]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/core/dev.c
inet: protect against too small mtu values.
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
f1083048 84#include <linux/sched/mm.h>
4a3e2f71 85#include <linux/mutex.h>
1da177e4
LT
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
0187bdfb 95#include <linux/ethtool.h>
1da177e4
LT
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
a7862b45 98#include <linux/bpf.h>
b5cdae32 99#include <linux/bpf_trace.h>
457c4cbc 100#include <net/net_namespace.h>
1da177e4 101#include <net/sock.h>
02d62e86 102#include <net/busy_poll.h>
1da177e4 103#include <linux/rtnetlink.h>
1da177e4 104#include <linux/stat.h>
1da177e4 105#include <net/dst.h>
fc4099f1 106#include <net/dst_metadata.h>
1da177e4 107#include <net/pkt_sched.h>
87d83093 108#include <net/pkt_cls.h>
1da177e4 109#include <net/checksum.h>
44540960 110#include <net/xfrm.h>
1da177e4
LT
111#include <linux/highmem.h>
112#include <linux/init.h>
1da177e4 113#include <linux/module.h>
1da177e4
LT
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
1da177e4 117#include <net/iw_handler.h>
1da177e4 118#include <asm/current.h>
5bdb9886 119#include <linux/audit.h>
db217334 120#include <linux/dmaengine.h>
f6a78bfc 121#include <linux/err.h>
c7fa9d18 122#include <linux/ctype.h>
723e98b7 123#include <linux/if_arp.h>
6de329e2 124#include <linux/if_vlan.h>
8f0f2223 125#include <linux/ip.h>
ad55dcaf 126#include <net/ip.h>
25cd9ba0 127#include <net/mpls.h>
8f0f2223
DM
128#include <linux/ipv6.h>
129#include <linux/in.h>
b6b2fed1
DM
130#include <linux/jhash.h>
131#include <linux/random.h>
9cbc1cb8 132#include <trace/events/napi.h>
cf66ba58 133#include <trace/events/net.h>
07dc22e7 134#include <trace/events/skb.h>
5acbbd42 135#include <linux/pci.h>
caeda9b9 136#include <linux/inetdevice.h>
c445477d 137#include <linux/cpu_rmap.h>
c5905afb 138#include <linux/static_key.h>
af12fa6e 139#include <linux/hashtable.h>
60877a32 140#include <linux/vmalloc.h>
529d0489 141#include <linux/if_macvlan.h>
e7fd2885 142#include <linux/errqueue.h>
3b47d303 143#include <linux/hrtimer.h>
e687ad60 144#include <linux/netfilter_ingress.h>
40e4e713 145#include <linux/crash_dump.h>
b72b5bf6 146#include <linux/sctp.h>
ae847f40 147#include <net/udp_tunnel.h>
6621dd29 148#include <linux/net_namespace.h>
1da177e4 149
342709ef
PE
150#include "net-sysfs.h"
151
d565b0a1
HX
152/* Instead of increasing this, you should create a hash table. */
153#define MAX_GRO_SKBS 8
154
5d38a079
HX
155/* This should be increased if a protocol with a bigger head is added. */
156#define GRO_MAX_HEAD (MAX_HEADER + 128)
157
1da177e4 158static DEFINE_SPINLOCK(ptype_lock);
62532da9 159static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161struct list_head ptype_all __read_mostly; /* Taps */
62532da9 162static struct list_head offload_base __read_mostly;
1da177e4 163
ae78dbfa 164static int netif_rx_internal(struct sk_buff *skb);
54951194 165static int call_netdevice_notifiers_info(unsigned long val,
54951194 166 struct netdev_notifier_info *info);
90b602f8 167static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 168
1da177e4 169/*
7562f876 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
171 * semaphore.
172 *
c6d14c84 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
7562f876 176 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
1da177e4 188DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
189EXPORT_SYMBOL(dev_base_lock);
190
6c557001
FW
191static DEFINE_MUTEX(ifalias_mutex);
192
af12fa6e
ET
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
52bd2d62 196static unsigned int napi_gen_id = NR_CPUS;
6180d9de 197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 198
18afa4b0 199static seqcount_t devnet_rename_seq;
c91f6df2 200
4e985ada
TG
201static inline void dev_base_seq_inc(struct net *net)
202{
643aa9cb 203 while (++net->dev_base_seq == 0)
204 ;
4e985ada
TG
205}
206
881d966b 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 208{
8387ff25 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 210
08e9897d 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
212}
213
881d966b 214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 215{
7c28bd0b 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
217}
218
e36fa2f7 219static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
220{
221#ifdef CONFIG_RPS
e36fa2f7 222 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
223#endif
224}
225
e36fa2f7 226static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
227{
228#ifdef CONFIG_RPS
e36fa2f7 229 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
230#endif
231}
232
ce286d32 233/* Device list insertion */
53759be9 234static void list_netdevice(struct net_device *dev)
ce286d32 235{
c346dca1 236 struct net *net = dev_net(dev);
ce286d32
EB
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
c6d14c84 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
ce286d32 245 write_unlock_bh(&dev_base_lock);
4e985ada
TG
246
247 dev_base_seq_inc(net);
ce286d32
EB
248}
249
fb699dfd
ED
250/* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
ce286d32
EB
253static void unlist_netdevice(struct net_device *dev)
254{
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
c6d14c84 259 list_del_rcu(&dev->dev_list);
72c9528b 260 hlist_del_rcu(&dev->name_hlist);
fb699dfd 261 hlist_del_rcu(&dev->index_hlist);
ce286d32 262 write_unlock_bh(&dev_base_lock);
4e985ada
TG
263
264 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
265}
266
1da177e4
LT
267/*
268 * Our notifier list
269 */
270
f07d5b94 271static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
272
273/*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
bea3348e 277
9958da05 278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 279EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 280
cf508b12 281#ifdef CONFIG_LOCKDEP
723e98b7 282/*
c773e847 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
284 * according to dev->type
285 */
643aa9cb 286static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 302
643aa9cb 303static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
319
320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
322
323static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324{
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332}
333
cf508b12
DM
334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
723e98b7
JP
336{
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342}
cf508b12
DM
343
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345{
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352}
723e98b7 353#else
cf508b12
DM
354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356{
357}
358static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
359{
360}
361#endif
1da177e4
LT
362
363/*******************************************************************************
eb13da1a 364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
1da177e4 368
1da177e4 369
1da177e4
LT
370/*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
c07b68e8
ED
386static inline struct list_head *ptype_head(const struct packet_type *pt)
387{
388 if (pt->type == htons(ETH_P_ALL))
7866a621 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 390 else
7866a621
SN
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
393}
394
1da177e4
LT
395/**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
4ec93edb 403 * This call does not sleep therefore it can not
1da177e4
LT
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
408void dev_add_pack(struct packet_type *pt)
409{
c07b68e8 410 struct list_head *head = ptype_head(pt);
1da177e4 411
c07b68e8
ED
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
1da177e4 415}
d1b19dff 416EXPORT_SYMBOL(dev_add_pack);
1da177e4 417
1da177e4
LT
418/**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
4ec93edb 425 * returns.
1da177e4
LT
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
431void __dev_remove_pack(struct packet_type *pt)
432{
c07b68e8 433 struct list_head *head = ptype_head(pt);
1da177e4
LT
434 struct packet_type *pt1;
435
c07b68e8 436 spin_lock(&ptype_lock);
1da177e4
LT
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
7b6cd1ce 445 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 446out:
c07b68e8 447 spin_unlock(&ptype_lock);
1da177e4 448}
d1b19dff
ED
449EXPORT_SYMBOL(__dev_remove_pack);
450
1da177e4
LT
451/**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
463void dev_remove_pack(struct packet_type *pt)
464{
465 __dev_remove_pack(pt);
4ec93edb 466
1da177e4
LT
467 synchronize_net();
468}
d1b19dff 469EXPORT_SYMBOL(dev_remove_pack);
1da177e4 470
62532da9
VY
471
472/**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
484void dev_add_offload(struct packet_offload *po)
485{
bdef7de4 486 struct packet_offload *elem;
62532da9
VY
487
488 spin_lock(&offload_lock);
bdef7de4
DM
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
494 spin_unlock(&offload_lock);
495}
496EXPORT_SYMBOL(dev_add_offload);
497
498/**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
1d143d9f 511static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
512{
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
c53aa505 516 spin_lock(&offload_lock);
62532da9
VY
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526out:
c53aa505 527 spin_unlock(&offload_lock);
62532da9 528}
62532da9
VY
529
530/**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
542void dev_remove_offload(struct packet_offload *po)
543{
544 __dev_remove_offload(po);
545
546 synchronize_net();
547}
548EXPORT_SYMBOL(dev_remove_offload);
549
1da177e4 550/******************************************************************************
eb13da1a 551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
1da177e4
LT
555
556/* Boot time configuration table */
557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559/**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
568static int netdev_boot_setup_add(char *name, struct ifmap *map)
569{
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 577 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584}
585
586/**
722c9a0c 587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
1da177e4 589 *
722c9a0c 590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
594 */
595int netdev_boot_setup_check(struct net_device *dev)
596{
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 602 !strcmp(dev->name, s[i].name)) {
722c9a0c 603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
607 return 1;
608 }
609 }
610 return 0;
611}
d1b19dff 612EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
613
614
615/**
722c9a0c 616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
1da177e4
LT
624 */
625unsigned long netdev_boot_base(const char *prefix, int unit)
626{
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
881d966b 637 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644}
645
646/*
647 * Saves at boot time configured settings for any netdevice.
648 */
649int __init netdev_boot_setup(char *str)
650{
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671}
672
673__setup("netdev=", netdev_boot_setup);
674
675/*******************************************************************************
eb13da1a 676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
1da177e4 680
a54acb3a
ND
681/**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
689int dev_get_iflink(const struct net_device *dev)
690{
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
7a66bbc9 694 return dev->ifindex;
a54acb3a
ND
695}
696EXPORT_SYMBOL(dev_get_iflink);
697
fc4099f1
PS
698/**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708{
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721}
722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
1da177e4
LT
724/**
725 * __dev_get_by_name - find a device by its name
c4ea43c5 726 * @net: the applicable net namespace
1da177e4
LT
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
881d966b 736struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 737{
0bd8d536
ED
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 740
b67bfe0d 741 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
0bd8d536 744
1da177e4
LT
745 return NULL;
746}
d1b19dff 747EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 748
72c9528b 749/**
722c9a0c 750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
759 */
760
761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762{
72c9528b
ED
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
b67bfe0d 766 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_get_by_name_rcu);
773
1da177e4
LT
774/**
775 * dev_get_by_name - find a device by its name
c4ea43c5 776 * @net: the applicable net namespace
1da177e4
LT
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
881d966b 786struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
787{
788 struct net_device *dev;
789
72c9528b
ED
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
792 if (dev)
793 dev_hold(dev);
72c9528b 794 rcu_read_unlock();
1da177e4
LT
795 return dev;
796}
d1b19dff 797EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
798
799/**
800 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 801 * @net: the applicable net namespace
1da177e4
LT
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
881d966b 811struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 812{
0bd8d536
ED
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 815
b67bfe0d 816 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
817 if (dev->ifindex == ifindex)
818 return dev;
0bd8d536 819
1da177e4
LT
820 return NULL;
821}
d1b19dff 822EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 823
fb699dfd
ED
824/**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836{
fb699dfd
ED
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
b67bfe0d 840 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845}
846EXPORT_SYMBOL(dev_get_by_index_rcu);
847
1da177e4
LT
848
849/**
850 * dev_get_by_index - find a device by its ifindex
c4ea43c5 851 * @net: the applicable net namespace
1da177e4
LT
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
881d966b 860struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
861{
862 struct net_device *dev;
863
fb699dfd
ED
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
866 if (dev)
867 dev_hold(dev);
fb699dfd 868 rcu_read_unlock();
1da177e4
LT
869 return dev;
870}
d1b19dff 871EXPORT_SYMBOL(dev_get_by_index);
1da177e4 872
90b602f8
ML
873/**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
883struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884{
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895}
896EXPORT_SYMBOL(dev_get_by_napi_id);
897
5dbe7c17
NS
898/**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 *
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
907 */
908int netdev_get_name(struct net *net, char *name, int ifindex)
909{
910 struct net_device *dev;
911 unsigned int seq;
912
913retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
920 }
921
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
927 }
928
929 return 0;
930}
931
1da177e4 932/**
941666c2 933 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 934 * @net: the applicable net namespace
1da177e4
LT
935 * @type: media type of device
936 * @ha: hardware address
937 *
938 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941666c2 941 * The returned device has not had its ref count increased
1da177e4
LT
942 * and the caller must therefore be careful about locking
943 *
1da177e4
LT
944 */
945
941666c2
ED
946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
1da177e4
LT
948{
949 struct net_device *dev;
950
941666c2 951 for_each_netdev_rcu(net, dev)
1da177e4
LT
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
954 return dev;
955
956 return NULL;
1da177e4 957}
941666c2 958EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 959
881d966b 960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
961{
962 struct net_device *dev;
963
4e9cac2b 964 ASSERT_RTNL();
881d966b 965 for_each_netdev(net, dev)
4e9cac2b 966 if (dev->type == type)
7562f876
PE
967 return dev;
968
969 return NULL;
4e9cac2b 970}
4e9cac2b
PM
971EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
881d966b 973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 974{
99fe3c39 975 struct net_device *dev, *ret = NULL;
4e9cac2b 976
99fe3c39
ED
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
983 }
984 rcu_read_unlock();
985 return ret;
1da177e4 986}
1da177e4
LT
987EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989/**
6c555490 990 * __dev_get_by_flags - find any device with given flags
c4ea43c5 991 * @net: the applicable net namespace
1da177e4
LT
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
994 *
995 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 996 * is not found or a pointer to the device. Must be called inside
6c555490 997 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
998 */
999
6c555490
WC
1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1da177e4 1002{
7562f876 1003 struct net_device *dev, *ret;
1da177e4 1004
6c555490
WC
1005 ASSERT_RTNL();
1006
7562f876 1007 ret = NULL;
6c555490 1008 for_each_netdev(net, dev) {
1da177e4 1009 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1010 ret = dev;
1da177e4
LT
1011 break;
1012 }
1013 }
7562f876 1014 return ret;
1da177e4 1015}
6c555490 1016EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1017
1018/**
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1021 *
1022 * Network device names need to be valid file names to
c7fa9d18
DM
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1da177e4 1025 */
95f050bf 1026bool dev_valid_name(const char *name)
1da177e4 1027{
c7fa9d18 1028 if (*name == '\0')
95f050bf 1029 return false;
d17db1ab 1030 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1031 return false;
c7fa9d18 1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1033 return false;
c7fa9d18
DM
1034
1035 while (*name) {
a4176a93 1036 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1037 return false;
c7fa9d18
DM
1038 name++;
1039 }
95f050bf 1040 return true;
1da177e4 1041}
d1b19dff 1042EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1043
1044/**
b267b179
EB
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1da177e4 1047 * @name: name format string
b267b179 1048 * @buf: scratch buffer and result name string
1da177e4
LT
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1057 */
1058
b267b179 1059static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1060{
1061 int i = 0;
1da177e4
LT
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1064 unsigned long *inuse;
1da177e4
LT
1065 struct net_device *d;
1066
93809105
RV
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1069
51f299dd 1070 p = strchr(name, '%');
1da177e4
LT
1071 if (p) {
1072 /*
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1075 * characters.
1076 */
1077 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 return -EINVAL;
1079
1080 /* Use one page as a bit array of possible slots */
cfcabdcc 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1082 if (!inuse)
1083 return -ENOMEM;
1084
881d966b 1085 for_each_netdev(net, d) {
1da177e4
LT
1086 if (!sscanf(d->name, name, &i))
1087 continue;
1088 if (i < 0 || i >= max_netdevices)
1089 continue;
1090
1091 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1092 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1093 if (!strncmp(buf, d->name, IFNAMSIZ))
1094 set_bit(i, inuse);
1095 }
1096
1097 i = find_first_zero_bit(inuse, max_netdevices);
1098 free_page((unsigned long) inuse);
1099 }
1100
6224abda 1101 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1102 if (!__dev_get_by_name(net, buf))
1da177e4 1103 return i;
1da177e4
LT
1104
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1108 */
029b6d14 1109 return -ENFILE;
1da177e4
LT
1110}
1111
2c88b855
RV
1112static int dev_alloc_name_ns(struct net *net,
1113 struct net_device *dev,
1114 const char *name)
1115{
1116 char buf[IFNAMSIZ];
1117 int ret;
1118
c46d7642 1119 BUG_ON(!net);
2c88b855
RV
1120 ret = __dev_alloc_name(net, name, buf);
1121 if (ret >= 0)
1122 strlcpy(dev->name, buf, IFNAMSIZ);
1123 return ret;
1da177e4
LT
1124}
1125
b267b179
EB
1126/**
1127 * dev_alloc_name - allocate a name for a device
1128 * @dev: device
1129 * @name: name format string
1130 *
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1135 * duplicates.
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140int dev_alloc_name(struct net_device *dev, const char *name)
1141{
c46d7642 1142 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1143}
d1b19dff 1144EXPORT_SYMBOL(dev_alloc_name);
b267b179 1145
0ad646c8
CW
1146int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 const char *name)
828de4f6 1148{
55a5ec9b
DM
1149 BUG_ON(!net);
1150
1151 if (!dev_valid_name(name))
1152 return -EINVAL;
1153
1154 if (strchr(name, '%'))
1155 return dev_alloc_name_ns(net, dev, name);
1156 else if (__dev_get_by_name(net, name))
1157 return -EEXIST;
1158 else if (dev->name != name)
1159 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161 return 0;
d9031024 1162}
0ad646c8 1163EXPORT_SYMBOL(dev_get_valid_name);
1da177e4
LT
1164
1165/**
1166 * dev_change_name - change name of a device
1167 * @dev: device
1168 * @newname: name (or format string) must be at least IFNAMSIZ
1169 *
1170 * Change name of a device, can pass format strings "eth%d".
1171 * for wildcarding.
1172 */
cf04a4c7 1173int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1174{
238fa362 1175 unsigned char old_assign_type;
fcc5a03a 1176 char oldname[IFNAMSIZ];
1da177e4 1177 int err = 0;
fcc5a03a 1178 int ret;
881d966b 1179 struct net *net;
1da177e4
LT
1180
1181 ASSERT_RTNL();
c346dca1 1182 BUG_ON(!dev_net(dev));
1da177e4 1183
c346dca1 1184 net = dev_net(dev);
1da177e4
LT
1185 if (dev->flags & IFF_UP)
1186 return -EBUSY;
1187
30e6c9fa 1188 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1189
1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1191 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1192 return 0;
c91f6df2 1193 }
c8d90dca 1194
fcc5a03a
HX
1195 memcpy(oldname, dev->name, IFNAMSIZ);
1196
828de4f6 1197 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1198 if (err < 0) {
30e6c9fa 1199 write_seqcount_end(&devnet_rename_seq);
d9031024 1200 return err;
c91f6df2 1201 }
1da177e4 1202
6fe82a39
VF
1203 if (oldname[0] && !strchr(oldname, '%'))
1204 netdev_info(dev, "renamed from %s\n", oldname);
1205
238fa362
TG
1206 old_assign_type = dev->name_assign_type;
1207 dev->name_assign_type = NET_NAME_RENAMED;
1208
fcc5a03a 1209rollback:
a1b3f594
EB
1210 ret = device_rename(&dev->dev, dev->name);
1211 if (ret) {
1212 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1213 dev->name_assign_type = old_assign_type;
30e6c9fa 1214 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1215 return ret;
dcc99773 1216 }
7f988eab 1217
30e6c9fa 1218 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1219
5bb025fa
VF
1220 netdev_adjacent_rename_links(dev, oldname);
1221
7f988eab 1222 write_lock_bh(&dev_base_lock);
372b2312 1223 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1224 write_unlock_bh(&dev_base_lock);
1225
1226 synchronize_rcu();
1227
1228 write_lock_bh(&dev_base_lock);
1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1230 write_unlock_bh(&dev_base_lock);
1231
056925ab 1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1233 ret = notifier_to_errno(ret);
1234
1235 if (ret) {
91e9c07b
ED
1236 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237 if (err >= 0) {
fcc5a03a 1238 err = ret;
30e6c9fa 1239 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1240 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1241 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1242 dev->name_assign_type = old_assign_type;
1243 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1244 goto rollback;
91e9c07b 1245 } else {
7b6cd1ce 1246 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1247 dev->name, ret);
fcc5a03a
HX
1248 }
1249 }
1da177e4
LT
1250
1251 return err;
1252}
1253
0b815a1a
SH
1254/**
1255 * dev_set_alias - change ifalias of a device
1256 * @dev: device
1257 * @alias: name up to IFALIASZ
f0db275a 1258 * @len: limit of bytes to copy from info
0b815a1a
SH
1259 *
1260 * Set ifalias for a device,
1261 */
1262int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263{
6c557001 1264 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1265
1266 if (len >= IFALIASZ)
1267 return -EINVAL;
1268
6c557001
FW
1269 if (len) {
1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 if (!new_alias)
1272 return -ENOMEM;
1273
1274 memcpy(new_alias->ifalias, alias, len);
1275 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1276 }
1277
6c557001
FW
1278 mutex_lock(&ifalias_mutex);
1279 rcu_swap_protected(dev->ifalias, new_alias,
1280 mutex_is_locked(&ifalias_mutex));
1281 mutex_unlock(&ifalias_mutex);
1282
1283 if (new_alias)
1284 kfree_rcu(new_alias, rcuhead);
0b815a1a 1285
0b815a1a
SH
1286 return len;
1287}
1288
6c557001
FW
1289/**
1290 * dev_get_alias - get ifalias of a device
1291 * @dev: device
20e88320 1292 * @name: buffer to store name of ifalias
6c557001
FW
1293 * @len: size of buffer
1294 *
1295 * get ifalias for a device. Caller must make sure dev cannot go
1296 * away, e.g. rcu read lock or own a reference count to device.
1297 */
1298int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299{
1300 const struct dev_ifalias *alias;
1301 int ret = 0;
1302
1303 rcu_read_lock();
1304 alias = rcu_dereference(dev->ifalias);
1305 if (alias)
1306 ret = snprintf(name, len, "%s", alias->ifalias);
1307 rcu_read_unlock();
1308
1309 return ret;
1310}
0b815a1a 1311
d8a33ac4 1312/**
3041a069 1313 * netdev_features_change - device changes features
d8a33ac4
SH
1314 * @dev: device to cause notification
1315 *
1316 * Called to indicate a device has changed features.
1317 */
1318void netdev_features_change(struct net_device *dev)
1319{
056925ab 1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1321}
1322EXPORT_SYMBOL(netdev_features_change);
1323
1da177e4
LT
1324/**
1325 * netdev_state_change - device changes state
1326 * @dev: device to cause notification
1327 *
1328 * Called to indicate a device has changed state. This function calls
1329 * the notifier chains for netdev_chain and sends a NEWLINK message
1330 * to the routing socket.
1331 */
1332void netdev_state_change(struct net_device *dev)
1333{
1334 if (dev->flags & IFF_UP) {
51d0c047
DA
1335 struct netdev_notifier_change_info change_info = {
1336 .info.dev = dev,
1337 };
54951194 1338
51d0c047 1339 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1340 &change_info.info);
7f294054 1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1342 }
1343}
d1b19dff 1344EXPORT_SYMBOL(netdev_state_change);
1da177e4 1345
ee89bab1 1346/**
722c9a0c 1347 * netdev_notify_peers - notify network peers about existence of @dev
1348 * @dev: network device
ee89bab1
AW
1349 *
1350 * Generate traffic such that interested network peers are aware of
1351 * @dev, such as by generating a gratuitous ARP. This may be used when
1352 * a device wants to inform the rest of the network about some sort of
1353 * reconfiguration such as a failover event or virtual machine
1354 * migration.
1355 */
1356void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1357{
ee89bab1
AW
1358 rtnl_lock();
1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1361 rtnl_unlock();
c1da4ac7 1362}
ee89bab1 1363EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1364
bd380811 1365static int __dev_open(struct net_device *dev)
1da177e4 1366{
d314774c 1367 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1368 int ret;
1da177e4 1369
e46b66bc
BH
1370 ASSERT_RTNL();
1371
1da177e4
LT
1372 if (!netif_device_present(dev))
1373 return -ENODEV;
1374
ca99ca14
NH
1375 /* Block netpoll from trying to do any rx path servicing.
1376 * If we don't do this there is a chance ndo_poll_controller
1377 * or ndo_poll may be running while we open the device
1378 */
66b5552f 1379 netpoll_poll_disable(dev);
ca99ca14 1380
3b8bcfd5
JB
1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 ret = notifier_to_errno(ret);
1383 if (ret)
1384 return ret;
1385
1da177e4 1386 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1387
d314774c
SH
1388 if (ops->ndo_validate_addr)
1389 ret = ops->ndo_validate_addr(dev);
bada339b 1390
d314774c
SH
1391 if (!ret && ops->ndo_open)
1392 ret = ops->ndo_open(dev);
1da177e4 1393
66b5552f 1394 netpoll_poll_enable(dev);
ca99ca14 1395
bada339b
JG
1396 if (ret)
1397 clear_bit(__LINK_STATE_START, &dev->state);
1398 else {
1da177e4 1399 dev->flags |= IFF_UP;
4417da66 1400 dev_set_rx_mode(dev);
1da177e4 1401 dev_activate(dev);
7bf23575 1402 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1403 }
bada339b 1404
1da177e4
LT
1405 return ret;
1406}
1407
1408/**
bd380811
PM
1409 * dev_open - prepare an interface for use.
1410 * @dev: device to open
1da177e4 1411 *
bd380811
PM
1412 * Takes a device from down to up state. The device's private open
1413 * function is invoked and then the multicast lists are loaded. Finally
1414 * the device is moved into the up state and a %NETDEV_UP message is
1415 * sent to the netdev notifier chain.
1416 *
1417 * Calling this function on an active interface is a nop. On a failure
1418 * a negative errno code is returned.
1da177e4 1419 */
bd380811
PM
1420int dev_open(struct net_device *dev)
1421{
1422 int ret;
1423
bd380811
PM
1424 if (dev->flags & IFF_UP)
1425 return 0;
1426
bd380811
PM
1427 ret = __dev_open(dev);
1428 if (ret < 0)
1429 return ret;
1430
7f294054 1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1432 call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434 return ret;
1435}
1436EXPORT_SYMBOL(dev_open);
1437
7051b88a 1438static void __dev_close_many(struct list_head *head)
1da177e4 1439{
44345724 1440 struct net_device *dev;
e46b66bc 1441
bd380811 1442 ASSERT_RTNL();
9d5010db
DM
1443 might_sleep();
1444
5cde2829 1445 list_for_each_entry(dev, head, close_list) {
3f4df206 1446 /* Temporarily disable netpoll until the interface is down */
66b5552f 1447 netpoll_poll_disable(dev);
3f4df206 1448
44345724 1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1450
44345724 1451 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1452
44345724
OP
1453 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454 * can be even on different cpu. So just clear netif_running().
1455 *
1456 * dev->stop() will invoke napi_disable() on all of it's
1457 * napi_struct instances on this device.
1458 */
4e857c58 1459 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1460 }
1da177e4 1461
44345724 1462 dev_deactivate_many(head);
d8b2a4d2 1463
5cde2829 1464 list_for_each_entry(dev, head, close_list) {
44345724 1465 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1466
44345724
OP
1467 /*
1468 * Call the device specific close. This cannot fail.
1469 * Only if device is UP
1470 *
1471 * We allow it to be called even after a DETACH hot-plug
1472 * event.
1473 */
1474 if (ops->ndo_stop)
1475 ops->ndo_stop(dev);
1476
44345724 1477 dev->flags &= ~IFF_UP;
66b5552f 1478 netpoll_poll_enable(dev);
44345724 1479 }
44345724
OP
1480}
1481
7051b88a 1482static void __dev_close(struct net_device *dev)
44345724
OP
1483{
1484 LIST_HEAD(single);
1485
5cde2829 1486 list_add(&dev->close_list, &single);
7051b88a 1487 __dev_close_many(&single);
f87e6f47 1488 list_del(&single);
44345724
OP
1489}
1490
7051b88a 1491void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1492{
1493 struct net_device *dev, *tmp;
1da177e4 1494
5cde2829
EB
1495 /* Remove the devices that don't need to be closed */
1496 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1497 if (!(dev->flags & IFF_UP))
5cde2829 1498 list_del_init(&dev->close_list);
44345724
OP
1499
1500 __dev_close_many(head);
1da177e4 1501
5cde2829 1502 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1504 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1505 if (unlink)
1506 list_del_init(&dev->close_list);
44345724 1507 }
bd380811 1508}
99c4a26a 1509EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1510
1511/**
1512 * dev_close - shutdown an interface.
1513 * @dev: device to shutdown
1514 *
1515 * This function moves an active device into down state. A
1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518 * chain.
1519 */
7051b88a 1520void dev_close(struct net_device *dev)
bd380811 1521{
e14a5993
ED
1522 if (dev->flags & IFF_UP) {
1523 LIST_HEAD(single);
1da177e4 1524
5cde2829 1525 list_add(&dev->close_list, &single);
99c4a26a 1526 dev_close_many(&single, true);
e14a5993
ED
1527 list_del(&single);
1528 }
1da177e4 1529}
d1b19dff 1530EXPORT_SYMBOL(dev_close);
1da177e4
LT
1531
1532
0187bdfb
BH
1533/**
1534 * dev_disable_lro - disable Large Receive Offload on a device
1535 * @dev: device
1536 *
1537 * Disable Large Receive Offload (LRO) on a net device. Must be
1538 * called under RTNL. This is needed if received packets may be
1539 * forwarded to another interface.
1540 */
1541void dev_disable_lro(struct net_device *dev)
1542{
fbe168ba
MK
1543 struct net_device *lower_dev;
1544 struct list_head *iter;
529d0489 1545
bc5787c6
MM
1546 dev->wanted_features &= ~NETIF_F_LRO;
1547 netdev_update_features(dev);
27660515 1548
22d5969f
MM
1549 if (unlikely(dev->features & NETIF_F_LRO))
1550 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1551
1552 netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 dev_disable_lro(lower_dev);
0187bdfb
BH
1554}
1555EXPORT_SYMBOL(dev_disable_lro);
1556
351638e7
JP
1557static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1558 struct net_device *dev)
1559{
51d0c047
DA
1560 struct netdev_notifier_info info = {
1561 .dev = dev,
1562 };
351638e7 1563
351638e7
JP
1564 return nb->notifier_call(nb, val, &info);
1565}
0187bdfb 1566
881d966b
EB
1567static int dev_boot_phase = 1;
1568
1da177e4 1569/**
722c9a0c 1570 * register_netdevice_notifier - register a network notifier block
1571 * @nb: notifier
1da177e4 1572 *
722c9a0c 1573 * Register a notifier to be called when network device events occur.
1574 * The notifier passed is linked into the kernel structures and must
1575 * not be reused until it has been unregistered. A negative errno code
1576 * is returned on a failure.
1da177e4 1577 *
722c9a0c 1578 * When registered all registration and up events are replayed
1579 * to the new notifier to allow device to have a race free
1580 * view of the network device list.
1da177e4
LT
1581 */
1582
1583int register_netdevice_notifier(struct notifier_block *nb)
1584{
1585 struct net_device *dev;
fcc5a03a 1586 struct net_device *last;
881d966b 1587 struct net *net;
1da177e4
LT
1588 int err;
1589
1590 rtnl_lock();
f07d5b94 1591 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1592 if (err)
1593 goto unlock;
881d966b
EB
1594 if (dev_boot_phase)
1595 goto unlock;
1596 for_each_net(net) {
1597 for_each_netdev(net, dev) {
351638e7 1598 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1599 err = notifier_to_errno(err);
1600 if (err)
1601 goto rollback;
1602
1603 if (!(dev->flags & IFF_UP))
1604 continue;
1da177e4 1605
351638e7 1606 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1607 }
1da177e4 1608 }
fcc5a03a
HX
1609
1610unlock:
1da177e4
LT
1611 rtnl_unlock();
1612 return err;
fcc5a03a
HX
1613
1614rollback:
1615 last = dev;
881d966b
EB
1616 for_each_net(net) {
1617 for_each_netdev(net, dev) {
1618 if (dev == last)
8f891489 1619 goto outroll;
fcc5a03a 1620
881d966b 1621 if (dev->flags & IFF_UP) {
351638e7
JP
1622 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1623 dev);
1624 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1625 }
351638e7 1626 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1627 }
fcc5a03a 1628 }
c67625a1 1629
8f891489 1630outroll:
c67625a1 1631 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1632 goto unlock;
1da177e4 1633}
d1b19dff 1634EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1635
1636/**
722c9a0c 1637 * unregister_netdevice_notifier - unregister a network notifier block
1638 * @nb: notifier
1da177e4 1639 *
722c9a0c 1640 * Unregister a notifier previously registered by
1641 * register_netdevice_notifier(). The notifier is unlinked into the
1642 * kernel structures and may then be reused. A negative errno code
1643 * is returned on a failure.
7d3d43da 1644 *
722c9a0c 1645 * After unregistering unregister and down device events are synthesized
1646 * for all devices on the device list to the removed notifier to remove
1647 * the need for special case cleanup code.
1da177e4
LT
1648 */
1649
1650int unregister_netdevice_notifier(struct notifier_block *nb)
1651{
7d3d43da
EB
1652 struct net_device *dev;
1653 struct net *net;
9f514950
HX
1654 int err;
1655
1656 rtnl_lock();
f07d5b94 1657 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1658 if (err)
1659 goto unlock;
1660
1661 for_each_net(net) {
1662 for_each_netdev(net, dev) {
1663 if (dev->flags & IFF_UP) {
351638e7
JP
1664 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665 dev);
1666 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1667 }
351638e7 1668 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1669 }
1670 }
1671unlock:
9f514950
HX
1672 rtnl_unlock();
1673 return err;
1da177e4 1674}
d1b19dff 1675EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1676
351638e7
JP
1677/**
1678 * call_netdevice_notifiers_info - call all network notifier blocks
1679 * @val: value passed unmodified to notifier function
1680 * @dev: net_device pointer passed unmodified to notifier function
1681 * @info: notifier information data
1682 *
1683 * Call all network notifier blocks. Parameters and return value
1684 * are as for raw_notifier_call_chain().
1685 */
1686
1d143d9f 1687static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1688 struct netdev_notifier_info *info)
351638e7
JP
1689{
1690 ASSERT_RTNL();
351638e7
JP
1691 return raw_notifier_call_chain(&netdev_chain, val, info);
1692}
351638e7 1693
1da177e4
LT
1694/**
1695 * call_netdevice_notifiers - call all network notifier blocks
1696 * @val: value passed unmodified to notifier function
c4ea43c5 1697 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1698 *
1699 * Call all network notifier blocks. Parameters and return value
f07d5b94 1700 * are as for raw_notifier_call_chain().
1da177e4
LT
1701 */
1702
ad7379d4 1703int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1704{
51d0c047
DA
1705 struct netdev_notifier_info info = {
1706 .dev = dev,
1707 };
351638e7 1708
51d0c047 1709 return call_netdevice_notifiers_info(val, &info);
1da177e4 1710}
edf947f1 1711EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1712
63419c91
SD
1713/**
1714 * call_netdevice_notifiers_mtu - call all network notifier blocks
1715 * @val: value passed unmodified to notifier function
1716 * @dev: net_device pointer passed unmodified to notifier function
1717 * @arg: additional u32 argument passed to the notifier function
1718 *
1719 * Call all network notifier blocks. Parameters and return value
1720 * are as for raw_notifier_call_chain().
1721 */
1722static int call_netdevice_notifiers_mtu(unsigned long val,
1723 struct net_device *dev, u32 arg)
1724{
1725 struct netdev_notifier_info_ext info = {
1726 .info.dev = dev,
1727 .ext.mtu = arg,
1728 };
1729
1730 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1731
1732 return call_netdevice_notifiers_info(val, &info.info);
1733}
1734
1cf51900 1735#ifdef CONFIG_NET_INGRESS
4577139b
DB
1736static struct static_key ingress_needed __read_mostly;
1737
1738void net_inc_ingress_queue(void)
1739{
1740 static_key_slow_inc(&ingress_needed);
1741}
1742EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1743
1744void net_dec_ingress_queue(void)
1745{
1746 static_key_slow_dec(&ingress_needed);
1747}
1748EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1749#endif
1750
1f211a1b
DB
1751#ifdef CONFIG_NET_EGRESS
1752static struct static_key egress_needed __read_mostly;
1753
1754void net_inc_egress_queue(void)
1755{
1756 static_key_slow_inc(&egress_needed);
1757}
1758EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1759
1760void net_dec_egress_queue(void)
1761{
1762 static_key_slow_dec(&egress_needed);
1763}
1764EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1765#endif
1766
c5905afb 1767static struct static_key netstamp_needed __read_mostly;
b90e5794 1768#ifdef HAVE_JUMP_LABEL
b90e5794 1769static atomic_t netstamp_needed_deferred;
13baa00a 1770static atomic_t netstamp_wanted;
5fa8bbda 1771static void netstamp_clear(struct work_struct *work)
1da177e4 1772{
b90e5794 1773 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1774 int wanted;
b90e5794 1775
13baa00a
ED
1776 wanted = atomic_add_return(deferred, &netstamp_wanted);
1777 if (wanted > 0)
1778 static_key_enable(&netstamp_needed);
1779 else
1780 static_key_disable(&netstamp_needed);
5fa8bbda
ED
1781}
1782static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1783#endif
5fa8bbda
ED
1784
1785void net_enable_timestamp(void)
1786{
13baa00a
ED
1787#ifdef HAVE_JUMP_LABEL
1788 int wanted;
1789
1790 while (1) {
1791 wanted = atomic_read(&netstamp_wanted);
1792 if (wanted <= 0)
1793 break;
1794 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1795 return;
1796 }
1797 atomic_inc(&netstamp_needed_deferred);
1798 schedule_work(&netstamp_work);
1799#else
c5905afb 1800 static_key_slow_inc(&netstamp_needed);
13baa00a 1801#endif
1da177e4 1802}
d1b19dff 1803EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1804
1805void net_disable_timestamp(void)
1806{
b90e5794 1807#ifdef HAVE_JUMP_LABEL
13baa00a
ED
1808 int wanted;
1809
1810 while (1) {
1811 wanted = atomic_read(&netstamp_wanted);
1812 if (wanted <= 1)
1813 break;
1814 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1815 return;
1816 }
1817 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1818 schedule_work(&netstamp_work);
1819#else
c5905afb 1820 static_key_slow_dec(&netstamp_needed);
5fa8bbda 1821#endif
1da177e4 1822}
d1b19dff 1823EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1824
3b098e2d 1825static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1826{
2456e855 1827 skb->tstamp = 0;
c5905afb 1828 if (static_key_false(&netstamp_needed))
a61bbcf2 1829 __net_timestamp(skb);
1da177e4
LT
1830}
1831
588f0330 1832#define net_timestamp_check(COND, SKB) \
c5905afb 1833 if (static_key_false(&netstamp_needed)) { \
2456e855 1834 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1835 __net_timestamp(SKB); \
1836 } \
3b098e2d 1837
f4b05d27 1838bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1839{
1840 unsigned int len;
1841
1842 if (!(dev->flags & IFF_UP))
1843 return false;
1844
1845 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1846 if (skb->len <= len)
1847 return true;
1848
1849 /* if TSO is enabled, we don't care about the length as the packet
1850 * could be forwarded without being segmented before
1851 */
1852 if (skb_is_gso(skb))
1853 return true;
1854
1855 return false;
1856}
1ee481fb 1857EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1858
a0265d28
HX
1859int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1860{
4e3264d2 1861 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1862
4e3264d2
MKL
1863 if (likely(!ret)) {
1864 skb->protocol = eth_type_trans(skb, dev);
1865 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1866 }
a0265d28 1867
4e3264d2 1868 return ret;
a0265d28
HX
1869}
1870EXPORT_SYMBOL_GPL(__dev_forward_skb);
1871
44540960
AB
1872/**
1873 * dev_forward_skb - loopback an skb to another netif
1874 *
1875 * @dev: destination network device
1876 * @skb: buffer to forward
1877 *
1878 * return values:
1879 * NET_RX_SUCCESS (no congestion)
6ec82562 1880 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1881 *
1882 * dev_forward_skb can be used for injecting an skb from the
1883 * start_xmit function of one device into the receive queue
1884 * of another device.
1885 *
1886 * The receiving device may be in another namespace, so
1887 * we have to clear all information in the skb that could
1888 * impact namespace isolation.
1889 */
1890int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1891{
a0265d28 1892 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1893}
1894EXPORT_SYMBOL_GPL(dev_forward_skb);
1895
71d9dec2
CG
1896static inline int deliver_skb(struct sk_buff *skb,
1897 struct packet_type *pt_prev,
1898 struct net_device *orig_dev)
1899{
1f8b977a 1900 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 1901 return -ENOMEM;
63354797 1902 refcount_inc(&skb->users);
71d9dec2
CG
1903 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1904}
1905
7866a621
SN
1906static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1907 struct packet_type **pt,
fbcb2170
JP
1908 struct net_device *orig_dev,
1909 __be16 type,
7866a621
SN
1910 struct list_head *ptype_list)
1911{
1912 struct packet_type *ptype, *pt_prev = *pt;
1913
1914 list_for_each_entry_rcu(ptype, ptype_list, list) {
1915 if (ptype->type != type)
1916 continue;
1917 if (pt_prev)
fbcb2170 1918 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1919 pt_prev = ptype;
1920 }
1921 *pt = pt_prev;
1922}
1923
c0de08d0
EL
1924static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1925{
a3d744e9 1926 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1927 return false;
1928
1929 if (ptype->id_match)
1930 return ptype->id_match(ptype, skb->sk);
1931 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1932 return true;
1933
1934 return false;
1935}
1936
1da177e4
LT
1937/*
1938 * Support routine. Sends outgoing frames to any network
1939 * taps currently in use.
1940 */
1941
74b20582 1942void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1943{
1944 struct packet_type *ptype;
71d9dec2
CG
1945 struct sk_buff *skb2 = NULL;
1946 struct packet_type *pt_prev = NULL;
7866a621 1947 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1948
1da177e4 1949 rcu_read_lock();
7866a621
SN
1950again:
1951 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1952 /* Never send packets back to the socket
1953 * they originated from - MvS (miquels@drinkel.ow.org)
1954 */
7866a621
SN
1955 if (skb_loop_sk(ptype, skb))
1956 continue;
71d9dec2 1957
7866a621
SN
1958 if (pt_prev) {
1959 deliver_skb(skb2, pt_prev, skb->dev);
1960 pt_prev = ptype;
1961 continue;
1962 }
1da177e4 1963
7866a621
SN
1964 /* need to clone skb, done only once */
1965 skb2 = skb_clone(skb, GFP_ATOMIC);
1966 if (!skb2)
1967 goto out_unlock;
70978182 1968
7866a621 1969 net_timestamp_set(skb2);
1da177e4 1970
7866a621
SN
1971 /* skb->nh should be correctly
1972 * set by sender, so that the second statement is
1973 * just protection against buggy protocols.
1974 */
1975 skb_reset_mac_header(skb2);
1976
1977 if (skb_network_header(skb2) < skb2->data ||
1978 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1979 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1980 ntohs(skb2->protocol),
1981 dev->name);
1982 skb_reset_network_header(skb2);
1da177e4 1983 }
7866a621
SN
1984
1985 skb2->transport_header = skb2->network_header;
1986 skb2->pkt_type = PACKET_OUTGOING;
1987 pt_prev = ptype;
1988 }
1989
1990 if (ptype_list == &ptype_all) {
1991 ptype_list = &dev->ptype_all;
1992 goto again;
1da177e4 1993 }
7866a621 1994out_unlock:
581fe0ea
WB
1995 if (pt_prev) {
1996 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1997 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1998 else
1999 kfree_skb(skb2);
2000 }
1da177e4
LT
2001 rcu_read_unlock();
2002}
74b20582 2003EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2004
2c53040f
BH
2005/**
2006 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2007 * @dev: Network device
2008 * @txq: number of queues available
2009 *
2010 * If real_num_tx_queues is changed the tc mappings may no longer be
2011 * valid. To resolve this verify the tc mapping remains valid and if
2012 * not NULL the mapping. With no priorities mapping to this
2013 * offset/count pair it will no longer be used. In the worst case TC0
2014 * is invalid nothing can be done so disable priority mappings. If is
2015 * expected that drivers will fix this mapping if they can before
2016 * calling netif_set_real_num_tx_queues.
2017 */
bb134d22 2018static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2019{
2020 int i;
2021 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2022
2023 /* If TC0 is invalidated disable TC mapping */
2024 if (tc->offset + tc->count > txq) {
7b6cd1ce 2025 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2026 dev->num_tc = 0;
2027 return;
2028 }
2029
2030 /* Invalidated prio to tc mappings set to TC0 */
2031 for (i = 1; i < TC_BITMASK + 1; i++) {
2032 int q = netdev_get_prio_tc_map(dev, i);
2033
2034 tc = &dev->tc_to_txq[q];
2035 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2036 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2037 i, q);
4f57c087
JF
2038 netdev_set_prio_tc_map(dev, i, 0);
2039 }
2040 }
2041}
2042
8d059b0f
AD
2043int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2044{
2045 if (dev->num_tc) {
2046 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2047 int i;
2048
2049 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2050 if ((txq - tc->offset) < tc->count)
2051 return i;
2052 }
2053
2054 return -1;
2055 }
2056
2057 return 0;
2058}
8a5f2166 2059EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2060
537c00de
AD
2061#ifdef CONFIG_XPS
2062static DEFINE_MUTEX(xps_map_mutex);
2063#define xmap_dereference(P) \
2064 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2065
6234f874
AD
2066static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2067 int tci, u16 index)
537c00de 2068{
10cdc3f3
AD
2069 struct xps_map *map = NULL;
2070 int pos;
537c00de 2071
10cdc3f3 2072 if (dev_maps)
6234f874
AD
2073 map = xmap_dereference(dev_maps->cpu_map[tci]);
2074 if (!map)
2075 return false;
537c00de 2076
6234f874
AD
2077 for (pos = map->len; pos--;) {
2078 if (map->queues[pos] != index)
2079 continue;
2080
2081 if (map->len > 1) {
2082 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2083 break;
537c00de 2084 }
6234f874
AD
2085
2086 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2087 kfree_rcu(map, rcu);
2088 return false;
537c00de
AD
2089 }
2090
6234f874 2091 return true;
10cdc3f3
AD
2092}
2093
6234f874
AD
2094static bool remove_xps_queue_cpu(struct net_device *dev,
2095 struct xps_dev_maps *dev_maps,
2096 int cpu, u16 offset, u16 count)
2097{
184c449f
AD
2098 int num_tc = dev->num_tc ? : 1;
2099 bool active = false;
2100 int tci;
6234f874 2101
184c449f
AD
2102 for (tci = cpu * num_tc; num_tc--; tci++) {
2103 int i, j;
2104
2105 for (i = count, j = offset; i--; j++) {
c458e375 2106 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2107 break;
2108 }
2109
2110 active |= i < 0;
6234f874
AD
2111 }
2112
184c449f 2113 return active;
6234f874
AD
2114}
2115
2116static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2117 u16 count)
10cdc3f3
AD
2118{
2119 struct xps_dev_maps *dev_maps;
024e9679 2120 int cpu, i;
10cdc3f3
AD
2121 bool active = false;
2122
2123 mutex_lock(&xps_map_mutex);
2124 dev_maps = xmap_dereference(dev->xps_maps);
2125
2126 if (!dev_maps)
2127 goto out_no_maps;
2128
6234f874
AD
2129 for_each_possible_cpu(cpu)
2130 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2131 offset, count);
10cdc3f3
AD
2132
2133 if (!active) {
537c00de
AD
2134 RCU_INIT_POINTER(dev->xps_maps, NULL);
2135 kfree_rcu(dev_maps, rcu);
2136 }
2137
6234f874 2138 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2139 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2140 NUMA_NO_NODE);
2141
537c00de
AD
2142out_no_maps:
2143 mutex_unlock(&xps_map_mutex);
2144}
2145
6234f874
AD
2146static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2147{
2148 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2149}
2150
01c5f864
AD
2151static struct xps_map *expand_xps_map(struct xps_map *map,
2152 int cpu, u16 index)
2153{
2154 struct xps_map *new_map;
2155 int alloc_len = XPS_MIN_MAP_ALLOC;
2156 int i, pos;
2157
2158 for (pos = 0; map && pos < map->len; pos++) {
2159 if (map->queues[pos] != index)
2160 continue;
2161 return map;
2162 }
2163
2164 /* Need to add queue to this CPU's existing map */
2165 if (map) {
2166 if (pos < map->alloc_len)
2167 return map;
2168
2169 alloc_len = map->alloc_len * 2;
2170 }
2171
2172 /* Need to allocate new map to store queue on this CPU's map */
2173 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2174 cpu_to_node(cpu));
2175 if (!new_map)
2176 return NULL;
2177
2178 for (i = 0; i < pos; i++)
2179 new_map->queues[i] = map->queues[i];
2180 new_map->alloc_len = alloc_len;
2181 new_map->len = pos;
2182
2183 return new_map;
2184}
2185
3573540c
MT
2186int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2187 u16 index)
537c00de 2188{
01c5f864 2189 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2190 int i, cpu, tci, numa_node_id = -2;
2191 int maps_sz, num_tc = 1, tc = 0;
537c00de 2192 struct xps_map *map, *new_map;
01c5f864 2193 bool active = false;
537c00de 2194
184c449f
AD
2195 if (dev->num_tc) {
2196 num_tc = dev->num_tc;
2197 tc = netdev_txq_to_tc(dev, index);
2198 if (tc < 0)
2199 return -EINVAL;
2200 }
2201
2202 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2203 if (maps_sz < L1_CACHE_BYTES)
2204 maps_sz = L1_CACHE_BYTES;
2205
537c00de
AD
2206 mutex_lock(&xps_map_mutex);
2207
2208 dev_maps = xmap_dereference(dev->xps_maps);
2209
01c5f864 2210 /* allocate memory for queue storage */
184c449f 2211 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2212 if (!new_dev_maps)
2213 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2214 if (!new_dev_maps) {
2215 mutex_unlock(&xps_map_mutex);
01c5f864 2216 return -ENOMEM;
2bb60cb9 2217 }
01c5f864 2218
184c449f
AD
2219 tci = cpu * num_tc + tc;
2220 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2221 NULL;
2222
2223 map = expand_xps_map(map, cpu, index);
2224 if (!map)
2225 goto error;
2226
184c449f 2227 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2228 }
2229
2230 if (!new_dev_maps)
2231 goto out_no_new_maps;
2232
537c00de 2233 for_each_possible_cpu(cpu) {
184c449f
AD
2234 /* copy maps belonging to foreign traffic classes */
2235 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2236 /* fill in the new device map from the old device map */
2237 map = xmap_dereference(dev_maps->cpu_map[tci]);
2238 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2239 }
2240
2241 /* We need to explicitly update tci as prevous loop
2242 * could break out early if dev_maps is NULL.
2243 */
2244 tci = cpu * num_tc + tc;
2245
01c5f864
AD
2246 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2247 /* add queue to CPU maps */
2248 int pos = 0;
2249
184c449f 2250 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2251 while ((pos < map->len) && (map->queues[pos] != index))
2252 pos++;
2253
2254 if (pos == map->len)
2255 map->queues[map->len++] = index;
537c00de 2256#ifdef CONFIG_NUMA
537c00de
AD
2257 if (numa_node_id == -2)
2258 numa_node_id = cpu_to_node(cpu);
2259 else if (numa_node_id != cpu_to_node(cpu))
2260 numa_node_id = -1;
537c00de 2261#endif
01c5f864
AD
2262 } else if (dev_maps) {
2263 /* fill in the new device map from the old device map */
184c449f
AD
2264 map = xmap_dereference(dev_maps->cpu_map[tci]);
2265 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2266 }
01c5f864 2267
184c449f
AD
2268 /* copy maps belonging to foreign traffic classes */
2269 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2270 /* fill in the new device map from the old device map */
2271 map = xmap_dereference(dev_maps->cpu_map[tci]);
2272 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2273 }
537c00de
AD
2274 }
2275
01c5f864
AD
2276 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2277
537c00de 2278 /* Cleanup old maps */
184c449f
AD
2279 if (!dev_maps)
2280 goto out_no_old_maps;
2281
2282 for_each_possible_cpu(cpu) {
2283 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2284 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2285 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2286 if (map && map != new_map)
2287 kfree_rcu(map, rcu);
2288 }
537c00de
AD
2289 }
2290
184c449f
AD
2291 kfree_rcu(dev_maps, rcu);
2292
2293out_no_old_maps:
01c5f864
AD
2294 dev_maps = new_dev_maps;
2295 active = true;
537c00de 2296
01c5f864
AD
2297out_no_new_maps:
2298 /* update Tx queue numa node */
537c00de
AD
2299 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2300 (numa_node_id >= 0) ? numa_node_id :
2301 NUMA_NO_NODE);
2302
01c5f864
AD
2303 if (!dev_maps)
2304 goto out_no_maps;
2305
2306 /* removes queue from unused CPUs */
2307 for_each_possible_cpu(cpu) {
184c449f
AD
2308 for (i = tc, tci = cpu * num_tc; i--; tci++)
2309 active |= remove_xps_queue(dev_maps, tci, index);
2310 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2311 active |= remove_xps_queue(dev_maps, tci, index);
2312 for (i = num_tc - tc, tci++; --i; tci++)
2313 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2314 }
2315
2316 /* free map if not active */
2317 if (!active) {
2318 RCU_INIT_POINTER(dev->xps_maps, NULL);
2319 kfree_rcu(dev_maps, rcu);
2320 }
2321
2322out_no_maps:
537c00de
AD
2323 mutex_unlock(&xps_map_mutex);
2324
2325 return 0;
2326error:
01c5f864
AD
2327 /* remove any maps that we added */
2328 for_each_possible_cpu(cpu) {
184c449f
AD
2329 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2330 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2331 map = dev_maps ?
2332 xmap_dereference(dev_maps->cpu_map[tci]) :
2333 NULL;
2334 if (new_map && new_map != map)
2335 kfree(new_map);
2336 }
01c5f864
AD
2337 }
2338
537c00de
AD
2339 mutex_unlock(&xps_map_mutex);
2340
537c00de
AD
2341 kfree(new_dev_maps);
2342 return -ENOMEM;
2343}
2344EXPORT_SYMBOL(netif_set_xps_queue);
2345
2346#endif
9cf1f6a8
AD
2347void netdev_reset_tc(struct net_device *dev)
2348{
6234f874
AD
2349#ifdef CONFIG_XPS
2350 netif_reset_xps_queues_gt(dev, 0);
2351#endif
9cf1f6a8
AD
2352 dev->num_tc = 0;
2353 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2354 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2355}
2356EXPORT_SYMBOL(netdev_reset_tc);
2357
2358int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2359{
2360 if (tc >= dev->num_tc)
2361 return -EINVAL;
2362
6234f874
AD
2363#ifdef CONFIG_XPS
2364 netif_reset_xps_queues(dev, offset, count);
2365#endif
9cf1f6a8
AD
2366 dev->tc_to_txq[tc].count = count;
2367 dev->tc_to_txq[tc].offset = offset;
2368 return 0;
2369}
2370EXPORT_SYMBOL(netdev_set_tc_queue);
2371
2372int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2373{
2374 if (num_tc > TC_MAX_QUEUE)
2375 return -EINVAL;
2376
6234f874
AD
2377#ifdef CONFIG_XPS
2378 netif_reset_xps_queues_gt(dev, 0);
2379#endif
9cf1f6a8
AD
2380 dev->num_tc = num_tc;
2381 return 0;
2382}
2383EXPORT_SYMBOL(netdev_set_num_tc);
2384
f0796d5c
JF
2385/*
2386 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2387 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2388 */
e6484930 2389int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2390{
fd1e3bca 2391 bool disabling;
1d24eb48
TH
2392 int rc;
2393
fd1e3bca
JK
2394 disabling = txq < dev->real_num_tx_queues;
2395
e6484930
TH
2396 if (txq < 1 || txq > dev->num_tx_queues)
2397 return -EINVAL;
f0796d5c 2398
5c56580b
BH
2399 if (dev->reg_state == NETREG_REGISTERED ||
2400 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2401 ASSERT_RTNL();
2402
1d24eb48
TH
2403 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2404 txq);
bf264145
TH
2405 if (rc)
2406 return rc;
2407
4f57c087
JF
2408 if (dev->num_tc)
2409 netif_setup_tc(dev, txq);
2410
fd1e3bca
JK
2411 dev->real_num_tx_queues = txq;
2412
2413 if (disabling) {
2414 synchronize_net();
e6484930 2415 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2416#ifdef CONFIG_XPS
2417 netif_reset_xps_queues_gt(dev, txq);
2418#endif
2419 }
fd1e3bca
JK
2420 } else {
2421 dev->real_num_tx_queues = txq;
f0796d5c 2422 }
e6484930 2423
e6484930 2424 return 0;
f0796d5c
JF
2425}
2426EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2427
a953be53 2428#ifdef CONFIG_SYSFS
62fe0b40
BH
2429/**
2430 * netif_set_real_num_rx_queues - set actual number of RX queues used
2431 * @dev: Network device
2432 * @rxq: Actual number of RX queues
2433 *
2434 * This must be called either with the rtnl_lock held or before
2435 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2436 * negative error code. If called before registration, it always
2437 * succeeds.
62fe0b40
BH
2438 */
2439int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2440{
2441 int rc;
2442
bd25fa7b
TH
2443 if (rxq < 1 || rxq > dev->num_rx_queues)
2444 return -EINVAL;
2445
62fe0b40
BH
2446 if (dev->reg_state == NETREG_REGISTERED) {
2447 ASSERT_RTNL();
2448
62fe0b40
BH
2449 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2450 rxq);
2451 if (rc)
2452 return rc;
62fe0b40
BH
2453 }
2454
2455 dev->real_num_rx_queues = rxq;
2456 return 0;
2457}
2458EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2459#endif
2460
2c53040f
BH
2461/**
2462 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2463 *
2464 * This routine should set an upper limit on the number of RSS queues
2465 * used by default by multiqueue devices.
2466 */
a55b138b 2467int netif_get_num_default_rss_queues(void)
16917b87 2468{
40e4e713
HS
2469 return is_kdump_kernel() ?
2470 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2471}
2472EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2473
3bcb846c 2474static void __netif_reschedule(struct Qdisc *q)
56079431 2475{
def82a1d
JP
2476 struct softnet_data *sd;
2477 unsigned long flags;
56079431 2478
def82a1d 2479 local_irq_save(flags);
903ceff7 2480 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2481 q->next_sched = NULL;
2482 *sd->output_queue_tailp = q;
2483 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2484 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2485 local_irq_restore(flags);
2486}
2487
2488void __netif_schedule(struct Qdisc *q)
2489{
2490 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2491 __netif_reschedule(q);
56079431
DV
2492}
2493EXPORT_SYMBOL(__netif_schedule);
2494
e6247027
ED
2495struct dev_kfree_skb_cb {
2496 enum skb_free_reason reason;
2497};
2498
2499static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2500{
e6247027
ED
2501 return (struct dev_kfree_skb_cb *)skb->cb;
2502}
2503
46e5da40
JF
2504void netif_schedule_queue(struct netdev_queue *txq)
2505{
2506 rcu_read_lock();
2507 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2508 struct Qdisc *q = rcu_dereference(txq->qdisc);
2509
2510 __netif_schedule(q);
2511 }
2512 rcu_read_unlock();
2513}
2514EXPORT_SYMBOL(netif_schedule_queue);
2515
46e5da40
JF
2516void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2517{
2518 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2519 struct Qdisc *q;
2520
2521 rcu_read_lock();
2522 q = rcu_dereference(dev_queue->qdisc);
2523 __netif_schedule(q);
2524 rcu_read_unlock();
2525 }
2526}
2527EXPORT_SYMBOL(netif_tx_wake_queue);
2528
e6247027 2529void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2530{
e6247027 2531 unsigned long flags;
56079431 2532
9899886d
MJ
2533 if (unlikely(!skb))
2534 return;
2535
63354797 2536 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2537 smp_rmb();
63354797
RE
2538 refcount_set(&skb->users, 0);
2539 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2540 return;
bea3348e 2541 }
e6247027
ED
2542 get_kfree_skb_cb(skb)->reason = reason;
2543 local_irq_save(flags);
2544 skb->next = __this_cpu_read(softnet_data.completion_queue);
2545 __this_cpu_write(softnet_data.completion_queue, skb);
2546 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2547 local_irq_restore(flags);
56079431 2548}
e6247027 2549EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2550
e6247027 2551void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2552{
2553 if (in_irq() || irqs_disabled())
e6247027 2554 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2555 else
2556 dev_kfree_skb(skb);
2557}
e6247027 2558EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2559
2560
bea3348e
SH
2561/**
2562 * netif_device_detach - mark device as removed
2563 * @dev: network device
2564 *
2565 * Mark device as removed from system and therefore no longer available.
2566 */
56079431
DV
2567void netif_device_detach(struct net_device *dev)
2568{
2569 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2570 netif_running(dev)) {
d543103a 2571 netif_tx_stop_all_queues(dev);
56079431
DV
2572 }
2573}
2574EXPORT_SYMBOL(netif_device_detach);
2575
bea3348e
SH
2576/**
2577 * netif_device_attach - mark device as attached
2578 * @dev: network device
2579 *
2580 * Mark device as attached from system and restart if needed.
2581 */
56079431
DV
2582void netif_device_attach(struct net_device *dev)
2583{
2584 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2585 netif_running(dev)) {
d543103a 2586 netif_tx_wake_all_queues(dev);
4ec93edb 2587 __netdev_watchdog_up(dev);
56079431
DV
2588 }
2589}
2590EXPORT_SYMBOL(netif_device_attach);
2591
5605c762
JP
2592/*
2593 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2594 * to be used as a distribution range.
2595 */
2596u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2597 unsigned int num_tx_queues)
2598{
2599 u32 hash;
2600 u16 qoffset = 0;
2601 u16 qcount = num_tx_queues;
2602
2603 if (skb_rx_queue_recorded(skb)) {
2604 hash = skb_get_rx_queue(skb);
2605 while (unlikely(hash >= num_tx_queues))
2606 hash -= num_tx_queues;
2607 return hash;
2608 }
2609
2610 if (dev->num_tc) {
2611 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
f4563a75 2612
5605c762
JP
2613 qoffset = dev->tc_to_txq[tc].offset;
2614 qcount = dev->tc_to_txq[tc].count;
2615 }
2616
2617 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2618}
2619EXPORT_SYMBOL(__skb_tx_hash);
2620
36c92474
BH
2621static void skb_warn_bad_offload(const struct sk_buff *skb)
2622{
84d15ae5 2623 static const netdev_features_t null_features;
36c92474 2624 struct net_device *dev = skb->dev;
88ad4175 2625 const char *name = "";
36c92474 2626
c846ad9b
BG
2627 if (!net_ratelimit())
2628 return;
2629
88ad4175
BM
2630 if (dev) {
2631 if (dev->dev.parent)
2632 name = dev_driver_string(dev->dev.parent);
2633 else
2634 name = netdev_name(dev);
2635 }
36c92474
BH
2636 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2637 "gso_type=%d ip_summed=%d\n",
88ad4175 2638 name, dev ? &dev->features : &null_features,
65e9d2fa 2639 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2640 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2641 skb_shinfo(skb)->gso_type, skb->ip_summed);
2642}
2643
1da177e4
LT
2644/*
2645 * Invalidate hardware checksum when packet is to be mangled, and
2646 * complete checksum manually on outgoing path.
2647 */
84fa7933 2648int skb_checksum_help(struct sk_buff *skb)
1da177e4 2649{
d3bc23e7 2650 __wsum csum;
663ead3b 2651 int ret = 0, offset;
1da177e4 2652
84fa7933 2653 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2654 goto out_set_summed;
2655
2656 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2657 skb_warn_bad_offload(skb);
2658 return -EINVAL;
1da177e4
LT
2659 }
2660
cef401de
ED
2661 /* Before computing a checksum, we should make sure no frag could
2662 * be modified by an external entity : checksum could be wrong.
2663 */
2664 if (skb_has_shared_frag(skb)) {
2665 ret = __skb_linearize(skb);
2666 if (ret)
2667 goto out;
2668 }
2669
55508d60 2670 offset = skb_checksum_start_offset(skb);
a030847e
HX
2671 BUG_ON(offset >= skb_headlen(skb));
2672 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2673
2674 offset += skb->csum_offset;
2675 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2676
2677 if (skb_cloned(skb) &&
2678 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2679 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2680 if (ret)
2681 goto out;
2682 }
2683
4f2e4ad5 2684 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2685out_set_summed:
1da177e4 2686 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2687out:
1da177e4
LT
2688 return ret;
2689}
d1b19dff 2690EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2691
b72b5bf6
DC
2692int skb_crc32c_csum_help(struct sk_buff *skb)
2693{
2694 __le32 crc32c_csum;
2695 int ret = 0, offset, start;
2696
2697 if (skb->ip_summed != CHECKSUM_PARTIAL)
2698 goto out;
2699
2700 if (unlikely(skb_is_gso(skb)))
2701 goto out;
2702
2703 /* Before computing a checksum, we should make sure no frag could
2704 * be modified by an external entity : checksum could be wrong.
2705 */
2706 if (unlikely(skb_has_shared_frag(skb))) {
2707 ret = __skb_linearize(skb);
2708 if (ret)
2709 goto out;
2710 }
2711 start = skb_checksum_start_offset(skb);
2712 offset = start + offsetof(struct sctphdr, checksum);
2713 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2714 ret = -EINVAL;
2715 goto out;
2716 }
2717 if (skb_cloned(skb) &&
2718 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2719 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2720 if (ret)
2721 goto out;
2722 }
2723 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2724 skb->len - start, ~(__u32)0,
2725 crc32c_csum_stub));
2726 *(__le32 *)(skb->data + offset) = crc32c_csum;
2727 skb->ip_summed = CHECKSUM_NONE;
dba00306 2728 skb->csum_not_inet = 0;
b72b5bf6
DC
2729out:
2730 return ret;
2731}
2732
53d6471c 2733__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2734{
252e3346 2735 __be16 type = skb->protocol;
f6a78bfc 2736
19acc327
PS
2737 /* Tunnel gso handlers can set protocol to ethernet. */
2738 if (type == htons(ETH_P_TEB)) {
2739 struct ethhdr *eth;
2740
2741 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2742 return 0;
2743
9dd49155 2744 eth = (struct ethhdr *)skb->data;
19acc327
PS
2745 type = eth->h_proto;
2746 }
2747
d4bcef3f 2748 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2749}
2750
2751/**
2752 * skb_mac_gso_segment - mac layer segmentation handler.
2753 * @skb: buffer to segment
2754 * @features: features for the output path (see dev->features)
2755 */
2756struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2757 netdev_features_t features)
2758{
2759 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2760 struct packet_offload *ptype;
53d6471c
VY
2761 int vlan_depth = skb->mac_len;
2762 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2763
2764 if (unlikely(!type))
2765 return ERR_PTR(-EINVAL);
2766
53d6471c 2767 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2768
2769 rcu_read_lock();
22061d80 2770 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2771 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2772 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2773 break;
2774 }
2775 }
2776 rcu_read_unlock();
2777
98e399f8 2778 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2779
f6a78bfc
HX
2780 return segs;
2781}
05e8ef4a
PS
2782EXPORT_SYMBOL(skb_mac_gso_segment);
2783
2784
2785/* openvswitch calls this on rx path, so we need a different check.
2786 */
2787static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2788{
2789 if (tx_path)
0c19f846
WB
2790 return skb->ip_summed != CHECKSUM_PARTIAL &&
2791 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
2792
2793 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2794}
2795
2796/**
2797 * __skb_gso_segment - Perform segmentation on skb.
2798 * @skb: buffer to segment
2799 * @features: features for the output path (see dev->features)
2800 * @tx_path: whether it is called in TX path
2801 *
2802 * This function segments the given skb and returns a list of segments.
2803 *
2804 * It may return NULL if the skb requires no segmentation. This is
2805 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2806 *
2807 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2808 */
2809struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2810 netdev_features_t features, bool tx_path)
2811{
b2504a5d
ED
2812 struct sk_buff *segs;
2813
05e8ef4a
PS
2814 if (unlikely(skb_needs_check(skb, tx_path))) {
2815 int err;
2816
b2504a5d 2817 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2818 err = skb_cow_head(skb, 0);
2819 if (err < 0)
05e8ef4a
PS
2820 return ERR_PTR(err);
2821 }
2822
802ab55a
AD
2823 /* Only report GSO partial support if it will enable us to
2824 * support segmentation on this frame without needing additional
2825 * work.
2826 */
2827 if (features & NETIF_F_GSO_PARTIAL) {
2828 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2829 struct net_device *dev = skb->dev;
2830
2831 partial_features |= dev->features & dev->gso_partial_features;
2832 if (!skb_gso_ok(skb, features | partial_features))
2833 features &= ~NETIF_F_GSO_PARTIAL;
2834 }
2835
9207f9d4
KK
2836 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2837 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2838
68c33163 2839 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2840 SKB_GSO_CB(skb)->encap_level = 0;
2841
05e8ef4a
PS
2842 skb_reset_mac_header(skb);
2843 skb_reset_mac_len(skb);
2844
b2504a5d
ED
2845 segs = skb_mac_gso_segment(skb, features);
2846
d0444a29 2847 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
2848 skb_warn_bad_offload(skb);
2849
2850 return segs;
05e8ef4a 2851}
12b0004d 2852EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2853
fb286bb2
HX
2854/* Take action when hardware reception checksum errors are detected. */
2855#ifdef CONFIG_BUG
2856void netdev_rx_csum_fault(struct net_device *dev)
2857{
2858 if (net_ratelimit()) {
7b6cd1ce 2859 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2860 dump_stack();
2861 }
2862}
2863EXPORT_SYMBOL(netdev_rx_csum_fault);
2864#endif
2865
1da177e4
LT
2866/* Actually, we should eliminate this check as soon as we know, that:
2867 * 1. IOMMU is present and allows to map all the memory.
2868 * 2. No high memory really exists on this machine.
2869 */
2870
c1e756bf 2871static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2872{
3d3a8533 2873#ifdef CONFIG_HIGHMEM
1da177e4 2874 int i;
f4563a75 2875
5acbbd42 2876 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2877 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2878 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 2879
ea2ab693 2880 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2881 return 1;
ea2ab693 2882 }
5acbbd42 2883 }
1da177e4 2884
5acbbd42
FT
2885 if (PCI_DMA_BUS_IS_PHYS) {
2886 struct device *pdev = dev->dev.parent;
1da177e4 2887
9092c658
ED
2888 if (!pdev)
2889 return 0;
5acbbd42 2890 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2891 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2892 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
f4563a75 2893
5acbbd42
FT
2894 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2895 return 1;
2896 }
2897 }
3d3a8533 2898#endif
1da177e4
LT
2899 return 0;
2900}
1da177e4 2901
3b392ddb
SH
2902/* If MPLS offload request, verify we are testing hardware MPLS features
2903 * instead of standard features for the netdev.
2904 */
d0edc7bf 2905#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2906static netdev_features_t net_mpls_features(struct sk_buff *skb,
2907 netdev_features_t features,
2908 __be16 type)
2909{
25cd9ba0 2910 if (eth_p_mpls(type))
3b392ddb
SH
2911 features &= skb->dev->mpls_features;
2912
2913 return features;
2914}
2915#else
2916static netdev_features_t net_mpls_features(struct sk_buff *skb,
2917 netdev_features_t features,
2918 __be16 type)
2919{
2920 return features;
2921}
2922#endif
2923
c8f44aff 2924static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2925 netdev_features_t features)
f01a5236 2926{
53d6471c 2927 int tmp;
3b392ddb
SH
2928 __be16 type;
2929
2930 type = skb_network_protocol(skb, &tmp);
2931 features = net_mpls_features(skb, features, type);
53d6471c 2932
c0d680e5 2933 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2934 !can_checksum_protocol(features, type)) {
996e8021 2935 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2936 }
7be2c82c
ED
2937 if (illegal_highdma(skb->dev, skb))
2938 features &= ~NETIF_F_SG;
f01a5236
JG
2939
2940 return features;
2941}
2942
e38f3025
TM
2943netdev_features_t passthru_features_check(struct sk_buff *skb,
2944 struct net_device *dev,
2945 netdev_features_t features)
2946{
2947 return features;
2948}
2949EXPORT_SYMBOL(passthru_features_check);
2950
1d2884f4 2951static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
2952 struct net_device *dev,
2953 netdev_features_t features)
2954{
2955 return vlan_features_check(skb, features);
2956}
2957
cbc53e08
AD
2958static netdev_features_t gso_features_check(const struct sk_buff *skb,
2959 struct net_device *dev,
2960 netdev_features_t features)
2961{
2962 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2963
2964 if (gso_segs > dev->gso_max_segs)
2965 return features & ~NETIF_F_GSO_MASK;
2966
802ab55a
AD
2967 /* Support for GSO partial features requires software
2968 * intervention before we can actually process the packets
2969 * so we need to strip support for any partial features now
2970 * and we can pull them back in after we have partially
2971 * segmented the frame.
2972 */
2973 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2974 features &= ~dev->gso_partial_features;
2975
2976 /* Make sure to clear the IPv4 ID mangling feature if the
2977 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2978 */
2979 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2980 struct iphdr *iph = skb->encapsulation ?
2981 inner_ip_hdr(skb) : ip_hdr(skb);
2982
2983 if (!(iph->frag_off & htons(IP_DF)))
2984 features &= ~NETIF_F_TSO_MANGLEID;
2985 }
2986
2987 return features;
2988}
2989
c1e756bf 2990netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2991{
5f35227e 2992 struct net_device *dev = skb->dev;
fcbeb976 2993 netdev_features_t features = dev->features;
58e998c6 2994
cbc53e08
AD
2995 if (skb_is_gso(skb))
2996 features = gso_features_check(skb, dev, features);
30b678d8 2997
5f35227e
JG
2998 /* If encapsulation offload request, verify we are testing
2999 * hardware encapsulation features instead of standard
3000 * features for the netdev
3001 */
3002 if (skb->encapsulation)
3003 features &= dev->hw_enc_features;
3004
f5a7fb88
TM
3005 if (skb_vlan_tagged(skb))
3006 features = netdev_intersect_features(features,
3007 dev->vlan_features |
3008 NETIF_F_HW_VLAN_CTAG_TX |
3009 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3010
5f35227e
JG
3011 if (dev->netdev_ops->ndo_features_check)
3012 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3013 features);
8cb65d00
TM
3014 else
3015 features &= dflt_features_check(skb, dev, features);
5f35227e 3016
c1e756bf 3017 return harmonize_features(skb, features);
58e998c6 3018}
c1e756bf 3019EXPORT_SYMBOL(netif_skb_features);
58e998c6 3020
2ea25513 3021static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3022 struct netdev_queue *txq, bool more)
f6a78bfc 3023{
2ea25513
DM
3024 unsigned int len;
3025 int rc;
00829823 3026
7866a621 3027 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 3028 dev_queue_xmit_nit(skb, dev);
fc741216 3029
2ea25513
DM
3030 len = skb->len;
3031 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3032 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3033 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3034
2ea25513
DM
3035 return rc;
3036}
7b9c6090 3037
8dcda22a
DM
3038struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3039 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3040{
3041 struct sk_buff *skb = first;
3042 int rc = NETDEV_TX_OK;
7b9c6090 3043
7f2e870f
DM
3044 while (skb) {
3045 struct sk_buff *next = skb->next;
fc70fb64 3046
7f2e870f 3047 skb->next = NULL;
95f6b3dd 3048 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3049 if (unlikely(!dev_xmit_complete(rc))) {
3050 skb->next = next;
3051 goto out;
3052 }
6afff0ca 3053
7f2e870f 3054 skb = next;
bc8b3173 3055 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3056 rc = NETDEV_TX_BUSY;
3057 break;
9ccb8975 3058 }
7f2e870f 3059 }
9ccb8975 3060
7f2e870f
DM
3061out:
3062 *ret = rc;
3063 return skb;
3064}
b40863c6 3065
1ff0dc94
ED
3066static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3067 netdev_features_t features)
f6a78bfc 3068{
df8a39de 3069 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3070 !vlan_hw_offload_capable(features, skb->vlan_proto))
3071 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3072 return skb;
3073}
f6a78bfc 3074
43c26a1a
DC
3075int skb_csum_hwoffload_help(struct sk_buff *skb,
3076 const netdev_features_t features)
3077{
3078 if (unlikely(skb->csum_not_inet))
3079 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3080 skb_crc32c_csum_help(skb);
3081
3082 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3083}
3084EXPORT_SYMBOL(skb_csum_hwoffload_help);
3085
55a93b3e 3086static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
3087{
3088 netdev_features_t features;
f6a78bfc 3089
eae3f88e
DM
3090 features = netif_skb_features(skb);
3091 skb = validate_xmit_vlan(skb, features);
3092 if (unlikely(!skb))
3093 goto out_null;
7b9c6090 3094
8b86a61d 3095 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3096 struct sk_buff *segs;
3097
3098 segs = skb_gso_segment(skb, features);
cecda693 3099 if (IS_ERR(segs)) {
af6dabc9 3100 goto out_kfree_skb;
cecda693
JW
3101 } else if (segs) {
3102 consume_skb(skb);
3103 skb = segs;
f6a78bfc 3104 }
eae3f88e
DM
3105 } else {
3106 if (skb_needs_linearize(skb, features) &&
3107 __skb_linearize(skb))
3108 goto out_kfree_skb;
4ec93edb 3109
f6e27114
SK
3110 if (validate_xmit_xfrm(skb, features))
3111 goto out_kfree_skb;
3112
eae3f88e
DM
3113 /* If packet is not checksummed and device does not
3114 * support checksumming for this protocol, complete
3115 * checksumming here.
3116 */
3117 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3118 if (skb->encapsulation)
3119 skb_set_inner_transport_header(skb,
3120 skb_checksum_start_offset(skb));
3121 else
3122 skb_set_transport_header(skb,
3123 skb_checksum_start_offset(skb));
43c26a1a 3124 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3125 goto out_kfree_skb;
7b9c6090 3126 }
0c772159 3127 }
7b9c6090 3128
eae3f88e 3129 return skb;
fc70fb64 3130
f6a78bfc
HX
3131out_kfree_skb:
3132 kfree_skb(skb);
eae3f88e 3133out_null:
d21fd63e 3134 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3135 return NULL;
3136}
6afff0ca 3137
55a93b3e
ED
3138struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3139{
3140 struct sk_buff *next, *head = NULL, *tail;
3141
bec3cfdc 3142 for (; skb != NULL; skb = next) {
55a93b3e
ED
3143 next = skb->next;
3144 skb->next = NULL;
bec3cfdc
ED
3145
3146 /* in case skb wont be segmented, point to itself */
3147 skb->prev = skb;
3148
55a93b3e 3149 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3150 if (!skb)
3151 continue;
55a93b3e 3152
bec3cfdc
ED
3153 if (!head)
3154 head = skb;
3155 else
3156 tail->next = skb;
3157 /* If skb was segmented, skb->prev points to
3158 * the last segment. If not, it still contains skb.
3159 */
3160 tail = skb->prev;
55a93b3e
ED
3161 }
3162 return head;
f6a78bfc 3163}
104ba78c 3164EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3165
1def9238
ED
3166static void qdisc_pkt_len_init(struct sk_buff *skb)
3167{
3168 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3169
3170 qdisc_skb_cb(skb)->pkt_len = skb->len;
3171
3172 /* To get more precise estimation of bytes sent on wire,
3173 * we add to pkt_len the headers size of all segments
3174 */
3175 if (shinfo->gso_size) {
757b8b1d 3176 unsigned int hdr_len;
15e5a030 3177 u16 gso_segs = shinfo->gso_segs;
1def9238 3178
757b8b1d
ED
3179 /* mac layer + network layer */
3180 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3181
3182 /* + transport layer */
7c68d1a6
ED
3183 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3184 const struct tcphdr *th;
3185 struct tcphdr _tcphdr;
3186
3187 th = skb_header_pointer(skb, skb_transport_offset(skb),
3188 sizeof(_tcphdr), &_tcphdr);
3189 if (likely(th))
3190 hdr_len += __tcp_hdrlen(th);
3191 } else {
3192 struct udphdr _udphdr;
3193
3194 if (skb_header_pointer(skb, skb_transport_offset(skb),
3195 sizeof(_udphdr), &_udphdr))
3196 hdr_len += sizeof(struct udphdr);
3197 }
15e5a030
JW
3198
3199 if (shinfo->gso_type & SKB_GSO_DODGY)
3200 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3201 shinfo->gso_size);
3202
3203 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3204 }
3205}
3206
bbd8a0d3
KK
3207static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3208 struct net_device *dev,
3209 struct netdev_queue *txq)
3210{
3211 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3212 struct sk_buff *to_free = NULL;
a2da570d 3213 bool contended;
bbd8a0d3
KK
3214 int rc;
3215
a2da570d 3216 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3217 /*
3218 * Heuristic to force contended enqueues to serialize on a
3219 * separate lock before trying to get qdisc main lock.
f9eb8aea 3220 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3221 * often and dequeue packets faster.
79640a4c 3222 */
a2da570d 3223 contended = qdisc_is_running(q);
79640a4c
ED
3224 if (unlikely(contended))
3225 spin_lock(&q->busylock);
3226
bbd8a0d3
KK
3227 spin_lock(root_lock);
3228 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3229 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3230 rc = NET_XMIT_DROP;
3231 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3232 qdisc_run_begin(q)) {
bbd8a0d3
KK
3233 /*
3234 * This is a work-conserving queue; there are no old skbs
3235 * waiting to be sent out; and the qdisc is not running -
3236 * xmit the skb directly.
3237 */
bfe0d029 3238
bfe0d029
ED
3239 qdisc_bstats_update(q, skb);
3240
55a93b3e 3241 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3242 if (unlikely(contended)) {
3243 spin_unlock(&q->busylock);
3244 contended = false;
3245 }
bbd8a0d3 3246 __qdisc_run(q);
79640a4c 3247 } else
bc135b23 3248 qdisc_run_end(q);
bbd8a0d3
KK
3249
3250 rc = NET_XMIT_SUCCESS;
3251 } else {
520ac30f 3252 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3253 if (qdisc_run_begin(q)) {
3254 if (unlikely(contended)) {
3255 spin_unlock(&q->busylock);
3256 contended = false;
3257 }
3258 __qdisc_run(q);
3259 }
bbd8a0d3
KK
3260 }
3261 spin_unlock(root_lock);
520ac30f
ED
3262 if (unlikely(to_free))
3263 kfree_skb_list(to_free);
79640a4c
ED
3264 if (unlikely(contended))
3265 spin_unlock(&q->busylock);
bbd8a0d3
KK
3266 return rc;
3267}
3268
86f8515f 3269#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3270static void skb_update_prio(struct sk_buff *skb)
3271{
699cb7c6
ED
3272 const struct netprio_map *map;
3273 const struct sock *sk;
3274 unsigned int prioidx;
5bc1421e 3275
699cb7c6
ED
3276 if (skb->priority)
3277 return;
3278 map = rcu_dereference_bh(skb->dev->priomap);
3279 if (!map)
3280 return;
3281 sk = skb_to_full_sk(skb);
3282 if (!sk)
3283 return;
91c68ce2 3284
699cb7c6
ED
3285 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3286
3287 if (prioidx < map->priomap_len)
3288 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3289}
3290#else
3291#define skb_update_prio(skb)
3292#endif
3293
f60e5990 3294DEFINE_PER_CPU(int, xmit_recursion);
3295EXPORT_SYMBOL(xmit_recursion);
3296
95603e22
MM
3297/**
3298 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3299 * @net: network namespace this loopback is happening in
3300 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3301 * @skb: buffer to transmit
3302 */
0c4b51f0 3303int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3304{
3305 skb_reset_mac_header(skb);
3306 __skb_pull(skb, skb_network_offset(skb));
3307 skb->pkt_type = PACKET_LOOPBACK;
3308 skb->ip_summed = CHECKSUM_UNNECESSARY;
3309 WARN_ON(!skb_dst(skb));
3310 skb_dst_force(skb);
3311 netif_rx_ni(skb);
3312 return 0;
3313}
3314EXPORT_SYMBOL(dev_loopback_xmit);
3315
1f211a1b
DB
3316#ifdef CONFIG_NET_EGRESS
3317static struct sk_buff *
3318sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3319{
46209401 3320 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3321 struct tcf_result cl_res;
3322
46209401 3323 if (!miniq)
1f211a1b
DB
3324 return skb;
3325
8dc07fdb 3326 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3327 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3328
46209401 3329 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3330 case TC_ACT_OK:
3331 case TC_ACT_RECLASSIFY:
3332 skb->tc_index = TC_H_MIN(cl_res.classid);
3333 break;
3334 case TC_ACT_SHOT:
46209401 3335 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3336 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3337 kfree_skb(skb);
3338 return NULL;
1f211a1b
DB
3339 case TC_ACT_STOLEN:
3340 case TC_ACT_QUEUED:
e25ea21f 3341 case TC_ACT_TRAP:
1f211a1b 3342 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3343 consume_skb(skb);
1f211a1b
DB
3344 return NULL;
3345 case TC_ACT_REDIRECT:
3346 /* No need to push/pop skb's mac_header here on egress! */
3347 skb_do_redirect(skb);
3348 *ret = NET_XMIT_SUCCESS;
3349 return NULL;
3350 default:
3351 break;
3352 }
3353
3354 return skb;
3355}
3356#endif /* CONFIG_NET_EGRESS */
3357
638b2a69
JP
3358static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3359{
3360#ifdef CONFIG_XPS
3361 struct xps_dev_maps *dev_maps;
3362 struct xps_map *map;
3363 int queue_index = -1;
3364
3365 rcu_read_lock();
3366 dev_maps = rcu_dereference(dev->xps_maps);
3367 if (dev_maps) {
184c449f
AD
3368 unsigned int tci = skb->sender_cpu - 1;
3369
3370 if (dev->num_tc) {
3371 tci *= dev->num_tc;
3372 tci += netdev_get_prio_tc_map(dev, skb->priority);
3373 }
3374
3375 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3376 if (map) {
3377 if (map->len == 1)
3378 queue_index = map->queues[0];
3379 else
3380 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3381 map->len)];
3382 if (unlikely(queue_index >= dev->real_num_tx_queues))
3383 queue_index = -1;
3384 }
3385 }
3386 rcu_read_unlock();
3387
3388 return queue_index;
3389#else
3390 return -1;
3391#endif
3392}
3393
3394static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3395{
3396 struct sock *sk = skb->sk;
3397 int queue_index = sk_tx_queue_get(sk);
3398
3399 if (queue_index < 0 || skb->ooo_okay ||
3400 queue_index >= dev->real_num_tx_queues) {
3401 int new_index = get_xps_queue(dev, skb);
f4563a75 3402
638b2a69
JP
3403 if (new_index < 0)
3404 new_index = skb_tx_hash(dev, skb);
3405
3406 if (queue_index != new_index && sk &&
004a5d01 3407 sk_fullsock(sk) &&
638b2a69
JP
3408 rcu_access_pointer(sk->sk_dst_cache))
3409 sk_tx_queue_set(sk, new_index);
3410
3411 queue_index = new_index;
3412 }
3413
3414 return queue_index;
3415}
3416
3417struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3418 struct sk_buff *skb,
3419 void *accel_priv)
3420{
3421 int queue_index = 0;
3422
3423#ifdef CONFIG_XPS
52bd2d62
ED
3424 u32 sender_cpu = skb->sender_cpu - 1;
3425
3426 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3427 skb->sender_cpu = raw_smp_processor_id() + 1;
3428#endif
3429
3430 if (dev->real_num_tx_queues != 1) {
3431 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3432
638b2a69
JP
3433 if (ops->ndo_select_queue)
3434 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3435 __netdev_pick_tx);
3436 else
3437 queue_index = __netdev_pick_tx(dev, skb);
3438
3439 if (!accel_priv)
3440 queue_index = netdev_cap_txqueue(dev, queue_index);
3441 }
3442
3443 skb_set_queue_mapping(skb, queue_index);
3444 return netdev_get_tx_queue(dev, queue_index);
3445}
3446
d29f749e 3447/**
9d08dd3d 3448 * __dev_queue_xmit - transmit a buffer
d29f749e 3449 * @skb: buffer to transmit
9d08dd3d 3450 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3451 *
3452 * Queue a buffer for transmission to a network device. The caller must
3453 * have set the device and priority and built the buffer before calling
3454 * this function. The function can be called from an interrupt.
3455 *
3456 * A negative errno code is returned on a failure. A success does not
3457 * guarantee the frame will be transmitted as it may be dropped due
3458 * to congestion or traffic shaping.
3459 *
3460 * -----------------------------------------------------------------------------------
3461 * I notice this method can also return errors from the queue disciplines,
3462 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3463 * be positive.
3464 *
3465 * Regardless of the return value, the skb is consumed, so it is currently
3466 * difficult to retry a send to this method. (You can bump the ref count
3467 * before sending to hold a reference for retry if you are careful.)
3468 *
3469 * When calling this method, interrupts MUST be enabled. This is because
3470 * the BH enable code must have IRQs enabled so that it will not deadlock.
3471 * --BLG
3472 */
0a59f3a9 3473static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3474{
3475 struct net_device *dev = skb->dev;
dc2b4847 3476 struct netdev_queue *txq;
1da177e4
LT
3477 struct Qdisc *q;
3478 int rc = -ENOMEM;
3479
6d1ccff6
ED
3480 skb_reset_mac_header(skb);
3481
e7fd2885
WB
3482 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3483 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3484
4ec93edb
YH
3485 /* Disable soft irqs for various locks below. Also
3486 * stops preemption for RCU.
1da177e4 3487 */
4ec93edb 3488 rcu_read_lock_bh();
1da177e4 3489
5bc1421e
NH
3490 skb_update_prio(skb);
3491
1f211a1b
DB
3492 qdisc_pkt_len_init(skb);
3493#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3494 skb->tc_at_ingress = 0;
1f211a1b
DB
3495# ifdef CONFIG_NET_EGRESS
3496 if (static_key_false(&egress_needed)) {
3497 skb = sch_handle_egress(skb, &rc, dev);
3498 if (!skb)
3499 goto out;
3500 }
3501# endif
3502#endif
02875878
ED
3503 /* If device/qdisc don't need skb->dst, release it right now while
3504 * its hot in this cpu cache.
3505 */
3506 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3507 skb_dst_drop(skb);
3508 else
3509 skb_dst_force(skb);
3510
f663dd9a 3511 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3512 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3513
cf66ba58 3514 trace_net_dev_queue(skb);
1da177e4 3515 if (q->enqueue) {
bbd8a0d3 3516 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3517 goto out;
1da177e4
LT
3518 }
3519
3520 /* The device has no queue. Common case for software devices:
eb13da1a 3521 * loopback, all the sorts of tunnels...
1da177e4 3522
eb13da1a 3523 * Really, it is unlikely that netif_tx_lock protection is necessary
3524 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3525 * counters.)
3526 * However, it is possible, that they rely on protection
3527 * made by us here.
1da177e4 3528
eb13da1a 3529 * Check this and shot the lock. It is not prone from deadlocks.
3530 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3531 */
3532 if (dev->flags & IFF_UP) {
3533 int cpu = smp_processor_id(); /* ok because BHs are off */
3534
c773e847 3535 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3536 if (unlikely(__this_cpu_read(xmit_recursion) >
3537 XMIT_RECURSION_LIMIT))
745e20f1
ED
3538 goto recursion_alert;
3539
1f59533f
JDB
3540 skb = validate_xmit_skb(skb, dev);
3541 if (!skb)
d21fd63e 3542 goto out;
1f59533f 3543
c773e847 3544 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3545
73466498 3546 if (!netif_xmit_stopped(txq)) {
745e20f1 3547 __this_cpu_inc(xmit_recursion);
ce93718f 3548 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3549 __this_cpu_dec(xmit_recursion);
572a9d7b 3550 if (dev_xmit_complete(rc)) {
c773e847 3551 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3552 goto out;
3553 }
3554 }
c773e847 3555 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3556 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3557 dev->name);
1da177e4
LT
3558 } else {
3559 /* Recursion is detected! It is possible,
745e20f1
ED
3560 * unfortunately
3561 */
3562recursion_alert:
e87cc472
JP
3563 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3564 dev->name);
1da177e4
LT
3565 }
3566 }
3567
3568 rc = -ENETDOWN;
d4828d85 3569 rcu_read_unlock_bh();
1da177e4 3570
015f0688 3571 atomic_long_inc(&dev->tx_dropped);
1f59533f 3572 kfree_skb_list(skb);
1da177e4
LT
3573 return rc;
3574out:
d4828d85 3575 rcu_read_unlock_bh();
1da177e4
LT
3576 return rc;
3577}
f663dd9a 3578
2b4aa3ce 3579int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3580{
3581 return __dev_queue_xmit(skb, NULL);
3582}
2b4aa3ce 3583EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3584
f663dd9a
JW
3585int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3586{
3587 return __dev_queue_xmit(skb, accel_priv);
3588}
3589EXPORT_SYMBOL(dev_queue_xmit_accel);
3590
1da177e4 3591
eb13da1a 3592/*************************************************************************
3593 * Receiver routines
3594 *************************************************************************/
1da177e4 3595
6b2bedc3 3596int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3597EXPORT_SYMBOL(netdev_max_backlog);
3598
3b098e2d 3599int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3600int netdev_budget __read_mostly = 300;
7acf8a1e 3601unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3602int weight_p __read_mostly = 64; /* old backlog weight */
3603int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3604int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3605int dev_rx_weight __read_mostly = 64;
3606int dev_tx_weight __read_mostly = 64;
1da177e4 3607
eecfd7c4
ED
3608/* Called with irq disabled */
3609static inline void ____napi_schedule(struct softnet_data *sd,
3610 struct napi_struct *napi)
3611{
3612 list_add_tail(&napi->poll_list, &sd->poll_list);
3613 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3614}
3615
bfb564e7
KK
3616#ifdef CONFIG_RPS
3617
3618/* One global table that all flow-based protocols share. */
6e3f7faf 3619struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3620EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3621u32 rps_cpu_mask __read_mostly;
3622EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3623
c5905afb 3624struct static_key rps_needed __read_mostly;
3df97ba8 3625EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3626struct static_key rfs_needed __read_mostly;
3627EXPORT_SYMBOL(rfs_needed);
adc9300e 3628
c445477d
BH
3629static struct rps_dev_flow *
3630set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3631 struct rps_dev_flow *rflow, u16 next_cpu)
3632{
a31196b0 3633 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3634#ifdef CONFIG_RFS_ACCEL
3635 struct netdev_rx_queue *rxqueue;
3636 struct rps_dev_flow_table *flow_table;
3637 struct rps_dev_flow *old_rflow;
3638 u32 flow_id;
3639 u16 rxq_index;
3640 int rc;
3641
3642 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3643 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3644 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3645 goto out;
3646 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3647 if (rxq_index == skb_get_rx_queue(skb))
3648 goto out;
3649
3650 rxqueue = dev->_rx + rxq_index;
3651 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3652 if (!flow_table)
3653 goto out;
61b905da 3654 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3655 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3656 rxq_index, flow_id);
3657 if (rc < 0)
3658 goto out;
3659 old_rflow = rflow;
3660 rflow = &flow_table->flows[flow_id];
c445477d
BH
3661 rflow->filter = rc;
3662 if (old_rflow->filter == rflow->filter)
3663 old_rflow->filter = RPS_NO_FILTER;
3664 out:
3665#endif
3666 rflow->last_qtail =
09994d1b 3667 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3668 }
3669
09994d1b 3670 rflow->cpu = next_cpu;
c445477d
BH
3671 return rflow;
3672}
3673
bfb564e7
KK
3674/*
3675 * get_rps_cpu is called from netif_receive_skb and returns the target
3676 * CPU from the RPS map of the receiving queue for a given skb.
3677 * rcu_read_lock must be held on entry.
3678 */
3679static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3680 struct rps_dev_flow **rflowp)
3681{
567e4b79
ED
3682 const struct rps_sock_flow_table *sock_flow_table;
3683 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3684 struct rps_dev_flow_table *flow_table;
567e4b79 3685 struct rps_map *map;
bfb564e7 3686 int cpu = -1;
567e4b79 3687 u32 tcpu;
61b905da 3688 u32 hash;
bfb564e7
KK
3689
3690 if (skb_rx_queue_recorded(skb)) {
3691 u16 index = skb_get_rx_queue(skb);
567e4b79 3692
62fe0b40
BH
3693 if (unlikely(index >= dev->real_num_rx_queues)) {
3694 WARN_ONCE(dev->real_num_rx_queues > 1,
3695 "%s received packet on queue %u, but number "
3696 "of RX queues is %u\n",
3697 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3698 goto done;
3699 }
567e4b79
ED
3700 rxqueue += index;
3701 }
bfb564e7 3702
567e4b79
ED
3703 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3704
3705 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3706 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3707 if (!flow_table && !map)
bfb564e7
KK
3708 goto done;
3709
2d47b459 3710 skb_reset_network_header(skb);
61b905da
TH
3711 hash = skb_get_hash(skb);
3712 if (!hash)
bfb564e7
KK
3713 goto done;
3714
fec5e652
TH
3715 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3716 if (flow_table && sock_flow_table) {
fec5e652 3717 struct rps_dev_flow *rflow;
567e4b79
ED
3718 u32 next_cpu;
3719 u32 ident;
3720
3721 /* First check into global flow table if there is a match */
3722 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3723 if ((ident ^ hash) & ~rps_cpu_mask)
3724 goto try_rps;
fec5e652 3725
567e4b79
ED
3726 next_cpu = ident & rps_cpu_mask;
3727
3728 /* OK, now we know there is a match,
3729 * we can look at the local (per receive queue) flow table
3730 */
61b905da 3731 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3732 tcpu = rflow->cpu;
3733
fec5e652
TH
3734 /*
3735 * If the desired CPU (where last recvmsg was done) is
3736 * different from current CPU (one in the rx-queue flow
3737 * table entry), switch if one of the following holds:
a31196b0 3738 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3739 * - Current CPU is offline.
3740 * - The current CPU's queue tail has advanced beyond the
3741 * last packet that was enqueued using this table entry.
3742 * This guarantees that all previous packets for the flow
3743 * have been dequeued, thus preserving in order delivery.
3744 */
3745 if (unlikely(tcpu != next_cpu) &&
a31196b0 3746 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3747 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3748 rflow->last_qtail)) >= 0)) {
3749 tcpu = next_cpu;
c445477d 3750 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3751 }
c445477d 3752
a31196b0 3753 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3754 *rflowp = rflow;
3755 cpu = tcpu;
3756 goto done;
3757 }
3758 }
3759
567e4b79
ED
3760try_rps:
3761
0a9627f2 3762 if (map) {
8fc54f68 3763 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3764 if (cpu_online(tcpu)) {
3765 cpu = tcpu;
3766 goto done;
3767 }
3768 }
3769
3770done:
0a9627f2
TH
3771 return cpu;
3772}
3773
c445477d
BH
3774#ifdef CONFIG_RFS_ACCEL
3775
3776/**
3777 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3778 * @dev: Device on which the filter was set
3779 * @rxq_index: RX queue index
3780 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3781 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3782 *
3783 * Drivers that implement ndo_rx_flow_steer() should periodically call
3784 * this function for each installed filter and remove the filters for
3785 * which it returns %true.
3786 */
3787bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3788 u32 flow_id, u16 filter_id)
3789{
3790 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3791 struct rps_dev_flow_table *flow_table;
3792 struct rps_dev_flow *rflow;
3793 bool expire = true;
a31196b0 3794 unsigned int cpu;
c445477d
BH
3795
3796 rcu_read_lock();
3797 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3798 if (flow_table && flow_id <= flow_table->mask) {
3799 rflow = &flow_table->flows[flow_id];
6aa7de05 3800 cpu = READ_ONCE(rflow->cpu);
a31196b0 3801 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3802 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3803 rflow->last_qtail) <
3804 (int)(10 * flow_table->mask)))
3805 expire = false;
3806 }
3807 rcu_read_unlock();
3808 return expire;
3809}
3810EXPORT_SYMBOL(rps_may_expire_flow);
3811
3812#endif /* CONFIG_RFS_ACCEL */
3813
0a9627f2 3814/* Called from hardirq (IPI) context */
e36fa2f7 3815static void rps_trigger_softirq(void *data)
0a9627f2 3816{
e36fa2f7
ED
3817 struct softnet_data *sd = data;
3818
eecfd7c4 3819 ____napi_schedule(sd, &sd->backlog);
dee42870 3820 sd->received_rps++;
0a9627f2 3821}
e36fa2f7 3822
fec5e652 3823#endif /* CONFIG_RPS */
0a9627f2 3824
e36fa2f7
ED
3825/*
3826 * Check if this softnet_data structure is another cpu one
3827 * If yes, queue it to our IPI list and return 1
3828 * If no, return 0
3829 */
3830static int rps_ipi_queued(struct softnet_data *sd)
3831{
3832#ifdef CONFIG_RPS
903ceff7 3833 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3834
3835 if (sd != mysd) {
3836 sd->rps_ipi_next = mysd->rps_ipi_list;
3837 mysd->rps_ipi_list = sd;
3838
3839 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3840 return 1;
3841 }
3842#endif /* CONFIG_RPS */
3843 return 0;
3844}
3845
99bbc707
WB
3846#ifdef CONFIG_NET_FLOW_LIMIT
3847int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3848#endif
3849
3850static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3851{
3852#ifdef CONFIG_NET_FLOW_LIMIT
3853 struct sd_flow_limit *fl;
3854 struct softnet_data *sd;
3855 unsigned int old_flow, new_flow;
3856
3857 if (qlen < (netdev_max_backlog >> 1))
3858 return false;
3859
903ceff7 3860 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3861
3862 rcu_read_lock();
3863 fl = rcu_dereference(sd->flow_limit);
3864 if (fl) {
3958afa1 3865 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3866 old_flow = fl->history[fl->history_head];
3867 fl->history[fl->history_head] = new_flow;
3868
3869 fl->history_head++;
3870 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3871
3872 if (likely(fl->buckets[old_flow]))
3873 fl->buckets[old_flow]--;
3874
3875 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3876 fl->count++;
3877 rcu_read_unlock();
3878 return true;
3879 }
3880 }
3881 rcu_read_unlock();
3882#endif
3883 return false;
3884}
3885
0a9627f2
TH
3886/*
3887 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3888 * queue (may be a remote CPU queue).
3889 */
fec5e652
TH
3890static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3891 unsigned int *qtail)
0a9627f2 3892{
e36fa2f7 3893 struct softnet_data *sd;
0a9627f2 3894 unsigned long flags;
99bbc707 3895 unsigned int qlen;
0a9627f2 3896
e36fa2f7 3897 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3898
3899 local_irq_save(flags);
0a9627f2 3900
e36fa2f7 3901 rps_lock(sd);
e9e4dd32
JA
3902 if (!netif_running(skb->dev))
3903 goto drop;
99bbc707
WB
3904 qlen = skb_queue_len(&sd->input_pkt_queue);
3905 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3906 if (qlen) {
0a9627f2 3907enqueue:
e36fa2f7 3908 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3909 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3910 rps_unlock(sd);
152102c7 3911 local_irq_restore(flags);
0a9627f2
TH
3912 return NET_RX_SUCCESS;
3913 }
3914
ebda37c2
ED
3915 /* Schedule NAPI for backlog device
3916 * We can use non atomic operation since we own the queue lock
3917 */
3918 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3919 if (!rps_ipi_queued(sd))
eecfd7c4 3920 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3921 }
3922 goto enqueue;
3923 }
3924
e9e4dd32 3925drop:
dee42870 3926 sd->dropped++;
e36fa2f7 3927 rps_unlock(sd);
0a9627f2 3928
0a9627f2
TH
3929 local_irq_restore(flags);
3930
caf586e5 3931 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3932 kfree_skb(skb);
3933 return NET_RX_DROP;
3934}
1da177e4 3935
d4455169
JF
3936static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3937 struct bpf_prog *xdp_prog)
3938{
de8f3a83 3939 u32 metalen, act = XDP_DROP;
d4455169 3940 struct xdp_buff xdp;
d4455169
JF
3941 void *orig_data;
3942 int hlen, off;
3943 u32 mac_len;
3944
3945 /* Reinjected packets coming from act_mirred or similar should
3946 * not get XDP generic processing.
3947 */
3948 if (skb_cloned(skb))
3949 return XDP_PASS;
3950
de8f3a83
DB
3951 /* XDP packets must be linear and must have sufficient headroom
3952 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3953 * native XDP provides, thus we need to do it here as well.
3954 */
3955 if (skb_is_nonlinear(skb) ||
3956 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3957 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3958 int troom = skb->tail + skb->data_len - skb->end;
3959
3960 /* In case we have to go down the path and also linearize,
3961 * then lets do the pskb_expand_head() work just once here.
3962 */
3963 if (pskb_expand_head(skb,
3964 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3965 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3966 goto do_drop;
2d17d8d7 3967 if (skb_linearize(skb))
de8f3a83
DB
3968 goto do_drop;
3969 }
d4455169
JF
3970
3971 /* The XDP program wants to see the packet starting at the MAC
3972 * header.
3973 */
3974 mac_len = skb->data - skb_mac_header(skb);
3975 hlen = skb_headlen(skb) + mac_len;
3976 xdp.data = skb->data - mac_len;
de8f3a83 3977 xdp.data_meta = xdp.data;
d4455169
JF
3978 xdp.data_end = xdp.data + hlen;
3979 xdp.data_hard_start = skb->data - skb_headroom(skb);
3980 orig_data = xdp.data;
3981
3982 act = bpf_prog_run_xdp(xdp_prog, &xdp);
3983
3984 off = xdp.data - orig_data;
3985 if (off > 0)
3986 __skb_pull(skb, off);
3987 else if (off < 0)
3988 __skb_push(skb, -off);
92dd5452 3989 skb->mac_header += off;
d4455169
JF
3990
3991 switch (act) {
6103aa96 3992 case XDP_REDIRECT:
d4455169
JF
3993 case XDP_TX:
3994 __skb_push(skb, mac_len);
de8f3a83 3995 break;
d4455169 3996 case XDP_PASS:
de8f3a83
DB
3997 metalen = xdp.data - xdp.data_meta;
3998 if (metalen)
3999 skb_metadata_set(skb, metalen);
d4455169 4000 break;
d4455169
JF
4001 default:
4002 bpf_warn_invalid_xdp_action(act);
4003 /* fall through */
4004 case XDP_ABORTED:
4005 trace_xdp_exception(skb->dev, xdp_prog, act);
4006 /* fall through */
4007 case XDP_DROP:
4008 do_drop:
4009 kfree_skb(skb);
4010 break;
4011 }
4012
4013 return act;
4014}
4015
4016/* When doing generic XDP we have to bypass the qdisc layer and the
4017 * network taps in order to match in-driver-XDP behavior.
4018 */
7c497478 4019void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4020{
4021 struct net_device *dev = skb->dev;
4022 struct netdev_queue *txq;
4023 bool free_skb = true;
4024 int cpu, rc;
4025
4026 txq = netdev_pick_tx(dev, skb, NULL);
4027 cpu = smp_processor_id();
4028 HARD_TX_LOCK(dev, txq, cpu);
4029 if (!netif_xmit_stopped(txq)) {
4030 rc = netdev_start_xmit(skb, dev, txq, 0);
4031 if (dev_xmit_complete(rc))
4032 free_skb = false;
4033 }
4034 HARD_TX_UNLOCK(dev, txq);
4035 if (free_skb) {
4036 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4037 kfree_skb(skb);
4038 }
4039}
7c497478 4040EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169
JF
4041
4042static struct static_key generic_xdp_needed __read_mostly;
4043
7c497478 4044int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4045{
d4455169
JF
4046 if (xdp_prog) {
4047 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
6103aa96 4048 int err;
d4455169
JF
4049
4050 if (act != XDP_PASS) {
6103aa96
JF
4051 switch (act) {
4052 case XDP_REDIRECT:
2facaad6
JDB
4053 err = xdp_do_generic_redirect(skb->dev, skb,
4054 xdp_prog);
6103aa96
JF
4055 if (err)
4056 goto out_redir;
4057 /* fallthru to submit skb */
4058 case XDP_TX:
d4455169 4059 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4060 break;
4061 }
d4455169
JF
4062 return XDP_DROP;
4063 }
4064 }
4065 return XDP_PASS;
6103aa96 4066out_redir:
6103aa96
JF
4067 kfree_skb(skb);
4068 return XDP_DROP;
d4455169 4069}
7c497478 4070EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4071
ae78dbfa 4072static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4073{
b0e28f1e 4074 int ret;
1da177e4 4075
588f0330 4076 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4077
cf66ba58 4078 trace_netif_rx(skb);
d4455169
JF
4079
4080 if (static_key_false(&generic_xdp_needed)) {
bbbe211c
JF
4081 int ret;
4082
4083 preempt_disable();
4084 rcu_read_lock();
4085 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4086 rcu_read_unlock();
4087 preempt_enable();
d4455169 4088
6103aa96
JF
4089 /* Consider XDP consuming the packet a success from
4090 * the netdev point of view we do not want to count
4091 * this as an error.
4092 */
d4455169 4093 if (ret != XDP_PASS)
6103aa96 4094 return NET_RX_SUCCESS;
d4455169
JF
4095 }
4096
df334545 4097#ifdef CONFIG_RPS
c5905afb 4098 if (static_key_false(&rps_needed)) {
fec5e652 4099 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4100 int cpu;
4101
cece1945 4102 preempt_disable();
b0e28f1e 4103 rcu_read_lock();
fec5e652
TH
4104
4105 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4106 if (cpu < 0)
4107 cpu = smp_processor_id();
fec5e652
TH
4108
4109 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4110
b0e28f1e 4111 rcu_read_unlock();
cece1945 4112 preempt_enable();
adc9300e
ED
4113 } else
4114#endif
fec5e652
TH
4115 {
4116 unsigned int qtail;
f4563a75 4117
fec5e652
TH
4118 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4119 put_cpu();
4120 }
b0e28f1e 4121 return ret;
1da177e4 4122}
ae78dbfa
BH
4123
4124/**
4125 * netif_rx - post buffer to the network code
4126 * @skb: buffer to post
4127 *
4128 * This function receives a packet from a device driver and queues it for
4129 * the upper (protocol) levels to process. It always succeeds. The buffer
4130 * may be dropped during processing for congestion control or by the
4131 * protocol layers.
4132 *
4133 * return values:
4134 * NET_RX_SUCCESS (no congestion)
4135 * NET_RX_DROP (packet was dropped)
4136 *
4137 */
4138
4139int netif_rx(struct sk_buff *skb)
4140{
4141 trace_netif_rx_entry(skb);
4142
4143 return netif_rx_internal(skb);
4144}
d1b19dff 4145EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4146
4147int netif_rx_ni(struct sk_buff *skb)
4148{
4149 int err;
4150
ae78dbfa
BH
4151 trace_netif_rx_ni_entry(skb);
4152
1da177e4 4153 preempt_disable();
ae78dbfa 4154 err = netif_rx_internal(skb);
1da177e4
LT
4155 if (local_softirq_pending())
4156 do_softirq();
4157 preempt_enable();
4158
4159 return err;
4160}
1da177e4
LT
4161EXPORT_SYMBOL(netif_rx_ni);
4162
0766f788 4163static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4164{
903ceff7 4165 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4166
4167 if (sd->completion_queue) {
4168 struct sk_buff *clist;
4169
4170 local_irq_disable();
4171 clist = sd->completion_queue;
4172 sd->completion_queue = NULL;
4173 local_irq_enable();
4174
4175 while (clist) {
4176 struct sk_buff *skb = clist;
f4563a75 4177
1da177e4
LT
4178 clist = clist->next;
4179
63354797 4180 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4181 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4182 trace_consume_skb(skb);
4183 else
4184 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4185
4186 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4187 __kfree_skb(skb);
4188 else
4189 __kfree_skb_defer(skb);
1da177e4 4190 }
15fad714
JDB
4191
4192 __kfree_skb_flush();
1da177e4
LT
4193 }
4194
4195 if (sd->output_queue) {
37437bb2 4196 struct Qdisc *head;
1da177e4
LT
4197
4198 local_irq_disable();
4199 head = sd->output_queue;
4200 sd->output_queue = NULL;
a9cbd588 4201 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4202 local_irq_enable();
4203
4204 while (head) {
37437bb2
DM
4205 struct Qdisc *q = head;
4206 spinlock_t *root_lock;
4207
1da177e4
LT
4208 head = head->next_sched;
4209
5fb66229 4210 root_lock = qdisc_lock(q);
3bcb846c
ED
4211 spin_lock(root_lock);
4212 /* We need to make sure head->next_sched is read
4213 * before clearing __QDISC_STATE_SCHED
4214 */
4215 smp_mb__before_atomic();
4216 clear_bit(__QDISC_STATE_SCHED, &q->state);
4217 qdisc_run(q);
4218 spin_unlock(root_lock);
1da177e4
LT
4219 }
4220 }
4221}
4222
181402a5 4223#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4224/* This hook is defined here for ATM LANE */
4225int (*br_fdb_test_addr_hook)(struct net_device *dev,
4226 unsigned char *addr) __read_mostly;
4fb019a0 4227EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4228#endif
1da177e4 4229
1f211a1b
DB
4230static inline struct sk_buff *
4231sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4232 struct net_device *orig_dev)
f697c3e8 4233{
e7582bab 4234#ifdef CONFIG_NET_CLS_ACT
46209401 4235 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4236 struct tcf_result cl_res;
24824a09 4237
c9e99fd0
DB
4238 /* If there's at least one ingress present somewhere (so
4239 * we get here via enabled static key), remaining devices
4240 * that are not configured with an ingress qdisc will bail
d2788d34 4241 * out here.
c9e99fd0 4242 */
46209401 4243 if (!miniq)
4577139b 4244 return skb;
46209401 4245
f697c3e8
HX
4246 if (*pt_prev) {
4247 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4248 *pt_prev = NULL;
1da177e4
LT
4249 }
4250
3365495c 4251 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4252 skb->tc_at_ingress = 1;
46209401 4253 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4254
46209401 4255 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
4256 case TC_ACT_OK:
4257 case TC_ACT_RECLASSIFY:
4258 skb->tc_index = TC_H_MIN(cl_res.classid);
4259 break;
4260 case TC_ACT_SHOT:
46209401 4261 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4262 kfree_skb(skb);
4263 return NULL;
d2788d34
DB
4264 case TC_ACT_STOLEN:
4265 case TC_ACT_QUEUED:
e25ea21f 4266 case TC_ACT_TRAP:
8a3a4c6e 4267 consume_skb(skb);
d2788d34 4268 return NULL;
27b29f63
AS
4269 case TC_ACT_REDIRECT:
4270 /* skb_mac_header check was done by cls/act_bpf, so
4271 * we can safely push the L2 header back before
4272 * redirecting to another netdev
4273 */
4274 __skb_push(skb, skb->mac_len);
4275 skb_do_redirect(skb);
4276 return NULL;
d2788d34
DB
4277 default:
4278 break;
f697c3e8 4279 }
e7582bab 4280#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4281 return skb;
4282}
1da177e4 4283
24b27fc4
MB
4284/**
4285 * netdev_is_rx_handler_busy - check if receive handler is registered
4286 * @dev: device to check
4287 *
4288 * Check if a receive handler is already registered for a given device.
4289 * Return true if there one.
4290 *
4291 * The caller must hold the rtnl_mutex.
4292 */
4293bool netdev_is_rx_handler_busy(struct net_device *dev)
4294{
4295 ASSERT_RTNL();
4296 return dev && rtnl_dereference(dev->rx_handler);
4297}
4298EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4299
ab95bfe0
JP
4300/**
4301 * netdev_rx_handler_register - register receive handler
4302 * @dev: device to register a handler for
4303 * @rx_handler: receive handler to register
93e2c32b 4304 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4305 *
e227867f 4306 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4307 * called from __netif_receive_skb. A negative errno code is returned
4308 * on a failure.
4309 *
4310 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4311 *
4312 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4313 */
4314int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4315 rx_handler_func_t *rx_handler,
4316 void *rx_handler_data)
ab95bfe0 4317{
1b7cd004 4318 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4319 return -EBUSY;
4320
00cfec37 4321 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4322 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4323 rcu_assign_pointer(dev->rx_handler, rx_handler);
4324
4325 return 0;
4326}
4327EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4328
4329/**
4330 * netdev_rx_handler_unregister - unregister receive handler
4331 * @dev: device to unregister a handler from
4332 *
166ec369 4333 * Unregister a receive handler from a device.
ab95bfe0
JP
4334 *
4335 * The caller must hold the rtnl_mutex.
4336 */
4337void netdev_rx_handler_unregister(struct net_device *dev)
4338{
4339
4340 ASSERT_RTNL();
a9b3cd7f 4341 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4342 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4343 * section has a guarantee to see a non NULL rx_handler_data
4344 * as well.
4345 */
4346 synchronize_net();
a9b3cd7f 4347 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4348}
4349EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4350
b4b9e355
MG
4351/*
4352 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4353 * the special handling of PFMEMALLOC skbs.
4354 */
4355static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4356{
4357 switch (skb->protocol) {
2b8837ae
JP
4358 case htons(ETH_P_ARP):
4359 case htons(ETH_P_IP):
4360 case htons(ETH_P_IPV6):
4361 case htons(ETH_P_8021Q):
4362 case htons(ETH_P_8021AD):
b4b9e355
MG
4363 return true;
4364 default:
4365 return false;
4366 }
4367}
4368
e687ad60
PN
4369static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4370 int *ret, struct net_device *orig_dev)
4371{
e7582bab 4372#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4373 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4374 int ingress_retval;
4375
e687ad60
PN
4376 if (*pt_prev) {
4377 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4378 *pt_prev = NULL;
4379 }
4380
2c1e2703
AC
4381 rcu_read_lock();
4382 ingress_retval = nf_hook_ingress(skb);
4383 rcu_read_unlock();
4384 return ingress_retval;
e687ad60 4385 }
e7582bab 4386#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4387 return 0;
4388}
e687ad60 4389
9754e293 4390static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4391{
4392 struct packet_type *ptype, *pt_prev;
ab95bfe0 4393 rx_handler_func_t *rx_handler;
f2ccd8fa 4394 struct net_device *orig_dev;
8a4eb573 4395 bool deliver_exact = false;
1da177e4 4396 int ret = NET_RX_DROP;
252e3346 4397 __be16 type;
1da177e4 4398
588f0330 4399 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4400
cf66ba58 4401 trace_netif_receive_skb(skb);
9b22ea56 4402
cc9bd5ce 4403 orig_dev = skb->dev;
8f903c70 4404
c1d2bbe1 4405 skb_reset_network_header(skb);
fda55eca
ED
4406 if (!skb_transport_header_was_set(skb))
4407 skb_reset_transport_header(skb);
0b5c9db1 4408 skb_reset_mac_len(skb);
1da177e4
LT
4409
4410 pt_prev = NULL;
4411
63d8ea7f 4412another_round:
b6858177 4413 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4414
4415 __this_cpu_inc(softnet_data.processed);
4416
8ad227ff
PM
4417 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4418 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4419 skb = skb_vlan_untag(skb);
bcc6d479 4420 if (unlikely(!skb))
2c17d27c 4421 goto out;
bcc6d479
JP
4422 }
4423
e7246e12
WB
4424 if (skb_skip_tc_classify(skb))
4425 goto skip_classify;
1da177e4 4426
9754e293 4427 if (pfmemalloc)
b4b9e355
MG
4428 goto skip_taps;
4429
1da177e4 4430 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4431 if (pt_prev)
4432 ret = deliver_skb(skb, pt_prev, orig_dev);
4433 pt_prev = ptype;
4434 }
4435
4436 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4437 if (pt_prev)
4438 ret = deliver_skb(skb, pt_prev, orig_dev);
4439 pt_prev = ptype;
1da177e4
LT
4440 }
4441
b4b9e355 4442skip_taps:
1cf51900 4443#ifdef CONFIG_NET_INGRESS
4577139b 4444 if (static_key_false(&ingress_needed)) {
1f211a1b 4445 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4446 if (!skb)
2c17d27c 4447 goto out;
e687ad60
PN
4448
4449 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4450 goto out;
4577139b 4451 }
1cf51900 4452#endif
a5135bcf 4453 skb_reset_tc(skb);
e7246e12 4454skip_classify:
9754e293 4455 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4456 goto drop;
4457
df8a39de 4458 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4459 if (pt_prev) {
4460 ret = deliver_skb(skb, pt_prev, orig_dev);
4461 pt_prev = NULL;
4462 }
48cc32d3 4463 if (vlan_do_receive(&skb))
2425717b
JF
4464 goto another_round;
4465 else if (unlikely(!skb))
2c17d27c 4466 goto out;
2425717b
JF
4467 }
4468
48cc32d3 4469 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4470 if (rx_handler) {
4471 if (pt_prev) {
4472 ret = deliver_skb(skb, pt_prev, orig_dev);
4473 pt_prev = NULL;
4474 }
8a4eb573
JP
4475 switch (rx_handler(&skb)) {
4476 case RX_HANDLER_CONSUMED:
3bc1b1ad 4477 ret = NET_RX_SUCCESS;
2c17d27c 4478 goto out;
8a4eb573 4479 case RX_HANDLER_ANOTHER:
63d8ea7f 4480 goto another_round;
8a4eb573
JP
4481 case RX_HANDLER_EXACT:
4482 deliver_exact = true;
4483 case RX_HANDLER_PASS:
4484 break;
4485 default:
4486 BUG();
4487 }
ab95bfe0 4488 }
1da177e4 4489
df8a39de
JP
4490 if (unlikely(skb_vlan_tag_present(skb))) {
4491 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4492 skb->pkt_type = PACKET_OTHERHOST;
4493 /* Note: we might in the future use prio bits
4494 * and set skb->priority like in vlan_do_receive()
4495 * For the time being, just ignore Priority Code Point
4496 */
4497 skb->vlan_tci = 0;
4498 }
48cc32d3 4499
7866a621
SN
4500 type = skb->protocol;
4501
63d8ea7f 4502 /* deliver only exact match when indicated */
7866a621
SN
4503 if (likely(!deliver_exact)) {
4504 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4505 &ptype_base[ntohs(type) &
4506 PTYPE_HASH_MASK]);
4507 }
1f3c8804 4508
7866a621
SN
4509 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4510 &orig_dev->ptype_specific);
4511
4512 if (unlikely(skb->dev != orig_dev)) {
4513 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4514 &skb->dev->ptype_specific);
1da177e4
LT
4515 }
4516
4517 if (pt_prev) {
1f8b977a 4518 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 4519 goto drop;
1080e512
MT
4520 else
4521 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4522 } else {
b4b9e355 4523drop:
6e7333d3
JW
4524 if (!deliver_exact)
4525 atomic_long_inc(&skb->dev->rx_dropped);
4526 else
4527 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4528 kfree_skb(skb);
4529 /* Jamal, now you will not able to escape explaining
4530 * me how you were going to use this. :-)
4531 */
4532 ret = NET_RX_DROP;
4533 }
4534
2c17d27c 4535out:
9754e293
DM
4536 return ret;
4537}
4538
1c601d82
JDB
4539/**
4540 * netif_receive_skb_core - special purpose version of netif_receive_skb
4541 * @skb: buffer to process
4542 *
4543 * More direct receive version of netif_receive_skb(). It should
4544 * only be used by callers that have a need to skip RPS and Generic XDP.
4545 * Caller must also take care of handling if (page_is_)pfmemalloc.
4546 *
4547 * This function may only be called from softirq context and interrupts
4548 * should be enabled.
4549 *
4550 * Return values (usually ignored):
4551 * NET_RX_SUCCESS: no congestion
4552 * NET_RX_DROP: packet was dropped
4553 */
4554int netif_receive_skb_core(struct sk_buff *skb)
4555{
4556 int ret;
4557
4558 rcu_read_lock();
4559 ret = __netif_receive_skb_core(skb, false);
4560 rcu_read_unlock();
4561
4562 return ret;
4563}
4564EXPORT_SYMBOL(netif_receive_skb_core);
4565
9754e293
DM
4566static int __netif_receive_skb(struct sk_buff *skb)
4567{
4568 int ret;
4569
4570 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 4571 unsigned int noreclaim_flag;
9754e293
DM
4572
4573 /*
4574 * PFMEMALLOC skbs are special, they should
4575 * - be delivered to SOCK_MEMALLOC sockets only
4576 * - stay away from userspace
4577 * - have bounded memory usage
4578 *
4579 * Use PF_MEMALLOC as this saves us from propagating the allocation
4580 * context down to all allocation sites.
4581 */
f1083048 4582 noreclaim_flag = memalloc_noreclaim_save();
9754e293 4583 ret = __netif_receive_skb_core(skb, true);
f1083048 4584 memalloc_noreclaim_restore(noreclaim_flag);
9754e293
DM
4585 } else
4586 ret = __netif_receive_skb_core(skb, false);
4587
1da177e4
LT
4588 return ret;
4589}
0a9627f2 4590
f4e63525 4591static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 4592{
58038695 4593 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
4594 struct bpf_prog *new = xdp->prog;
4595 int ret = 0;
4596
4597 switch (xdp->command) {
58038695 4598 case XDP_SETUP_PROG:
b5cdae32
DM
4599 rcu_assign_pointer(dev->xdp_prog, new);
4600 if (old)
4601 bpf_prog_put(old);
4602
4603 if (old && !new) {
4604 static_key_slow_dec(&generic_xdp_needed);
4605 } else if (new && !old) {
4606 static_key_slow_inc(&generic_xdp_needed);
4607 dev_disable_lro(dev);
4608 }
4609 break;
b5cdae32
DM
4610
4611 case XDP_QUERY_PROG:
58038695
MKL
4612 xdp->prog_attached = !!old;
4613 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
4614 break;
4615
4616 default:
4617 ret = -EINVAL;
4618 break;
4619 }
4620
4621 return ret;
4622}
4623
ae78dbfa 4624static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4625{
2c17d27c
JA
4626 int ret;
4627
588f0330 4628 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4629
c1f19b51
RC
4630 if (skb_defer_rx_timestamp(skb))
4631 return NET_RX_SUCCESS;
4632
b5cdae32 4633 if (static_key_false(&generic_xdp_needed)) {
bbbe211c 4634 int ret;
b5cdae32 4635
bbbe211c
JF
4636 preempt_disable();
4637 rcu_read_lock();
4638 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4639 rcu_read_unlock();
4640 preempt_enable();
4641
4642 if (ret != XDP_PASS)
d4455169 4643 return NET_RX_DROP;
b5cdae32
DM
4644 }
4645
bbbe211c 4646 rcu_read_lock();
df334545 4647#ifdef CONFIG_RPS
c5905afb 4648 if (static_key_false(&rps_needed)) {
3b098e2d 4649 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4650 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4651
3b098e2d
ED
4652 if (cpu >= 0) {
4653 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4654 rcu_read_unlock();
adc9300e 4655 return ret;
3b098e2d 4656 }
fec5e652 4657 }
1e94d72f 4658#endif
2c17d27c
JA
4659 ret = __netif_receive_skb(skb);
4660 rcu_read_unlock();
4661 return ret;
0a9627f2 4662}
ae78dbfa
BH
4663
4664/**
4665 * netif_receive_skb - process receive buffer from network
4666 * @skb: buffer to process
4667 *
4668 * netif_receive_skb() is the main receive data processing function.
4669 * It always succeeds. The buffer may be dropped during processing
4670 * for congestion control or by the protocol layers.
4671 *
4672 * This function may only be called from softirq context and interrupts
4673 * should be enabled.
4674 *
4675 * Return values (usually ignored):
4676 * NET_RX_SUCCESS: no congestion
4677 * NET_RX_DROP: packet was dropped
4678 */
04eb4489 4679int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4680{
4681 trace_netif_receive_skb_entry(skb);
4682
4683 return netif_receive_skb_internal(skb);
4684}
04eb4489 4685EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4686
41852497 4687DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4688
4689/* Network device is going away, flush any packets still pending */
4690static void flush_backlog(struct work_struct *work)
6e583ce5 4691{
6e583ce5 4692 struct sk_buff *skb, *tmp;
145dd5f9
PA
4693 struct softnet_data *sd;
4694
4695 local_bh_disable();
4696 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4697
145dd5f9 4698 local_irq_disable();
e36fa2f7 4699 rps_lock(sd);
6e7676c1 4700 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4701 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4702 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4703 kfree_skb(skb);
76cc8b13 4704 input_queue_head_incr(sd);
6e583ce5 4705 }
6e7676c1 4706 }
e36fa2f7 4707 rps_unlock(sd);
145dd5f9 4708 local_irq_enable();
6e7676c1
CG
4709
4710 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4711 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4712 __skb_unlink(skb, &sd->process_queue);
4713 kfree_skb(skb);
76cc8b13 4714 input_queue_head_incr(sd);
6e7676c1
CG
4715 }
4716 }
145dd5f9
PA
4717 local_bh_enable();
4718}
4719
41852497 4720static void flush_all_backlogs(void)
145dd5f9
PA
4721{
4722 unsigned int cpu;
4723
4724 get_online_cpus();
4725
41852497
ED
4726 for_each_online_cpu(cpu)
4727 queue_work_on(cpu, system_highpri_wq,
4728 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4729
4730 for_each_online_cpu(cpu)
41852497 4731 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4732
4733 put_online_cpus();
6e583ce5
SH
4734}
4735
d565b0a1
HX
4736static int napi_gro_complete(struct sk_buff *skb)
4737{
22061d80 4738 struct packet_offload *ptype;
d565b0a1 4739 __be16 type = skb->protocol;
22061d80 4740 struct list_head *head = &offload_base;
d565b0a1
HX
4741 int err = -ENOENT;
4742
c3c7c254
ED
4743 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4744
fc59f9a3
HX
4745 if (NAPI_GRO_CB(skb)->count == 1) {
4746 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4747 goto out;
fc59f9a3 4748 }
d565b0a1
HX
4749
4750 rcu_read_lock();
4751 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4752 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4753 continue;
4754
299603e8 4755 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4756 break;
4757 }
4758 rcu_read_unlock();
4759
4760 if (err) {
4761 WARN_ON(&ptype->list == head);
4762 kfree_skb(skb);
4763 return NET_RX_SUCCESS;
4764 }
4765
4766out:
ae78dbfa 4767 return netif_receive_skb_internal(skb);
d565b0a1
HX
4768}
4769
2e71a6f8
ED
4770/* napi->gro_list contains packets ordered by age.
4771 * youngest packets at the head of it.
4772 * Complete skbs in reverse order to reduce latencies.
4773 */
4774void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4775{
2e71a6f8 4776 struct sk_buff *skb, *prev = NULL;
d565b0a1 4777
2e71a6f8
ED
4778 /* scan list and build reverse chain */
4779 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4780 skb->prev = prev;
4781 prev = skb;
4782 }
4783
4784 for (skb = prev; skb; skb = prev) {
d565b0a1 4785 skb->next = NULL;
2e71a6f8
ED
4786
4787 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4788 return;
4789
4790 prev = skb->prev;
d565b0a1 4791 napi_gro_complete(skb);
2e71a6f8 4792 napi->gro_count--;
d565b0a1
HX
4793 }
4794
4795 napi->gro_list = NULL;
4796}
86cac58b 4797EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4798
89c5fa33
ED
4799static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4800{
4801 struct sk_buff *p;
4802 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4803 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4804
4805 for (p = napi->gro_list; p; p = p->next) {
4806 unsigned long diffs;
4807
0b4cec8c
TH
4808 NAPI_GRO_CB(p)->flush = 0;
4809
4810 if (hash != skb_get_hash_raw(p)) {
4811 NAPI_GRO_CB(p)->same_flow = 0;
4812 continue;
4813 }
4814
89c5fa33
ED
4815 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4816 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4817 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 4818 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
4819 if (maclen == ETH_HLEN)
4820 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4821 skb_mac_header(skb));
89c5fa33
ED
4822 else if (!diffs)
4823 diffs = memcmp(skb_mac_header(p),
a50e233c 4824 skb_mac_header(skb),
89c5fa33
ED
4825 maclen);
4826 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4827 }
4828}
4829
299603e8
JC
4830static void skb_gro_reset_offset(struct sk_buff *skb)
4831{
4832 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4833 const skb_frag_t *frag0 = &pinfo->frags[0];
4834
4835 NAPI_GRO_CB(skb)->data_offset = 0;
4836 NAPI_GRO_CB(skb)->frag0 = NULL;
4837 NAPI_GRO_CB(skb)->frag0_len = 0;
4838
4839 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4840 pinfo->nr_frags &&
4841 !PageHighMem(skb_frag_page(frag0))) {
4842 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4843 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4844 skb_frag_size(frag0),
4845 skb->end - skb->tail);
89c5fa33
ED
4846 }
4847}
4848
a50e233c
ED
4849static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4850{
4851 struct skb_shared_info *pinfo = skb_shinfo(skb);
4852
4853 BUG_ON(skb->end - skb->tail < grow);
4854
4855 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4856
4857 skb->data_len -= grow;
4858 skb->tail += grow;
4859
4860 pinfo->frags[0].page_offset += grow;
4861 skb_frag_size_sub(&pinfo->frags[0], grow);
4862
4863 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4864 skb_frag_unref(skb, 0);
4865 memmove(pinfo->frags, pinfo->frags + 1,
4866 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4867 }
4868}
4869
bb728820 4870static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4871{
4872 struct sk_buff **pp = NULL;
22061d80 4873 struct packet_offload *ptype;
d565b0a1 4874 __be16 type = skb->protocol;
22061d80 4875 struct list_head *head = &offload_base;
0da2afd5 4876 int same_flow;
5b252f0c 4877 enum gro_result ret;
a50e233c 4878 int grow;
d565b0a1 4879
b5cdae32 4880 if (netif_elide_gro(skb->dev))
d565b0a1
HX
4881 goto normal;
4882
89c5fa33
ED
4883 gro_list_prepare(napi, skb);
4884
d565b0a1
HX
4885 rcu_read_lock();
4886 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4887 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4888 continue;
4889
86911732 4890 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4891 skb_reset_mac_len(skb);
d565b0a1 4892 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4893 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4894 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4895 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4896 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4897 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4898 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4899 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4900
662880f4
TH
4901 /* Setup for GRO checksum validation */
4902 switch (skb->ip_summed) {
4903 case CHECKSUM_COMPLETE:
4904 NAPI_GRO_CB(skb)->csum = skb->csum;
4905 NAPI_GRO_CB(skb)->csum_valid = 1;
4906 NAPI_GRO_CB(skb)->csum_cnt = 0;
4907 break;
4908 case CHECKSUM_UNNECESSARY:
4909 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4910 NAPI_GRO_CB(skb)->csum_valid = 0;
4911 break;
4912 default:
4913 NAPI_GRO_CB(skb)->csum_cnt = 0;
4914 NAPI_GRO_CB(skb)->csum_valid = 0;
4915 }
d565b0a1 4916
f191a1d1 4917 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4918 break;
4919 }
4920 rcu_read_unlock();
4921
4922 if (&ptype->list == head)
4923 goto normal;
4924
25393d3f
SK
4925 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4926 ret = GRO_CONSUMED;
4927 goto ok;
4928 }
4929
0da2afd5 4930 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4931 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4932
d565b0a1
HX
4933 if (pp) {
4934 struct sk_buff *nskb = *pp;
4935
4936 *pp = nskb->next;
4937 nskb->next = NULL;
4938 napi_gro_complete(nskb);
4ae5544f 4939 napi->gro_count--;
d565b0a1
HX
4940 }
4941
0da2afd5 4942 if (same_flow)
d565b0a1
HX
4943 goto ok;
4944
600adc18 4945 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4946 goto normal;
d565b0a1 4947
600adc18
ED
4948 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4949 struct sk_buff *nskb = napi->gro_list;
4950
4951 /* locate the end of the list to select the 'oldest' flow */
4952 while (nskb->next) {
4953 pp = &nskb->next;
4954 nskb = *pp;
4955 }
4956 *pp = NULL;
4957 nskb->next = NULL;
4958 napi_gro_complete(nskb);
4959 } else {
4960 napi->gro_count++;
4961 }
d565b0a1 4962 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4963 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4964 NAPI_GRO_CB(skb)->last = skb;
86911732 4965 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4966 skb->next = napi->gro_list;
4967 napi->gro_list = skb;
5d0d9be8 4968 ret = GRO_HELD;
d565b0a1 4969
ad0f9904 4970pull:
a50e233c
ED
4971 grow = skb_gro_offset(skb) - skb_headlen(skb);
4972 if (grow > 0)
4973 gro_pull_from_frag0(skb, grow);
d565b0a1 4974ok:
5d0d9be8 4975 return ret;
d565b0a1
HX
4976
4977normal:
ad0f9904
HX
4978 ret = GRO_NORMAL;
4979 goto pull;
5d38a079 4980}
96e93eab 4981
bf5a755f
JC
4982struct packet_offload *gro_find_receive_by_type(__be16 type)
4983{
4984 struct list_head *offload_head = &offload_base;
4985 struct packet_offload *ptype;
4986
4987 list_for_each_entry_rcu(ptype, offload_head, list) {
4988 if (ptype->type != type || !ptype->callbacks.gro_receive)
4989 continue;
4990 return ptype;
4991 }
4992 return NULL;
4993}
e27a2f83 4994EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4995
4996struct packet_offload *gro_find_complete_by_type(__be16 type)
4997{
4998 struct list_head *offload_head = &offload_base;
4999 struct packet_offload *ptype;
5000
5001 list_for_each_entry_rcu(ptype, offload_head, list) {
5002 if (ptype->type != type || !ptype->callbacks.gro_complete)
5003 continue;
5004 return ptype;
5005 }
5006 return NULL;
5007}
e27a2f83 5008EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 5009
e44699d2
MK
5010static void napi_skb_free_stolen_head(struct sk_buff *skb)
5011{
5012 skb_dst_drop(skb);
5013 secpath_reset(skb);
5014 kmem_cache_free(skbuff_head_cache, skb);
5015}
5016
bb728820 5017static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 5018{
5d0d9be8
HX
5019 switch (ret) {
5020 case GRO_NORMAL:
ae78dbfa 5021 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
5022 ret = GRO_DROP;
5023 break;
5d38a079 5024
5d0d9be8 5025 case GRO_DROP:
5d38a079
HX
5026 kfree_skb(skb);
5027 break;
5b252f0c 5028
daa86548 5029 case GRO_MERGED_FREE:
e44699d2
MK
5030 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5031 napi_skb_free_stolen_head(skb);
5032 else
d7e8883c 5033 __kfree_skb(skb);
daa86548
ED
5034 break;
5035
5b252f0c
BH
5036 case GRO_HELD:
5037 case GRO_MERGED:
25393d3f 5038 case GRO_CONSUMED:
5b252f0c 5039 break;
5d38a079
HX
5040 }
5041
c7c4b3b6 5042 return ret;
5d0d9be8 5043}
5d0d9be8 5044
c7c4b3b6 5045gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 5046{
93f93a44 5047 skb_mark_napi_id(skb, napi);
ae78dbfa 5048 trace_napi_gro_receive_entry(skb);
86911732 5049
a50e233c
ED
5050 skb_gro_reset_offset(skb);
5051
89c5fa33 5052 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
5053}
5054EXPORT_SYMBOL(napi_gro_receive);
5055
d0c2b0d2 5056static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 5057{
93a35f59
ED
5058 if (unlikely(skb->pfmemalloc)) {
5059 consume_skb(skb);
5060 return;
5061 }
96e93eab 5062 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
5063 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5064 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 5065 skb->vlan_tci = 0;
66c46d74 5066 skb->dev = napi->dev;
6d152e23 5067 skb->skb_iif = 0;
15f9e9f1
ED
5068
5069 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5070 skb->pkt_type = PACKET_HOST;
5071
c3caf119
JC
5072 skb->encapsulation = 0;
5073 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 5074 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 5075 secpath_reset(skb);
96e93eab
HX
5076
5077 napi->skb = skb;
5078}
96e93eab 5079
76620aaf 5080struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5081{
5d38a079 5082 struct sk_buff *skb = napi->skb;
5d38a079
HX
5083
5084 if (!skb) {
fd11a83d 5085 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5086 if (skb) {
5087 napi->skb = skb;
5088 skb_mark_napi_id(skb, napi);
5089 }
80595d59 5090 }
96e93eab
HX
5091 return skb;
5092}
76620aaf 5093EXPORT_SYMBOL(napi_get_frags);
96e93eab 5094
a50e233c
ED
5095static gro_result_t napi_frags_finish(struct napi_struct *napi,
5096 struct sk_buff *skb,
5097 gro_result_t ret)
96e93eab 5098{
5d0d9be8
HX
5099 switch (ret) {
5100 case GRO_NORMAL:
a50e233c
ED
5101 case GRO_HELD:
5102 __skb_push(skb, ETH_HLEN);
5103 skb->protocol = eth_type_trans(skb, skb->dev);
5104 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 5105 ret = GRO_DROP;
86911732 5106 break;
5d38a079 5107
5d0d9be8 5108 case GRO_DROP:
5d0d9be8
HX
5109 napi_reuse_skb(napi, skb);
5110 break;
5b252f0c 5111
e44699d2
MK
5112 case GRO_MERGED_FREE:
5113 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5114 napi_skb_free_stolen_head(skb);
5115 else
5116 napi_reuse_skb(napi, skb);
5117 break;
5118
5b252f0c 5119 case GRO_MERGED:
25393d3f 5120 case GRO_CONSUMED:
5b252f0c 5121 break;
5d0d9be8 5122 }
5d38a079 5123
c7c4b3b6 5124 return ret;
5d38a079 5125}
5d0d9be8 5126
a50e233c
ED
5127/* Upper GRO stack assumes network header starts at gro_offset=0
5128 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5129 * We copy ethernet header into skb->data to have a common layout.
5130 */
4adb9c4a 5131static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5132{
5133 struct sk_buff *skb = napi->skb;
a50e233c
ED
5134 const struct ethhdr *eth;
5135 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5136
5137 napi->skb = NULL;
5138
a50e233c
ED
5139 skb_reset_mac_header(skb);
5140 skb_gro_reset_offset(skb);
5141
a50e233c
ED
5142 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5143 eth = skb_gro_header_slow(skb, hlen, 0);
5144 if (unlikely(!eth)) {
4da46ceb
AC
5145 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5146 __func__, napi->dev->name);
a50e233c
ED
5147 napi_reuse_skb(napi, skb);
5148 return NULL;
5149 }
5150 } else {
a3effc0d 5151 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
5152 gro_pull_from_frag0(skb, hlen);
5153 NAPI_GRO_CB(skb)->frag0 += hlen;
5154 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5155 }
a50e233c
ED
5156 __skb_pull(skb, hlen);
5157
5158 /*
5159 * This works because the only protocols we care about don't require
5160 * special handling.
5161 * We'll fix it up properly in napi_frags_finish()
5162 */
5163 skb->protocol = eth->h_proto;
76620aaf 5164
76620aaf
HX
5165 return skb;
5166}
76620aaf 5167
c7c4b3b6 5168gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5169{
76620aaf 5170 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5171
5172 if (!skb)
c7c4b3b6 5173 return GRO_DROP;
5d0d9be8 5174
ae78dbfa
BH
5175 trace_napi_gro_frags_entry(skb);
5176
89c5fa33 5177 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 5178}
5d38a079
HX
5179EXPORT_SYMBOL(napi_gro_frags);
5180
573e8fca
TH
5181/* Compute the checksum from gro_offset and return the folded value
5182 * after adding in any pseudo checksum.
5183 */
5184__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5185{
5186 __wsum wsum;
5187 __sum16 sum;
5188
5189 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5190
5191 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5192 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5193 if (likely(!sum)) {
5194 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5195 !skb->csum_complete_sw)
5196 netdev_rx_csum_fault(skb->dev);
5197 }
5198
5199 NAPI_GRO_CB(skb)->csum = wsum;
5200 NAPI_GRO_CB(skb)->csum_valid = 1;
5201
5202 return sum;
5203}
5204EXPORT_SYMBOL(__skb_gro_checksum_complete);
5205
773fc8f6 5206static void net_rps_send_ipi(struct softnet_data *remsd)
5207{
5208#ifdef CONFIG_RPS
5209 while (remsd) {
5210 struct softnet_data *next = remsd->rps_ipi_next;
5211
5212 if (cpu_online(remsd->cpu))
5213 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5214 remsd = next;
5215 }
5216#endif
5217}
5218
e326bed2 5219/*
855abcf0 5220 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5221 * Note: called with local irq disabled, but exits with local irq enabled.
5222 */
5223static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5224{
5225#ifdef CONFIG_RPS
5226 struct softnet_data *remsd = sd->rps_ipi_list;
5227
5228 if (remsd) {
5229 sd->rps_ipi_list = NULL;
5230
5231 local_irq_enable();
5232
5233 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5234 net_rps_send_ipi(remsd);
e326bed2
ED
5235 } else
5236#endif
5237 local_irq_enable();
5238}
5239
d75b1ade
ED
5240static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5241{
5242#ifdef CONFIG_RPS
5243 return sd->rps_ipi_list != NULL;
5244#else
5245 return false;
5246#endif
5247}
5248
bea3348e 5249static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5250{
eecfd7c4 5251 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5252 bool again = true;
5253 int work = 0;
1da177e4 5254
e326bed2
ED
5255 /* Check if we have pending ipi, its better to send them now,
5256 * not waiting net_rx_action() end.
5257 */
d75b1ade 5258 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5259 local_irq_disable();
5260 net_rps_action_and_irq_enable(sd);
5261 }
d75b1ade 5262
3d48b53f 5263 napi->weight = dev_rx_weight;
145dd5f9 5264 while (again) {
1da177e4 5265 struct sk_buff *skb;
6e7676c1
CG
5266
5267 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5268 rcu_read_lock();
6e7676c1 5269 __netif_receive_skb(skb);
2c17d27c 5270 rcu_read_unlock();
76cc8b13 5271 input_queue_head_incr(sd);
145dd5f9 5272 if (++work >= quota)
76cc8b13 5273 return work;
145dd5f9 5274
6e7676c1 5275 }
1da177e4 5276
145dd5f9 5277 local_irq_disable();
e36fa2f7 5278 rps_lock(sd);
11ef7a89 5279 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5280 /*
5281 * Inline a custom version of __napi_complete().
5282 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5283 * and NAPI_STATE_SCHED is the only possible flag set
5284 * on backlog.
5285 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5286 * and we dont need an smp_mb() memory barrier.
5287 */
eecfd7c4 5288 napi->state = 0;
145dd5f9
PA
5289 again = false;
5290 } else {
5291 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5292 &sd->process_queue);
bea3348e 5293 }
e36fa2f7 5294 rps_unlock(sd);
145dd5f9 5295 local_irq_enable();
6e7676c1 5296 }
1da177e4 5297
bea3348e
SH
5298 return work;
5299}
1da177e4 5300
bea3348e
SH
5301/**
5302 * __napi_schedule - schedule for receive
c4ea43c5 5303 * @n: entry to schedule
bea3348e 5304 *
bc9ad166
ED
5305 * The entry's receive function will be scheduled to run.
5306 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5307 */
b5606c2d 5308void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5309{
5310 unsigned long flags;
1da177e4 5311
bea3348e 5312 local_irq_save(flags);
903ceff7 5313 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5314 local_irq_restore(flags);
1da177e4 5315}
bea3348e
SH
5316EXPORT_SYMBOL(__napi_schedule);
5317
39e6c820
ED
5318/**
5319 * napi_schedule_prep - check if napi can be scheduled
5320 * @n: napi context
5321 *
5322 * Test if NAPI routine is already running, and if not mark
5323 * it as running. This is used as a condition variable
5324 * insure only one NAPI poll instance runs. We also make
5325 * sure there is no pending NAPI disable.
5326 */
5327bool napi_schedule_prep(struct napi_struct *n)
5328{
5329 unsigned long val, new;
5330
5331 do {
5332 val = READ_ONCE(n->state);
5333 if (unlikely(val & NAPIF_STATE_DISABLE))
5334 return false;
5335 new = val | NAPIF_STATE_SCHED;
5336
5337 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5338 * This was suggested by Alexander Duyck, as compiler
5339 * emits better code than :
5340 * if (val & NAPIF_STATE_SCHED)
5341 * new |= NAPIF_STATE_MISSED;
5342 */
5343 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5344 NAPIF_STATE_MISSED;
5345 } while (cmpxchg(&n->state, val, new) != val);
5346
5347 return !(val & NAPIF_STATE_SCHED);
5348}
5349EXPORT_SYMBOL(napi_schedule_prep);
5350
bc9ad166
ED
5351/**
5352 * __napi_schedule_irqoff - schedule for receive
5353 * @n: entry to schedule
5354 *
5355 * Variant of __napi_schedule() assuming hard irqs are masked
5356 */
5357void __napi_schedule_irqoff(struct napi_struct *n)
5358{
5359 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5360}
5361EXPORT_SYMBOL(__napi_schedule_irqoff);
5362
364b6055 5363bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 5364{
39e6c820 5365 unsigned long flags, val, new;
d565b0a1
HX
5366
5367 /*
217f6974
ED
5368 * 1) Don't let napi dequeue from the cpu poll list
5369 * just in case its running on a different cpu.
5370 * 2) If we are busy polling, do nothing here, we have
5371 * the guarantee we will be called later.
d565b0a1 5372 */
217f6974
ED
5373 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5374 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 5375 return false;
d565b0a1 5376
3b47d303
ED
5377 if (n->gro_list) {
5378 unsigned long timeout = 0;
d75b1ade 5379
3b47d303
ED
5380 if (work_done)
5381 timeout = n->dev->gro_flush_timeout;
5382
0879c5ed
PA
5383 /* When the NAPI instance uses a timeout and keeps postponing
5384 * it, we need to bound somehow the time packets are kept in
5385 * the GRO layer
5386 */
5387 napi_gro_flush(n, !!timeout);
3b47d303
ED
5388 if (timeout)
5389 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5390 HRTIMER_MODE_REL_PINNED);
3b47d303 5391 }
02c1602e 5392 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
5393 /* If n->poll_list is not empty, we need to mask irqs */
5394 local_irq_save(flags);
02c1602e 5395 list_del_init(&n->poll_list);
d75b1ade
ED
5396 local_irq_restore(flags);
5397 }
39e6c820
ED
5398
5399 do {
5400 val = READ_ONCE(n->state);
5401
5402 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5403
5404 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5405
5406 /* If STATE_MISSED was set, leave STATE_SCHED set,
5407 * because we will call napi->poll() one more time.
5408 * This C code was suggested by Alexander Duyck to help gcc.
5409 */
5410 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5411 NAPIF_STATE_SCHED;
5412 } while (cmpxchg(&n->state, val, new) != val);
5413
5414 if (unlikely(val & NAPIF_STATE_MISSED)) {
5415 __napi_schedule(n);
5416 return false;
5417 }
5418
364b6055 5419 return true;
d565b0a1 5420}
3b47d303 5421EXPORT_SYMBOL(napi_complete_done);
d565b0a1 5422
af12fa6e 5423/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 5424static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
5425{
5426 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5427 struct napi_struct *napi;
5428
5429 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5430 if (napi->napi_id == napi_id)
5431 return napi;
5432
5433 return NULL;
5434}
02d62e86
ED
5435
5436#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 5437
ce6aea93 5438#define BUSY_POLL_BUDGET 8
217f6974
ED
5439
5440static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5441{
5442 int rc;
5443
39e6c820
ED
5444 /* Busy polling means there is a high chance device driver hard irq
5445 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5446 * set in napi_schedule_prep().
5447 * Since we are about to call napi->poll() once more, we can safely
5448 * clear NAPI_STATE_MISSED.
5449 *
5450 * Note: x86 could use a single "lock and ..." instruction
5451 * to perform these two clear_bit()
5452 */
5453 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
5454 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5455
5456 local_bh_disable();
5457
5458 /* All we really want here is to re-enable device interrupts.
5459 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5460 */
5461 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1e22391e 5462 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974
ED
5463 netpoll_poll_unlock(have_poll_lock);
5464 if (rc == BUSY_POLL_BUDGET)
5465 __napi_schedule(napi);
5466 local_bh_enable();
217f6974
ED
5467}
5468
7db6b048
SS
5469void napi_busy_loop(unsigned int napi_id,
5470 bool (*loop_end)(void *, unsigned long),
5471 void *loop_end_arg)
02d62e86 5472{
7db6b048 5473 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 5474 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 5475 void *have_poll_lock = NULL;
02d62e86 5476 struct napi_struct *napi;
217f6974
ED
5477
5478restart:
217f6974 5479 napi_poll = NULL;
02d62e86 5480
2a028ecb 5481 rcu_read_lock();
02d62e86 5482
545cd5e5 5483 napi = napi_by_id(napi_id);
02d62e86
ED
5484 if (!napi)
5485 goto out;
5486
217f6974
ED
5487 preempt_disable();
5488 for (;;) {
2b5cd0df
AD
5489 int work = 0;
5490
2a028ecb 5491 local_bh_disable();
217f6974
ED
5492 if (!napi_poll) {
5493 unsigned long val = READ_ONCE(napi->state);
5494
5495 /* If multiple threads are competing for this napi,
5496 * we avoid dirtying napi->state as much as we can.
5497 */
5498 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5499 NAPIF_STATE_IN_BUSY_POLL))
5500 goto count;
5501 if (cmpxchg(&napi->state, val,
5502 val | NAPIF_STATE_IN_BUSY_POLL |
5503 NAPIF_STATE_SCHED) != val)
5504 goto count;
5505 have_poll_lock = netpoll_poll_lock(napi);
5506 napi_poll = napi->poll;
5507 }
2b5cd0df
AD
5508 work = napi_poll(napi, BUSY_POLL_BUDGET);
5509 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 5510count:
2b5cd0df 5511 if (work > 0)
7db6b048 5512 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 5513 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 5514 local_bh_enable();
02d62e86 5515
7db6b048 5516 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 5517 break;
02d62e86 5518
217f6974
ED
5519 if (unlikely(need_resched())) {
5520 if (napi_poll)
5521 busy_poll_stop(napi, have_poll_lock);
5522 preempt_enable();
5523 rcu_read_unlock();
5524 cond_resched();
7db6b048 5525 if (loop_end(loop_end_arg, start_time))
2b5cd0df 5526 return;
217f6974
ED
5527 goto restart;
5528 }
6cdf89b1 5529 cpu_relax();
217f6974
ED
5530 }
5531 if (napi_poll)
5532 busy_poll_stop(napi, have_poll_lock);
5533 preempt_enable();
02d62e86 5534out:
2a028ecb 5535 rcu_read_unlock();
02d62e86 5536}
7db6b048 5537EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
5538
5539#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5540
149d6ad8 5541static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5542{
d64b5e85
ED
5543 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5544 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5545 return;
af12fa6e 5546
52bd2d62 5547 spin_lock(&napi_hash_lock);
af12fa6e 5548
545cd5e5 5549 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 5550 do {
545cd5e5
AD
5551 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5552 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
5553 } while (napi_by_id(napi_gen_id));
5554 napi->napi_id = napi_gen_id;
af12fa6e 5555
52bd2d62
ED
5556 hlist_add_head_rcu(&napi->napi_hash_node,
5557 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5558
52bd2d62 5559 spin_unlock(&napi_hash_lock);
af12fa6e 5560}
af12fa6e
ET
5561
5562/* Warning : caller is responsible to make sure rcu grace period
5563 * is respected before freeing memory containing @napi
5564 */
34cbe27e 5565bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5566{
34cbe27e
ED
5567 bool rcu_sync_needed = false;
5568
af12fa6e
ET
5569 spin_lock(&napi_hash_lock);
5570
34cbe27e
ED
5571 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5572 rcu_sync_needed = true;
af12fa6e 5573 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5574 }
af12fa6e 5575 spin_unlock(&napi_hash_lock);
34cbe27e 5576 return rcu_sync_needed;
af12fa6e
ET
5577}
5578EXPORT_SYMBOL_GPL(napi_hash_del);
5579
3b47d303
ED
5580static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5581{
5582 struct napi_struct *napi;
5583
5584 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
5585
5586 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5587 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5588 */
5589 if (napi->gro_list && !napi_disable_pending(napi) &&
5590 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5591 __napi_schedule_irqoff(napi);
3b47d303
ED
5592
5593 return HRTIMER_NORESTART;
5594}
5595
d565b0a1
HX
5596void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5597 int (*poll)(struct napi_struct *, int), int weight)
5598{
5599 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5600 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5601 napi->timer.function = napi_watchdog;
4ae5544f 5602 napi->gro_count = 0;
d565b0a1 5603 napi->gro_list = NULL;
5d38a079 5604 napi->skb = NULL;
d565b0a1 5605 napi->poll = poll;
82dc3c63
ED
5606 if (weight > NAPI_POLL_WEIGHT)
5607 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5608 weight, dev->name);
d565b0a1
HX
5609 napi->weight = weight;
5610 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5611 napi->dev = dev;
5d38a079 5612#ifdef CONFIG_NETPOLL
d565b0a1
HX
5613 napi->poll_owner = -1;
5614#endif
5615 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5616 napi_hash_add(napi);
d565b0a1
HX
5617}
5618EXPORT_SYMBOL(netif_napi_add);
5619
3b47d303
ED
5620void napi_disable(struct napi_struct *n)
5621{
5622 might_sleep();
5623 set_bit(NAPI_STATE_DISABLE, &n->state);
5624
5625 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5626 msleep(1);
2d8bff12
NH
5627 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5628 msleep(1);
3b47d303
ED
5629
5630 hrtimer_cancel(&n->timer);
5631
5632 clear_bit(NAPI_STATE_DISABLE, &n->state);
5633}
5634EXPORT_SYMBOL(napi_disable);
5635
93d05d4a 5636/* Must be called in process context */
d565b0a1
HX
5637void netif_napi_del(struct napi_struct *napi)
5638{
93d05d4a
ED
5639 might_sleep();
5640 if (napi_hash_del(napi))
5641 synchronize_net();
d7b06636 5642 list_del_init(&napi->dev_list);
76620aaf 5643 napi_free_frags(napi);
d565b0a1 5644
289dccbe 5645 kfree_skb_list(napi->gro_list);
d565b0a1 5646 napi->gro_list = NULL;
4ae5544f 5647 napi->gro_count = 0;
d565b0a1
HX
5648}
5649EXPORT_SYMBOL(netif_napi_del);
5650
726ce70e
HX
5651static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5652{
5653 void *have;
5654 int work, weight;
5655
5656 list_del_init(&n->poll_list);
5657
5658 have = netpoll_poll_lock(n);
5659
5660 weight = n->weight;
5661
5662 /* This NAPI_STATE_SCHED test is for avoiding a race
5663 * with netpoll's poll_napi(). Only the entity which
5664 * obtains the lock and sees NAPI_STATE_SCHED set will
5665 * actually make the ->poll() call. Therefore we avoid
5666 * accidentally calling ->poll() when NAPI is not scheduled.
5667 */
5668 work = 0;
5669 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5670 work = n->poll(n, weight);
1db19db7 5671 trace_napi_poll(n, work, weight);
726ce70e
HX
5672 }
5673
5674 WARN_ON_ONCE(work > weight);
5675
5676 if (likely(work < weight))
5677 goto out_unlock;
5678
5679 /* Drivers must not modify the NAPI state if they
5680 * consume the entire weight. In such cases this code
5681 * still "owns" the NAPI instance and therefore can
5682 * move the instance around on the list at-will.
5683 */
5684 if (unlikely(napi_disable_pending(n))) {
5685 napi_complete(n);
5686 goto out_unlock;
5687 }
5688
5689 if (n->gro_list) {
5690 /* flush too old packets
5691 * If HZ < 1000, flush all packets.
5692 */
5693 napi_gro_flush(n, HZ >= 1000);
5694 }
5695
001ce546
HX
5696 /* Some drivers may have called napi_schedule
5697 * prior to exhausting their budget.
5698 */
5699 if (unlikely(!list_empty(&n->poll_list))) {
5700 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5701 n->dev ? n->dev->name : "backlog");
5702 goto out_unlock;
5703 }
5704
726ce70e
HX
5705 list_add_tail(&n->poll_list, repoll);
5706
5707out_unlock:
5708 netpoll_poll_unlock(have);
5709
5710 return work;
5711}
5712
0766f788 5713static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5714{
903ceff7 5715 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
5716 unsigned long time_limit = jiffies +
5717 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 5718 int budget = netdev_budget;
d75b1ade
ED
5719 LIST_HEAD(list);
5720 LIST_HEAD(repoll);
53fb95d3 5721
1da177e4 5722 local_irq_disable();
d75b1ade
ED
5723 list_splice_init(&sd->poll_list, &list);
5724 local_irq_enable();
1da177e4 5725
ceb8d5bf 5726 for (;;) {
bea3348e 5727 struct napi_struct *n;
1da177e4 5728
ceb8d5bf
HX
5729 if (list_empty(&list)) {
5730 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5731 goto out;
ceb8d5bf
HX
5732 break;
5733 }
5734
6bd373eb
HX
5735 n = list_first_entry(&list, struct napi_struct, poll_list);
5736 budget -= napi_poll(n, &repoll);
5737
d75b1ade 5738 /* If softirq window is exhausted then punt.
24f8b238
SH
5739 * Allow this to run for 2 jiffies since which will allow
5740 * an average latency of 1.5/HZ.
bea3348e 5741 */
ceb8d5bf
HX
5742 if (unlikely(budget <= 0 ||
5743 time_after_eq(jiffies, time_limit))) {
5744 sd->time_squeeze++;
5745 break;
5746 }
1da177e4 5747 }
d75b1ade 5748
d75b1ade
ED
5749 local_irq_disable();
5750
5751 list_splice_tail_init(&sd->poll_list, &list);
5752 list_splice_tail(&repoll, &list);
5753 list_splice(&list, &sd->poll_list);
5754 if (!list_empty(&sd->poll_list))
5755 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5756
e326bed2 5757 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5758out:
5759 __kfree_skb_flush();
1da177e4
LT
5760}
5761
aa9d8560 5762struct netdev_adjacent {
9ff162a8 5763 struct net_device *dev;
5d261913
VF
5764
5765 /* upper master flag, there can only be one master device per list */
9ff162a8 5766 bool master;
5d261913 5767
5d261913
VF
5768 /* counter for the number of times this device was added to us */
5769 u16 ref_nr;
5770
402dae96
VF
5771 /* private field for the users */
5772 void *private;
5773
9ff162a8
JP
5774 struct list_head list;
5775 struct rcu_head rcu;
9ff162a8
JP
5776};
5777
6ea29da1 5778static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5779 struct list_head *adj_list)
9ff162a8 5780{
5d261913 5781 struct netdev_adjacent *adj;
5d261913 5782
2f268f12 5783 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5784 if (adj->dev == adj_dev)
5785 return adj;
9ff162a8
JP
5786 }
5787 return NULL;
5788}
5789
f1170fd4
DA
5790static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5791{
5792 struct net_device *dev = data;
5793
5794 return upper_dev == dev;
5795}
5796
9ff162a8
JP
5797/**
5798 * netdev_has_upper_dev - Check if device is linked to an upper device
5799 * @dev: device
5800 * @upper_dev: upper device to check
5801 *
5802 * Find out if a device is linked to specified upper device and return true
5803 * in case it is. Note that this checks only immediate upper device,
5804 * not through a complete stack of devices. The caller must hold the RTNL lock.
5805 */
5806bool netdev_has_upper_dev(struct net_device *dev,
5807 struct net_device *upper_dev)
5808{
5809 ASSERT_RTNL();
5810
f1170fd4
DA
5811 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5812 upper_dev);
9ff162a8
JP
5813}
5814EXPORT_SYMBOL(netdev_has_upper_dev);
5815
1a3f060c
DA
5816/**
5817 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5818 * @dev: device
5819 * @upper_dev: upper device to check
5820 *
5821 * Find out if a device is linked to specified upper device and return true
5822 * in case it is. Note that this checks the entire upper device chain.
5823 * The caller must hold rcu lock.
5824 */
5825
1a3f060c
DA
5826bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5827 struct net_device *upper_dev)
5828{
5829 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5830 upper_dev);
5831}
5832EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5833
9ff162a8
JP
5834/**
5835 * netdev_has_any_upper_dev - Check if device is linked to some device
5836 * @dev: device
5837 *
5838 * Find out if a device is linked to an upper device and return true in case
5839 * it is. The caller must hold the RTNL lock.
5840 */
25cc72a3 5841bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5842{
5843 ASSERT_RTNL();
5844
f1170fd4 5845 return !list_empty(&dev->adj_list.upper);
9ff162a8 5846}
25cc72a3 5847EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
5848
5849/**
5850 * netdev_master_upper_dev_get - Get master upper device
5851 * @dev: device
5852 *
5853 * Find a master upper device and return pointer to it or NULL in case
5854 * it's not there. The caller must hold the RTNL lock.
5855 */
5856struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5857{
aa9d8560 5858 struct netdev_adjacent *upper;
9ff162a8
JP
5859
5860 ASSERT_RTNL();
5861
2f268f12 5862 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5863 return NULL;
5864
2f268f12 5865 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5866 struct netdev_adjacent, list);
9ff162a8
JP
5867 if (likely(upper->master))
5868 return upper->dev;
5869 return NULL;
5870}
5871EXPORT_SYMBOL(netdev_master_upper_dev_get);
5872
0f524a80
DA
5873/**
5874 * netdev_has_any_lower_dev - Check if device is linked to some device
5875 * @dev: device
5876 *
5877 * Find out if a device is linked to a lower device and return true in case
5878 * it is. The caller must hold the RTNL lock.
5879 */
5880static bool netdev_has_any_lower_dev(struct net_device *dev)
5881{
5882 ASSERT_RTNL();
5883
5884 return !list_empty(&dev->adj_list.lower);
5885}
5886
b6ccba4c
VF
5887void *netdev_adjacent_get_private(struct list_head *adj_list)
5888{
5889 struct netdev_adjacent *adj;
5890
5891 adj = list_entry(adj_list, struct netdev_adjacent, list);
5892
5893 return adj->private;
5894}
5895EXPORT_SYMBOL(netdev_adjacent_get_private);
5896
44a40855
VY
5897/**
5898 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5899 * @dev: device
5900 * @iter: list_head ** of the current position
5901 *
5902 * Gets the next device from the dev's upper list, starting from iter
5903 * position. The caller must hold RCU read lock.
5904 */
5905struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5906 struct list_head **iter)
5907{
5908 struct netdev_adjacent *upper;
5909
5910 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5911
5912 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5913
5914 if (&upper->list == &dev->adj_list.upper)
5915 return NULL;
5916
5917 *iter = &upper->list;
5918
5919 return upper->dev;
5920}
5921EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5922
1a3f060c
DA
5923static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5924 struct list_head **iter)
5925{
5926 struct netdev_adjacent *upper;
5927
5928 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5929
5930 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5931
5932 if (&upper->list == &dev->adj_list.upper)
5933 return NULL;
5934
5935 *iter = &upper->list;
5936
5937 return upper->dev;
5938}
5939
5940int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5941 int (*fn)(struct net_device *dev,
5942 void *data),
5943 void *data)
5944{
5945 struct net_device *udev;
5946 struct list_head *iter;
5947 int ret;
5948
5949 for (iter = &dev->adj_list.upper,
5950 udev = netdev_next_upper_dev_rcu(dev, &iter);
5951 udev;
5952 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5953 /* first is the upper device itself */
5954 ret = fn(udev, data);
5955 if (ret)
5956 return ret;
5957
5958 /* then look at all of its upper devices */
5959 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5960 if (ret)
5961 return ret;
5962 }
5963
5964 return 0;
5965}
5966EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5967
31088a11
VF
5968/**
5969 * netdev_lower_get_next_private - Get the next ->private from the
5970 * lower neighbour list
5971 * @dev: device
5972 * @iter: list_head ** of the current position
5973 *
5974 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5975 * list, starting from iter position. The caller must hold either hold the
5976 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5977 * list will remain unchanged.
31088a11
VF
5978 */
5979void *netdev_lower_get_next_private(struct net_device *dev,
5980 struct list_head **iter)
5981{
5982 struct netdev_adjacent *lower;
5983
5984 lower = list_entry(*iter, struct netdev_adjacent, list);
5985
5986 if (&lower->list == &dev->adj_list.lower)
5987 return NULL;
5988
6859e7df 5989 *iter = lower->list.next;
31088a11
VF
5990
5991 return lower->private;
5992}
5993EXPORT_SYMBOL(netdev_lower_get_next_private);
5994
5995/**
5996 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5997 * lower neighbour list, RCU
5998 * variant
5999 * @dev: device
6000 * @iter: list_head ** of the current position
6001 *
6002 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6003 * list, starting from iter position. The caller must hold RCU read lock.
6004 */
6005void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6006 struct list_head **iter)
6007{
6008 struct netdev_adjacent *lower;
6009
6010 WARN_ON_ONCE(!rcu_read_lock_held());
6011
6012 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6013
6014 if (&lower->list == &dev->adj_list.lower)
6015 return NULL;
6016
6859e7df 6017 *iter = &lower->list;
31088a11
VF
6018
6019 return lower->private;
6020}
6021EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6022
4085ebe8
VY
6023/**
6024 * netdev_lower_get_next - Get the next device from the lower neighbour
6025 * list
6026 * @dev: device
6027 * @iter: list_head ** of the current position
6028 *
6029 * Gets the next netdev_adjacent from the dev's lower neighbour
6030 * list, starting from iter position. The caller must hold RTNL lock or
6031 * its own locking that guarantees that the neighbour lower
b469139e 6032 * list will remain unchanged.
4085ebe8
VY
6033 */
6034void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6035{
6036 struct netdev_adjacent *lower;
6037
cfdd28be 6038 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
6039
6040 if (&lower->list == &dev->adj_list.lower)
6041 return NULL;
6042
cfdd28be 6043 *iter = lower->list.next;
4085ebe8
VY
6044
6045 return lower->dev;
6046}
6047EXPORT_SYMBOL(netdev_lower_get_next);
6048
1a3f060c
DA
6049static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6050 struct list_head **iter)
6051{
6052 struct netdev_adjacent *lower;
6053
46b5ab1a 6054 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
6055
6056 if (&lower->list == &dev->adj_list.lower)
6057 return NULL;
6058
46b5ab1a 6059 *iter = &lower->list;
1a3f060c
DA
6060
6061 return lower->dev;
6062}
6063
6064int netdev_walk_all_lower_dev(struct net_device *dev,
6065 int (*fn)(struct net_device *dev,
6066 void *data),
6067 void *data)
6068{
6069 struct net_device *ldev;
6070 struct list_head *iter;
6071 int ret;
6072
6073 for (iter = &dev->adj_list.lower,
6074 ldev = netdev_next_lower_dev(dev, &iter);
6075 ldev;
6076 ldev = netdev_next_lower_dev(dev, &iter)) {
6077 /* first is the lower device itself */
6078 ret = fn(ldev, data);
6079 if (ret)
6080 return ret;
6081
6082 /* then look at all of its lower devices */
6083 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6084 if (ret)
6085 return ret;
6086 }
6087
6088 return 0;
6089}
6090EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6091
1a3f060c
DA
6092static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6093 struct list_head **iter)
6094{
6095 struct netdev_adjacent *lower;
6096
6097 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6098 if (&lower->list == &dev->adj_list.lower)
6099 return NULL;
6100
6101 *iter = &lower->list;
6102
6103 return lower->dev;
6104}
6105
6106int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6107 int (*fn)(struct net_device *dev,
6108 void *data),
6109 void *data)
6110{
6111 struct net_device *ldev;
6112 struct list_head *iter;
6113 int ret;
6114
6115 for (iter = &dev->adj_list.lower,
6116 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6117 ldev;
6118 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6119 /* first is the lower device itself */
6120 ret = fn(ldev, data);
6121 if (ret)
6122 return ret;
6123
6124 /* then look at all of its lower devices */
6125 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6126 if (ret)
6127 return ret;
6128 }
6129
6130 return 0;
6131}
6132EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6133
e001bfad 6134/**
6135 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6136 * lower neighbour list, RCU
6137 * variant
6138 * @dev: device
6139 *
6140 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6141 * list. The caller must hold RCU read lock.
6142 */
6143void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6144{
6145 struct netdev_adjacent *lower;
6146
6147 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6148 struct netdev_adjacent, list);
6149 if (lower)
6150 return lower->private;
6151 return NULL;
6152}
6153EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6154
9ff162a8
JP
6155/**
6156 * netdev_master_upper_dev_get_rcu - Get master upper device
6157 * @dev: device
6158 *
6159 * Find a master upper device and return pointer to it or NULL in case
6160 * it's not there. The caller must hold the RCU read lock.
6161 */
6162struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6163{
aa9d8560 6164 struct netdev_adjacent *upper;
9ff162a8 6165
2f268f12 6166 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 6167 struct netdev_adjacent, list);
9ff162a8
JP
6168 if (upper && likely(upper->master))
6169 return upper->dev;
6170 return NULL;
6171}
6172EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6173
0a59f3a9 6174static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
6175 struct net_device *adj_dev,
6176 struct list_head *dev_list)
6177{
6178 char linkname[IFNAMSIZ+7];
f4563a75 6179
3ee32707
VF
6180 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6181 "upper_%s" : "lower_%s", adj_dev->name);
6182 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6183 linkname);
6184}
0a59f3a9 6185static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
6186 char *name,
6187 struct list_head *dev_list)
6188{
6189 char linkname[IFNAMSIZ+7];
f4563a75 6190
3ee32707
VF
6191 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6192 "upper_%s" : "lower_%s", name);
6193 sysfs_remove_link(&(dev->dev.kobj), linkname);
6194}
6195
7ce64c79
AF
6196static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6197 struct net_device *adj_dev,
6198 struct list_head *dev_list)
6199{
6200 return (dev_list == &dev->adj_list.upper ||
6201 dev_list == &dev->adj_list.lower) &&
6202 net_eq(dev_net(dev), dev_net(adj_dev));
6203}
3ee32707 6204
5d261913
VF
6205static int __netdev_adjacent_dev_insert(struct net_device *dev,
6206 struct net_device *adj_dev,
7863c054 6207 struct list_head *dev_list,
402dae96 6208 void *private, bool master)
5d261913
VF
6209{
6210 struct netdev_adjacent *adj;
842d67a7 6211 int ret;
5d261913 6212
6ea29da1 6213 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6214
6215 if (adj) {
790510d9 6216 adj->ref_nr += 1;
67b62f98
DA
6217 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6218 dev->name, adj_dev->name, adj->ref_nr);
6219
5d261913
VF
6220 return 0;
6221 }
6222
6223 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6224 if (!adj)
6225 return -ENOMEM;
6226
6227 adj->dev = adj_dev;
6228 adj->master = master;
790510d9 6229 adj->ref_nr = 1;
402dae96 6230 adj->private = private;
5d261913 6231 dev_hold(adj_dev);
2f268f12 6232
67b62f98
DA
6233 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6234 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 6235
7ce64c79 6236 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 6237 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
6238 if (ret)
6239 goto free_adj;
6240 }
6241
7863c054 6242 /* Ensure that master link is always the first item in list. */
842d67a7
VF
6243 if (master) {
6244 ret = sysfs_create_link(&(dev->dev.kobj),
6245 &(adj_dev->dev.kobj), "master");
6246 if (ret)
5831d66e 6247 goto remove_symlinks;
842d67a7 6248
7863c054 6249 list_add_rcu(&adj->list, dev_list);
842d67a7 6250 } else {
7863c054 6251 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 6252 }
5d261913
VF
6253
6254 return 0;
842d67a7 6255
5831d66e 6256remove_symlinks:
7ce64c79 6257 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6258 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6259free_adj:
6260 kfree(adj);
974daef7 6261 dev_put(adj_dev);
842d67a7
VF
6262
6263 return ret;
5d261913
VF
6264}
6265
1d143d9f 6266static void __netdev_adjacent_dev_remove(struct net_device *dev,
6267 struct net_device *adj_dev,
93409033 6268 u16 ref_nr,
1d143d9f 6269 struct list_head *dev_list)
5d261913
VF
6270{
6271 struct netdev_adjacent *adj;
6272
67b62f98
DA
6273 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6274 dev->name, adj_dev->name, ref_nr);
6275
6ea29da1 6276 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6277
2f268f12 6278 if (!adj) {
67b62f98 6279 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 6280 dev->name, adj_dev->name);
67b62f98
DA
6281 WARN_ON(1);
6282 return;
2f268f12 6283 }
5d261913 6284
93409033 6285 if (adj->ref_nr > ref_nr) {
67b62f98
DA
6286 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6287 dev->name, adj_dev->name, ref_nr,
6288 adj->ref_nr - ref_nr);
93409033 6289 adj->ref_nr -= ref_nr;
5d261913
VF
6290 return;
6291 }
6292
842d67a7
VF
6293 if (adj->master)
6294 sysfs_remove_link(&(dev->dev.kobj), "master");
6295
7ce64c79 6296 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6297 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 6298
5d261913 6299 list_del_rcu(&adj->list);
67b62f98 6300 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 6301 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
6302 dev_put(adj_dev);
6303 kfree_rcu(adj, rcu);
6304}
6305
1d143d9f 6306static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6307 struct net_device *upper_dev,
6308 struct list_head *up_list,
6309 struct list_head *down_list,
6310 void *private, bool master)
5d261913
VF
6311{
6312 int ret;
6313
790510d9 6314 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 6315 private, master);
5d261913
VF
6316 if (ret)
6317 return ret;
6318
790510d9 6319 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 6320 private, false);
5d261913 6321 if (ret) {
790510d9 6322 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
6323 return ret;
6324 }
6325
6326 return 0;
6327}
6328
1d143d9f 6329static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6330 struct net_device *upper_dev,
93409033 6331 u16 ref_nr,
1d143d9f 6332 struct list_head *up_list,
6333 struct list_head *down_list)
5d261913 6334{
93409033
AC
6335 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6336 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
6337}
6338
1d143d9f 6339static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6340 struct net_device *upper_dev,
6341 void *private, bool master)
2f268f12 6342{
f1170fd4
DA
6343 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6344 &dev->adj_list.upper,
6345 &upper_dev->adj_list.lower,
6346 private, master);
5d261913
VF
6347}
6348
1d143d9f 6349static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6350 struct net_device *upper_dev)
2f268f12 6351{
93409033 6352 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
6353 &dev->adj_list.upper,
6354 &upper_dev->adj_list.lower);
6355}
5d261913 6356
9ff162a8 6357static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 6358 struct net_device *upper_dev, bool master,
42ab19ee
DA
6359 void *upper_priv, void *upper_info,
6360 struct netlink_ext_ack *extack)
9ff162a8 6361{
51d0c047
DA
6362 struct netdev_notifier_changeupper_info changeupper_info = {
6363 .info = {
6364 .dev = dev,
42ab19ee 6365 .extack = extack,
51d0c047
DA
6366 },
6367 .upper_dev = upper_dev,
6368 .master = master,
6369 .linking = true,
6370 .upper_info = upper_info,
6371 };
5d261913 6372 int ret = 0;
9ff162a8
JP
6373
6374 ASSERT_RTNL();
6375
6376 if (dev == upper_dev)
6377 return -EBUSY;
6378
6379 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 6380 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
6381 return -EBUSY;
6382
f1170fd4 6383 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
6384 return -EEXIST;
6385
6386 if (master && netdev_master_upper_dev_get(dev))
6387 return -EBUSY;
6388
51d0c047 6389 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
6390 &changeupper_info.info);
6391 ret = notifier_to_errno(ret);
6392 if (ret)
6393 return ret;
6394
6dffb044 6395 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 6396 master);
5d261913
VF
6397 if (ret)
6398 return ret;
9ff162a8 6399
51d0c047 6400 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
6401 &changeupper_info.info);
6402 ret = notifier_to_errno(ret);
6403 if (ret)
f1170fd4 6404 goto rollback;
b03804e7 6405
9ff162a8 6406 return 0;
5d261913 6407
f1170fd4 6408rollback:
2f268f12 6409 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
6410
6411 return ret;
9ff162a8
JP
6412}
6413
6414/**
6415 * netdev_upper_dev_link - Add a link to the upper device
6416 * @dev: device
6417 * @upper_dev: new upper device
6418 *
6419 * Adds a link to device which is upper to this one. The caller must hold
6420 * the RTNL lock. On a failure a negative errno code is returned.
6421 * On success the reference counts are adjusted and the function
6422 * returns zero.
6423 */
6424int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
6425 struct net_device *upper_dev,
6426 struct netlink_ext_ack *extack)
9ff162a8 6427{
42ab19ee
DA
6428 return __netdev_upper_dev_link(dev, upper_dev, false,
6429 NULL, NULL, extack);
9ff162a8
JP
6430}
6431EXPORT_SYMBOL(netdev_upper_dev_link);
6432
6433/**
6434 * netdev_master_upper_dev_link - Add a master link to the upper device
6435 * @dev: device
6436 * @upper_dev: new upper device
6dffb044 6437 * @upper_priv: upper device private
29bf24af 6438 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
6439 *
6440 * Adds a link to device which is upper to this one. In this case, only
6441 * one master upper device can be linked, although other non-master devices
6442 * might be linked as well. The caller must hold the RTNL lock.
6443 * On a failure a negative errno code is returned. On success the reference
6444 * counts are adjusted and the function returns zero.
6445 */
6446int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 6447 struct net_device *upper_dev,
42ab19ee
DA
6448 void *upper_priv, void *upper_info,
6449 struct netlink_ext_ack *extack)
9ff162a8 6450{
29bf24af 6451 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 6452 upper_priv, upper_info, extack);
9ff162a8
JP
6453}
6454EXPORT_SYMBOL(netdev_master_upper_dev_link);
6455
6456/**
6457 * netdev_upper_dev_unlink - Removes a link to upper device
6458 * @dev: device
6459 * @upper_dev: new upper device
6460 *
6461 * Removes a link to device which is upper to this one. The caller must hold
6462 * the RTNL lock.
6463 */
6464void netdev_upper_dev_unlink(struct net_device *dev,
6465 struct net_device *upper_dev)
6466{
51d0c047
DA
6467 struct netdev_notifier_changeupper_info changeupper_info = {
6468 .info = {
6469 .dev = dev,
6470 },
6471 .upper_dev = upper_dev,
6472 .linking = false,
6473 };
f4563a75 6474
9ff162a8
JP
6475 ASSERT_RTNL();
6476
0e4ead9d 6477 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 6478
51d0c047 6479 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
6480 &changeupper_info.info);
6481
2f268f12 6482 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 6483
51d0c047 6484 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 6485 &changeupper_info.info);
9ff162a8
JP
6486}
6487EXPORT_SYMBOL(netdev_upper_dev_unlink);
6488
61bd3857
MS
6489/**
6490 * netdev_bonding_info_change - Dispatch event about slave change
6491 * @dev: device
4a26e453 6492 * @bonding_info: info to dispatch
61bd3857
MS
6493 *
6494 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6495 * The caller must hold the RTNL lock.
6496 */
6497void netdev_bonding_info_change(struct net_device *dev,
6498 struct netdev_bonding_info *bonding_info)
6499{
51d0c047
DA
6500 struct netdev_notifier_bonding_info info = {
6501 .info.dev = dev,
6502 };
61bd3857
MS
6503
6504 memcpy(&info.bonding_info, bonding_info,
6505 sizeof(struct netdev_bonding_info));
51d0c047 6506 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
6507 &info.info);
6508}
6509EXPORT_SYMBOL(netdev_bonding_info_change);
6510
2ce1ee17 6511static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6512{
6513 struct netdev_adjacent *iter;
6514
6515 struct net *net = dev_net(dev);
6516
6517 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6518 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6519 continue;
6520 netdev_adjacent_sysfs_add(iter->dev, dev,
6521 &iter->dev->adj_list.lower);
6522 netdev_adjacent_sysfs_add(dev, iter->dev,
6523 &dev->adj_list.upper);
6524 }
6525
6526 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6527 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6528 continue;
6529 netdev_adjacent_sysfs_add(iter->dev, dev,
6530 &iter->dev->adj_list.upper);
6531 netdev_adjacent_sysfs_add(dev, iter->dev,
6532 &dev->adj_list.lower);
6533 }
6534}
6535
2ce1ee17 6536static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6537{
6538 struct netdev_adjacent *iter;
6539
6540 struct net *net = dev_net(dev);
6541
6542 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6543 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6544 continue;
6545 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6546 &iter->dev->adj_list.lower);
6547 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6548 &dev->adj_list.upper);
6549 }
6550
6551 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6552 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6553 continue;
6554 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6555 &iter->dev->adj_list.upper);
6556 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6557 &dev->adj_list.lower);
6558 }
6559}
6560
5bb025fa 6561void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6562{
5bb025fa 6563 struct netdev_adjacent *iter;
402dae96 6564
4c75431a
AF
6565 struct net *net = dev_net(dev);
6566
5bb025fa 6567 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6568 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6569 continue;
5bb025fa
VF
6570 netdev_adjacent_sysfs_del(iter->dev, oldname,
6571 &iter->dev->adj_list.lower);
6572 netdev_adjacent_sysfs_add(iter->dev, dev,
6573 &iter->dev->adj_list.lower);
6574 }
402dae96 6575
5bb025fa 6576 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6577 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6578 continue;
5bb025fa
VF
6579 netdev_adjacent_sysfs_del(iter->dev, oldname,
6580 &iter->dev->adj_list.upper);
6581 netdev_adjacent_sysfs_add(iter->dev, dev,
6582 &iter->dev->adj_list.upper);
6583 }
402dae96 6584}
402dae96
VF
6585
6586void *netdev_lower_dev_get_private(struct net_device *dev,
6587 struct net_device *lower_dev)
6588{
6589 struct netdev_adjacent *lower;
6590
6591 if (!lower_dev)
6592 return NULL;
6ea29da1 6593 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6594 if (!lower)
6595 return NULL;
6596
6597 return lower->private;
6598}
6599EXPORT_SYMBOL(netdev_lower_dev_get_private);
6600
4085ebe8 6601
952fcfd0 6602int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6603{
6604 struct net_device *lower = NULL;
6605 struct list_head *iter;
6606 int max_nest = -1;
6607 int nest;
6608
6609 ASSERT_RTNL();
6610
6611 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6612 nest = dev_get_nest_level(lower);
4085ebe8
VY
6613 if (max_nest < nest)
6614 max_nest = nest;
6615 }
6616
952fcfd0 6617 return max_nest + 1;
4085ebe8
VY
6618}
6619EXPORT_SYMBOL(dev_get_nest_level);
6620
04d48266
JP
6621/**
6622 * netdev_lower_change - Dispatch event about lower device state change
6623 * @lower_dev: device
6624 * @lower_state_info: state to dispatch
6625 *
6626 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6627 * The caller must hold the RTNL lock.
6628 */
6629void netdev_lower_state_changed(struct net_device *lower_dev,
6630 void *lower_state_info)
6631{
51d0c047
DA
6632 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6633 .info.dev = lower_dev,
6634 };
04d48266
JP
6635
6636 ASSERT_RTNL();
6637 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 6638 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
6639 &changelowerstate_info.info);
6640}
6641EXPORT_SYMBOL(netdev_lower_state_changed);
6642
b6c40d68
PM
6643static void dev_change_rx_flags(struct net_device *dev, int flags)
6644{
d314774c
SH
6645 const struct net_device_ops *ops = dev->netdev_ops;
6646
d2615bf4 6647 if (ops->ndo_change_rx_flags)
d314774c 6648 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6649}
6650
991fb3f7 6651static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6652{
b536db93 6653 unsigned int old_flags = dev->flags;
d04a48b0
EB
6654 kuid_t uid;
6655 kgid_t gid;
1da177e4 6656
24023451
PM
6657 ASSERT_RTNL();
6658
dad9b335
WC
6659 dev->flags |= IFF_PROMISC;
6660 dev->promiscuity += inc;
6661 if (dev->promiscuity == 0) {
6662 /*
6663 * Avoid overflow.
6664 * If inc causes overflow, untouch promisc and return error.
6665 */
6666 if (inc < 0)
6667 dev->flags &= ~IFF_PROMISC;
6668 else {
6669 dev->promiscuity -= inc;
7b6cd1ce
JP
6670 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6671 dev->name);
dad9b335
WC
6672 return -EOVERFLOW;
6673 }
6674 }
52609c0b 6675 if (dev->flags != old_flags) {
7b6cd1ce
JP
6676 pr_info("device %s %s promiscuous mode\n",
6677 dev->name,
6678 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6679 if (audit_enabled) {
6680 current_uid_gid(&uid, &gid);
7759db82
KHK
6681 audit_log(current->audit_context, GFP_ATOMIC,
6682 AUDIT_ANOM_PROMISCUOUS,
6683 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6684 dev->name, (dev->flags & IFF_PROMISC),
6685 (old_flags & IFF_PROMISC),
e1760bd5 6686 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6687 from_kuid(&init_user_ns, uid),
6688 from_kgid(&init_user_ns, gid),
7759db82 6689 audit_get_sessionid(current));
8192b0c4 6690 }
24023451 6691
b6c40d68 6692 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6693 }
991fb3f7
ND
6694 if (notify)
6695 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6696 return 0;
1da177e4
LT
6697}
6698
4417da66
PM
6699/**
6700 * dev_set_promiscuity - update promiscuity count on a device
6701 * @dev: device
6702 * @inc: modifier
6703 *
6704 * Add or remove promiscuity from a device. While the count in the device
6705 * remains above zero the interface remains promiscuous. Once it hits zero
6706 * the device reverts back to normal filtering operation. A negative inc
6707 * value is used to drop promiscuity on the device.
dad9b335 6708 * Return 0 if successful or a negative errno code on error.
4417da66 6709 */
dad9b335 6710int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6711{
b536db93 6712 unsigned int old_flags = dev->flags;
dad9b335 6713 int err;
4417da66 6714
991fb3f7 6715 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6716 if (err < 0)
dad9b335 6717 return err;
4417da66
PM
6718 if (dev->flags != old_flags)
6719 dev_set_rx_mode(dev);
dad9b335 6720 return err;
4417da66 6721}
d1b19dff 6722EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6723
991fb3f7 6724static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6725{
991fb3f7 6726 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6727
24023451
PM
6728 ASSERT_RTNL();
6729
1da177e4 6730 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6731 dev->allmulti += inc;
6732 if (dev->allmulti == 0) {
6733 /*
6734 * Avoid overflow.
6735 * If inc causes overflow, untouch allmulti and return error.
6736 */
6737 if (inc < 0)
6738 dev->flags &= ~IFF_ALLMULTI;
6739 else {
6740 dev->allmulti -= inc;
7b6cd1ce
JP
6741 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6742 dev->name);
dad9b335
WC
6743 return -EOVERFLOW;
6744 }
6745 }
24023451 6746 if (dev->flags ^ old_flags) {
b6c40d68 6747 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6748 dev_set_rx_mode(dev);
991fb3f7
ND
6749 if (notify)
6750 __dev_notify_flags(dev, old_flags,
6751 dev->gflags ^ old_gflags);
24023451 6752 }
dad9b335 6753 return 0;
4417da66 6754}
991fb3f7
ND
6755
6756/**
6757 * dev_set_allmulti - update allmulti count on a device
6758 * @dev: device
6759 * @inc: modifier
6760 *
6761 * Add or remove reception of all multicast frames to a device. While the
6762 * count in the device remains above zero the interface remains listening
6763 * to all interfaces. Once it hits zero the device reverts back to normal
6764 * filtering operation. A negative @inc value is used to drop the counter
6765 * when releasing a resource needing all multicasts.
6766 * Return 0 if successful or a negative errno code on error.
6767 */
6768
6769int dev_set_allmulti(struct net_device *dev, int inc)
6770{
6771 return __dev_set_allmulti(dev, inc, true);
6772}
d1b19dff 6773EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6774
6775/*
6776 * Upload unicast and multicast address lists to device and
6777 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6778 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6779 * are present.
6780 */
6781void __dev_set_rx_mode(struct net_device *dev)
6782{
d314774c
SH
6783 const struct net_device_ops *ops = dev->netdev_ops;
6784
4417da66
PM
6785 /* dev_open will call this function so the list will stay sane. */
6786 if (!(dev->flags&IFF_UP))
6787 return;
6788
6789 if (!netif_device_present(dev))
40b77c94 6790 return;
4417da66 6791
01789349 6792 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6793 /* Unicast addresses changes may only happen under the rtnl,
6794 * therefore calling __dev_set_promiscuity here is safe.
6795 */
32e7bfc4 6796 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6797 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6798 dev->uc_promisc = true;
32e7bfc4 6799 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6800 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6801 dev->uc_promisc = false;
4417da66 6802 }
4417da66 6803 }
01789349
JP
6804
6805 if (ops->ndo_set_rx_mode)
6806 ops->ndo_set_rx_mode(dev);
4417da66
PM
6807}
6808
6809void dev_set_rx_mode(struct net_device *dev)
6810{
b9e40857 6811 netif_addr_lock_bh(dev);
4417da66 6812 __dev_set_rx_mode(dev);
b9e40857 6813 netif_addr_unlock_bh(dev);
1da177e4
LT
6814}
6815
f0db275a
SH
6816/**
6817 * dev_get_flags - get flags reported to userspace
6818 * @dev: device
6819 *
6820 * Get the combination of flag bits exported through APIs to userspace.
6821 */
95c96174 6822unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6823{
95c96174 6824 unsigned int flags;
1da177e4
LT
6825
6826 flags = (dev->flags & ~(IFF_PROMISC |
6827 IFF_ALLMULTI |
b00055aa
SR
6828 IFF_RUNNING |
6829 IFF_LOWER_UP |
6830 IFF_DORMANT)) |
1da177e4
LT
6831 (dev->gflags & (IFF_PROMISC |
6832 IFF_ALLMULTI));
6833
b00055aa
SR
6834 if (netif_running(dev)) {
6835 if (netif_oper_up(dev))
6836 flags |= IFF_RUNNING;
6837 if (netif_carrier_ok(dev))
6838 flags |= IFF_LOWER_UP;
6839 if (netif_dormant(dev))
6840 flags |= IFF_DORMANT;
6841 }
1da177e4
LT
6842
6843 return flags;
6844}
d1b19dff 6845EXPORT_SYMBOL(dev_get_flags);
1da177e4 6846
bd380811 6847int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6848{
b536db93 6849 unsigned int old_flags = dev->flags;
bd380811 6850 int ret;
1da177e4 6851
24023451
PM
6852 ASSERT_RTNL();
6853
1da177e4
LT
6854 /*
6855 * Set the flags on our device.
6856 */
6857
6858 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6859 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6860 IFF_AUTOMEDIA)) |
6861 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6862 IFF_ALLMULTI));
6863
6864 /*
6865 * Load in the correct multicast list now the flags have changed.
6866 */
6867
b6c40d68
PM
6868 if ((old_flags ^ flags) & IFF_MULTICAST)
6869 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6870
4417da66 6871 dev_set_rx_mode(dev);
1da177e4
LT
6872
6873 /*
6874 * Have we downed the interface. We handle IFF_UP ourselves
6875 * according to user attempts to set it, rather than blindly
6876 * setting it.
6877 */
6878
6879 ret = 0;
7051b88a 6880 if ((old_flags ^ flags) & IFF_UP) {
6881 if (old_flags & IFF_UP)
6882 __dev_close(dev);
6883 else
6884 ret = __dev_open(dev);
6885 }
1da177e4 6886
1da177e4 6887 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6888 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6889 unsigned int old_flags = dev->flags;
d1b19dff 6890
1da177e4 6891 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6892
6893 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6894 if (dev->flags != old_flags)
6895 dev_set_rx_mode(dev);
1da177e4
LT
6896 }
6897
6898 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 6899 * is important. Some (broken) drivers set IFF_PROMISC, when
6900 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
6901 */
6902 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6903 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6904
1da177e4 6905 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6906 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6907 }
6908
bd380811
PM
6909 return ret;
6910}
6911
a528c219
ND
6912void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6913 unsigned int gchanges)
bd380811
PM
6914{
6915 unsigned int changes = dev->flags ^ old_flags;
6916
a528c219 6917 if (gchanges)
7f294054 6918 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6919
bd380811
PM
6920 if (changes & IFF_UP) {
6921 if (dev->flags & IFF_UP)
6922 call_netdevice_notifiers(NETDEV_UP, dev);
6923 else
6924 call_netdevice_notifiers(NETDEV_DOWN, dev);
6925 }
6926
6927 if (dev->flags & IFF_UP &&
be9efd36 6928 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
6929 struct netdev_notifier_change_info change_info = {
6930 .info = {
6931 .dev = dev,
6932 },
6933 .flags_changed = changes,
6934 };
be9efd36 6935
51d0c047 6936 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 6937 }
bd380811
PM
6938}
6939
6940/**
6941 * dev_change_flags - change device settings
6942 * @dev: device
6943 * @flags: device state flags
6944 *
6945 * Change settings on device based state flags. The flags are
6946 * in the userspace exported format.
6947 */
b536db93 6948int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6949{
b536db93 6950 int ret;
991fb3f7 6951 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6952
6953 ret = __dev_change_flags(dev, flags);
6954 if (ret < 0)
6955 return ret;
6956
991fb3f7 6957 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6958 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6959 return ret;
6960}
d1b19dff 6961EXPORT_SYMBOL(dev_change_flags);
1da177e4 6962
f51048c3 6963int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
6964{
6965 const struct net_device_ops *ops = dev->netdev_ops;
6966
6967 if (ops->ndo_change_mtu)
6968 return ops->ndo_change_mtu(dev, new_mtu);
6969
df0f598f
ED
6970 /* Pairs with all the lockless reads of dev->mtu in the stack */
6971 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
6972 return 0;
6973}
f51048c3 6974EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 6975
f0db275a
SH
6976/**
6977 * dev_set_mtu - Change maximum transfer unit
6978 * @dev: device
6979 * @new_mtu: new transfer unit
6980 *
6981 * Change the maximum transfer size of the network device.
6982 */
1da177e4
LT
6983int dev_set_mtu(struct net_device *dev, int new_mtu)
6984{
2315dc91 6985 int err, orig_mtu;
1da177e4
LT
6986
6987 if (new_mtu == dev->mtu)
6988 return 0;
6989
61e84623
JW
6990 /* MTU must be positive, and in range */
6991 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6992 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6993 dev->name, new_mtu, dev->min_mtu);
1da177e4 6994 return -EINVAL;
61e84623
JW
6995 }
6996
6997 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6998 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6999 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
7000 return -EINVAL;
7001 }
1da177e4
LT
7002
7003 if (!netif_device_present(dev))
7004 return -ENODEV;
7005
1d486bfb
VF
7006 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7007 err = notifier_to_errno(err);
7008 if (err)
7009 return err;
d314774c 7010
2315dc91
VF
7011 orig_mtu = dev->mtu;
7012 err = __dev_set_mtu(dev, new_mtu);
d314774c 7013
2315dc91 7014 if (!err) {
63419c91
SD
7015 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7016 orig_mtu);
2315dc91
VF
7017 err = notifier_to_errno(err);
7018 if (err) {
7019 /* setting mtu back and notifying everyone again,
7020 * so that they have a chance to revert changes.
7021 */
7022 __dev_set_mtu(dev, orig_mtu);
63419c91
SD
7023 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7024 new_mtu);
2315dc91
VF
7025 }
7026 }
1da177e4
LT
7027 return err;
7028}
d1b19dff 7029EXPORT_SYMBOL(dev_set_mtu);
1da177e4 7030
cbda10fa
VD
7031/**
7032 * dev_set_group - Change group this device belongs to
7033 * @dev: device
7034 * @new_group: group this device should belong to
7035 */
7036void dev_set_group(struct net_device *dev, int new_group)
7037{
7038 dev->group = new_group;
7039}
7040EXPORT_SYMBOL(dev_set_group);
7041
f0db275a
SH
7042/**
7043 * dev_set_mac_address - Change Media Access Control Address
7044 * @dev: device
7045 * @sa: new address
7046 *
7047 * Change the hardware (MAC) address of the device
7048 */
1da177e4
LT
7049int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7050{
d314774c 7051 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
7052 int err;
7053
d314774c 7054 if (!ops->ndo_set_mac_address)
1da177e4
LT
7055 return -EOPNOTSUPP;
7056 if (sa->sa_family != dev->type)
7057 return -EINVAL;
7058 if (!netif_device_present(dev))
7059 return -ENODEV;
d314774c 7060 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
7061 if (err)
7062 return err;
fbdeca2d 7063 dev->addr_assign_type = NET_ADDR_SET;
f6521516 7064 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 7065 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 7066 return 0;
1da177e4 7067}
d1b19dff 7068EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 7069
4bf84c35
JP
7070/**
7071 * dev_change_carrier - Change device carrier
7072 * @dev: device
691b3b7e 7073 * @new_carrier: new value
4bf84c35
JP
7074 *
7075 * Change device carrier
7076 */
7077int dev_change_carrier(struct net_device *dev, bool new_carrier)
7078{
7079 const struct net_device_ops *ops = dev->netdev_ops;
7080
7081 if (!ops->ndo_change_carrier)
7082 return -EOPNOTSUPP;
7083 if (!netif_device_present(dev))
7084 return -ENODEV;
7085 return ops->ndo_change_carrier(dev, new_carrier);
7086}
7087EXPORT_SYMBOL(dev_change_carrier);
7088
66b52b0d
JP
7089/**
7090 * dev_get_phys_port_id - Get device physical port ID
7091 * @dev: device
7092 * @ppid: port ID
7093 *
7094 * Get device physical port ID
7095 */
7096int dev_get_phys_port_id(struct net_device *dev,
02637fce 7097 struct netdev_phys_item_id *ppid)
66b52b0d
JP
7098{
7099 const struct net_device_ops *ops = dev->netdev_ops;
7100
7101 if (!ops->ndo_get_phys_port_id)
7102 return -EOPNOTSUPP;
7103 return ops->ndo_get_phys_port_id(dev, ppid);
7104}
7105EXPORT_SYMBOL(dev_get_phys_port_id);
7106
db24a904
DA
7107/**
7108 * dev_get_phys_port_name - Get device physical port name
7109 * @dev: device
7110 * @name: port name
ed49e650 7111 * @len: limit of bytes to copy to name
db24a904
DA
7112 *
7113 * Get device physical port name
7114 */
7115int dev_get_phys_port_name(struct net_device *dev,
7116 char *name, size_t len)
7117{
7118 const struct net_device_ops *ops = dev->netdev_ops;
7119
7120 if (!ops->ndo_get_phys_port_name)
7121 return -EOPNOTSUPP;
7122 return ops->ndo_get_phys_port_name(dev, name, len);
7123}
7124EXPORT_SYMBOL(dev_get_phys_port_name);
7125
d746d707
AK
7126/**
7127 * dev_change_proto_down - update protocol port state information
7128 * @dev: device
7129 * @proto_down: new value
7130 *
7131 * This info can be used by switch drivers to set the phys state of the
7132 * port.
7133 */
7134int dev_change_proto_down(struct net_device *dev, bool proto_down)
7135{
7136 const struct net_device_ops *ops = dev->netdev_ops;
7137
7138 if (!ops->ndo_change_proto_down)
7139 return -EOPNOTSUPP;
7140 if (!netif_device_present(dev))
7141 return -ENODEV;
7142 return ops->ndo_change_proto_down(dev, proto_down);
7143}
7144EXPORT_SYMBOL(dev_change_proto_down);
7145
f4e63525 7146u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op, u32 *prog_id)
d67b9cd2 7147{
f4e63525 7148 struct netdev_bpf xdp;
d67b9cd2
DB
7149
7150 memset(&xdp, 0, sizeof(xdp));
7151 xdp.command = XDP_QUERY_PROG;
7152
7153 /* Query must always succeed. */
f4e63525 7154 WARN_ON(bpf_op(dev, &xdp) < 0);
58038695
MKL
7155 if (prog_id)
7156 *prog_id = xdp.prog_id;
7157
d67b9cd2
DB
7158 return xdp.prog_attached;
7159}
7160
f4e63525 7161static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
32d60277 7162 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
7163 struct bpf_prog *prog)
7164{
f4e63525 7165 struct netdev_bpf xdp;
d67b9cd2
DB
7166
7167 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
7168 if (flags & XDP_FLAGS_HW_MODE)
7169 xdp.command = XDP_SETUP_PROG_HW;
7170 else
7171 xdp.command = XDP_SETUP_PROG;
d67b9cd2 7172 xdp.extack = extack;
32d60277 7173 xdp.flags = flags;
d67b9cd2
DB
7174 xdp.prog = prog;
7175
f4e63525 7176 return bpf_op(dev, &xdp);
d67b9cd2
DB
7177}
7178
a7862b45
BB
7179/**
7180 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7181 * @dev: device
b5d60989 7182 * @extack: netlink extended ack
a7862b45 7183 * @fd: new program fd or negative value to clear
85de8576 7184 * @flags: xdp-related flags
a7862b45
BB
7185 *
7186 * Set or clear a bpf program for a device
7187 */
ddf9f970
JK
7188int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7189 int fd, u32 flags)
a7862b45
BB
7190{
7191 const struct net_device_ops *ops = dev->netdev_ops;
7192 struct bpf_prog *prog = NULL;
f4e63525 7193 bpf_op_t bpf_op, bpf_chk;
a7862b45
BB
7194 int err;
7195
85de8576
DB
7196 ASSERT_RTNL();
7197
f4e63525
JK
7198 bpf_op = bpf_chk = ops->ndo_bpf;
7199 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
0489df9a 7200 return -EOPNOTSUPP;
f4e63525
JK
7201 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7202 bpf_op = generic_xdp_install;
7203 if (bpf_op == bpf_chk)
7204 bpf_chk = generic_xdp_install;
b5cdae32 7205
a7862b45 7206 if (fd >= 0) {
f4e63525 7207 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk, NULL))
d67b9cd2
DB
7208 return -EEXIST;
7209 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
f4e63525 7210 __dev_xdp_attached(dev, bpf_op, NULL))
d67b9cd2 7211 return -EBUSY;
85de8576 7212
288b3de5
JK
7213 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7214 bpf_op == ops->ndo_bpf);
a7862b45
BB
7215 if (IS_ERR(prog))
7216 return PTR_ERR(prog);
441a3303
JK
7217
7218 if (!(flags & XDP_FLAGS_HW_MODE) &&
7219 bpf_prog_is_dev_bound(prog->aux)) {
7220 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7221 bpf_prog_put(prog);
7222 return -EINVAL;
7223 }
a7862b45
BB
7224 }
7225
f4e63525 7226 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
a7862b45
BB
7227 if (err < 0 && prog)
7228 bpf_prog_put(prog);
7229
7230 return err;
7231}
a7862b45 7232
1da177e4
LT
7233/**
7234 * dev_new_index - allocate an ifindex
c4ea43c5 7235 * @net: the applicable net namespace
1da177e4
LT
7236 *
7237 * Returns a suitable unique value for a new device interface
7238 * number. The caller must hold the rtnl semaphore or the
7239 * dev_base_lock to be sure it remains unique.
7240 */
881d966b 7241static int dev_new_index(struct net *net)
1da177e4 7242{
aa79e66e 7243 int ifindex = net->ifindex;
f4563a75 7244
1da177e4
LT
7245 for (;;) {
7246 if (++ifindex <= 0)
7247 ifindex = 1;
881d966b 7248 if (!__dev_get_by_index(net, ifindex))
aa79e66e 7249 return net->ifindex = ifindex;
1da177e4
LT
7250 }
7251}
7252
1da177e4 7253/* Delayed registration/unregisteration */
3b5b34fd 7254static LIST_HEAD(net_todo_list);
200b916f 7255DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 7256
6f05f629 7257static void net_set_todo(struct net_device *dev)
1da177e4 7258{
1da177e4 7259 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 7260 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
7261}
7262
9b5e383c 7263static void rollback_registered_many(struct list_head *head)
93ee31f1 7264{
e93737b0 7265 struct net_device *dev, *tmp;
5cde2829 7266 LIST_HEAD(close_head);
9b5e383c 7267
93ee31f1
DL
7268 BUG_ON(dev_boot_phase);
7269 ASSERT_RTNL();
7270
e93737b0 7271 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 7272 /* Some devices call without registering
e93737b0
KK
7273 * for initialization unwind. Remove those
7274 * devices and proceed with the remaining.
9b5e383c
ED
7275 */
7276 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
7277 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7278 dev->name, dev);
93ee31f1 7279
9b5e383c 7280 WARN_ON(1);
e93737b0
KK
7281 list_del(&dev->unreg_list);
7282 continue;
9b5e383c 7283 }
449f4544 7284 dev->dismantle = true;
9b5e383c 7285 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 7286 }
93ee31f1 7287
44345724 7288 /* If device is running, close it first. */
5cde2829
EB
7289 list_for_each_entry(dev, head, unreg_list)
7290 list_add_tail(&dev->close_list, &close_head);
99c4a26a 7291 dev_close_many(&close_head, true);
93ee31f1 7292
44345724 7293 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
7294 /* And unlink it from device chain. */
7295 unlist_netdevice(dev);
93ee31f1 7296
9b5e383c
ED
7297 dev->reg_state = NETREG_UNREGISTERING;
7298 }
41852497 7299 flush_all_backlogs();
93ee31f1
DL
7300
7301 synchronize_net();
7302
9b5e383c 7303 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
7304 struct sk_buff *skb = NULL;
7305
9b5e383c
ED
7306 /* Shutdown queueing discipline. */
7307 dev_shutdown(dev);
93ee31f1
DL
7308
7309
9b5e383c 7310 /* Notify protocols, that we are about to destroy
eb13da1a 7311 * this device. They should clean all the things.
7312 */
9b5e383c 7313 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 7314
395eea6c
MB
7315 if (!dev->rtnl_link_ops ||
7316 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 7317 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
2177db43 7318 GFP_KERNEL, NULL, 0);
395eea6c 7319
9b5e383c
ED
7320 /*
7321 * Flush the unicast and multicast chains
7322 */
a748ee24 7323 dev_uc_flush(dev);
22bedad3 7324 dev_mc_flush(dev);
93ee31f1 7325
9b5e383c
ED
7326 if (dev->netdev_ops->ndo_uninit)
7327 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 7328
395eea6c
MB
7329 if (skb)
7330 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 7331
9ff162a8
JP
7332 /* Notifier chain MUST detach us all upper devices. */
7333 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 7334 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 7335
9b5e383c
ED
7336 /* Remove entries from kobject tree */
7337 netdev_unregister_kobject(dev);
024e9679
AD
7338#ifdef CONFIG_XPS
7339 /* Remove XPS queueing entries */
7340 netif_reset_xps_queues_gt(dev, 0);
7341#endif
9b5e383c 7342 }
93ee31f1 7343
850a545b 7344 synchronize_net();
395264d5 7345
a5ee1551 7346 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
7347 dev_put(dev);
7348}
7349
7350static void rollback_registered(struct net_device *dev)
7351{
7352 LIST_HEAD(single);
7353
7354 list_add(&dev->unreg_list, &single);
7355 rollback_registered_many(&single);
ceaaec98 7356 list_del(&single);
93ee31f1
DL
7357}
7358
fd867d51
JW
7359static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7360 struct net_device *upper, netdev_features_t features)
7361{
7362 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7363 netdev_features_t feature;
5ba3f7d6 7364 int feature_bit;
fd867d51 7365
c30445e5 7366 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 7367 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7368 if (!(upper->wanted_features & feature)
7369 && (features & feature)) {
7370 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7371 &feature, upper->name);
7372 features &= ~feature;
7373 }
7374 }
7375
7376 return features;
7377}
7378
7379static void netdev_sync_lower_features(struct net_device *upper,
7380 struct net_device *lower, netdev_features_t features)
7381{
7382 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7383 netdev_features_t feature;
5ba3f7d6 7384 int feature_bit;
fd867d51 7385
c30445e5 7386 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 7387 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7388 if (!(features & feature) && (lower->features & feature)) {
7389 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7390 &feature, lower->name);
7391 lower->wanted_features &= ~feature;
7392 netdev_update_features(lower);
7393
7394 if (unlikely(lower->features & feature))
7395 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7396 &feature, lower->name);
7397 }
7398 }
7399}
7400
c8f44aff
MM
7401static netdev_features_t netdev_fix_features(struct net_device *dev,
7402 netdev_features_t features)
b63365a2 7403{
57422dc5
MM
7404 /* Fix illegal checksum combinations */
7405 if ((features & NETIF_F_HW_CSUM) &&
7406 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 7407 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
7408 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7409 }
7410
b63365a2 7411 /* TSO requires that SG is present as well. */
ea2d3688 7412 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 7413 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 7414 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
7415 }
7416
ec5f0615
PS
7417 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7418 !(features & NETIF_F_IP_CSUM)) {
7419 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7420 features &= ~NETIF_F_TSO;
7421 features &= ~NETIF_F_TSO_ECN;
7422 }
7423
7424 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7425 !(features & NETIF_F_IPV6_CSUM)) {
7426 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7427 features &= ~NETIF_F_TSO6;
7428 }
7429
b1dc497b
AD
7430 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7431 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7432 features &= ~NETIF_F_TSO_MANGLEID;
7433
31d8b9e0
BH
7434 /* TSO ECN requires that TSO is present as well. */
7435 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7436 features &= ~NETIF_F_TSO_ECN;
7437
212b573f
MM
7438 /* Software GSO depends on SG. */
7439 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 7440 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
7441 features &= ~NETIF_F_GSO;
7442 }
7443
802ab55a
AD
7444 /* GSO partial features require GSO partial be set */
7445 if ((features & dev->gso_partial_features) &&
7446 !(features & NETIF_F_GSO_PARTIAL)) {
7447 netdev_dbg(dev,
7448 "Dropping partially supported GSO features since no GSO partial.\n");
7449 features &= ~dev->gso_partial_features;
7450 }
7451
b63365a2
HX
7452 return features;
7453}
b63365a2 7454
6cb6a27c 7455int __netdev_update_features(struct net_device *dev)
5455c699 7456{
fd867d51 7457 struct net_device *upper, *lower;
c8f44aff 7458 netdev_features_t features;
fd867d51 7459 struct list_head *iter;
e7868a85 7460 int err = -1;
5455c699 7461
87267485
MM
7462 ASSERT_RTNL();
7463
5455c699
MM
7464 features = netdev_get_wanted_features(dev);
7465
7466 if (dev->netdev_ops->ndo_fix_features)
7467 features = dev->netdev_ops->ndo_fix_features(dev, features);
7468
7469 /* driver might be less strict about feature dependencies */
7470 features = netdev_fix_features(dev, features);
7471
fd867d51
JW
7472 /* some features can't be enabled if they're off an an upper device */
7473 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7474 features = netdev_sync_upper_features(dev, upper, features);
7475
5455c699 7476 if (dev->features == features)
e7868a85 7477 goto sync_lower;
5455c699 7478
c8f44aff
MM
7479 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7480 &dev->features, &features);
5455c699
MM
7481
7482 if (dev->netdev_ops->ndo_set_features)
7483 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
7484 else
7485 err = 0;
5455c699 7486
6cb6a27c 7487 if (unlikely(err < 0)) {
5455c699 7488 netdev_err(dev,
c8f44aff
MM
7489 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7490 err, &features, &dev->features);
17b85d29
NA
7491 /* return non-0 since some features might have changed and
7492 * it's better to fire a spurious notification than miss it
7493 */
7494 return -1;
6cb6a27c
MM
7495 }
7496
e7868a85 7497sync_lower:
fd867d51
JW
7498 /* some features must be disabled on lower devices when disabled
7499 * on an upper device (think: bonding master or bridge)
7500 */
7501 netdev_for_each_lower_dev(dev, lower, iter)
7502 netdev_sync_lower_features(dev, lower, features);
7503
ae847f40
SD
7504 if (!err) {
7505 netdev_features_t diff = features ^ dev->features;
7506
7507 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7508 /* udp_tunnel_{get,drop}_rx_info both need
7509 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7510 * device, or they won't do anything.
7511 * Thus we need to update dev->features
7512 * *before* calling udp_tunnel_get_rx_info,
7513 * but *after* calling udp_tunnel_drop_rx_info.
7514 */
7515 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7516 dev->features = features;
7517 udp_tunnel_get_rx_info(dev);
7518 } else {
7519 udp_tunnel_drop_rx_info(dev);
7520 }
7521 }
7522
6cb6a27c 7523 dev->features = features;
ae847f40 7524 }
6cb6a27c 7525
e7868a85 7526 return err < 0 ? 0 : 1;
6cb6a27c
MM
7527}
7528
afe12cc8
MM
7529/**
7530 * netdev_update_features - recalculate device features
7531 * @dev: the device to check
7532 *
7533 * Recalculate dev->features set and send notifications if it
7534 * has changed. Should be called after driver or hardware dependent
7535 * conditions might have changed that influence the features.
7536 */
6cb6a27c
MM
7537void netdev_update_features(struct net_device *dev)
7538{
7539 if (__netdev_update_features(dev))
7540 netdev_features_change(dev);
5455c699
MM
7541}
7542EXPORT_SYMBOL(netdev_update_features);
7543
afe12cc8
MM
7544/**
7545 * netdev_change_features - recalculate device features
7546 * @dev: the device to check
7547 *
7548 * Recalculate dev->features set and send notifications even
7549 * if they have not changed. Should be called instead of
7550 * netdev_update_features() if also dev->vlan_features might
7551 * have changed to allow the changes to be propagated to stacked
7552 * VLAN devices.
7553 */
7554void netdev_change_features(struct net_device *dev)
7555{
7556 __netdev_update_features(dev);
7557 netdev_features_change(dev);
7558}
7559EXPORT_SYMBOL(netdev_change_features);
7560
fc4a7489
PM
7561/**
7562 * netif_stacked_transfer_operstate - transfer operstate
7563 * @rootdev: the root or lower level device to transfer state from
7564 * @dev: the device to transfer operstate to
7565 *
7566 * Transfer operational state from root to device. This is normally
7567 * called when a stacking relationship exists between the root
7568 * device and the device(a leaf device).
7569 */
7570void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7571 struct net_device *dev)
7572{
7573 if (rootdev->operstate == IF_OPER_DORMANT)
7574 netif_dormant_on(dev);
7575 else
7576 netif_dormant_off(dev);
7577
0575c86b
ZS
7578 if (netif_carrier_ok(rootdev))
7579 netif_carrier_on(dev);
7580 else
7581 netif_carrier_off(dev);
fc4a7489
PM
7582}
7583EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7584
a953be53 7585#ifdef CONFIG_SYSFS
1b4bf461
ED
7586static int netif_alloc_rx_queues(struct net_device *dev)
7587{
1b4bf461 7588 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7589 struct netdev_rx_queue *rx;
10595902 7590 size_t sz = count * sizeof(*rx);
1b4bf461 7591
bd25fa7b 7592 BUG_ON(count < 1);
1b4bf461 7593
dcda9b04 7594 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7595 if (!rx)
7596 return -ENOMEM;
7597
bd25fa7b
TH
7598 dev->_rx = rx;
7599
bd25fa7b 7600 for (i = 0; i < count; i++)
fe822240 7601 rx[i].dev = dev;
1b4bf461
ED
7602 return 0;
7603}
bf264145 7604#endif
1b4bf461 7605
aa942104
CG
7606static void netdev_init_one_queue(struct net_device *dev,
7607 struct netdev_queue *queue, void *_unused)
7608{
7609 /* Initialize queue lock */
7610 spin_lock_init(&queue->_xmit_lock);
7611 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7612 queue->xmit_lock_owner = -1;
b236da69 7613 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7614 queue->dev = dev;
114cf580
TH
7615#ifdef CONFIG_BQL
7616 dql_init(&queue->dql, HZ);
7617#endif
aa942104
CG
7618}
7619
60877a32
ED
7620static void netif_free_tx_queues(struct net_device *dev)
7621{
4cb28970 7622 kvfree(dev->_tx);
60877a32
ED
7623}
7624
e6484930
TH
7625static int netif_alloc_netdev_queues(struct net_device *dev)
7626{
7627 unsigned int count = dev->num_tx_queues;
7628 struct netdev_queue *tx;
60877a32 7629 size_t sz = count * sizeof(*tx);
e6484930 7630
d339727c
ED
7631 if (count < 1 || count > 0xffff)
7632 return -EINVAL;
62b5942a 7633
dcda9b04 7634 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7635 if (!tx)
7636 return -ENOMEM;
7637
e6484930 7638 dev->_tx = tx;
1d24eb48 7639
e6484930
TH
7640 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7641 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7642
7643 return 0;
e6484930
TH
7644}
7645
a2029240
DV
7646void netif_tx_stop_all_queues(struct net_device *dev)
7647{
7648 unsigned int i;
7649
7650 for (i = 0; i < dev->num_tx_queues; i++) {
7651 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 7652
a2029240
DV
7653 netif_tx_stop_queue(txq);
7654 }
7655}
7656EXPORT_SYMBOL(netif_tx_stop_all_queues);
7657
1da177e4
LT
7658/**
7659 * register_netdevice - register a network device
7660 * @dev: device to register
7661 *
7662 * Take a completed network device structure and add it to the kernel
7663 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7664 * chain. 0 is returned on success. A negative errno code is returned
7665 * on a failure to set up the device, or if the name is a duplicate.
7666 *
7667 * Callers must hold the rtnl semaphore. You may want
7668 * register_netdev() instead of this.
7669 *
7670 * BUGS:
7671 * The locking appears insufficient to guarantee two parallel registers
7672 * will not get the same name.
7673 */
7674
7675int register_netdevice(struct net_device *dev)
7676{
1da177e4 7677 int ret;
d314774c 7678 struct net *net = dev_net(dev);
1da177e4
LT
7679
7680 BUG_ON(dev_boot_phase);
7681 ASSERT_RTNL();
7682
b17a7c17
SH
7683 might_sleep();
7684
1da177e4
LT
7685 /* When net_device's are persistent, this will be fatal. */
7686 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7687 BUG_ON(!net);
1da177e4 7688
f1f28aa3 7689 spin_lock_init(&dev->addr_list_lock);
cf508b12 7690 netdev_set_addr_lockdep_class(dev);
1da177e4 7691
828de4f6 7692 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7693 if (ret < 0)
7694 goto out;
7695
1da177e4 7696 /* Init, if this function is available */
d314774c
SH
7697 if (dev->netdev_ops->ndo_init) {
7698 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7699 if (ret) {
7700 if (ret > 0)
7701 ret = -EIO;
90833aa4 7702 goto out;
1da177e4
LT
7703 }
7704 }
4ec93edb 7705
f646968f
PM
7706 if (((dev->hw_features | dev->features) &
7707 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7708 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7709 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7710 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7711 ret = -EINVAL;
7712 goto err_uninit;
7713 }
7714
9c7dafbf
PE
7715 ret = -EBUSY;
7716 if (!dev->ifindex)
7717 dev->ifindex = dev_new_index(net);
7718 else if (__dev_get_by_index(net, dev->ifindex))
7719 goto err_uninit;
7720
5455c699
MM
7721 /* Transfer changeable features to wanted_features and enable
7722 * software offloads (GSO and GRO).
7723 */
7724 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f 7725 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
7726
7727 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7728 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7729 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7730 }
7731
14d1232f 7732 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7733
cbc53e08 7734 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7735 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7736
7f348a60
AD
7737 /* If IPv4 TCP segmentation offload is supported we should also
7738 * allow the device to enable segmenting the frame with the option
7739 * of ignoring a static IP ID value. This doesn't enable the
7740 * feature itself but allows the user to enable it later.
7741 */
cbc53e08
AD
7742 if (dev->hw_features & NETIF_F_TSO)
7743 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7744 if (dev->vlan_features & NETIF_F_TSO)
7745 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7746 if (dev->mpls_features & NETIF_F_TSO)
7747 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7748 if (dev->hw_enc_features & NETIF_F_TSO)
7749 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7750
1180e7d6 7751 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7752 */
1180e7d6 7753 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7754
ee579677
PS
7755 /* Make NETIF_F_SG inheritable to tunnel devices.
7756 */
802ab55a 7757 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7758
0d89d203
SH
7759 /* Make NETIF_F_SG inheritable to MPLS.
7760 */
7761 dev->mpls_features |= NETIF_F_SG;
7762
7ffbe3fd
JB
7763 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7764 ret = notifier_to_errno(ret);
7765 if (ret)
7766 goto err_uninit;
7767
8b41d188 7768 ret = netdev_register_kobject(dev);
b17a7c17 7769 if (ret)
7ce1b0ed 7770 goto err_uninit;
b17a7c17
SH
7771 dev->reg_state = NETREG_REGISTERED;
7772
6cb6a27c 7773 __netdev_update_features(dev);
8e9b59b2 7774
1da177e4
LT
7775 /*
7776 * Default initial state at registry is that the
7777 * device is present.
7778 */
7779
7780 set_bit(__LINK_STATE_PRESENT, &dev->state);
7781
8f4cccbb
BH
7782 linkwatch_init_dev(dev);
7783
1da177e4 7784 dev_init_scheduler(dev);
1da177e4 7785 dev_hold(dev);
ce286d32 7786 list_netdevice(dev);
7bf23575 7787 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7788
948b337e
JP
7789 /* If the device has permanent device address, driver should
7790 * set dev_addr and also addr_assign_type should be set to
7791 * NET_ADDR_PERM (default value).
7792 */
7793 if (dev->addr_assign_type == NET_ADDR_PERM)
7794 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7795
1da177e4 7796 /* Notify protocols, that a new device appeared. */
056925ab 7797 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7798 ret = notifier_to_errno(ret);
93ee31f1
DL
7799 if (ret) {
7800 rollback_registered(dev);
ab4480f4
SAK
7801 rcu_barrier();
7802
93ee31f1
DL
7803 dev->reg_state = NETREG_UNREGISTERED;
7804 }
d90a909e
EB
7805 /*
7806 * Prevent userspace races by waiting until the network
7807 * device is fully setup before sending notifications.
7808 */
a2835763
PM
7809 if (!dev->rtnl_link_ops ||
7810 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7811 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7812
7813out:
7814 return ret;
7ce1b0ed
HX
7815
7816err_uninit:
d314774c
SH
7817 if (dev->netdev_ops->ndo_uninit)
7818 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
7819 if (dev->priv_destructor)
7820 dev->priv_destructor(dev);
7ce1b0ed 7821 goto out;
1da177e4 7822}
d1b19dff 7823EXPORT_SYMBOL(register_netdevice);
1da177e4 7824
937f1ba5
BH
7825/**
7826 * init_dummy_netdev - init a dummy network device for NAPI
7827 * @dev: device to init
7828 *
7829 * This takes a network device structure and initialize the minimum
7830 * amount of fields so it can be used to schedule NAPI polls without
7831 * registering a full blown interface. This is to be used by drivers
7832 * that need to tie several hardware interfaces to a single NAPI
7833 * poll scheduler due to HW limitations.
7834 */
7835int init_dummy_netdev(struct net_device *dev)
7836{
7837 /* Clear everything. Note we don't initialize spinlocks
7838 * are they aren't supposed to be taken by any of the
7839 * NAPI code and this dummy netdev is supposed to be
7840 * only ever used for NAPI polls
7841 */
7842 memset(dev, 0, sizeof(struct net_device));
7843
7844 /* make sure we BUG if trying to hit standard
7845 * register/unregister code path
7846 */
7847 dev->reg_state = NETREG_DUMMY;
7848
937f1ba5
BH
7849 /* NAPI wants this */
7850 INIT_LIST_HEAD(&dev->napi_list);
7851
7852 /* a dummy interface is started by default */
7853 set_bit(__LINK_STATE_PRESENT, &dev->state);
7854 set_bit(__LINK_STATE_START, &dev->state);
7855
6ea11d8a
JE
7856 /* napi_busy_loop stats accounting wants this */
7857 dev_net_set(dev, &init_net);
7858
29b4433d
ED
7859 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7860 * because users of this 'device' dont need to change
7861 * its refcount.
7862 */
7863
937f1ba5
BH
7864 return 0;
7865}
7866EXPORT_SYMBOL_GPL(init_dummy_netdev);
7867
7868
1da177e4
LT
7869/**
7870 * register_netdev - register a network device
7871 * @dev: device to register
7872 *
7873 * Take a completed network device structure and add it to the kernel
7874 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7875 * chain. 0 is returned on success. A negative errno code is returned
7876 * on a failure to set up the device, or if the name is a duplicate.
7877 *
38b4da38 7878 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7879 * and expands the device name if you passed a format string to
7880 * alloc_netdev.
7881 */
7882int register_netdev(struct net_device *dev)
7883{
7884 int err;
7885
7886 rtnl_lock();
1da177e4 7887 err = register_netdevice(dev);
1da177e4
LT
7888 rtnl_unlock();
7889 return err;
7890}
7891EXPORT_SYMBOL(register_netdev);
7892
29b4433d
ED
7893int netdev_refcnt_read(const struct net_device *dev)
7894{
7895 int i, refcnt = 0;
7896
7897 for_each_possible_cpu(i)
7898 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7899 return refcnt;
7900}
7901EXPORT_SYMBOL(netdev_refcnt_read);
7902
2c53040f 7903/**
1da177e4 7904 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7905 * @dev: target net_device
1da177e4
LT
7906 *
7907 * This is called when unregistering network devices.
7908 *
7909 * Any protocol or device that holds a reference should register
7910 * for netdevice notification, and cleanup and put back the
7911 * reference if they receive an UNREGISTER event.
7912 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7913 * call dev_put.
1da177e4
LT
7914 */
7915static void netdev_wait_allrefs(struct net_device *dev)
7916{
7917 unsigned long rebroadcast_time, warning_time;
29b4433d 7918 int refcnt;
1da177e4 7919
e014debe
ED
7920 linkwatch_forget_dev(dev);
7921
1da177e4 7922 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7923 refcnt = netdev_refcnt_read(dev);
7924
7925 while (refcnt != 0) {
1da177e4 7926 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7927 rtnl_lock();
1da177e4
LT
7928
7929 /* Rebroadcast unregister notification */
056925ab 7930 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7931
748e2d93 7932 __rtnl_unlock();
0115e8e3 7933 rcu_barrier();
748e2d93
ED
7934 rtnl_lock();
7935
0115e8e3 7936 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7937 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7938 &dev->state)) {
7939 /* We must not have linkwatch events
7940 * pending on unregister. If this
7941 * happens, we simply run the queue
7942 * unscheduled, resulting in a noop
7943 * for this device.
7944 */
7945 linkwatch_run_queue();
7946 }
7947
6756ae4b 7948 __rtnl_unlock();
1da177e4
LT
7949
7950 rebroadcast_time = jiffies;
7951 }
7952
7953 msleep(250);
7954
29b4433d
ED
7955 refcnt = netdev_refcnt_read(dev);
7956
07cc5d0d 7957 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7958 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7959 dev->name, refcnt);
1da177e4
LT
7960 warning_time = jiffies;
7961 }
7962 }
7963}
7964
7965/* The sequence is:
7966 *
7967 * rtnl_lock();
7968 * ...
7969 * register_netdevice(x1);
7970 * register_netdevice(x2);
7971 * ...
7972 * unregister_netdevice(y1);
7973 * unregister_netdevice(y2);
7974 * ...
7975 * rtnl_unlock();
7976 * free_netdev(y1);
7977 * free_netdev(y2);
7978 *
58ec3b4d 7979 * We are invoked by rtnl_unlock().
1da177e4 7980 * This allows us to deal with problems:
b17a7c17 7981 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7982 * without deadlocking with linkwatch via keventd.
7983 * 2) Since we run with the RTNL semaphore not held, we can sleep
7984 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7985 *
7986 * We must not return until all unregister events added during
7987 * the interval the lock was held have been completed.
1da177e4 7988 */
1da177e4
LT
7989void netdev_run_todo(void)
7990{
626ab0e6 7991 struct list_head list;
1da177e4 7992
1da177e4 7993 /* Snapshot list, allow later requests */
626ab0e6 7994 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7995
7996 __rtnl_unlock();
626ab0e6 7997
0115e8e3
ED
7998
7999 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
8000 if (!list_empty(&list))
8001 rcu_barrier();
8002
1da177e4
LT
8003 while (!list_empty(&list)) {
8004 struct net_device *dev
e5e26d75 8005 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
8006 list_del(&dev->todo_list);
8007
748e2d93 8008 rtnl_lock();
0115e8e3 8009 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 8010 __rtnl_unlock();
0115e8e3 8011
b17a7c17 8012 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 8013 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
8014 dev->name, dev->reg_state);
8015 dump_stack();
8016 continue;
8017 }
1da177e4 8018
b17a7c17 8019 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 8020
b17a7c17 8021 netdev_wait_allrefs(dev);
1da177e4 8022
b17a7c17 8023 /* paranoia */
29b4433d 8024 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
8025 BUG_ON(!list_empty(&dev->ptype_all));
8026 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
8027 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8028 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 8029 WARN_ON(dev->dn_ptr);
1da177e4 8030
cf124db5
DM
8031 if (dev->priv_destructor)
8032 dev->priv_destructor(dev);
8033 if (dev->needs_free_netdev)
8034 free_netdev(dev);
9093bbb2 8035
50624c93
EB
8036 /* Report a network device has been unregistered */
8037 rtnl_lock();
8038 dev_net(dev)->dev_unreg_count--;
8039 __rtnl_unlock();
8040 wake_up(&netdev_unregistering_wq);
8041
9093bbb2
SH
8042 /* Free network device */
8043 kobject_put(&dev->dev.kobj);
1da177e4 8044 }
1da177e4
LT
8045}
8046
9256645a
JW
8047/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8048 * all the same fields in the same order as net_device_stats, with only
8049 * the type differing, but rtnl_link_stats64 may have additional fields
8050 * at the end for newer counters.
3cfde79c 8051 */
77a1abf5
ED
8052void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8053 const struct net_device_stats *netdev_stats)
3cfde79c
BH
8054{
8055#if BITS_PER_LONG == 64
9256645a 8056 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 8057 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
8058 /* zero out counters that only exist in rtnl_link_stats64 */
8059 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8060 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 8061#else
9256645a 8062 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
8063 const unsigned long *src = (const unsigned long *)netdev_stats;
8064 u64 *dst = (u64 *)stats64;
8065
9256645a 8066 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
8067 for (i = 0; i < n; i++)
8068 dst[i] = src[i];
9256645a
JW
8069 /* zero out counters that only exist in rtnl_link_stats64 */
8070 memset((char *)stats64 + n * sizeof(u64), 0,
8071 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
8072#endif
8073}
77a1abf5 8074EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 8075
eeda3fd6
SH
8076/**
8077 * dev_get_stats - get network device statistics
8078 * @dev: device to get statistics from
28172739 8079 * @storage: place to store stats
eeda3fd6 8080 *
d7753516
BH
8081 * Get network statistics from device. Return @storage.
8082 * The device driver may provide its own method by setting
8083 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8084 * otherwise the internal statistics structure is used.
eeda3fd6 8085 */
d7753516
BH
8086struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8087 struct rtnl_link_stats64 *storage)
7004bf25 8088{
eeda3fd6
SH
8089 const struct net_device_ops *ops = dev->netdev_ops;
8090
28172739
ED
8091 if (ops->ndo_get_stats64) {
8092 memset(storage, 0, sizeof(*storage));
caf586e5
ED
8093 ops->ndo_get_stats64(dev, storage);
8094 } else if (ops->ndo_get_stats) {
3cfde79c 8095 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
8096 } else {
8097 netdev_stats_to_stats64(storage, &dev->stats);
28172739 8098 }
6f64ec74
ED
8099 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8100 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8101 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 8102 return storage;
c45d286e 8103}
eeda3fd6 8104EXPORT_SYMBOL(dev_get_stats);
c45d286e 8105
24824a09 8106struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 8107{
24824a09 8108 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 8109
24824a09
ED
8110#ifdef CONFIG_NET_CLS_ACT
8111 if (queue)
8112 return queue;
8113 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8114 if (!queue)
8115 return NULL;
8116 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 8117 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
8118 queue->qdisc_sleeping = &noop_qdisc;
8119 rcu_assign_pointer(dev->ingress_queue, queue);
8120#endif
8121 return queue;
bb949fbd
DM
8122}
8123
2c60db03
ED
8124static const struct ethtool_ops default_ethtool_ops;
8125
d07d7507
SG
8126void netdev_set_default_ethtool_ops(struct net_device *dev,
8127 const struct ethtool_ops *ops)
8128{
8129 if (dev->ethtool_ops == &default_ethtool_ops)
8130 dev->ethtool_ops = ops;
8131}
8132EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8133
74d332c1
ED
8134void netdev_freemem(struct net_device *dev)
8135{
8136 char *addr = (char *)dev - dev->padded;
8137
4cb28970 8138 kvfree(addr);
74d332c1
ED
8139}
8140
1da177e4 8141/**
722c9a0c 8142 * alloc_netdev_mqs - allocate network device
8143 * @sizeof_priv: size of private data to allocate space for
8144 * @name: device name format string
8145 * @name_assign_type: origin of device name
8146 * @setup: callback to initialize device
8147 * @txqs: the number of TX subqueues to allocate
8148 * @rxqs: the number of RX subqueues to allocate
8149 *
8150 * Allocates a struct net_device with private data area for driver use
8151 * and performs basic initialization. Also allocates subqueue structs
8152 * for each queue on the device.
1da177e4 8153 */
36909ea4 8154struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 8155 unsigned char name_assign_type,
36909ea4
TH
8156 void (*setup)(struct net_device *),
8157 unsigned int txqs, unsigned int rxqs)
1da177e4 8158{
1da177e4 8159 struct net_device *dev;
52a59bd5 8160 unsigned int alloc_size;
1ce8e7b5 8161 struct net_device *p;
1da177e4 8162
b6fe17d6
SH
8163 BUG_ON(strlen(name) >= sizeof(dev->name));
8164
36909ea4 8165 if (txqs < 1) {
7b6cd1ce 8166 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
8167 return NULL;
8168 }
8169
a953be53 8170#ifdef CONFIG_SYSFS
36909ea4 8171 if (rxqs < 1) {
7b6cd1ce 8172 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
8173 return NULL;
8174 }
8175#endif
8176
fd2ea0a7 8177 alloc_size = sizeof(struct net_device);
d1643d24
AD
8178 if (sizeof_priv) {
8179 /* ensure 32-byte alignment of private area */
1ce8e7b5 8180 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
8181 alloc_size += sizeof_priv;
8182 }
8183 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 8184 alloc_size += NETDEV_ALIGN - 1;
1da177e4 8185
dcda9b04 8186 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 8187 if (!p)
1da177e4 8188 return NULL;
1da177e4 8189
1ce8e7b5 8190 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 8191 dev->padded = (char *)dev - (char *)p;
ab9c73cc 8192
29b4433d
ED
8193 dev->pcpu_refcnt = alloc_percpu(int);
8194 if (!dev->pcpu_refcnt)
74d332c1 8195 goto free_dev;
ab9c73cc 8196
ab9c73cc 8197 if (dev_addr_init(dev))
29b4433d 8198 goto free_pcpu;
ab9c73cc 8199
22bedad3 8200 dev_mc_init(dev);
a748ee24 8201 dev_uc_init(dev);
ccffad25 8202
c346dca1 8203 dev_net_set(dev, &init_net);
1da177e4 8204
8d3bdbd5 8205 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 8206 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 8207
8d3bdbd5
DM
8208 INIT_LIST_HEAD(&dev->napi_list);
8209 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 8210 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 8211 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
8212 INIT_LIST_HEAD(&dev->adj_list.upper);
8213 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
8214 INIT_LIST_HEAD(&dev->ptype_all);
8215 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
8216#ifdef CONFIG_NET_SCHED
8217 hash_init(dev->qdisc_hash);
8218#endif
02875878 8219 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
8220 setup(dev);
8221
a813104d 8222 if (!dev->tx_queue_len) {
f84bb1ea 8223 dev->priv_flags |= IFF_NO_QUEUE;
11597084 8224 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 8225 }
906470c1 8226
36909ea4
TH
8227 dev->num_tx_queues = txqs;
8228 dev->real_num_tx_queues = txqs;
ed9af2e8 8229 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 8230 goto free_all;
e8a0464c 8231
a953be53 8232#ifdef CONFIG_SYSFS
36909ea4
TH
8233 dev->num_rx_queues = rxqs;
8234 dev->real_num_rx_queues = rxqs;
fe822240 8235 if (netif_alloc_rx_queues(dev))
8d3bdbd5 8236 goto free_all;
df334545 8237#endif
0a9627f2 8238
1da177e4 8239 strcpy(dev->name, name);
c835a677 8240 dev->name_assign_type = name_assign_type;
cbda10fa 8241 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
8242 if (!dev->ethtool_ops)
8243 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
8244
8245 nf_hook_ingress_init(dev);
8246
1da177e4 8247 return dev;
ab9c73cc 8248
8d3bdbd5
DM
8249free_all:
8250 free_netdev(dev);
8251 return NULL;
8252
29b4433d
ED
8253free_pcpu:
8254 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
8255free_dev:
8256 netdev_freemem(dev);
ab9c73cc 8257 return NULL;
1da177e4 8258}
36909ea4 8259EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
8260
8261/**
722c9a0c 8262 * free_netdev - free network device
8263 * @dev: device
1da177e4 8264 *
722c9a0c 8265 * This function does the last stage of destroying an allocated device
8266 * interface. The reference to the device object is released. If this
8267 * is the last reference then it will be freed.Must be called in process
8268 * context.
1da177e4
LT
8269 */
8270void free_netdev(struct net_device *dev)
8271{
d565b0a1 8272 struct napi_struct *p, *n;
b5cdae32 8273 struct bpf_prog *prog;
d565b0a1 8274
93d05d4a 8275 might_sleep();
60877a32 8276 netif_free_tx_queues(dev);
a953be53 8277#ifdef CONFIG_SYSFS
10595902 8278 kvfree(dev->_rx);
fe822240 8279#endif
e8a0464c 8280
33d480ce 8281 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 8282
f001fde5
JP
8283 /* Flush device addresses */
8284 dev_addr_flush(dev);
8285
d565b0a1
HX
8286 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8287 netif_napi_del(p);
8288
29b4433d
ED
8289 free_percpu(dev->pcpu_refcnt);
8290 dev->pcpu_refcnt = NULL;
8291
b5cdae32
DM
8292 prog = rcu_dereference_protected(dev->xdp_prog, 1);
8293 if (prog) {
8294 bpf_prog_put(prog);
8295 static_key_slow_dec(&generic_xdp_needed);
8296 }
8297
3041a069 8298 /* Compatibility with error handling in drivers */
1da177e4 8299 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 8300 netdev_freemem(dev);
1da177e4
LT
8301 return;
8302 }
8303
8304 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8305 dev->reg_state = NETREG_RELEASED;
8306
43cb76d9
GKH
8307 /* will free via device release */
8308 put_device(&dev->dev);
1da177e4 8309}
d1b19dff 8310EXPORT_SYMBOL(free_netdev);
4ec93edb 8311
f0db275a
SH
8312/**
8313 * synchronize_net - Synchronize with packet receive processing
8314 *
8315 * Wait for packets currently being received to be done.
8316 * Does not block later packets from starting.
8317 */
4ec93edb 8318void synchronize_net(void)
1da177e4
LT
8319{
8320 might_sleep();
be3fc413
ED
8321 if (rtnl_is_locked())
8322 synchronize_rcu_expedited();
8323 else
8324 synchronize_rcu();
1da177e4 8325}
d1b19dff 8326EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
8327
8328/**
44a0873d 8329 * unregister_netdevice_queue - remove device from the kernel
1da177e4 8330 * @dev: device
44a0873d 8331 * @head: list
6ebfbc06 8332 *
1da177e4 8333 * This function shuts down a device interface and removes it
d59b54b1 8334 * from the kernel tables.
44a0873d 8335 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
8336 *
8337 * Callers must hold the rtnl semaphore. You may want
8338 * unregister_netdev() instead of this.
8339 */
8340
44a0873d 8341void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 8342{
a6620712
HX
8343 ASSERT_RTNL();
8344
44a0873d 8345 if (head) {
9fdce099 8346 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
8347 } else {
8348 rollback_registered(dev);
8349 /* Finish processing unregister after unlock */
8350 net_set_todo(dev);
8351 }
1da177e4 8352}
44a0873d 8353EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 8354
9b5e383c
ED
8355/**
8356 * unregister_netdevice_many - unregister many devices
8357 * @head: list of devices
87757a91
ED
8358 *
8359 * Note: As most callers use a stack allocated list_head,
8360 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
8361 */
8362void unregister_netdevice_many(struct list_head *head)
8363{
8364 struct net_device *dev;
8365
8366 if (!list_empty(head)) {
8367 rollback_registered_many(head);
8368 list_for_each_entry(dev, head, unreg_list)
8369 net_set_todo(dev);
87757a91 8370 list_del(head);
9b5e383c
ED
8371 }
8372}
63c8099d 8373EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 8374
1da177e4
LT
8375/**
8376 * unregister_netdev - remove device from the kernel
8377 * @dev: device
8378 *
8379 * This function shuts down a device interface and removes it
d59b54b1 8380 * from the kernel tables.
1da177e4
LT
8381 *
8382 * This is just a wrapper for unregister_netdevice that takes
8383 * the rtnl semaphore. In general you want to use this and not
8384 * unregister_netdevice.
8385 */
8386void unregister_netdev(struct net_device *dev)
8387{
8388 rtnl_lock();
8389 unregister_netdevice(dev);
8390 rtnl_unlock();
8391}
1da177e4
LT
8392EXPORT_SYMBOL(unregister_netdev);
8393
ce286d32
EB
8394/**
8395 * dev_change_net_namespace - move device to different nethost namespace
8396 * @dev: device
8397 * @net: network namespace
8398 * @pat: If not NULL name pattern to try if the current device name
8399 * is already taken in the destination network namespace.
8400 *
8401 * This function shuts down a device interface and moves it
8402 * to a new network namespace. On success 0 is returned, on
8403 * a failure a netagive errno code is returned.
8404 *
8405 * Callers must hold the rtnl semaphore.
8406 */
8407
8408int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8409{
2177db43 8410 int err, new_nsid, new_ifindex;
ce286d32
EB
8411
8412 ASSERT_RTNL();
8413
8414 /* Don't allow namespace local devices to be moved. */
8415 err = -EINVAL;
8416 if (dev->features & NETIF_F_NETNS_LOCAL)
8417 goto out;
8418
8419 /* Ensure the device has been registrered */
ce286d32
EB
8420 if (dev->reg_state != NETREG_REGISTERED)
8421 goto out;
8422
8423 /* Get out if there is nothing todo */
8424 err = 0;
878628fb 8425 if (net_eq(dev_net(dev), net))
ce286d32
EB
8426 goto out;
8427
8428 /* Pick the destination device name, and ensure
8429 * we can use it in the destination network namespace.
8430 */
8431 err = -EEXIST;
d9031024 8432 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
8433 /* We get here if we can't use the current device name */
8434 if (!pat)
8435 goto out;
419996a9
LR
8436 err = dev_get_valid_name(net, dev, pat);
8437 if (err < 0)
ce286d32
EB
8438 goto out;
8439 }
8440
8441 /*
8442 * And now a mini version of register_netdevice unregister_netdevice.
8443 */
8444
8445 /* If device is running close it first. */
9b772652 8446 dev_close(dev);
ce286d32
EB
8447
8448 /* And unlink it from device chain */
ce286d32
EB
8449 unlist_netdevice(dev);
8450
8451 synchronize_net();
8452
8453 /* Shutdown queueing discipline. */
8454 dev_shutdown(dev);
8455
8456 /* Notify protocols, that we are about to destroy
eb13da1a 8457 * this device. They should clean all the things.
8458 *
8459 * Note that dev->reg_state stays at NETREG_REGISTERED.
8460 * This is wanted because this way 8021q and macvlan know
8461 * the device is just moving and can keep their slaves up.
8462 */
ce286d32 8463 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
8464 rcu_barrier();
8465 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
2177db43 8466
bb4a4d49 8467 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
2177db43
ND
8468 /* If there is an ifindex conflict assign a new one */
8469 if (__dev_get_by_index(net, dev->ifindex))
8470 new_ifindex = dev_new_index(net);
8471 else
8472 new_ifindex = dev->ifindex;
8473
8474 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8475 new_ifindex);
ce286d32
EB
8476
8477 /*
8478 * Flush the unicast and multicast chains
8479 */
a748ee24 8480 dev_uc_flush(dev);
22bedad3 8481 dev_mc_flush(dev);
ce286d32 8482
4e66ae2e
SH
8483 /* Send a netdev-removed uevent to the old namespace */
8484 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 8485 netdev_adjacent_del_links(dev);
4e66ae2e 8486
ce286d32 8487 /* Actually switch the network namespace */
c346dca1 8488 dev_net_set(dev, net);
2177db43 8489 dev->ifindex = new_ifindex;
ce286d32 8490
4e66ae2e
SH
8491 /* Send a netdev-add uevent to the new namespace */
8492 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 8493 netdev_adjacent_add_links(dev);
4e66ae2e 8494
8b41d188 8495 /* Fixup kobjects */
a1b3f594 8496 err = device_rename(&dev->dev, dev->name);
8b41d188 8497 WARN_ON(err);
ce286d32
EB
8498
8499 /* Add the device back in the hashes */
8500 list_netdevice(dev);
8501
8502 /* Notify protocols, that a new device appeared. */
8503 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8504
d90a909e
EB
8505 /*
8506 * Prevent userspace races by waiting until the network
8507 * device is fully setup before sending notifications.
8508 */
7f294054 8509 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 8510
ce286d32
EB
8511 synchronize_net();
8512 err = 0;
8513out:
8514 return err;
8515}
463d0183 8516EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 8517
f0bf90de 8518static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
8519{
8520 struct sk_buff **list_skb;
1da177e4 8521 struct sk_buff *skb;
f0bf90de 8522 unsigned int cpu;
97d8b6e3 8523 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 8524
1da177e4
LT
8525 local_irq_disable();
8526 cpu = smp_processor_id();
8527 sd = &per_cpu(softnet_data, cpu);
8528 oldsd = &per_cpu(softnet_data, oldcpu);
8529
8530 /* Find end of our completion_queue. */
8531 list_skb = &sd->completion_queue;
8532 while (*list_skb)
8533 list_skb = &(*list_skb)->next;
8534 /* Append completion queue from offline CPU. */
8535 *list_skb = oldsd->completion_queue;
8536 oldsd->completion_queue = NULL;
8537
1da177e4 8538 /* Append output queue from offline CPU. */
a9cbd588
CG
8539 if (oldsd->output_queue) {
8540 *sd->output_queue_tailp = oldsd->output_queue;
8541 sd->output_queue_tailp = oldsd->output_queue_tailp;
8542 oldsd->output_queue = NULL;
8543 oldsd->output_queue_tailp = &oldsd->output_queue;
8544 }
ac64da0b
ED
8545 /* Append NAPI poll list from offline CPU, with one exception :
8546 * process_backlog() must be called by cpu owning percpu backlog.
8547 * We properly handle process_queue & input_pkt_queue later.
8548 */
8549 while (!list_empty(&oldsd->poll_list)) {
8550 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8551 struct napi_struct,
8552 poll_list);
8553
8554 list_del_init(&napi->poll_list);
8555 if (napi->poll == process_backlog)
8556 napi->state = 0;
8557 else
8558 ____napi_schedule(sd, napi);
264524d5 8559 }
1da177e4
LT
8560
8561 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8562 local_irq_enable();
8563
773fc8f6 8564#ifdef CONFIG_RPS
8565 remsd = oldsd->rps_ipi_list;
8566 oldsd->rps_ipi_list = NULL;
8567#endif
8568 /* send out pending IPI's on offline CPU */
8569 net_rps_send_ipi(remsd);
8570
1da177e4 8571 /* Process offline CPU's input_pkt_queue */
76cc8b13 8572 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8573 netif_rx_ni(skb);
76cc8b13 8574 input_queue_head_incr(oldsd);
fec5e652 8575 }
ac64da0b 8576 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8577 netif_rx_ni(skb);
76cc8b13
TH
8578 input_queue_head_incr(oldsd);
8579 }
1da177e4 8580
f0bf90de 8581 return 0;
1da177e4 8582}
1da177e4 8583
7f353bf2 8584/**
b63365a2
HX
8585 * netdev_increment_features - increment feature set by one
8586 * @all: current feature set
8587 * @one: new feature set
8588 * @mask: mask feature set
7f353bf2
HX
8589 *
8590 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8591 * @one to the master device with current feature set @all. Will not
8592 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8593 */
c8f44aff
MM
8594netdev_features_t netdev_increment_features(netdev_features_t all,
8595 netdev_features_t one, netdev_features_t mask)
b63365a2 8596{
c8cd0989 8597 if (mask & NETIF_F_HW_CSUM)
a188222b 8598 mask |= NETIF_F_CSUM_MASK;
1742f183 8599 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8600
a188222b 8601 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8602 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8603
1742f183 8604 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8605 if (all & NETIF_F_HW_CSUM)
8606 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8607
8608 return all;
8609}
b63365a2 8610EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8611
430f03cd 8612static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8613{
8614 int i;
8615 struct hlist_head *hash;
8616
8617 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8618 if (hash != NULL)
8619 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8620 INIT_HLIST_HEAD(&hash[i]);
8621
8622 return hash;
8623}
8624
881d966b 8625/* Initialize per network namespace state */
4665079c 8626static int __net_init netdev_init(struct net *net)
881d966b 8627{
734b6541
RM
8628 if (net != &init_net)
8629 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8630
30d97d35
PE
8631 net->dev_name_head = netdev_create_hash();
8632 if (net->dev_name_head == NULL)
8633 goto err_name;
881d966b 8634
30d97d35
PE
8635 net->dev_index_head = netdev_create_hash();
8636 if (net->dev_index_head == NULL)
8637 goto err_idx;
881d966b
EB
8638
8639 return 0;
30d97d35
PE
8640
8641err_idx:
8642 kfree(net->dev_name_head);
8643err_name:
8644 return -ENOMEM;
881d966b
EB
8645}
8646
f0db275a
SH
8647/**
8648 * netdev_drivername - network driver for the device
8649 * @dev: network device
f0db275a
SH
8650 *
8651 * Determine network driver for device.
8652 */
3019de12 8653const char *netdev_drivername(const struct net_device *dev)
6579e57b 8654{
cf04a4c7
SH
8655 const struct device_driver *driver;
8656 const struct device *parent;
3019de12 8657 const char *empty = "";
6579e57b
AV
8658
8659 parent = dev->dev.parent;
6579e57b 8660 if (!parent)
3019de12 8661 return empty;
6579e57b
AV
8662
8663 driver = parent->driver;
8664 if (driver && driver->name)
3019de12
DM
8665 return driver->name;
8666 return empty;
6579e57b
AV
8667}
8668
6ea754eb
JP
8669static void __netdev_printk(const char *level, const struct net_device *dev,
8670 struct va_format *vaf)
256df2f3 8671{
b004ff49 8672 if (dev && dev->dev.parent) {
6ea754eb
JP
8673 dev_printk_emit(level[1] - '0',
8674 dev->dev.parent,
8675 "%s %s %s%s: %pV",
8676 dev_driver_string(dev->dev.parent),
8677 dev_name(dev->dev.parent),
8678 netdev_name(dev), netdev_reg_state(dev),
8679 vaf);
b004ff49 8680 } else if (dev) {
6ea754eb
JP
8681 printk("%s%s%s: %pV",
8682 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8683 } else {
6ea754eb 8684 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8685 }
256df2f3
JP
8686}
8687
6ea754eb
JP
8688void netdev_printk(const char *level, const struct net_device *dev,
8689 const char *format, ...)
256df2f3
JP
8690{
8691 struct va_format vaf;
8692 va_list args;
256df2f3
JP
8693
8694 va_start(args, format);
8695
8696 vaf.fmt = format;
8697 vaf.va = &args;
8698
6ea754eb 8699 __netdev_printk(level, dev, &vaf);
b004ff49 8700
256df2f3 8701 va_end(args);
256df2f3
JP
8702}
8703EXPORT_SYMBOL(netdev_printk);
8704
8705#define define_netdev_printk_level(func, level) \
6ea754eb 8706void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8707{ \
256df2f3
JP
8708 struct va_format vaf; \
8709 va_list args; \
8710 \
8711 va_start(args, fmt); \
8712 \
8713 vaf.fmt = fmt; \
8714 vaf.va = &args; \
8715 \
6ea754eb 8716 __netdev_printk(level, dev, &vaf); \
b004ff49 8717 \
256df2f3 8718 va_end(args); \
256df2f3
JP
8719} \
8720EXPORT_SYMBOL(func);
8721
8722define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8723define_netdev_printk_level(netdev_alert, KERN_ALERT);
8724define_netdev_printk_level(netdev_crit, KERN_CRIT);
8725define_netdev_printk_level(netdev_err, KERN_ERR);
8726define_netdev_printk_level(netdev_warn, KERN_WARNING);
8727define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8728define_netdev_printk_level(netdev_info, KERN_INFO);
8729
4665079c 8730static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8731{
8732 kfree(net->dev_name_head);
8733 kfree(net->dev_index_head);
ee21b18b
VA
8734 if (net != &init_net)
8735 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
8736}
8737
022cbae6 8738static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8739 .init = netdev_init,
8740 .exit = netdev_exit,
8741};
8742
4665079c 8743static void __net_exit default_device_exit(struct net *net)
ce286d32 8744{
e008b5fc 8745 struct net_device *dev, *aux;
ce286d32 8746 /*
e008b5fc 8747 * Push all migratable network devices back to the
ce286d32
EB
8748 * initial network namespace
8749 */
8750 rtnl_lock();
e008b5fc 8751 for_each_netdev_safe(net, dev, aux) {
ce286d32 8752 int err;
aca51397 8753 char fb_name[IFNAMSIZ];
ce286d32
EB
8754
8755 /* Ignore unmoveable devices (i.e. loopback) */
8756 if (dev->features & NETIF_F_NETNS_LOCAL)
8757 continue;
8758
e008b5fc
EB
8759 /* Leave virtual devices for the generic cleanup */
8760 if (dev->rtnl_link_ops)
8761 continue;
d0c082ce 8762
25985edc 8763 /* Push remaining network devices to init_net */
aca51397 8764 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8fd3df16
JP
8765 if (__dev_get_by_name(&init_net, fb_name))
8766 snprintf(fb_name, IFNAMSIZ, "dev%%d");
aca51397 8767 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8768 if (err) {
7b6cd1ce
JP
8769 pr_emerg("%s: failed to move %s to init_net: %d\n",
8770 __func__, dev->name, err);
aca51397 8771 BUG();
ce286d32
EB
8772 }
8773 }
8774 rtnl_unlock();
8775}
8776
50624c93
EB
8777static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8778{
8779 /* Return with the rtnl_lock held when there are no network
8780 * devices unregistering in any network namespace in net_list.
8781 */
8782 struct net *net;
8783 bool unregistering;
ff960a73 8784 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8785
ff960a73 8786 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8787 for (;;) {
50624c93
EB
8788 unregistering = false;
8789 rtnl_lock();
8790 list_for_each_entry(net, net_list, exit_list) {
8791 if (net->dev_unreg_count > 0) {
8792 unregistering = true;
8793 break;
8794 }
8795 }
8796 if (!unregistering)
8797 break;
8798 __rtnl_unlock();
ff960a73
PZ
8799
8800 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8801 }
ff960a73 8802 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8803}
8804
04dc7f6b
EB
8805static void __net_exit default_device_exit_batch(struct list_head *net_list)
8806{
8807 /* At exit all network devices most be removed from a network
b595076a 8808 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8809 * Do this across as many network namespaces as possible to
8810 * improve batching efficiency.
8811 */
8812 struct net_device *dev;
8813 struct net *net;
8814 LIST_HEAD(dev_kill_list);
8815
50624c93
EB
8816 /* To prevent network device cleanup code from dereferencing
8817 * loopback devices or network devices that have been freed
8818 * wait here for all pending unregistrations to complete,
8819 * before unregistring the loopback device and allowing the
8820 * network namespace be freed.
8821 *
8822 * The netdev todo list containing all network devices
8823 * unregistrations that happen in default_device_exit_batch
8824 * will run in the rtnl_unlock() at the end of
8825 * default_device_exit_batch.
8826 */
8827 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8828 list_for_each_entry(net, net_list, exit_list) {
8829 for_each_netdev_reverse(net, dev) {
b0ab2fab 8830 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8831 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8832 else
8833 unregister_netdevice_queue(dev, &dev_kill_list);
8834 }
8835 }
8836 unregister_netdevice_many(&dev_kill_list);
8837 rtnl_unlock();
8838}
8839
022cbae6 8840static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8841 .exit = default_device_exit,
04dc7f6b 8842 .exit_batch = default_device_exit_batch,
ce286d32
EB
8843};
8844
1da177e4
LT
8845/*
8846 * Initialize the DEV module. At boot time this walks the device list and
8847 * unhooks any devices that fail to initialise (normally hardware not
8848 * present) and leaves us with a valid list of present and active devices.
8849 *
8850 */
8851
8852/*
8853 * This is called single threaded during boot, so no need
8854 * to take the rtnl semaphore.
8855 */
8856static int __init net_dev_init(void)
8857{
8858 int i, rc = -ENOMEM;
8859
8860 BUG_ON(!dev_boot_phase);
8861
1da177e4
LT
8862 if (dev_proc_init())
8863 goto out;
8864
8b41d188 8865 if (netdev_kobject_init())
1da177e4
LT
8866 goto out;
8867
8868 INIT_LIST_HEAD(&ptype_all);
82d8a867 8869 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8870 INIT_LIST_HEAD(&ptype_base[i]);
8871
62532da9
VY
8872 INIT_LIST_HEAD(&offload_base);
8873
881d966b
EB
8874 if (register_pernet_subsys(&netdev_net_ops))
8875 goto out;
1da177e4
LT
8876
8877 /*
8878 * Initialise the packet receive queues.
8879 */
8880
6f912042 8881 for_each_possible_cpu(i) {
41852497 8882 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8883 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8884
41852497
ED
8885 INIT_WORK(flush, flush_backlog);
8886
e36fa2f7 8887 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8888 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8889 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8890 sd->output_queue_tailp = &sd->output_queue;
df334545 8891#ifdef CONFIG_RPS
e36fa2f7
ED
8892 sd->csd.func = rps_trigger_softirq;
8893 sd->csd.info = sd;
e36fa2f7 8894 sd->cpu = i;
1e94d72f 8895#endif
0a9627f2 8896
e36fa2f7
ED
8897 sd->backlog.poll = process_backlog;
8898 sd->backlog.weight = weight_p;
1da177e4
LT
8899 }
8900
1da177e4
LT
8901 dev_boot_phase = 0;
8902
505d4f73
EB
8903 /* The loopback device is special if any other network devices
8904 * is present in a network namespace the loopback device must
8905 * be present. Since we now dynamically allocate and free the
8906 * loopback device ensure this invariant is maintained by
8907 * keeping the loopback device as the first device on the
8908 * list of network devices. Ensuring the loopback devices
8909 * is the first device that appears and the last network device
8910 * that disappears.
8911 */
8912 if (register_pernet_device(&loopback_net_ops))
8913 goto out;
8914
8915 if (register_pernet_device(&default_device_ops))
8916 goto out;
8917
962cf36c
CM
8918 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8919 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8920
f0bf90de
SAS
8921 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8922 NULL, dev_cpu_dead);
8923 WARN_ON(rc < 0);
1da177e4
LT
8924 rc = 0;
8925out:
8926 return rc;
8927}
8928
8929subsys_initcall(net_dev_init);