]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/core/dev.c
net/dev: Convert to hotplug state machine
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
6ae23ad3 142#include <linux/sctp.h>
40e4e713 143#include <linux/crash_dump.h>
1da177e4 144
342709ef
PE
145#include "net-sysfs.h"
146
d565b0a1
HX
147/* Instead of increasing this, you should create a hash table. */
148#define MAX_GRO_SKBS 8
149
5d38a079
HX
150/* This should be increased if a protocol with a bigger head is added. */
151#define GRO_MAX_HEAD (MAX_HEADER + 128)
152
1da177e4 153static DEFINE_SPINLOCK(ptype_lock);
62532da9 154static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156struct list_head ptype_all __read_mostly; /* Taps */
62532da9 157static struct list_head offload_base __read_mostly;
1da177e4 158
ae78dbfa 159static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
160static int call_netdevice_notifiers_info(unsigned long val,
161 struct net_device *dev,
162 struct netdev_notifier_info *info);
ae78dbfa 163
1da177e4 164/*
7562f876 165 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
166 * semaphore.
167 *
c6d14c84 168 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
169 *
170 * Writers must hold the rtnl semaphore while they loop through the
7562f876 171 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
172 * actual updates. This allows pure readers to access the list even
173 * while a writer is preparing to update it.
174 *
175 * To put it another way, dev_base_lock is held for writing only to
176 * protect against pure readers; the rtnl semaphore provides the
177 * protection against other writers.
178 *
179 * See, for example usages, register_netdevice() and
180 * unregister_netdevice(), which must be called with the rtnl
181 * semaphore held.
182 */
1da177e4 183DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
184EXPORT_SYMBOL(dev_base_lock);
185
af12fa6e
ET
186/* protects napi_hash addition/deletion and napi_gen_id */
187static DEFINE_SPINLOCK(napi_hash_lock);
188
52bd2d62 189static unsigned int napi_gen_id = NR_CPUS;
6180d9de 190static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 191
18afa4b0 192static seqcount_t devnet_rename_seq;
c91f6df2 193
4e985ada
TG
194static inline void dev_base_seq_inc(struct net *net)
195{
196 while (++net->dev_base_seq == 0);
197}
198
881d966b 199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 200{
8387ff25 201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 202
08e9897d 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
204}
205
881d966b 206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 207{
7c28bd0b 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
209}
210
e36fa2f7 211static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
212{
213#ifdef CONFIG_RPS
e36fa2f7 214 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
215#endif
216}
217
e36fa2f7 218static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
219{
220#ifdef CONFIG_RPS
e36fa2f7 221 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
222#endif
223}
224
ce286d32 225/* Device list insertion */
53759be9 226static void list_netdevice(struct net_device *dev)
ce286d32 227{
c346dca1 228 struct net *net = dev_net(dev);
ce286d32
EB
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
c6d14c84 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
ce286d32 237 write_unlock_bh(&dev_base_lock);
4e985ada
TG
238
239 dev_base_seq_inc(net);
ce286d32
EB
240}
241
fb699dfd
ED
242/* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
ce286d32
EB
245static void unlist_netdevice(struct net_device *dev)
246{
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
c6d14c84 251 list_del_rcu(&dev->dev_list);
72c9528b 252 hlist_del_rcu(&dev->name_hlist);
fb699dfd 253 hlist_del_rcu(&dev->index_hlist);
ce286d32 254 write_unlock_bh(&dev_base_lock);
4e985ada
TG
255
256 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
257}
258
1da177e4
LT
259/*
260 * Our notifier list
261 */
262
f07d5b94 263static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
264
265/*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
bea3348e 269
9958da05 270DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 271EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 272
cf508b12 273#ifdef CONFIG_LOCKDEP
723e98b7 274/*
c773e847 275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
276 * according to dev->type
277 */
278static const unsigned short netdev_lock_type[] =
279 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 294
36cbd3dc 295static const char *const netdev_lock_name[] =
723e98b7
JP
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
311
312static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 313static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
314
315static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316{
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324}
325
cf508b12
DM
326static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
723e98b7
JP
328{
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334}
cf508b12
DM
335
336static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337{
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344}
723e98b7 345#else
cf508b12
DM
346static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348{
349}
350static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
351{
352}
353#endif
1da177e4
LT
354
355/*******************************************************************************
356
357 Protocol management and registration routines
358
359*******************************************************************************/
360
1da177e4
LT
361/*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
c07b68e8
ED
377static inline struct list_head *ptype_head(const struct packet_type *pt)
378{
379 if (pt->type == htons(ETH_P_ALL))
7866a621 380 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 381 else
7866a621
SN
382 return pt->dev ? &pt->dev->ptype_specific :
383 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
384}
385
1da177e4
LT
386/**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
4ec93edb 394 * This call does not sleep therefore it can not
1da177e4
LT
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399void dev_add_pack(struct packet_type *pt)
400{
c07b68e8 401 struct list_head *head = ptype_head(pt);
1da177e4 402
c07b68e8
ED
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
1da177e4 406}
d1b19dff 407EXPORT_SYMBOL(dev_add_pack);
1da177e4 408
1da177e4
LT
409/**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
4ec93edb 416 * returns.
1da177e4
LT
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422void __dev_remove_pack(struct packet_type *pt)
423{
c07b68e8 424 struct list_head *head = ptype_head(pt);
1da177e4
LT
425 struct packet_type *pt1;
426
c07b68e8 427 spin_lock(&ptype_lock);
1da177e4
LT
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
7b6cd1ce 436 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 437out:
c07b68e8 438 spin_unlock(&ptype_lock);
1da177e4 439}
d1b19dff
ED
440EXPORT_SYMBOL(__dev_remove_pack);
441
1da177e4
LT
442/**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454void dev_remove_pack(struct packet_type *pt)
455{
456 __dev_remove_pack(pt);
4ec93edb 457
1da177e4
LT
458 synchronize_net();
459}
d1b19dff 460EXPORT_SYMBOL(dev_remove_pack);
1da177e4 461
62532da9
VY
462
463/**
464 * dev_add_offload - register offload handlers
465 * @po: protocol offload declaration
466 *
467 * Add protocol offload handlers to the networking stack. The passed
468 * &proto_offload is linked into kernel lists and may not be freed until
469 * it has been removed from the kernel lists.
470 *
471 * This call does not sleep therefore it can not
472 * guarantee all CPU's that are in middle of receiving packets
473 * will see the new offload handlers (until the next received packet).
474 */
475void dev_add_offload(struct packet_offload *po)
476{
bdef7de4 477 struct packet_offload *elem;
62532da9
VY
478
479 spin_lock(&offload_lock);
bdef7de4
DM
480 list_for_each_entry(elem, &offload_base, list) {
481 if (po->priority < elem->priority)
482 break;
483 }
484 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
485 spin_unlock(&offload_lock);
486}
487EXPORT_SYMBOL(dev_add_offload);
488
489/**
490 * __dev_remove_offload - remove offload handler
491 * @po: packet offload declaration
492 *
493 * Remove a protocol offload handler that was previously added to the
494 * kernel offload handlers by dev_add_offload(). The passed &offload_type
495 * is removed from the kernel lists and can be freed or reused once this
496 * function returns.
497 *
498 * The packet type might still be in use by receivers
499 * and must not be freed until after all the CPU's have gone
500 * through a quiescent state.
501 */
1d143d9f 502static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
503{
504 struct list_head *head = &offload_base;
505 struct packet_offload *po1;
506
c53aa505 507 spin_lock(&offload_lock);
62532da9
VY
508
509 list_for_each_entry(po1, head, list) {
510 if (po == po1) {
511 list_del_rcu(&po->list);
512 goto out;
513 }
514 }
515
516 pr_warn("dev_remove_offload: %p not found\n", po);
517out:
c53aa505 518 spin_unlock(&offload_lock);
62532da9 519}
62532da9
VY
520
521/**
522 * dev_remove_offload - remove packet offload handler
523 * @po: packet offload declaration
524 *
525 * Remove a packet offload handler that was previously added to the kernel
526 * offload handlers by dev_add_offload(). The passed &offload_type is
527 * removed from the kernel lists and can be freed or reused once this
528 * function returns.
529 *
530 * This call sleeps to guarantee that no CPU is looking at the packet
531 * type after return.
532 */
533void dev_remove_offload(struct packet_offload *po)
534{
535 __dev_remove_offload(po);
536
537 synchronize_net();
538}
539EXPORT_SYMBOL(dev_remove_offload);
540
1da177e4
LT
541/******************************************************************************
542
543 Device Boot-time Settings Routines
544
545*******************************************************************************/
546
547/* Boot time configuration table */
548static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550/**
551 * netdev_boot_setup_add - add new setup entry
552 * @name: name of the device
553 * @map: configured settings for the device
554 *
555 * Adds new setup entry to the dev_boot_setup list. The function
556 * returns 0 on error and 1 on success. This is a generic routine to
557 * all netdevices.
558 */
559static int netdev_boot_setup_add(char *name, struct ifmap *map)
560{
561 struct netdev_boot_setup *s;
562 int i;
563
564 s = dev_boot_setup;
565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 568 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
569 memcpy(&s[i].map, map, sizeof(s[i].map));
570 break;
571 }
572 }
573
574 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575}
576
577/**
578 * netdev_boot_setup_check - check boot time settings
579 * @dev: the netdevice
580 *
581 * Check boot time settings for the device.
582 * The found settings are set for the device to be used
583 * later in the device probing.
584 * Returns 0 if no settings found, 1 if they are.
585 */
586int netdev_boot_setup_check(struct net_device *dev)
587{
588 struct netdev_boot_setup *s = dev_boot_setup;
589 int i;
590
591 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 593 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
594 dev->irq = s[i].map.irq;
595 dev->base_addr = s[i].map.base_addr;
596 dev->mem_start = s[i].map.mem_start;
597 dev->mem_end = s[i].map.mem_end;
598 return 1;
599 }
600 }
601 return 0;
602}
d1b19dff 603EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
604
605
606/**
607 * netdev_boot_base - get address from boot time settings
608 * @prefix: prefix for network device
609 * @unit: id for network device
610 *
611 * Check boot time settings for the base address of device.
612 * The found settings are set for the device to be used
613 * later in the device probing.
614 * Returns 0 if no settings found.
615 */
616unsigned long netdev_boot_base(const char *prefix, int unit)
617{
618 const struct netdev_boot_setup *s = dev_boot_setup;
619 char name[IFNAMSIZ];
620 int i;
621
622 sprintf(name, "%s%d", prefix, unit);
623
624 /*
625 * If device already registered then return base of 1
626 * to indicate not to probe for this interface
627 */
881d966b 628 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
629 return 1;
630
631 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 if (!strcmp(name, s[i].name))
633 return s[i].map.base_addr;
634 return 0;
635}
636
637/*
638 * Saves at boot time configured settings for any netdevice.
639 */
640int __init netdev_boot_setup(char *str)
641{
642 int ints[5];
643 struct ifmap map;
644
645 str = get_options(str, ARRAY_SIZE(ints), ints);
646 if (!str || !*str)
647 return 0;
648
649 /* Save settings */
650 memset(&map, 0, sizeof(map));
651 if (ints[0] > 0)
652 map.irq = ints[1];
653 if (ints[0] > 1)
654 map.base_addr = ints[2];
655 if (ints[0] > 2)
656 map.mem_start = ints[3];
657 if (ints[0] > 3)
658 map.mem_end = ints[4];
659
660 /* Add new entry to the list */
661 return netdev_boot_setup_add(str, &map);
662}
663
664__setup("netdev=", netdev_boot_setup);
665
666/*******************************************************************************
667
668 Device Interface Subroutines
669
670*******************************************************************************/
671
a54acb3a
ND
672/**
673 * dev_get_iflink - get 'iflink' value of a interface
674 * @dev: targeted interface
675 *
676 * Indicates the ifindex the interface is linked to.
677 * Physical interfaces have the same 'ifindex' and 'iflink' values.
678 */
679
680int dev_get_iflink(const struct net_device *dev)
681{
682 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 return dev->netdev_ops->ndo_get_iflink(dev);
684
7a66bbc9 685 return dev->ifindex;
a54acb3a
ND
686}
687EXPORT_SYMBOL(dev_get_iflink);
688
fc4099f1
PS
689/**
690 * dev_fill_metadata_dst - Retrieve tunnel egress information.
691 * @dev: targeted interface
692 * @skb: The packet.
693 *
694 * For better visibility of tunnel traffic OVS needs to retrieve
695 * egress tunnel information for a packet. Following API allows
696 * user to get this info.
697 */
698int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699{
700 struct ip_tunnel_info *info;
701
702 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
703 return -EINVAL;
704
705 info = skb_tunnel_info_unclone(skb);
706 if (!info)
707 return -ENOMEM;
708 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 return -EINVAL;
710
711 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712}
713EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
1da177e4
LT
715/**
716 * __dev_get_by_name - find a device by its name
c4ea43c5 717 * @net: the applicable net namespace
1da177e4
LT
718 * @name: name to find
719 *
720 * Find an interface by name. Must be called under RTNL semaphore
721 * or @dev_base_lock. If the name is found a pointer to the device
722 * is returned. If the name is not found then %NULL is returned. The
723 * reference counters are not incremented so the caller must be
724 * careful with locks.
725 */
726
881d966b 727struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 728{
0bd8d536
ED
729 struct net_device *dev;
730 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 731
b67bfe0d 732 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
733 if (!strncmp(dev->name, name, IFNAMSIZ))
734 return dev;
0bd8d536 735
1da177e4
LT
736 return NULL;
737}
d1b19dff 738EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 739
72c9528b
ED
740/**
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
750 */
751
752struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753{
72c9528b
ED
754 struct net_device *dev;
755 struct hlist_head *head = dev_name_hash(net, name);
756
b67bfe0d 757 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
758 if (!strncmp(dev->name, name, IFNAMSIZ))
759 return dev;
760
761 return NULL;
762}
763EXPORT_SYMBOL(dev_get_by_name_rcu);
764
1da177e4
LT
765/**
766 * dev_get_by_name - find a device by its name
c4ea43c5 767 * @net: the applicable net namespace
1da177e4
LT
768 * @name: name to find
769 *
770 * Find an interface by name. This can be called from any
771 * context and does its own locking. The returned handle has
772 * the usage count incremented and the caller must use dev_put() to
773 * release it when it is no longer needed. %NULL is returned if no
774 * matching device is found.
775 */
776
881d966b 777struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
778{
779 struct net_device *dev;
780
72c9528b
ED
781 rcu_read_lock();
782 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
783 if (dev)
784 dev_hold(dev);
72c9528b 785 rcu_read_unlock();
1da177e4
LT
786 return dev;
787}
d1b19dff 788EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
789
790/**
791 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 792 * @net: the applicable net namespace
1da177e4
LT
793 * @ifindex: index of device
794 *
795 * Search for an interface by index. Returns %NULL if the device
796 * is not found or a pointer to the device. The device has not
797 * had its reference counter increased so the caller must be careful
798 * about locking. The caller must hold either the RTNL semaphore
799 * or @dev_base_lock.
800 */
801
881d966b 802struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 803{
0bd8d536
ED
804 struct net_device *dev;
805 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 806
b67bfe0d 807 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
808 if (dev->ifindex == ifindex)
809 return dev;
0bd8d536 810
1da177e4
LT
811 return NULL;
812}
d1b19dff 813EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 814
fb699dfd
ED
815/**
816 * dev_get_by_index_rcu - find a device by its ifindex
817 * @net: the applicable net namespace
818 * @ifindex: index of device
819 *
820 * Search for an interface by index. Returns %NULL if the device
821 * is not found or a pointer to the device. The device has not
822 * had its reference counter increased so the caller must be careful
823 * about locking. The caller must hold RCU lock.
824 */
825
826struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827{
fb699dfd
ED
828 struct net_device *dev;
829 struct hlist_head *head = dev_index_hash(net, ifindex);
830
b67bfe0d 831 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
832 if (dev->ifindex == ifindex)
833 return dev;
834
835 return NULL;
836}
837EXPORT_SYMBOL(dev_get_by_index_rcu);
838
1da177e4
LT
839
840/**
841 * dev_get_by_index - find a device by its ifindex
c4ea43c5 842 * @net: the applicable net namespace
1da177e4
LT
843 * @ifindex: index of device
844 *
845 * Search for an interface by index. Returns NULL if the device
846 * is not found or a pointer to the device. The device returned has
847 * had a reference added and the pointer is safe until the user calls
848 * dev_put to indicate they have finished with it.
849 */
850
881d966b 851struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
852{
853 struct net_device *dev;
854
fb699dfd
ED
855 rcu_read_lock();
856 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
857 if (dev)
858 dev_hold(dev);
fb699dfd 859 rcu_read_unlock();
1da177e4
LT
860 return dev;
861}
d1b19dff 862EXPORT_SYMBOL(dev_get_by_index);
1da177e4 863
5dbe7c17
NS
864/**
865 * netdev_get_name - get a netdevice name, knowing its ifindex.
866 * @net: network namespace
867 * @name: a pointer to the buffer where the name will be stored.
868 * @ifindex: the ifindex of the interface to get the name from.
869 *
870 * The use of raw_seqcount_begin() and cond_resched() before
871 * retrying is required as we want to give the writers a chance
872 * to complete when CONFIG_PREEMPT is not set.
873 */
874int netdev_get_name(struct net *net, char *name, int ifindex)
875{
876 struct net_device *dev;
877 unsigned int seq;
878
879retry:
880 seq = raw_seqcount_begin(&devnet_rename_seq);
881 rcu_read_lock();
882 dev = dev_get_by_index_rcu(net, ifindex);
883 if (!dev) {
884 rcu_read_unlock();
885 return -ENODEV;
886 }
887
888 strcpy(name, dev->name);
889 rcu_read_unlock();
890 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 cond_resched();
892 goto retry;
893 }
894
895 return 0;
896}
897
1da177e4 898/**
941666c2 899 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 900 * @net: the applicable net namespace
1da177e4
LT
901 * @type: media type of device
902 * @ha: hardware address
903 *
904 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
905 * is not found or a pointer to the device.
906 * The caller must hold RCU or RTNL.
941666c2 907 * The returned device has not had its ref count increased
1da177e4
LT
908 * and the caller must therefore be careful about locking
909 *
1da177e4
LT
910 */
911
941666c2
ED
912struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 const char *ha)
1da177e4
LT
914{
915 struct net_device *dev;
916
941666c2 917 for_each_netdev_rcu(net, dev)
1da177e4
LT
918 if (dev->type == type &&
919 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
920 return dev;
921
922 return NULL;
1da177e4 923}
941666c2 924EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 925
881d966b 926struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
927{
928 struct net_device *dev;
929
4e9cac2b 930 ASSERT_RTNL();
881d966b 931 for_each_netdev(net, dev)
4e9cac2b 932 if (dev->type == type)
7562f876
PE
933 return dev;
934
935 return NULL;
4e9cac2b 936}
4e9cac2b
PM
937EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
881d966b 939struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 940{
99fe3c39 941 struct net_device *dev, *ret = NULL;
4e9cac2b 942
99fe3c39
ED
943 rcu_read_lock();
944 for_each_netdev_rcu(net, dev)
945 if (dev->type == type) {
946 dev_hold(dev);
947 ret = dev;
948 break;
949 }
950 rcu_read_unlock();
951 return ret;
1da177e4 952}
1da177e4
LT
953EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955/**
6c555490 956 * __dev_get_by_flags - find any device with given flags
c4ea43c5 957 * @net: the applicable net namespace
1da177e4
LT
958 * @if_flags: IFF_* values
959 * @mask: bitmask of bits in if_flags to check
960 *
961 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 962 * is not found or a pointer to the device. Must be called inside
6c555490 963 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
964 */
965
6c555490
WC
966struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 unsigned short mask)
1da177e4 968{
7562f876 969 struct net_device *dev, *ret;
1da177e4 970
6c555490
WC
971 ASSERT_RTNL();
972
7562f876 973 ret = NULL;
6c555490 974 for_each_netdev(net, dev) {
1da177e4 975 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 976 ret = dev;
1da177e4
LT
977 break;
978 }
979 }
7562f876 980 return ret;
1da177e4 981}
6c555490 982EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
983
984/**
985 * dev_valid_name - check if name is okay for network device
986 * @name: name string
987 *
988 * Network device names need to be valid file names to
c7fa9d18
DM
989 * to allow sysfs to work. We also disallow any kind of
990 * whitespace.
1da177e4 991 */
95f050bf 992bool dev_valid_name(const char *name)
1da177e4 993{
c7fa9d18 994 if (*name == '\0')
95f050bf 995 return false;
b6fe17d6 996 if (strlen(name) >= IFNAMSIZ)
95f050bf 997 return false;
c7fa9d18 998 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 999 return false;
c7fa9d18
DM
1000
1001 while (*name) {
a4176a93 1002 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1003 return false;
c7fa9d18
DM
1004 name++;
1005 }
95f050bf 1006 return true;
1da177e4 1007}
d1b19dff 1008EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1009
1010/**
b267b179
EB
1011 * __dev_alloc_name - allocate a name for a device
1012 * @net: network namespace to allocate the device name in
1da177e4 1013 * @name: name format string
b267b179 1014 * @buf: scratch buffer and result name string
1da177e4
LT
1015 *
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1020 * duplicates.
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1023 */
1024
b267b179 1025static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1026{
1027 int i = 0;
1da177e4
LT
1028 const char *p;
1029 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1030 unsigned long *inuse;
1da177e4
LT
1031 struct net_device *d;
1032
1033 p = strnchr(name, IFNAMSIZ-1, '%');
1034 if (p) {
1035 /*
1036 * Verify the string as this thing may have come from
1037 * the user. There must be either one "%d" and no other "%"
1038 * characters.
1039 */
1040 if (p[1] != 'd' || strchr(p + 2, '%'))
1041 return -EINVAL;
1042
1043 /* Use one page as a bit array of possible slots */
cfcabdcc 1044 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1045 if (!inuse)
1046 return -ENOMEM;
1047
881d966b 1048 for_each_netdev(net, d) {
1da177e4
LT
1049 if (!sscanf(d->name, name, &i))
1050 continue;
1051 if (i < 0 || i >= max_netdevices)
1052 continue;
1053
1054 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1055 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1056 if (!strncmp(buf, d->name, IFNAMSIZ))
1057 set_bit(i, inuse);
1058 }
1059
1060 i = find_first_zero_bit(inuse, max_netdevices);
1061 free_page((unsigned long) inuse);
1062 }
1063
d9031024
OP
1064 if (buf != name)
1065 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1066 if (!__dev_get_by_name(net, buf))
1da177e4 1067 return i;
1da177e4
LT
1068
1069 /* It is possible to run out of possible slots
1070 * when the name is long and there isn't enough space left
1071 * for the digits, or if all bits are used.
1072 */
1073 return -ENFILE;
1074}
1075
b267b179
EB
1076/**
1077 * dev_alloc_name - allocate a name for a device
1078 * @dev: device
1079 * @name: name format string
1080 *
1081 * Passed a format string - eg "lt%d" it will try and find a suitable
1082 * id. It scans list of devices to build up a free map, then chooses
1083 * the first empty slot. The caller must hold the dev_base or rtnl lock
1084 * while allocating the name and adding the device in order to avoid
1085 * duplicates.
1086 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087 * Returns the number of the unit assigned or a negative errno code.
1088 */
1089
1090int dev_alloc_name(struct net_device *dev, const char *name)
1091{
1092 char buf[IFNAMSIZ];
1093 struct net *net;
1094 int ret;
1095
c346dca1
YH
1096 BUG_ON(!dev_net(dev));
1097 net = dev_net(dev);
b267b179
EB
1098 ret = __dev_alloc_name(net, name, buf);
1099 if (ret >= 0)
1100 strlcpy(dev->name, buf, IFNAMSIZ);
1101 return ret;
1102}
d1b19dff 1103EXPORT_SYMBOL(dev_alloc_name);
b267b179 1104
828de4f6
G
1105static int dev_alloc_name_ns(struct net *net,
1106 struct net_device *dev,
1107 const char *name)
d9031024 1108{
828de4f6
G
1109 char buf[IFNAMSIZ];
1110 int ret;
8ce6cebc 1111
828de4f6
G
1112 ret = __dev_alloc_name(net, name, buf);
1113 if (ret >= 0)
1114 strlcpy(dev->name, buf, IFNAMSIZ);
1115 return ret;
1116}
1117
1118static int dev_get_valid_name(struct net *net,
1119 struct net_device *dev,
1120 const char *name)
1121{
1122 BUG_ON(!net);
8ce6cebc 1123
d9031024
OP
1124 if (!dev_valid_name(name))
1125 return -EINVAL;
1126
1c5cae81 1127 if (strchr(name, '%'))
828de4f6 1128 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1129 else if (__dev_get_by_name(net, name))
1130 return -EEXIST;
8ce6cebc
DL
1131 else if (dev->name != name)
1132 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1133
1134 return 0;
1135}
1da177e4
LT
1136
1137/**
1138 * dev_change_name - change name of a device
1139 * @dev: device
1140 * @newname: name (or format string) must be at least IFNAMSIZ
1141 *
1142 * Change name of a device, can pass format strings "eth%d".
1143 * for wildcarding.
1144 */
cf04a4c7 1145int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1146{
238fa362 1147 unsigned char old_assign_type;
fcc5a03a 1148 char oldname[IFNAMSIZ];
1da177e4 1149 int err = 0;
fcc5a03a 1150 int ret;
881d966b 1151 struct net *net;
1da177e4
LT
1152
1153 ASSERT_RTNL();
c346dca1 1154 BUG_ON(!dev_net(dev));
1da177e4 1155
c346dca1 1156 net = dev_net(dev);
1da177e4
LT
1157 if (dev->flags & IFF_UP)
1158 return -EBUSY;
1159
30e6c9fa 1160 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1161
1162 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1163 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1164 return 0;
c91f6df2 1165 }
c8d90dca 1166
fcc5a03a
HX
1167 memcpy(oldname, dev->name, IFNAMSIZ);
1168
828de4f6 1169 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1170 if (err < 0) {
30e6c9fa 1171 write_seqcount_end(&devnet_rename_seq);
d9031024 1172 return err;
c91f6df2 1173 }
1da177e4 1174
6fe82a39
VF
1175 if (oldname[0] && !strchr(oldname, '%'))
1176 netdev_info(dev, "renamed from %s\n", oldname);
1177
238fa362
TG
1178 old_assign_type = dev->name_assign_type;
1179 dev->name_assign_type = NET_NAME_RENAMED;
1180
fcc5a03a 1181rollback:
a1b3f594
EB
1182 ret = device_rename(&dev->dev, dev->name);
1183 if (ret) {
1184 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1185 dev->name_assign_type = old_assign_type;
30e6c9fa 1186 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1187 return ret;
dcc99773 1188 }
7f988eab 1189
30e6c9fa 1190 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1191
5bb025fa
VF
1192 netdev_adjacent_rename_links(dev, oldname);
1193
7f988eab 1194 write_lock_bh(&dev_base_lock);
372b2312 1195 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1196 write_unlock_bh(&dev_base_lock);
1197
1198 synchronize_rcu();
1199
1200 write_lock_bh(&dev_base_lock);
1201 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1202 write_unlock_bh(&dev_base_lock);
1203
056925ab 1204 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1205 ret = notifier_to_errno(ret);
1206
1207 if (ret) {
91e9c07b
ED
1208 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209 if (err >= 0) {
fcc5a03a 1210 err = ret;
30e6c9fa 1211 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1212 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1213 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1214 dev->name_assign_type = old_assign_type;
1215 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1216 goto rollback;
91e9c07b 1217 } else {
7b6cd1ce 1218 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1219 dev->name, ret);
fcc5a03a
HX
1220 }
1221 }
1da177e4
LT
1222
1223 return err;
1224}
1225
0b815a1a
SH
1226/**
1227 * dev_set_alias - change ifalias of a device
1228 * @dev: device
1229 * @alias: name up to IFALIASZ
f0db275a 1230 * @len: limit of bytes to copy from info
0b815a1a
SH
1231 *
1232 * Set ifalias for a device,
1233 */
1234int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235{
7364e445
AK
1236 char *new_ifalias;
1237
0b815a1a
SH
1238 ASSERT_RTNL();
1239
1240 if (len >= IFALIASZ)
1241 return -EINVAL;
1242
96ca4a2c 1243 if (!len) {
388dfc2d
SK
1244 kfree(dev->ifalias);
1245 dev->ifalias = NULL;
96ca4a2c
OH
1246 return 0;
1247 }
1248
7364e445
AK
1249 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 if (!new_ifalias)
0b815a1a 1251 return -ENOMEM;
7364e445 1252 dev->ifalias = new_ifalias;
0b815a1a
SH
1253
1254 strlcpy(dev->ifalias, alias, len+1);
1255 return len;
1256}
1257
1258
d8a33ac4 1259/**
3041a069 1260 * netdev_features_change - device changes features
d8a33ac4
SH
1261 * @dev: device to cause notification
1262 *
1263 * Called to indicate a device has changed features.
1264 */
1265void netdev_features_change(struct net_device *dev)
1266{
056925ab 1267 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1268}
1269EXPORT_SYMBOL(netdev_features_change);
1270
1da177e4
LT
1271/**
1272 * netdev_state_change - device changes state
1273 * @dev: device to cause notification
1274 *
1275 * Called to indicate a device has changed state. This function calls
1276 * the notifier chains for netdev_chain and sends a NEWLINK message
1277 * to the routing socket.
1278 */
1279void netdev_state_change(struct net_device *dev)
1280{
1281 if (dev->flags & IFF_UP) {
54951194
LP
1282 struct netdev_notifier_change_info change_info;
1283
1284 change_info.flags_changed = 0;
1285 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 &change_info.info);
7f294054 1287 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1288 }
1289}
d1b19dff 1290EXPORT_SYMBOL(netdev_state_change);
1da177e4 1291
ee89bab1
AW
1292/**
1293 * netdev_notify_peers - notify network peers about existence of @dev
1294 * @dev: network device
1295 *
1296 * Generate traffic such that interested network peers are aware of
1297 * @dev, such as by generating a gratuitous ARP. This may be used when
1298 * a device wants to inform the rest of the network about some sort of
1299 * reconfiguration such as a failover event or virtual machine
1300 * migration.
1301 */
1302void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1303{
ee89bab1
AW
1304 rtnl_lock();
1305 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 rtnl_unlock();
c1da4ac7 1307}
ee89bab1 1308EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1309
bd380811 1310static int __dev_open(struct net_device *dev)
1da177e4 1311{
d314774c 1312 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1313 int ret;
1da177e4 1314
e46b66bc
BH
1315 ASSERT_RTNL();
1316
1da177e4
LT
1317 if (!netif_device_present(dev))
1318 return -ENODEV;
1319
ca99ca14
NH
1320 /* Block netpoll from trying to do any rx path servicing.
1321 * If we don't do this there is a chance ndo_poll_controller
1322 * or ndo_poll may be running while we open the device
1323 */
66b5552f 1324 netpoll_poll_disable(dev);
ca99ca14 1325
3b8bcfd5
JB
1326 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 ret = notifier_to_errno(ret);
1328 if (ret)
1329 return ret;
1330
1da177e4 1331 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1332
d314774c
SH
1333 if (ops->ndo_validate_addr)
1334 ret = ops->ndo_validate_addr(dev);
bada339b 1335
d314774c
SH
1336 if (!ret && ops->ndo_open)
1337 ret = ops->ndo_open(dev);
1da177e4 1338
66b5552f 1339 netpoll_poll_enable(dev);
ca99ca14 1340
bada339b
JG
1341 if (ret)
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343 else {
1da177e4 1344 dev->flags |= IFF_UP;
4417da66 1345 dev_set_rx_mode(dev);
1da177e4 1346 dev_activate(dev);
7bf23575 1347 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1348 }
bada339b 1349
1da177e4
LT
1350 return ret;
1351}
1352
1353/**
bd380811
PM
1354 * dev_open - prepare an interface for use.
1355 * @dev: device to open
1da177e4 1356 *
bd380811
PM
1357 * Takes a device from down to up state. The device's private open
1358 * function is invoked and then the multicast lists are loaded. Finally
1359 * the device is moved into the up state and a %NETDEV_UP message is
1360 * sent to the netdev notifier chain.
1361 *
1362 * Calling this function on an active interface is a nop. On a failure
1363 * a negative errno code is returned.
1da177e4 1364 */
bd380811
PM
1365int dev_open(struct net_device *dev)
1366{
1367 int ret;
1368
bd380811
PM
1369 if (dev->flags & IFF_UP)
1370 return 0;
1371
bd380811
PM
1372 ret = __dev_open(dev);
1373 if (ret < 0)
1374 return ret;
1375
7f294054 1376 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1377 call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379 return ret;
1380}
1381EXPORT_SYMBOL(dev_open);
1382
44345724 1383static int __dev_close_many(struct list_head *head)
1da177e4 1384{
44345724 1385 struct net_device *dev;
e46b66bc 1386
bd380811 1387 ASSERT_RTNL();
9d5010db
DM
1388 might_sleep();
1389
5cde2829 1390 list_for_each_entry(dev, head, close_list) {
3f4df206 1391 /* Temporarily disable netpoll until the interface is down */
66b5552f 1392 netpoll_poll_disable(dev);
3f4df206 1393
44345724 1394 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1395
44345724 1396 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1397
44345724
OP
1398 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399 * can be even on different cpu. So just clear netif_running().
1400 *
1401 * dev->stop() will invoke napi_disable() on all of it's
1402 * napi_struct instances on this device.
1403 */
4e857c58 1404 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1405 }
1da177e4 1406
44345724 1407 dev_deactivate_many(head);
d8b2a4d2 1408
5cde2829 1409 list_for_each_entry(dev, head, close_list) {
44345724 1410 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1411
44345724
OP
1412 /*
1413 * Call the device specific close. This cannot fail.
1414 * Only if device is UP
1415 *
1416 * We allow it to be called even after a DETACH hot-plug
1417 * event.
1418 */
1419 if (ops->ndo_stop)
1420 ops->ndo_stop(dev);
1421
44345724 1422 dev->flags &= ~IFF_UP;
66b5552f 1423 netpoll_poll_enable(dev);
44345724
OP
1424 }
1425
1426 return 0;
1427}
1428
1429static int __dev_close(struct net_device *dev)
1430{
f87e6f47 1431 int retval;
44345724
OP
1432 LIST_HEAD(single);
1433
5cde2829 1434 list_add(&dev->close_list, &single);
f87e6f47
LT
1435 retval = __dev_close_many(&single);
1436 list_del(&single);
ca99ca14 1437
f87e6f47 1438 return retval;
44345724
OP
1439}
1440
99c4a26a 1441int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1442{
1443 struct net_device *dev, *tmp;
1da177e4 1444
5cde2829
EB
1445 /* Remove the devices that don't need to be closed */
1446 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1447 if (!(dev->flags & IFF_UP))
5cde2829 1448 list_del_init(&dev->close_list);
44345724
OP
1449
1450 __dev_close_many(head);
1da177e4 1451
5cde2829 1452 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1453 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1454 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1455 if (unlink)
1456 list_del_init(&dev->close_list);
44345724 1457 }
bd380811
PM
1458
1459 return 0;
1460}
99c4a26a 1461EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1462
1463/**
1464 * dev_close - shutdown an interface.
1465 * @dev: device to shutdown
1466 *
1467 * This function moves an active device into down state. A
1468 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470 * chain.
1471 */
1472int dev_close(struct net_device *dev)
1473{
e14a5993
ED
1474 if (dev->flags & IFF_UP) {
1475 LIST_HEAD(single);
1da177e4 1476
5cde2829 1477 list_add(&dev->close_list, &single);
99c4a26a 1478 dev_close_many(&single, true);
e14a5993
ED
1479 list_del(&single);
1480 }
da6e378b 1481 return 0;
1da177e4 1482}
d1b19dff 1483EXPORT_SYMBOL(dev_close);
1da177e4
LT
1484
1485
0187bdfb
BH
1486/**
1487 * dev_disable_lro - disable Large Receive Offload on a device
1488 * @dev: device
1489 *
1490 * Disable Large Receive Offload (LRO) on a net device. Must be
1491 * called under RTNL. This is needed if received packets may be
1492 * forwarded to another interface.
1493 */
1494void dev_disable_lro(struct net_device *dev)
1495{
fbe168ba
MK
1496 struct net_device *lower_dev;
1497 struct list_head *iter;
529d0489 1498
bc5787c6
MM
1499 dev->wanted_features &= ~NETIF_F_LRO;
1500 netdev_update_features(dev);
27660515 1501
22d5969f
MM
1502 if (unlikely(dev->features & NETIF_F_LRO))
1503 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1504
1505 netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 dev_disable_lro(lower_dev);
0187bdfb
BH
1507}
1508EXPORT_SYMBOL(dev_disable_lro);
1509
351638e7
JP
1510static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 struct net_device *dev)
1512{
1513 struct netdev_notifier_info info;
1514
1515 netdev_notifier_info_init(&info, dev);
1516 return nb->notifier_call(nb, val, &info);
1517}
0187bdfb 1518
881d966b
EB
1519static int dev_boot_phase = 1;
1520
1da177e4
LT
1521/**
1522 * register_netdevice_notifier - register a network notifier block
1523 * @nb: notifier
1524 *
1525 * Register a notifier to be called when network device events occur.
1526 * The notifier passed is linked into the kernel structures and must
1527 * not be reused until it has been unregistered. A negative errno code
1528 * is returned on a failure.
1529 *
1530 * When registered all registration and up events are replayed
4ec93edb 1531 * to the new notifier to allow device to have a race free
1da177e4
LT
1532 * view of the network device list.
1533 */
1534
1535int register_netdevice_notifier(struct notifier_block *nb)
1536{
1537 struct net_device *dev;
fcc5a03a 1538 struct net_device *last;
881d966b 1539 struct net *net;
1da177e4
LT
1540 int err;
1541
1542 rtnl_lock();
f07d5b94 1543 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1544 if (err)
1545 goto unlock;
881d966b
EB
1546 if (dev_boot_phase)
1547 goto unlock;
1548 for_each_net(net) {
1549 for_each_netdev(net, dev) {
351638e7 1550 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1551 err = notifier_to_errno(err);
1552 if (err)
1553 goto rollback;
1554
1555 if (!(dev->flags & IFF_UP))
1556 continue;
1da177e4 1557
351638e7 1558 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1559 }
1da177e4 1560 }
fcc5a03a
HX
1561
1562unlock:
1da177e4
LT
1563 rtnl_unlock();
1564 return err;
fcc5a03a
HX
1565
1566rollback:
1567 last = dev;
881d966b
EB
1568 for_each_net(net) {
1569 for_each_netdev(net, dev) {
1570 if (dev == last)
8f891489 1571 goto outroll;
fcc5a03a 1572
881d966b 1573 if (dev->flags & IFF_UP) {
351638e7
JP
1574 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 dev);
1576 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1577 }
351638e7 1578 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1579 }
fcc5a03a 1580 }
c67625a1 1581
8f891489 1582outroll:
c67625a1 1583 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1584 goto unlock;
1da177e4 1585}
d1b19dff 1586EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1587
1588/**
1589 * unregister_netdevice_notifier - unregister a network notifier block
1590 * @nb: notifier
1591 *
1592 * Unregister a notifier previously registered by
1593 * register_netdevice_notifier(). The notifier is unlinked into the
1594 * kernel structures and may then be reused. A negative errno code
1595 * is returned on a failure.
7d3d43da
EB
1596 *
1597 * After unregistering unregister and down device events are synthesized
1598 * for all devices on the device list to the removed notifier to remove
1599 * the need for special case cleanup code.
1da177e4
LT
1600 */
1601
1602int unregister_netdevice_notifier(struct notifier_block *nb)
1603{
7d3d43da
EB
1604 struct net_device *dev;
1605 struct net *net;
9f514950
HX
1606 int err;
1607
1608 rtnl_lock();
f07d5b94 1609 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1610 if (err)
1611 goto unlock;
1612
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
1615 if (dev->flags & IFF_UP) {
351638e7
JP
1616 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 dev);
1618 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1619 }
351638e7 1620 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1621 }
1622 }
1623unlock:
9f514950
HX
1624 rtnl_unlock();
1625 return err;
1da177e4 1626}
d1b19dff 1627EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1628
351638e7
JP
1629/**
1630 * call_netdevice_notifiers_info - call all network notifier blocks
1631 * @val: value passed unmodified to notifier function
1632 * @dev: net_device pointer passed unmodified to notifier function
1633 * @info: notifier information data
1634 *
1635 * Call all network notifier blocks. Parameters and return value
1636 * are as for raw_notifier_call_chain().
1637 */
1638
1d143d9f 1639static int call_netdevice_notifiers_info(unsigned long val,
1640 struct net_device *dev,
1641 struct netdev_notifier_info *info)
351638e7
JP
1642{
1643 ASSERT_RTNL();
1644 netdev_notifier_info_init(info, dev);
1645 return raw_notifier_call_chain(&netdev_chain, val, info);
1646}
351638e7 1647
1da177e4
LT
1648/**
1649 * call_netdevice_notifiers - call all network notifier blocks
1650 * @val: value passed unmodified to notifier function
c4ea43c5 1651 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1652 *
1653 * Call all network notifier blocks. Parameters and return value
f07d5b94 1654 * are as for raw_notifier_call_chain().
1da177e4
LT
1655 */
1656
ad7379d4 1657int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1658{
351638e7
JP
1659 struct netdev_notifier_info info;
1660
1661 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1662}
edf947f1 1663EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1664
1cf51900 1665#ifdef CONFIG_NET_INGRESS
4577139b
DB
1666static struct static_key ingress_needed __read_mostly;
1667
1668void net_inc_ingress_queue(void)
1669{
1670 static_key_slow_inc(&ingress_needed);
1671}
1672EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674void net_dec_ingress_queue(void)
1675{
1676 static_key_slow_dec(&ingress_needed);
1677}
1678EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679#endif
1680
1f211a1b
DB
1681#ifdef CONFIG_NET_EGRESS
1682static struct static_key egress_needed __read_mostly;
1683
1684void net_inc_egress_queue(void)
1685{
1686 static_key_slow_inc(&egress_needed);
1687}
1688EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690void net_dec_egress_queue(void)
1691{
1692 static_key_slow_dec(&egress_needed);
1693}
1694EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695#endif
1696
c5905afb 1697static struct static_key netstamp_needed __read_mostly;
b90e5794 1698#ifdef HAVE_JUMP_LABEL
c5905afb 1699/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1700 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1701 * static_key_slow_dec() calls.
b90e5794
ED
1702 */
1703static atomic_t netstamp_needed_deferred;
1704#endif
1da177e4
LT
1705
1706void net_enable_timestamp(void)
1707{
b90e5794
ED
1708#ifdef HAVE_JUMP_LABEL
1709 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711 if (deferred) {
1712 while (--deferred)
c5905afb 1713 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1714 return;
1715 }
1716#endif
c5905afb 1717 static_key_slow_inc(&netstamp_needed);
1da177e4 1718}
d1b19dff 1719EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1720
1721void net_disable_timestamp(void)
1722{
b90e5794
ED
1723#ifdef HAVE_JUMP_LABEL
1724 if (in_interrupt()) {
1725 atomic_inc(&netstamp_needed_deferred);
1726 return;
1727 }
1728#endif
c5905afb 1729 static_key_slow_dec(&netstamp_needed);
1da177e4 1730}
d1b19dff 1731EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1732
3b098e2d 1733static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1734{
588f0330 1735 skb->tstamp.tv64 = 0;
c5905afb 1736 if (static_key_false(&netstamp_needed))
a61bbcf2 1737 __net_timestamp(skb);
1da177e4
LT
1738}
1739
588f0330 1740#define net_timestamp_check(COND, SKB) \
c5905afb 1741 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1742 if ((COND) && !(SKB)->tstamp.tv64) \
1743 __net_timestamp(SKB); \
1744 } \
3b098e2d 1745
f4b05d27 1746bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1747{
1748 unsigned int len;
1749
1750 if (!(dev->flags & IFF_UP))
1751 return false;
1752
1753 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 if (skb->len <= len)
1755 return true;
1756
1757 /* if TSO is enabled, we don't care about the length as the packet
1758 * could be forwarded without being segmented before
1759 */
1760 if (skb_is_gso(skb))
1761 return true;
1762
1763 return false;
1764}
1ee481fb 1765EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1766
a0265d28
HX
1767int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768{
bbbf2df0
WB
1769 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1771 atomic_long_inc(&dev->rx_dropped);
1772 kfree_skb(skb);
1773 return NET_RX_DROP;
1774 }
1775
1776 skb_scrub_packet(skb, true);
08b4b8ea 1777 skb->priority = 0;
a0265d28 1778 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1779 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1780
1781 return 0;
1782}
1783EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
44540960
AB
1785/**
1786 * dev_forward_skb - loopback an skb to another netif
1787 *
1788 * @dev: destination network device
1789 * @skb: buffer to forward
1790 *
1791 * return values:
1792 * NET_RX_SUCCESS (no congestion)
6ec82562 1793 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1794 *
1795 * dev_forward_skb can be used for injecting an skb from the
1796 * start_xmit function of one device into the receive queue
1797 * of another device.
1798 *
1799 * The receiving device may be in another namespace, so
1800 * we have to clear all information in the skb that could
1801 * impact namespace isolation.
1802 */
1803int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804{
a0265d28 1805 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1806}
1807EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
71d9dec2
CG
1809static inline int deliver_skb(struct sk_buff *skb,
1810 struct packet_type *pt_prev,
1811 struct net_device *orig_dev)
1812{
1080e512
MT
1813 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814 return -ENOMEM;
71d9dec2
CG
1815 atomic_inc(&skb->users);
1816 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817}
1818
7866a621
SN
1819static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 struct packet_type **pt,
fbcb2170
JP
1821 struct net_device *orig_dev,
1822 __be16 type,
7866a621
SN
1823 struct list_head *ptype_list)
1824{
1825 struct packet_type *ptype, *pt_prev = *pt;
1826
1827 list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 if (ptype->type != type)
1829 continue;
1830 if (pt_prev)
fbcb2170 1831 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1832 pt_prev = ptype;
1833 }
1834 *pt = pt_prev;
1835}
1836
c0de08d0
EL
1837static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838{
a3d744e9 1839 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1840 return false;
1841
1842 if (ptype->id_match)
1843 return ptype->id_match(ptype, skb->sk);
1844 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 return true;
1846
1847 return false;
1848}
1849
1da177e4
LT
1850/*
1851 * Support routine. Sends outgoing frames to any network
1852 * taps currently in use.
1853 */
1854
74b20582 1855void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1856{
1857 struct packet_type *ptype;
71d9dec2
CG
1858 struct sk_buff *skb2 = NULL;
1859 struct packet_type *pt_prev = NULL;
7866a621 1860 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1861
1da177e4 1862 rcu_read_lock();
7866a621
SN
1863again:
1864 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1865 /* Never send packets back to the socket
1866 * they originated from - MvS (miquels@drinkel.ow.org)
1867 */
7866a621
SN
1868 if (skb_loop_sk(ptype, skb))
1869 continue;
71d9dec2 1870
7866a621
SN
1871 if (pt_prev) {
1872 deliver_skb(skb2, pt_prev, skb->dev);
1873 pt_prev = ptype;
1874 continue;
1875 }
1da177e4 1876
7866a621
SN
1877 /* need to clone skb, done only once */
1878 skb2 = skb_clone(skb, GFP_ATOMIC);
1879 if (!skb2)
1880 goto out_unlock;
70978182 1881
7866a621 1882 net_timestamp_set(skb2);
1da177e4 1883
7866a621
SN
1884 /* skb->nh should be correctly
1885 * set by sender, so that the second statement is
1886 * just protection against buggy protocols.
1887 */
1888 skb_reset_mac_header(skb2);
1889
1890 if (skb_network_header(skb2) < skb2->data ||
1891 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 ntohs(skb2->protocol),
1894 dev->name);
1895 skb_reset_network_header(skb2);
1da177e4 1896 }
7866a621
SN
1897
1898 skb2->transport_header = skb2->network_header;
1899 skb2->pkt_type = PACKET_OUTGOING;
1900 pt_prev = ptype;
1901 }
1902
1903 if (ptype_list == &ptype_all) {
1904 ptype_list = &dev->ptype_all;
1905 goto again;
1da177e4 1906 }
7866a621 1907out_unlock:
71d9dec2
CG
1908 if (pt_prev)
1909 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1910 rcu_read_unlock();
1911}
74b20582 1912EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1913
2c53040f
BH
1914/**
1915 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1916 * @dev: Network device
1917 * @txq: number of queues available
1918 *
1919 * If real_num_tx_queues is changed the tc mappings may no longer be
1920 * valid. To resolve this verify the tc mapping remains valid and if
1921 * not NULL the mapping. With no priorities mapping to this
1922 * offset/count pair it will no longer be used. In the worst case TC0
1923 * is invalid nothing can be done so disable priority mappings. If is
1924 * expected that drivers will fix this mapping if they can before
1925 * calling netif_set_real_num_tx_queues.
1926 */
bb134d22 1927static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1928{
1929 int i;
1930 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932 /* If TC0 is invalidated disable TC mapping */
1933 if (tc->offset + tc->count > txq) {
7b6cd1ce 1934 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1935 dev->num_tc = 0;
1936 return;
1937 }
1938
1939 /* Invalidated prio to tc mappings set to TC0 */
1940 for (i = 1; i < TC_BITMASK + 1; i++) {
1941 int q = netdev_get_prio_tc_map(dev, i);
1942
1943 tc = &dev->tc_to_txq[q];
1944 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1945 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946 i, q);
4f57c087
JF
1947 netdev_set_prio_tc_map(dev, i, 0);
1948 }
1949 }
1950}
1951
537c00de
AD
1952#ifdef CONFIG_XPS
1953static DEFINE_MUTEX(xps_map_mutex);
1954#define xmap_dereference(P) \
1955 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
10cdc3f3
AD
1957static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958 int cpu, u16 index)
537c00de 1959{
10cdc3f3
AD
1960 struct xps_map *map = NULL;
1961 int pos;
537c00de 1962
10cdc3f3
AD
1963 if (dev_maps)
1964 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1965
10cdc3f3
AD
1966 for (pos = 0; map && pos < map->len; pos++) {
1967 if (map->queues[pos] == index) {
537c00de
AD
1968 if (map->len > 1) {
1969 map->queues[pos] = map->queues[--map->len];
1970 } else {
10cdc3f3 1971 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1972 kfree_rcu(map, rcu);
1973 map = NULL;
1974 }
10cdc3f3 1975 break;
537c00de 1976 }
537c00de
AD
1977 }
1978
10cdc3f3
AD
1979 return map;
1980}
1981
024e9679 1982static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1983{
1984 struct xps_dev_maps *dev_maps;
024e9679 1985 int cpu, i;
10cdc3f3
AD
1986 bool active = false;
1987
1988 mutex_lock(&xps_map_mutex);
1989 dev_maps = xmap_dereference(dev->xps_maps);
1990
1991 if (!dev_maps)
1992 goto out_no_maps;
1993
1994 for_each_possible_cpu(cpu) {
024e9679
AD
1995 for (i = index; i < dev->num_tx_queues; i++) {
1996 if (!remove_xps_queue(dev_maps, cpu, i))
1997 break;
1998 }
1999 if (i == dev->num_tx_queues)
10cdc3f3
AD
2000 active = true;
2001 }
2002
2003 if (!active) {
537c00de
AD
2004 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 kfree_rcu(dev_maps, rcu);
2006 }
2007
024e9679
AD
2008 for (i = index; i < dev->num_tx_queues; i++)
2009 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 NUMA_NO_NODE);
2011
537c00de
AD
2012out_no_maps:
2013 mutex_unlock(&xps_map_mutex);
2014}
2015
01c5f864
AD
2016static struct xps_map *expand_xps_map(struct xps_map *map,
2017 int cpu, u16 index)
2018{
2019 struct xps_map *new_map;
2020 int alloc_len = XPS_MIN_MAP_ALLOC;
2021 int i, pos;
2022
2023 for (pos = 0; map && pos < map->len; pos++) {
2024 if (map->queues[pos] != index)
2025 continue;
2026 return map;
2027 }
2028
2029 /* Need to add queue to this CPU's existing map */
2030 if (map) {
2031 if (pos < map->alloc_len)
2032 return map;
2033
2034 alloc_len = map->alloc_len * 2;
2035 }
2036
2037 /* Need to allocate new map to store queue on this CPU's map */
2038 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039 cpu_to_node(cpu));
2040 if (!new_map)
2041 return NULL;
2042
2043 for (i = 0; i < pos; i++)
2044 new_map->queues[i] = map->queues[i];
2045 new_map->alloc_len = alloc_len;
2046 new_map->len = pos;
2047
2048 return new_map;
2049}
2050
3573540c
MT
2051int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052 u16 index)
537c00de 2053{
01c5f864 2054 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2055 struct xps_map *map, *new_map;
537c00de 2056 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2057 int cpu, numa_node_id = -2;
2058 bool active = false;
537c00de
AD
2059
2060 mutex_lock(&xps_map_mutex);
2061
2062 dev_maps = xmap_dereference(dev->xps_maps);
2063
01c5f864
AD
2064 /* allocate memory for queue storage */
2065 for_each_online_cpu(cpu) {
2066 if (!cpumask_test_cpu(cpu, mask))
2067 continue;
2068
2069 if (!new_dev_maps)
2070 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2071 if (!new_dev_maps) {
2072 mutex_unlock(&xps_map_mutex);
01c5f864 2073 return -ENOMEM;
2bb60cb9 2074 }
01c5f864
AD
2075
2076 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077 NULL;
2078
2079 map = expand_xps_map(map, cpu, index);
2080 if (!map)
2081 goto error;
2082
2083 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 }
2085
2086 if (!new_dev_maps)
2087 goto out_no_new_maps;
2088
537c00de 2089 for_each_possible_cpu(cpu) {
01c5f864
AD
2090 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 /* add queue to CPU maps */
2092 int pos = 0;
2093
2094 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 while ((pos < map->len) && (map->queues[pos] != index))
2096 pos++;
2097
2098 if (pos == map->len)
2099 map->queues[map->len++] = index;
537c00de 2100#ifdef CONFIG_NUMA
537c00de
AD
2101 if (numa_node_id == -2)
2102 numa_node_id = cpu_to_node(cpu);
2103 else if (numa_node_id != cpu_to_node(cpu))
2104 numa_node_id = -1;
537c00de 2105#endif
01c5f864
AD
2106 } else if (dev_maps) {
2107 /* fill in the new device map from the old device map */
2108 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2110 }
01c5f864 2111
537c00de
AD
2112 }
2113
01c5f864
AD
2114 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
537c00de 2116 /* Cleanup old maps */
01c5f864
AD
2117 if (dev_maps) {
2118 for_each_possible_cpu(cpu) {
2119 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 if (map && map != new_map)
2122 kfree_rcu(map, rcu);
2123 }
537c00de 2124
01c5f864 2125 kfree_rcu(dev_maps, rcu);
537c00de
AD
2126 }
2127
01c5f864
AD
2128 dev_maps = new_dev_maps;
2129 active = true;
537c00de 2130
01c5f864
AD
2131out_no_new_maps:
2132 /* update Tx queue numa node */
537c00de
AD
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 (numa_node_id >= 0) ? numa_node_id :
2135 NUMA_NO_NODE);
2136
01c5f864
AD
2137 if (!dev_maps)
2138 goto out_no_maps;
2139
2140 /* removes queue from unused CPUs */
2141 for_each_possible_cpu(cpu) {
2142 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143 continue;
2144
2145 if (remove_xps_queue(dev_maps, cpu, index))
2146 active = true;
2147 }
2148
2149 /* free map if not active */
2150 if (!active) {
2151 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 kfree_rcu(dev_maps, rcu);
2153 }
2154
2155out_no_maps:
537c00de
AD
2156 mutex_unlock(&xps_map_mutex);
2157
2158 return 0;
2159error:
01c5f864
AD
2160 /* remove any maps that we added */
2161 for_each_possible_cpu(cpu) {
2162 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164 NULL;
2165 if (new_map && new_map != map)
2166 kfree(new_map);
2167 }
2168
537c00de
AD
2169 mutex_unlock(&xps_map_mutex);
2170
537c00de
AD
2171 kfree(new_dev_maps);
2172 return -ENOMEM;
2173}
2174EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176#endif
f0796d5c
JF
2177/*
2178 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180 */
e6484930 2181int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2182{
1d24eb48
TH
2183 int rc;
2184
e6484930
TH
2185 if (txq < 1 || txq > dev->num_tx_queues)
2186 return -EINVAL;
f0796d5c 2187
5c56580b
BH
2188 if (dev->reg_state == NETREG_REGISTERED ||
2189 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2190 ASSERT_RTNL();
2191
1d24eb48
TH
2192 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193 txq);
bf264145
TH
2194 if (rc)
2195 return rc;
2196
4f57c087
JF
2197 if (dev->num_tc)
2198 netif_setup_tc(dev, txq);
2199
024e9679 2200 if (txq < dev->real_num_tx_queues) {
e6484930 2201 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2202#ifdef CONFIG_XPS
2203 netif_reset_xps_queues_gt(dev, txq);
2204#endif
2205 }
f0796d5c 2206 }
e6484930
TH
2207
2208 dev->real_num_tx_queues = txq;
2209 return 0;
f0796d5c
JF
2210}
2211EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2212
a953be53 2213#ifdef CONFIG_SYSFS
62fe0b40
BH
2214/**
2215 * netif_set_real_num_rx_queues - set actual number of RX queues used
2216 * @dev: Network device
2217 * @rxq: Actual number of RX queues
2218 *
2219 * This must be called either with the rtnl_lock held or before
2220 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2221 * negative error code. If called before registration, it always
2222 * succeeds.
62fe0b40
BH
2223 */
2224int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225{
2226 int rc;
2227
bd25fa7b
TH
2228 if (rxq < 1 || rxq > dev->num_rx_queues)
2229 return -EINVAL;
2230
62fe0b40
BH
2231 if (dev->reg_state == NETREG_REGISTERED) {
2232 ASSERT_RTNL();
2233
62fe0b40
BH
2234 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235 rxq);
2236 if (rc)
2237 return rc;
62fe0b40
BH
2238 }
2239
2240 dev->real_num_rx_queues = rxq;
2241 return 0;
2242}
2243EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244#endif
2245
2c53040f
BH
2246/**
2247 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2248 *
2249 * This routine should set an upper limit on the number of RSS queues
2250 * used by default by multiqueue devices.
2251 */
a55b138b 2252int netif_get_num_default_rss_queues(void)
16917b87 2253{
40e4e713
HS
2254 return is_kdump_kernel() ?
2255 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2256}
2257EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
3bcb846c 2259static void __netif_reschedule(struct Qdisc *q)
56079431 2260{
def82a1d
JP
2261 struct softnet_data *sd;
2262 unsigned long flags;
56079431 2263
def82a1d 2264 local_irq_save(flags);
903ceff7 2265 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2266 q->next_sched = NULL;
2267 *sd->output_queue_tailp = q;
2268 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2269 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 local_irq_restore(flags);
2271}
2272
2273void __netif_schedule(struct Qdisc *q)
2274{
2275 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 __netif_reschedule(q);
56079431
DV
2277}
2278EXPORT_SYMBOL(__netif_schedule);
2279
e6247027
ED
2280struct dev_kfree_skb_cb {
2281 enum skb_free_reason reason;
2282};
2283
2284static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2285{
e6247027
ED
2286 return (struct dev_kfree_skb_cb *)skb->cb;
2287}
2288
46e5da40
JF
2289void netif_schedule_queue(struct netdev_queue *txq)
2290{
2291 rcu_read_lock();
2292 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295 __netif_schedule(q);
2296 }
2297 rcu_read_unlock();
2298}
2299EXPORT_SYMBOL(netif_schedule_queue);
2300
2301/**
2302 * netif_wake_subqueue - allow sending packets on subqueue
2303 * @dev: network device
2304 * @queue_index: sub queue index
2305 *
2306 * Resume individual transmit queue of a device with multiple transmit queues.
2307 */
2308void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309{
2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313 struct Qdisc *q;
2314
2315 rcu_read_lock();
2316 q = rcu_dereference(txq->qdisc);
2317 __netif_schedule(q);
2318 rcu_read_unlock();
2319 }
2320}
2321EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324{
2325 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326 struct Qdisc *q;
2327
2328 rcu_read_lock();
2329 q = rcu_dereference(dev_queue->qdisc);
2330 __netif_schedule(q);
2331 rcu_read_unlock();
2332 }
2333}
2334EXPORT_SYMBOL(netif_tx_wake_queue);
2335
e6247027 2336void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2337{
e6247027 2338 unsigned long flags;
56079431 2339
e6247027
ED
2340 if (likely(atomic_read(&skb->users) == 1)) {
2341 smp_rmb();
2342 atomic_set(&skb->users, 0);
2343 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344 return;
bea3348e 2345 }
e6247027
ED
2346 get_kfree_skb_cb(skb)->reason = reason;
2347 local_irq_save(flags);
2348 skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 __this_cpu_write(softnet_data.completion_queue, skb);
2350 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 local_irq_restore(flags);
56079431 2352}
e6247027 2353EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2354
e6247027 2355void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2356{
2357 if (in_irq() || irqs_disabled())
e6247027 2358 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2359 else
2360 dev_kfree_skb(skb);
2361}
e6247027 2362EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2363
2364
bea3348e
SH
2365/**
2366 * netif_device_detach - mark device as removed
2367 * @dev: network device
2368 *
2369 * Mark device as removed from system and therefore no longer available.
2370 */
56079431
DV
2371void netif_device_detach(struct net_device *dev)
2372{
2373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 netif_running(dev)) {
d543103a 2375 netif_tx_stop_all_queues(dev);
56079431
DV
2376 }
2377}
2378EXPORT_SYMBOL(netif_device_detach);
2379
bea3348e
SH
2380/**
2381 * netif_device_attach - mark device as attached
2382 * @dev: network device
2383 *
2384 * Mark device as attached from system and restart if needed.
2385 */
56079431
DV
2386void netif_device_attach(struct net_device *dev)
2387{
2388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 netif_running(dev)) {
d543103a 2390 netif_tx_wake_all_queues(dev);
4ec93edb 2391 __netdev_watchdog_up(dev);
56079431
DV
2392 }
2393}
2394EXPORT_SYMBOL(netif_device_attach);
2395
5605c762
JP
2396/*
2397 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398 * to be used as a distribution range.
2399 */
2400u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 unsigned int num_tx_queues)
2402{
2403 u32 hash;
2404 u16 qoffset = 0;
2405 u16 qcount = num_tx_queues;
2406
2407 if (skb_rx_queue_recorded(skb)) {
2408 hash = skb_get_rx_queue(skb);
2409 while (unlikely(hash >= num_tx_queues))
2410 hash -= num_tx_queues;
2411 return hash;
2412 }
2413
2414 if (dev->num_tc) {
2415 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 qoffset = dev->tc_to_txq[tc].offset;
2417 qcount = dev->tc_to_txq[tc].count;
2418 }
2419
2420 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421}
2422EXPORT_SYMBOL(__skb_tx_hash);
2423
36c92474
BH
2424static void skb_warn_bad_offload(const struct sk_buff *skb)
2425{
84d15ae5 2426 static const netdev_features_t null_features;
36c92474 2427 struct net_device *dev = skb->dev;
88ad4175 2428 const char *name = "";
36c92474 2429
c846ad9b
BG
2430 if (!net_ratelimit())
2431 return;
2432
88ad4175
BM
2433 if (dev) {
2434 if (dev->dev.parent)
2435 name = dev_driver_string(dev->dev.parent);
2436 else
2437 name = netdev_name(dev);
2438 }
36c92474
BH
2439 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 "gso_type=%d ip_summed=%d\n",
88ad4175 2441 name, dev ? &dev->features : &null_features,
65e9d2fa 2442 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2443 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 skb_shinfo(skb)->gso_type, skb->ip_summed);
2445}
2446
1da177e4
LT
2447/*
2448 * Invalidate hardware checksum when packet is to be mangled, and
2449 * complete checksum manually on outgoing path.
2450 */
84fa7933 2451int skb_checksum_help(struct sk_buff *skb)
1da177e4 2452{
d3bc23e7 2453 __wsum csum;
663ead3b 2454 int ret = 0, offset;
1da177e4 2455
84fa7933 2456 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2457 goto out_set_summed;
2458
2459 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2460 skb_warn_bad_offload(skb);
2461 return -EINVAL;
1da177e4
LT
2462 }
2463
cef401de
ED
2464 /* Before computing a checksum, we should make sure no frag could
2465 * be modified by an external entity : checksum could be wrong.
2466 */
2467 if (skb_has_shared_frag(skb)) {
2468 ret = __skb_linearize(skb);
2469 if (ret)
2470 goto out;
2471 }
2472
55508d60 2473 offset = skb_checksum_start_offset(skb);
a030847e
HX
2474 BUG_ON(offset >= skb_headlen(skb));
2475 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477 offset += skb->csum_offset;
2478 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480 if (skb_cloned(skb) &&
2481 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2482 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 if (ret)
2484 goto out;
2485 }
2486
a030847e 2487 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2488out_set_summed:
1da177e4 2489 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2490out:
1da177e4
LT
2491 return ret;
2492}
d1b19dff 2493EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2494
6ae23ad3
TH
2495/* skb_csum_offload_check - Driver helper function to determine if a device
2496 * with limited checksum offload capabilities is able to offload the checksum
2497 * for a given packet.
2498 *
2499 * Arguments:
2500 * skb - sk_buff for the packet in question
2501 * spec - contains the description of what device can offload
2502 * csum_encapped - returns true if the checksum being offloaded is
2503 * encpasulated. That is it is checksum for the transport header
2504 * in the inner headers.
2505 * checksum_help - when set indicates that helper function should
2506 * call skb_checksum_help if offload checks fail
2507 *
2508 * Returns:
2509 * true: Packet has passed the checksum checks and should be offloadable to
2510 * the device (a driver may still need to check for additional
2511 * restrictions of its device)
2512 * false: Checksum is not offloadable. If checksum_help was set then
2513 * skb_checksum_help was called to resolve checksum for non-GSO
2514 * packets and when IP protocol is not SCTP
2515 */
2516bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 const struct skb_csum_offl_spec *spec,
2518 bool *csum_encapped,
2519 bool csum_help)
2520{
2521 struct iphdr *iph;
2522 struct ipv6hdr *ipv6;
2523 void *nhdr;
2524 int protocol;
2525 u8 ip_proto;
2526
2527 if (skb->protocol == htons(ETH_P_8021Q) ||
2528 skb->protocol == htons(ETH_P_8021AD)) {
2529 if (!spec->vlan_okay)
2530 goto need_help;
2531 }
2532
2533 /* We check whether the checksum refers to a transport layer checksum in
2534 * the outermost header or an encapsulated transport layer checksum that
2535 * corresponds to the inner headers of the skb. If the checksum is for
2536 * something else in the packet we need help.
2537 */
2538 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 /* Non-encapsulated checksum */
2540 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 nhdr = skb_network_header(skb);
2542 *csum_encapped = false;
2543 if (spec->no_not_encapped)
2544 goto need_help;
2545 } else if (skb->encapsulation && spec->encap_okay &&
2546 skb_checksum_start_offset(skb) ==
2547 skb_inner_transport_offset(skb)) {
2548 /* Encapsulated checksum */
2549 *csum_encapped = true;
2550 switch (skb->inner_protocol_type) {
2551 case ENCAP_TYPE_ETHER:
2552 protocol = eproto_to_ipproto(skb->inner_protocol);
2553 break;
2554 case ENCAP_TYPE_IPPROTO:
2555 protocol = skb->inner_protocol;
2556 break;
2557 }
2558 nhdr = skb_inner_network_header(skb);
2559 } else {
2560 goto need_help;
2561 }
2562
2563 switch (protocol) {
2564 case IPPROTO_IP:
2565 if (!spec->ipv4_okay)
2566 goto need_help;
2567 iph = nhdr;
2568 ip_proto = iph->protocol;
2569 if (iph->ihl != 5 && !spec->ip_options_okay)
2570 goto need_help;
2571 break;
2572 case IPPROTO_IPV6:
2573 if (!spec->ipv6_okay)
2574 goto need_help;
2575 if (spec->no_encapped_ipv6 && *csum_encapped)
2576 goto need_help;
2577 ipv6 = nhdr;
2578 nhdr += sizeof(*ipv6);
2579 ip_proto = ipv6->nexthdr;
2580 break;
2581 default:
2582 goto need_help;
2583 }
2584
2585ip_proto_again:
2586 switch (ip_proto) {
2587 case IPPROTO_TCP:
2588 if (!spec->tcp_okay ||
2589 skb->csum_offset != offsetof(struct tcphdr, check))
2590 goto need_help;
2591 break;
2592 case IPPROTO_UDP:
2593 if (!spec->udp_okay ||
2594 skb->csum_offset != offsetof(struct udphdr, check))
2595 goto need_help;
2596 break;
2597 case IPPROTO_SCTP:
2598 if (!spec->sctp_okay ||
2599 skb->csum_offset != offsetof(struct sctphdr, checksum))
2600 goto cant_help;
2601 break;
2602 case NEXTHDR_HOP:
2603 case NEXTHDR_ROUTING:
2604 case NEXTHDR_DEST: {
2605 u8 *opthdr = nhdr;
2606
2607 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608 goto need_help;
2609
2610 ip_proto = opthdr[0];
2611 nhdr += (opthdr[1] + 1) << 3;
2612
2613 goto ip_proto_again;
2614 }
2615 default:
2616 goto need_help;
2617 }
2618
2619 /* Passed the tests for offloading checksum */
2620 return true;
2621
2622need_help:
2623 if (csum_help && !skb_shinfo(skb)->gso_size)
2624 skb_checksum_help(skb);
2625cant_help:
2626 return false;
2627}
2628EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
53d6471c 2630__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2631{
252e3346 2632 __be16 type = skb->protocol;
f6a78bfc 2633
19acc327
PS
2634 /* Tunnel gso handlers can set protocol to ethernet. */
2635 if (type == htons(ETH_P_TEB)) {
2636 struct ethhdr *eth;
2637
2638 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639 return 0;
2640
2641 eth = (struct ethhdr *)skb_mac_header(skb);
2642 type = eth->h_proto;
2643 }
2644
d4bcef3f 2645 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2646}
2647
2648/**
2649 * skb_mac_gso_segment - mac layer segmentation handler.
2650 * @skb: buffer to segment
2651 * @features: features for the output path (see dev->features)
2652 */
2653struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 netdev_features_t features)
2655{
2656 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 struct packet_offload *ptype;
53d6471c
VY
2658 int vlan_depth = skb->mac_len;
2659 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2660
2661 if (unlikely(!type))
2662 return ERR_PTR(-EINVAL);
2663
53d6471c 2664 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2665
2666 rcu_read_lock();
22061d80 2667 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2668 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2669 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2670 break;
2671 }
2672 }
2673 rcu_read_unlock();
2674
98e399f8 2675 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2676
f6a78bfc
HX
2677 return segs;
2678}
05e8ef4a
PS
2679EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682/* openvswitch calls this on rx path, so we need a different check.
2683 */
2684static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685{
2686 if (tx_path)
2687 return skb->ip_summed != CHECKSUM_PARTIAL;
2688 else
2689 return skb->ip_summed == CHECKSUM_NONE;
2690}
2691
2692/**
2693 * __skb_gso_segment - Perform segmentation on skb.
2694 * @skb: buffer to segment
2695 * @features: features for the output path (see dev->features)
2696 * @tx_path: whether it is called in TX path
2697 *
2698 * This function segments the given skb and returns a list of segments.
2699 *
2700 * It may return NULL if the skb requires no segmentation. This is
2701 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2702 *
2703 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2704 */
2705struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 netdev_features_t features, bool tx_path)
2707{
2708 if (unlikely(skb_needs_check(skb, tx_path))) {
2709 int err;
2710
2711 skb_warn_bad_offload(skb);
2712
a40e0a66 2713 err = skb_cow_head(skb, 0);
2714 if (err < 0)
05e8ef4a
PS
2715 return ERR_PTR(err);
2716 }
2717
802ab55a
AD
2718 /* Only report GSO partial support if it will enable us to
2719 * support segmentation on this frame without needing additional
2720 * work.
2721 */
2722 if (features & NETIF_F_GSO_PARTIAL) {
2723 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 struct net_device *dev = skb->dev;
2725
2726 partial_features |= dev->features & dev->gso_partial_features;
2727 if (!skb_gso_ok(skb, features | partial_features))
2728 features &= ~NETIF_F_GSO_PARTIAL;
2729 }
2730
9207f9d4
KK
2731 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
68c33163 2734 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2735 SKB_GSO_CB(skb)->encap_level = 0;
2736
05e8ef4a
PS
2737 skb_reset_mac_header(skb);
2738 skb_reset_mac_len(skb);
2739
2740 return skb_mac_gso_segment(skb, features);
2741}
12b0004d 2742EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2743
fb286bb2
HX
2744/* Take action when hardware reception checksum errors are detected. */
2745#ifdef CONFIG_BUG
2746void netdev_rx_csum_fault(struct net_device *dev)
2747{
2748 if (net_ratelimit()) {
7b6cd1ce 2749 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2750 dump_stack();
2751 }
2752}
2753EXPORT_SYMBOL(netdev_rx_csum_fault);
2754#endif
2755
1da177e4
LT
2756/* Actually, we should eliminate this check as soon as we know, that:
2757 * 1. IOMMU is present and allows to map all the memory.
2758 * 2. No high memory really exists on this machine.
2759 */
2760
c1e756bf 2761static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2762{
3d3a8533 2763#ifdef CONFIG_HIGHMEM
1da177e4 2764 int i;
5acbbd42 2765 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2769 return 1;
ea2ab693 2770 }
5acbbd42 2771 }
1da177e4 2772
5acbbd42
FT
2773 if (PCI_DMA_BUS_IS_PHYS) {
2774 struct device *pdev = dev->dev.parent;
1da177e4 2775
9092c658
ED
2776 if (!pdev)
2777 return 0;
5acbbd42 2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2779 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2781 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782 return 1;
2783 }
2784 }
3d3a8533 2785#endif
1da177e4
LT
2786 return 0;
2787}
1da177e4 2788
3b392ddb
SH
2789/* If MPLS offload request, verify we are testing hardware MPLS features
2790 * instead of standard features for the netdev.
2791 */
d0edc7bf 2792#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2793static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 netdev_features_t features,
2795 __be16 type)
2796{
25cd9ba0 2797 if (eth_p_mpls(type))
3b392ddb
SH
2798 features &= skb->dev->mpls_features;
2799
2800 return features;
2801}
2802#else
2803static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 netdev_features_t features,
2805 __be16 type)
2806{
2807 return features;
2808}
2809#endif
2810
c8f44aff 2811static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2812 netdev_features_t features)
f01a5236 2813{
53d6471c 2814 int tmp;
3b392ddb
SH
2815 __be16 type;
2816
2817 type = skb_network_protocol(skb, &tmp);
2818 features = net_mpls_features(skb, features, type);
53d6471c 2819
c0d680e5 2820 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2821 !can_checksum_protocol(features, type)) {
996e8021 2822 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2823 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2824 features &= ~NETIF_F_SG;
2825 }
2826
2827 return features;
2828}
2829
e38f3025
TM
2830netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 struct net_device *dev,
2832 netdev_features_t features)
2833{
2834 return features;
2835}
2836EXPORT_SYMBOL(passthru_features_check);
2837
8cb65d00
TM
2838static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 struct net_device *dev,
2840 netdev_features_t features)
2841{
2842 return vlan_features_check(skb, features);
2843}
2844
cbc53e08
AD
2845static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 struct net_device *dev,
2847 netdev_features_t features)
2848{
2849 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851 if (gso_segs > dev->gso_max_segs)
2852 return features & ~NETIF_F_GSO_MASK;
2853
802ab55a
AD
2854 /* Support for GSO partial features requires software
2855 * intervention before we can actually process the packets
2856 * so we need to strip support for any partial features now
2857 * and we can pull them back in after we have partially
2858 * segmented the frame.
2859 */
2860 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 features &= ~dev->gso_partial_features;
2862
2863 /* Make sure to clear the IPv4 ID mangling feature if the
2864 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2865 */
2866 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 struct iphdr *iph = skb->encapsulation ?
2868 inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870 if (!(iph->frag_off & htons(IP_DF)))
2871 features &= ~NETIF_F_TSO_MANGLEID;
2872 }
2873
2874 return features;
2875}
2876
c1e756bf 2877netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2878{
5f35227e 2879 struct net_device *dev = skb->dev;
fcbeb976 2880 netdev_features_t features = dev->features;
58e998c6 2881
cbc53e08
AD
2882 if (skb_is_gso(skb))
2883 features = gso_features_check(skb, dev, features);
30b678d8 2884
5f35227e
JG
2885 /* If encapsulation offload request, verify we are testing
2886 * hardware encapsulation features instead of standard
2887 * features for the netdev
2888 */
2889 if (skb->encapsulation)
2890 features &= dev->hw_enc_features;
2891
f5a7fb88
TM
2892 if (skb_vlan_tagged(skb))
2893 features = netdev_intersect_features(features,
2894 dev->vlan_features |
2895 NETIF_F_HW_VLAN_CTAG_TX |
2896 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2897
5f35227e
JG
2898 if (dev->netdev_ops->ndo_features_check)
2899 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900 features);
8cb65d00
TM
2901 else
2902 features &= dflt_features_check(skb, dev, features);
5f35227e 2903
c1e756bf 2904 return harmonize_features(skb, features);
58e998c6 2905}
c1e756bf 2906EXPORT_SYMBOL(netif_skb_features);
58e998c6 2907
2ea25513 2908static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2909 struct netdev_queue *txq, bool more)
f6a78bfc 2910{
2ea25513
DM
2911 unsigned int len;
2912 int rc;
00829823 2913
7866a621 2914 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2915 dev_queue_xmit_nit(skb, dev);
fc741216 2916
2ea25513
DM
2917 len = skb->len;
2918 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2919 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2920 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2921
2ea25513
DM
2922 return rc;
2923}
7b9c6090 2924
8dcda22a
DM
2925struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2927{
2928 struct sk_buff *skb = first;
2929 int rc = NETDEV_TX_OK;
7b9c6090 2930
7f2e870f
DM
2931 while (skb) {
2932 struct sk_buff *next = skb->next;
fc70fb64 2933
7f2e870f 2934 skb->next = NULL;
95f6b3dd 2935 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2936 if (unlikely(!dev_xmit_complete(rc))) {
2937 skb->next = next;
2938 goto out;
2939 }
6afff0ca 2940
7f2e870f
DM
2941 skb = next;
2942 if (netif_xmit_stopped(txq) && skb) {
2943 rc = NETDEV_TX_BUSY;
2944 break;
9ccb8975 2945 }
7f2e870f 2946 }
9ccb8975 2947
7f2e870f
DM
2948out:
2949 *ret = rc;
2950 return skb;
2951}
b40863c6 2952
1ff0dc94
ED
2953static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 netdev_features_t features)
f6a78bfc 2955{
df8a39de 2956 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2957 !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2959 return skb;
2960}
f6a78bfc 2961
55a93b3e 2962static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2963{
2964 netdev_features_t features;
f6a78bfc 2965
eae3f88e
DM
2966 features = netif_skb_features(skb);
2967 skb = validate_xmit_vlan(skb, features);
2968 if (unlikely(!skb))
2969 goto out_null;
7b9c6090 2970
8b86a61d 2971 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2972 struct sk_buff *segs;
2973
2974 segs = skb_gso_segment(skb, features);
cecda693 2975 if (IS_ERR(segs)) {
af6dabc9 2976 goto out_kfree_skb;
cecda693
JW
2977 } else if (segs) {
2978 consume_skb(skb);
2979 skb = segs;
f6a78bfc 2980 }
eae3f88e
DM
2981 } else {
2982 if (skb_needs_linearize(skb, features) &&
2983 __skb_linearize(skb))
2984 goto out_kfree_skb;
4ec93edb 2985
eae3f88e
DM
2986 /* If packet is not checksummed and device does not
2987 * support checksumming for this protocol, complete
2988 * checksumming here.
2989 */
2990 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 if (skb->encapsulation)
2992 skb_set_inner_transport_header(skb,
2993 skb_checksum_start_offset(skb));
2994 else
2995 skb_set_transport_header(skb,
2996 skb_checksum_start_offset(skb));
a188222b 2997 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2998 skb_checksum_help(skb))
2999 goto out_kfree_skb;
7b9c6090 3000 }
0c772159 3001 }
7b9c6090 3002
eae3f88e 3003 return skb;
fc70fb64 3004
f6a78bfc
HX
3005out_kfree_skb:
3006 kfree_skb(skb);
eae3f88e 3007out_null:
d21fd63e 3008 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3009 return NULL;
3010}
6afff0ca 3011
55a93b3e
ED
3012struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013{
3014 struct sk_buff *next, *head = NULL, *tail;
3015
bec3cfdc 3016 for (; skb != NULL; skb = next) {
55a93b3e
ED
3017 next = skb->next;
3018 skb->next = NULL;
bec3cfdc
ED
3019
3020 /* in case skb wont be segmented, point to itself */
3021 skb->prev = skb;
3022
55a93b3e 3023 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3024 if (!skb)
3025 continue;
55a93b3e 3026
bec3cfdc
ED
3027 if (!head)
3028 head = skb;
3029 else
3030 tail->next = skb;
3031 /* If skb was segmented, skb->prev points to
3032 * the last segment. If not, it still contains skb.
3033 */
3034 tail = skb->prev;
55a93b3e
ED
3035 }
3036 return head;
f6a78bfc 3037}
104ba78c 3038EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3039
1def9238
ED
3040static void qdisc_pkt_len_init(struct sk_buff *skb)
3041{
3042 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3043
3044 qdisc_skb_cb(skb)->pkt_len = skb->len;
3045
3046 /* To get more precise estimation of bytes sent on wire,
3047 * we add to pkt_len the headers size of all segments
3048 */
3049 if (shinfo->gso_size) {
757b8b1d 3050 unsigned int hdr_len;
15e5a030 3051 u16 gso_segs = shinfo->gso_segs;
1def9238 3052
757b8b1d
ED
3053 /* mac layer + network layer */
3054 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3055
3056 /* + transport layer */
1def9238
ED
3057 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3058 hdr_len += tcp_hdrlen(skb);
3059 else
3060 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3061
3062 if (shinfo->gso_type & SKB_GSO_DODGY)
3063 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3064 shinfo->gso_size);
3065
3066 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3067 }
3068}
3069
bbd8a0d3
KK
3070static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3071 struct net_device *dev,
3072 struct netdev_queue *txq)
3073{
3074 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3075 struct sk_buff *to_free = NULL;
a2da570d 3076 bool contended;
bbd8a0d3
KK
3077 int rc;
3078
a2da570d 3079 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3080 /*
3081 * Heuristic to force contended enqueues to serialize on a
3082 * separate lock before trying to get qdisc main lock.
f9eb8aea 3083 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3084 * often and dequeue packets faster.
79640a4c 3085 */
a2da570d 3086 contended = qdisc_is_running(q);
79640a4c
ED
3087 if (unlikely(contended))
3088 spin_lock(&q->busylock);
3089
bbd8a0d3
KK
3090 spin_lock(root_lock);
3091 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3092 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3093 rc = NET_XMIT_DROP;
3094 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3095 qdisc_run_begin(q)) {
bbd8a0d3
KK
3096 /*
3097 * This is a work-conserving queue; there are no old skbs
3098 * waiting to be sent out; and the qdisc is not running -
3099 * xmit the skb directly.
3100 */
bfe0d029 3101
bfe0d029
ED
3102 qdisc_bstats_update(q, skb);
3103
55a93b3e 3104 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3105 if (unlikely(contended)) {
3106 spin_unlock(&q->busylock);
3107 contended = false;
3108 }
bbd8a0d3 3109 __qdisc_run(q);
79640a4c 3110 } else
bc135b23 3111 qdisc_run_end(q);
bbd8a0d3
KK
3112
3113 rc = NET_XMIT_SUCCESS;
3114 } else {
520ac30f 3115 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3116 if (qdisc_run_begin(q)) {
3117 if (unlikely(contended)) {
3118 spin_unlock(&q->busylock);
3119 contended = false;
3120 }
3121 __qdisc_run(q);
3122 }
bbd8a0d3
KK
3123 }
3124 spin_unlock(root_lock);
520ac30f
ED
3125 if (unlikely(to_free))
3126 kfree_skb_list(to_free);
79640a4c
ED
3127 if (unlikely(contended))
3128 spin_unlock(&q->busylock);
bbd8a0d3
KK
3129 return rc;
3130}
3131
86f8515f 3132#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3133static void skb_update_prio(struct sk_buff *skb)
3134{
6977a79d 3135 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3136
91c68ce2 3137 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3138 unsigned int prioidx =
3139 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3140
3141 if (prioidx < map->priomap_len)
3142 skb->priority = map->priomap[prioidx];
3143 }
5bc1421e
NH
3144}
3145#else
3146#define skb_update_prio(skb)
3147#endif
3148
f60e5990 3149DEFINE_PER_CPU(int, xmit_recursion);
3150EXPORT_SYMBOL(xmit_recursion);
3151
95603e22
MM
3152/**
3153 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3154 * @net: network namespace this loopback is happening in
3155 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3156 * @skb: buffer to transmit
3157 */
0c4b51f0 3158int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3159{
3160 skb_reset_mac_header(skb);
3161 __skb_pull(skb, skb_network_offset(skb));
3162 skb->pkt_type = PACKET_LOOPBACK;
3163 skb->ip_summed = CHECKSUM_UNNECESSARY;
3164 WARN_ON(!skb_dst(skb));
3165 skb_dst_force(skb);
3166 netif_rx_ni(skb);
3167 return 0;
3168}
3169EXPORT_SYMBOL(dev_loopback_xmit);
3170
1f211a1b
DB
3171#ifdef CONFIG_NET_EGRESS
3172static struct sk_buff *
3173sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3174{
3175 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3176 struct tcf_result cl_res;
3177
3178 if (!cl)
3179 return skb;
3180
3181 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3182 * earlier by the caller.
3183 */
3184 qdisc_bstats_cpu_update(cl->q, skb);
3185
3186 switch (tc_classify(skb, cl, &cl_res, false)) {
3187 case TC_ACT_OK:
3188 case TC_ACT_RECLASSIFY:
3189 skb->tc_index = TC_H_MIN(cl_res.classid);
3190 break;
3191 case TC_ACT_SHOT:
3192 qdisc_qstats_cpu_drop(cl->q);
3193 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3194 kfree_skb(skb);
3195 return NULL;
1f211a1b
DB
3196 case TC_ACT_STOLEN:
3197 case TC_ACT_QUEUED:
3198 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3199 consume_skb(skb);
1f211a1b
DB
3200 return NULL;
3201 case TC_ACT_REDIRECT:
3202 /* No need to push/pop skb's mac_header here on egress! */
3203 skb_do_redirect(skb);
3204 *ret = NET_XMIT_SUCCESS;
3205 return NULL;
3206 default:
3207 break;
3208 }
3209
3210 return skb;
3211}
3212#endif /* CONFIG_NET_EGRESS */
3213
638b2a69
JP
3214static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3215{
3216#ifdef CONFIG_XPS
3217 struct xps_dev_maps *dev_maps;
3218 struct xps_map *map;
3219 int queue_index = -1;
3220
3221 rcu_read_lock();
3222 dev_maps = rcu_dereference(dev->xps_maps);
3223 if (dev_maps) {
3224 map = rcu_dereference(
3225 dev_maps->cpu_map[skb->sender_cpu - 1]);
3226 if (map) {
3227 if (map->len == 1)
3228 queue_index = map->queues[0];
3229 else
3230 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3231 map->len)];
3232 if (unlikely(queue_index >= dev->real_num_tx_queues))
3233 queue_index = -1;
3234 }
3235 }
3236 rcu_read_unlock();
3237
3238 return queue_index;
3239#else
3240 return -1;
3241#endif
3242}
3243
3244static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3245{
3246 struct sock *sk = skb->sk;
3247 int queue_index = sk_tx_queue_get(sk);
3248
3249 if (queue_index < 0 || skb->ooo_okay ||
3250 queue_index >= dev->real_num_tx_queues) {
3251 int new_index = get_xps_queue(dev, skb);
3252 if (new_index < 0)
3253 new_index = skb_tx_hash(dev, skb);
3254
3255 if (queue_index != new_index && sk &&
004a5d01 3256 sk_fullsock(sk) &&
638b2a69
JP
3257 rcu_access_pointer(sk->sk_dst_cache))
3258 sk_tx_queue_set(sk, new_index);
3259
3260 queue_index = new_index;
3261 }
3262
3263 return queue_index;
3264}
3265
3266struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3267 struct sk_buff *skb,
3268 void *accel_priv)
3269{
3270 int queue_index = 0;
3271
3272#ifdef CONFIG_XPS
52bd2d62
ED
3273 u32 sender_cpu = skb->sender_cpu - 1;
3274
3275 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3276 skb->sender_cpu = raw_smp_processor_id() + 1;
3277#endif
3278
3279 if (dev->real_num_tx_queues != 1) {
3280 const struct net_device_ops *ops = dev->netdev_ops;
3281 if (ops->ndo_select_queue)
3282 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3283 __netdev_pick_tx);
3284 else
3285 queue_index = __netdev_pick_tx(dev, skb);
3286
3287 if (!accel_priv)
3288 queue_index = netdev_cap_txqueue(dev, queue_index);
3289 }
3290
3291 skb_set_queue_mapping(skb, queue_index);
3292 return netdev_get_tx_queue(dev, queue_index);
3293}
3294
d29f749e 3295/**
9d08dd3d 3296 * __dev_queue_xmit - transmit a buffer
d29f749e 3297 * @skb: buffer to transmit
9d08dd3d 3298 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3299 *
3300 * Queue a buffer for transmission to a network device. The caller must
3301 * have set the device and priority and built the buffer before calling
3302 * this function. The function can be called from an interrupt.
3303 *
3304 * A negative errno code is returned on a failure. A success does not
3305 * guarantee the frame will be transmitted as it may be dropped due
3306 * to congestion or traffic shaping.
3307 *
3308 * -----------------------------------------------------------------------------------
3309 * I notice this method can also return errors from the queue disciplines,
3310 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3311 * be positive.
3312 *
3313 * Regardless of the return value, the skb is consumed, so it is currently
3314 * difficult to retry a send to this method. (You can bump the ref count
3315 * before sending to hold a reference for retry if you are careful.)
3316 *
3317 * When calling this method, interrupts MUST be enabled. This is because
3318 * the BH enable code must have IRQs enabled so that it will not deadlock.
3319 * --BLG
3320 */
0a59f3a9 3321static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3322{
3323 struct net_device *dev = skb->dev;
dc2b4847 3324 struct netdev_queue *txq;
1da177e4
LT
3325 struct Qdisc *q;
3326 int rc = -ENOMEM;
3327
6d1ccff6
ED
3328 skb_reset_mac_header(skb);
3329
e7fd2885
WB
3330 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3331 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3332
4ec93edb
YH
3333 /* Disable soft irqs for various locks below. Also
3334 * stops preemption for RCU.
1da177e4 3335 */
4ec93edb 3336 rcu_read_lock_bh();
1da177e4 3337
5bc1421e
NH
3338 skb_update_prio(skb);
3339
1f211a1b
DB
3340 qdisc_pkt_len_init(skb);
3341#ifdef CONFIG_NET_CLS_ACT
3342 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3343# ifdef CONFIG_NET_EGRESS
3344 if (static_key_false(&egress_needed)) {
3345 skb = sch_handle_egress(skb, &rc, dev);
3346 if (!skb)
3347 goto out;
3348 }
3349# endif
3350#endif
02875878
ED
3351 /* If device/qdisc don't need skb->dst, release it right now while
3352 * its hot in this cpu cache.
3353 */
3354 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3355 skb_dst_drop(skb);
3356 else
3357 skb_dst_force(skb);
3358
f663dd9a 3359 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3360 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3361
cf66ba58 3362 trace_net_dev_queue(skb);
1da177e4 3363 if (q->enqueue) {
bbd8a0d3 3364 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3365 goto out;
1da177e4
LT
3366 }
3367
3368 /* The device has no queue. Common case for software devices:
3369 loopback, all the sorts of tunnels...
3370
932ff279
HX
3371 Really, it is unlikely that netif_tx_lock protection is necessary
3372 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3373 counters.)
3374 However, it is possible, that they rely on protection
3375 made by us here.
3376
3377 Check this and shot the lock. It is not prone from deadlocks.
3378 Either shot noqueue qdisc, it is even simpler 8)
3379 */
3380 if (dev->flags & IFF_UP) {
3381 int cpu = smp_processor_id(); /* ok because BHs are off */
3382
c773e847 3383 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3384 if (unlikely(__this_cpu_read(xmit_recursion) >
3385 XMIT_RECURSION_LIMIT))
745e20f1
ED
3386 goto recursion_alert;
3387
1f59533f
JDB
3388 skb = validate_xmit_skb(skb, dev);
3389 if (!skb)
d21fd63e 3390 goto out;
1f59533f 3391
c773e847 3392 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3393
73466498 3394 if (!netif_xmit_stopped(txq)) {
745e20f1 3395 __this_cpu_inc(xmit_recursion);
ce93718f 3396 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3397 __this_cpu_dec(xmit_recursion);
572a9d7b 3398 if (dev_xmit_complete(rc)) {
c773e847 3399 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3400 goto out;
3401 }
3402 }
c773e847 3403 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3404 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3405 dev->name);
1da177e4
LT
3406 } else {
3407 /* Recursion is detected! It is possible,
745e20f1
ED
3408 * unfortunately
3409 */
3410recursion_alert:
e87cc472
JP
3411 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3412 dev->name);
1da177e4
LT
3413 }
3414 }
3415
3416 rc = -ENETDOWN;
d4828d85 3417 rcu_read_unlock_bh();
1da177e4 3418
015f0688 3419 atomic_long_inc(&dev->tx_dropped);
1f59533f 3420 kfree_skb_list(skb);
1da177e4
LT
3421 return rc;
3422out:
d4828d85 3423 rcu_read_unlock_bh();
1da177e4
LT
3424 return rc;
3425}
f663dd9a 3426
2b4aa3ce 3427int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3428{
3429 return __dev_queue_xmit(skb, NULL);
3430}
2b4aa3ce 3431EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3432
f663dd9a
JW
3433int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3434{
3435 return __dev_queue_xmit(skb, accel_priv);
3436}
3437EXPORT_SYMBOL(dev_queue_xmit_accel);
3438
1da177e4
LT
3439
3440/*=======================================================================
3441 Receiver routines
3442 =======================================================================*/
3443
6b2bedc3 3444int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3445EXPORT_SYMBOL(netdev_max_backlog);
3446
3b098e2d 3447int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3448int netdev_budget __read_mostly = 300;
3449int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3450
eecfd7c4
ED
3451/* Called with irq disabled */
3452static inline void ____napi_schedule(struct softnet_data *sd,
3453 struct napi_struct *napi)
3454{
3455 list_add_tail(&napi->poll_list, &sd->poll_list);
3456 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3457}
3458
bfb564e7
KK
3459#ifdef CONFIG_RPS
3460
3461/* One global table that all flow-based protocols share. */
6e3f7faf 3462struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3463EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3464u32 rps_cpu_mask __read_mostly;
3465EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3466
c5905afb 3467struct static_key rps_needed __read_mostly;
3df97ba8 3468EXPORT_SYMBOL(rps_needed);
adc9300e 3469
c445477d
BH
3470static struct rps_dev_flow *
3471set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3472 struct rps_dev_flow *rflow, u16 next_cpu)
3473{
a31196b0 3474 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3475#ifdef CONFIG_RFS_ACCEL
3476 struct netdev_rx_queue *rxqueue;
3477 struct rps_dev_flow_table *flow_table;
3478 struct rps_dev_flow *old_rflow;
3479 u32 flow_id;
3480 u16 rxq_index;
3481 int rc;
3482
3483 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3484 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3485 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3486 goto out;
3487 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3488 if (rxq_index == skb_get_rx_queue(skb))
3489 goto out;
3490
3491 rxqueue = dev->_rx + rxq_index;
3492 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3493 if (!flow_table)
3494 goto out;
61b905da 3495 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3496 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3497 rxq_index, flow_id);
3498 if (rc < 0)
3499 goto out;
3500 old_rflow = rflow;
3501 rflow = &flow_table->flows[flow_id];
c445477d
BH
3502 rflow->filter = rc;
3503 if (old_rflow->filter == rflow->filter)
3504 old_rflow->filter = RPS_NO_FILTER;
3505 out:
3506#endif
3507 rflow->last_qtail =
09994d1b 3508 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3509 }
3510
09994d1b 3511 rflow->cpu = next_cpu;
c445477d
BH
3512 return rflow;
3513}
3514
bfb564e7
KK
3515/*
3516 * get_rps_cpu is called from netif_receive_skb and returns the target
3517 * CPU from the RPS map of the receiving queue for a given skb.
3518 * rcu_read_lock must be held on entry.
3519 */
3520static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3521 struct rps_dev_flow **rflowp)
3522{
567e4b79
ED
3523 const struct rps_sock_flow_table *sock_flow_table;
3524 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3525 struct rps_dev_flow_table *flow_table;
567e4b79 3526 struct rps_map *map;
bfb564e7 3527 int cpu = -1;
567e4b79 3528 u32 tcpu;
61b905da 3529 u32 hash;
bfb564e7
KK
3530
3531 if (skb_rx_queue_recorded(skb)) {
3532 u16 index = skb_get_rx_queue(skb);
567e4b79 3533
62fe0b40
BH
3534 if (unlikely(index >= dev->real_num_rx_queues)) {
3535 WARN_ONCE(dev->real_num_rx_queues > 1,
3536 "%s received packet on queue %u, but number "
3537 "of RX queues is %u\n",
3538 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3539 goto done;
3540 }
567e4b79
ED
3541 rxqueue += index;
3542 }
bfb564e7 3543
567e4b79
ED
3544 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3545
3546 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3547 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3548 if (!flow_table && !map)
bfb564e7
KK
3549 goto done;
3550
2d47b459 3551 skb_reset_network_header(skb);
61b905da
TH
3552 hash = skb_get_hash(skb);
3553 if (!hash)
bfb564e7
KK
3554 goto done;
3555
fec5e652
TH
3556 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3557 if (flow_table && sock_flow_table) {
fec5e652 3558 struct rps_dev_flow *rflow;
567e4b79
ED
3559 u32 next_cpu;
3560 u32 ident;
3561
3562 /* First check into global flow table if there is a match */
3563 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3564 if ((ident ^ hash) & ~rps_cpu_mask)
3565 goto try_rps;
fec5e652 3566
567e4b79
ED
3567 next_cpu = ident & rps_cpu_mask;
3568
3569 /* OK, now we know there is a match,
3570 * we can look at the local (per receive queue) flow table
3571 */
61b905da 3572 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3573 tcpu = rflow->cpu;
3574
fec5e652
TH
3575 /*
3576 * If the desired CPU (where last recvmsg was done) is
3577 * different from current CPU (one in the rx-queue flow
3578 * table entry), switch if one of the following holds:
a31196b0 3579 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3580 * - Current CPU is offline.
3581 * - The current CPU's queue tail has advanced beyond the
3582 * last packet that was enqueued using this table entry.
3583 * This guarantees that all previous packets for the flow
3584 * have been dequeued, thus preserving in order delivery.
3585 */
3586 if (unlikely(tcpu != next_cpu) &&
a31196b0 3587 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3588 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3589 rflow->last_qtail)) >= 0)) {
3590 tcpu = next_cpu;
c445477d 3591 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3592 }
c445477d 3593
a31196b0 3594 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3595 *rflowp = rflow;
3596 cpu = tcpu;
3597 goto done;
3598 }
3599 }
3600
567e4b79
ED
3601try_rps:
3602
0a9627f2 3603 if (map) {
8fc54f68 3604 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3605 if (cpu_online(tcpu)) {
3606 cpu = tcpu;
3607 goto done;
3608 }
3609 }
3610
3611done:
0a9627f2
TH
3612 return cpu;
3613}
3614
c445477d
BH
3615#ifdef CONFIG_RFS_ACCEL
3616
3617/**
3618 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3619 * @dev: Device on which the filter was set
3620 * @rxq_index: RX queue index
3621 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3622 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3623 *
3624 * Drivers that implement ndo_rx_flow_steer() should periodically call
3625 * this function for each installed filter and remove the filters for
3626 * which it returns %true.
3627 */
3628bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3629 u32 flow_id, u16 filter_id)
3630{
3631 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3632 struct rps_dev_flow_table *flow_table;
3633 struct rps_dev_flow *rflow;
3634 bool expire = true;
a31196b0 3635 unsigned int cpu;
c445477d
BH
3636
3637 rcu_read_lock();
3638 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3639 if (flow_table && flow_id <= flow_table->mask) {
3640 rflow = &flow_table->flows[flow_id];
3641 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3642 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3643 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3644 rflow->last_qtail) <
3645 (int)(10 * flow_table->mask)))
3646 expire = false;
3647 }
3648 rcu_read_unlock();
3649 return expire;
3650}
3651EXPORT_SYMBOL(rps_may_expire_flow);
3652
3653#endif /* CONFIG_RFS_ACCEL */
3654
0a9627f2 3655/* Called from hardirq (IPI) context */
e36fa2f7 3656static void rps_trigger_softirq(void *data)
0a9627f2 3657{
e36fa2f7
ED
3658 struct softnet_data *sd = data;
3659
eecfd7c4 3660 ____napi_schedule(sd, &sd->backlog);
dee42870 3661 sd->received_rps++;
0a9627f2 3662}
e36fa2f7 3663
fec5e652 3664#endif /* CONFIG_RPS */
0a9627f2 3665
e36fa2f7
ED
3666/*
3667 * Check if this softnet_data structure is another cpu one
3668 * If yes, queue it to our IPI list and return 1
3669 * If no, return 0
3670 */
3671static int rps_ipi_queued(struct softnet_data *sd)
3672{
3673#ifdef CONFIG_RPS
903ceff7 3674 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3675
3676 if (sd != mysd) {
3677 sd->rps_ipi_next = mysd->rps_ipi_list;
3678 mysd->rps_ipi_list = sd;
3679
3680 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3681 return 1;
3682 }
3683#endif /* CONFIG_RPS */
3684 return 0;
3685}
3686
99bbc707
WB
3687#ifdef CONFIG_NET_FLOW_LIMIT
3688int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3689#endif
3690
3691static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3692{
3693#ifdef CONFIG_NET_FLOW_LIMIT
3694 struct sd_flow_limit *fl;
3695 struct softnet_data *sd;
3696 unsigned int old_flow, new_flow;
3697
3698 if (qlen < (netdev_max_backlog >> 1))
3699 return false;
3700
903ceff7 3701 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3702
3703 rcu_read_lock();
3704 fl = rcu_dereference(sd->flow_limit);
3705 if (fl) {
3958afa1 3706 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3707 old_flow = fl->history[fl->history_head];
3708 fl->history[fl->history_head] = new_flow;
3709
3710 fl->history_head++;
3711 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3712
3713 if (likely(fl->buckets[old_flow]))
3714 fl->buckets[old_flow]--;
3715
3716 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3717 fl->count++;
3718 rcu_read_unlock();
3719 return true;
3720 }
3721 }
3722 rcu_read_unlock();
3723#endif
3724 return false;
3725}
3726
0a9627f2
TH
3727/*
3728 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3729 * queue (may be a remote CPU queue).
3730 */
fec5e652
TH
3731static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3732 unsigned int *qtail)
0a9627f2 3733{
e36fa2f7 3734 struct softnet_data *sd;
0a9627f2 3735 unsigned long flags;
99bbc707 3736 unsigned int qlen;
0a9627f2 3737
e36fa2f7 3738 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3739
3740 local_irq_save(flags);
0a9627f2 3741
e36fa2f7 3742 rps_lock(sd);
e9e4dd32
JA
3743 if (!netif_running(skb->dev))
3744 goto drop;
99bbc707
WB
3745 qlen = skb_queue_len(&sd->input_pkt_queue);
3746 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3747 if (qlen) {
0a9627f2 3748enqueue:
e36fa2f7 3749 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3750 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3751 rps_unlock(sd);
152102c7 3752 local_irq_restore(flags);
0a9627f2
TH
3753 return NET_RX_SUCCESS;
3754 }
3755
ebda37c2
ED
3756 /* Schedule NAPI for backlog device
3757 * We can use non atomic operation since we own the queue lock
3758 */
3759 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3760 if (!rps_ipi_queued(sd))
eecfd7c4 3761 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3762 }
3763 goto enqueue;
3764 }
3765
e9e4dd32 3766drop:
dee42870 3767 sd->dropped++;
e36fa2f7 3768 rps_unlock(sd);
0a9627f2 3769
0a9627f2
TH
3770 local_irq_restore(flags);
3771
caf586e5 3772 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3773 kfree_skb(skb);
3774 return NET_RX_DROP;
3775}
1da177e4 3776
ae78dbfa 3777static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3778{
b0e28f1e 3779 int ret;
1da177e4 3780
588f0330 3781 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3782
cf66ba58 3783 trace_netif_rx(skb);
df334545 3784#ifdef CONFIG_RPS
c5905afb 3785 if (static_key_false(&rps_needed)) {
fec5e652 3786 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3787 int cpu;
3788
cece1945 3789 preempt_disable();
b0e28f1e 3790 rcu_read_lock();
fec5e652
TH
3791
3792 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3793 if (cpu < 0)
3794 cpu = smp_processor_id();
fec5e652
TH
3795
3796 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3797
b0e28f1e 3798 rcu_read_unlock();
cece1945 3799 preempt_enable();
adc9300e
ED
3800 } else
3801#endif
fec5e652
TH
3802 {
3803 unsigned int qtail;
3804 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3805 put_cpu();
3806 }
b0e28f1e 3807 return ret;
1da177e4 3808}
ae78dbfa
BH
3809
3810/**
3811 * netif_rx - post buffer to the network code
3812 * @skb: buffer to post
3813 *
3814 * This function receives a packet from a device driver and queues it for
3815 * the upper (protocol) levels to process. It always succeeds. The buffer
3816 * may be dropped during processing for congestion control or by the
3817 * protocol layers.
3818 *
3819 * return values:
3820 * NET_RX_SUCCESS (no congestion)
3821 * NET_RX_DROP (packet was dropped)
3822 *
3823 */
3824
3825int netif_rx(struct sk_buff *skb)
3826{
3827 trace_netif_rx_entry(skb);
3828
3829 return netif_rx_internal(skb);
3830}
d1b19dff 3831EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3832
3833int netif_rx_ni(struct sk_buff *skb)
3834{
3835 int err;
3836
ae78dbfa
BH
3837 trace_netif_rx_ni_entry(skb);
3838
1da177e4 3839 preempt_disable();
ae78dbfa 3840 err = netif_rx_internal(skb);
1da177e4
LT
3841 if (local_softirq_pending())
3842 do_softirq();
3843 preempt_enable();
3844
3845 return err;
3846}
1da177e4
LT
3847EXPORT_SYMBOL(netif_rx_ni);
3848
0766f788 3849static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3850{
903ceff7 3851 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3852
3853 if (sd->completion_queue) {
3854 struct sk_buff *clist;
3855
3856 local_irq_disable();
3857 clist = sd->completion_queue;
3858 sd->completion_queue = NULL;
3859 local_irq_enable();
3860
3861 while (clist) {
3862 struct sk_buff *skb = clist;
3863 clist = clist->next;
3864
547b792c 3865 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3866 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3867 trace_consume_skb(skb);
3868 else
3869 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3870
3871 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3872 __kfree_skb(skb);
3873 else
3874 __kfree_skb_defer(skb);
1da177e4 3875 }
15fad714
JDB
3876
3877 __kfree_skb_flush();
1da177e4
LT
3878 }
3879
3880 if (sd->output_queue) {
37437bb2 3881 struct Qdisc *head;
1da177e4
LT
3882
3883 local_irq_disable();
3884 head = sd->output_queue;
3885 sd->output_queue = NULL;
a9cbd588 3886 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3887 local_irq_enable();
3888
3889 while (head) {
37437bb2
DM
3890 struct Qdisc *q = head;
3891 spinlock_t *root_lock;
3892
1da177e4
LT
3893 head = head->next_sched;
3894
5fb66229 3895 root_lock = qdisc_lock(q);
3bcb846c
ED
3896 spin_lock(root_lock);
3897 /* We need to make sure head->next_sched is read
3898 * before clearing __QDISC_STATE_SCHED
3899 */
3900 smp_mb__before_atomic();
3901 clear_bit(__QDISC_STATE_SCHED, &q->state);
3902 qdisc_run(q);
3903 spin_unlock(root_lock);
1da177e4
LT
3904 }
3905 }
3906}
3907
181402a5 3908#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3909/* This hook is defined here for ATM LANE */
3910int (*br_fdb_test_addr_hook)(struct net_device *dev,
3911 unsigned char *addr) __read_mostly;
4fb019a0 3912EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3913#endif
1da177e4 3914
1f211a1b
DB
3915static inline struct sk_buff *
3916sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3917 struct net_device *orig_dev)
f697c3e8 3918{
e7582bab 3919#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3920 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3921 struct tcf_result cl_res;
24824a09 3922
c9e99fd0
DB
3923 /* If there's at least one ingress present somewhere (so
3924 * we get here via enabled static key), remaining devices
3925 * that are not configured with an ingress qdisc will bail
d2788d34 3926 * out here.
c9e99fd0 3927 */
d2788d34 3928 if (!cl)
4577139b 3929 return skb;
f697c3e8
HX
3930 if (*pt_prev) {
3931 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3932 *pt_prev = NULL;
1da177e4
LT
3933 }
3934
3365495c 3935 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3936 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3937 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3938
3b3ae880 3939 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3940 case TC_ACT_OK:
3941 case TC_ACT_RECLASSIFY:
3942 skb->tc_index = TC_H_MIN(cl_res.classid);
3943 break;
3944 case TC_ACT_SHOT:
24ea591d 3945 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3946 kfree_skb(skb);
3947 return NULL;
d2788d34
DB
3948 case TC_ACT_STOLEN:
3949 case TC_ACT_QUEUED:
8a3a4c6e 3950 consume_skb(skb);
d2788d34 3951 return NULL;
27b29f63
AS
3952 case TC_ACT_REDIRECT:
3953 /* skb_mac_header check was done by cls/act_bpf, so
3954 * we can safely push the L2 header back before
3955 * redirecting to another netdev
3956 */
3957 __skb_push(skb, skb->mac_len);
3958 skb_do_redirect(skb);
3959 return NULL;
d2788d34
DB
3960 default:
3961 break;
f697c3e8 3962 }
e7582bab 3963#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3964 return skb;
3965}
1da177e4 3966
24b27fc4
MB
3967/**
3968 * netdev_is_rx_handler_busy - check if receive handler is registered
3969 * @dev: device to check
3970 *
3971 * Check if a receive handler is already registered for a given device.
3972 * Return true if there one.
3973 *
3974 * The caller must hold the rtnl_mutex.
3975 */
3976bool netdev_is_rx_handler_busy(struct net_device *dev)
3977{
3978 ASSERT_RTNL();
3979 return dev && rtnl_dereference(dev->rx_handler);
3980}
3981EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3982
ab95bfe0
JP
3983/**
3984 * netdev_rx_handler_register - register receive handler
3985 * @dev: device to register a handler for
3986 * @rx_handler: receive handler to register
93e2c32b 3987 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3988 *
e227867f 3989 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3990 * called from __netif_receive_skb. A negative errno code is returned
3991 * on a failure.
3992 *
3993 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3994 *
3995 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3996 */
3997int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3998 rx_handler_func_t *rx_handler,
3999 void *rx_handler_data)
ab95bfe0
JP
4000{
4001 ASSERT_RTNL();
4002
4003 if (dev->rx_handler)
4004 return -EBUSY;
4005
00cfec37 4006 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4007 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4008 rcu_assign_pointer(dev->rx_handler, rx_handler);
4009
4010 return 0;
4011}
4012EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4013
4014/**
4015 * netdev_rx_handler_unregister - unregister receive handler
4016 * @dev: device to unregister a handler from
4017 *
166ec369 4018 * Unregister a receive handler from a device.
ab95bfe0
JP
4019 *
4020 * The caller must hold the rtnl_mutex.
4021 */
4022void netdev_rx_handler_unregister(struct net_device *dev)
4023{
4024
4025 ASSERT_RTNL();
a9b3cd7f 4026 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4027 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4028 * section has a guarantee to see a non NULL rx_handler_data
4029 * as well.
4030 */
4031 synchronize_net();
a9b3cd7f 4032 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4033}
4034EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4035
b4b9e355
MG
4036/*
4037 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4038 * the special handling of PFMEMALLOC skbs.
4039 */
4040static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4041{
4042 switch (skb->protocol) {
2b8837ae
JP
4043 case htons(ETH_P_ARP):
4044 case htons(ETH_P_IP):
4045 case htons(ETH_P_IPV6):
4046 case htons(ETH_P_8021Q):
4047 case htons(ETH_P_8021AD):
b4b9e355
MG
4048 return true;
4049 default:
4050 return false;
4051 }
4052}
4053
e687ad60
PN
4054static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4055 int *ret, struct net_device *orig_dev)
4056{
e7582bab 4057#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4058 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4059 int ingress_retval;
4060
e687ad60
PN
4061 if (*pt_prev) {
4062 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4063 *pt_prev = NULL;
4064 }
4065
2c1e2703
AC
4066 rcu_read_lock();
4067 ingress_retval = nf_hook_ingress(skb);
4068 rcu_read_unlock();
4069 return ingress_retval;
e687ad60 4070 }
e7582bab 4071#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4072 return 0;
4073}
e687ad60 4074
9754e293 4075static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4076{
4077 struct packet_type *ptype, *pt_prev;
ab95bfe0 4078 rx_handler_func_t *rx_handler;
f2ccd8fa 4079 struct net_device *orig_dev;
8a4eb573 4080 bool deliver_exact = false;
1da177e4 4081 int ret = NET_RX_DROP;
252e3346 4082 __be16 type;
1da177e4 4083
588f0330 4084 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4085
cf66ba58 4086 trace_netif_receive_skb(skb);
9b22ea56 4087
cc9bd5ce 4088 orig_dev = skb->dev;
8f903c70 4089
c1d2bbe1 4090 skb_reset_network_header(skb);
fda55eca
ED
4091 if (!skb_transport_header_was_set(skb))
4092 skb_reset_transport_header(skb);
0b5c9db1 4093 skb_reset_mac_len(skb);
1da177e4
LT
4094
4095 pt_prev = NULL;
4096
63d8ea7f 4097another_round:
b6858177 4098 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4099
4100 __this_cpu_inc(softnet_data.processed);
4101
8ad227ff
PM
4102 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4103 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4104 skb = skb_vlan_untag(skb);
bcc6d479 4105 if (unlikely(!skb))
2c17d27c 4106 goto out;
bcc6d479
JP
4107 }
4108
1da177e4
LT
4109#ifdef CONFIG_NET_CLS_ACT
4110 if (skb->tc_verd & TC_NCLS) {
4111 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4112 goto ncls;
4113 }
4114#endif
4115
9754e293 4116 if (pfmemalloc)
b4b9e355
MG
4117 goto skip_taps;
4118
1da177e4 4119 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4120 if (pt_prev)
4121 ret = deliver_skb(skb, pt_prev, orig_dev);
4122 pt_prev = ptype;
4123 }
4124
4125 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4126 if (pt_prev)
4127 ret = deliver_skb(skb, pt_prev, orig_dev);
4128 pt_prev = ptype;
1da177e4
LT
4129 }
4130
b4b9e355 4131skip_taps:
1cf51900 4132#ifdef CONFIG_NET_INGRESS
4577139b 4133 if (static_key_false(&ingress_needed)) {
1f211a1b 4134 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4135 if (!skb)
2c17d27c 4136 goto out;
e687ad60
PN
4137
4138 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4139 goto out;
4577139b 4140 }
1cf51900
PN
4141#endif
4142#ifdef CONFIG_NET_CLS_ACT
4577139b 4143 skb->tc_verd = 0;
1da177e4
LT
4144ncls:
4145#endif
9754e293 4146 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4147 goto drop;
4148
df8a39de 4149 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4150 if (pt_prev) {
4151 ret = deliver_skb(skb, pt_prev, orig_dev);
4152 pt_prev = NULL;
4153 }
48cc32d3 4154 if (vlan_do_receive(&skb))
2425717b
JF
4155 goto another_round;
4156 else if (unlikely(!skb))
2c17d27c 4157 goto out;
2425717b
JF
4158 }
4159
48cc32d3 4160 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4161 if (rx_handler) {
4162 if (pt_prev) {
4163 ret = deliver_skb(skb, pt_prev, orig_dev);
4164 pt_prev = NULL;
4165 }
8a4eb573
JP
4166 switch (rx_handler(&skb)) {
4167 case RX_HANDLER_CONSUMED:
3bc1b1ad 4168 ret = NET_RX_SUCCESS;
2c17d27c 4169 goto out;
8a4eb573 4170 case RX_HANDLER_ANOTHER:
63d8ea7f 4171 goto another_round;
8a4eb573
JP
4172 case RX_HANDLER_EXACT:
4173 deliver_exact = true;
4174 case RX_HANDLER_PASS:
4175 break;
4176 default:
4177 BUG();
4178 }
ab95bfe0 4179 }
1da177e4 4180
df8a39de
JP
4181 if (unlikely(skb_vlan_tag_present(skb))) {
4182 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4183 skb->pkt_type = PACKET_OTHERHOST;
4184 /* Note: we might in the future use prio bits
4185 * and set skb->priority like in vlan_do_receive()
4186 * For the time being, just ignore Priority Code Point
4187 */
4188 skb->vlan_tci = 0;
4189 }
48cc32d3 4190
7866a621
SN
4191 type = skb->protocol;
4192
63d8ea7f 4193 /* deliver only exact match when indicated */
7866a621
SN
4194 if (likely(!deliver_exact)) {
4195 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4196 &ptype_base[ntohs(type) &
4197 PTYPE_HASH_MASK]);
4198 }
1f3c8804 4199
7866a621
SN
4200 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4201 &orig_dev->ptype_specific);
4202
4203 if (unlikely(skb->dev != orig_dev)) {
4204 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4205 &skb->dev->ptype_specific);
1da177e4
LT
4206 }
4207
4208 if (pt_prev) {
1080e512 4209 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4210 goto drop;
1080e512
MT
4211 else
4212 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4213 } else {
b4b9e355 4214drop:
6e7333d3
JW
4215 if (!deliver_exact)
4216 atomic_long_inc(&skb->dev->rx_dropped);
4217 else
4218 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4219 kfree_skb(skb);
4220 /* Jamal, now you will not able to escape explaining
4221 * me how you were going to use this. :-)
4222 */
4223 ret = NET_RX_DROP;
4224 }
4225
2c17d27c 4226out:
9754e293
DM
4227 return ret;
4228}
4229
4230static int __netif_receive_skb(struct sk_buff *skb)
4231{
4232 int ret;
4233
4234 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4235 unsigned long pflags = current->flags;
4236
4237 /*
4238 * PFMEMALLOC skbs are special, they should
4239 * - be delivered to SOCK_MEMALLOC sockets only
4240 * - stay away from userspace
4241 * - have bounded memory usage
4242 *
4243 * Use PF_MEMALLOC as this saves us from propagating the allocation
4244 * context down to all allocation sites.
4245 */
4246 current->flags |= PF_MEMALLOC;
4247 ret = __netif_receive_skb_core(skb, true);
4248 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4249 } else
4250 ret = __netif_receive_skb_core(skb, false);
4251
1da177e4
LT
4252 return ret;
4253}
0a9627f2 4254
ae78dbfa 4255static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4256{
2c17d27c
JA
4257 int ret;
4258
588f0330 4259 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4260
c1f19b51
RC
4261 if (skb_defer_rx_timestamp(skb))
4262 return NET_RX_SUCCESS;
4263
2c17d27c
JA
4264 rcu_read_lock();
4265
df334545 4266#ifdef CONFIG_RPS
c5905afb 4267 if (static_key_false(&rps_needed)) {
3b098e2d 4268 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4269 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4270
3b098e2d
ED
4271 if (cpu >= 0) {
4272 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4273 rcu_read_unlock();
adc9300e 4274 return ret;
3b098e2d 4275 }
fec5e652 4276 }
1e94d72f 4277#endif
2c17d27c
JA
4278 ret = __netif_receive_skb(skb);
4279 rcu_read_unlock();
4280 return ret;
0a9627f2 4281}
ae78dbfa
BH
4282
4283/**
4284 * netif_receive_skb - process receive buffer from network
4285 * @skb: buffer to process
4286 *
4287 * netif_receive_skb() is the main receive data processing function.
4288 * It always succeeds. The buffer may be dropped during processing
4289 * for congestion control or by the protocol layers.
4290 *
4291 * This function may only be called from softirq context and interrupts
4292 * should be enabled.
4293 *
4294 * Return values (usually ignored):
4295 * NET_RX_SUCCESS: no congestion
4296 * NET_RX_DROP: packet was dropped
4297 */
04eb4489 4298int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4299{
4300 trace_netif_receive_skb_entry(skb);
4301
4302 return netif_receive_skb_internal(skb);
4303}
04eb4489 4304EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4305
41852497 4306DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4307
4308/* Network device is going away, flush any packets still pending */
4309static void flush_backlog(struct work_struct *work)
6e583ce5 4310{
6e583ce5 4311 struct sk_buff *skb, *tmp;
145dd5f9
PA
4312 struct softnet_data *sd;
4313
4314 local_bh_disable();
4315 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4316
145dd5f9 4317 local_irq_disable();
e36fa2f7 4318 rps_lock(sd);
6e7676c1 4319 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4320 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4321 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4322 kfree_skb(skb);
76cc8b13 4323 input_queue_head_incr(sd);
6e583ce5 4324 }
6e7676c1 4325 }
e36fa2f7 4326 rps_unlock(sd);
145dd5f9 4327 local_irq_enable();
6e7676c1
CG
4328
4329 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4330 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4331 __skb_unlink(skb, &sd->process_queue);
4332 kfree_skb(skb);
76cc8b13 4333 input_queue_head_incr(sd);
6e7676c1
CG
4334 }
4335 }
145dd5f9
PA
4336 local_bh_enable();
4337}
4338
41852497 4339static void flush_all_backlogs(void)
145dd5f9
PA
4340{
4341 unsigned int cpu;
4342
4343 get_online_cpus();
4344
41852497
ED
4345 for_each_online_cpu(cpu)
4346 queue_work_on(cpu, system_highpri_wq,
4347 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4348
4349 for_each_online_cpu(cpu)
41852497 4350 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4351
4352 put_online_cpus();
6e583ce5
SH
4353}
4354
d565b0a1
HX
4355static int napi_gro_complete(struct sk_buff *skb)
4356{
22061d80 4357 struct packet_offload *ptype;
d565b0a1 4358 __be16 type = skb->protocol;
22061d80 4359 struct list_head *head = &offload_base;
d565b0a1
HX
4360 int err = -ENOENT;
4361
c3c7c254
ED
4362 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4363
fc59f9a3
HX
4364 if (NAPI_GRO_CB(skb)->count == 1) {
4365 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4366 goto out;
fc59f9a3 4367 }
d565b0a1
HX
4368
4369 rcu_read_lock();
4370 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4371 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4372 continue;
4373
299603e8 4374 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4375 break;
4376 }
4377 rcu_read_unlock();
4378
4379 if (err) {
4380 WARN_ON(&ptype->list == head);
4381 kfree_skb(skb);
4382 return NET_RX_SUCCESS;
4383 }
4384
4385out:
ae78dbfa 4386 return netif_receive_skb_internal(skb);
d565b0a1
HX
4387}
4388
2e71a6f8
ED
4389/* napi->gro_list contains packets ordered by age.
4390 * youngest packets at the head of it.
4391 * Complete skbs in reverse order to reduce latencies.
4392 */
4393void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4394{
2e71a6f8 4395 struct sk_buff *skb, *prev = NULL;
d565b0a1 4396
2e71a6f8
ED
4397 /* scan list and build reverse chain */
4398 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4399 skb->prev = prev;
4400 prev = skb;
4401 }
4402
4403 for (skb = prev; skb; skb = prev) {
d565b0a1 4404 skb->next = NULL;
2e71a6f8
ED
4405
4406 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4407 return;
4408
4409 prev = skb->prev;
d565b0a1 4410 napi_gro_complete(skb);
2e71a6f8 4411 napi->gro_count--;
d565b0a1
HX
4412 }
4413
4414 napi->gro_list = NULL;
4415}
86cac58b 4416EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4417
89c5fa33
ED
4418static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4419{
4420 struct sk_buff *p;
4421 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4422 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4423
4424 for (p = napi->gro_list; p; p = p->next) {
4425 unsigned long diffs;
4426
0b4cec8c
TH
4427 NAPI_GRO_CB(p)->flush = 0;
4428
4429 if (hash != skb_get_hash_raw(p)) {
4430 NAPI_GRO_CB(p)->same_flow = 0;
4431 continue;
4432 }
4433
89c5fa33
ED
4434 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4435 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4436 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4437 if (maclen == ETH_HLEN)
4438 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4439 skb_mac_header(skb));
89c5fa33
ED
4440 else if (!diffs)
4441 diffs = memcmp(skb_mac_header(p),
a50e233c 4442 skb_mac_header(skb),
89c5fa33
ED
4443 maclen);
4444 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4445 }
4446}
4447
299603e8
JC
4448static void skb_gro_reset_offset(struct sk_buff *skb)
4449{
4450 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4451 const skb_frag_t *frag0 = &pinfo->frags[0];
4452
4453 NAPI_GRO_CB(skb)->data_offset = 0;
4454 NAPI_GRO_CB(skb)->frag0 = NULL;
4455 NAPI_GRO_CB(skb)->frag0_len = 0;
4456
4457 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4458 pinfo->nr_frags &&
4459 !PageHighMem(skb_frag_page(frag0))) {
4460 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4461 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4462 }
4463}
4464
a50e233c
ED
4465static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4466{
4467 struct skb_shared_info *pinfo = skb_shinfo(skb);
4468
4469 BUG_ON(skb->end - skb->tail < grow);
4470
4471 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4472
4473 skb->data_len -= grow;
4474 skb->tail += grow;
4475
4476 pinfo->frags[0].page_offset += grow;
4477 skb_frag_size_sub(&pinfo->frags[0], grow);
4478
4479 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4480 skb_frag_unref(skb, 0);
4481 memmove(pinfo->frags, pinfo->frags + 1,
4482 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4483 }
4484}
4485
bb728820 4486static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4487{
4488 struct sk_buff **pp = NULL;
22061d80 4489 struct packet_offload *ptype;
d565b0a1 4490 __be16 type = skb->protocol;
22061d80 4491 struct list_head *head = &offload_base;
0da2afd5 4492 int same_flow;
5b252f0c 4493 enum gro_result ret;
a50e233c 4494 int grow;
d565b0a1 4495
9c62a68d 4496 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4497 goto normal;
4498
5a212329 4499 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4500 goto normal;
4501
89c5fa33
ED
4502 gro_list_prepare(napi, skb);
4503
d565b0a1
HX
4504 rcu_read_lock();
4505 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4506 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4507 continue;
4508
86911732 4509 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4510 skb_reset_mac_len(skb);
d565b0a1
HX
4511 NAPI_GRO_CB(skb)->same_flow = 0;
4512 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4513 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4514 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4515 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4516 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4517 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4518 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4519
662880f4
TH
4520 /* Setup for GRO checksum validation */
4521 switch (skb->ip_summed) {
4522 case CHECKSUM_COMPLETE:
4523 NAPI_GRO_CB(skb)->csum = skb->csum;
4524 NAPI_GRO_CB(skb)->csum_valid = 1;
4525 NAPI_GRO_CB(skb)->csum_cnt = 0;
4526 break;
4527 case CHECKSUM_UNNECESSARY:
4528 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4529 NAPI_GRO_CB(skb)->csum_valid = 0;
4530 break;
4531 default:
4532 NAPI_GRO_CB(skb)->csum_cnt = 0;
4533 NAPI_GRO_CB(skb)->csum_valid = 0;
4534 }
d565b0a1 4535
f191a1d1 4536 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4537 break;
4538 }
4539 rcu_read_unlock();
4540
4541 if (&ptype->list == head)
4542 goto normal;
4543
0da2afd5 4544 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4545 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4546
d565b0a1
HX
4547 if (pp) {
4548 struct sk_buff *nskb = *pp;
4549
4550 *pp = nskb->next;
4551 nskb->next = NULL;
4552 napi_gro_complete(nskb);
4ae5544f 4553 napi->gro_count--;
d565b0a1
HX
4554 }
4555
0da2afd5 4556 if (same_flow)
d565b0a1
HX
4557 goto ok;
4558
600adc18 4559 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4560 goto normal;
d565b0a1 4561
600adc18
ED
4562 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4563 struct sk_buff *nskb = napi->gro_list;
4564
4565 /* locate the end of the list to select the 'oldest' flow */
4566 while (nskb->next) {
4567 pp = &nskb->next;
4568 nskb = *pp;
4569 }
4570 *pp = NULL;
4571 nskb->next = NULL;
4572 napi_gro_complete(nskb);
4573 } else {
4574 napi->gro_count++;
4575 }
d565b0a1 4576 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4577 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4578 NAPI_GRO_CB(skb)->last = skb;
86911732 4579 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4580 skb->next = napi->gro_list;
4581 napi->gro_list = skb;
5d0d9be8 4582 ret = GRO_HELD;
d565b0a1 4583
ad0f9904 4584pull:
a50e233c
ED
4585 grow = skb_gro_offset(skb) - skb_headlen(skb);
4586 if (grow > 0)
4587 gro_pull_from_frag0(skb, grow);
d565b0a1 4588ok:
5d0d9be8 4589 return ret;
d565b0a1
HX
4590
4591normal:
ad0f9904
HX
4592 ret = GRO_NORMAL;
4593 goto pull;
5d38a079 4594}
96e93eab 4595
bf5a755f
JC
4596struct packet_offload *gro_find_receive_by_type(__be16 type)
4597{
4598 struct list_head *offload_head = &offload_base;
4599 struct packet_offload *ptype;
4600
4601 list_for_each_entry_rcu(ptype, offload_head, list) {
4602 if (ptype->type != type || !ptype->callbacks.gro_receive)
4603 continue;
4604 return ptype;
4605 }
4606 return NULL;
4607}
e27a2f83 4608EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4609
4610struct packet_offload *gro_find_complete_by_type(__be16 type)
4611{
4612 struct list_head *offload_head = &offload_base;
4613 struct packet_offload *ptype;
4614
4615 list_for_each_entry_rcu(ptype, offload_head, list) {
4616 if (ptype->type != type || !ptype->callbacks.gro_complete)
4617 continue;
4618 return ptype;
4619 }
4620 return NULL;
4621}
e27a2f83 4622EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4623
bb728820 4624static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4625{
5d0d9be8
HX
4626 switch (ret) {
4627 case GRO_NORMAL:
ae78dbfa 4628 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4629 ret = GRO_DROP;
4630 break;
5d38a079 4631
5d0d9be8 4632 case GRO_DROP:
5d38a079
HX
4633 kfree_skb(skb);
4634 break;
5b252f0c 4635
daa86548 4636 case GRO_MERGED_FREE:
ce87fc6c
JG
4637 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4638 skb_dst_drop(skb);
d7e8883c 4639 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4640 } else {
d7e8883c 4641 __kfree_skb(skb);
ce87fc6c 4642 }
daa86548
ED
4643 break;
4644
5b252f0c
BH
4645 case GRO_HELD:
4646 case GRO_MERGED:
4647 break;
5d38a079
HX
4648 }
4649
c7c4b3b6 4650 return ret;
5d0d9be8 4651}
5d0d9be8 4652
c7c4b3b6 4653gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4654{
93f93a44 4655 skb_mark_napi_id(skb, napi);
ae78dbfa 4656 trace_napi_gro_receive_entry(skb);
86911732 4657
a50e233c
ED
4658 skb_gro_reset_offset(skb);
4659
89c5fa33 4660 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4661}
4662EXPORT_SYMBOL(napi_gro_receive);
4663
d0c2b0d2 4664static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4665{
93a35f59
ED
4666 if (unlikely(skb->pfmemalloc)) {
4667 consume_skb(skb);
4668 return;
4669 }
96e93eab 4670 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4671 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4672 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4673 skb->vlan_tci = 0;
66c46d74 4674 skb->dev = napi->dev;
6d152e23 4675 skb->skb_iif = 0;
c3caf119
JC
4676 skb->encapsulation = 0;
4677 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4678 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4679
4680 napi->skb = skb;
4681}
96e93eab 4682
76620aaf 4683struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4684{
5d38a079 4685 struct sk_buff *skb = napi->skb;
5d38a079
HX
4686
4687 if (!skb) {
fd11a83d 4688 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4689 if (skb) {
4690 napi->skb = skb;
4691 skb_mark_napi_id(skb, napi);
4692 }
80595d59 4693 }
96e93eab
HX
4694 return skb;
4695}
76620aaf 4696EXPORT_SYMBOL(napi_get_frags);
96e93eab 4697
a50e233c
ED
4698static gro_result_t napi_frags_finish(struct napi_struct *napi,
4699 struct sk_buff *skb,
4700 gro_result_t ret)
96e93eab 4701{
5d0d9be8
HX
4702 switch (ret) {
4703 case GRO_NORMAL:
a50e233c
ED
4704 case GRO_HELD:
4705 __skb_push(skb, ETH_HLEN);
4706 skb->protocol = eth_type_trans(skb, skb->dev);
4707 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4708 ret = GRO_DROP;
86911732 4709 break;
5d38a079 4710
5d0d9be8 4711 case GRO_DROP:
5d0d9be8
HX
4712 case GRO_MERGED_FREE:
4713 napi_reuse_skb(napi, skb);
4714 break;
5b252f0c
BH
4715
4716 case GRO_MERGED:
4717 break;
5d0d9be8 4718 }
5d38a079 4719
c7c4b3b6 4720 return ret;
5d38a079 4721}
5d0d9be8 4722
a50e233c
ED
4723/* Upper GRO stack assumes network header starts at gro_offset=0
4724 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4725 * We copy ethernet header into skb->data to have a common layout.
4726 */
4adb9c4a 4727static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4728{
4729 struct sk_buff *skb = napi->skb;
a50e233c
ED
4730 const struct ethhdr *eth;
4731 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4732
4733 napi->skb = NULL;
4734
a50e233c
ED
4735 skb_reset_mac_header(skb);
4736 skb_gro_reset_offset(skb);
4737
4738 eth = skb_gro_header_fast(skb, 0);
4739 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4740 eth = skb_gro_header_slow(skb, hlen, 0);
4741 if (unlikely(!eth)) {
4da46ceb
AC
4742 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4743 __func__, napi->dev->name);
a50e233c
ED
4744 napi_reuse_skb(napi, skb);
4745 return NULL;
4746 }
4747 } else {
4748 gro_pull_from_frag0(skb, hlen);
4749 NAPI_GRO_CB(skb)->frag0 += hlen;
4750 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4751 }
a50e233c
ED
4752 __skb_pull(skb, hlen);
4753
4754 /*
4755 * This works because the only protocols we care about don't require
4756 * special handling.
4757 * We'll fix it up properly in napi_frags_finish()
4758 */
4759 skb->protocol = eth->h_proto;
76620aaf 4760
76620aaf
HX
4761 return skb;
4762}
76620aaf 4763
c7c4b3b6 4764gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4765{
76620aaf 4766 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4767
4768 if (!skb)
c7c4b3b6 4769 return GRO_DROP;
5d0d9be8 4770
ae78dbfa
BH
4771 trace_napi_gro_frags_entry(skb);
4772
89c5fa33 4773 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4774}
5d38a079
HX
4775EXPORT_SYMBOL(napi_gro_frags);
4776
573e8fca
TH
4777/* Compute the checksum from gro_offset and return the folded value
4778 * after adding in any pseudo checksum.
4779 */
4780__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4781{
4782 __wsum wsum;
4783 __sum16 sum;
4784
4785 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4786
4787 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4788 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4789 if (likely(!sum)) {
4790 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4791 !skb->csum_complete_sw)
4792 netdev_rx_csum_fault(skb->dev);
4793 }
4794
4795 NAPI_GRO_CB(skb)->csum = wsum;
4796 NAPI_GRO_CB(skb)->csum_valid = 1;
4797
4798 return sum;
4799}
4800EXPORT_SYMBOL(__skb_gro_checksum_complete);
4801
e326bed2 4802/*
855abcf0 4803 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4804 * Note: called with local irq disabled, but exits with local irq enabled.
4805 */
4806static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4807{
4808#ifdef CONFIG_RPS
4809 struct softnet_data *remsd = sd->rps_ipi_list;
4810
4811 if (remsd) {
4812 sd->rps_ipi_list = NULL;
4813
4814 local_irq_enable();
4815
4816 /* Send pending IPI's to kick RPS processing on remote cpus. */
4817 while (remsd) {
4818 struct softnet_data *next = remsd->rps_ipi_next;
4819
4820 if (cpu_online(remsd->cpu))
c46fff2a 4821 smp_call_function_single_async(remsd->cpu,
fce8ad15 4822 &remsd->csd);
e326bed2
ED
4823 remsd = next;
4824 }
4825 } else
4826#endif
4827 local_irq_enable();
4828}
4829
d75b1ade
ED
4830static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4831{
4832#ifdef CONFIG_RPS
4833 return sd->rps_ipi_list != NULL;
4834#else
4835 return false;
4836#endif
4837}
4838
bea3348e 4839static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4840{
eecfd7c4 4841 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4842 bool again = true;
4843 int work = 0;
1da177e4 4844
e326bed2
ED
4845 /* Check if we have pending ipi, its better to send them now,
4846 * not waiting net_rx_action() end.
4847 */
d75b1ade 4848 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4849 local_irq_disable();
4850 net_rps_action_and_irq_enable(sd);
4851 }
d75b1ade 4852
bea3348e 4853 napi->weight = weight_p;
145dd5f9 4854 while (again) {
1da177e4 4855 struct sk_buff *skb;
6e7676c1
CG
4856
4857 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4858 rcu_read_lock();
6e7676c1 4859 __netif_receive_skb(skb);
2c17d27c 4860 rcu_read_unlock();
76cc8b13 4861 input_queue_head_incr(sd);
145dd5f9 4862 if (++work >= quota)
76cc8b13 4863 return work;
145dd5f9 4864
6e7676c1 4865 }
1da177e4 4866
145dd5f9 4867 local_irq_disable();
e36fa2f7 4868 rps_lock(sd);
11ef7a89 4869 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4870 /*
4871 * Inline a custom version of __napi_complete().
4872 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4873 * and NAPI_STATE_SCHED is the only possible flag set
4874 * on backlog.
4875 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4876 * and we dont need an smp_mb() memory barrier.
4877 */
eecfd7c4 4878 napi->state = 0;
145dd5f9
PA
4879 again = false;
4880 } else {
4881 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4882 &sd->process_queue);
bea3348e 4883 }
e36fa2f7 4884 rps_unlock(sd);
145dd5f9 4885 local_irq_enable();
6e7676c1 4886 }
1da177e4 4887
bea3348e
SH
4888 return work;
4889}
1da177e4 4890
bea3348e
SH
4891/**
4892 * __napi_schedule - schedule for receive
c4ea43c5 4893 * @n: entry to schedule
bea3348e 4894 *
bc9ad166
ED
4895 * The entry's receive function will be scheduled to run.
4896 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4897 */
b5606c2d 4898void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4899{
4900 unsigned long flags;
1da177e4 4901
bea3348e 4902 local_irq_save(flags);
903ceff7 4903 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4904 local_irq_restore(flags);
1da177e4 4905}
bea3348e
SH
4906EXPORT_SYMBOL(__napi_schedule);
4907
bc9ad166
ED
4908/**
4909 * __napi_schedule_irqoff - schedule for receive
4910 * @n: entry to schedule
4911 *
4912 * Variant of __napi_schedule() assuming hard irqs are masked
4913 */
4914void __napi_schedule_irqoff(struct napi_struct *n)
4915{
4916 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4917}
4918EXPORT_SYMBOL(__napi_schedule_irqoff);
4919
d565b0a1
HX
4920void __napi_complete(struct napi_struct *n)
4921{
4922 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4923
d75b1ade 4924 list_del_init(&n->poll_list);
4e857c58 4925 smp_mb__before_atomic();
d565b0a1
HX
4926 clear_bit(NAPI_STATE_SCHED, &n->state);
4927}
4928EXPORT_SYMBOL(__napi_complete);
4929
3b47d303 4930void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4931{
4932 unsigned long flags;
4933
4934 /*
4935 * don't let napi dequeue from the cpu poll list
4936 * just in case its running on a different cpu
4937 */
4938 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4939 return;
4940
3b47d303
ED
4941 if (n->gro_list) {
4942 unsigned long timeout = 0;
d75b1ade 4943
3b47d303
ED
4944 if (work_done)
4945 timeout = n->dev->gro_flush_timeout;
4946
4947 if (timeout)
4948 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4949 HRTIMER_MODE_REL_PINNED);
4950 else
4951 napi_gro_flush(n, false);
4952 }
d75b1ade
ED
4953 if (likely(list_empty(&n->poll_list))) {
4954 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4955 } else {
4956 /* If n->poll_list is not empty, we need to mask irqs */
4957 local_irq_save(flags);
4958 __napi_complete(n);
4959 local_irq_restore(flags);
4960 }
d565b0a1 4961}
3b47d303 4962EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4963
af12fa6e 4964/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4965static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4966{
4967 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4968 struct napi_struct *napi;
4969
4970 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4971 if (napi->napi_id == napi_id)
4972 return napi;
4973
4974 return NULL;
4975}
02d62e86
ED
4976
4977#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4978#define BUSY_POLL_BUDGET 8
02d62e86
ED
4979bool sk_busy_loop(struct sock *sk, int nonblock)
4980{
4981 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4982 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4983 struct napi_struct *napi;
4984 int rc = false;
4985
2a028ecb 4986 rcu_read_lock();
02d62e86
ED
4987
4988 napi = napi_by_id(sk->sk_napi_id);
4989 if (!napi)
4990 goto out;
4991
ce6aea93
ED
4992 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4993 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4994
4995 do {
ce6aea93 4996 rc = 0;
2a028ecb 4997 local_bh_disable();
ce6aea93
ED
4998 if (busy_poll) {
4999 rc = busy_poll(napi);
5000 } else if (napi_schedule_prep(napi)) {
5001 void *have = netpoll_poll_lock(napi);
5002
5003 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
5004 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1db19db7 5005 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
ce6aea93
ED
5006 if (rc == BUSY_POLL_BUDGET) {
5007 napi_complete_done(napi, rc);
5008 napi_schedule(napi);
5009 }
5010 }
5011 netpoll_poll_unlock(have);
5012 }
2a028ecb 5013 if (rc > 0)
02a1d6e7
ED
5014 __NET_ADD_STATS(sock_net(sk),
5015 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 5016 local_bh_enable();
02d62e86
ED
5017
5018 if (rc == LL_FLUSH_FAILED)
5019 break; /* permanent failure */
5020
02d62e86 5021 cpu_relax();
02d62e86
ED
5022 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5023 !need_resched() && !busy_loop_timeout(end_time));
5024
5025 rc = !skb_queue_empty(&sk->sk_receive_queue);
5026out:
2a028ecb 5027 rcu_read_unlock();
02d62e86
ED
5028 return rc;
5029}
5030EXPORT_SYMBOL(sk_busy_loop);
5031
5032#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
5033
5034void napi_hash_add(struct napi_struct *napi)
5035{
d64b5e85
ED
5036 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5037 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5038 return;
af12fa6e 5039
52bd2d62 5040 spin_lock(&napi_hash_lock);
af12fa6e 5041
52bd2d62
ED
5042 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5043 do {
5044 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5045 napi_gen_id = NR_CPUS + 1;
5046 } while (napi_by_id(napi_gen_id));
5047 napi->napi_id = napi_gen_id;
af12fa6e 5048
52bd2d62
ED
5049 hlist_add_head_rcu(&napi->napi_hash_node,
5050 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5051
52bd2d62 5052 spin_unlock(&napi_hash_lock);
af12fa6e
ET
5053}
5054EXPORT_SYMBOL_GPL(napi_hash_add);
5055
5056/* Warning : caller is responsible to make sure rcu grace period
5057 * is respected before freeing memory containing @napi
5058 */
34cbe27e 5059bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5060{
34cbe27e
ED
5061 bool rcu_sync_needed = false;
5062
af12fa6e
ET
5063 spin_lock(&napi_hash_lock);
5064
34cbe27e
ED
5065 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5066 rcu_sync_needed = true;
af12fa6e 5067 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5068 }
af12fa6e 5069 spin_unlock(&napi_hash_lock);
34cbe27e 5070 return rcu_sync_needed;
af12fa6e
ET
5071}
5072EXPORT_SYMBOL_GPL(napi_hash_del);
5073
3b47d303
ED
5074static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5075{
5076 struct napi_struct *napi;
5077
5078 napi = container_of(timer, struct napi_struct, timer);
5079 if (napi->gro_list)
5080 napi_schedule(napi);
5081
5082 return HRTIMER_NORESTART;
5083}
5084
d565b0a1
HX
5085void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5086 int (*poll)(struct napi_struct *, int), int weight)
5087{
5088 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5089 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5090 napi->timer.function = napi_watchdog;
4ae5544f 5091 napi->gro_count = 0;
d565b0a1 5092 napi->gro_list = NULL;
5d38a079 5093 napi->skb = NULL;
d565b0a1 5094 napi->poll = poll;
82dc3c63
ED
5095 if (weight > NAPI_POLL_WEIGHT)
5096 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5097 weight, dev->name);
d565b0a1
HX
5098 napi->weight = weight;
5099 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5100 napi->dev = dev;
5d38a079 5101#ifdef CONFIG_NETPOLL
d565b0a1
HX
5102 spin_lock_init(&napi->poll_lock);
5103 napi->poll_owner = -1;
5104#endif
5105 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5106 napi_hash_add(napi);
d565b0a1
HX
5107}
5108EXPORT_SYMBOL(netif_napi_add);
5109
3b47d303
ED
5110void napi_disable(struct napi_struct *n)
5111{
5112 might_sleep();
5113 set_bit(NAPI_STATE_DISABLE, &n->state);
5114
5115 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5116 msleep(1);
2d8bff12
NH
5117 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5118 msleep(1);
3b47d303
ED
5119
5120 hrtimer_cancel(&n->timer);
5121
5122 clear_bit(NAPI_STATE_DISABLE, &n->state);
5123}
5124EXPORT_SYMBOL(napi_disable);
5125
93d05d4a 5126/* Must be called in process context */
d565b0a1
HX
5127void netif_napi_del(struct napi_struct *napi)
5128{
93d05d4a
ED
5129 might_sleep();
5130 if (napi_hash_del(napi))
5131 synchronize_net();
d7b06636 5132 list_del_init(&napi->dev_list);
76620aaf 5133 napi_free_frags(napi);
d565b0a1 5134
289dccbe 5135 kfree_skb_list(napi->gro_list);
d565b0a1 5136 napi->gro_list = NULL;
4ae5544f 5137 napi->gro_count = 0;
d565b0a1
HX
5138}
5139EXPORT_SYMBOL(netif_napi_del);
5140
726ce70e
HX
5141static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5142{
5143 void *have;
5144 int work, weight;
5145
5146 list_del_init(&n->poll_list);
5147
5148 have = netpoll_poll_lock(n);
5149
5150 weight = n->weight;
5151
5152 /* This NAPI_STATE_SCHED test is for avoiding a race
5153 * with netpoll's poll_napi(). Only the entity which
5154 * obtains the lock and sees NAPI_STATE_SCHED set will
5155 * actually make the ->poll() call. Therefore we avoid
5156 * accidentally calling ->poll() when NAPI is not scheduled.
5157 */
5158 work = 0;
5159 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5160 work = n->poll(n, weight);
1db19db7 5161 trace_napi_poll(n, work, weight);
726ce70e
HX
5162 }
5163
5164 WARN_ON_ONCE(work > weight);
5165
5166 if (likely(work < weight))
5167 goto out_unlock;
5168
5169 /* Drivers must not modify the NAPI state if they
5170 * consume the entire weight. In such cases this code
5171 * still "owns" the NAPI instance and therefore can
5172 * move the instance around on the list at-will.
5173 */
5174 if (unlikely(napi_disable_pending(n))) {
5175 napi_complete(n);
5176 goto out_unlock;
5177 }
5178
5179 if (n->gro_list) {
5180 /* flush too old packets
5181 * If HZ < 1000, flush all packets.
5182 */
5183 napi_gro_flush(n, HZ >= 1000);
5184 }
5185
001ce546
HX
5186 /* Some drivers may have called napi_schedule
5187 * prior to exhausting their budget.
5188 */
5189 if (unlikely(!list_empty(&n->poll_list))) {
5190 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5191 n->dev ? n->dev->name : "backlog");
5192 goto out_unlock;
5193 }
5194
726ce70e
HX
5195 list_add_tail(&n->poll_list, repoll);
5196
5197out_unlock:
5198 netpoll_poll_unlock(have);
5199
5200 return work;
5201}
5202
0766f788 5203static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5204{
903ceff7 5205 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5206 unsigned long time_limit = jiffies + 2;
51b0bded 5207 int budget = netdev_budget;
d75b1ade
ED
5208 LIST_HEAD(list);
5209 LIST_HEAD(repoll);
53fb95d3 5210
1da177e4 5211 local_irq_disable();
d75b1ade
ED
5212 list_splice_init(&sd->poll_list, &list);
5213 local_irq_enable();
1da177e4 5214
ceb8d5bf 5215 for (;;) {
bea3348e 5216 struct napi_struct *n;
1da177e4 5217
ceb8d5bf
HX
5218 if (list_empty(&list)) {
5219 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5220 return;
5221 break;
5222 }
5223
6bd373eb
HX
5224 n = list_first_entry(&list, struct napi_struct, poll_list);
5225 budget -= napi_poll(n, &repoll);
5226
d75b1ade 5227 /* If softirq window is exhausted then punt.
24f8b238
SH
5228 * Allow this to run for 2 jiffies since which will allow
5229 * an average latency of 1.5/HZ.
bea3348e 5230 */
ceb8d5bf
HX
5231 if (unlikely(budget <= 0 ||
5232 time_after_eq(jiffies, time_limit))) {
5233 sd->time_squeeze++;
5234 break;
5235 }
1da177e4 5236 }
d75b1ade 5237
795bb1c0 5238 __kfree_skb_flush();
d75b1ade
ED
5239 local_irq_disable();
5240
5241 list_splice_tail_init(&sd->poll_list, &list);
5242 list_splice_tail(&repoll, &list);
5243 list_splice(&list, &sd->poll_list);
5244 if (!list_empty(&sd->poll_list))
5245 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5246
e326bed2 5247 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5248}
5249
aa9d8560 5250struct netdev_adjacent {
9ff162a8 5251 struct net_device *dev;
5d261913
VF
5252
5253 /* upper master flag, there can only be one master device per list */
9ff162a8 5254 bool master;
5d261913 5255
5d261913
VF
5256 /* counter for the number of times this device was added to us */
5257 u16 ref_nr;
5258
402dae96
VF
5259 /* private field for the users */
5260 void *private;
5261
9ff162a8
JP
5262 struct list_head list;
5263 struct rcu_head rcu;
9ff162a8
JP
5264};
5265
6ea29da1 5266static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5267 struct list_head *adj_list)
9ff162a8 5268{
5d261913 5269 struct netdev_adjacent *adj;
5d261913 5270
2f268f12 5271 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5272 if (adj->dev == adj_dev)
5273 return adj;
9ff162a8
JP
5274 }
5275 return NULL;
5276}
5277
5278/**
5279 * netdev_has_upper_dev - Check if device is linked to an upper device
5280 * @dev: device
5281 * @upper_dev: upper device to check
5282 *
5283 * Find out if a device is linked to specified upper device and return true
5284 * in case it is. Note that this checks only immediate upper device,
5285 * not through a complete stack of devices. The caller must hold the RTNL lock.
5286 */
5287bool netdev_has_upper_dev(struct net_device *dev,
5288 struct net_device *upper_dev)
5289{
5290 ASSERT_RTNL();
5291
6ea29da1 5292 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
5293}
5294EXPORT_SYMBOL(netdev_has_upper_dev);
5295
5296/**
5297 * netdev_has_any_upper_dev - Check if device is linked to some device
5298 * @dev: device
5299 *
5300 * Find out if a device is linked to an upper device and return true in case
5301 * it is. The caller must hold the RTNL lock.
5302 */
1d143d9f 5303static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5304{
5305 ASSERT_RTNL();
5306
2f268f12 5307 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 5308}
9ff162a8
JP
5309
5310/**
5311 * netdev_master_upper_dev_get - Get master upper device
5312 * @dev: device
5313 *
5314 * Find a master upper device and return pointer to it or NULL in case
5315 * it's not there. The caller must hold the RTNL lock.
5316 */
5317struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5318{
aa9d8560 5319 struct netdev_adjacent *upper;
9ff162a8
JP
5320
5321 ASSERT_RTNL();
5322
2f268f12 5323 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5324 return NULL;
5325
2f268f12 5326 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5327 struct netdev_adjacent, list);
9ff162a8
JP
5328 if (likely(upper->master))
5329 return upper->dev;
5330 return NULL;
5331}
5332EXPORT_SYMBOL(netdev_master_upper_dev_get);
5333
b6ccba4c
VF
5334void *netdev_adjacent_get_private(struct list_head *adj_list)
5335{
5336 struct netdev_adjacent *adj;
5337
5338 adj = list_entry(adj_list, struct netdev_adjacent, list);
5339
5340 return adj->private;
5341}
5342EXPORT_SYMBOL(netdev_adjacent_get_private);
5343
44a40855
VY
5344/**
5345 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5346 * @dev: device
5347 * @iter: list_head ** of the current position
5348 *
5349 * Gets the next device from the dev's upper list, starting from iter
5350 * position. The caller must hold RCU read lock.
5351 */
5352struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5353 struct list_head **iter)
5354{
5355 struct netdev_adjacent *upper;
5356
5357 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5358
5359 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5360
5361 if (&upper->list == &dev->adj_list.upper)
5362 return NULL;
5363
5364 *iter = &upper->list;
5365
5366 return upper->dev;
5367}
5368EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5369
31088a11
VF
5370/**
5371 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5372 * @dev: device
5373 * @iter: list_head ** of the current position
5374 *
5375 * Gets the next device from the dev's upper list, starting from iter
5376 * position. The caller must hold RCU read lock.
5377 */
2f268f12
VF
5378struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5379 struct list_head **iter)
48311f46
VF
5380{
5381 struct netdev_adjacent *upper;
5382
85328240 5383 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5384
5385 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5386
2f268f12 5387 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5388 return NULL;
5389
5390 *iter = &upper->list;
5391
5392 return upper->dev;
5393}
2f268f12 5394EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5395
31088a11
VF
5396/**
5397 * netdev_lower_get_next_private - Get the next ->private from the
5398 * lower neighbour list
5399 * @dev: device
5400 * @iter: list_head ** of the current position
5401 *
5402 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5403 * list, starting from iter position. The caller must hold either hold the
5404 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5405 * list will remain unchanged.
31088a11
VF
5406 */
5407void *netdev_lower_get_next_private(struct net_device *dev,
5408 struct list_head **iter)
5409{
5410 struct netdev_adjacent *lower;
5411
5412 lower = list_entry(*iter, struct netdev_adjacent, list);
5413
5414 if (&lower->list == &dev->adj_list.lower)
5415 return NULL;
5416
6859e7df 5417 *iter = lower->list.next;
31088a11
VF
5418
5419 return lower->private;
5420}
5421EXPORT_SYMBOL(netdev_lower_get_next_private);
5422
5423/**
5424 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5425 * lower neighbour list, RCU
5426 * variant
5427 * @dev: device
5428 * @iter: list_head ** of the current position
5429 *
5430 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5431 * list, starting from iter position. The caller must hold RCU read lock.
5432 */
5433void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5434 struct list_head **iter)
5435{
5436 struct netdev_adjacent *lower;
5437
5438 WARN_ON_ONCE(!rcu_read_lock_held());
5439
5440 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5441
5442 if (&lower->list == &dev->adj_list.lower)
5443 return NULL;
5444
6859e7df 5445 *iter = &lower->list;
31088a11
VF
5446
5447 return lower->private;
5448}
5449EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5450
4085ebe8
VY
5451/**
5452 * netdev_lower_get_next - Get the next device from the lower neighbour
5453 * list
5454 * @dev: device
5455 * @iter: list_head ** of the current position
5456 *
5457 * Gets the next netdev_adjacent from the dev's lower neighbour
5458 * list, starting from iter position. The caller must hold RTNL lock or
5459 * its own locking that guarantees that the neighbour lower
b469139e 5460 * list will remain unchanged.
4085ebe8
VY
5461 */
5462void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5463{
5464 struct netdev_adjacent *lower;
5465
cfdd28be 5466 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5467
5468 if (&lower->list == &dev->adj_list.lower)
5469 return NULL;
5470
cfdd28be 5471 *iter = lower->list.next;
4085ebe8
VY
5472
5473 return lower->dev;
5474}
5475EXPORT_SYMBOL(netdev_lower_get_next);
5476
7ce856aa
JP
5477/**
5478 * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5479 * @dev: device
5480 * @iter: list_head ** of the current position
5481 *
5482 * Gets the next netdev_adjacent from the dev's all lower neighbour
5483 * list, starting from iter position. The caller must hold RTNL lock or
5484 * its own locking that guarantees that the neighbour all lower
5485 * list will remain unchanged.
5486 */
5487struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5488{
5489 struct netdev_adjacent *lower;
5490
5491 lower = list_entry(*iter, struct netdev_adjacent, list);
5492
5493 if (&lower->list == &dev->all_adj_list.lower)
5494 return NULL;
5495
5496 *iter = lower->list.next;
5497
5498 return lower->dev;
5499}
5500EXPORT_SYMBOL(netdev_all_lower_get_next);
5501
5502/**
5503 * netdev_all_lower_get_next_rcu - Get the next device from all
5504 * lower neighbour list, RCU variant
5505 * @dev: device
5506 * @iter: list_head ** of the current position
5507 *
5508 * Gets the next netdev_adjacent from the dev's all lower neighbour
5509 * list, starting from iter position. The caller must hold RCU read lock.
5510 */
5511struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5512 struct list_head **iter)
5513{
5514 struct netdev_adjacent *lower;
5515
e4961b07
IS
5516 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5517
5518 if (&lower->list == &dev->all_adj_list.lower)
5519 return NULL;
7ce856aa 5520
e4961b07
IS
5521 *iter = &lower->list;
5522
5523 return lower->dev;
7ce856aa
JP
5524}
5525EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5526
e001bfad 5527/**
5528 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5529 * lower neighbour list, RCU
5530 * variant
5531 * @dev: device
5532 *
5533 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5534 * list. The caller must hold RCU read lock.
5535 */
5536void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5537{
5538 struct netdev_adjacent *lower;
5539
5540 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5541 struct netdev_adjacent, list);
5542 if (lower)
5543 return lower->private;
5544 return NULL;
5545}
5546EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5547
9ff162a8
JP
5548/**
5549 * netdev_master_upper_dev_get_rcu - Get master upper device
5550 * @dev: device
5551 *
5552 * Find a master upper device and return pointer to it or NULL in case
5553 * it's not there. The caller must hold the RCU read lock.
5554 */
5555struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5556{
aa9d8560 5557 struct netdev_adjacent *upper;
9ff162a8 5558
2f268f12 5559 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5560 struct netdev_adjacent, list);
9ff162a8
JP
5561 if (upper && likely(upper->master))
5562 return upper->dev;
5563 return NULL;
5564}
5565EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5566
0a59f3a9 5567static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5568 struct net_device *adj_dev,
5569 struct list_head *dev_list)
5570{
5571 char linkname[IFNAMSIZ+7];
5572 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5573 "upper_%s" : "lower_%s", adj_dev->name);
5574 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5575 linkname);
5576}
0a59f3a9 5577static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5578 char *name,
5579 struct list_head *dev_list)
5580{
5581 char linkname[IFNAMSIZ+7];
5582 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5583 "upper_%s" : "lower_%s", name);
5584 sysfs_remove_link(&(dev->dev.kobj), linkname);
5585}
5586
7ce64c79
AF
5587static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5588 struct net_device *adj_dev,
5589 struct list_head *dev_list)
5590{
5591 return (dev_list == &dev->adj_list.upper ||
5592 dev_list == &dev->adj_list.lower) &&
5593 net_eq(dev_net(dev), dev_net(adj_dev));
5594}
3ee32707 5595
5d261913
VF
5596static int __netdev_adjacent_dev_insert(struct net_device *dev,
5597 struct net_device *adj_dev,
93409033 5598 u16 ref_nr,
7863c054 5599 struct list_head *dev_list,
402dae96 5600 void *private, bool master)
5d261913
VF
5601{
5602 struct netdev_adjacent *adj;
842d67a7 5603 int ret;
5d261913 5604
6ea29da1 5605 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5606
5607 if (adj) {
93409033 5608 adj->ref_nr += ref_nr;
5d261913
VF
5609 return 0;
5610 }
5611
5612 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5613 if (!adj)
5614 return -ENOMEM;
5615
5616 adj->dev = adj_dev;
5617 adj->master = master;
93409033 5618 adj->ref_nr = ref_nr;
402dae96 5619 adj->private = private;
5d261913 5620 dev_hold(adj_dev);
2f268f12
VF
5621
5622 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5623 adj_dev->name, dev->name, adj_dev->name);
5d261913 5624
7ce64c79 5625 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5626 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5627 if (ret)
5628 goto free_adj;
5629 }
5630
7863c054 5631 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5632 if (master) {
5633 ret = sysfs_create_link(&(dev->dev.kobj),
5634 &(adj_dev->dev.kobj), "master");
5635 if (ret)
5831d66e 5636 goto remove_symlinks;
842d67a7 5637
7863c054 5638 list_add_rcu(&adj->list, dev_list);
842d67a7 5639 } else {
7863c054 5640 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5641 }
5d261913
VF
5642
5643 return 0;
842d67a7 5644
5831d66e 5645remove_symlinks:
7ce64c79 5646 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5647 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5648free_adj:
5649 kfree(adj);
974daef7 5650 dev_put(adj_dev);
842d67a7
VF
5651
5652 return ret;
5d261913
VF
5653}
5654
1d143d9f 5655static void __netdev_adjacent_dev_remove(struct net_device *dev,
5656 struct net_device *adj_dev,
93409033 5657 u16 ref_nr,
1d143d9f 5658 struct list_head *dev_list)
5d261913
VF
5659{
5660 struct netdev_adjacent *adj;
5661
6ea29da1 5662 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5663
2f268f12
VF
5664 if (!adj) {
5665 pr_err("tried to remove device %s from %s\n",
5666 dev->name, adj_dev->name);
5d261913 5667 BUG();
2f268f12 5668 }
5d261913 5669
93409033
AC
5670 if (adj->ref_nr > ref_nr) {
5671 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5672 ref_nr, adj->ref_nr-ref_nr);
5673 adj->ref_nr -= ref_nr;
5d261913
VF
5674 return;
5675 }
5676
842d67a7
VF
5677 if (adj->master)
5678 sysfs_remove_link(&(dev->dev.kobj), "master");
5679
7ce64c79 5680 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5681 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5682
5d261913 5683 list_del_rcu(&adj->list);
2f268f12
VF
5684 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5685 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5686 dev_put(adj_dev);
5687 kfree_rcu(adj, rcu);
5688}
5689
1d143d9f 5690static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5691 struct net_device *upper_dev,
93409033 5692 u16 ref_nr,
1d143d9f 5693 struct list_head *up_list,
5694 struct list_head *down_list,
5695 void *private, bool master)
5d261913
VF
5696{
5697 int ret;
5698
93409033
AC
5699 ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5700 private, master);
5d261913
VF
5701 if (ret)
5702 return ret;
5703
93409033
AC
5704 ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5705 private, false);
5d261913 5706 if (ret) {
93409033 5707 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5d261913
VF
5708 return ret;
5709 }
5710
5711 return 0;
5712}
5713
1d143d9f 5714static int __netdev_adjacent_dev_link(struct net_device *dev,
93409033
AC
5715 struct net_device *upper_dev,
5716 u16 ref_nr)
5d261913 5717{
93409033 5718 return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
2f268f12
VF
5719 &dev->all_adj_list.upper,
5720 &upper_dev->all_adj_list.lower,
402dae96 5721 NULL, false);
5d261913
VF
5722}
5723
1d143d9f 5724static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5725 struct net_device *upper_dev,
93409033 5726 u16 ref_nr,
1d143d9f 5727 struct list_head *up_list,
5728 struct list_head *down_list)
5d261913 5729{
93409033
AC
5730 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5731 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
5732}
5733
1d143d9f 5734static void __netdev_adjacent_dev_unlink(struct net_device *dev,
93409033
AC
5735 struct net_device *upper_dev,
5736 u16 ref_nr)
5d261913 5737{
93409033 5738 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
2f268f12
VF
5739 &dev->all_adj_list.upper,
5740 &upper_dev->all_adj_list.lower);
5741}
5742
1d143d9f 5743static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5744 struct net_device *upper_dev,
5745 void *private, bool master)
2f268f12 5746{
93409033 5747 int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
2f268f12
VF
5748
5749 if (ret)
5750 return ret;
5751
93409033 5752 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
2f268f12
VF
5753 &dev->adj_list.upper,
5754 &upper_dev->adj_list.lower,
402dae96 5755 private, master);
2f268f12 5756 if (ret) {
93409033 5757 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
2f268f12
VF
5758 return ret;
5759 }
5760
5761 return 0;
5d261913
VF
5762}
5763
1d143d9f 5764static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5765 struct net_device *upper_dev)
2f268f12 5766{
93409033
AC
5767 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5768 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
5769 &dev->adj_list.upper,
5770 &upper_dev->adj_list.lower);
5771}
5d261913 5772
9ff162a8 5773static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5774 struct net_device *upper_dev, bool master,
29bf24af 5775 void *upper_priv, void *upper_info)
9ff162a8 5776{
0e4ead9d 5777 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5778 struct netdev_adjacent *i, *j, *to_i, *to_j;
5779 int ret = 0;
9ff162a8
JP
5780
5781 ASSERT_RTNL();
5782
5783 if (dev == upper_dev)
5784 return -EBUSY;
5785
5786 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5787 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5788 return -EBUSY;
5789
6ea29da1 5790 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5791 return -EEXIST;
5792
5793 if (master && netdev_master_upper_dev_get(dev))
5794 return -EBUSY;
5795
0e4ead9d
JP
5796 changeupper_info.upper_dev = upper_dev;
5797 changeupper_info.master = master;
5798 changeupper_info.linking = true;
29bf24af 5799 changeupper_info.upper_info = upper_info;
0e4ead9d 5800
573c7ba0
JP
5801 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5802 &changeupper_info.info);
5803 ret = notifier_to_errno(ret);
5804 if (ret)
5805 return ret;
5806
6dffb044 5807 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5808 master);
5d261913
VF
5809 if (ret)
5810 return ret;
9ff162a8 5811
5d261913 5812 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5813 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5814 * versa, and don't forget the devices itself. All of these
5815 * links are non-neighbours.
5816 */
2f268f12
VF
5817 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5818 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5819 pr_debug("Interlinking %s with %s, non-neighbour\n",
5820 i->dev->name, j->dev->name);
93409033 5821 ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5d261913
VF
5822 if (ret)
5823 goto rollback_mesh;
5824 }
5825 }
5826
5827 /* add dev to every upper_dev's upper device */
2f268f12
VF
5828 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5829 pr_debug("linking %s's upper device %s with %s\n",
5830 upper_dev->name, i->dev->name, dev->name);
93409033 5831 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5d261913
VF
5832 if (ret)
5833 goto rollback_upper_mesh;
5834 }
5835
5836 /* add upper_dev to every dev's lower device */
2f268f12
VF
5837 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5838 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5839 i->dev->name, upper_dev->name);
93409033 5840 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5d261913
VF
5841 if (ret)
5842 goto rollback_lower_mesh;
5843 }
9ff162a8 5844
b03804e7
IS
5845 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5846 &changeupper_info.info);
5847 ret = notifier_to_errno(ret);
5848 if (ret)
5849 goto rollback_lower_mesh;
5850
9ff162a8 5851 return 0;
5d261913
VF
5852
5853rollback_lower_mesh:
5854 to_i = i;
2f268f12 5855 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5856 if (i == to_i)
5857 break;
93409033 5858 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5d261913
VF
5859 }
5860
5861 i = NULL;
5862
5863rollback_upper_mesh:
5864 to_i = i;
2f268f12 5865 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5866 if (i == to_i)
5867 break;
93409033 5868 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5d261913
VF
5869 }
5870
5871 i = j = NULL;
5872
5873rollback_mesh:
5874 to_i = i;
5875 to_j = j;
2f268f12
VF
5876 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5877 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5878 if (i == to_i && j == to_j)
5879 break;
93409033 5880 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5d261913
VF
5881 }
5882 if (i == to_i)
5883 break;
5884 }
5885
2f268f12 5886 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5887
5888 return ret;
9ff162a8
JP
5889}
5890
5891/**
5892 * netdev_upper_dev_link - Add a link to the upper device
5893 * @dev: device
5894 * @upper_dev: new upper device
5895 *
5896 * Adds a link to device which is upper to this one. The caller must hold
5897 * the RTNL lock. On a failure a negative errno code is returned.
5898 * On success the reference counts are adjusted and the function
5899 * returns zero.
5900 */
5901int netdev_upper_dev_link(struct net_device *dev,
5902 struct net_device *upper_dev)
5903{
29bf24af 5904 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5905}
5906EXPORT_SYMBOL(netdev_upper_dev_link);
5907
5908/**
5909 * netdev_master_upper_dev_link - Add a master link to the upper device
5910 * @dev: device
5911 * @upper_dev: new upper device
6dffb044 5912 * @upper_priv: upper device private
29bf24af 5913 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5914 *
5915 * Adds a link to device which is upper to this one. In this case, only
5916 * one master upper device can be linked, although other non-master devices
5917 * might be linked as well. The caller must hold the RTNL lock.
5918 * On a failure a negative errno code is returned. On success the reference
5919 * counts are adjusted and the function returns zero.
5920 */
5921int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5922 struct net_device *upper_dev,
29bf24af 5923 void *upper_priv, void *upper_info)
9ff162a8 5924{
29bf24af
JP
5925 return __netdev_upper_dev_link(dev, upper_dev, true,
5926 upper_priv, upper_info);
9ff162a8
JP
5927}
5928EXPORT_SYMBOL(netdev_master_upper_dev_link);
5929
5930/**
5931 * netdev_upper_dev_unlink - Removes a link to upper device
5932 * @dev: device
5933 * @upper_dev: new upper device
5934 *
5935 * Removes a link to device which is upper to this one. The caller must hold
5936 * the RTNL lock.
5937 */
5938void netdev_upper_dev_unlink(struct net_device *dev,
5939 struct net_device *upper_dev)
5940{
0e4ead9d 5941 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5942 struct netdev_adjacent *i, *j;
9ff162a8
JP
5943 ASSERT_RTNL();
5944
0e4ead9d
JP
5945 changeupper_info.upper_dev = upper_dev;
5946 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5947 changeupper_info.linking = false;
5948
573c7ba0
JP
5949 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5950 &changeupper_info.info);
5951
2f268f12 5952 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5953
5954 /* Here is the tricky part. We must remove all dev's lower
5955 * devices from all upper_dev's upper devices and vice
5956 * versa, to maintain the graph relationship.
5957 */
2f268f12
VF
5958 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5959 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
93409033 5960 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5d261913
VF
5961
5962 /* remove also the devices itself from lower/upper device
5963 * list
5964 */
2f268f12 5965 list_for_each_entry(i, &dev->all_adj_list.lower, list)
93409033 5966 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5d261913 5967
2f268f12 5968 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
93409033 5969 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5d261913 5970
0e4ead9d
JP
5971 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5972 &changeupper_info.info);
9ff162a8
JP
5973}
5974EXPORT_SYMBOL(netdev_upper_dev_unlink);
5975
61bd3857
MS
5976/**
5977 * netdev_bonding_info_change - Dispatch event about slave change
5978 * @dev: device
4a26e453 5979 * @bonding_info: info to dispatch
61bd3857
MS
5980 *
5981 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5982 * The caller must hold the RTNL lock.
5983 */
5984void netdev_bonding_info_change(struct net_device *dev,
5985 struct netdev_bonding_info *bonding_info)
5986{
5987 struct netdev_notifier_bonding_info info;
5988
5989 memcpy(&info.bonding_info, bonding_info,
5990 sizeof(struct netdev_bonding_info));
5991 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5992 &info.info);
5993}
5994EXPORT_SYMBOL(netdev_bonding_info_change);
5995
2ce1ee17 5996static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5997{
5998 struct netdev_adjacent *iter;
5999
6000 struct net *net = dev_net(dev);
6001
6002 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6003 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6004 continue;
6005 netdev_adjacent_sysfs_add(iter->dev, dev,
6006 &iter->dev->adj_list.lower);
6007 netdev_adjacent_sysfs_add(dev, iter->dev,
6008 &dev->adj_list.upper);
6009 }
6010
6011 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6012 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6013 continue;
6014 netdev_adjacent_sysfs_add(iter->dev, dev,
6015 &iter->dev->adj_list.upper);
6016 netdev_adjacent_sysfs_add(dev, iter->dev,
6017 &dev->adj_list.lower);
6018 }
6019}
6020
2ce1ee17 6021static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6022{
6023 struct netdev_adjacent *iter;
6024
6025 struct net *net = dev_net(dev);
6026
6027 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6028 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6029 continue;
6030 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6031 &iter->dev->adj_list.lower);
6032 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6033 &dev->adj_list.upper);
6034 }
6035
6036 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6037 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6038 continue;
6039 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6040 &iter->dev->adj_list.upper);
6041 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6042 &dev->adj_list.lower);
6043 }
6044}
6045
5bb025fa 6046void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6047{
5bb025fa 6048 struct netdev_adjacent *iter;
402dae96 6049
4c75431a
AF
6050 struct net *net = dev_net(dev);
6051
5bb025fa 6052 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6053 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6054 continue;
5bb025fa
VF
6055 netdev_adjacent_sysfs_del(iter->dev, oldname,
6056 &iter->dev->adj_list.lower);
6057 netdev_adjacent_sysfs_add(iter->dev, dev,
6058 &iter->dev->adj_list.lower);
6059 }
402dae96 6060
5bb025fa 6061 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6062 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6063 continue;
5bb025fa
VF
6064 netdev_adjacent_sysfs_del(iter->dev, oldname,
6065 &iter->dev->adj_list.upper);
6066 netdev_adjacent_sysfs_add(iter->dev, dev,
6067 &iter->dev->adj_list.upper);
6068 }
402dae96 6069}
402dae96
VF
6070
6071void *netdev_lower_dev_get_private(struct net_device *dev,
6072 struct net_device *lower_dev)
6073{
6074 struct netdev_adjacent *lower;
6075
6076 if (!lower_dev)
6077 return NULL;
6ea29da1 6078 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6079 if (!lower)
6080 return NULL;
6081
6082 return lower->private;
6083}
6084EXPORT_SYMBOL(netdev_lower_dev_get_private);
6085
4085ebe8 6086
952fcfd0 6087int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6088{
6089 struct net_device *lower = NULL;
6090 struct list_head *iter;
6091 int max_nest = -1;
6092 int nest;
6093
6094 ASSERT_RTNL();
6095
6096 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6097 nest = dev_get_nest_level(lower);
4085ebe8
VY
6098 if (max_nest < nest)
6099 max_nest = nest;
6100 }
6101
952fcfd0 6102 return max_nest + 1;
4085ebe8
VY
6103}
6104EXPORT_SYMBOL(dev_get_nest_level);
6105
04d48266
JP
6106/**
6107 * netdev_lower_change - Dispatch event about lower device state change
6108 * @lower_dev: device
6109 * @lower_state_info: state to dispatch
6110 *
6111 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6112 * The caller must hold the RTNL lock.
6113 */
6114void netdev_lower_state_changed(struct net_device *lower_dev,
6115 void *lower_state_info)
6116{
6117 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6118
6119 ASSERT_RTNL();
6120 changelowerstate_info.lower_state_info = lower_state_info;
6121 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6122 &changelowerstate_info.info);
6123}
6124EXPORT_SYMBOL(netdev_lower_state_changed);
6125
18bfb924
JP
6126int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6127 struct neighbour *n)
6128{
6129 struct net_device *lower_dev, *stop_dev;
6130 struct list_head *iter;
6131 int err;
6132
6133 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6134 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6135 continue;
6136 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6137 if (err) {
6138 stop_dev = lower_dev;
6139 goto rollback;
6140 }
6141 }
6142 return 0;
6143
6144rollback:
6145 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6146 if (lower_dev == stop_dev)
6147 break;
6148 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6149 continue;
6150 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6151 }
6152 return err;
6153}
6154EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6155
6156void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6157 struct neighbour *n)
6158{
6159 struct net_device *lower_dev;
6160 struct list_head *iter;
6161
6162 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6163 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6164 continue;
6165 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6166 }
6167}
6168EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6169
b6c40d68
PM
6170static void dev_change_rx_flags(struct net_device *dev, int flags)
6171{
d314774c
SH
6172 const struct net_device_ops *ops = dev->netdev_ops;
6173
d2615bf4 6174 if (ops->ndo_change_rx_flags)
d314774c 6175 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6176}
6177
991fb3f7 6178static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6179{
b536db93 6180 unsigned int old_flags = dev->flags;
d04a48b0
EB
6181 kuid_t uid;
6182 kgid_t gid;
1da177e4 6183
24023451
PM
6184 ASSERT_RTNL();
6185
dad9b335
WC
6186 dev->flags |= IFF_PROMISC;
6187 dev->promiscuity += inc;
6188 if (dev->promiscuity == 0) {
6189 /*
6190 * Avoid overflow.
6191 * If inc causes overflow, untouch promisc and return error.
6192 */
6193 if (inc < 0)
6194 dev->flags &= ~IFF_PROMISC;
6195 else {
6196 dev->promiscuity -= inc;
7b6cd1ce
JP
6197 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6198 dev->name);
dad9b335
WC
6199 return -EOVERFLOW;
6200 }
6201 }
52609c0b 6202 if (dev->flags != old_flags) {
7b6cd1ce
JP
6203 pr_info("device %s %s promiscuous mode\n",
6204 dev->name,
6205 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6206 if (audit_enabled) {
6207 current_uid_gid(&uid, &gid);
7759db82
KHK
6208 audit_log(current->audit_context, GFP_ATOMIC,
6209 AUDIT_ANOM_PROMISCUOUS,
6210 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6211 dev->name, (dev->flags & IFF_PROMISC),
6212 (old_flags & IFF_PROMISC),
e1760bd5 6213 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6214 from_kuid(&init_user_ns, uid),
6215 from_kgid(&init_user_ns, gid),
7759db82 6216 audit_get_sessionid(current));
8192b0c4 6217 }
24023451 6218
b6c40d68 6219 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6220 }
991fb3f7
ND
6221 if (notify)
6222 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6223 return 0;
1da177e4
LT
6224}
6225
4417da66
PM
6226/**
6227 * dev_set_promiscuity - update promiscuity count on a device
6228 * @dev: device
6229 * @inc: modifier
6230 *
6231 * Add or remove promiscuity from a device. While the count in the device
6232 * remains above zero the interface remains promiscuous. Once it hits zero
6233 * the device reverts back to normal filtering operation. A negative inc
6234 * value is used to drop promiscuity on the device.
dad9b335 6235 * Return 0 if successful or a negative errno code on error.
4417da66 6236 */
dad9b335 6237int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6238{
b536db93 6239 unsigned int old_flags = dev->flags;
dad9b335 6240 int err;
4417da66 6241
991fb3f7 6242 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6243 if (err < 0)
dad9b335 6244 return err;
4417da66
PM
6245 if (dev->flags != old_flags)
6246 dev_set_rx_mode(dev);
dad9b335 6247 return err;
4417da66 6248}
d1b19dff 6249EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6250
991fb3f7 6251static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6252{
991fb3f7 6253 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6254
24023451
PM
6255 ASSERT_RTNL();
6256
1da177e4 6257 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6258 dev->allmulti += inc;
6259 if (dev->allmulti == 0) {
6260 /*
6261 * Avoid overflow.
6262 * If inc causes overflow, untouch allmulti and return error.
6263 */
6264 if (inc < 0)
6265 dev->flags &= ~IFF_ALLMULTI;
6266 else {
6267 dev->allmulti -= inc;
7b6cd1ce
JP
6268 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6269 dev->name);
dad9b335
WC
6270 return -EOVERFLOW;
6271 }
6272 }
24023451 6273 if (dev->flags ^ old_flags) {
b6c40d68 6274 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6275 dev_set_rx_mode(dev);
991fb3f7
ND
6276 if (notify)
6277 __dev_notify_flags(dev, old_flags,
6278 dev->gflags ^ old_gflags);
24023451 6279 }
dad9b335 6280 return 0;
4417da66 6281}
991fb3f7
ND
6282
6283/**
6284 * dev_set_allmulti - update allmulti count on a device
6285 * @dev: device
6286 * @inc: modifier
6287 *
6288 * Add or remove reception of all multicast frames to a device. While the
6289 * count in the device remains above zero the interface remains listening
6290 * to all interfaces. Once it hits zero the device reverts back to normal
6291 * filtering operation. A negative @inc value is used to drop the counter
6292 * when releasing a resource needing all multicasts.
6293 * Return 0 if successful or a negative errno code on error.
6294 */
6295
6296int dev_set_allmulti(struct net_device *dev, int inc)
6297{
6298 return __dev_set_allmulti(dev, inc, true);
6299}
d1b19dff 6300EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6301
6302/*
6303 * Upload unicast and multicast address lists to device and
6304 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6305 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6306 * are present.
6307 */
6308void __dev_set_rx_mode(struct net_device *dev)
6309{
d314774c
SH
6310 const struct net_device_ops *ops = dev->netdev_ops;
6311
4417da66
PM
6312 /* dev_open will call this function so the list will stay sane. */
6313 if (!(dev->flags&IFF_UP))
6314 return;
6315
6316 if (!netif_device_present(dev))
40b77c94 6317 return;
4417da66 6318
01789349 6319 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6320 /* Unicast addresses changes may only happen under the rtnl,
6321 * therefore calling __dev_set_promiscuity here is safe.
6322 */
32e7bfc4 6323 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6324 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6325 dev->uc_promisc = true;
32e7bfc4 6326 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6327 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6328 dev->uc_promisc = false;
4417da66 6329 }
4417da66 6330 }
01789349
JP
6331
6332 if (ops->ndo_set_rx_mode)
6333 ops->ndo_set_rx_mode(dev);
4417da66
PM
6334}
6335
6336void dev_set_rx_mode(struct net_device *dev)
6337{
b9e40857 6338 netif_addr_lock_bh(dev);
4417da66 6339 __dev_set_rx_mode(dev);
b9e40857 6340 netif_addr_unlock_bh(dev);
1da177e4
LT
6341}
6342
f0db275a
SH
6343/**
6344 * dev_get_flags - get flags reported to userspace
6345 * @dev: device
6346 *
6347 * Get the combination of flag bits exported through APIs to userspace.
6348 */
95c96174 6349unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6350{
95c96174 6351 unsigned int flags;
1da177e4
LT
6352
6353 flags = (dev->flags & ~(IFF_PROMISC |
6354 IFF_ALLMULTI |
b00055aa
SR
6355 IFF_RUNNING |
6356 IFF_LOWER_UP |
6357 IFF_DORMANT)) |
1da177e4
LT
6358 (dev->gflags & (IFF_PROMISC |
6359 IFF_ALLMULTI));
6360
b00055aa
SR
6361 if (netif_running(dev)) {
6362 if (netif_oper_up(dev))
6363 flags |= IFF_RUNNING;
6364 if (netif_carrier_ok(dev))
6365 flags |= IFF_LOWER_UP;
6366 if (netif_dormant(dev))
6367 flags |= IFF_DORMANT;
6368 }
1da177e4
LT
6369
6370 return flags;
6371}
d1b19dff 6372EXPORT_SYMBOL(dev_get_flags);
1da177e4 6373
bd380811 6374int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6375{
b536db93 6376 unsigned int old_flags = dev->flags;
bd380811 6377 int ret;
1da177e4 6378
24023451
PM
6379 ASSERT_RTNL();
6380
1da177e4
LT
6381 /*
6382 * Set the flags on our device.
6383 */
6384
6385 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6386 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6387 IFF_AUTOMEDIA)) |
6388 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6389 IFF_ALLMULTI));
6390
6391 /*
6392 * Load in the correct multicast list now the flags have changed.
6393 */
6394
b6c40d68
PM
6395 if ((old_flags ^ flags) & IFF_MULTICAST)
6396 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6397
4417da66 6398 dev_set_rx_mode(dev);
1da177e4
LT
6399
6400 /*
6401 * Have we downed the interface. We handle IFF_UP ourselves
6402 * according to user attempts to set it, rather than blindly
6403 * setting it.
6404 */
6405
6406 ret = 0;
d215d10f 6407 if ((old_flags ^ flags) & IFF_UP)
bd380811 6408 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6409
1da177e4 6410 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6411 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6412 unsigned int old_flags = dev->flags;
d1b19dff 6413
1da177e4 6414 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6415
6416 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6417 if (dev->flags != old_flags)
6418 dev_set_rx_mode(dev);
1da177e4
LT
6419 }
6420
6421 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6422 is important. Some (broken) drivers set IFF_PROMISC, when
6423 IFF_ALLMULTI is requested not asking us and not reporting.
6424 */
6425 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6426 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6427
1da177e4 6428 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6429 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6430 }
6431
bd380811
PM
6432 return ret;
6433}
6434
a528c219
ND
6435void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6436 unsigned int gchanges)
bd380811
PM
6437{
6438 unsigned int changes = dev->flags ^ old_flags;
6439
a528c219 6440 if (gchanges)
7f294054 6441 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6442
bd380811
PM
6443 if (changes & IFF_UP) {
6444 if (dev->flags & IFF_UP)
6445 call_netdevice_notifiers(NETDEV_UP, dev);
6446 else
6447 call_netdevice_notifiers(NETDEV_DOWN, dev);
6448 }
6449
6450 if (dev->flags & IFF_UP &&
be9efd36
JP
6451 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6452 struct netdev_notifier_change_info change_info;
6453
6454 change_info.flags_changed = changes;
6455 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6456 &change_info.info);
6457 }
bd380811
PM
6458}
6459
6460/**
6461 * dev_change_flags - change device settings
6462 * @dev: device
6463 * @flags: device state flags
6464 *
6465 * Change settings on device based state flags. The flags are
6466 * in the userspace exported format.
6467 */
b536db93 6468int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6469{
b536db93 6470 int ret;
991fb3f7 6471 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6472
6473 ret = __dev_change_flags(dev, flags);
6474 if (ret < 0)
6475 return ret;
6476
991fb3f7 6477 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6478 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6479 return ret;
6480}
d1b19dff 6481EXPORT_SYMBOL(dev_change_flags);
1da177e4 6482
2315dc91
VF
6483static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6484{
6485 const struct net_device_ops *ops = dev->netdev_ops;
6486
6487 if (ops->ndo_change_mtu)
6488 return ops->ndo_change_mtu(dev, new_mtu);
6489
6490 dev->mtu = new_mtu;
6491 return 0;
6492}
6493
f0db275a
SH
6494/**
6495 * dev_set_mtu - Change maximum transfer unit
6496 * @dev: device
6497 * @new_mtu: new transfer unit
6498 *
6499 * Change the maximum transfer size of the network device.
6500 */
1da177e4
LT
6501int dev_set_mtu(struct net_device *dev, int new_mtu)
6502{
2315dc91 6503 int err, orig_mtu;
1da177e4
LT
6504
6505 if (new_mtu == dev->mtu)
6506 return 0;
6507
6508 /* MTU must be positive. */
6509 if (new_mtu < 0)
6510 return -EINVAL;
6511
6512 if (!netif_device_present(dev))
6513 return -ENODEV;
6514
1d486bfb
VF
6515 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6516 err = notifier_to_errno(err);
6517 if (err)
6518 return err;
d314774c 6519
2315dc91
VF
6520 orig_mtu = dev->mtu;
6521 err = __dev_set_mtu(dev, new_mtu);
d314774c 6522
2315dc91
VF
6523 if (!err) {
6524 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6525 err = notifier_to_errno(err);
6526 if (err) {
6527 /* setting mtu back and notifying everyone again,
6528 * so that they have a chance to revert changes.
6529 */
6530 __dev_set_mtu(dev, orig_mtu);
6531 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6532 }
6533 }
1da177e4
LT
6534 return err;
6535}
d1b19dff 6536EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6537
cbda10fa
VD
6538/**
6539 * dev_set_group - Change group this device belongs to
6540 * @dev: device
6541 * @new_group: group this device should belong to
6542 */
6543void dev_set_group(struct net_device *dev, int new_group)
6544{
6545 dev->group = new_group;
6546}
6547EXPORT_SYMBOL(dev_set_group);
6548
f0db275a
SH
6549/**
6550 * dev_set_mac_address - Change Media Access Control Address
6551 * @dev: device
6552 * @sa: new address
6553 *
6554 * Change the hardware (MAC) address of the device
6555 */
1da177e4
LT
6556int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6557{
d314774c 6558 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6559 int err;
6560
d314774c 6561 if (!ops->ndo_set_mac_address)
1da177e4
LT
6562 return -EOPNOTSUPP;
6563 if (sa->sa_family != dev->type)
6564 return -EINVAL;
6565 if (!netif_device_present(dev))
6566 return -ENODEV;
d314774c 6567 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6568 if (err)
6569 return err;
fbdeca2d 6570 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6571 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6572 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6573 return 0;
1da177e4 6574}
d1b19dff 6575EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6576
4bf84c35
JP
6577/**
6578 * dev_change_carrier - Change device carrier
6579 * @dev: device
691b3b7e 6580 * @new_carrier: new value
4bf84c35
JP
6581 *
6582 * Change device carrier
6583 */
6584int dev_change_carrier(struct net_device *dev, bool new_carrier)
6585{
6586 const struct net_device_ops *ops = dev->netdev_ops;
6587
6588 if (!ops->ndo_change_carrier)
6589 return -EOPNOTSUPP;
6590 if (!netif_device_present(dev))
6591 return -ENODEV;
6592 return ops->ndo_change_carrier(dev, new_carrier);
6593}
6594EXPORT_SYMBOL(dev_change_carrier);
6595
66b52b0d
JP
6596/**
6597 * dev_get_phys_port_id - Get device physical port ID
6598 * @dev: device
6599 * @ppid: port ID
6600 *
6601 * Get device physical port ID
6602 */
6603int dev_get_phys_port_id(struct net_device *dev,
02637fce 6604 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6605{
6606 const struct net_device_ops *ops = dev->netdev_ops;
6607
6608 if (!ops->ndo_get_phys_port_id)
6609 return -EOPNOTSUPP;
6610 return ops->ndo_get_phys_port_id(dev, ppid);
6611}
6612EXPORT_SYMBOL(dev_get_phys_port_id);
6613
db24a904
DA
6614/**
6615 * dev_get_phys_port_name - Get device physical port name
6616 * @dev: device
6617 * @name: port name
ed49e650 6618 * @len: limit of bytes to copy to name
db24a904
DA
6619 *
6620 * Get device physical port name
6621 */
6622int dev_get_phys_port_name(struct net_device *dev,
6623 char *name, size_t len)
6624{
6625 const struct net_device_ops *ops = dev->netdev_ops;
6626
6627 if (!ops->ndo_get_phys_port_name)
6628 return -EOPNOTSUPP;
6629 return ops->ndo_get_phys_port_name(dev, name, len);
6630}
6631EXPORT_SYMBOL(dev_get_phys_port_name);
6632
d746d707
AK
6633/**
6634 * dev_change_proto_down - update protocol port state information
6635 * @dev: device
6636 * @proto_down: new value
6637 *
6638 * This info can be used by switch drivers to set the phys state of the
6639 * port.
6640 */
6641int dev_change_proto_down(struct net_device *dev, bool proto_down)
6642{
6643 const struct net_device_ops *ops = dev->netdev_ops;
6644
6645 if (!ops->ndo_change_proto_down)
6646 return -EOPNOTSUPP;
6647 if (!netif_device_present(dev))
6648 return -ENODEV;
6649 return ops->ndo_change_proto_down(dev, proto_down);
6650}
6651EXPORT_SYMBOL(dev_change_proto_down);
6652
a7862b45
BB
6653/**
6654 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6655 * @dev: device
6656 * @fd: new program fd or negative value to clear
6657 *
6658 * Set or clear a bpf program for a device
6659 */
6660int dev_change_xdp_fd(struct net_device *dev, int fd)
6661{
6662 const struct net_device_ops *ops = dev->netdev_ops;
6663 struct bpf_prog *prog = NULL;
6664 struct netdev_xdp xdp = {};
6665 int err;
6666
6667 if (!ops->ndo_xdp)
6668 return -EOPNOTSUPP;
6669 if (fd >= 0) {
6670 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6671 if (IS_ERR(prog))
6672 return PTR_ERR(prog);
6673 }
6674
6675 xdp.command = XDP_SETUP_PROG;
6676 xdp.prog = prog;
6677 err = ops->ndo_xdp(dev, &xdp);
6678 if (err < 0 && prog)
6679 bpf_prog_put(prog);
6680
6681 return err;
6682}
6683EXPORT_SYMBOL(dev_change_xdp_fd);
6684
1da177e4
LT
6685/**
6686 * dev_new_index - allocate an ifindex
c4ea43c5 6687 * @net: the applicable net namespace
1da177e4
LT
6688 *
6689 * Returns a suitable unique value for a new device interface
6690 * number. The caller must hold the rtnl semaphore or the
6691 * dev_base_lock to be sure it remains unique.
6692 */
881d966b 6693static int dev_new_index(struct net *net)
1da177e4 6694{
aa79e66e 6695 int ifindex = net->ifindex;
1da177e4
LT
6696 for (;;) {
6697 if (++ifindex <= 0)
6698 ifindex = 1;
881d966b 6699 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6700 return net->ifindex = ifindex;
1da177e4
LT
6701 }
6702}
6703
1da177e4 6704/* Delayed registration/unregisteration */
3b5b34fd 6705static LIST_HEAD(net_todo_list);
200b916f 6706DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6707
6f05f629 6708static void net_set_todo(struct net_device *dev)
1da177e4 6709{
1da177e4 6710 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6711 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6712}
6713
9b5e383c 6714static void rollback_registered_many(struct list_head *head)
93ee31f1 6715{
e93737b0 6716 struct net_device *dev, *tmp;
5cde2829 6717 LIST_HEAD(close_head);
9b5e383c 6718
93ee31f1
DL
6719 BUG_ON(dev_boot_phase);
6720 ASSERT_RTNL();
6721
e93737b0 6722 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6723 /* Some devices call without registering
e93737b0
KK
6724 * for initialization unwind. Remove those
6725 * devices and proceed with the remaining.
9b5e383c
ED
6726 */
6727 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6728 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6729 dev->name, dev);
93ee31f1 6730
9b5e383c 6731 WARN_ON(1);
e93737b0
KK
6732 list_del(&dev->unreg_list);
6733 continue;
9b5e383c 6734 }
449f4544 6735 dev->dismantle = true;
9b5e383c 6736 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6737 }
93ee31f1 6738
44345724 6739 /* If device is running, close it first. */
5cde2829
EB
6740 list_for_each_entry(dev, head, unreg_list)
6741 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6742 dev_close_many(&close_head, true);
93ee31f1 6743
44345724 6744 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6745 /* And unlink it from device chain. */
6746 unlist_netdevice(dev);
93ee31f1 6747
9b5e383c
ED
6748 dev->reg_state = NETREG_UNREGISTERING;
6749 }
41852497 6750 flush_all_backlogs();
93ee31f1
DL
6751
6752 synchronize_net();
6753
9b5e383c 6754 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6755 struct sk_buff *skb = NULL;
6756
9b5e383c
ED
6757 /* Shutdown queueing discipline. */
6758 dev_shutdown(dev);
93ee31f1
DL
6759
6760
9b5e383c
ED
6761 /* Notify protocols, that we are about to destroy
6762 this device. They should clean all the things.
6763 */
6764 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6765
395eea6c
MB
6766 if (!dev->rtnl_link_ops ||
6767 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6768 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6769 GFP_KERNEL);
6770
9b5e383c
ED
6771 /*
6772 * Flush the unicast and multicast chains
6773 */
a748ee24 6774 dev_uc_flush(dev);
22bedad3 6775 dev_mc_flush(dev);
93ee31f1 6776
9b5e383c
ED
6777 if (dev->netdev_ops->ndo_uninit)
6778 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6779
395eea6c
MB
6780 if (skb)
6781 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6782
9ff162a8
JP
6783 /* Notifier chain MUST detach us all upper devices. */
6784 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6785
9b5e383c
ED
6786 /* Remove entries from kobject tree */
6787 netdev_unregister_kobject(dev);
024e9679
AD
6788#ifdef CONFIG_XPS
6789 /* Remove XPS queueing entries */
6790 netif_reset_xps_queues_gt(dev, 0);
6791#endif
9b5e383c 6792 }
93ee31f1 6793
850a545b 6794 synchronize_net();
395264d5 6795
a5ee1551 6796 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6797 dev_put(dev);
6798}
6799
6800static void rollback_registered(struct net_device *dev)
6801{
6802 LIST_HEAD(single);
6803
6804 list_add(&dev->unreg_list, &single);
6805 rollback_registered_many(&single);
ceaaec98 6806 list_del(&single);
93ee31f1
DL
6807}
6808
fd867d51
JW
6809static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6810 struct net_device *upper, netdev_features_t features)
6811{
6812 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6813 netdev_features_t feature;
5ba3f7d6 6814 int feature_bit;
fd867d51 6815
5ba3f7d6
JW
6816 for_each_netdev_feature(&upper_disables, feature_bit) {
6817 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6818 if (!(upper->wanted_features & feature)
6819 && (features & feature)) {
6820 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6821 &feature, upper->name);
6822 features &= ~feature;
6823 }
6824 }
6825
6826 return features;
6827}
6828
6829static void netdev_sync_lower_features(struct net_device *upper,
6830 struct net_device *lower, netdev_features_t features)
6831{
6832 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6833 netdev_features_t feature;
5ba3f7d6 6834 int feature_bit;
fd867d51 6835
5ba3f7d6
JW
6836 for_each_netdev_feature(&upper_disables, feature_bit) {
6837 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6838 if (!(features & feature) && (lower->features & feature)) {
6839 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6840 &feature, lower->name);
6841 lower->wanted_features &= ~feature;
6842 netdev_update_features(lower);
6843
6844 if (unlikely(lower->features & feature))
6845 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6846 &feature, lower->name);
6847 }
6848 }
6849}
6850
c8f44aff
MM
6851static netdev_features_t netdev_fix_features(struct net_device *dev,
6852 netdev_features_t features)
b63365a2 6853{
57422dc5
MM
6854 /* Fix illegal checksum combinations */
6855 if ((features & NETIF_F_HW_CSUM) &&
6856 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6857 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6858 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6859 }
6860
b63365a2 6861 /* TSO requires that SG is present as well. */
ea2d3688 6862 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6863 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6864 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6865 }
6866
ec5f0615
PS
6867 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6868 !(features & NETIF_F_IP_CSUM)) {
6869 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6870 features &= ~NETIF_F_TSO;
6871 features &= ~NETIF_F_TSO_ECN;
6872 }
6873
6874 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6875 !(features & NETIF_F_IPV6_CSUM)) {
6876 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6877 features &= ~NETIF_F_TSO6;
6878 }
6879
b1dc497b
AD
6880 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6881 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6882 features &= ~NETIF_F_TSO_MANGLEID;
6883
31d8b9e0
BH
6884 /* TSO ECN requires that TSO is present as well. */
6885 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6886 features &= ~NETIF_F_TSO_ECN;
6887
212b573f
MM
6888 /* Software GSO depends on SG. */
6889 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6890 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6891 features &= ~NETIF_F_GSO;
6892 }
6893
acd1130e 6894 /* UFO needs SG and checksumming */
b63365a2 6895 if (features & NETIF_F_UFO) {
79032644 6896 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6897 if (!(features & NETIF_F_HW_CSUM) &&
6898 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6899 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6900 netdev_dbg(dev,
acd1130e 6901 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6902 features &= ~NETIF_F_UFO;
6903 }
6904
6905 if (!(features & NETIF_F_SG)) {
6f404e44 6906 netdev_dbg(dev,
acd1130e 6907 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6908 features &= ~NETIF_F_UFO;
6909 }
6910 }
6911
802ab55a
AD
6912 /* GSO partial features require GSO partial be set */
6913 if ((features & dev->gso_partial_features) &&
6914 !(features & NETIF_F_GSO_PARTIAL)) {
6915 netdev_dbg(dev,
6916 "Dropping partially supported GSO features since no GSO partial.\n");
6917 features &= ~dev->gso_partial_features;
6918 }
6919
d0290214
JP
6920#ifdef CONFIG_NET_RX_BUSY_POLL
6921 if (dev->netdev_ops->ndo_busy_poll)
6922 features |= NETIF_F_BUSY_POLL;
6923 else
6924#endif
6925 features &= ~NETIF_F_BUSY_POLL;
6926
b63365a2
HX
6927 return features;
6928}
b63365a2 6929
6cb6a27c 6930int __netdev_update_features(struct net_device *dev)
5455c699 6931{
fd867d51 6932 struct net_device *upper, *lower;
c8f44aff 6933 netdev_features_t features;
fd867d51 6934 struct list_head *iter;
e7868a85 6935 int err = -1;
5455c699 6936
87267485
MM
6937 ASSERT_RTNL();
6938
5455c699
MM
6939 features = netdev_get_wanted_features(dev);
6940
6941 if (dev->netdev_ops->ndo_fix_features)
6942 features = dev->netdev_ops->ndo_fix_features(dev, features);
6943
6944 /* driver might be less strict about feature dependencies */
6945 features = netdev_fix_features(dev, features);
6946
fd867d51
JW
6947 /* some features can't be enabled if they're off an an upper device */
6948 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6949 features = netdev_sync_upper_features(dev, upper, features);
6950
5455c699 6951 if (dev->features == features)
e7868a85 6952 goto sync_lower;
5455c699 6953
c8f44aff
MM
6954 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6955 &dev->features, &features);
5455c699
MM
6956
6957 if (dev->netdev_ops->ndo_set_features)
6958 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6959 else
6960 err = 0;
5455c699 6961
6cb6a27c 6962 if (unlikely(err < 0)) {
5455c699 6963 netdev_err(dev,
c8f44aff
MM
6964 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6965 err, &features, &dev->features);
17b85d29
NA
6966 /* return non-0 since some features might have changed and
6967 * it's better to fire a spurious notification than miss it
6968 */
6969 return -1;
6cb6a27c
MM
6970 }
6971
e7868a85 6972sync_lower:
fd867d51
JW
6973 /* some features must be disabled on lower devices when disabled
6974 * on an upper device (think: bonding master or bridge)
6975 */
6976 netdev_for_each_lower_dev(dev, lower, iter)
6977 netdev_sync_lower_features(dev, lower, features);
6978
6cb6a27c
MM
6979 if (!err)
6980 dev->features = features;
6981
e7868a85 6982 return err < 0 ? 0 : 1;
6cb6a27c
MM
6983}
6984
afe12cc8
MM
6985/**
6986 * netdev_update_features - recalculate device features
6987 * @dev: the device to check
6988 *
6989 * Recalculate dev->features set and send notifications if it
6990 * has changed. Should be called after driver or hardware dependent
6991 * conditions might have changed that influence the features.
6992 */
6cb6a27c
MM
6993void netdev_update_features(struct net_device *dev)
6994{
6995 if (__netdev_update_features(dev))
6996 netdev_features_change(dev);
5455c699
MM
6997}
6998EXPORT_SYMBOL(netdev_update_features);
6999
afe12cc8
MM
7000/**
7001 * netdev_change_features - recalculate device features
7002 * @dev: the device to check
7003 *
7004 * Recalculate dev->features set and send notifications even
7005 * if they have not changed. Should be called instead of
7006 * netdev_update_features() if also dev->vlan_features might
7007 * have changed to allow the changes to be propagated to stacked
7008 * VLAN devices.
7009 */
7010void netdev_change_features(struct net_device *dev)
7011{
7012 __netdev_update_features(dev);
7013 netdev_features_change(dev);
7014}
7015EXPORT_SYMBOL(netdev_change_features);
7016
fc4a7489
PM
7017/**
7018 * netif_stacked_transfer_operstate - transfer operstate
7019 * @rootdev: the root or lower level device to transfer state from
7020 * @dev: the device to transfer operstate to
7021 *
7022 * Transfer operational state from root to device. This is normally
7023 * called when a stacking relationship exists between the root
7024 * device and the device(a leaf device).
7025 */
7026void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7027 struct net_device *dev)
7028{
7029 if (rootdev->operstate == IF_OPER_DORMANT)
7030 netif_dormant_on(dev);
7031 else
7032 netif_dormant_off(dev);
7033
7034 if (netif_carrier_ok(rootdev)) {
7035 if (!netif_carrier_ok(dev))
7036 netif_carrier_on(dev);
7037 } else {
7038 if (netif_carrier_ok(dev))
7039 netif_carrier_off(dev);
7040 }
7041}
7042EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7043
a953be53 7044#ifdef CONFIG_SYSFS
1b4bf461
ED
7045static int netif_alloc_rx_queues(struct net_device *dev)
7046{
1b4bf461 7047 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7048 struct netdev_rx_queue *rx;
10595902 7049 size_t sz = count * sizeof(*rx);
1b4bf461 7050
bd25fa7b 7051 BUG_ON(count < 1);
1b4bf461 7052
10595902
PG
7053 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7054 if (!rx) {
7055 rx = vzalloc(sz);
7056 if (!rx)
7057 return -ENOMEM;
7058 }
bd25fa7b
TH
7059 dev->_rx = rx;
7060
bd25fa7b 7061 for (i = 0; i < count; i++)
fe822240 7062 rx[i].dev = dev;
1b4bf461
ED
7063 return 0;
7064}
bf264145 7065#endif
1b4bf461 7066
aa942104
CG
7067static void netdev_init_one_queue(struct net_device *dev,
7068 struct netdev_queue *queue, void *_unused)
7069{
7070 /* Initialize queue lock */
7071 spin_lock_init(&queue->_xmit_lock);
7072 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7073 queue->xmit_lock_owner = -1;
b236da69 7074 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7075 queue->dev = dev;
114cf580
TH
7076#ifdef CONFIG_BQL
7077 dql_init(&queue->dql, HZ);
7078#endif
aa942104
CG
7079}
7080
60877a32
ED
7081static void netif_free_tx_queues(struct net_device *dev)
7082{
4cb28970 7083 kvfree(dev->_tx);
60877a32
ED
7084}
7085
e6484930
TH
7086static int netif_alloc_netdev_queues(struct net_device *dev)
7087{
7088 unsigned int count = dev->num_tx_queues;
7089 struct netdev_queue *tx;
60877a32 7090 size_t sz = count * sizeof(*tx);
e6484930 7091
d339727c
ED
7092 if (count < 1 || count > 0xffff)
7093 return -EINVAL;
62b5942a 7094
60877a32
ED
7095 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7096 if (!tx) {
7097 tx = vzalloc(sz);
7098 if (!tx)
7099 return -ENOMEM;
7100 }
e6484930 7101 dev->_tx = tx;
1d24eb48 7102
e6484930
TH
7103 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7104 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7105
7106 return 0;
e6484930
TH
7107}
7108
a2029240
DV
7109void netif_tx_stop_all_queues(struct net_device *dev)
7110{
7111 unsigned int i;
7112
7113 for (i = 0; i < dev->num_tx_queues; i++) {
7114 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7115 netif_tx_stop_queue(txq);
7116 }
7117}
7118EXPORT_SYMBOL(netif_tx_stop_all_queues);
7119
1da177e4
LT
7120/**
7121 * register_netdevice - register a network device
7122 * @dev: device to register
7123 *
7124 * Take a completed network device structure and add it to the kernel
7125 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7126 * chain. 0 is returned on success. A negative errno code is returned
7127 * on a failure to set up the device, or if the name is a duplicate.
7128 *
7129 * Callers must hold the rtnl semaphore. You may want
7130 * register_netdev() instead of this.
7131 *
7132 * BUGS:
7133 * The locking appears insufficient to guarantee two parallel registers
7134 * will not get the same name.
7135 */
7136
7137int register_netdevice(struct net_device *dev)
7138{
1da177e4 7139 int ret;
d314774c 7140 struct net *net = dev_net(dev);
1da177e4
LT
7141
7142 BUG_ON(dev_boot_phase);
7143 ASSERT_RTNL();
7144
b17a7c17
SH
7145 might_sleep();
7146
1da177e4
LT
7147 /* When net_device's are persistent, this will be fatal. */
7148 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7149 BUG_ON(!net);
1da177e4 7150
f1f28aa3 7151 spin_lock_init(&dev->addr_list_lock);
cf508b12 7152 netdev_set_addr_lockdep_class(dev);
1da177e4 7153
828de4f6 7154 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7155 if (ret < 0)
7156 goto out;
7157
1da177e4 7158 /* Init, if this function is available */
d314774c
SH
7159 if (dev->netdev_ops->ndo_init) {
7160 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7161 if (ret) {
7162 if (ret > 0)
7163 ret = -EIO;
90833aa4 7164 goto out;
1da177e4
LT
7165 }
7166 }
4ec93edb 7167
f646968f
PM
7168 if (((dev->hw_features | dev->features) &
7169 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7170 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7171 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7172 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7173 ret = -EINVAL;
7174 goto err_uninit;
7175 }
7176
9c7dafbf
PE
7177 ret = -EBUSY;
7178 if (!dev->ifindex)
7179 dev->ifindex = dev_new_index(net);
7180 else if (__dev_get_by_index(net, dev->ifindex))
7181 goto err_uninit;
7182
5455c699
MM
7183 /* Transfer changeable features to wanted_features and enable
7184 * software offloads (GSO and GRO).
7185 */
7186 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7187 dev->features |= NETIF_F_SOFT_FEATURES;
7188 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7189
cbc53e08 7190 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7191 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7192
7f348a60
AD
7193 /* If IPv4 TCP segmentation offload is supported we should also
7194 * allow the device to enable segmenting the frame with the option
7195 * of ignoring a static IP ID value. This doesn't enable the
7196 * feature itself but allows the user to enable it later.
7197 */
cbc53e08
AD
7198 if (dev->hw_features & NETIF_F_TSO)
7199 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7200 if (dev->vlan_features & NETIF_F_TSO)
7201 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7202 if (dev->mpls_features & NETIF_F_TSO)
7203 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7204 if (dev->hw_enc_features & NETIF_F_TSO)
7205 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7206
1180e7d6 7207 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7208 */
1180e7d6 7209 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7210
ee579677
PS
7211 /* Make NETIF_F_SG inheritable to tunnel devices.
7212 */
802ab55a 7213 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7214
0d89d203
SH
7215 /* Make NETIF_F_SG inheritable to MPLS.
7216 */
7217 dev->mpls_features |= NETIF_F_SG;
7218
7ffbe3fd
JB
7219 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7220 ret = notifier_to_errno(ret);
7221 if (ret)
7222 goto err_uninit;
7223
8b41d188 7224 ret = netdev_register_kobject(dev);
b17a7c17 7225 if (ret)
7ce1b0ed 7226 goto err_uninit;
b17a7c17
SH
7227 dev->reg_state = NETREG_REGISTERED;
7228
6cb6a27c 7229 __netdev_update_features(dev);
8e9b59b2 7230
1da177e4
LT
7231 /*
7232 * Default initial state at registry is that the
7233 * device is present.
7234 */
7235
7236 set_bit(__LINK_STATE_PRESENT, &dev->state);
7237
8f4cccbb
BH
7238 linkwatch_init_dev(dev);
7239
1da177e4 7240 dev_init_scheduler(dev);
1da177e4 7241 dev_hold(dev);
ce286d32 7242 list_netdevice(dev);
7bf23575 7243 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7244
948b337e
JP
7245 /* If the device has permanent device address, driver should
7246 * set dev_addr and also addr_assign_type should be set to
7247 * NET_ADDR_PERM (default value).
7248 */
7249 if (dev->addr_assign_type == NET_ADDR_PERM)
7250 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7251
1da177e4 7252 /* Notify protocols, that a new device appeared. */
056925ab 7253 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7254 ret = notifier_to_errno(ret);
93ee31f1
DL
7255 if (ret) {
7256 rollback_registered(dev);
7257 dev->reg_state = NETREG_UNREGISTERED;
7258 }
d90a909e
EB
7259 /*
7260 * Prevent userspace races by waiting until the network
7261 * device is fully setup before sending notifications.
7262 */
a2835763
PM
7263 if (!dev->rtnl_link_ops ||
7264 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7265 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7266
7267out:
7268 return ret;
7ce1b0ed
HX
7269
7270err_uninit:
d314774c
SH
7271 if (dev->netdev_ops->ndo_uninit)
7272 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7273 goto out;
1da177e4 7274}
d1b19dff 7275EXPORT_SYMBOL(register_netdevice);
1da177e4 7276
937f1ba5
BH
7277/**
7278 * init_dummy_netdev - init a dummy network device for NAPI
7279 * @dev: device to init
7280 *
7281 * This takes a network device structure and initialize the minimum
7282 * amount of fields so it can be used to schedule NAPI polls without
7283 * registering a full blown interface. This is to be used by drivers
7284 * that need to tie several hardware interfaces to a single NAPI
7285 * poll scheduler due to HW limitations.
7286 */
7287int init_dummy_netdev(struct net_device *dev)
7288{
7289 /* Clear everything. Note we don't initialize spinlocks
7290 * are they aren't supposed to be taken by any of the
7291 * NAPI code and this dummy netdev is supposed to be
7292 * only ever used for NAPI polls
7293 */
7294 memset(dev, 0, sizeof(struct net_device));
7295
7296 /* make sure we BUG if trying to hit standard
7297 * register/unregister code path
7298 */
7299 dev->reg_state = NETREG_DUMMY;
7300
937f1ba5
BH
7301 /* NAPI wants this */
7302 INIT_LIST_HEAD(&dev->napi_list);
7303
7304 /* a dummy interface is started by default */
7305 set_bit(__LINK_STATE_PRESENT, &dev->state);
7306 set_bit(__LINK_STATE_START, &dev->state);
7307
29b4433d
ED
7308 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7309 * because users of this 'device' dont need to change
7310 * its refcount.
7311 */
7312
937f1ba5
BH
7313 return 0;
7314}
7315EXPORT_SYMBOL_GPL(init_dummy_netdev);
7316
7317
1da177e4
LT
7318/**
7319 * register_netdev - register a network device
7320 * @dev: device to register
7321 *
7322 * Take a completed network device structure and add it to the kernel
7323 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7324 * chain. 0 is returned on success. A negative errno code is returned
7325 * on a failure to set up the device, or if the name is a duplicate.
7326 *
38b4da38 7327 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7328 * and expands the device name if you passed a format string to
7329 * alloc_netdev.
7330 */
7331int register_netdev(struct net_device *dev)
7332{
7333 int err;
7334
7335 rtnl_lock();
1da177e4 7336 err = register_netdevice(dev);
1da177e4
LT
7337 rtnl_unlock();
7338 return err;
7339}
7340EXPORT_SYMBOL(register_netdev);
7341
29b4433d
ED
7342int netdev_refcnt_read(const struct net_device *dev)
7343{
7344 int i, refcnt = 0;
7345
7346 for_each_possible_cpu(i)
7347 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7348 return refcnt;
7349}
7350EXPORT_SYMBOL(netdev_refcnt_read);
7351
2c53040f 7352/**
1da177e4 7353 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7354 * @dev: target net_device
1da177e4
LT
7355 *
7356 * This is called when unregistering network devices.
7357 *
7358 * Any protocol or device that holds a reference should register
7359 * for netdevice notification, and cleanup and put back the
7360 * reference if they receive an UNREGISTER event.
7361 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7362 * call dev_put.
1da177e4
LT
7363 */
7364static void netdev_wait_allrefs(struct net_device *dev)
7365{
7366 unsigned long rebroadcast_time, warning_time;
29b4433d 7367 int refcnt;
1da177e4 7368
e014debe
ED
7369 linkwatch_forget_dev(dev);
7370
1da177e4 7371 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7372 refcnt = netdev_refcnt_read(dev);
7373
7374 while (refcnt != 0) {
1da177e4 7375 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7376 rtnl_lock();
1da177e4
LT
7377
7378 /* Rebroadcast unregister notification */
056925ab 7379 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7380
748e2d93 7381 __rtnl_unlock();
0115e8e3 7382 rcu_barrier();
748e2d93
ED
7383 rtnl_lock();
7384
0115e8e3 7385 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7386 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7387 &dev->state)) {
7388 /* We must not have linkwatch events
7389 * pending on unregister. If this
7390 * happens, we simply run the queue
7391 * unscheduled, resulting in a noop
7392 * for this device.
7393 */
7394 linkwatch_run_queue();
7395 }
7396
6756ae4b 7397 __rtnl_unlock();
1da177e4
LT
7398
7399 rebroadcast_time = jiffies;
7400 }
7401
7402 msleep(250);
7403
29b4433d
ED
7404 refcnt = netdev_refcnt_read(dev);
7405
1da177e4 7406 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7407 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7408 dev->name, refcnt);
1da177e4
LT
7409 warning_time = jiffies;
7410 }
7411 }
7412}
7413
7414/* The sequence is:
7415 *
7416 * rtnl_lock();
7417 * ...
7418 * register_netdevice(x1);
7419 * register_netdevice(x2);
7420 * ...
7421 * unregister_netdevice(y1);
7422 * unregister_netdevice(y2);
7423 * ...
7424 * rtnl_unlock();
7425 * free_netdev(y1);
7426 * free_netdev(y2);
7427 *
58ec3b4d 7428 * We are invoked by rtnl_unlock().
1da177e4 7429 * This allows us to deal with problems:
b17a7c17 7430 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7431 * without deadlocking with linkwatch via keventd.
7432 * 2) Since we run with the RTNL semaphore not held, we can sleep
7433 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7434 *
7435 * We must not return until all unregister events added during
7436 * the interval the lock was held have been completed.
1da177e4 7437 */
1da177e4
LT
7438void netdev_run_todo(void)
7439{
626ab0e6 7440 struct list_head list;
1da177e4 7441
1da177e4 7442 /* Snapshot list, allow later requests */
626ab0e6 7443 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7444
7445 __rtnl_unlock();
626ab0e6 7446
0115e8e3
ED
7447
7448 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7449 if (!list_empty(&list))
7450 rcu_barrier();
7451
1da177e4
LT
7452 while (!list_empty(&list)) {
7453 struct net_device *dev
e5e26d75 7454 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7455 list_del(&dev->todo_list);
7456
748e2d93 7457 rtnl_lock();
0115e8e3 7458 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7459 __rtnl_unlock();
0115e8e3 7460
b17a7c17 7461 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7462 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7463 dev->name, dev->reg_state);
7464 dump_stack();
7465 continue;
7466 }
1da177e4 7467
b17a7c17 7468 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7469
b17a7c17 7470 netdev_wait_allrefs(dev);
1da177e4 7471
b17a7c17 7472 /* paranoia */
29b4433d 7473 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7474 BUG_ON(!list_empty(&dev->ptype_all));
7475 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7476 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7477 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7478 WARN_ON(dev->dn_ptr);
1da177e4 7479
b17a7c17
SH
7480 if (dev->destructor)
7481 dev->destructor(dev);
9093bbb2 7482
50624c93
EB
7483 /* Report a network device has been unregistered */
7484 rtnl_lock();
7485 dev_net(dev)->dev_unreg_count--;
7486 __rtnl_unlock();
7487 wake_up(&netdev_unregistering_wq);
7488
9093bbb2
SH
7489 /* Free network device */
7490 kobject_put(&dev->dev.kobj);
1da177e4 7491 }
1da177e4
LT
7492}
7493
9256645a
JW
7494/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7495 * all the same fields in the same order as net_device_stats, with only
7496 * the type differing, but rtnl_link_stats64 may have additional fields
7497 * at the end for newer counters.
3cfde79c 7498 */
77a1abf5
ED
7499void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7500 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7501{
7502#if BITS_PER_LONG == 64
9256645a 7503 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7504 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7505 /* zero out counters that only exist in rtnl_link_stats64 */
7506 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7507 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7508#else
9256645a 7509 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7510 const unsigned long *src = (const unsigned long *)netdev_stats;
7511 u64 *dst = (u64 *)stats64;
7512
9256645a 7513 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7514 for (i = 0; i < n; i++)
7515 dst[i] = src[i];
9256645a
JW
7516 /* zero out counters that only exist in rtnl_link_stats64 */
7517 memset((char *)stats64 + n * sizeof(u64), 0,
7518 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7519#endif
7520}
77a1abf5 7521EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7522
eeda3fd6
SH
7523/**
7524 * dev_get_stats - get network device statistics
7525 * @dev: device to get statistics from
28172739 7526 * @storage: place to store stats
eeda3fd6 7527 *
d7753516
BH
7528 * Get network statistics from device. Return @storage.
7529 * The device driver may provide its own method by setting
7530 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7531 * otherwise the internal statistics structure is used.
eeda3fd6 7532 */
d7753516
BH
7533struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7534 struct rtnl_link_stats64 *storage)
7004bf25 7535{
eeda3fd6
SH
7536 const struct net_device_ops *ops = dev->netdev_ops;
7537
28172739
ED
7538 if (ops->ndo_get_stats64) {
7539 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7540 ops->ndo_get_stats64(dev, storage);
7541 } else if (ops->ndo_get_stats) {
3cfde79c 7542 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7543 } else {
7544 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7545 }
caf586e5 7546 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7547 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7548 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7549 return storage;
c45d286e 7550}
eeda3fd6 7551EXPORT_SYMBOL(dev_get_stats);
c45d286e 7552
24824a09 7553struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7554{
24824a09 7555 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7556
24824a09
ED
7557#ifdef CONFIG_NET_CLS_ACT
7558 if (queue)
7559 return queue;
7560 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7561 if (!queue)
7562 return NULL;
7563 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7564 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7565 queue->qdisc_sleeping = &noop_qdisc;
7566 rcu_assign_pointer(dev->ingress_queue, queue);
7567#endif
7568 return queue;
bb949fbd
DM
7569}
7570
2c60db03
ED
7571static const struct ethtool_ops default_ethtool_ops;
7572
d07d7507
SG
7573void netdev_set_default_ethtool_ops(struct net_device *dev,
7574 const struct ethtool_ops *ops)
7575{
7576 if (dev->ethtool_ops == &default_ethtool_ops)
7577 dev->ethtool_ops = ops;
7578}
7579EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7580
74d332c1
ED
7581void netdev_freemem(struct net_device *dev)
7582{
7583 char *addr = (char *)dev - dev->padded;
7584
4cb28970 7585 kvfree(addr);
74d332c1
ED
7586}
7587
1da177e4 7588/**
36909ea4 7589 * alloc_netdev_mqs - allocate network device
c835a677
TG
7590 * @sizeof_priv: size of private data to allocate space for
7591 * @name: device name format string
7592 * @name_assign_type: origin of device name
7593 * @setup: callback to initialize device
7594 * @txqs: the number of TX subqueues to allocate
7595 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7596 *
7597 * Allocates a struct net_device with private data area for driver use
90e51adf 7598 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7599 * for each queue on the device.
1da177e4 7600 */
36909ea4 7601struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7602 unsigned char name_assign_type,
36909ea4
TH
7603 void (*setup)(struct net_device *),
7604 unsigned int txqs, unsigned int rxqs)
1da177e4 7605{
1da177e4 7606 struct net_device *dev;
7943986c 7607 size_t alloc_size;
1ce8e7b5 7608 struct net_device *p;
1da177e4 7609
b6fe17d6
SH
7610 BUG_ON(strlen(name) >= sizeof(dev->name));
7611
36909ea4 7612 if (txqs < 1) {
7b6cd1ce 7613 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7614 return NULL;
7615 }
7616
a953be53 7617#ifdef CONFIG_SYSFS
36909ea4 7618 if (rxqs < 1) {
7b6cd1ce 7619 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7620 return NULL;
7621 }
7622#endif
7623
fd2ea0a7 7624 alloc_size = sizeof(struct net_device);
d1643d24
AD
7625 if (sizeof_priv) {
7626 /* ensure 32-byte alignment of private area */
1ce8e7b5 7627 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7628 alloc_size += sizeof_priv;
7629 }
7630 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7631 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7632
74d332c1
ED
7633 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7634 if (!p)
7635 p = vzalloc(alloc_size);
62b5942a 7636 if (!p)
1da177e4 7637 return NULL;
1da177e4 7638
1ce8e7b5 7639 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7640 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7641
29b4433d
ED
7642 dev->pcpu_refcnt = alloc_percpu(int);
7643 if (!dev->pcpu_refcnt)
74d332c1 7644 goto free_dev;
ab9c73cc 7645
ab9c73cc 7646 if (dev_addr_init(dev))
29b4433d 7647 goto free_pcpu;
ab9c73cc 7648
22bedad3 7649 dev_mc_init(dev);
a748ee24 7650 dev_uc_init(dev);
ccffad25 7651
c346dca1 7652 dev_net_set(dev, &init_net);
1da177e4 7653
8d3bdbd5 7654 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7655 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7656
8d3bdbd5
DM
7657 INIT_LIST_HEAD(&dev->napi_list);
7658 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7659 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7660 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7661 INIT_LIST_HEAD(&dev->adj_list.upper);
7662 INIT_LIST_HEAD(&dev->adj_list.lower);
7663 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7664 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7665 INIT_LIST_HEAD(&dev->ptype_all);
7666 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7667#ifdef CONFIG_NET_SCHED
7668 hash_init(dev->qdisc_hash);
7669#endif
02875878 7670 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7671 setup(dev);
7672
a813104d 7673 if (!dev->tx_queue_len) {
f84bb1ea 7674 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7675 dev->tx_queue_len = 1;
7676 }
906470c1 7677
36909ea4
TH
7678 dev->num_tx_queues = txqs;
7679 dev->real_num_tx_queues = txqs;
ed9af2e8 7680 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7681 goto free_all;
e8a0464c 7682
a953be53 7683#ifdef CONFIG_SYSFS
36909ea4
TH
7684 dev->num_rx_queues = rxqs;
7685 dev->real_num_rx_queues = rxqs;
fe822240 7686 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7687 goto free_all;
df334545 7688#endif
0a9627f2 7689
1da177e4 7690 strcpy(dev->name, name);
c835a677 7691 dev->name_assign_type = name_assign_type;
cbda10fa 7692 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7693 if (!dev->ethtool_ops)
7694 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7695
7696 nf_hook_ingress_init(dev);
7697
1da177e4 7698 return dev;
ab9c73cc 7699
8d3bdbd5
DM
7700free_all:
7701 free_netdev(dev);
7702 return NULL;
7703
29b4433d
ED
7704free_pcpu:
7705 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7706free_dev:
7707 netdev_freemem(dev);
ab9c73cc 7708 return NULL;
1da177e4 7709}
36909ea4 7710EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7711
7712/**
7713 * free_netdev - free network device
7714 * @dev: device
7715 *
4ec93edb
YH
7716 * This function does the last stage of destroying an allocated device
7717 * interface. The reference to the device object is released.
1da177e4 7718 * If this is the last reference then it will be freed.
93d05d4a 7719 * Must be called in process context.
1da177e4
LT
7720 */
7721void free_netdev(struct net_device *dev)
7722{
d565b0a1
HX
7723 struct napi_struct *p, *n;
7724
93d05d4a 7725 might_sleep();
60877a32 7726 netif_free_tx_queues(dev);
a953be53 7727#ifdef CONFIG_SYSFS
10595902 7728 kvfree(dev->_rx);
fe822240 7729#endif
e8a0464c 7730
33d480ce 7731 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7732
f001fde5
JP
7733 /* Flush device addresses */
7734 dev_addr_flush(dev);
7735
d565b0a1
HX
7736 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7737 netif_napi_del(p);
7738
29b4433d
ED
7739 free_percpu(dev->pcpu_refcnt);
7740 dev->pcpu_refcnt = NULL;
7741
3041a069 7742 /* Compatibility with error handling in drivers */
1da177e4 7743 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7744 netdev_freemem(dev);
1da177e4
LT
7745 return;
7746 }
7747
7748 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7749 dev->reg_state = NETREG_RELEASED;
7750
43cb76d9
GKH
7751 /* will free via device release */
7752 put_device(&dev->dev);
1da177e4 7753}
d1b19dff 7754EXPORT_SYMBOL(free_netdev);
4ec93edb 7755
f0db275a
SH
7756/**
7757 * synchronize_net - Synchronize with packet receive processing
7758 *
7759 * Wait for packets currently being received to be done.
7760 * Does not block later packets from starting.
7761 */
4ec93edb 7762void synchronize_net(void)
1da177e4
LT
7763{
7764 might_sleep();
be3fc413
ED
7765 if (rtnl_is_locked())
7766 synchronize_rcu_expedited();
7767 else
7768 synchronize_rcu();
1da177e4 7769}
d1b19dff 7770EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7771
7772/**
44a0873d 7773 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7774 * @dev: device
44a0873d 7775 * @head: list
6ebfbc06 7776 *
1da177e4 7777 * This function shuts down a device interface and removes it
d59b54b1 7778 * from the kernel tables.
44a0873d 7779 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7780 *
7781 * Callers must hold the rtnl semaphore. You may want
7782 * unregister_netdev() instead of this.
7783 */
7784
44a0873d 7785void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7786{
a6620712
HX
7787 ASSERT_RTNL();
7788
44a0873d 7789 if (head) {
9fdce099 7790 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7791 } else {
7792 rollback_registered(dev);
7793 /* Finish processing unregister after unlock */
7794 net_set_todo(dev);
7795 }
1da177e4 7796}
44a0873d 7797EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7798
9b5e383c
ED
7799/**
7800 * unregister_netdevice_many - unregister many devices
7801 * @head: list of devices
87757a91
ED
7802 *
7803 * Note: As most callers use a stack allocated list_head,
7804 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7805 */
7806void unregister_netdevice_many(struct list_head *head)
7807{
7808 struct net_device *dev;
7809
7810 if (!list_empty(head)) {
7811 rollback_registered_many(head);
7812 list_for_each_entry(dev, head, unreg_list)
7813 net_set_todo(dev);
87757a91 7814 list_del(head);
9b5e383c
ED
7815 }
7816}
63c8099d 7817EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7818
1da177e4
LT
7819/**
7820 * unregister_netdev - remove device from the kernel
7821 * @dev: device
7822 *
7823 * This function shuts down a device interface and removes it
d59b54b1 7824 * from the kernel tables.
1da177e4
LT
7825 *
7826 * This is just a wrapper for unregister_netdevice that takes
7827 * the rtnl semaphore. In general you want to use this and not
7828 * unregister_netdevice.
7829 */
7830void unregister_netdev(struct net_device *dev)
7831{
7832 rtnl_lock();
7833 unregister_netdevice(dev);
7834 rtnl_unlock();
7835}
1da177e4
LT
7836EXPORT_SYMBOL(unregister_netdev);
7837
ce286d32
EB
7838/**
7839 * dev_change_net_namespace - move device to different nethost namespace
7840 * @dev: device
7841 * @net: network namespace
7842 * @pat: If not NULL name pattern to try if the current device name
7843 * is already taken in the destination network namespace.
7844 *
7845 * This function shuts down a device interface and moves it
7846 * to a new network namespace. On success 0 is returned, on
7847 * a failure a netagive errno code is returned.
7848 *
7849 * Callers must hold the rtnl semaphore.
7850 */
7851
7852int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7853{
ce286d32
EB
7854 int err;
7855
7856 ASSERT_RTNL();
7857
7858 /* Don't allow namespace local devices to be moved. */
7859 err = -EINVAL;
7860 if (dev->features & NETIF_F_NETNS_LOCAL)
7861 goto out;
7862
7863 /* Ensure the device has been registrered */
ce286d32
EB
7864 if (dev->reg_state != NETREG_REGISTERED)
7865 goto out;
7866
7867 /* Get out if there is nothing todo */
7868 err = 0;
878628fb 7869 if (net_eq(dev_net(dev), net))
ce286d32
EB
7870 goto out;
7871
7872 /* Pick the destination device name, and ensure
7873 * we can use it in the destination network namespace.
7874 */
7875 err = -EEXIST;
d9031024 7876 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7877 /* We get here if we can't use the current device name */
7878 if (!pat)
7879 goto out;
828de4f6 7880 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7881 goto out;
7882 }
7883
7884 /*
7885 * And now a mini version of register_netdevice unregister_netdevice.
7886 */
7887
7888 /* If device is running close it first. */
9b772652 7889 dev_close(dev);
ce286d32
EB
7890
7891 /* And unlink it from device chain */
7892 err = -ENODEV;
7893 unlist_netdevice(dev);
7894
7895 synchronize_net();
7896
7897 /* Shutdown queueing discipline. */
7898 dev_shutdown(dev);
7899
7900 /* Notify protocols, that we are about to destroy
7901 this device. They should clean all the things.
3b27e105
DL
7902
7903 Note that dev->reg_state stays at NETREG_REGISTERED.
7904 This is wanted because this way 8021q and macvlan know
7905 the device is just moving and can keep their slaves up.
ce286d32
EB
7906 */
7907 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7908 rcu_barrier();
7909 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7910 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7911
7912 /*
7913 * Flush the unicast and multicast chains
7914 */
a748ee24 7915 dev_uc_flush(dev);
22bedad3 7916 dev_mc_flush(dev);
ce286d32 7917
4e66ae2e
SH
7918 /* Send a netdev-removed uevent to the old namespace */
7919 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7920 netdev_adjacent_del_links(dev);
4e66ae2e 7921
ce286d32 7922 /* Actually switch the network namespace */
c346dca1 7923 dev_net_set(dev, net);
ce286d32 7924
ce286d32 7925 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7926 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7927 dev->ifindex = dev_new_index(net);
ce286d32 7928
4e66ae2e
SH
7929 /* Send a netdev-add uevent to the new namespace */
7930 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7931 netdev_adjacent_add_links(dev);
4e66ae2e 7932
8b41d188 7933 /* Fixup kobjects */
a1b3f594 7934 err = device_rename(&dev->dev, dev->name);
8b41d188 7935 WARN_ON(err);
ce286d32
EB
7936
7937 /* Add the device back in the hashes */
7938 list_netdevice(dev);
7939
7940 /* Notify protocols, that a new device appeared. */
7941 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7942
d90a909e
EB
7943 /*
7944 * Prevent userspace races by waiting until the network
7945 * device is fully setup before sending notifications.
7946 */
7f294054 7947 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7948
ce286d32
EB
7949 synchronize_net();
7950 err = 0;
7951out:
7952 return err;
7953}
463d0183 7954EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7955
f0bf90de 7956static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
7957{
7958 struct sk_buff **list_skb;
1da177e4 7959 struct sk_buff *skb;
f0bf90de 7960 unsigned int cpu;
1da177e4
LT
7961 struct softnet_data *sd, *oldsd;
7962
1da177e4
LT
7963 local_irq_disable();
7964 cpu = smp_processor_id();
7965 sd = &per_cpu(softnet_data, cpu);
7966 oldsd = &per_cpu(softnet_data, oldcpu);
7967
7968 /* Find end of our completion_queue. */
7969 list_skb = &sd->completion_queue;
7970 while (*list_skb)
7971 list_skb = &(*list_skb)->next;
7972 /* Append completion queue from offline CPU. */
7973 *list_skb = oldsd->completion_queue;
7974 oldsd->completion_queue = NULL;
7975
1da177e4 7976 /* Append output queue from offline CPU. */
a9cbd588
CG
7977 if (oldsd->output_queue) {
7978 *sd->output_queue_tailp = oldsd->output_queue;
7979 sd->output_queue_tailp = oldsd->output_queue_tailp;
7980 oldsd->output_queue = NULL;
7981 oldsd->output_queue_tailp = &oldsd->output_queue;
7982 }
ac64da0b
ED
7983 /* Append NAPI poll list from offline CPU, with one exception :
7984 * process_backlog() must be called by cpu owning percpu backlog.
7985 * We properly handle process_queue & input_pkt_queue later.
7986 */
7987 while (!list_empty(&oldsd->poll_list)) {
7988 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7989 struct napi_struct,
7990 poll_list);
7991
7992 list_del_init(&napi->poll_list);
7993 if (napi->poll == process_backlog)
7994 napi->state = 0;
7995 else
7996 ____napi_schedule(sd, napi);
264524d5 7997 }
1da177e4
LT
7998
7999 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8000 local_irq_enable();
8001
8002 /* Process offline CPU's input_pkt_queue */
76cc8b13 8003 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8004 netif_rx_ni(skb);
76cc8b13 8005 input_queue_head_incr(oldsd);
fec5e652 8006 }
ac64da0b 8007 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8008 netif_rx_ni(skb);
76cc8b13
TH
8009 input_queue_head_incr(oldsd);
8010 }
1da177e4 8011
f0bf90de 8012 return 0;
1da177e4 8013}
1da177e4 8014
7f353bf2 8015/**
b63365a2
HX
8016 * netdev_increment_features - increment feature set by one
8017 * @all: current feature set
8018 * @one: new feature set
8019 * @mask: mask feature set
7f353bf2
HX
8020 *
8021 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8022 * @one to the master device with current feature set @all. Will not
8023 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8024 */
c8f44aff
MM
8025netdev_features_t netdev_increment_features(netdev_features_t all,
8026 netdev_features_t one, netdev_features_t mask)
b63365a2 8027{
c8cd0989 8028 if (mask & NETIF_F_HW_CSUM)
a188222b 8029 mask |= NETIF_F_CSUM_MASK;
1742f183 8030 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8031
a188222b 8032 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8033 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8034
1742f183 8035 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8036 if (all & NETIF_F_HW_CSUM)
8037 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8038
8039 return all;
8040}
b63365a2 8041EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8042
430f03cd 8043static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8044{
8045 int i;
8046 struct hlist_head *hash;
8047
8048 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8049 if (hash != NULL)
8050 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8051 INIT_HLIST_HEAD(&hash[i]);
8052
8053 return hash;
8054}
8055
881d966b 8056/* Initialize per network namespace state */
4665079c 8057static int __net_init netdev_init(struct net *net)
881d966b 8058{
734b6541
RM
8059 if (net != &init_net)
8060 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8061
30d97d35
PE
8062 net->dev_name_head = netdev_create_hash();
8063 if (net->dev_name_head == NULL)
8064 goto err_name;
881d966b 8065
30d97d35
PE
8066 net->dev_index_head = netdev_create_hash();
8067 if (net->dev_index_head == NULL)
8068 goto err_idx;
881d966b
EB
8069
8070 return 0;
30d97d35
PE
8071
8072err_idx:
8073 kfree(net->dev_name_head);
8074err_name:
8075 return -ENOMEM;
881d966b
EB
8076}
8077
f0db275a
SH
8078/**
8079 * netdev_drivername - network driver for the device
8080 * @dev: network device
f0db275a
SH
8081 *
8082 * Determine network driver for device.
8083 */
3019de12 8084const char *netdev_drivername(const struct net_device *dev)
6579e57b 8085{
cf04a4c7
SH
8086 const struct device_driver *driver;
8087 const struct device *parent;
3019de12 8088 const char *empty = "";
6579e57b
AV
8089
8090 parent = dev->dev.parent;
6579e57b 8091 if (!parent)
3019de12 8092 return empty;
6579e57b
AV
8093
8094 driver = parent->driver;
8095 if (driver && driver->name)
3019de12
DM
8096 return driver->name;
8097 return empty;
6579e57b
AV
8098}
8099
6ea754eb
JP
8100static void __netdev_printk(const char *level, const struct net_device *dev,
8101 struct va_format *vaf)
256df2f3 8102{
b004ff49 8103 if (dev && dev->dev.parent) {
6ea754eb
JP
8104 dev_printk_emit(level[1] - '0',
8105 dev->dev.parent,
8106 "%s %s %s%s: %pV",
8107 dev_driver_string(dev->dev.parent),
8108 dev_name(dev->dev.parent),
8109 netdev_name(dev), netdev_reg_state(dev),
8110 vaf);
b004ff49 8111 } else if (dev) {
6ea754eb
JP
8112 printk("%s%s%s: %pV",
8113 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8114 } else {
6ea754eb 8115 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8116 }
256df2f3
JP
8117}
8118
6ea754eb
JP
8119void netdev_printk(const char *level, const struct net_device *dev,
8120 const char *format, ...)
256df2f3
JP
8121{
8122 struct va_format vaf;
8123 va_list args;
256df2f3
JP
8124
8125 va_start(args, format);
8126
8127 vaf.fmt = format;
8128 vaf.va = &args;
8129
6ea754eb 8130 __netdev_printk(level, dev, &vaf);
b004ff49 8131
256df2f3 8132 va_end(args);
256df2f3
JP
8133}
8134EXPORT_SYMBOL(netdev_printk);
8135
8136#define define_netdev_printk_level(func, level) \
6ea754eb 8137void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8138{ \
256df2f3
JP
8139 struct va_format vaf; \
8140 va_list args; \
8141 \
8142 va_start(args, fmt); \
8143 \
8144 vaf.fmt = fmt; \
8145 vaf.va = &args; \
8146 \
6ea754eb 8147 __netdev_printk(level, dev, &vaf); \
b004ff49 8148 \
256df2f3 8149 va_end(args); \
256df2f3
JP
8150} \
8151EXPORT_SYMBOL(func);
8152
8153define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8154define_netdev_printk_level(netdev_alert, KERN_ALERT);
8155define_netdev_printk_level(netdev_crit, KERN_CRIT);
8156define_netdev_printk_level(netdev_err, KERN_ERR);
8157define_netdev_printk_level(netdev_warn, KERN_WARNING);
8158define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8159define_netdev_printk_level(netdev_info, KERN_INFO);
8160
4665079c 8161static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8162{
8163 kfree(net->dev_name_head);
8164 kfree(net->dev_index_head);
8165}
8166
022cbae6 8167static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8168 .init = netdev_init,
8169 .exit = netdev_exit,
8170};
8171
4665079c 8172static void __net_exit default_device_exit(struct net *net)
ce286d32 8173{
e008b5fc 8174 struct net_device *dev, *aux;
ce286d32 8175 /*
e008b5fc 8176 * Push all migratable network devices back to the
ce286d32
EB
8177 * initial network namespace
8178 */
8179 rtnl_lock();
e008b5fc 8180 for_each_netdev_safe(net, dev, aux) {
ce286d32 8181 int err;
aca51397 8182 char fb_name[IFNAMSIZ];
ce286d32
EB
8183
8184 /* Ignore unmoveable devices (i.e. loopback) */
8185 if (dev->features & NETIF_F_NETNS_LOCAL)
8186 continue;
8187
e008b5fc
EB
8188 /* Leave virtual devices for the generic cleanup */
8189 if (dev->rtnl_link_ops)
8190 continue;
d0c082ce 8191
25985edc 8192 /* Push remaining network devices to init_net */
aca51397
PE
8193 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8194 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8195 if (err) {
7b6cd1ce
JP
8196 pr_emerg("%s: failed to move %s to init_net: %d\n",
8197 __func__, dev->name, err);
aca51397 8198 BUG();
ce286d32
EB
8199 }
8200 }
8201 rtnl_unlock();
8202}
8203
50624c93
EB
8204static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8205{
8206 /* Return with the rtnl_lock held when there are no network
8207 * devices unregistering in any network namespace in net_list.
8208 */
8209 struct net *net;
8210 bool unregistering;
ff960a73 8211 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8212
ff960a73 8213 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8214 for (;;) {
50624c93
EB
8215 unregistering = false;
8216 rtnl_lock();
8217 list_for_each_entry(net, net_list, exit_list) {
8218 if (net->dev_unreg_count > 0) {
8219 unregistering = true;
8220 break;
8221 }
8222 }
8223 if (!unregistering)
8224 break;
8225 __rtnl_unlock();
ff960a73
PZ
8226
8227 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8228 }
ff960a73 8229 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8230}
8231
04dc7f6b
EB
8232static void __net_exit default_device_exit_batch(struct list_head *net_list)
8233{
8234 /* At exit all network devices most be removed from a network
b595076a 8235 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8236 * Do this across as many network namespaces as possible to
8237 * improve batching efficiency.
8238 */
8239 struct net_device *dev;
8240 struct net *net;
8241 LIST_HEAD(dev_kill_list);
8242
50624c93
EB
8243 /* To prevent network device cleanup code from dereferencing
8244 * loopback devices or network devices that have been freed
8245 * wait here for all pending unregistrations to complete,
8246 * before unregistring the loopback device and allowing the
8247 * network namespace be freed.
8248 *
8249 * The netdev todo list containing all network devices
8250 * unregistrations that happen in default_device_exit_batch
8251 * will run in the rtnl_unlock() at the end of
8252 * default_device_exit_batch.
8253 */
8254 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8255 list_for_each_entry(net, net_list, exit_list) {
8256 for_each_netdev_reverse(net, dev) {
b0ab2fab 8257 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8258 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8259 else
8260 unregister_netdevice_queue(dev, &dev_kill_list);
8261 }
8262 }
8263 unregister_netdevice_many(&dev_kill_list);
8264 rtnl_unlock();
8265}
8266
022cbae6 8267static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8268 .exit = default_device_exit,
04dc7f6b 8269 .exit_batch = default_device_exit_batch,
ce286d32
EB
8270};
8271
1da177e4
LT
8272/*
8273 * Initialize the DEV module. At boot time this walks the device list and
8274 * unhooks any devices that fail to initialise (normally hardware not
8275 * present) and leaves us with a valid list of present and active devices.
8276 *
8277 */
8278
8279/*
8280 * This is called single threaded during boot, so no need
8281 * to take the rtnl semaphore.
8282 */
8283static int __init net_dev_init(void)
8284{
8285 int i, rc = -ENOMEM;
8286
8287 BUG_ON(!dev_boot_phase);
8288
1da177e4
LT
8289 if (dev_proc_init())
8290 goto out;
8291
8b41d188 8292 if (netdev_kobject_init())
1da177e4
LT
8293 goto out;
8294
8295 INIT_LIST_HEAD(&ptype_all);
82d8a867 8296 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8297 INIT_LIST_HEAD(&ptype_base[i]);
8298
62532da9
VY
8299 INIT_LIST_HEAD(&offload_base);
8300
881d966b
EB
8301 if (register_pernet_subsys(&netdev_net_ops))
8302 goto out;
1da177e4
LT
8303
8304 /*
8305 * Initialise the packet receive queues.
8306 */
8307
6f912042 8308 for_each_possible_cpu(i) {
41852497 8309 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8310 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8311
41852497
ED
8312 INIT_WORK(flush, flush_backlog);
8313
e36fa2f7 8314 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8315 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8316 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8317 sd->output_queue_tailp = &sd->output_queue;
df334545 8318#ifdef CONFIG_RPS
e36fa2f7
ED
8319 sd->csd.func = rps_trigger_softirq;
8320 sd->csd.info = sd;
e36fa2f7 8321 sd->cpu = i;
1e94d72f 8322#endif
0a9627f2 8323
e36fa2f7
ED
8324 sd->backlog.poll = process_backlog;
8325 sd->backlog.weight = weight_p;
1da177e4
LT
8326 }
8327
1da177e4
LT
8328 dev_boot_phase = 0;
8329
505d4f73
EB
8330 /* The loopback device is special if any other network devices
8331 * is present in a network namespace the loopback device must
8332 * be present. Since we now dynamically allocate and free the
8333 * loopback device ensure this invariant is maintained by
8334 * keeping the loopback device as the first device on the
8335 * list of network devices. Ensuring the loopback devices
8336 * is the first device that appears and the last network device
8337 * that disappears.
8338 */
8339 if (register_pernet_device(&loopback_net_ops))
8340 goto out;
8341
8342 if (register_pernet_device(&default_device_ops))
8343 goto out;
8344
962cf36c
CM
8345 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8346 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8347
f0bf90de
SAS
8348 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8349 NULL, dev_cpu_dead);
8350 WARN_ON(rc < 0);
f38a9eb1 8351 dst_subsys_init();
1da177e4
LT
8352 rc = 0;
8353out:
8354 return rc;
8355}
8356
8357subsys_initcall(net_dev_init);