanted_features &= ~feature;
6823 netdev_update_features(lower);
6824
6825 if (unlikely(lower->features & feature))
6826 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6827 &feature, lower->name);
6828 }
6829 }
6830}
6831
c8f44aff
MM
6832static netdev_features_t netdev_fix_features(struct net_device *dev,
6833 netdev_features_t features)
b63365a2 6834{
57422dc5
MM
6835 /* Fix illegal checksum combinations */
6836 if ((features & NETIF_F_HW_CSUM) &&
6837 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6838 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6839 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6840 }
6841
b63365a2 6842 /* TSO requires that SG is present as well. */
ea2d3688 6843 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6844 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6845 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6846 }
6847
ec5f0615
PS
6848 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6849 !(features & NETIF_F_IP_CSUM)) {
6850 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6851 features &= ~NETIF_F_TSO;
6852 features &= ~NETIF_F_TSO_ECN;
6853 }
6854
6855 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6856 !(features & NETIF_F_IPV6_CSUM)) {
6857 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6858 features &= ~NETIF_F_TSO6;
6859 }
6860
b1dc497b
AD
6861 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6862 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6863 features &= ~NETIF_F_TSO_MANGLEID;
6864
31d8b9e0
BH
6865 /* TSO ECN requires that TSO is present as well. */
6866 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6867 features &= ~NETIF_F_TSO_ECN;
6868
212b573f
MM
6869 /* Software GSO depends on SG. */
6870 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6871 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6872 features &= ~NETIF_F_GSO;
6873 }
6874
acd1130e 6875 /* UFO needs SG and checksumming */
b63365a2 6876 if (features & NETIF_F_UFO) {
79032644 6877 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6878 if (!(features & NETIF_F_HW_CSUM) &&
6879 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6880 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6881 netdev_dbg(dev,
acd1130e 6882 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6883 features &= ~NETIF_F_UFO;
6884 }
6885
6886 if (!(features & NETIF_F_SG)) {
6f404e44 6887 netdev_dbg(dev,
acd1130e 6888 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6889 features &= ~NETIF_F_UFO;
6890 }
6891 }
6892
802ab55a
AD
6893 /* GSO partial features require GSO partial be set */
6894 if ((features & dev->gso_partial_features) &&
6895 !(features & NETIF_F_GSO_PARTIAL)) {
6896 netdev_dbg(dev,
6897 "Dropping partially supported GSO features since no GSO partial.\n");
6898 features &= ~dev->gso_partial_features;
6899 }
6900
d0290214
JP
6901#ifdef CONFIG_NET_RX_BUSY_POLL
6902 if (dev->netdev_ops->ndo_busy_poll)
6903 features |= NETIF_F_BUSY_POLL;
6904 else
6905#endif
6906 features &= ~NETIF_F_BUSY_POLL;
6907
b63365a2
HX
6908 return features;
6909}
b63365a2 6910
6cb6a27c 6911int __netdev_update_features(struct net_device *dev)
5455c699 6912{
fd867d51 6913 struct net_device *upper, *lower;
c8f44aff 6914 netdev_features_t features;
fd867d51 6915 struct list_head *iter;
e7868a85 6916 int err = -1;
5455c699 6917
87267485
MM
6918 ASSERT_RTNL();
6919
5455c699
MM
6920 features = netdev_get_wanted_features(dev);
6921
6922 if (dev->netdev_ops->ndo_fix_features)
6923 features = dev->netdev_ops->ndo_fix_features(dev, features);
6924
6925 /* driver might be less strict about feature dependencies */
6926 features = netdev_fix_features(dev, features);
6927
fd867d51
JW
6928 /* some features can't be enabled if they're off an an upper device */
6929 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6930 features = netdev_sync_upper_features(dev, upper, features);
6931
5455c699 6932 if (dev->features == features)
e7868a85 6933 goto sync_lower;
5455c699 6934
c8f44aff
MM
6935 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6936 &dev->features, &features);
5455c699
MM
6937
6938 if (dev->netdev_ops->ndo_set_features)
6939 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6940 else
6941 err = 0;
5455c699 6942
6cb6a27c 6943 if (unlikely(err < 0)) {
5455c699 6944 netdev_err(dev,
c8f44aff
MM
6945 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6946 err, &features, &dev->features);
17b85d29
NA
6947 /* return non-0 since some features might have changed and
6948 * it's better to fire a spurious notification than miss it
6949 */
6950 return -1;
6cb6a27c
MM
6951 }
6952
e7868a85 6953sync_lower:
fd867d51
JW
6954 /* some features must be disabled on lower devices when disabled
6955 * on an upper device (think: bonding master or bridge)
6956 */
6957 netdev_for_each_lower_dev(dev, lower, iter)
6958 netdev_sync_lower_features(dev, lower, features);
6959
6cb6a27c
MM
6960 if (!err)
6961 dev->features = features;
6962
e7868a85 6963 return err < 0 ? 0 : 1;
6cb6a27c
MM
6964}
6965
afe12cc8
MM
6966/**
6967 * netdev_update_features - recalculate device features
6968 * @dev: the device to check
6969 *
6970 * Recalculate dev->features set and send notifications if it
6971 * has changed. Should be called after driver or hardware dependent
6972 * conditions might have changed that influence the features.
6973 */
6cb6a27c
MM
6974void netdev_update_features(struct net_device *dev)
6975{
6976 if (__netdev_update_features(dev))
6977 netdev_features_change(dev);
5455c699
MM
6978}
6979EXPORT_SYMBOL(netdev_update_features);
6980
afe12cc8
MM
6981/**
6982 * netdev_change_features - recalculate device features
6983 * @dev: the device to check
6984 *
6985 * Recalculate dev->features set and send notifications even
6986 * if they have not changed. Should be called instead of
6987 * netdev_update_features() if also dev->vlan_features might
6988 * have changed to allow the changes to be propagated to stacked
6989 * VLAN devices.
6990 */
6991void netdev_change_features(struct net_device *dev)
6992{
6993 __netdev_update_features(dev);
6994 netdev_features_change(dev);
6995}
6996EXPORT_SYMBOL(netdev_change_features);
6997
fc4a7489
PM
6998/**
6999 * netif_stacked_transfer_operstate - transfer operstate
7000 * @rootdev: the root or lower level device to transfer state from
7001 * @dev: the device to transfer operstate to
7002 *
7003 * Transfer operational state from root to device. This is normally
7004 * called when a stacking relationship exists between the root
7005 * device and the device(a leaf device).
7006 */
7007void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7008 struct net_device *dev)
7009{
7010 if (rootdev->operstate == IF_OPER_DORMANT)
7011 netif_dormant_on(dev);
7012 else
7013 netif_dormant_off(dev);
7014
7015 if (netif_carrier_ok(rootdev)) {
7016 if (!netif_carrier_ok(dev))
7017 netif_carrier_on(dev);
7018 } else {
7019 if (netif_carrier_ok(dev))
7020 netif_carrier_off(dev);
7021 }
7022}
7023EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7024
a953be53 7025#ifdef CONFIG_SYSFS
1b4bf461
ED
7026static int netif_alloc_rx_queues(struct net_device *dev)
7027{
1b4bf461 7028 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7029 struct netdev_rx_queue *rx;
10595902 7030 size_t sz = count * sizeof(*rx);
1b4bf461 7031
bd25fa7b 7032 BUG_ON(count < 1);
1b4bf461 7033
10595902
PG
7034 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7035 if (!rx) {
7036 rx = vzalloc(sz);
7037 if (!rx)
7038 return -ENOMEM;
7039 }
bd25fa7b
TH
7040 dev->_rx = rx;
7041
bd25fa7b 7042 for (i = 0; i < count; i++)
fe822240 7043 rx[i].dev = dev;
1b4bf461
ED
7044 return 0;
7045}
bf264145 7046#endif
1b4bf461 7047
aa942104
CG
7048static void netdev_init_one_queue(struct net_device *dev,
7049 struct netdev_queue *queue, void *_unused)
7050{
7051 /* Initialize queue lock */
7052 spin_lock_init(&queue->_xmit_lock);
7053 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7054 queue->xmit_lock_owner = -1;
b236da69 7055 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7056 queue->dev = dev;
114cf580
TH
7057#ifdef CONFIG_BQL
7058 dql_init(&queue->dql, HZ);
7059#endif
aa942104
CG
7060}
7061
60877a32
ED
7062static void netif_free_tx_queues(struct net_device *dev)
7063{
4cb28970 7064 kvfree(dev->_tx);
60877a32
ED
7065}
7066
e6484930
TH
7067static int netif_alloc_netdev_queues(struct net_device *dev)
7068{
7069 unsigned int count = dev->num_tx_queues;
7070 struct netdev_queue *tx;
60877a32 7071 size_t sz = count * sizeof(*tx);
e6484930 7072
d339727c
ED
7073 if (count < 1 || count > 0xffff)
7074 return -EINVAL;
62b5942a 7075
60877a32
ED
7076 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7077 if (!tx) {
7078 tx = vzalloc(sz);
7079 if (!tx)
7080 return -ENOMEM;
7081 }
e6484930 7082 dev->_tx = tx;
1d24eb48 7083
e6484930
TH
7084 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7085 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7086
7087 return 0;
e6484930
TH
7088}
7089
a2029240
DV
7090void netif_tx_stop_all_queues(struct net_device *dev)
7091{
7092 unsigned int i;
7093
7094 for (i = 0; i < dev->num_tx_queues; i++) {
7095 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7096 netif_tx_stop_queue(txq);
7097 }
7098}
7099EXPORT_SYMBOL(netif_tx_stop_all_queues);
7100
1da177e4
LT
7101/**
7102 * register_netdevice - register a network device
7103 * @dev: device to register
7104 *
7105 * Take a completed network device structure and add it to the kernel
7106 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7107 * chain. 0 is returned on success. A negative errno code is returned
7108 * on a failure to set up the device, or if the name is a duplicate.
7109 *
7110 * Callers must hold the rtnl semaphore. You may want
7111 * register_netdev() instead of this.
7112 *
7113 * BUGS:
7114 * The locking appears insufficient to guarantee two parallel registers
7115 * will not get the same name.
7116 */
7117
7118int register_netdevice(struct net_device *dev)
7119{
1da177e4 7120 int ret;
d314774c 7121 struct net *net = dev_net(dev);
1da177e4
LT
7122
7123 BUG_ON(dev_boot_phase);
7124 ASSERT_RTNL();
7125
b17a7c17
SH
7126 might_sleep();
7127
1da177e4
LT
7128 /* When net_device's are persistent, this will be fatal. */
7129 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7130 BUG_ON(!net);
1da177e4 7131
f1f28aa3 7132 spin_lock_init(&dev->addr_list_lock);
cf508b12 7133 netdev_set_addr_lockdep_class(dev);
1da177e4 7134
828de4f6 7135 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7136 if (ret < 0)
7137 goto out;
7138
1da177e4 7139 /* Init, if this function is available */
d314774c
SH
7140 if (dev->netdev_ops->ndo_init) {
7141 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7142 if (ret) {
7143 if (ret > 0)
7144 ret = -EIO;
90833aa4 7145 goto out;
1da177e4
LT
7146 }
7147 }
4ec93edb 7148
f646968f
PM
7149 if (((dev->hw_features | dev->features) &
7150 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7151 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7152 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7153 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7154 ret = -EINVAL;
7155 goto err_uninit;
7156 }
7157
9c7dafbf
PE
7158 ret = -EBUSY;
7159 if (!dev->ifindex)
7160 dev->ifindex = dev_new_index(net);
7161 else if (__dev_get_by_index(net, dev->ifindex))
7162 goto err_uninit;
7163
5455c699
MM
7164 /* Transfer changeable features to wanted_features and enable
7165 * software offloads (GSO and GRO).
7166 */
7167 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7168 dev->features |= NETIF_F_SOFT_FEATURES;
7169 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7170
cbc53e08 7171 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7172 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7173
7f348a60
AD
7174 /* If IPv4 TCP segmentation offload is supported we should also
7175 * allow the device to enable segmenting the frame with the option
7176 * of ignoring a static IP ID value. This doesn't enable the
7177 * feature itself but allows the user to enable it later.
7178 */
cbc53e08
AD
7179 if (dev->hw_features & NETIF_F_TSO)
7180 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7181 if (dev->vlan_features & NETIF_F_TSO)
7182 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7183 if (dev->mpls_features & NETIF_F_TSO)
7184 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7185 if (dev->hw_enc_features & NETIF_F_TSO)
7186 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7187
1180e7d6 7188 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7189 */
1180e7d6 7190 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7191
ee579677
PS
7192 /* Make NETIF_F_SG inheritable to tunnel devices.
7193 */
802ab55a 7194 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7195
0d89d203
SH
7196 /* Make NETIF_F_SG inheritable to MPLS.
7197 */
7198 dev->mpls_features |= NETIF_F_SG;
7199
7ffbe3fd
JB
7200 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7201 ret = notifier_to_errno(ret);
7202 if (ret)
7203 goto err_uninit;
7204
8b41d188 7205 ret = netdev_register_kobject(dev);
b17a7c17 7206 if (ret)
7ce1b0ed 7207 goto err_uninit;
b17a7c17
SH
7208 dev->reg_state = NETREG_REGISTERED;
7209
6cb6a27c 7210 __netdev_update_features(dev);
8e9b59b2 7211
1da177e4
LT
7212 /*
7213 * Default initial state at registry is that the
7214 * device is present.
7215 */
7216
7217 set_bit(__LINK_STATE_PRESENT, &dev->state);
7218
8f4cccbb
BH
7219 linkwatch_init_dev(dev);
7220
1da177e4 7221 dev_init_scheduler(dev);
1da177e4 7222 dev_hold(dev);
ce286d32 7223 list_netdevice(dev);
7bf23575 7224 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7225
948b337e
JP
7226 /* If the device has permanent device address, driver should
7227 * set dev_addr and also addr_assign_type should be set to
7228 * NET_ADDR_PERM (default value).
7229 */
7230 if (dev->addr_assign_type == NET_ADDR_PERM)
7231 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7232
1da177e4 7233 /* Notify protocols, that a new device appeared. */
056925ab 7234 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7235 ret = notifier_to_errno(ret);
93ee31f1
DL
7236 if (ret) {
7237 rollback_registered(dev);
7238 dev->reg_state = NETREG_UNREGISTERED;
7239 }
d90a909e
EB
7240 /*
7241 * Prevent userspace races by waiting until the network
7242 * device is fully setup before sending notifications.
7243 */
a2835763
PM
7244 if (!dev->rtnl_link_ops ||
7245 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7246 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7247
7248out:
7249 return ret;
7ce1b0ed
HX
7250
7251err_uninit:
d314774c
SH
7252 if (dev->netdev_ops->ndo_uninit)
7253 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7254 goto out;
1da177e4 7255}
d1b19dff 7256EXPORT_SYMBOL(register_netdevice);
1da177e4 7257
937f1ba5
BH
7258/**
7259 * init_dummy_netdev - init a dummy network device for NAPI
7260 * @dev: device to init
7261 *
7262 * This takes a network device structure and initialize the minimum
7263 * amount of fields so it can be used to schedule NAPI polls without
7264 * registering a full blown interface. This is to be used by drivers
7265 * that need to tie several hardware interfaces to a single NAPI
7266 * poll scheduler due to HW limitations.
7267 */
7268int init_dummy_netdev(struct net_device *dev)
7269{
7270 /* Clear everything. Note we don't initialize spinlocks
7271 * are they aren't supposed to be taken by any of the
7272 * NAPI code and this dummy netdev is supposed to be
7273 * only ever used for NAPI polls
7274 */
7275 memset(dev, 0, sizeof(struct net_device));
7276
7277 /* make sure we BUG if trying to hit standard
7278 * register/unregister code path
7279 */
7280 dev->reg_state = NETREG_DUMMY;
7281
937f1ba5
BH
7282 /* NAPI wants this */
7283 INIT_LIST_HEAD(&dev->napi_list);
7284
7285 /* a dummy interface is started by default */
7286 set_bit(__LINK_STATE_PRESENT, &dev->state);
7287 set_bit(__LINK_STATE_START, &dev->state);
7288
29b4433d
ED
7289 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7290 * because users of this 'device' dont need to change
7291 * its refcount.
7292 */
7293
937f1ba5
BH
7294 return 0;
7295}
7296EXPORT_SYMBOL_GPL(init_dummy_netdev);
7297
7298
1da177e4
LT
7299/**
7300 * register_netdev - register a network device
7301 * @dev: device to register
7302 *
7303 * Take a completed network device structure and add it to the kernel
7304 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7305 * chain. 0 is returned on success. A negative errno code is returned
7306 * on a failure to set up the device, or if the name is a duplicate.
7307 *
38b4da38 7308 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7309 * and expands the device name if you passed a format string to
7310 * alloc_netdev.
7311 */
7312int register_netdev(struct net_device *dev)
7313{
7314 int err;
7315
7316 rtnl_lock();
1da177e4 7317 err = register_netdevice(dev);
1da177e4
LT
7318 rtnl_unlock();
7319 return err;
7320}
7321EXPORT_SYMBOL(register_netdev);
7322
29b4433d
ED
7323int netdev_refcnt_read(const struct net_device *dev)
7324{
7325 int i, refcnt = 0;
7326
7327 for_each_possible_cpu(i)
7328 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7329 return refcnt;
7330}
7331EXPORT_SYMBOL(netdev_refcnt_read);
7332
2c53040f 7333/**
1da177e4 7334 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7335 * @dev: target net_device
1da177e4
LT
7336 *
7337 * This is called when unregistering network devices.
7338 *
7339 * Any protocol or device that holds a reference should register
7340 * for netdevice notification, and cleanup and put back the
7341 * reference if they receive an UNREGISTER event.
7342 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7343 * call dev_put.
1da177e4
LT
7344 */
7345static void netdev_wait_allrefs(struct net_device *dev)
7346{
7347 unsigned long rebroadcast_time, warning_time;
29b4433d 7348 int refcnt;
1da177e4 7349
e014debe
ED
7350 linkwatch_forget_dev(dev);
7351
1da177e4 7352 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7353 refcnt = netdev_refcnt_read(dev);
7354
7355 while (refcnt != 0) {
1da177e4 7356 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7357 rtnl_lock();
1da177e4
LT
7358
7359 /* Rebroadcast unregister notification */
056925ab 7360 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7361
748e2d93 7362 __rtnl_unlock();
0115e8e3 7363 rcu_barrier();
748e2d93
ED
7364 rtnl_lock();
7365
0115e8e3 7366 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7367 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7368 &dev->state)) {
7369 /* We must not have linkwatch events
7370 * pending on unregister. If this
7371 * happens, we simply run the queue
7372 * unscheduled, resulting in a noop
7373 * for this device.
7374 */
7375 linkwatch_run_queue();
7376 }
7377
6756ae4b 7378 __rtnl_unlock();
1da177e4
LT
7379
7380 rebroadcast_time = jiffies;
7381 }
7382
7383 msleep(250);
7384
29b4433d
ED
7385 refcnt = netdev_refcnt_read(dev);
7386
1da177e4 7387 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7388 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7389 dev->name, refcnt);
1da177e4
LT
7390 warning_time = jiffies;
7391 }
7392 }
7393}
7394
7395/* The sequence is:
7396 *
7397 * rtnl_lock();
7398 * ...
7399 * register_netdevice(x1);
7400 * register_netdevice(x2);
7401 * ...
7402 * unregister_netdevice(y1);
7403 * unregister_netdevice(y2);
7404 * ...
7405 * rtnl_unlock();
7406 * free_netdev(y1);
7407 * free_netdev(y2);
7408 *
58ec3b4d 7409 * We are invoked by rtnl_unlock().
1da177e4 7410 * This allows us to deal with problems:
b17a7c17 7411 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7412 * without deadlocking with linkwatch via keventd.
7413 * 2) Since we run with the RTNL semaphore not held, we can sleep
7414 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7415 *
7416 * We must not return until all unregister events added during
7417 * the interval the lock was held have been completed.
1da177e4 7418 */
1da177e4
LT
7419void netdev_run_todo(void)
7420{
626ab0e6 7421 struct list_head list;
1da177e4 7422
1da177e4 7423 /* Snapshot list, allow later requests */
626ab0e6 7424 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7425
7426 __rtnl_unlock();
626ab0e6 7427
0115e8e3
ED
7428
7429 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7430 if (!list_empty(&list))
7431 rcu_barrier();
7432
1da177e4
LT
7433 while (!list_empty(&list)) {
7434 struct net_device *dev
e5e26d75 7435 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7436 list_del(&dev->todo_list);
7437
748e2d93 7438 rtnl_lock();
0115e8e3 7439 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7440 __rtnl_unlock();
0115e8e3 7441
b17a7c17 7442 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7443 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7444 dev->name, dev->reg_state);
7445 dump_stack();
7446 continue;
7447 }
1da177e4 7448
b17a7c17 7449 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7450
b17a7c17 7451 netdev_wait_allrefs(dev);
1da177e4 7452
b17a7c17 7453 /* paranoia */
29b4433d 7454 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7455 BUG_ON(!list_empty(&dev->ptype_all));
7456 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7457 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7458 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7459 WARN_ON(dev->dn_ptr);
1da177e4 7460
b17a7c17
SH
7461 if (dev->destructor)
7462 dev->destructor(dev);
9093bbb2 7463
50624c93
EB
7464 /* Report a network device has been unregistered */
7465 rtnl_lock();
7466 dev_net(dev)->dev_unreg_count--;
7467 __rtnl_unlock();
7468 wake_up(&netdev_unregistering_wq);
7469
9093bbb2
SH
7470 /* Free network device */
7471 kobject_put(&dev->dev.kobj);
1da177e4 7472 }
1da177e4
LT
7473}
7474
9256645a
JW
7475/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7476 * all the same fields in the same order as net_device_stats, with only
7477 * the type differing, but rtnl_link_stats64 may have additional fields
7478 * at the end for newer counters.
3cfde79c 7479 */
77a1abf5
ED
7480void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7481 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7482{
7483#if BITS_PER_LONG == 64
9256645a 7484 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7485 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7486 /* zero out counters that only exist in rtnl_link_stats64 */
7487 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7488 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7489#else
9256645a 7490 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7491 const unsigned long *src = (const unsigned long *)netdev_stats;
7492 u64 *dst = (u64 *)stats64;
7493
9256645a 7494 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7495 for (i = 0; i < n; i++)
7496 dst[i] = src[i];
9256645a
JW
7497 /* zero out counters that only exist in rtnl_link_stats64 */
7498 memset((char *)stats64 + n * sizeof(u64), 0,
7499 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7500#endif
7501}
77a1abf5 7502EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7503
eeda3fd6
SH
7504/**
7505 * dev_get_stats - get network device statistics
7506 * @dev: device to get statistics from
28172739 7507 * @storage: place to store stats
eeda3fd6 7508 *
d7753516
BH
7509 * Get network statistics from device. Return @storage.
7510 * The device driver may provide its own method by setting
7511 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7512 * otherwise the internal statistics structure is used.
eeda3fd6 7513 */
d7753516
BH
7514struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7515 struct rtnl_link_stats64 *storage)
7004bf25 7516{
eeda3fd6
SH
7517 const struct net_device_ops *ops = dev->netdev_ops;
7518
28172739
ED
7519 if (ops->ndo_get_stats64) {
7520 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7521 ops->ndo_get_stats64(dev, storage);
7522 } else if (ops->ndo_get_stats) {
3cfde79c 7523 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7524 } else {
7525 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7526 }
caf586e5 7527 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7528 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7529 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7530 return storage;
c45d286e 7531}
eeda3fd6 7532EXPORT_SYMBOL(dev_get_stats);
c45d286e 7533
24824a09 7534struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7535{
24824a09 7536 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7537
24824a09
ED
7538#ifdef CONFIG_NET_CLS_ACT
7539 if (queue)
7540 return queue;
7541 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7542 if (!queue)
7543 return NULL;
7544 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7545 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7546 queue->qdisc_sleeping = &noop_qdisc;
7547 rcu_assign_pointer(dev->ingress_queue, queue);
7548#endif
7549 return queue;
bb949fbd
DM
7550}
7551
2c60db03
ED
7552static const struct ethtool_ops default_ethtool_ops;
7553
d07d7507
SG
7554void netdev_set_default_ethtool_ops(struct net_device *dev,
7555 const struct ethtool_ops *ops)
7556{
7557 if (dev->ethtool_ops == &default_ethtool_ops)
7558 dev->ethtool_ops = ops;
7559}
7560EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7561
74d332c1
ED
7562void netdev_freemem(struct net_device *dev)
7563{
7564 char *addr = (char *)dev - dev->padded;
7565
4cb28970 7566 kvfree(addr);
74d332c1
ED
7567}
7568
1da177e4 7569/**
36909ea4 7570 * alloc_netdev_mqs - allocate network device
c835a677
TG
7571 * @sizeof_priv: size of private data to allocate space for
7572 * @name: device name format string
7573 * @name_assign_type: origin of device name
7574 * @setup: callback to initialize device
7575 * @txqs: the number of TX subqueues to allocate
7576 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7577 *
7578 * Allocates a struct net_device with private data area for driver use
90e51adf 7579 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7580 * for each queue on the device.
1da177e4 7581 */
36909ea4 7582struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7583 unsigned char name_assign_type,
36909ea4
TH
7584 void (*setup)(struct net_device *),
7585 unsigned int txqs, unsigned int rxqs)
1da177e4 7586{
1da177e4 7587 struct net_device *dev;
7943986c 7588 size_t alloc_size;
1ce8e7b5 7589 struct net_device *p;
1da177e4 7590
b6fe17d6
SH
7591 BUG_ON(strlen(name) >= sizeof(dev->name));
7592
36909ea4 7593 if (txqs < 1) {
7b6cd1ce 7594 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7595 return NULL;
7596 }
7597
a953be53 7598#ifdef CONFIG_SYSFS
36909ea4 7599 if (rxqs < 1) {
7b6cd1ce 7600 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7601 return NULL;
7602 }
7603#endif
7604
fd2ea0a7 7605 alloc_size = sizeof(struct net_device);
d1643d24
AD
7606 if (sizeof_priv) {
7607 /* ensure 32-byte alignment of private area */
1ce8e7b5 7608 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7609 alloc_size += sizeof_priv;
7610 }
7611 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7612 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7613
74d332c1
ED
7614 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7615 if (!p)
7616 p = vzalloc(alloc_size);
62b5942a 7617 if (!p)
1da177e4 7618 return NULL;
1da177e4 7619
1ce8e7b5 7620 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7621 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7622
29b4433d
ED
7623 dev->pcpu_refcnt = alloc_percpu(int);
7624 if (!dev->pcpu_refcnt)
74d332c1 7625 goto free_dev;
ab9c73cc 7626
ab9c73cc 7627 if (dev_addr_init(dev))
29b4433d 7628 goto free_pcpu;
ab9c73cc 7629
22bedad3 7630 dev_mc_init(dev);
a748ee24 7631 dev_uc_init(dev);
ccffad25 7632
c346dca1 7633 dev_net_set(dev, &init_net);
1da177e4 7634
8d3bdbd5 7635 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7636 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7637
8d3bdbd5
DM
7638 INIT_LIST_HEAD(&dev->napi_list);
7639 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7640 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7641 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7642 INIT_LIST_HEAD(&dev->adj_list.upper);
7643 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
7644 INIT_LIST_HEAD(&dev->ptype_all);
7645 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7646#ifdef CONFIG_NET_SCHED
7647 hash_init(dev->qdisc_hash);
7648#endif
02875878 7649 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7650 setup(dev);
7651
a813104d 7652 if (!dev->tx_queue_len) {
f84bb1ea 7653 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7654 dev->tx_queue_len = 1;
7655 }
906470c1 7656
36909ea4
TH
7657 dev->num_tx_queues = txqs;
7658 dev->real_num_tx_queues = txqs;
ed9af2e8 7659 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7660 goto free_all;
e8a0464c 7661
a953be53 7662#ifdef CONFIG_SYSFS
36909ea4
TH
7663 dev->num_rx_queues = rxqs;
7664 dev->real_num_rx_queues = rxqs;
fe822240 7665 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7666 goto free_all;
df334545 7667#endif
0a9627f2 7668
1da177e4 7669 strcpy(dev->name, name);
c835a677 7670 dev->name_assign_type = name_assign_type;
cbda10fa 7671 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7672 if (!dev->ethtool_ops)
7673 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7674
7675 nf_hook_ingress_init(dev);
7676
1da177e4 7677 return dev;
ab9c73cc 7678
8d3bdbd5
DM
7679free_all:
7680 free_netdev(dev);
7681 return NULL;
7682
29b4433d
ED
7683free_pcpu:
7684 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7685free_dev:
7686 netdev_freemem(dev);
ab9c73cc 7687 return NULL;
1da177e4 7688}
36909ea4 7689EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7690
7691/**
7692 * free_netdev - free network device
7693 * @dev: device
7694 *
4ec93edb
YH
7695 * This function does the last stage of destroying an allocated device
7696 * interface. The reference to the device object is released.
1da177e4 7697 * If this is the last reference then it will be freed.
93d05d4a 7698 * Must be called in process context.
1da177e4
LT
7699 */
7700void free_netdev(struct net_device *dev)
7701{
d565b0a1
HX
7702 struct napi_struct *p, *n;
7703
93d05d4a 7704 might_sleep();
60877a32 7705 netif_free_tx_queues(dev);
a953be53 7706#ifdef CONFIG_SYSFS
10595902 7707 kvfree(dev->_rx);
fe822240 7708#endif
e8a0464c 7709
33d480ce 7710 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7711
f001fde5
JP
7712 /* Flush device addresses */
7713 dev_addr_flush(dev);
7714
d565b0a1
HX
7715 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7716 netif_napi_del(p);
7717
29b4433d
ED
7718 free_percpu(dev->pcpu_refcnt);
7719 dev->pcpu_refcnt = NULL;
7720
3041a069 7721 /* Compatibility with error handling in drivers */
1da177e4 7722 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7723 netdev_freemem(dev);
1da177e4
LT
7724 return;
7725 }
7726
7727 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7728 dev->reg_state = NETREG_RELEASED;
7729
43cb76d9
GKH
7730 /* will free via device release */
7731 put_device(&dev->dev);
1da177e4 7732}
d1b19dff 7733EXPORT_SYMBOL(free_netdev);
4ec93edb 7734
f0db275a
SH
7735/**
7736 * synchronize_net - Synchronize with packet receive processing
7737 *
7738 * Wait for packets currently being received to be done.
7739 * Does not block later packets from starting.
7740 */
4ec93edb 7741void synchronize_net(void)
1da177e4
LT
7742{
7743 might_sleep();
be3fc413
ED
7744 if (rtnl_is_locked())
7745 synchronize_rcu_expedited();
7746 else
7747 synchronize_rcu();
1da177e4 7748}
d1b19dff 7749EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7750
7751/**
44a0873d 7752 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7753 * @dev: device
44a0873d 7754 * @head: list
6ebfbc06 7755 *
1da177e4 7756 * This function shuts down a device interface and removes it
d59b54b1 7757 * from the kernel tables.
44a0873d 7758 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7759 *
7760 * Callers must hold the rtnl semaphore. You may want
7761 * unregister_netdev() instead of this.
7762 */
7763
44a0873d 7764void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7765{
a6620712
HX
7766 ASSERT_RTNL();
7767
44a0873d 7768 if (head) {
9fdce099 7769 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7770 } else {
7771 rollback_registered(dev);
7772 /* Finish processing unregister after unlock */
7773 net_set_todo(dev);
7774 }
1da177e4 7775}
44a0873d 7776EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7777
9b5e383c
ED
7778/**
7779 * unregister_netdevice_many - unregister many devices
7780 * @head: list of devices
87757a91
ED
7781 *
7782 * Note: As most callers use a stack allocated list_head,
7783 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7784 */
7785void unregister_netdevice_many(struct list_head *head)
7786{
7787 struct net_device *dev;
7788
7789 if (!list_empty(head)) {
7790 rollback_registered_many(head);
7791 list_for_each_entry(dev, head, unreg_list)
7792 net_set_todo(dev);
87757a91 7793 list_del(head);
9b5e383c
ED
7794 }
7795}
63c8099d 7796EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7797
1da177e4
LT
7798/**
7799 * unregister_netdev - remove device from the kernel
7800 * @dev: device
7801 *
7802 * This function shuts down a device interface and removes it
d59b54b1 7803 * from the kernel tables.
1da177e4
LT
7804 *
7805 * This is just a wrapper for unregister_netdevice that takes
7806 * the rtnl semaphore. In general you want to use this and not
7807 * unregister_netdevice.
7808 */
7809void unregister_netdev(struct net_device *dev)
7810{
7811 rtnl_lock();
7812 unregister_netdevice(dev);
7813 rtnl_unlock();
7814}
1da177e4
LT
7815EXPORT_SYMBOL(unregister_netdev);
7816
ce286d32
EB
7817/**
7818 * dev_change_net_namespace - move device to different nethost namespace
7819 * @dev: device
7820 * @net: network namespace
7821 * @pat: If not NULL name pattern to try if the current device name
7822 * is already taken in the destination network namespace.
7823 *
7824 * This function shuts down a device interface and moves it
7825 * to a new network namespace. On success 0 is returned, on
7826 * a failure a netagive errno code is returned.
7827 *
7828 * Callers must hold the rtnl semaphore.
7829 */
7830
7831int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7832{
ce286d32
EB
7833 int err;
7834
7835 ASSERT_RTNL();
7836
7837 /* Don't allow namespace local devices to be moved. */
7838 err = -EINVAL;
7839 if (dev->features & NETIF_F_NETNS_LOCAL)
7840 goto out;
7841
7842 /* Ensure the device has been registrered */
ce286d32
EB
7843 if (dev->reg_state != NETREG_REGISTERED)
7844 goto out;
7845
7846 /* Get out if there is nothing todo */
7847 err = 0;
878628fb 7848 if (net_eq(dev_net(dev), net))
ce286d32
EB
7849 goto out;
7850
7851 /* Pick the destination device name, and ensure
7852 * we can use it in the destination network namespace.
7853 */
7854 err = -EEXIST;
d9031024 7855 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7856 /* We get here if we can't use the current device name */
7857 if (!pat)
7858 goto out;
828de4f6 7859 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7860 goto out;
7861 }
7862
7863 /*
7864 * And now a mini version of register_netdevice unregister_netdevice.
7865 */
7866
7867 /* If device is running close it first. */
9b772652 7868 dev_close(dev);
ce286d32
EB
7869
7870 /* And unlink it from device chain */
7871 err = -ENODEV;
7872 unlist_netdevice(dev);
7873
7874 synchronize_net();
7875
7876 /* Shutdown queueing discipline. */
7877 dev_shutdown(dev);
7878
7879 /* Notify protocols, that we are about to destroy
7880 this device. They should clean all the things.
3b27e105
DL
7881
7882 Note that dev->reg_state stays at NETREG_REGISTERED.
7883 This is wanted because this way 8021q and macvlan know
7884 the device is just moving and can keep their slaves up.
ce286d32
EB
7885 */
7886 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7887 rcu_barrier();
7888 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7889 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7890
7891 /*
7892 * Flush the unicast and multicast chains
7893 */
a748ee24 7894 dev_uc_flush(dev);
22bedad3 7895 dev_mc_flush(dev);
ce286d32 7896
4e66ae2e
SH
7897 /* Send a netdev-removed uevent to the old namespace */
7898 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7899 netdev_adjacent_del_links(dev);
4e66ae2e 7900
ce286d32 7901 /* Actually switch the network namespace */
c346dca1 7902 dev_net_set(dev, net);
ce286d32 7903
ce286d32 7904 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7905 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7906 dev->ifindex = dev_new_index(net);
ce286d32 7907
4e66ae2e
SH
7908 /* Send a netdev-add uevent to the new namespace */
7909 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7910 netdev_adjacent_add_links(dev);
4e66ae2e 7911
8b41d188 7912 /* Fixup kobjects */
a1b3f594 7913 err = device_rename(&dev->dev, dev->name);
8b41d188 7914 WARN_ON(err);
ce286d32
EB
7915
7916 /* Add the device back in the hashes */
7917 list_netdevice(dev);
7918
7919 /* Notify protocols, that a new device appeared. */
7920 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7921
d90a909e
EB
7922 /*
7923 * Prevent userspace races by waiting until the network
7924 * device is fully setup before sending notifications.
7925 */
7f294054 7926 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7927
ce286d32
EB
7928 synchronize_net();
7929 err = 0;
7930out:
7931 return err;
7932}
463d0183 7933EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7934
1da177e4
LT
7935static int dev_cpu_callback(struct notifier_block *nfb,
7936 unsigned long action,
7937 void *ocpu)
7938{
7939 struct sk_buff **list_skb;
1da177e4
LT
7940 struct sk_buff *skb;
7941 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7942 struct softnet_data *sd, *oldsd;
7943
8bb78442 7944 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7945 return NOTIFY_OK;
7946
7947 local_irq_disable();
7948 cpu = smp_processor_id();
7949 sd = &per_cpu(softnet_data, cpu);
7950 oldsd = &per_cpu(softnet_data, oldcpu);
7951
7952 /* Find end of our completion_queue. */
7953 list_skb = &sd->completion_queue;
7954 while (*list_skb)
7955 list_skb = &(*list_skb)->next;
7956 /* Append completion queue from offline CPU. */
7957 *list_skb = oldsd->completion_queue;
7958 oldsd->completion_queue = NULL;
7959
1da177e4 7960 /* Append output queue from offline CPU. */
a9cbd588
CG
7961 if (oldsd->output_queue) {
7962 *sd->output_queue_tailp = oldsd->output_queue;
7963 sd->output_queue_tailp = oldsd->output_queue_tailp;
7964 oldsd->output_queue = NULL;
7965 oldsd->output_queue_tailp = &oldsd->output_queue;
7966 }
ac64da0b
ED
7967 /* Append NAPI poll list from offline CPU, with one exception :
7968 * process_backlog() must be called by cpu owning percpu backlog.
7969 * We properly handle process_queue & input_pkt_queue later.
7970 */
7971 while (!list_empty(&oldsd->poll_list)) {
7972 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7973 struct napi_struct,
7974 poll_list);
7975
7976 list_del_init(&napi->poll_list);
7977 if (napi->poll == process_backlog)
7978 napi->state = 0;
7979 else
7980 ____napi_schedule(sd, napi);
264524d5 7981 }
1da177e4
LT
7982
7983 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7984 local_irq_enable();
7985
7986 /* Process offline CPU's input_pkt_queue */
76cc8b13 7987 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7988 netif_rx_ni(skb);
76cc8b13 7989 input_queue_head_incr(oldsd);
fec5e652 7990 }
ac64da0b 7991 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7992 netif_rx_ni(skb);
76cc8b13
TH
7993 input_queue_head_incr(oldsd);
7994 }
1da177e4
LT
7995
7996 return NOTIFY_OK;
7997}
1da177e4
LT
7998
7999
7f353bf2 8000/**
b63365a2
HX
8001 * netdev_increment_features - increment feature set by one
8002 * @all: current feature set
8003 * @one: new feature set
8004 * @mask: mask feature set
7f353bf2
HX
8005 *
8006 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8007 * @one to the master device with current feature set @all. Will not
8008 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8009 */
c8f44aff
MM
8010netdev_features_t netdev_increment_features(netdev_features_t all,
8011 netdev_features_t one, netdev_features_t mask)
b63365a2 8012{
c8cd0989 8013 if (mask & NETIF_F_HW_CSUM)
a188222b 8014 mask |= NETIF_F_CSUM_MASK;
1742f183 8015 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8016
a188222b 8017 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8018 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8019
1742f183 8020 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8021 if (all & NETIF_F_HW_CSUM)
8022 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8023
8024 return all;
8025}
b63365a2 8026EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8027
430f03cd 8028static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8029{
8030 int i;
8031 struct hlist_head *hash;
8032
8033 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8034 if (hash != NULL)
8035 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8036 INIT_HLIST_HEAD(&hash[i]);
8037
8038 return hash;
8039}
8040
881d966b 8041/* Initialize per network namespace state */
4665079c 8042static int __net_init netdev_init(struct net *net)
881d966b 8043{
734b6541
RM
8044 if (net != &init_net)
8045 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8046
30d97d35
PE
8047 net->dev_name_head = netdev_create_hash();
8048 if (net->dev_name_head == NULL)
8049 goto err_name;
881d966b 8050
30d97d35
PE
8051 net->dev_index_head = netdev_create_hash();
8052 if (net->dev_index_head == NULL)
8053 goto err_idx;
881d966b
EB
8054
8055 return 0;
30d97d35
PE
8056
8057err_idx:
8058 kfree(net->dev_name_head);
8059err_name:
8060 return -ENOMEM;
881d966b
EB
8061}
8062
f0db275a
SH
8063/**
8064 * netdev_drivername - network driver for the device
8065 * @dev: network device
f0db275a
SH
8066 *
8067 * Determine network driver for device.
8068 */
3019de12 8069const char *netdev_drivername(const struct net_device *dev)
6579e57b 8070{
cf04a4c7
SH
8071 const struct device_driver *driver;
8072 const struct device *parent;
3019de12 8073 const char *empty = "";
6579e57b
AV
8074
8075 parent = dev->dev.parent;
6579e57b 8076 if (!parent)
3019de12 8077 return empty;
6579e57b
AV
8078
8079 driver = parent->driver;
8080 if (driver && driver->name)
3019de12
DM
8081 return driver->name;
8082 return empty;
6579e57b
AV
8083}
8084
6ea754eb
JP
8085static void __netdev_printk(const char *level, const struct net_device *dev,
8086 struct va_format *vaf)
256df2f3 8087{
b004ff49 8088 if (dev && dev->dev.parent) {
6ea754eb
JP
8089 dev_printk_emit(level[1] - '0',
8090 dev->dev.parent,
8091 "%s %s %s%s: %pV",
8092 dev_driver_string(dev->dev.parent),
8093 dev_name(dev->dev.parent),
8094 netdev_name(dev), netdev_reg_state(dev),
8095 vaf);
b004ff49 8096 } else if (dev) {
6ea754eb
JP
8097 printk("%s%s%s: %pV",
8098 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8099 } else {
6ea754eb 8100 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8101 }
256df2f3
JP
8102}
8103
6ea754eb
JP
8104void netdev_printk(const char *level, const struct net_device *dev,
8105 const char *format, ...)
256df2f3
JP
8106{
8107 struct va_format vaf;
8108 va_list args;
256df2f3
JP
8109
8110 va_start(args, format);
8111
8112 vaf.fmt = format;
8113 vaf.va = &args;
8114
6ea754eb 8115 __netdev_printk(level, dev, &vaf);
b004ff49 8116
256df2f3 8117 va_end(args);
256df2f3
JP
8118}
8119EXPORT_SYMBOL(netdev_printk);
8120
8121#define define_netdev_printk_level(func, level) \
6ea754eb 8122void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8123{ \
256df2f3
JP
8124 struct va_format vaf; \
8125 va_list args; \
8126 \
8127 va_start(args, fmt); \
8128 \
8129 vaf.fmt = fmt; \
8130 vaf.va = &args; \
8131 \
6ea754eb 8132 __netdev_printk(level, dev, &vaf); \
b004ff49 8133 \
256df2f3 8134 va_end(args); \
256df2f3
JP
8135} \
8136EXPORT_SYMBOL(func);
8137
8138define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8139define_netdev_printk_level(netdev_alert, KERN_ALERT);
8140define_netdev_printk_level(netdev_crit, KERN_CRIT);
8141define_netdev_printk_level(netdev_err, KERN_ERR);
8142define_netdev_printk_level(netdev_warn, KERN_WARNING);
8143define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8144define_netdev_printk_level(netdev_info, KERN_INFO);
8145
4665079c 8146static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8147{
8148 kfree(net->dev_name_head);
8149 kfree(net->dev_index_head);
8150}
8151
022cbae6 8152static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8153 .init = netdev_init,
8154 .exit = netdev_exit,
8155};
8156
4665079c 8157static void __net_exit default_device_exit(struct net *net)
ce286d32 8158{
e008b5fc 8159 struct net_device *dev, *aux;
ce286d32 8160 /*
e008b5fc 8161 * Push all migratable network devices back to the
ce286d32
EB
8162 * initial network namespace
8163 */
8164 rtnl_lock();
e008b5fc 8165 for_each_netdev_safe(net, dev, aux) {
ce286d32 8166 int err;
aca51397 8167 char fb_name[IFNAMSIZ];
ce286d32
EB
8168
8169 /* Ignore unmoveable devices (i.e. loopback) */
8170 if (dev->features & NETIF_F_NETNS_LOCAL)
8171 continue;
8172
e008b5fc
EB
8173 /* Leave virtual devices for the generic cleanup */
8174 if (dev->rtnl_link_ops)
8175 continue;
d0c082ce 8176
25985edc 8177 /* Push remaining network devices to init_net */
aca51397
PE
8178 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8179 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8180 if (err) {
7b6cd1ce
JP
8181 pr_emerg("%s: failed to move %s to init_net: %d\n",
8182 __func__, dev->name, err);
aca51397 8183 BUG();
ce286d32
EB
8184 }
8185 }
8186 rtnl_unlock();
8187}
8188
50624c93
EB
8189static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8190{
8191 /* Return with the rtnl_lock held when there are no network
8192 * devices unregistering in any network namespace in net_list.
8193 */
8194 struct net *net;
8195 bool unregistering;
ff960a73 8196 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8197
ff960a73 8198 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8199 for (;;) {
50624c93
EB
8200 unregistering = false;
8201 rtnl_lock();
8202 list_for_each_entry(net, net_list, exit_list) {
8203 if (net->dev_unreg_count > 0) {
8204 unregistering = true;
8205 break;
8206 }
8207 }
8208 if (!unregistering)
8209 break;
8210 __rtnl_unlock();
ff960a73
PZ
8211
8212 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8213 }
ff960a73 8214 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8215}
8216
04dc7f6b
EB
8217static void __net_exit default_device_exit_batch(struct list_head *net_list)
8218{
8219 /* At exit all network devices most be removed from a network
b595076a 8220 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8221 * Do this across as many network namespaces as possible to
8222 * improve batching efficiency.
8223 */
8224 struct net_device *dev;
8225 struct net *net;
8226 LIST_HEAD(dev_kill_list);
8227
50624c93
EB
8228 /* To prevent network device cleanup code from dereferencing
8229 * loopback devices or network devices that have been freed
8230 * wait here for all pending unregistrations to complete,
8231 * before unregistring the loopback device and allowing the
8232 * network namespace be freed.
8233 *
8234 * The netdev todo list containing all network devices
8235 * unregistrations that happen in default_device_exit_batch
8236 * will run in the rtnl_unlock() at the end of
8237 * default_device_exit_batch.
8238 */
8239 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8240 list_for_each_entry(net, net_list, exit_list) {
8241 for_each_netdev_reverse(net, dev) {
b0ab2fab 8242 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8243 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8244 else
8245 unregister_netdevice_queue(dev, &dev_kill_list);
8246 }
8247 }
8248 unregister_netdevice_many(&dev_kill_list);
8249 rtnl_unlock();
8250}
8251
022cbae6 8252static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8253 .exit = default_device_exit,
04dc7f6b 8254 .exit_batch = default_device_exit_batch,
ce286d32
EB
8255};
8256
1da177e4
LT
8257/*
8258 * Initialize the DEV module. At boot time this walks the device list and
8259 * unhooks any devices that fail to initialise (normally hardware not
8260 * present) and leaves us with a valid list of present and active devices.
8261 *
8262 */
8263
8264/*
8265 * This is called single threaded during boot, so no need
8266 * to take the rtnl semaphore.
8267 */
8268static int __init net_dev_init(void)
8269{
8270 int i, rc = -ENOMEM;
8271
8272 BUG_ON(!dev_boot_phase);
8273
1da177e4
LT
8274 if (dev_proc_init())
8275 goto out;
8276
8b41d188 8277 if (netdev_kobject_init())
1da177e4
LT
8278 goto out;
8279
8280 INIT_LIST_HEAD(&ptype_all);
82d8a867 8281 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8282 INIT_LIST_HEAD(&ptype_base[i]);
8283
62532da9
VY
8284 INIT_LIST_HEAD(&offload_base);
8285
881d966b
EB
8286 if (register_pernet_subsys(&netdev_net_ops))
8287 goto out;
1da177e4
LT
8288
8289 /*
8290 * Initialise the packet receive queues.
8291 */
8292
6f912042 8293 for_each_possible_cpu(i) {
41852497 8294 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8295 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8296
41852497
ED
8297 INIT_WORK(flush, flush_backlog);
8298
e36fa2f7 8299 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8300 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8301 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8302 sd->output_queue_tailp = &sd->output_queue;
df334545 8303#ifdef CONFIG_RPS
e36fa2f7
ED
8304 sd->csd.func = rps_trigger_softirq;
8305 sd->csd.info = sd;
e36fa2f7 8306 sd->cpu = i;
1e94d72f 8307#endif
0a9627f2 8308
e36fa2f7
ED
8309 sd->backlog.poll = process_backlog;
8310 sd->backlog.weight = weight_p;
1da177e4
LT
8311 }
8312
1da177e4
LT
8313 dev_boot_phase = 0;
8314
505d4f73
EB
8315 /* The loopback device is special if any other network devices
8316 * is present in a network namespace the loopback device must
8317 * be present. Since we now dynamically allocate and free the
8318 * loopback device ensure this invariant is maintained by
8319 * keeping the loopback device as the first device on the
8320 * list of network devices. Ensuring the loopback devices
8321 * is the first device that appears and the last network device
8322 * that disappears.
8323 */
8324 if (register_pernet_device(&loopback_net_ops))
8325 goto out;
8326
8327 if (register_pernet_device(&default_device_ops))
8328 goto out;
8329
962cf36c
CM
8330 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8331 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8332
8333 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8334 dst_subsys_init();
1da177e4
LT
8335 rc = 0;
8336out:
8337 return rc;
8338}
8339
8340subsys_initcall(net_dev_init);