]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - net/core/dev.c
net: Remove all_adj_list and its references
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
40e4e713 142#include <linux/crash_dump.h>
1da177e4 143
342709ef
PE
144#include "net-sysfs.h"
145
d565b0a1
HX
146/* Instead of increasing this, you should create a hash table. */
147#define MAX_GRO_SKBS 8
148
5d38a079
HX
149/* This should be increased if a protocol with a bigger head is added. */
150#define GRO_MAX_HEAD (MAX_HEADER + 128)
151
1da177e4 152static DEFINE_SPINLOCK(ptype_lock);
62532da9 153static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
154struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155struct list_head ptype_all __read_mostly; /* Taps */
62532da9 156static struct list_head offload_base __read_mostly;
1da177e4 157
ae78dbfa 158static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
159static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
ae78dbfa 162
1da177e4 163/*
7562f876 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
165 * semaphore.
166 *
c6d14c84 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
7562f876 170 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
1da177e4 182DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
183EXPORT_SYMBOL(dev_base_lock);
184
af12fa6e
ET
185/* protects napi_hash addition/deletion and napi_gen_id */
186static DEFINE_SPINLOCK(napi_hash_lock);
187
52bd2d62 188static unsigned int napi_gen_id = NR_CPUS;
6180d9de 189static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 190
18afa4b0 191static seqcount_t devnet_rename_seq;
c91f6df2 192
4e985ada
TG
193static inline void dev_base_seq_inc(struct net *net)
194{
195 while (++net->dev_base_seq == 0);
196}
197
881d966b 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 199{
8387ff25 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 201
08e9897d 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
203}
204
881d966b 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 206{
7c28bd0b 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
208}
209
e36fa2f7 210static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
211{
212#ifdef CONFIG_RPS
e36fa2f7 213 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
214#endif
215}
216
e36fa2f7 217static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
ce286d32 224/* Device list insertion */
53759be9 225static void list_netdevice(struct net_device *dev)
ce286d32 226{
c346dca1 227 struct net *net = dev_net(dev);
ce286d32
EB
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
c6d14c84 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
ce286d32 236 write_unlock_bh(&dev_base_lock);
4e985ada
TG
237
238 dev_base_seq_inc(net);
ce286d32
EB
239}
240
fb699dfd
ED
241/* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
ce286d32
EB
244static void unlist_netdevice(struct net_device *dev)
245{
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
c6d14c84 250 list_del_rcu(&dev->dev_list);
72c9528b 251 hlist_del_rcu(&dev->name_hlist);
fb699dfd 252 hlist_del_rcu(&dev->index_hlist);
ce286d32 253 write_unlock_bh(&dev_base_lock);
4e985ada
TG
254
255 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
256}
257
1da177e4
LT
258/*
259 * Our notifier list
260 */
261
f07d5b94 262static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
263
264/*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
bea3348e 268
9958da05 269DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 270EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 271
cf508b12 272#ifdef CONFIG_LOCKDEP
723e98b7 273/*
c773e847 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
275 * according to dev->type
276 */
277static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 293
36cbd3dc 294static const char *const netdev_lock_name[] =
723e98b7
JP
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
310
311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
313
314static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315{
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323}
324
cf508b12
DM
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
723e98b7
JP
327{
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333}
cf508b12
DM
334
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336{
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343}
723e98b7 344#else
cf508b12
DM
345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347{
348}
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
350{
351}
352#endif
1da177e4
LT
353
354/*******************************************************************************
355
356 Protocol management and registration routines
357
358*******************************************************************************/
359
1da177e4
LT
360/*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
c07b68e8
ED
376static inline struct list_head *ptype_head(const struct packet_type *pt)
377{
378 if (pt->type == htons(ETH_P_ALL))
7866a621 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 380 else
7866a621
SN
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
383}
384
1da177e4
LT
385/**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
4ec93edb 393 * This call does not sleep therefore it can not
1da177e4
LT
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398void dev_add_pack(struct packet_type *pt)
399{
c07b68e8 400 struct list_head *head = ptype_head(pt);
1da177e4 401
c07b68e8
ED
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
1da177e4 405}
d1b19dff 406EXPORT_SYMBOL(dev_add_pack);
1da177e4 407
1da177e4
LT
408/**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
4ec93edb 415 * returns.
1da177e4
LT
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421void __dev_remove_pack(struct packet_type *pt)
422{
c07b68e8 423 struct list_head *head = ptype_head(pt);
1da177e4
LT
424 struct packet_type *pt1;
425
c07b68e8 426 spin_lock(&ptype_lock);
1da177e4
LT
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
7b6cd1ce 435 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 436out:
c07b68e8 437 spin_unlock(&ptype_lock);
1da177e4 438}
d1b19dff
ED
439EXPORT_SYMBOL(__dev_remove_pack);
440
1da177e4
LT
441/**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453void dev_remove_pack(struct packet_type *pt)
454{
455 __dev_remove_pack(pt);
4ec93edb 456
1da177e4
LT
457 synchronize_net();
458}
d1b19dff 459EXPORT_SYMBOL(dev_remove_pack);
1da177e4 460
62532da9
VY
461
462/**
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
465 *
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
469 *
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
473 */
474void dev_add_offload(struct packet_offload *po)
475{
bdef7de4 476 struct packet_offload *elem;
62532da9
VY
477
478 spin_lock(&offload_lock);
bdef7de4
DM
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
482 }
483 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
484 spin_unlock(&offload_lock);
485}
486EXPORT_SYMBOL(dev_add_offload);
487
488/**
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
491 *
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
496 *
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
500 */
1d143d9f 501static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
502{
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
505
c53aa505 506 spin_lock(&offload_lock);
62532da9
VY
507
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
512 }
513 }
514
515 pr_warn("dev_remove_offload: %p not found\n", po);
516out:
c53aa505 517 spin_unlock(&offload_lock);
62532da9 518}
62532da9
VY
519
520/**
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
523 *
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
528 *
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
531 */
532void dev_remove_offload(struct packet_offload *po)
533{
534 __dev_remove_offload(po);
535
536 synchronize_net();
537}
538EXPORT_SYMBOL(dev_remove_offload);
539
1da177e4
LT
540/******************************************************************************
541
542 Device Boot-time Settings Routines
543
544*******************************************************************************/
545
546/* Boot time configuration table */
547static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549/**
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
553 *
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
557 */
558static int netdev_boot_setup_add(char *name, struct ifmap *map)
559{
560 struct netdev_boot_setup *s;
561 int i;
562
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 567 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
570 }
571 }
572
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574}
575
576/**
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
579 *
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
584 */
585int netdev_boot_setup_check(struct net_device *dev)
586{
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
589
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 592 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
598 }
599 }
600 return 0;
601}
d1b19dff 602EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
603
604
605/**
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
609 *
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
614 */
615unsigned long netdev_boot_base(const char *prefix, int unit)
616{
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
620
621 sprintf(name, "%s%d", prefix, unit);
622
623 /*
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
626 */
881d966b 627 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
628 return 1;
629
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
634}
635
636/*
637 * Saves at boot time configured settings for any netdevice.
638 */
639int __init netdev_boot_setup(char *str)
640{
641 int ints[5];
642 struct ifmap map;
643
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
647
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
658
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
661}
662
663__setup("netdev=", netdev_boot_setup);
664
665/*******************************************************************************
666
667 Device Interface Subroutines
668
669*******************************************************************************/
670
a54acb3a
ND
671/**
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
674 *
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
677 */
678
679int dev_get_iflink(const struct net_device *dev)
680{
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
683
7a66bbc9 684 return dev->ifindex;
a54acb3a
ND
685}
686EXPORT_SYMBOL(dev_get_iflink);
687
fc4099f1
PS
688/**
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
692 *
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
696 */
697int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698{
699 struct ip_tunnel_info *info;
700
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
703
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
709
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711}
712EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
1da177e4
LT
714/**
715 * __dev_get_by_name - find a device by its name
c4ea43c5 716 * @net: the applicable net namespace
1da177e4
LT
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
881d966b 726struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 727{
0bd8d536
ED
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 730
b67bfe0d 731 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
0bd8d536 734
1da177e4
LT
735 return NULL;
736}
d1b19dff 737EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 738
72c9528b
ED
739/**
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
749 */
750
751struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752{
72c9528b
ED
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
755
b67bfe0d 756 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
759
760 return NULL;
761}
762EXPORT_SYMBOL(dev_get_by_name_rcu);
763
1da177e4
LT
764/**
765 * dev_get_by_name - find a device by its name
c4ea43c5 766 * @net: the applicable net namespace
1da177e4
LT
767 * @name: name to find
768 *
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
774 */
775
881d966b 776struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
777{
778 struct net_device *dev;
779
72c9528b
ED
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
782 if (dev)
783 dev_hold(dev);
72c9528b 784 rcu_read_unlock();
1da177e4
LT
785 return dev;
786}
d1b19dff 787EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
788
789/**
790 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 791 * @net: the applicable net namespace
1da177e4
LT
792 * @ifindex: index of device
793 *
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
799 */
800
881d966b 801struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 802{
0bd8d536
ED
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 805
b67bfe0d 806 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
807 if (dev->ifindex == ifindex)
808 return dev;
0bd8d536 809
1da177e4
LT
810 return NULL;
811}
d1b19dff 812EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 813
fb699dfd
ED
814/**
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
818 *
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
823 */
824
825struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826{
fb699dfd
ED
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
829
b67bfe0d 830 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
831 if (dev->ifindex == ifindex)
832 return dev;
833
834 return NULL;
835}
836EXPORT_SYMBOL(dev_get_by_index_rcu);
837
1da177e4
LT
838
839/**
840 * dev_get_by_index - find a device by its ifindex
c4ea43c5 841 * @net: the applicable net namespace
1da177e4
LT
842 * @ifindex: index of device
843 *
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
848 */
849
881d966b 850struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
851{
852 struct net_device *dev;
853
fb699dfd
ED
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
856 if (dev)
857 dev_hold(dev);
fb699dfd 858 rcu_read_unlock();
1da177e4
LT
859 return dev;
860}
d1b19dff 861EXPORT_SYMBOL(dev_get_by_index);
1da177e4 862
5dbe7c17
NS
863/**
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
868 *
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
872 */
873int netdev_get_name(struct net *net, char *name, int ifindex)
874{
875 struct net_device *dev;
876 unsigned int seq;
877
878retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
885 }
886
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
892 }
893
894 return 0;
895}
896
1da177e4 897/**
941666c2 898 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 899 * @net: the applicable net namespace
1da177e4
LT
900 * @type: media type of device
901 * @ha: hardware address
902 *
903 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
941666c2 906 * The returned device has not had its ref count increased
1da177e4
LT
907 * and the caller must therefore be careful about locking
908 *
1da177e4
LT
909 */
910
941666c2
ED
911struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
1da177e4
LT
913{
914 struct net_device *dev;
915
941666c2 916 for_each_netdev_rcu(net, dev)
1da177e4
LT
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
919 return dev;
920
921 return NULL;
1da177e4 922}
941666c2 923EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 924
881d966b 925struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
926{
927 struct net_device *dev;
928
4e9cac2b 929 ASSERT_RTNL();
881d966b 930 for_each_netdev(net, dev)
4e9cac2b 931 if (dev->type == type)
7562f876
PE
932 return dev;
933
934 return NULL;
4e9cac2b 935}
4e9cac2b
PM
936EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
881d966b 938struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 939{
99fe3c39 940 struct net_device *dev, *ret = NULL;
4e9cac2b 941
99fe3c39
ED
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
948 }
949 rcu_read_unlock();
950 return ret;
1da177e4 951}
1da177e4
LT
952EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954/**
6c555490 955 * __dev_get_by_flags - find any device with given flags
c4ea43c5 956 * @net: the applicable net namespace
1da177e4
LT
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
959 *
960 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 961 * is not found or a pointer to the device. Must be called inside
6c555490 962 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
963 */
964
6c555490
WC
965struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
1da177e4 967{
7562f876 968 struct net_device *dev, *ret;
1da177e4 969
6c555490
WC
970 ASSERT_RTNL();
971
7562f876 972 ret = NULL;
6c555490 973 for_each_netdev(net, dev) {
1da177e4 974 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 975 ret = dev;
1da177e4
LT
976 break;
977 }
978 }
7562f876 979 return ret;
1da177e4 980}
6c555490 981EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
982
983/**
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
986 *
987 * Network device names need to be valid file names to
c7fa9d18
DM
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
1da177e4 990 */
95f050bf 991bool dev_valid_name(const char *name)
1da177e4 992{
c7fa9d18 993 if (*name == '\0')
95f050bf 994 return false;
b6fe17d6 995 if (strlen(name) >= IFNAMSIZ)
95f050bf 996 return false;
c7fa9d18 997 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 998 return false;
c7fa9d18
DM
999
1000 while (*name) {
a4176a93 1001 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1002 return false;
c7fa9d18
DM
1003 name++;
1004 }
95f050bf 1005 return true;
1da177e4 1006}
d1b19dff 1007EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1008
1009/**
b267b179
EB
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1da177e4 1012 * @name: name format string
b267b179 1013 * @buf: scratch buffer and result name string
1da177e4
LT
1014 *
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1022 */
1023
b267b179 1024static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1025{
1026 int i = 0;
1da177e4
LT
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1029 unsigned long *inuse;
1da177e4
LT
1030 struct net_device *d;
1031
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
cfcabdcc 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1044 if (!inuse)
1045 return -ENOMEM;
1046
881d966b 1047 for_each_netdev(net, d) {
1da177e4
LT
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1052
1053 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1054 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1057 }
1058
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1061 }
1062
d9031024
OP
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1065 if (!__dev_get_by_name(net, buf))
1da177e4 1066 return i;
1da177e4
LT
1067
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1071 */
1072 return -ENFILE;
1073}
1074
b267b179
EB
1075/**
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089int dev_alloc_name(struct net_device *dev, const char *name)
1090{
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1094
c346dca1
YH
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
b267b179
EB
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1101}
d1b19dff 1102EXPORT_SYMBOL(dev_alloc_name);
b267b179 1103
828de4f6
G
1104static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
d9031024 1107{
828de4f6
G
1108 char buf[IFNAMSIZ];
1109 int ret;
8ce6cebc 1110
828de4f6
G
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1115}
1116
1117static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1120{
1121 BUG_ON(!net);
8ce6cebc 1122
d9031024
OP
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1125
1c5cae81 1126 if (strchr(name, '%'))
828de4f6 1127 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
8ce6cebc
DL
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1132
1133 return 0;
1134}
1da177e4
LT
1135
1136/**
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1140 *
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1143 */
cf04a4c7 1144int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1145{
238fa362 1146 unsigned char old_assign_type;
fcc5a03a 1147 char oldname[IFNAMSIZ];
1da177e4 1148 int err = 0;
fcc5a03a 1149 int ret;
881d966b 1150 struct net *net;
1da177e4
LT
1151
1152 ASSERT_RTNL();
c346dca1 1153 BUG_ON(!dev_net(dev));
1da177e4 1154
c346dca1 1155 net = dev_net(dev);
1da177e4
LT
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1158
30e6c9fa 1159 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1160
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1162 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1163 return 0;
c91f6df2 1164 }
c8d90dca 1165
fcc5a03a
HX
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1167
828de4f6 1168 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1169 if (err < 0) {
30e6c9fa 1170 write_seqcount_end(&devnet_rename_seq);
d9031024 1171 return err;
c91f6df2 1172 }
1da177e4 1173
6fe82a39
VF
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1176
238fa362
TG
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1179
fcc5a03a 1180rollback:
a1b3f594
EB
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1184 dev->name_assign_type = old_assign_type;
30e6c9fa 1185 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1186 return ret;
dcc99773 1187 }
7f988eab 1188
30e6c9fa 1189 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1190
5bb025fa
VF
1191 netdev_adjacent_rename_links(dev, oldname);
1192
7f988eab 1193 write_lock_bh(&dev_base_lock);
372b2312 1194 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1195 write_unlock_bh(&dev_base_lock);
1196
1197 synchronize_rcu();
1198
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1201 write_unlock_bh(&dev_base_lock);
1202
056925ab 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1204 ret = notifier_to_errno(ret);
1205
1206 if (ret) {
91e9c07b
ED
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
fcc5a03a 1209 err = ret;
30e6c9fa 1210 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1211 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1212 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1215 goto rollback;
91e9c07b 1216 } else {
7b6cd1ce 1217 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1218 dev->name, ret);
fcc5a03a
HX
1219 }
1220 }
1da177e4
LT
1221
1222 return err;
1223}
1224
0b815a1a
SH
1225/**
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
f0db275a 1229 * @len: limit of bytes to copy from info
0b815a1a
SH
1230 *
1231 * Set ifalias for a device,
1232 */
1233int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234{
7364e445
AK
1235 char *new_ifalias;
1236
0b815a1a
SH
1237 ASSERT_RTNL();
1238
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1241
96ca4a2c 1242 if (!len) {
388dfc2d
SK
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
96ca4a2c
OH
1245 return 0;
1246 }
1247
7364e445
AK
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
0b815a1a 1250 return -ENOMEM;
7364e445 1251 dev->ifalias = new_ifalias;
0b815a1a
SH
1252
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1255}
1256
1257
d8a33ac4 1258/**
3041a069 1259 * netdev_features_change - device changes features
d8a33ac4
SH
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed features.
1263 */
1264void netdev_features_change(struct net_device *dev)
1265{
056925ab 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1267}
1268EXPORT_SYMBOL(netdev_features_change);
1269
1da177e4
LT
1270/**
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1273 *
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1277 */
1278void netdev_state_change(struct net_device *dev)
1279{
1280 if (dev->flags & IFF_UP) {
54951194
LP
1281 struct netdev_notifier_change_info change_info;
1282
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
7f294054 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1287 }
1288}
d1b19dff 1289EXPORT_SYMBOL(netdev_state_change);
1da177e4 1290
ee89bab1
AW
1291/**
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1294 *
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1300 */
1301void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1302{
ee89bab1
AW
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
c1da4ac7 1306}
ee89bab1 1307EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1308
bd380811 1309static int __dev_open(struct net_device *dev)
1da177e4 1310{
d314774c 1311 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1312 int ret;
1da177e4 1313
e46b66bc
BH
1314 ASSERT_RTNL();
1315
1da177e4
LT
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1318
ca99ca14
NH
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1322 */
66b5552f 1323 netpoll_poll_disable(dev);
ca99ca14 1324
3b8bcfd5
JB
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1329
1da177e4 1330 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1331
d314774c
SH
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
bada339b 1334
d314774c
SH
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1da177e4 1337
66b5552f 1338 netpoll_poll_enable(dev);
ca99ca14 1339
bada339b
JG
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1da177e4 1343 dev->flags |= IFF_UP;
4417da66 1344 dev_set_rx_mode(dev);
1da177e4 1345 dev_activate(dev);
7bf23575 1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1347 }
bada339b 1348
1da177e4
LT
1349 return ret;
1350}
1351
1352/**
bd380811
PM
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1da177e4 1355 *
bd380811
PM
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1360 *
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1da177e4 1363 */
bd380811
PM
1364int dev_open(struct net_device *dev)
1365{
1366 int ret;
1367
bd380811
PM
1368 if (dev->flags & IFF_UP)
1369 return 0;
1370
bd380811
PM
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1374
7f294054 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378 return ret;
1379}
1380EXPORT_SYMBOL(dev_open);
1381
44345724 1382static int __dev_close_many(struct list_head *head)
1da177e4 1383{
44345724 1384 struct net_device *dev;
e46b66bc 1385
bd380811 1386 ASSERT_RTNL();
9d5010db
DM
1387 might_sleep();
1388
5cde2829 1389 list_for_each_entry(dev, head, close_list) {
3f4df206 1390 /* Temporarily disable netpoll until the interface is down */
66b5552f 1391 netpoll_poll_disable(dev);
3f4df206 1392
44345724 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1394
44345724 1395 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1396
44345724
OP
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1399 *
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1402 */
4e857c58 1403 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1404 }
1da177e4 1405
44345724 1406 dev_deactivate_many(head);
d8b2a4d2 1407
5cde2829 1408 list_for_each_entry(dev, head, close_list) {
44345724 1409 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1410
44345724
OP
1411 /*
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1414 *
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1417 */
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1420
44345724 1421 dev->flags &= ~IFF_UP;
66b5552f 1422 netpoll_poll_enable(dev);
44345724
OP
1423 }
1424
1425 return 0;
1426}
1427
1428static int __dev_close(struct net_device *dev)
1429{
f87e6f47 1430 int retval;
44345724
OP
1431 LIST_HEAD(single);
1432
5cde2829 1433 list_add(&dev->close_list, &single);
f87e6f47
LT
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
ca99ca14 1436
f87e6f47 1437 return retval;
44345724
OP
1438}
1439
99c4a26a 1440int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1441{
1442 struct net_device *dev, *tmp;
1da177e4 1443
5cde2829
EB
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1446 if (!(dev->flags & IFF_UP))
5cde2829 1447 list_del_init(&dev->close_list);
44345724
OP
1448
1449 __dev_close_many(head);
1da177e4 1450
5cde2829 1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1454 if (unlink)
1455 list_del_init(&dev->close_list);
44345724 1456 }
bd380811
PM
1457
1458 return 0;
1459}
99c4a26a 1460EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1461
1462/**
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1465 *
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1470 */
1471int dev_close(struct net_device *dev)
1472{
e14a5993
ED
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1da177e4 1475
5cde2829 1476 list_add(&dev->close_list, &single);
99c4a26a 1477 dev_close_many(&single, true);
e14a5993
ED
1478 list_del(&single);
1479 }
da6e378b 1480 return 0;
1da177e4 1481}
d1b19dff 1482EXPORT_SYMBOL(dev_close);
1da177e4
LT
1483
1484
0187bdfb
BH
1485/**
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1492 */
1493void dev_disable_lro(struct net_device *dev)
1494{
fbe168ba
MK
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
529d0489 1497
bc5787c6
MM
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
27660515 1500
22d5969f
MM
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1503
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
0187bdfb
BH
1506}
1507EXPORT_SYMBOL(dev_disable_lro);
1508
351638e7
JP
1509static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1511{
1512 struct netdev_notifier_info info;
1513
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1516}
0187bdfb 1517
881d966b
EB
1518static int dev_boot_phase = 1;
1519
1da177e4
LT
1520/**
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1523 *
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1528 *
1529 * When registered all registration and up events are replayed
4ec93edb 1530 * to the new notifier to allow device to have a race free
1da177e4
LT
1531 * view of the network device list.
1532 */
1533
1534int register_netdevice_notifier(struct notifier_block *nb)
1535{
1536 struct net_device *dev;
fcc5a03a 1537 struct net_device *last;
881d966b 1538 struct net *net;
1da177e4
LT
1539 int err;
1540
1541 rtnl_lock();
f07d5b94 1542 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1543 if (err)
1544 goto unlock;
881d966b
EB
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
351638e7 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1553
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1da177e4 1556
351638e7 1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1558 }
1da177e4 1559 }
fcc5a03a
HX
1560
1561unlock:
1da177e4
LT
1562 rtnl_unlock();
1563 return err;
fcc5a03a
HX
1564
1565rollback:
1566 last = dev;
881d966b
EB
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
8f891489 1570 goto outroll;
fcc5a03a 1571
881d966b 1572 if (dev->flags & IFF_UP) {
351638e7
JP
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1576 }
351638e7 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1578 }
fcc5a03a 1579 }
c67625a1 1580
8f891489 1581outroll:
c67625a1 1582 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1583 goto unlock;
1da177e4 1584}
d1b19dff 1585EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1586
1587/**
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1590 *
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
7d3d43da
EB
1595 *
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1da177e4
LT
1599 */
1600
1601int unregister_netdevice_notifier(struct notifier_block *nb)
1602{
7d3d43da
EB
1603 struct net_device *dev;
1604 struct net *net;
9f514950
HX
1605 int err;
1606
1607 rtnl_lock();
f07d5b94 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1609 if (err)
1610 goto unlock;
1611
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
351638e7
JP
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1618 }
351638e7 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1620 }
1621 }
1622unlock:
9f514950
HX
1623 rtnl_unlock();
1624 return err;
1da177e4 1625}
d1b19dff 1626EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1627
351638e7
JP
1628/**
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1633 *
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1636 */
1637
1d143d9f 1638static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
351638e7
JP
1641{
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1645}
351638e7 1646
1da177e4
LT
1647/**
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
c4ea43c5 1650 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1651 *
1652 * Call all network notifier blocks. Parameters and return value
f07d5b94 1653 * are as for raw_notifier_call_chain().
1da177e4
LT
1654 */
1655
ad7379d4 1656int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1657{
351638e7
JP
1658 struct netdev_notifier_info info;
1659
1660 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1661}
edf947f1 1662EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1663
1cf51900 1664#ifdef CONFIG_NET_INGRESS
4577139b
DB
1665static struct static_key ingress_needed __read_mostly;
1666
1667void net_inc_ingress_queue(void)
1668{
1669 static_key_slow_inc(&ingress_needed);
1670}
1671EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673void net_dec_ingress_queue(void)
1674{
1675 static_key_slow_dec(&ingress_needed);
1676}
1677EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678#endif
1679
1f211a1b
DB
1680#ifdef CONFIG_NET_EGRESS
1681static struct static_key egress_needed __read_mostly;
1682
1683void net_inc_egress_queue(void)
1684{
1685 static_key_slow_inc(&egress_needed);
1686}
1687EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689void net_dec_egress_queue(void)
1690{
1691 static_key_slow_dec(&egress_needed);
1692}
1693EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694#endif
1695
c5905afb 1696static struct static_key netstamp_needed __read_mostly;
b90e5794 1697#ifdef HAVE_JUMP_LABEL
c5905afb 1698/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1699 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1700 * static_key_slow_dec() calls.
b90e5794
ED
1701 */
1702static atomic_t netstamp_needed_deferred;
1703#endif
1da177e4
LT
1704
1705void net_enable_timestamp(void)
1706{
b90e5794
ED
1707#ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710 if (deferred) {
1711 while (--deferred)
c5905afb 1712 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1713 return;
1714 }
1715#endif
c5905afb 1716 static_key_slow_inc(&netstamp_needed);
1da177e4 1717}
d1b19dff 1718EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1719
1720void net_disable_timestamp(void)
1721{
b90e5794
ED
1722#ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1725 return;
1726 }
1727#endif
c5905afb 1728 static_key_slow_dec(&netstamp_needed);
1da177e4 1729}
d1b19dff 1730EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1731
3b098e2d 1732static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1733{
588f0330 1734 skb->tstamp.tv64 = 0;
c5905afb 1735 if (static_key_false(&netstamp_needed))
a61bbcf2 1736 __net_timestamp(skb);
1da177e4
LT
1737}
1738
588f0330 1739#define net_timestamp_check(COND, SKB) \
c5905afb 1740 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1741 if ((COND) && !(SKB)->tstamp.tv64) \
1742 __net_timestamp(SKB); \
1743 } \
3b098e2d 1744
f4b05d27 1745bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1746{
1747 unsigned int len;
1748
1749 if (!(dev->flags & IFF_UP))
1750 return false;
1751
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1754 return true;
1755
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1758 */
1759 if (skb_is_gso(skb))
1760 return true;
1761
1762 return false;
1763}
1ee481fb 1764EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1765
a0265d28
HX
1766int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767{
bbbf2df0
WB
1768 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1769 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1770 atomic_long_inc(&dev->rx_dropped);
1771 kfree_skb(skb);
1772 return NET_RX_DROP;
1773 }
1774
1775 skb_scrub_packet(skb, true);
08b4b8ea 1776 skb->priority = 0;
a0265d28 1777 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1778 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1779
1780 return 0;
1781}
1782EXPORT_SYMBOL_GPL(__dev_forward_skb);
1783
44540960
AB
1784/**
1785 * dev_forward_skb - loopback an skb to another netif
1786 *
1787 * @dev: destination network device
1788 * @skb: buffer to forward
1789 *
1790 * return values:
1791 * NET_RX_SUCCESS (no congestion)
6ec82562 1792 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1793 *
1794 * dev_forward_skb can be used for injecting an skb from the
1795 * start_xmit function of one device into the receive queue
1796 * of another device.
1797 *
1798 * The receiving device may be in another namespace, so
1799 * we have to clear all information in the skb that could
1800 * impact namespace isolation.
1801 */
1802int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1803{
a0265d28 1804 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1805}
1806EXPORT_SYMBOL_GPL(dev_forward_skb);
1807
71d9dec2
CG
1808static inline int deliver_skb(struct sk_buff *skb,
1809 struct packet_type *pt_prev,
1810 struct net_device *orig_dev)
1811{
1080e512
MT
1812 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1813 return -ENOMEM;
71d9dec2
CG
1814 atomic_inc(&skb->users);
1815 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1816}
1817
7866a621
SN
1818static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1819 struct packet_type **pt,
fbcb2170
JP
1820 struct net_device *orig_dev,
1821 __be16 type,
7866a621
SN
1822 struct list_head *ptype_list)
1823{
1824 struct packet_type *ptype, *pt_prev = *pt;
1825
1826 list_for_each_entry_rcu(ptype, ptype_list, list) {
1827 if (ptype->type != type)
1828 continue;
1829 if (pt_prev)
fbcb2170 1830 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1831 pt_prev = ptype;
1832 }
1833 *pt = pt_prev;
1834}
1835
c0de08d0
EL
1836static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1837{
a3d744e9 1838 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1839 return false;
1840
1841 if (ptype->id_match)
1842 return ptype->id_match(ptype, skb->sk);
1843 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1844 return true;
1845
1846 return false;
1847}
1848
1da177e4
LT
1849/*
1850 * Support routine. Sends outgoing frames to any network
1851 * taps currently in use.
1852 */
1853
74b20582 1854void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1855{
1856 struct packet_type *ptype;
71d9dec2
CG
1857 struct sk_buff *skb2 = NULL;
1858 struct packet_type *pt_prev = NULL;
7866a621 1859 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1860
1da177e4 1861 rcu_read_lock();
7866a621
SN
1862again:
1863 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1864 /* Never send packets back to the socket
1865 * they originated from - MvS (miquels@drinkel.ow.org)
1866 */
7866a621
SN
1867 if (skb_loop_sk(ptype, skb))
1868 continue;
71d9dec2 1869
7866a621
SN
1870 if (pt_prev) {
1871 deliver_skb(skb2, pt_prev, skb->dev);
1872 pt_prev = ptype;
1873 continue;
1874 }
1da177e4 1875
7866a621
SN
1876 /* need to clone skb, done only once */
1877 skb2 = skb_clone(skb, GFP_ATOMIC);
1878 if (!skb2)
1879 goto out_unlock;
70978182 1880
7866a621 1881 net_timestamp_set(skb2);
1da177e4 1882
7866a621
SN
1883 /* skb->nh should be correctly
1884 * set by sender, so that the second statement is
1885 * just protection against buggy protocols.
1886 */
1887 skb_reset_mac_header(skb2);
1888
1889 if (skb_network_header(skb2) < skb2->data ||
1890 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1891 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1892 ntohs(skb2->protocol),
1893 dev->name);
1894 skb_reset_network_header(skb2);
1da177e4 1895 }
7866a621
SN
1896
1897 skb2->transport_header = skb2->network_header;
1898 skb2->pkt_type = PACKET_OUTGOING;
1899 pt_prev = ptype;
1900 }
1901
1902 if (ptype_list == &ptype_all) {
1903 ptype_list = &dev->ptype_all;
1904 goto again;
1da177e4 1905 }
7866a621 1906out_unlock:
71d9dec2
CG
1907 if (pt_prev)
1908 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1909 rcu_read_unlock();
1910}
74b20582 1911EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1912
2c53040f
BH
1913/**
1914 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1915 * @dev: Network device
1916 * @txq: number of queues available
1917 *
1918 * If real_num_tx_queues is changed the tc mappings may no longer be
1919 * valid. To resolve this verify the tc mapping remains valid and if
1920 * not NULL the mapping. With no priorities mapping to this
1921 * offset/count pair it will no longer be used. In the worst case TC0
1922 * is invalid nothing can be done so disable priority mappings. If is
1923 * expected that drivers will fix this mapping if they can before
1924 * calling netif_set_real_num_tx_queues.
1925 */
bb134d22 1926static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1927{
1928 int i;
1929 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1930
1931 /* If TC0 is invalidated disable TC mapping */
1932 if (tc->offset + tc->count > txq) {
7b6cd1ce 1933 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1934 dev->num_tc = 0;
1935 return;
1936 }
1937
1938 /* Invalidated prio to tc mappings set to TC0 */
1939 for (i = 1; i < TC_BITMASK + 1; i++) {
1940 int q = netdev_get_prio_tc_map(dev, i);
1941
1942 tc = &dev->tc_to_txq[q];
1943 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1944 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1945 i, q);
4f57c087
JF
1946 netdev_set_prio_tc_map(dev, i, 0);
1947 }
1948 }
1949}
1950
537c00de
AD
1951#ifdef CONFIG_XPS
1952static DEFINE_MUTEX(xps_map_mutex);
1953#define xmap_dereference(P) \
1954 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1955
10cdc3f3
AD
1956static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1957 int cpu, u16 index)
537c00de 1958{
10cdc3f3
AD
1959 struct xps_map *map = NULL;
1960 int pos;
537c00de 1961
10cdc3f3
AD
1962 if (dev_maps)
1963 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1964
10cdc3f3
AD
1965 for (pos = 0; map && pos < map->len; pos++) {
1966 if (map->queues[pos] == index) {
537c00de
AD
1967 if (map->len > 1) {
1968 map->queues[pos] = map->queues[--map->len];
1969 } else {
10cdc3f3 1970 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1971 kfree_rcu(map, rcu);
1972 map = NULL;
1973 }
10cdc3f3 1974 break;
537c00de 1975 }
537c00de
AD
1976 }
1977
10cdc3f3
AD
1978 return map;
1979}
1980
024e9679 1981static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1982{
1983 struct xps_dev_maps *dev_maps;
024e9679 1984 int cpu, i;
10cdc3f3
AD
1985 bool active = false;
1986
1987 mutex_lock(&xps_map_mutex);
1988 dev_maps = xmap_dereference(dev->xps_maps);
1989
1990 if (!dev_maps)
1991 goto out_no_maps;
1992
1993 for_each_possible_cpu(cpu) {
024e9679
AD
1994 for (i = index; i < dev->num_tx_queues; i++) {
1995 if (!remove_xps_queue(dev_maps, cpu, i))
1996 break;
1997 }
1998 if (i == dev->num_tx_queues)
10cdc3f3
AD
1999 active = true;
2000 }
2001
2002 if (!active) {
537c00de
AD
2003 RCU_INIT_POINTER(dev->xps_maps, NULL);
2004 kfree_rcu(dev_maps, rcu);
2005 }
2006
024e9679
AD
2007 for (i = index; i < dev->num_tx_queues; i++)
2008 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2009 NUMA_NO_NODE);
2010
537c00de
AD
2011out_no_maps:
2012 mutex_unlock(&xps_map_mutex);
2013}
2014
01c5f864
AD
2015static struct xps_map *expand_xps_map(struct xps_map *map,
2016 int cpu, u16 index)
2017{
2018 struct xps_map *new_map;
2019 int alloc_len = XPS_MIN_MAP_ALLOC;
2020 int i, pos;
2021
2022 for (pos = 0; map && pos < map->len; pos++) {
2023 if (map->queues[pos] != index)
2024 continue;
2025 return map;
2026 }
2027
2028 /* Need to add queue to this CPU's existing map */
2029 if (map) {
2030 if (pos < map->alloc_len)
2031 return map;
2032
2033 alloc_len = map->alloc_len * 2;
2034 }
2035
2036 /* Need to allocate new map to store queue on this CPU's map */
2037 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2038 cpu_to_node(cpu));
2039 if (!new_map)
2040 return NULL;
2041
2042 for (i = 0; i < pos; i++)
2043 new_map->queues[i] = map->queues[i];
2044 new_map->alloc_len = alloc_len;
2045 new_map->len = pos;
2046
2047 return new_map;
2048}
2049
3573540c
MT
2050int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2051 u16 index)
537c00de 2052{
01c5f864 2053 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2054 struct xps_map *map, *new_map;
537c00de 2055 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2056 int cpu, numa_node_id = -2;
2057 bool active = false;
537c00de
AD
2058
2059 mutex_lock(&xps_map_mutex);
2060
2061 dev_maps = xmap_dereference(dev->xps_maps);
2062
01c5f864
AD
2063 /* allocate memory for queue storage */
2064 for_each_online_cpu(cpu) {
2065 if (!cpumask_test_cpu(cpu, mask))
2066 continue;
2067
2068 if (!new_dev_maps)
2069 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2070 if (!new_dev_maps) {
2071 mutex_unlock(&xps_map_mutex);
01c5f864 2072 return -ENOMEM;
2bb60cb9 2073 }
01c5f864
AD
2074
2075 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2076 NULL;
2077
2078 map = expand_xps_map(map, cpu, index);
2079 if (!map)
2080 goto error;
2081
2082 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2083 }
2084
2085 if (!new_dev_maps)
2086 goto out_no_new_maps;
2087
537c00de 2088 for_each_possible_cpu(cpu) {
01c5f864
AD
2089 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2090 /* add queue to CPU maps */
2091 int pos = 0;
2092
2093 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2094 while ((pos < map->len) && (map->queues[pos] != index))
2095 pos++;
2096
2097 if (pos == map->len)
2098 map->queues[map->len++] = index;
537c00de 2099#ifdef CONFIG_NUMA
537c00de
AD
2100 if (numa_node_id == -2)
2101 numa_node_id = cpu_to_node(cpu);
2102 else if (numa_node_id != cpu_to_node(cpu))
2103 numa_node_id = -1;
537c00de 2104#endif
01c5f864
AD
2105 } else if (dev_maps) {
2106 /* fill in the new device map from the old device map */
2107 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2108 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2109 }
01c5f864 2110
537c00de
AD
2111 }
2112
01c5f864
AD
2113 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2114
537c00de 2115 /* Cleanup old maps */
01c5f864
AD
2116 if (dev_maps) {
2117 for_each_possible_cpu(cpu) {
2118 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2119 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2120 if (map && map != new_map)
2121 kfree_rcu(map, rcu);
2122 }
537c00de 2123
01c5f864 2124 kfree_rcu(dev_maps, rcu);
537c00de
AD
2125 }
2126
01c5f864
AD
2127 dev_maps = new_dev_maps;
2128 active = true;
537c00de 2129
01c5f864
AD
2130out_no_new_maps:
2131 /* update Tx queue numa node */
537c00de
AD
2132 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2133 (numa_node_id >= 0) ? numa_node_id :
2134 NUMA_NO_NODE);
2135
01c5f864
AD
2136 if (!dev_maps)
2137 goto out_no_maps;
2138
2139 /* removes queue from unused CPUs */
2140 for_each_possible_cpu(cpu) {
2141 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2142 continue;
2143
2144 if (remove_xps_queue(dev_maps, cpu, index))
2145 active = true;
2146 }
2147
2148 /* free map if not active */
2149 if (!active) {
2150 RCU_INIT_POINTER(dev->xps_maps, NULL);
2151 kfree_rcu(dev_maps, rcu);
2152 }
2153
2154out_no_maps:
537c00de
AD
2155 mutex_unlock(&xps_map_mutex);
2156
2157 return 0;
2158error:
01c5f864
AD
2159 /* remove any maps that we added */
2160 for_each_possible_cpu(cpu) {
2161 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2162 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2163 NULL;
2164 if (new_map && new_map != map)
2165 kfree(new_map);
2166 }
2167
537c00de
AD
2168 mutex_unlock(&xps_map_mutex);
2169
537c00de
AD
2170 kfree(new_dev_maps);
2171 return -ENOMEM;
2172}
2173EXPORT_SYMBOL(netif_set_xps_queue);
2174
2175#endif
f0796d5c
JF
2176/*
2177 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2178 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2179 */
e6484930 2180int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2181{
1d24eb48
TH
2182 int rc;
2183
e6484930
TH
2184 if (txq < 1 || txq > dev->num_tx_queues)
2185 return -EINVAL;
f0796d5c 2186
5c56580b
BH
2187 if (dev->reg_state == NETREG_REGISTERED ||
2188 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2189 ASSERT_RTNL();
2190
1d24eb48
TH
2191 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2192 txq);
bf264145
TH
2193 if (rc)
2194 return rc;
2195
4f57c087
JF
2196 if (dev->num_tc)
2197 netif_setup_tc(dev, txq);
2198
024e9679 2199 if (txq < dev->real_num_tx_queues) {
e6484930 2200 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2201#ifdef CONFIG_XPS
2202 netif_reset_xps_queues_gt(dev, txq);
2203#endif
2204 }
f0796d5c 2205 }
e6484930
TH
2206
2207 dev->real_num_tx_queues = txq;
2208 return 0;
f0796d5c
JF
2209}
2210EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2211
a953be53 2212#ifdef CONFIG_SYSFS
62fe0b40
BH
2213/**
2214 * netif_set_real_num_rx_queues - set actual number of RX queues used
2215 * @dev: Network device
2216 * @rxq: Actual number of RX queues
2217 *
2218 * This must be called either with the rtnl_lock held or before
2219 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2220 * negative error code. If called before registration, it always
2221 * succeeds.
62fe0b40
BH
2222 */
2223int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2224{
2225 int rc;
2226
bd25fa7b
TH
2227 if (rxq < 1 || rxq > dev->num_rx_queues)
2228 return -EINVAL;
2229
62fe0b40
BH
2230 if (dev->reg_state == NETREG_REGISTERED) {
2231 ASSERT_RTNL();
2232
62fe0b40
BH
2233 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2234 rxq);
2235 if (rc)
2236 return rc;
62fe0b40
BH
2237 }
2238
2239 dev->real_num_rx_queues = rxq;
2240 return 0;
2241}
2242EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2243#endif
2244
2c53040f
BH
2245/**
2246 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2247 *
2248 * This routine should set an upper limit on the number of RSS queues
2249 * used by default by multiqueue devices.
2250 */
a55b138b 2251int netif_get_num_default_rss_queues(void)
16917b87 2252{
40e4e713
HS
2253 return is_kdump_kernel() ?
2254 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2255}
2256EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2257
3bcb846c 2258static void __netif_reschedule(struct Qdisc *q)
56079431 2259{
def82a1d
JP
2260 struct softnet_data *sd;
2261 unsigned long flags;
56079431 2262
def82a1d 2263 local_irq_save(flags);
903ceff7 2264 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2265 q->next_sched = NULL;
2266 *sd->output_queue_tailp = q;
2267 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2268 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2269 local_irq_restore(flags);
2270}
2271
2272void __netif_schedule(struct Qdisc *q)
2273{
2274 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2275 __netif_reschedule(q);
56079431
DV
2276}
2277EXPORT_SYMBOL(__netif_schedule);
2278
e6247027
ED
2279struct dev_kfree_skb_cb {
2280 enum skb_free_reason reason;
2281};
2282
2283static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2284{
e6247027
ED
2285 return (struct dev_kfree_skb_cb *)skb->cb;
2286}
2287
46e5da40
JF
2288void netif_schedule_queue(struct netdev_queue *txq)
2289{
2290 rcu_read_lock();
2291 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2292 struct Qdisc *q = rcu_dereference(txq->qdisc);
2293
2294 __netif_schedule(q);
2295 }
2296 rcu_read_unlock();
2297}
2298EXPORT_SYMBOL(netif_schedule_queue);
2299
2300/**
2301 * netif_wake_subqueue - allow sending packets on subqueue
2302 * @dev: network device
2303 * @queue_index: sub queue index
2304 *
2305 * Resume individual transmit queue of a device with multiple transmit queues.
2306 */
2307void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2308{
2309 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2310
2311 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2312 struct Qdisc *q;
2313
2314 rcu_read_lock();
2315 q = rcu_dereference(txq->qdisc);
2316 __netif_schedule(q);
2317 rcu_read_unlock();
2318 }
2319}
2320EXPORT_SYMBOL(netif_wake_subqueue);
2321
2322void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2323{
2324 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2325 struct Qdisc *q;
2326
2327 rcu_read_lock();
2328 q = rcu_dereference(dev_queue->qdisc);
2329 __netif_schedule(q);
2330 rcu_read_unlock();
2331 }
2332}
2333EXPORT_SYMBOL(netif_tx_wake_queue);
2334
e6247027 2335void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2336{
e6247027 2337 unsigned long flags;
56079431 2338
e6247027
ED
2339 if (likely(atomic_read(&skb->users) == 1)) {
2340 smp_rmb();
2341 atomic_set(&skb->users, 0);
2342 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2343 return;
bea3348e 2344 }
e6247027
ED
2345 get_kfree_skb_cb(skb)->reason = reason;
2346 local_irq_save(flags);
2347 skb->next = __this_cpu_read(softnet_data.completion_queue);
2348 __this_cpu_write(softnet_data.completion_queue, skb);
2349 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2350 local_irq_restore(flags);
56079431 2351}
e6247027 2352EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2353
e6247027 2354void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2355{
2356 if (in_irq() || irqs_disabled())
e6247027 2357 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2358 else
2359 dev_kfree_skb(skb);
2360}
e6247027 2361EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2362
2363
bea3348e
SH
2364/**
2365 * netif_device_detach - mark device as removed
2366 * @dev: network device
2367 *
2368 * Mark device as removed from system and therefore no longer available.
2369 */
56079431
DV
2370void netif_device_detach(struct net_device *dev)
2371{
2372 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2373 netif_running(dev)) {
d543103a 2374 netif_tx_stop_all_queues(dev);
56079431
DV
2375 }
2376}
2377EXPORT_SYMBOL(netif_device_detach);
2378
bea3348e
SH
2379/**
2380 * netif_device_attach - mark device as attached
2381 * @dev: network device
2382 *
2383 * Mark device as attached from system and restart if needed.
2384 */
56079431
DV
2385void netif_device_attach(struct net_device *dev)
2386{
2387 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2388 netif_running(dev)) {
d543103a 2389 netif_tx_wake_all_queues(dev);
4ec93edb 2390 __netdev_watchdog_up(dev);
56079431
DV
2391 }
2392}
2393EXPORT_SYMBOL(netif_device_attach);
2394
5605c762
JP
2395/*
2396 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2397 * to be used as a distribution range.
2398 */
2399u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2400 unsigned int num_tx_queues)
2401{
2402 u32 hash;
2403 u16 qoffset = 0;
2404 u16 qcount = num_tx_queues;
2405
2406 if (skb_rx_queue_recorded(skb)) {
2407 hash = skb_get_rx_queue(skb);
2408 while (unlikely(hash >= num_tx_queues))
2409 hash -= num_tx_queues;
2410 return hash;
2411 }
2412
2413 if (dev->num_tc) {
2414 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2415 qoffset = dev->tc_to_txq[tc].offset;
2416 qcount = dev->tc_to_txq[tc].count;
2417 }
2418
2419 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2420}
2421EXPORT_SYMBOL(__skb_tx_hash);
2422
36c92474
BH
2423static void skb_warn_bad_offload(const struct sk_buff *skb)
2424{
84d15ae5 2425 static const netdev_features_t null_features;
36c92474 2426 struct net_device *dev = skb->dev;
88ad4175 2427 const char *name = "";
36c92474 2428
c846ad9b
BG
2429 if (!net_ratelimit())
2430 return;
2431
88ad4175
BM
2432 if (dev) {
2433 if (dev->dev.parent)
2434 name = dev_driver_string(dev->dev.parent);
2435 else
2436 name = netdev_name(dev);
2437 }
36c92474
BH
2438 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2439 "gso_type=%d ip_summed=%d\n",
88ad4175 2440 name, dev ? &dev->features : &null_features,
65e9d2fa 2441 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2442 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2443 skb_shinfo(skb)->gso_type, skb->ip_summed);
2444}
2445
1da177e4
LT
2446/*
2447 * Invalidate hardware checksum when packet is to be mangled, and
2448 * complete checksum manually on outgoing path.
2449 */
84fa7933 2450int skb_checksum_help(struct sk_buff *skb)
1da177e4 2451{
d3bc23e7 2452 __wsum csum;
663ead3b 2453 int ret = 0, offset;
1da177e4 2454
84fa7933 2455 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2456 goto out_set_summed;
2457
2458 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2459 skb_warn_bad_offload(skb);
2460 return -EINVAL;
1da177e4
LT
2461 }
2462
cef401de
ED
2463 /* Before computing a checksum, we should make sure no frag could
2464 * be modified by an external entity : checksum could be wrong.
2465 */
2466 if (skb_has_shared_frag(skb)) {
2467 ret = __skb_linearize(skb);
2468 if (ret)
2469 goto out;
2470 }
2471
55508d60 2472 offset = skb_checksum_start_offset(skb);
a030847e
HX
2473 BUG_ON(offset >= skb_headlen(skb));
2474 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2475
2476 offset += skb->csum_offset;
2477 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2478
2479 if (skb_cloned(skb) &&
2480 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2481 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2482 if (ret)
2483 goto out;
2484 }
2485
a030847e 2486 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2487out_set_summed:
1da177e4 2488 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2489out:
1da177e4
LT
2490 return ret;
2491}
d1b19dff 2492EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2493
53d6471c 2494__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2495{
252e3346 2496 __be16 type = skb->protocol;
f6a78bfc 2497
19acc327
PS
2498 /* Tunnel gso handlers can set protocol to ethernet. */
2499 if (type == htons(ETH_P_TEB)) {
2500 struct ethhdr *eth;
2501
2502 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2503 return 0;
2504
2505 eth = (struct ethhdr *)skb_mac_header(skb);
2506 type = eth->h_proto;
2507 }
2508
d4bcef3f 2509 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2510}
2511
2512/**
2513 * skb_mac_gso_segment - mac layer segmentation handler.
2514 * @skb: buffer to segment
2515 * @features: features for the output path (see dev->features)
2516 */
2517struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2518 netdev_features_t features)
2519{
2520 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2521 struct packet_offload *ptype;
53d6471c
VY
2522 int vlan_depth = skb->mac_len;
2523 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2524
2525 if (unlikely(!type))
2526 return ERR_PTR(-EINVAL);
2527
53d6471c 2528 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2529
2530 rcu_read_lock();
22061d80 2531 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2532 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2533 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2534 break;
2535 }
2536 }
2537 rcu_read_unlock();
2538
98e399f8 2539 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2540
f6a78bfc
HX
2541 return segs;
2542}
05e8ef4a
PS
2543EXPORT_SYMBOL(skb_mac_gso_segment);
2544
2545
2546/* openvswitch calls this on rx path, so we need a different check.
2547 */
2548static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2549{
2550 if (tx_path)
2551 return skb->ip_summed != CHECKSUM_PARTIAL;
2552 else
2553 return skb->ip_summed == CHECKSUM_NONE;
2554}
2555
2556/**
2557 * __skb_gso_segment - Perform segmentation on skb.
2558 * @skb: buffer to segment
2559 * @features: features for the output path (see dev->features)
2560 * @tx_path: whether it is called in TX path
2561 *
2562 * This function segments the given skb and returns a list of segments.
2563 *
2564 * It may return NULL if the skb requires no segmentation. This is
2565 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2566 *
2567 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2568 */
2569struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2570 netdev_features_t features, bool tx_path)
2571{
2572 if (unlikely(skb_needs_check(skb, tx_path))) {
2573 int err;
2574
2575 skb_warn_bad_offload(skb);
2576
a40e0a66 2577 err = skb_cow_head(skb, 0);
2578 if (err < 0)
05e8ef4a
PS
2579 return ERR_PTR(err);
2580 }
2581
802ab55a
AD
2582 /* Only report GSO partial support if it will enable us to
2583 * support segmentation on this frame without needing additional
2584 * work.
2585 */
2586 if (features & NETIF_F_GSO_PARTIAL) {
2587 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2588 struct net_device *dev = skb->dev;
2589
2590 partial_features |= dev->features & dev->gso_partial_features;
2591 if (!skb_gso_ok(skb, features | partial_features))
2592 features &= ~NETIF_F_GSO_PARTIAL;
2593 }
2594
9207f9d4
KK
2595 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2596 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2597
68c33163 2598 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2599 SKB_GSO_CB(skb)->encap_level = 0;
2600
05e8ef4a
PS
2601 skb_reset_mac_header(skb);
2602 skb_reset_mac_len(skb);
2603
2604 return skb_mac_gso_segment(skb, features);
2605}
12b0004d 2606EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2607
fb286bb2
HX
2608/* Take action when hardware reception checksum errors are detected. */
2609#ifdef CONFIG_BUG
2610void netdev_rx_csum_fault(struct net_device *dev)
2611{
2612 if (net_ratelimit()) {
7b6cd1ce 2613 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2614 dump_stack();
2615 }
2616}
2617EXPORT_SYMBOL(netdev_rx_csum_fault);
2618#endif
2619
1da177e4
LT
2620/* Actually, we should eliminate this check as soon as we know, that:
2621 * 1. IOMMU is present and allows to map all the memory.
2622 * 2. No high memory really exists on this machine.
2623 */
2624
c1e756bf 2625static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2626{
3d3a8533 2627#ifdef CONFIG_HIGHMEM
1da177e4 2628 int i;
5acbbd42 2629 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2630 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2631 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2632 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2633 return 1;
ea2ab693 2634 }
5acbbd42 2635 }
1da177e4 2636
5acbbd42
FT
2637 if (PCI_DMA_BUS_IS_PHYS) {
2638 struct device *pdev = dev->dev.parent;
1da177e4 2639
9092c658
ED
2640 if (!pdev)
2641 return 0;
5acbbd42 2642 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2643 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2644 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2645 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2646 return 1;
2647 }
2648 }
3d3a8533 2649#endif
1da177e4
LT
2650 return 0;
2651}
1da177e4 2652
3b392ddb
SH
2653/* If MPLS offload request, verify we are testing hardware MPLS features
2654 * instead of standard features for the netdev.
2655 */
d0edc7bf 2656#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2657static netdev_features_t net_mpls_features(struct sk_buff *skb,
2658 netdev_features_t features,
2659 __be16 type)
2660{
25cd9ba0 2661 if (eth_p_mpls(type))
3b392ddb
SH
2662 features &= skb->dev->mpls_features;
2663
2664 return features;
2665}
2666#else
2667static netdev_features_t net_mpls_features(struct sk_buff *skb,
2668 netdev_features_t features,
2669 __be16 type)
2670{
2671 return features;
2672}
2673#endif
2674
c8f44aff 2675static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2676 netdev_features_t features)
f01a5236 2677{
53d6471c 2678 int tmp;
3b392ddb
SH
2679 __be16 type;
2680
2681 type = skb_network_protocol(skb, &tmp);
2682 features = net_mpls_features(skb, features, type);
53d6471c 2683
c0d680e5 2684 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2685 !can_checksum_protocol(features, type)) {
996e8021 2686 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2687 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2688 features &= ~NETIF_F_SG;
2689 }
2690
2691 return features;
2692}
2693
e38f3025
TM
2694netdev_features_t passthru_features_check(struct sk_buff *skb,
2695 struct net_device *dev,
2696 netdev_features_t features)
2697{
2698 return features;
2699}
2700EXPORT_SYMBOL(passthru_features_check);
2701
8cb65d00
TM
2702static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2703 struct net_device *dev,
2704 netdev_features_t features)
2705{
2706 return vlan_features_check(skb, features);
2707}
2708
cbc53e08
AD
2709static netdev_features_t gso_features_check(const struct sk_buff *skb,
2710 struct net_device *dev,
2711 netdev_features_t features)
2712{
2713 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2714
2715 if (gso_segs > dev->gso_max_segs)
2716 return features & ~NETIF_F_GSO_MASK;
2717
802ab55a
AD
2718 /* Support for GSO partial features requires software
2719 * intervention before we can actually process the packets
2720 * so we need to strip support for any partial features now
2721 * and we can pull them back in after we have partially
2722 * segmented the frame.
2723 */
2724 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2725 features &= ~dev->gso_partial_features;
2726
2727 /* Make sure to clear the IPv4 ID mangling feature if the
2728 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2729 */
2730 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2731 struct iphdr *iph = skb->encapsulation ?
2732 inner_ip_hdr(skb) : ip_hdr(skb);
2733
2734 if (!(iph->frag_off & htons(IP_DF)))
2735 features &= ~NETIF_F_TSO_MANGLEID;
2736 }
2737
2738 return features;
2739}
2740
c1e756bf 2741netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2742{
5f35227e 2743 struct net_device *dev = skb->dev;
fcbeb976 2744 netdev_features_t features = dev->features;
58e998c6 2745
cbc53e08
AD
2746 if (skb_is_gso(skb))
2747 features = gso_features_check(skb, dev, features);
30b678d8 2748
5f35227e
JG
2749 /* If encapsulation offload request, verify we are testing
2750 * hardware encapsulation features instead of standard
2751 * features for the netdev
2752 */
2753 if (skb->encapsulation)
2754 features &= dev->hw_enc_features;
2755
f5a7fb88
TM
2756 if (skb_vlan_tagged(skb))
2757 features = netdev_intersect_features(features,
2758 dev->vlan_features |
2759 NETIF_F_HW_VLAN_CTAG_TX |
2760 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2761
5f35227e
JG
2762 if (dev->netdev_ops->ndo_features_check)
2763 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2764 features);
8cb65d00
TM
2765 else
2766 features &= dflt_features_check(skb, dev, features);
5f35227e 2767
c1e756bf 2768 return harmonize_features(skb, features);
58e998c6 2769}
c1e756bf 2770EXPORT_SYMBOL(netif_skb_features);
58e998c6 2771
2ea25513 2772static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2773 struct netdev_queue *txq, bool more)
f6a78bfc 2774{
2ea25513
DM
2775 unsigned int len;
2776 int rc;
00829823 2777
7866a621 2778 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2779 dev_queue_xmit_nit(skb, dev);
fc741216 2780
2ea25513
DM
2781 len = skb->len;
2782 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2783 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2784 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2785
2ea25513
DM
2786 return rc;
2787}
7b9c6090 2788
8dcda22a
DM
2789struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2790 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2791{
2792 struct sk_buff *skb = first;
2793 int rc = NETDEV_TX_OK;
7b9c6090 2794
7f2e870f
DM
2795 while (skb) {
2796 struct sk_buff *next = skb->next;
fc70fb64 2797
7f2e870f 2798 skb->next = NULL;
95f6b3dd 2799 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2800 if (unlikely(!dev_xmit_complete(rc))) {
2801 skb->next = next;
2802 goto out;
2803 }
6afff0ca 2804
7f2e870f
DM
2805 skb = next;
2806 if (netif_xmit_stopped(txq) && skb) {
2807 rc = NETDEV_TX_BUSY;
2808 break;
9ccb8975 2809 }
7f2e870f 2810 }
9ccb8975 2811
7f2e870f
DM
2812out:
2813 *ret = rc;
2814 return skb;
2815}
b40863c6 2816
1ff0dc94
ED
2817static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2818 netdev_features_t features)
f6a78bfc 2819{
df8a39de 2820 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2821 !vlan_hw_offload_capable(features, skb->vlan_proto))
2822 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2823 return skb;
2824}
f6a78bfc 2825
55a93b3e 2826static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2827{
2828 netdev_features_t features;
f6a78bfc 2829
eae3f88e
DM
2830 features = netif_skb_features(skb);
2831 skb = validate_xmit_vlan(skb, features);
2832 if (unlikely(!skb))
2833 goto out_null;
7b9c6090 2834
8b86a61d 2835 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2836 struct sk_buff *segs;
2837
2838 segs = skb_gso_segment(skb, features);
cecda693 2839 if (IS_ERR(segs)) {
af6dabc9 2840 goto out_kfree_skb;
cecda693
JW
2841 } else if (segs) {
2842 consume_skb(skb);
2843 skb = segs;
f6a78bfc 2844 }
eae3f88e
DM
2845 } else {
2846 if (skb_needs_linearize(skb, features) &&
2847 __skb_linearize(skb))
2848 goto out_kfree_skb;
4ec93edb 2849
eae3f88e
DM
2850 /* If packet is not checksummed and device does not
2851 * support checksumming for this protocol, complete
2852 * checksumming here.
2853 */
2854 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2855 if (skb->encapsulation)
2856 skb_set_inner_transport_header(skb,
2857 skb_checksum_start_offset(skb));
2858 else
2859 skb_set_transport_header(skb,
2860 skb_checksum_start_offset(skb));
a188222b 2861 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2862 skb_checksum_help(skb))
2863 goto out_kfree_skb;
7b9c6090 2864 }
0c772159 2865 }
7b9c6090 2866
eae3f88e 2867 return skb;
fc70fb64 2868
f6a78bfc
HX
2869out_kfree_skb:
2870 kfree_skb(skb);
eae3f88e 2871out_null:
d21fd63e 2872 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
2873 return NULL;
2874}
6afff0ca 2875
55a93b3e
ED
2876struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2877{
2878 struct sk_buff *next, *head = NULL, *tail;
2879
bec3cfdc 2880 for (; skb != NULL; skb = next) {
55a93b3e
ED
2881 next = skb->next;
2882 skb->next = NULL;
bec3cfdc
ED
2883
2884 /* in case skb wont be segmented, point to itself */
2885 skb->prev = skb;
2886
55a93b3e 2887 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2888 if (!skb)
2889 continue;
55a93b3e 2890
bec3cfdc
ED
2891 if (!head)
2892 head = skb;
2893 else
2894 tail->next = skb;
2895 /* If skb was segmented, skb->prev points to
2896 * the last segment. If not, it still contains skb.
2897 */
2898 tail = skb->prev;
55a93b3e
ED
2899 }
2900 return head;
f6a78bfc
HX
2901}
2902
1def9238
ED
2903static void qdisc_pkt_len_init(struct sk_buff *skb)
2904{
2905 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2906
2907 qdisc_skb_cb(skb)->pkt_len = skb->len;
2908
2909 /* To get more precise estimation of bytes sent on wire,
2910 * we add to pkt_len the headers size of all segments
2911 */
2912 if (shinfo->gso_size) {
757b8b1d 2913 unsigned int hdr_len;
15e5a030 2914 u16 gso_segs = shinfo->gso_segs;
1def9238 2915
757b8b1d
ED
2916 /* mac layer + network layer */
2917 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2918
2919 /* + transport layer */
1def9238
ED
2920 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2921 hdr_len += tcp_hdrlen(skb);
2922 else
2923 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2924
2925 if (shinfo->gso_type & SKB_GSO_DODGY)
2926 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2927 shinfo->gso_size);
2928
2929 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2930 }
2931}
2932
bbd8a0d3
KK
2933static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2934 struct net_device *dev,
2935 struct netdev_queue *txq)
2936{
2937 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 2938 struct sk_buff *to_free = NULL;
a2da570d 2939 bool contended;
bbd8a0d3
KK
2940 int rc;
2941
a2da570d 2942 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2943 /*
2944 * Heuristic to force contended enqueues to serialize on a
2945 * separate lock before trying to get qdisc main lock.
f9eb8aea 2946 * This permits qdisc->running owner to get the lock more
9bf2b8c2 2947 * often and dequeue packets faster.
79640a4c 2948 */
a2da570d 2949 contended = qdisc_is_running(q);
79640a4c
ED
2950 if (unlikely(contended))
2951 spin_lock(&q->busylock);
2952
bbd8a0d3
KK
2953 spin_lock(root_lock);
2954 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 2955 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
2956 rc = NET_XMIT_DROP;
2957 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2958 qdisc_run_begin(q)) {
bbd8a0d3
KK
2959 /*
2960 * This is a work-conserving queue; there are no old skbs
2961 * waiting to be sent out; and the qdisc is not running -
2962 * xmit the skb directly.
2963 */
bfe0d029 2964
bfe0d029
ED
2965 qdisc_bstats_update(q, skb);
2966
55a93b3e 2967 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
2968 if (unlikely(contended)) {
2969 spin_unlock(&q->busylock);
2970 contended = false;
2971 }
bbd8a0d3 2972 __qdisc_run(q);
79640a4c 2973 } else
bc135b23 2974 qdisc_run_end(q);
bbd8a0d3
KK
2975
2976 rc = NET_XMIT_SUCCESS;
2977 } else {
520ac30f 2978 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
2979 if (qdisc_run_begin(q)) {
2980 if (unlikely(contended)) {
2981 spin_unlock(&q->busylock);
2982 contended = false;
2983 }
2984 __qdisc_run(q);
2985 }
bbd8a0d3
KK
2986 }
2987 spin_unlock(root_lock);
520ac30f
ED
2988 if (unlikely(to_free))
2989 kfree_skb_list(to_free);
79640a4c
ED
2990 if (unlikely(contended))
2991 spin_unlock(&q->busylock);
bbd8a0d3
KK
2992 return rc;
2993}
2994
86f8515f 2995#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2996static void skb_update_prio(struct sk_buff *skb)
2997{
6977a79d 2998 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2999
91c68ce2 3000 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3001 unsigned int prioidx =
3002 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3003
3004 if (prioidx < map->priomap_len)
3005 skb->priority = map->priomap[prioidx];
3006 }
5bc1421e
NH
3007}
3008#else
3009#define skb_update_prio(skb)
3010#endif
3011
f60e5990 3012DEFINE_PER_CPU(int, xmit_recursion);
3013EXPORT_SYMBOL(xmit_recursion);
3014
95603e22
MM
3015/**
3016 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3017 * @net: network namespace this loopback is happening in
3018 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3019 * @skb: buffer to transmit
3020 */
0c4b51f0 3021int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3022{
3023 skb_reset_mac_header(skb);
3024 __skb_pull(skb, skb_network_offset(skb));
3025 skb->pkt_type = PACKET_LOOPBACK;
3026 skb->ip_summed = CHECKSUM_UNNECESSARY;
3027 WARN_ON(!skb_dst(skb));
3028 skb_dst_force(skb);
3029 netif_rx_ni(skb);
3030 return 0;
3031}
3032EXPORT_SYMBOL(dev_loopback_xmit);
3033
1f211a1b
DB
3034#ifdef CONFIG_NET_EGRESS
3035static struct sk_buff *
3036sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3037{
3038 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3039 struct tcf_result cl_res;
3040
3041 if (!cl)
3042 return skb;
3043
3044 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3045 * earlier by the caller.
3046 */
3047 qdisc_bstats_cpu_update(cl->q, skb);
3048
3049 switch (tc_classify(skb, cl, &cl_res, false)) {
3050 case TC_ACT_OK:
3051 case TC_ACT_RECLASSIFY:
3052 skb->tc_index = TC_H_MIN(cl_res.classid);
3053 break;
3054 case TC_ACT_SHOT:
3055 qdisc_qstats_cpu_drop(cl->q);
3056 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3057 kfree_skb(skb);
3058 return NULL;
1f211a1b
DB
3059 case TC_ACT_STOLEN:
3060 case TC_ACT_QUEUED:
3061 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3062 consume_skb(skb);
1f211a1b
DB
3063 return NULL;
3064 case TC_ACT_REDIRECT:
3065 /* No need to push/pop skb's mac_header here on egress! */
3066 skb_do_redirect(skb);
3067 *ret = NET_XMIT_SUCCESS;
3068 return NULL;
3069 default:
3070 break;
3071 }
3072
3073 return skb;
3074}
3075#endif /* CONFIG_NET_EGRESS */
3076
638b2a69
JP
3077static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3078{
3079#ifdef CONFIG_XPS
3080 struct xps_dev_maps *dev_maps;
3081 struct xps_map *map;
3082 int queue_index = -1;
3083
3084 rcu_read_lock();
3085 dev_maps = rcu_dereference(dev->xps_maps);
3086 if (dev_maps) {
3087 map = rcu_dereference(
3088 dev_maps->cpu_map[skb->sender_cpu - 1]);
3089 if (map) {
3090 if (map->len == 1)
3091 queue_index = map->queues[0];
3092 else
3093 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3094 map->len)];
3095 if (unlikely(queue_index >= dev->real_num_tx_queues))
3096 queue_index = -1;
3097 }
3098 }
3099 rcu_read_unlock();
3100
3101 return queue_index;
3102#else
3103 return -1;
3104#endif
3105}
3106
3107static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3108{
3109 struct sock *sk = skb->sk;
3110 int queue_index = sk_tx_queue_get(sk);
3111
3112 if (queue_index < 0 || skb->ooo_okay ||
3113 queue_index >= dev->real_num_tx_queues) {
3114 int new_index = get_xps_queue(dev, skb);
3115 if (new_index < 0)
3116 new_index = skb_tx_hash(dev, skb);
3117
3118 if (queue_index != new_index && sk &&
004a5d01 3119 sk_fullsock(sk) &&
638b2a69
JP
3120 rcu_access_pointer(sk->sk_dst_cache))
3121 sk_tx_queue_set(sk, new_index);
3122
3123 queue_index = new_index;
3124 }
3125
3126 return queue_index;
3127}
3128
3129struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3130 struct sk_buff *skb,
3131 void *accel_priv)
3132{
3133 int queue_index = 0;
3134
3135#ifdef CONFIG_XPS
52bd2d62
ED
3136 u32 sender_cpu = skb->sender_cpu - 1;
3137
3138 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3139 skb->sender_cpu = raw_smp_processor_id() + 1;
3140#endif
3141
3142 if (dev->real_num_tx_queues != 1) {
3143 const struct net_device_ops *ops = dev->netdev_ops;
3144 if (ops->ndo_select_queue)
3145 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3146 __netdev_pick_tx);
3147 else
3148 queue_index = __netdev_pick_tx(dev, skb);
3149
3150 if (!accel_priv)
3151 queue_index = netdev_cap_txqueue(dev, queue_index);
3152 }
3153
3154 skb_set_queue_mapping(skb, queue_index);
3155 return netdev_get_tx_queue(dev, queue_index);
3156}
3157
d29f749e 3158/**
9d08dd3d 3159 * __dev_queue_xmit - transmit a buffer
d29f749e 3160 * @skb: buffer to transmit
9d08dd3d 3161 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3162 *
3163 * Queue a buffer for transmission to a network device. The caller must
3164 * have set the device and priority and built the buffer before calling
3165 * this function. The function can be called from an interrupt.
3166 *
3167 * A negative errno code is returned on a failure. A success does not
3168 * guarantee the frame will be transmitted as it may be dropped due
3169 * to congestion or traffic shaping.
3170 *
3171 * -----------------------------------------------------------------------------------
3172 * I notice this method can also return errors from the queue disciplines,
3173 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3174 * be positive.
3175 *
3176 * Regardless of the return value, the skb is consumed, so it is currently
3177 * difficult to retry a send to this method. (You can bump the ref count
3178 * before sending to hold a reference for retry if you are careful.)
3179 *
3180 * When calling this method, interrupts MUST be enabled. This is because
3181 * the BH enable code must have IRQs enabled so that it will not deadlock.
3182 * --BLG
3183 */
0a59f3a9 3184static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3185{
3186 struct net_device *dev = skb->dev;
dc2b4847 3187 struct netdev_queue *txq;
1da177e4
LT
3188 struct Qdisc *q;
3189 int rc = -ENOMEM;
3190
6d1ccff6
ED
3191 skb_reset_mac_header(skb);
3192
e7fd2885
WB
3193 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3194 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3195
4ec93edb
YH
3196 /* Disable soft irqs for various locks below. Also
3197 * stops preemption for RCU.
1da177e4 3198 */
4ec93edb 3199 rcu_read_lock_bh();
1da177e4 3200
5bc1421e
NH
3201 skb_update_prio(skb);
3202
1f211a1b
DB
3203 qdisc_pkt_len_init(skb);
3204#ifdef CONFIG_NET_CLS_ACT
3205 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3206# ifdef CONFIG_NET_EGRESS
3207 if (static_key_false(&egress_needed)) {
3208 skb = sch_handle_egress(skb, &rc, dev);
3209 if (!skb)
3210 goto out;
3211 }
3212# endif
3213#endif
02875878
ED
3214 /* If device/qdisc don't need skb->dst, release it right now while
3215 * its hot in this cpu cache.
3216 */
3217 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3218 skb_dst_drop(skb);
3219 else
3220 skb_dst_force(skb);
3221
f663dd9a 3222 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3223 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3224
cf66ba58 3225 trace_net_dev_queue(skb);
1da177e4 3226 if (q->enqueue) {
bbd8a0d3 3227 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3228 goto out;
1da177e4
LT
3229 }
3230
3231 /* The device has no queue. Common case for software devices:
3232 loopback, all the sorts of tunnels...
3233
932ff279
HX
3234 Really, it is unlikely that netif_tx_lock protection is necessary
3235 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3236 counters.)
3237 However, it is possible, that they rely on protection
3238 made by us here.
3239
3240 Check this and shot the lock. It is not prone from deadlocks.
3241 Either shot noqueue qdisc, it is even simpler 8)
3242 */
3243 if (dev->flags & IFF_UP) {
3244 int cpu = smp_processor_id(); /* ok because BHs are off */
3245
c773e847 3246 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3247 if (unlikely(__this_cpu_read(xmit_recursion) >
3248 XMIT_RECURSION_LIMIT))
745e20f1
ED
3249 goto recursion_alert;
3250
1f59533f
JDB
3251 skb = validate_xmit_skb(skb, dev);
3252 if (!skb)
d21fd63e 3253 goto out;
1f59533f 3254
c773e847 3255 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3256
73466498 3257 if (!netif_xmit_stopped(txq)) {
745e20f1 3258 __this_cpu_inc(xmit_recursion);
ce93718f 3259 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3260 __this_cpu_dec(xmit_recursion);
572a9d7b 3261 if (dev_xmit_complete(rc)) {
c773e847 3262 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3263 goto out;
3264 }
3265 }
c773e847 3266 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3267 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3268 dev->name);
1da177e4
LT
3269 } else {
3270 /* Recursion is detected! It is possible,
745e20f1
ED
3271 * unfortunately
3272 */
3273recursion_alert:
e87cc472
JP
3274 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3275 dev->name);
1da177e4
LT
3276 }
3277 }
3278
3279 rc = -ENETDOWN;
d4828d85 3280 rcu_read_unlock_bh();
1da177e4 3281
015f0688 3282 atomic_long_inc(&dev->tx_dropped);
1f59533f 3283 kfree_skb_list(skb);
1da177e4
LT
3284 return rc;
3285out:
d4828d85 3286 rcu_read_unlock_bh();
1da177e4
LT
3287 return rc;
3288}
f663dd9a 3289
2b4aa3ce 3290int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3291{
3292 return __dev_queue_xmit(skb, NULL);
3293}
2b4aa3ce 3294EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3295
f663dd9a
JW
3296int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3297{
3298 return __dev_queue_xmit(skb, accel_priv);
3299}
3300EXPORT_SYMBOL(dev_queue_xmit_accel);
3301
1da177e4
LT
3302
3303/*=======================================================================
3304 Receiver routines
3305 =======================================================================*/
3306
6b2bedc3 3307int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3308EXPORT_SYMBOL(netdev_max_backlog);
3309
3b098e2d 3310int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3311int netdev_budget __read_mostly = 300;
3312int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3313
eecfd7c4
ED
3314/* Called with irq disabled */
3315static inline void ____napi_schedule(struct softnet_data *sd,
3316 struct napi_struct *napi)
3317{
3318 list_add_tail(&napi->poll_list, &sd->poll_list);
3319 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3320}
3321
bfb564e7
KK
3322#ifdef CONFIG_RPS
3323
3324/* One global table that all flow-based protocols share. */
6e3f7faf 3325struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3326EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3327u32 rps_cpu_mask __read_mostly;
3328EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3329
c5905afb 3330struct static_key rps_needed __read_mostly;
3df97ba8 3331EXPORT_SYMBOL(rps_needed);
adc9300e 3332
c445477d
BH
3333static struct rps_dev_flow *
3334set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3335 struct rps_dev_flow *rflow, u16 next_cpu)
3336{
a31196b0 3337 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3338#ifdef CONFIG_RFS_ACCEL
3339 struct netdev_rx_queue *rxqueue;
3340 struct rps_dev_flow_table *flow_table;
3341 struct rps_dev_flow *old_rflow;
3342 u32 flow_id;
3343 u16 rxq_index;
3344 int rc;
3345
3346 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3347 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3348 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3349 goto out;
3350 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3351 if (rxq_index == skb_get_rx_queue(skb))
3352 goto out;
3353
3354 rxqueue = dev->_rx + rxq_index;
3355 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3356 if (!flow_table)
3357 goto out;
61b905da 3358 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3359 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3360 rxq_index, flow_id);
3361 if (rc < 0)
3362 goto out;
3363 old_rflow = rflow;
3364 rflow = &flow_table->flows[flow_id];
c445477d
BH
3365 rflow->filter = rc;
3366 if (old_rflow->filter == rflow->filter)
3367 old_rflow->filter = RPS_NO_FILTER;
3368 out:
3369#endif
3370 rflow->last_qtail =
09994d1b 3371 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3372 }
3373
09994d1b 3374 rflow->cpu = next_cpu;
c445477d
BH
3375 return rflow;
3376}
3377
bfb564e7
KK
3378/*
3379 * get_rps_cpu is called from netif_receive_skb and returns the target
3380 * CPU from the RPS map of the receiving queue for a given skb.
3381 * rcu_read_lock must be held on entry.
3382 */
3383static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3384 struct rps_dev_flow **rflowp)
3385{
567e4b79
ED
3386 const struct rps_sock_flow_table *sock_flow_table;
3387 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3388 struct rps_dev_flow_table *flow_table;
567e4b79 3389 struct rps_map *map;
bfb564e7 3390 int cpu = -1;
567e4b79 3391 u32 tcpu;
61b905da 3392 u32 hash;
bfb564e7
KK
3393
3394 if (skb_rx_queue_recorded(skb)) {
3395 u16 index = skb_get_rx_queue(skb);
567e4b79 3396
62fe0b40
BH
3397 if (unlikely(index >= dev->real_num_rx_queues)) {
3398 WARN_ONCE(dev->real_num_rx_queues > 1,
3399 "%s received packet on queue %u, but number "
3400 "of RX queues is %u\n",
3401 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3402 goto done;
3403 }
567e4b79
ED
3404 rxqueue += index;
3405 }
bfb564e7 3406
567e4b79
ED
3407 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3408
3409 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3410 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3411 if (!flow_table && !map)
bfb564e7
KK
3412 goto done;
3413
2d47b459 3414 skb_reset_network_header(skb);
61b905da
TH
3415 hash = skb_get_hash(skb);
3416 if (!hash)
bfb564e7
KK
3417 goto done;
3418
fec5e652
TH
3419 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3420 if (flow_table && sock_flow_table) {
fec5e652 3421 struct rps_dev_flow *rflow;
567e4b79
ED
3422 u32 next_cpu;
3423 u32 ident;
3424
3425 /* First check into global flow table if there is a match */
3426 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3427 if ((ident ^ hash) & ~rps_cpu_mask)
3428 goto try_rps;
fec5e652 3429
567e4b79
ED
3430 next_cpu = ident & rps_cpu_mask;
3431
3432 /* OK, now we know there is a match,
3433 * we can look at the local (per receive queue) flow table
3434 */
61b905da 3435 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3436 tcpu = rflow->cpu;
3437
fec5e652
TH
3438 /*
3439 * If the desired CPU (where last recvmsg was done) is
3440 * different from current CPU (one in the rx-queue flow
3441 * table entry), switch if one of the following holds:
a31196b0 3442 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3443 * - Current CPU is offline.
3444 * - The current CPU's queue tail has advanced beyond the
3445 * last packet that was enqueued using this table entry.
3446 * This guarantees that all previous packets for the flow
3447 * have been dequeued, thus preserving in order delivery.
3448 */
3449 if (unlikely(tcpu != next_cpu) &&
a31196b0 3450 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3451 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3452 rflow->last_qtail)) >= 0)) {
3453 tcpu = next_cpu;
c445477d 3454 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3455 }
c445477d 3456
a31196b0 3457 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3458 *rflowp = rflow;
3459 cpu = tcpu;
3460 goto done;
3461 }
3462 }
3463
567e4b79
ED
3464try_rps:
3465
0a9627f2 3466 if (map) {
8fc54f68 3467 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3468 if (cpu_online(tcpu)) {
3469 cpu = tcpu;
3470 goto done;
3471 }
3472 }
3473
3474done:
0a9627f2
TH
3475 return cpu;
3476}
3477
c445477d
BH
3478#ifdef CONFIG_RFS_ACCEL
3479
3480/**
3481 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3482 * @dev: Device on which the filter was set
3483 * @rxq_index: RX queue index
3484 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3485 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3486 *
3487 * Drivers that implement ndo_rx_flow_steer() should periodically call
3488 * this function for each installed filter and remove the filters for
3489 * which it returns %true.
3490 */
3491bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3492 u32 flow_id, u16 filter_id)
3493{
3494 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3495 struct rps_dev_flow_table *flow_table;
3496 struct rps_dev_flow *rflow;
3497 bool expire = true;
a31196b0 3498 unsigned int cpu;
c445477d
BH
3499
3500 rcu_read_lock();
3501 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3502 if (flow_table && flow_id <= flow_table->mask) {
3503 rflow = &flow_table->flows[flow_id];
3504 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3505 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3506 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3507 rflow->last_qtail) <
3508 (int)(10 * flow_table->mask)))
3509 expire = false;
3510 }
3511 rcu_read_unlock();
3512 return expire;
3513}
3514EXPORT_SYMBOL(rps_may_expire_flow);
3515
3516#endif /* CONFIG_RFS_ACCEL */
3517
0a9627f2 3518/* Called from hardirq (IPI) context */
e36fa2f7 3519static void rps_trigger_softirq(void *data)
0a9627f2 3520{
e36fa2f7
ED
3521 struct softnet_data *sd = data;
3522
eecfd7c4 3523 ____napi_schedule(sd, &sd->backlog);
dee42870 3524 sd->received_rps++;
0a9627f2 3525}
e36fa2f7 3526
fec5e652 3527#endif /* CONFIG_RPS */
0a9627f2 3528
e36fa2f7
ED
3529/*
3530 * Check if this softnet_data structure is another cpu one
3531 * If yes, queue it to our IPI list and return 1
3532 * If no, return 0
3533 */
3534static int rps_ipi_queued(struct softnet_data *sd)
3535{
3536#ifdef CONFIG_RPS
903ceff7 3537 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3538
3539 if (sd != mysd) {
3540 sd->rps_ipi_next = mysd->rps_ipi_list;
3541 mysd->rps_ipi_list = sd;
3542
3543 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3544 return 1;
3545 }
3546#endif /* CONFIG_RPS */
3547 return 0;
3548}
3549
99bbc707
WB
3550#ifdef CONFIG_NET_FLOW_LIMIT
3551int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3552#endif
3553
3554static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3555{
3556#ifdef CONFIG_NET_FLOW_LIMIT
3557 struct sd_flow_limit *fl;
3558 struct softnet_data *sd;
3559 unsigned int old_flow, new_flow;
3560
3561 if (qlen < (netdev_max_backlog >> 1))
3562 return false;
3563
903ceff7 3564 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3565
3566 rcu_read_lock();
3567 fl = rcu_dereference(sd->flow_limit);
3568 if (fl) {
3958afa1 3569 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3570 old_flow = fl->history[fl->history_head];
3571 fl->history[fl->history_head] = new_flow;
3572
3573 fl->history_head++;
3574 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3575
3576 if (likely(fl->buckets[old_flow]))
3577 fl->buckets[old_flow]--;
3578
3579 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3580 fl->count++;
3581 rcu_read_unlock();
3582 return true;
3583 }
3584 }
3585 rcu_read_unlock();
3586#endif
3587 return false;
3588}
3589
0a9627f2
TH
3590/*
3591 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3592 * queue (may be a remote CPU queue).
3593 */
fec5e652
TH
3594static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3595 unsigned int *qtail)
0a9627f2 3596{
e36fa2f7 3597 struct softnet_data *sd;
0a9627f2 3598 unsigned long flags;
99bbc707 3599 unsigned int qlen;
0a9627f2 3600
e36fa2f7 3601 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3602
3603 local_irq_save(flags);
0a9627f2 3604
e36fa2f7 3605 rps_lock(sd);
e9e4dd32
JA
3606 if (!netif_running(skb->dev))
3607 goto drop;
99bbc707
WB
3608 qlen = skb_queue_len(&sd->input_pkt_queue);
3609 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3610 if (qlen) {
0a9627f2 3611enqueue:
e36fa2f7 3612 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3613 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3614 rps_unlock(sd);
152102c7 3615 local_irq_restore(flags);
0a9627f2
TH
3616 return NET_RX_SUCCESS;
3617 }
3618
ebda37c2
ED
3619 /* Schedule NAPI for backlog device
3620 * We can use non atomic operation since we own the queue lock
3621 */
3622 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3623 if (!rps_ipi_queued(sd))
eecfd7c4 3624 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3625 }
3626 goto enqueue;
3627 }
3628
e9e4dd32 3629drop:
dee42870 3630 sd->dropped++;
e36fa2f7 3631 rps_unlock(sd);
0a9627f2 3632
0a9627f2
TH
3633 local_irq_restore(flags);
3634
caf586e5 3635 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3636 kfree_skb(skb);
3637 return NET_RX_DROP;
3638}
1da177e4 3639
ae78dbfa 3640static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3641{
b0e28f1e 3642 int ret;
1da177e4 3643
588f0330 3644 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3645
cf66ba58 3646 trace_netif_rx(skb);
df334545 3647#ifdef CONFIG_RPS
c5905afb 3648 if (static_key_false(&rps_needed)) {
fec5e652 3649 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3650 int cpu;
3651
cece1945 3652 preempt_disable();
b0e28f1e 3653 rcu_read_lock();
fec5e652
TH
3654
3655 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3656 if (cpu < 0)
3657 cpu = smp_processor_id();
fec5e652
TH
3658
3659 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3660
b0e28f1e 3661 rcu_read_unlock();
cece1945 3662 preempt_enable();
adc9300e
ED
3663 } else
3664#endif
fec5e652
TH
3665 {
3666 unsigned int qtail;
3667 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3668 put_cpu();
3669 }
b0e28f1e 3670 return ret;
1da177e4 3671}
ae78dbfa
BH
3672
3673/**
3674 * netif_rx - post buffer to the network code
3675 * @skb: buffer to post
3676 *
3677 * This function receives a packet from a device driver and queues it for
3678 * the upper (protocol) levels to process. It always succeeds. The buffer
3679 * may be dropped during processing for congestion control or by the
3680 * protocol layers.
3681 *
3682 * return values:
3683 * NET_RX_SUCCESS (no congestion)
3684 * NET_RX_DROP (packet was dropped)
3685 *
3686 */
3687
3688int netif_rx(struct sk_buff *skb)
3689{
3690 trace_netif_rx_entry(skb);
3691
3692 return netif_rx_internal(skb);
3693}
d1b19dff 3694EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3695
3696int netif_rx_ni(struct sk_buff *skb)
3697{
3698 int err;
3699
ae78dbfa
BH
3700 trace_netif_rx_ni_entry(skb);
3701
1da177e4 3702 preempt_disable();
ae78dbfa 3703 err = netif_rx_internal(skb);
1da177e4
LT
3704 if (local_softirq_pending())
3705 do_softirq();
3706 preempt_enable();
3707
3708 return err;
3709}
1da177e4
LT
3710EXPORT_SYMBOL(netif_rx_ni);
3711
1da177e4
LT
3712static void net_tx_action(struct softirq_action *h)
3713{
903ceff7 3714 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3715
3716 if (sd->completion_queue) {
3717 struct sk_buff *clist;
3718
3719 local_irq_disable();
3720 clist = sd->completion_queue;
3721 sd->completion_queue = NULL;
3722 local_irq_enable();
3723
3724 while (clist) {
3725 struct sk_buff *skb = clist;
3726 clist = clist->next;
3727
547b792c 3728 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3729 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3730 trace_consume_skb(skb);
3731 else
3732 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3733
3734 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3735 __kfree_skb(skb);
3736 else
3737 __kfree_skb_defer(skb);
1da177e4 3738 }
15fad714
JDB
3739
3740 __kfree_skb_flush();
1da177e4
LT
3741 }
3742
3743 if (sd->output_queue) {
37437bb2 3744 struct Qdisc *head;
1da177e4
LT
3745
3746 local_irq_disable();
3747 head = sd->output_queue;
3748 sd->output_queue = NULL;
a9cbd588 3749 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3750 local_irq_enable();
3751
3752 while (head) {
37437bb2
DM
3753 struct Qdisc *q = head;
3754 spinlock_t *root_lock;
3755
1da177e4
LT
3756 head = head->next_sched;
3757
5fb66229 3758 root_lock = qdisc_lock(q);
3bcb846c
ED
3759 spin_lock(root_lock);
3760 /* We need to make sure head->next_sched is read
3761 * before clearing __QDISC_STATE_SCHED
3762 */
3763 smp_mb__before_atomic();
3764 clear_bit(__QDISC_STATE_SCHED, &q->state);
3765 qdisc_run(q);
3766 spin_unlock(root_lock);
1da177e4
LT
3767 }
3768 }
3769}
3770
181402a5 3771#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3772/* This hook is defined here for ATM LANE */
3773int (*br_fdb_test_addr_hook)(struct net_device *dev,
3774 unsigned char *addr) __read_mostly;
4fb019a0 3775EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3776#endif
1da177e4 3777
1f211a1b
DB
3778static inline struct sk_buff *
3779sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3780 struct net_device *orig_dev)
f697c3e8 3781{
e7582bab 3782#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3783 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3784 struct tcf_result cl_res;
24824a09 3785
c9e99fd0
DB
3786 /* If there's at least one ingress present somewhere (so
3787 * we get here via enabled static key), remaining devices
3788 * that are not configured with an ingress qdisc will bail
d2788d34 3789 * out here.
c9e99fd0 3790 */
d2788d34 3791 if (!cl)
4577139b 3792 return skb;
f697c3e8
HX
3793 if (*pt_prev) {
3794 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3795 *pt_prev = NULL;
1da177e4
LT
3796 }
3797
3365495c 3798 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3799 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3800 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3801
3b3ae880 3802 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3803 case TC_ACT_OK:
3804 case TC_ACT_RECLASSIFY:
3805 skb->tc_index = TC_H_MIN(cl_res.classid);
3806 break;
3807 case TC_ACT_SHOT:
24ea591d 3808 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3809 kfree_skb(skb);
3810 return NULL;
d2788d34
DB
3811 case TC_ACT_STOLEN:
3812 case TC_ACT_QUEUED:
8a3a4c6e 3813 consume_skb(skb);
d2788d34 3814 return NULL;
27b29f63
AS
3815 case TC_ACT_REDIRECT:
3816 /* skb_mac_header check was done by cls/act_bpf, so
3817 * we can safely push the L2 header back before
3818 * redirecting to another netdev
3819 */
3820 __skb_push(skb, skb->mac_len);
3821 skb_do_redirect(skb);
3822 return NULL;
d2788d34
DB
3823 default:
3824 break;
f697c3e8 3825 }
e7582bab 3826#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3827 return skb;
3828}
1da177e4 3829
24b27fc4
MB
3830/**
3831 * netdev_is_rx_handler_busy - check if receive handler is registered
3832 * @dev: device to check
3833 *
3834 * Check if a receive handler is already registered for a given device.
3835 * Return true if there one.
3836 *
3837 * The caller must hold the rtnl_mutex.
3838 */
3839bool netdev_is_rx_handler_busy(struct net_device *dev)
3840{
3841 ASSERT_RTNL();
3842 return dev && rtnl_dereference(dev->rx_handler);
3843}
3844EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3845
ab95bfe0
JP
3846/**
3847 * netdev_rx_handler_register - register receive handler
3848 * @dev: device to register a handler for
3849 * @rx_handler: receive handler to register
93e2c32b 3850 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3851 *
e227867f 3852 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3853 * called from __netif_receive_skb. A negative errno code is returned
3854 * on a failure.
3855 *
3856 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3857 *
3858 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3859 */
3860int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3861 rx_handler_func_t *rx_handler,
3862 void *rx_handler_data)
ab95bfe0
JP
3863{
3864 ASSERT_RTNL();
3865
3866 if (dev->rx_handler)
3867 return -EBUSY;
3868
00cfec37 3869 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3870 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3871 rcu_assign_pointer(dev->rx_handler, rx_handler);
3872
3873 return 0;
3874}
3875EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3876
3877/**
3878 * netdev_rx_handler_unregister - unregister receive handler
3879 * @dev: device to unregister a handler from
3880 *
166ec369 3881 * Unregister a receive handler from a device.
ab95bfe0
JP
3882 *
3883 * The caller must hold the rtnl_mutex.
3884 */
3885void netdev_rx_handler_unregister(struct net_device *dev)
3886{
3887
3888 ASSERT_RTNL();
a9b3cd7f 3889 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3890 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3891 * section has a guarantee to see a non NULL rx_handler_data
3892 * as well.
3893 */
3894 synchronize_net();
a9b3cd7f 3895 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3896}
3897EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3898
b4b9e355
MG
3899/*
3900 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3901 * the special handling of PFMEMALLOC skbs.
3902 */
3903static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3904{
3905 switch (skb->protocol) {
2b8837ae
JP
3906 case htons(ETH_P_ARP):
3907 case htons(ETH_P_IP):
3908 case htons(ETH_P_IPV6):
3909 case htons(ETH_P_8021Q):
3910 case htons(ETH_P_8021AD):
b4b9e355
MG
3911 return true;
3912 default:
3913 return false;
3914 }
3915}
3916
e687ad60
PN
3917static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3918 int *ret, struct net_device *orig_dev)
3919{
e7582bab 3920#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 3921 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
3922 int ingress_retval;
3923
e687ad60
PN
3924 if (*pt_prev) {
3925 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3926 *pt_prev = NULL;
3927 }
3928
2c1e2703
AC
3929 rcu_read_lock();
3930 ingress_retval = nf_hook_ingress(skb);
3931 rcu_read_unlock();
3932 return ingress_retval;
e687ad60 3933 }
e7582bab 3934#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
3935 return 0;
3936}
e687ad60 3937
9754e293 3938static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3939{
3940 struct packet_type *ptype, *pt_prev;
ab95bfe0 3941 rx_handler_func_t *rx_handler;
f2ccd8fa 3942 struct net_device *orig_dev;
8a4eb573 3943 bool deliver_exact = false;
1da177e4 3944 int ret = NET_RX_DROP;
252e3346 3945 __be16 type;
1da177e4 3946
588f0330 3947 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3948
cf66ba58 3949 trace_netif_receive_skb(skb);
9b22ea56 3950
cc9bd5ce 3951 orig_dev = skb->dev;
8f903c70 3952
c1d2bbe1 3953 skb_reset_network_header(skb);
fda55eca
ED
3954 if (!skb_transport_header_was_set(skb))
3955 skb_reset_transport_header(skb);
0b5c9db1 3956 skb_reset_mac_len(skb);
1da177e4
LT
3957
3958 pt_prev = NULL;
3959
63d8ea7f 3960another_round:
b6858177 3961 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3962
3963 __this_cpu_inc(softnet_data.processed);
3964
8ad227ff
PM
3965 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3966 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3967 skb = skb_vlan_untag(skb);
bcc6d479 3968 if (unlikely(!skb))
2c17d27c 3969 goto out;
bcc6d479
JP
3970 }
3971
1da177e4
LT
3972#ifdef CONFIG_NET_CLS_ACT
3973 if (skb->tc_verd & TC_NCLS) {
3974 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3975 goto ncls;
3976 }
3977#endif
3978
9754e293 3979 if (pfmemalloc)
b4b9e355
MG
3980 goto skip_taps;
3981
1da177e4 3982 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
3983 if (pt_prev)
3984 ret = deliver_skb(skb, pt_prev, orig_dev);
3985 pt_prev = ptype;
3986 }
3987
3988 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3989 if (pt_prev)
3990 ret = deliver_skb(skb, pt_prev, orig_dev);
3991 pt_prev = ptype;
1da177e4
LT
3992 }
3993
b4b9e355 3994skip_taps:
1cf51900 3995#ifdef CONFIG_NET_INGRESS
4577139b 3996 if (static_key_false(&ingress_needed)) {
1f211a1b 3997 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 3998 if (!skb)
2c17d27c 3999 goto out;
e687ad60
PN
4000
4001 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4002 goto out;
4577139b 4003 }
1cf51900
PN
4004#endif
4005#ifdef CONFIG_NET_CLS_ACT
4577139b 4006 skb->tc_verd = 0;
1da177e4
LT
4007ncls:
4008#endif
9754e293 4009 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4010 goto drop;
4011
df8a39de 4012 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4013 if (pt_prev) {
4014 ret = deliver_skb(skb, pt_prev, orig_dev);
4015 pt_prev = NULL;
4016 }
48cc32d3 4017 if (vlan_do_receive(&skb))
2425717b
JF
4018 goto another_round;
4019 else if (unlikely(!skb))
2c17d27c 4020 goto out;
2425717b
JF
4021 }
4022
48cc32d3 4023 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4024 if (rx_handler) {
4025 if (pt_prev) {
4026 ret = deliver_skb(skb, pt_prev, orig_dev);
4027 pt_prev = NULL;
4028 }
8a4eb573
JP
4029 switch (rx_handler(&skb)) {
4030 case RX_HANDLER_CONSUMED:
3bc1b1ad 4031 ret = NET_RX_SUCCESS;
2c17d27c 4032 goto out;
8a4eb573 4033 case RX_HANDLER_ANOTHER:
63d8ea7f 4034 goto another_round;
8a4eb573
JP
4035 case RX_HANDLER_EXACT:
4036 deliver_exact = true;
4037 case RX_HANDLER_PASS:
4038 break;
4039 default:
4040 BUG();
4041 }
ab95bfe0 4042 }
1da177e4 4043
df8a39de
JP
4044 if (unlikely(skb_vlan_tag_present(skb))) {
4045 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4046 skb->pkt_type = PACKET_OTHERHOST;
4047 /* Note: we might in the future use prio bits
4048 * and set skb->priority like in vlan_do_receive()
4049 * For the time being, just ignore Priority Code Point
4050 */
4051 skb->vlan_tci = 0;
4052 }
48cc32d3 4053
7866a621
SN
4054 type = skb->protocol;
4055
63d8ea7f 4056 /* deliver only exact match when indicated */
7866a621
SN
4057 if (likely(!deliver_exact)) {
4058 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4059 &ptype_base[ntohs(type) &
4060 PTYPE_HASH_MASK]);
4061 }
1f3c8804 4062
7866a621
SN
4063 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4064 &orig_dev->ptype_specific);
4065
4066 if (unlikely(skb->dev != orig_dev)) {
4067 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4068 &skb->dev->ptype_specific);
1da177e4
LT
4069 }
4070
4071 if (pt_prev) {
1080e512 4072 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4073 goto drop;
1080e512
MT
4074 else
4075 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4076 } else {
b4b9e355 4077drop:
6e7333d3
JW
4078 if (!deliver_exact)
4079 atomic_long_inc(&skb->dev->rx_dropped);
4080 else
4081 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4082 kfree_skb(skb);
4083 /* Jamal, now you will not able to escape explaining
4084 * me how you were going to use this. :-)
4085 */
4086 ret = NET_RX_DROP;
4087 }
4088
2c17d27c 4089out:
9754e293
DM
4090 return ret;
4091}
4092
4093static int __netif_receive_skb(struct sk_buff *skb)
4094{
4095 int ret;
4096
4097 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4098 unsigned long pflags = current->flags;
4099
4100 /*
4101 * PFMEMALLOC skbs are special, they should
4102 * - be delivered to SOCK_MEMALLOC sockets only
4103 * - stay away from userspace
4104 * - have bounded memory usage
4105 *
4106 * Use PF_MEMALLOC as this saves us from propagating the allocation
4107 * context down to all allocation sites.
4108 */
4109 current->flags |= PF_MEMALLOC;
4110 ret = __netif_receive_skb_core(skb, true);
4111 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4112 } else
4113 ret = __netif_receive_skb_core(skb, false);
4114
1da177e4
LT
4115 return ret;
4116}
0a9627f2 4117
ae78dbfa 4118static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4119{
2c17d27c
JA
4120 int ret;
4121
588f0330 4122 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4123
c1f19b51
RC
4124 if (skb_defer_rx_timestamp(skb))
4125 return NET_RX_SUCCESS;
4126
2c17d27c
JA
4127 rcu_read_lock();
4128
df334545 4129#ifdef CONFIG_RPS
c5905afb 4130 if (static_key_false(&rps_needed)) {
3b098e2d 4131 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4132 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4133
3b098e2d
ED
4134 if (cpu >= 0) {
4135 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4136 rcu_read_unlock();
adc9300e 4137 return ret;
3b098e2d 4138 }
fec5e652 4139 }
1e94d72f 4140#endif
2c17d27c
JA
4141 ret = __netif_receive_skb(skb);
4142 rcu_read_unlock();
4143 return ret;
0a9627f2 4144}
ae78dbfa
BH
4145
4146/**
4147 * netif_receive_skb - process receive buffer from network
4148 * @skb: buffer to process
4149 *
4150 * netif_receive_skb() is the main receive data processing function.
4151 * It always succeeds. The buffer may be dropped during processing
4152 * for congestion control or by the protocol layers.
4153 *
4154 * This function may only be called from softirq context and interrupts
4155 * should be enabled.
4156 *
4157 * Return values (usually ignored):
4158 * NET_RX_SUCCESS: no congestion
4159 * NET_RX_DROP: packet was dropped
4160 */
04eb4489 4161int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4162{
4163 trace_netif_receive_skb_entry(skb);
4164
4165 return netif_receive_skb_internal(skb);
4166}
04eb4489 4167EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4168
41852497 4169DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4170
4171/* Network device is going away, flush any packets still pending */
4172static void flush_backlog(struct work_struct *work)
6e583ce5 4173{
6e583ce5 4174 struct sk_buff *skb, *tmp;
145dd5f9
PA
4175 struct softnet_data *sd;
4176
4177 local_bh_disable();
4178 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4179
145dd5f9 4180 local_irq_disable();
e36fa2f7 4181 rps_lock(sd);
6e7676c1 4182 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4183 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4184 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4185 kfree_skb(skb);
76cc8b13 4186 input_queue_head_incr(sd);
6e583ce5 4187 }
6e7676c1 4188 }
e36fa2f7 4189 rps_unlock(sd);
145dd5f9 4190 local_irq_enable();
6e7676c1
CG
4191
4192 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4193 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4194 __skb_unlink(skb, &sd->process_queue);
4195 kfree_skb(skb);
76cc8b13 4196 input_queue_head_incr(sd);
6e7676c1
CG
4197 }
4198 }
145dd5f9
PA
4199 local_bh_enable();
4200}
4201
41852497 4202static void flush_all_backlogs(void)
145dd5f9
PA
4203{
4204 unsigned int cpu;
4205
4206 get_online_cpus();
4207
41852497
ED
4208 for_each_online_cpu(cpu)
4209 queue_work_on(cpu, system_highpri_wq,
4210 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4211
4212 for_each_online_cpu(cpu)
41852497 4213 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4214
4215 put_online_cpus();
6e583ce5
SH
4216}
4217
d565b0a1
HX
4218static int napi_gro_complete(struct sk_buff *skb)
4219{
22061d80 4220 struct packet_offload *ptype;
d565b0a1 4221 __be16 type = skb->protocol;
22061d80 4222 struct list_head *head = &offload_base;
d565b0a1
HX
4223 int err = -ENOENT;
4224
c3c7c254
ED
4225 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4226
fc59f9a3
HX
4227 if (NAPI_GRO_CB(skb)->count == 1) {
4228 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4229 goto out;
fc59f9a3 4230 }
d565b0a1
HX
4231
4232 rcu_read_lock();
4233 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4234 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4235 continue;
4236
299603e8 4237 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4238 break;
4239 }
4240 rcu_read_unlock();
4241
4242 if (err) {
4243 WARN_ON(&ptype->list == head);
4244 kfree_skb(skb);
4245 return NET_RX_SUCCESS;
4246 }
4247
4248out:
ae78dbfa 4249 return netif_receive_skb_internal(skb);
d565b0a1
HX
4250}
4251
2e71a6f8
ED
4252/* napi->gro_list contains packets ordered by age.
4253 * youngest packets at the head of it.
4254 * Complete skbs in reverse order to reduce latencies.
4255 */
4256void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4257{
2e71a6f8 4258 struct sk_buff *skb, *prev = NULL;
d565b0a1 4259
2e71a6f8
ED
4260 /* scan list and build reverse chain */
4261 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4262 skb->prev = prev;
4263 prev = skb;
4264 }
4265
4266 for (skb = prev; skb; skb = prev) {
d565b0a1 4267 skb->next = NULL;
2e71a6f8
ED
4268
4269 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4270 return;
4271
4272 prev = skb->prev;
d565b0a1 4273 napi_gro_complete(skb);
2e71a6f8 4274 napi->gro_count--;
d565b0a1
HX
4275 }
4276
4277 napi->gro_list = NULL;
4278}
86cac58b 4279EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4280
89c5fa33
ED
4281static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4282{
4283 struct sk_buff *p;
4284 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4285 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4286
4287 for (p = napi->gro_list; p; p = p->next) {
4288 unsigned long diffs;
4289
0b4cec8c
TH
4290 NAPI_GRO_CB(p)->flush = 0;
4291
4292 if (hash != skb_get_hash_raw(p)) {
4293 NAPI_GRO_CB(p)->same_flow = 0;
4294 continue;
4295 }
4296
89c5fa33
ED
4297 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4298 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4299 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4300 if (maclen == ETH_HLEN)
4301 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4302 skb_mac_header(skb));
89c5fa33
ED
4303 else if (!diffs)
4304 diffs = memcmp(skb_mac_header(p),
a50e233c 4305 skb_mac_header(skb),
89c5fa33
ED
4306 maclen);
4307 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4308 }
4309}
4310
299603e8
JC
4311static void skb_gro_reset_offset(struct sk_buff *skb)
4312{
4313 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4314 const skb_frag_t *frag0 = &pinfo->frags[0];
4315
4316 NAPI_GRO_CB(skb)->data_offset = 0;
4317 NAPI_GRO_CB(skb)->frag0 = NULL;
4318 NAPI_GRO_CB(skb)->frag0_len = 0;
4319
4320 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4321 pinfo->nr_frags &&
4322 !PageHighMem(skb_frag_page(frag0))) {
4323 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4324 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4325 }
4326}
4327
a50e233c
ED
4328static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4329{
4330 struct skb_shared_info *pinfo = skb_shinfo(skb);
4331
4332 BUG_ON(skb->end - skb->tail < grow);
4333
4334 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4335
4336 skb->data_len -= grow;
4337 skb->tail += grow;
4338
4339 pinfo->frags[0].page_offset += grow;
4340 skb_frag_size_sub(&pinfo->frags[0], grow);
4341
4342 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4343 skb_frag_unref(skb, 0);
4344 memmove(pinfo->frags, pinfo->frags + 1,
4345 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4346 }
4347}
4348
bb728820 4349static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4350{
4351 struct sk_buff **pp = NULL;
22061d80 4352 struct packet_offload *ptype;
d565b0a1 4353 __be16 type = skb->protocol;
22061d80 4354 struct list_head *head = &offload_base;
0da2afd5 4355 int same_flow;
5b252f0c 4356 enum gro_result ret;
a50e233c 4357 int grow;
d565b0a1 4358
9c62a68d 4359 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4360 goto normal;
4361
5a212329 4362 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4363 goto normal;
4364
89c5fa33
ED
4365 gro_list_prepare(napi, skb);
4366
d565b0a1
HX
4367 rcu_read_lock();
4368 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4369 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4370 continue;
4371
86911732 4372 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4373 skb_reset_mac_len(skb);
d565b0a1
HX
4374 NAPI_GRO_CB(skb)->same_flow = 0;
4375 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4376 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4377 NAPI_GRO_CB(skb)->encap_mark = 0;
a0ca153f 4378 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4379 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4380 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4381
662880f4
TH
4382 /* Setup for GRO checksum validation */
4383 switch (skb->ip_summed) {
4384 case CHECKSUM_COMPLETE:
4385 NAPI_GRO_CB(skb)->csum = skb->csum;
4386 NAPI_GRO_CB(skb)->csum_valid = 1;
4387 NAPI_GRO_CB(skb)->csum_cnt = 0;
4388 break;
4389 case CHECKSUM_UNNECESSARY:
4390 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4391 NAPI_GRO_CB(skb)->csum_valid = 0;
4392 break;
4393 default:
4394 NAPI_GRO_CB(skb)->csum_cnt = 0;
4395 NAPI_GRO_CB(skb)->csum_valid = 0;
4396 }
d565b0a1 4397
f191a1d1 4398 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4399 break;
4400 }
4401 rcu_read_unlock();
4402
4403 if (&ptype->list == head)
4404 goto normal;
4405
0da2afd5 4406 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4407 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4408
d565b0a1
HX
4409 if (pp) {
4410 struct sk_buff *nskb = *pp;
4411
4412 *pp = nskb->next;
4413 nskb->next = NULL;
4414 napi_gro_complete(nskb);
4ae5544f 4415 napi->gro_count--;
d565b0a1
HX
4416 }
4417
0da2afd5 4418 if (same_flow)
d565b0a1
HX
4419 goto ok;
4420
600adc18 4421 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4422 goto normal;
d565b0a1 4423
600adc18
ED
4424 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4425 struct sk_buff *nskb = napi->gro_list;
4426
4427 /* locate the end of the list to select the 'oldest' flow */
4428 while (nskb->next) {
4429 pp = &nskb->next;
4430 nskb = *pp;
4431 }
4432 *pp = NULL;
4433 nskb->next = NULL;
4434 napi_gro_complete(nskb);
4435 } else {
4436 napi->gro_count++;
4437 }
d565b0a1 4438 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4439 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4440 NAPI_GRO_CB(skb)->last = skb;
86911732 4441 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4442 skb->next = napi->gro_list;
4443 napi->gro_list = skb;
5d0d9be8 4444 ret = GRO_HELD;
d565b0a1 4445
ad0f9904 4446pull:
a50e233c
ED
4447 grow = skb_gro_offset(skb) - skb_headlen(skb);
4448 if (grow > 0)
4449 gro_pull_from_frag0(skb, grow);
d565b0a1 4450ok:
5d0d9be8 4451 return ret;
d565b0a1
HX
4452
4453normal:
ad0f9904
HX
4454 ret = GRO_NORMAL;
4455 goto pull;
5d38a079 4456}
96e93eab 4457
bf5a755f
JC
4458struct packet_offload *gro_find_receive_by_type(__be16 type)
4459{
4460 struct list_head *offload_head = &offload_base;
4461 struct packet_offload *ptype;
4462
4463 list_for_each_entry_rcu(ptype, offload_head, list) {
4464 if (ptype->type != type || !ptype->callbacks.gro_receive)
4465 continue;
4466 return ptype;
4467 }
4468 return NULL;
4469}
e27a2f83 4470EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4471
4472struct packet_offload *gro_find_complete_by_type(__be16 type)
4473{
4474 struct list_head *offload_head = &offload_base;
4475 struct packet_offload *ptype;
4476
4477 list_for_each_entry_rcu(ptype, offload_head, list) {
4478 if (ptype->type != type || !ptype->callbacks.gro_complete)
4479 continue;
4480 return ptype;
4481 }
4482 return NULL;
4483}
e27a2f83 4484EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4485
bb728820 4486static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4487{
5d0d9be8
HX
4488 switch (ret) {
4489 case GRO_NORMAL:
ae78dbfa 4490 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4491 ret = GRO_DROP;
4492 break;
5d38a079 4493
5d0d9be8 4494 case GRO_DROP:
5d38a079
HX
4495 kfree_skb(skb);
4496 break;
5b252f0c 4497
daa86548 4498 case GRO_MERGED_FREE:
ce87fc6c
JG
4499 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4500 skb_dst_drop(skb);
d7e8883c 4501 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4502 } else {
d7e8883c 4503 __kfree_skb(skb);
ce87fc6c 4504 }
daa86548
ED
4505 break;
4506
5b252f0c
BH
4507 case GRO_HELD:
4508 case GRO_MERGED:
4509 break;
5d38a079
HX
4510 }
4511
c7c4b3b6 4512 return ret;
5d0d9be8 4513}
5d0d9be8 4514
c7c4b3b6 4515gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4516{
93f93a44 4517 skb_mark_napi_id(skb, napi);
ae78dbfa 4518 trace_napi_gro_receive_entry(skb);
86911732 4519
a50e233c
ED
4520 skb_gro_reset_offset(skb);
4521
89c5fa33 4522 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4523}
4524EXPORT_SYMBOL(napi_gro_receive);
4525
d0c2b0d2 4526static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4527{
93a35f59
ED
4528 if (unlikely(skb->pfmemalloc)) {
4529 consume_skb(skb);
4530 return;
4531 }
96e93eab 4532 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4533 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4534 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4535 skb->vlan_tci = 0;
66c46d74 4536 skb->dev = napi->dev;
6d152e23 4537 skb->skb_iif = 0;
c3caf119
JC
4538 skb->encapsulation = 0;
4539 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4540 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4541
4542 napi->skb = skb;
4543}
96e93eab 4544
76620aaf 4545struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4546{
5d38a079 4547 struct sk_buff *skb = napi->skb;
5d38a079
HX
4548
4549 if (!skb) {
fd11a83d 4550 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4551 if (skb) {
4552 napi->skb = skb;
4553 skb_mark_napi_id(skb, napi);
4554 }
80595d59 4555 }
96e93eab
HX
4556 return skb;
4557}
76620aaf 4558EXPORT_SYMBOL(napi_get_frags);
96e93eab 4559
a50e233c
ED
4560static gro_result_t napi_frags_finish(struct napi_struct *napi,
4561 struct sk_buff *skb,
4562 gro_result_t ret)
96e93eab 4563{
5d0d9be8
HX
4564 switch (ret) {
4565 case GRO_NORMAL:
a50e233c
ED
4566 case GRO_HELD:
4567 __skb_push(skb, ETH_HLEN);
4568 skb->protocol = eth_type_trans(skb, skb->dev);
4569 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4570 ret = GRO_DROP;
86911732 4571 break;
5d38a079 4572
5d0d9be8 4573 case GRO_DROP:
5d0d9be8
HX
4574 case GRO_MERGED_FREE:
4575 napi_reuse_skb(napi, skb);
4576 break;
5b252f0c
BH
4577
4578 case GRO_MERGED:
4579 break;
5d0d9be8 4580 }
5d38a079 4581
c7c4b3b6 4582 return ret;
5d38a079 4583}
5d0d9be8 4584
a50e233c
ED
4585/* Upper GRO stack assumes network header starts at gro_offset=0
4586 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4587 * We copy ethernet header into skb->data to have a common layout.
4588 */
4adb9c4a 4589static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4590{
4591 struct sk_buff *skb = napi->skb;
a50e233c
ED
4592 const struct ethhdr *eth;
4593 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4594
4595 napi->skb = NULL;
4596
a50e233c
ED
4597 skb_reset_mac_header(skb);
4598 skb_gro_reset_offset(skb);
4599
4600 eth = skb_gro_header_fast(skb, 0);
4601 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4602 eth = skb_gro_header_slow(skb, hlen, 0);
4603 if (unlikely(!eth)) {
4da46ceb
AC
4604 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4605 __func__, napi->dev->name);
a50e233c
ED
4606 napi_reuse_skb(napi, skb);
4607 return NULL;
4608 }
4609 } else {
4610 gro_pull_from_frag0(skb, hlen);
4611 NAPI_GRO_CB(skb)->frag0 += hlen;
4612 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4613 }
a50e233c
ED
4614 __skb_pull(skb, hlen);
4615
4616 /*
4617 * This works because the only protocols we care about don't require
4618 * special handling.
4619 * We'll fix it up properly in napi_frags_finish()
4620 */
4621 skb->protocol = eth->h_proto;
76620aaf 4622
76620aaf
HX
4623 return skb;
4624}
76620aaf 4625
c7c4b3b6 4626gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4627{
76620aaf 4628 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4629
4630 if (!skb)
c7c4b3b6 4631 return GRO_DROP;
5d0d9be8 4632
ae78dbfa
BH
4633 trace_napi_gro_frags_entry(skb);
4634
89c5fa33 4635 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4636}
5d38a079
HX
4637EXPORT_SYMBOL(napi_gro_frags);
4638
573e8fca
TH
4639/* Compute the checksum from gro_offset and return the folded value
4640 * after adding in any pseudo checksum.
4641 */
4642__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4643{
4644 __wsum wsum;
4645 __sum16 sum;
4646
4647 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4648
4649 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4650 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4651 if (likely(!sum)) {
4652 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4653 !skb->csum_complete_sw)
4654 netdev_rx_csum_fault(skb->dev);
4655 }
4656
4657 NAPI_GRO_CB(skb)->csum = wsum;
4658 NAPI_GRO_CB(skb)->csum_valid = 1;
4659
4660 return sum;
4661}
4662EXPORT_SYMBOL(__skb_gro_checksum_complete);
4663
e326bed2 4664/*
855abcf0 4665 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4666 * Note: called with local irq disabled, but exits with local irq enabled.
4667 */
4668static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4669{
4670#ifdef CONFIG_RPS
4671 struct softnet_data *remsd = sd->rps_ipi_list;
4672
4673 if (remsd) {
4674 sd->rps_ipi_list = NULL;
4675
4676 local_irq_enable();
4677
4678 /* Send pending IPI's to kick RPS processing on remote cpus. */
4679 while (remsd) {
4680 struct softnet_data *next = remsd->rps_ipi_next;
4681
4682 if (cpu_online(remsd->cpu))
c46fff2a 4683 smp_call_function_single_async(remsd->cpu,
fce8ad15 4684 &remsd->csd);
e326bed2
ED
4685 remsd = next;
4686 }
4687 } else
4688#endif
4689 local_irq_enable();
4690}
4691
d75b1ade
ED
4692static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4693{
4694#ifdef CONFIG_RPS
4695 return sd->rps_ipi_list != NULL;
4696#else
4697 return false;
4698#endif
4699}
4700
bea3348e 4701static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4702{
eecfd7c4 4703 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4704 bool again = true;
4705 int work = 0;
1da177e4 4706
e326bed2
ED
4707 /* Check if we have pending ipi, its better to send them now,
4708 * not waiting net_rx_action() end.
4709 */
d75b1ade 4710 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4711 local_irq_disable();
4712 net_rps_action_and_irq_enable(sd);
4713 }
d75b1ade 4714
bea3348e 4715 napi->weight = weight_p;
145dd5f9 4716 while (again) {
1da177e4 4717 struct sk_buff *skb;
6e7676c1
CG
4718
4719 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4720 rcu_read_lock();
6e7676c1 4721 __netif_receive_skb(skb);
2c17d27c 4722 rcu_read_unlock();
76cc8b13 4723 input_queue_head_incr(sd);
145dd5f9 4724 if (++work >= quota)
76cc8b13 4725 return work;
145dd5f9 4726
6e7676c1 4727 }
1da177e4 4728
145dd5f9 4729 local_irq_disable();
e36fa2f7 4730 rps_lock(sd);
11ef7a89 4731 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4732 /*
4733 * Inline a custom version of __napi_complete().
4734 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4735 * and NAPI_STATE_SCHED is the only possible flag set
4736 * on backlog.
4737 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4738 * and we dont need an smp_mb() memory barrier.
4739 */
eecfd7c4 4740 napi->state = 0;
145dd5f9
PA
4741 again = false;
4742 } else {
4743 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4744 &sd->process_queue);
bea3348e 4745 }
e36fa2f7 4746 rps_unlock(sd);
145dd5f9 4747 local_irq_enable();
6e7676c1 4748 }
1da177e4 4749
bea3348e
SH
4750 return work;
4751}
1da177e4 4752
bea3348e
SH
4753/**
4754 * __napi_schedule - schedule for receive
c4ea43c5 4755 * @n: entry to schedule
bea3348e 4756 *
bc9ad166
ED
4757 * The entry's receive function will be scheduled to run.
4758 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4759 */
b5606c2d 4760void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4761{
4762 unsigned long flags;
1da177e4 4763
bea3348e 4764 local_irq_save(flags);
903ceff7 4765 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4766 local_irq_restore(flags);
1da177e4 4767}
bea3348e
SH
4768EXPORT_SYMBOL(__napi_schedule);
4769
bc9ad166
ED
4770/**
4771 * __napi_schedule_irqoff - schedule for receive
4772 * @n: entry to schedule
4773 *
4774 * Variant of __napi_schedule() assuming hard irqs are masked
4775 */
4776void __napi_schedule_irqoff(struct napi_struct *n)
4777{
4778 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4779}
4780EXPORT_SYMBOL(__napi_schedule_irqoff);
4781
d565b0a1
HX
4782void __napi_complete(struct napi_struct *n)
4783{
4784 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4785
d75b1ade 4786 list_del_init(&n->poll_list);
4e857c58 4787 smp_mb__before_atomic();
d565b0a1
HX
4788 clear_bit(NAPI_STATE_SCHED, &n->state);
4789}
4790EXPORT_SYMBOL(__napi_complete);
4791
3b47d303 4792void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4793{
4794 unsigned long flags;
4795
4796 /*
4797 * don't let napi dequeue from the cpu poll list
4798 * just in case its running on a different cpu
4799 */
4800 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4801 return;
4802
3b47d303
ED
4803 if (n->gro_list) {
4804 unsigned long timeout = 0;
d75b1ade 4805
3b47d303
ED
4806 if (work_done)
4807 timeout = n->dev->gro_flush_timeout;
4808
4809 if (timeout)
4810 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4811 HRTIMER_MODE_REL_PINNED);
4812 else
4813 napi_gro_flush(n, false);
4814 }
d75b1ade
ED
4815 if (likely(list_empty(&n->poll_list))) {
4816 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4817 } else {
4818 /* If n->poll_list is not empty, we need to mask irqs */
4819 local_irq_save(flags);
4820 __napi_complete(n);
4821 local_irq_restore(flags);
4822 }
d565b0a1 4823}
3b47d303 4824EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4825
af12fa6e 4826/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4827static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4828{
4829 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4830 struct napi_struct *napi;
4831
4832 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4833 if (napi->napi_id == napi_id)
4834 return napi;
4835
4836 return NULL;
4837}
02d62e86
ED
4838
4839#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4840#define BUSY_POLL_BUDGET 8
02d62e86
ED
4841bool sk_busy_loop(struct sock *sk, int nonblock)
4842{
4843 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4844 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4845 struct napi_struct *napi;
4846 int rc = false;
4847
2a028ecb 4848 rcu_read_lock();
02d62e86
ED
4849
4850 napi = napi_by_id(sk->sk_napi_id);
4851 if (!napi)
4852 goto out;
4853
ce6aea93
ED
4854 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4855 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4856
4857 do {
ce6aea93 4858 rc = 0;
2a028ecb 4859 local_bh_disable();
ce6aea93
ED
4860 if (busy_poll) {
4861 rc = busy_poll(napi);
4862 } else if (napi_schedule_prep(napi)) {
4863 void *have = netpoll_poll_lock(napi);
4864
4865 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4866 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1db19db7 4867 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
ce6aea93
ED
4868 if (rc == BUSY_POLL_BUDGET) {
4869 napi_complete_done(napi, rc);
4870 napi_schedule(napi);
4871 }
4872 }
4873 netpoll_poll_unlock(have);
4874 }
2a028ecb 4875 if (rc > 0)
02a1d6e7
ED
4876 __NET_ADD_STATS(sock_net(sk),
4877 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 4878 local_bh_enable();
02d62e86
ED
4879
4880 if (rc == LL_FLUSH_FAILED)
4881 break; /* permanent failure */
4882
02d62e86 4883 cpu_relax();
02d62e86
ED
4884 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4885 !need_resched() && !busy_loop_timeout(end_time));
4886
4887 rc = !skb_queue_empty(&sk->sk_receive_queue);
4888out:
2a028ecb 4889 rcu_read_unlock();
02d62e86
ED
4890 return rc;
4891}
4892EXPORT_SYMBOL(sk_busy_loop);
4893
4894#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
4895
4896void napi_hash_add(struct napi_struct *napi)
4897{
d64b5e85
ED
4898 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4899 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 4900 return;
af12fa6e 4901
52bd2d62 4902 spin_lock(&napi_hash_lock);
af12fa6e 4903
52bd2d62
ED
4904 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4905 do {
4906 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4907 napi_gen_id = NR_CPUS + 1;
4908 } while (napi_by_id(napi_gen_id));
4909 napi->napi_id = napi_gen_id;
af12fa6e 4910
52bd2d62
ED
4911 hlist_add_head_rcu(&napi->napi_hash_node,
4912 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 4913
52bd2d62 4914 spin_unlock(&napi_hash_lock);
af12fa6e
ET
4915}
4916EXPORT_SYMBOL_GPL(napi_hash_add);
4917
4918/* Warning : caller is responsible to make sure rcu grace period
4919 * is respected before freeing memory containing @napi
4920 */
34cbe27e 4921bool napi_hash_del(struct napi_struct *napi)
af12fa6e 4922{
34cbe27e
ED
4923 bool rcu_sync_needed = false;
4924
af12fa6e
ET
4925 spin_lock(&napi_hash_lock);
4926
34cbe27e
ED
4927 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4928 rcu_sync_needed = true;
af12fa6e 4929 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 4930 }
af12fa6e 4931 spin_unlock(&napi_hash_lock);
34cbe27e 4932 return rcu_sync_needed;
af12fa6e
ET
4933}
4934EXPORT_SYMBOL_GPL(napi_hash_del);
4935
3b47d303
ED
4936static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4937{
4938 struct napi_struct *napi;
4939
4940 napi = container_of(timer, struct napi_struct, timer);
4941 if (napi->gro_list)
4942 napi_schedule(napi);
4943
4944 return HRTIMER_NORESTART;
4945}
4946
d565b0a1
HX
4947void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4948 int (*poll)(struct napi_struct *, int), int weight)
4949{
4950 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
4951 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4952 napi->timer.function = napi_watchdog;
4ae5544f 4953 napi->gro_count = 0;
d565b0a1 4954 napi->gro_list = NULL;
5d38a079 4955 napi->skb = NULL;
d565b0a1 4956 napi->poll = poll;
82dc3c63
ED
4957 if (weight > NAPI_POLL_WEIGHT)
4958 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4959 weight, dev->name);
d565b0a1
HX
4960 napi->weight = weight;
4961 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4962 napi->dev = dev;
5d38a079 4963#ifdef CONFIG_NETPOLL
d565b0a1
HX
4964 spin_lock_init(&napi->poll_lock);
4965 napi->poll_owner = -1;
4966#endif
4967 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 4968 napi_hash_add(napi);
d565b0a1
HX
4969}
4970EXPORT_SYMBOL(netif_napi_add);
4971
3b47d303
ED
4972void napi_disable(struct napi_struct *n)
4973{
4974 might_sleep();
4975 set_bit(NAPI_STATE_DISABLE, &n->state);
4976
4977 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4978 msleep(1);
2d8bff12
NH
4979 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4980 msleep(1);
3b47d303
ED
4981
4982 hrtimer_cancel(&n->timer);
4983
4984 clear_bit(NAPI_STATE_DISABLE, &n->state);
4985}
4986EXPORT_SYMBOL(napi_disable);
4987
93d05d4a 4988/* Must be called in process context */
d565b0a1
HX
4989void netif_napi_del(struct napi_struct *napi)
4990{
93d05d4a
ED
4991 might_sleep();
4992 if (napi_hash_del(napi))
4993 synchronize_net();
d7b06636 4994 list_del_init(&napi->dev_list);
76620aaf 4995 napi_free_frags(napi);
d565b0a1 4996
289dccbe 4997 kfree_skb_list(napi->gro_list);
d565b0a1 4998 napi->gro_list = NULL;
4ae5544f 4999 napi->gro_count = 0;
d565b0a1
HX
5000}
5001EXPORT_SYMBOL(netif_napi_del);
5002
726ce70e
HX
5003static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5004{
5005 void *have;
5006 int work, weight;
5007
5008 list_del_init(&n->poll_list);
5009
5010 have = netpoll_poll_lock(n);
5011
5012 weight = n->weight;
5013
5014 /* This NAPI_STATE_SCHED test is for avoiding a race
5015 * with netpoll's poll_napi(). Only the entity which
5016 * obtains the lock and sees NAPI_STATE_SCHED set will
5017 * actually make the ->poll() call. Therefore we avoid
5018 * accidentally calling ->poll() when NAPI is not scheduled.
5019 */
5020 work = 0;
5021 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5022 work = n->poll(n, weight);
1db19db7 5023 trace_napi_poll(n, work, weight);
726ce70e
HX
5024 }
5025
5026 WARN_ON_ONCE(work > weight);
5027
5028 if (likely(work < weight))
5029 goto out_unlock;
5030
5031 /* Drivers must not modify the NAPI state if they
5032 * consume the entire weight. In such cases this code
5033 * still "owns" the NAPI instance and therefore can
5034 * move the instance around on the list at-will.
5035 */
5036 if (unlikely(napi_disable_pending(n))) {
5037 napi_complete(n);
5038 goto out_unlock;
5039 }
5040
5041 if (n->gro_list) {
5042 /* flush too old packets
5043 * If HZ < 1000, flush all packets.
5044 */
5045 napi_gro_flush(n, HZ >= 1000);
5046 }
5047
001ce546
HX
5048 /* Some drivers may have called napi_schedule
5049 * prior to exhausting their budget.
5050 */
5051 if (unlikely(!list_empty(&n->poll_list))) {
5052 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5053 n->dev ? n->dev->name : "backlog");
5054 goto out_unlock;
5055 }
5056
726ce70e
HX
5057 list_add_tail(&n->poll_list, repoll);
5058
5059out_unlock:
5060 netpoll_poll_unlock(have);
5061
5062 return work;
5063}
5064
1da177e4
LT
5065static void net_rx_action(struct softirq_action *h)
5066{
903ceff7 5067 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5068 unsigned long time_limit = jiffies + 2;
51b0bded 5069 int budget = netdev_budget;
d75b1ade
ED
5070 LIST_HEAD(list);
5071 LIST_HEAD(repoll);
53fb95d3 5072
1da177e4 5073 local_irq_disable();
d75b1ade
ED
5074 list_splice_init(&sd->poll_list, &list);
5075 local_irq_enable();
1da177e4 5076
ceb8d5bf 5077 for (;;) {
bea3348e 5078 struct napi_struct *n;
1da177e4 5079
ceb8d5bf
HX
5080 if (list_empty(&list)) {
5081 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5082 return;
5083 break;
5084 }
5085
6bd373eb
HX
5086 n = list_first_entry(&list, struct napi_struct, poll_list);
5087 budget -= napi_poll(n, &repoll);
5088
d75b1ade 5089 /* If softirq window is exhausted then punt.
24f8b238
SH
5090 * Allow this to run for 2 jiffies since which will allow
5091 * an average latency of 1.5/HZ.
bea3348e 5092 */
ceb8d5bf
HX
5093 if (unlikely(budget <= 0 ||
5094 time_after_eq(jiffies, time_limit))) {
5095 sd->time_squeeze++;
5096 break;
5097 }
1da177e4 5098 }
d75b1ade 5099
795bb1c0 5100 __kfree_skb_flush();
d75b1ade
ED
5101 local_irq_disable();
5102
5103 list_splice_tail_init(&sd->poll_list, &list);
5104 list_splice_tail(&repoll, &list);
5105 list_splice(&list, &sd->poll_list);
5106 if (!list_empty(&sd->poll_list))
5107 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5108
e326bed2 5109 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5110}
5111
aa9d8560 5112struct netdev_adjacent {
9ff162a8 5113 struct net_device *dev;
5d261913
VF
5114
5115 /* upper master flag, there can only be one master device per list */
9ff162a8 5116 bool master;
5d261913 5117
5d261913
VF
5118 /* counter for the number of times this device was added to us */
5119 u16 ref_nr;
5120
402dae96
VF
5121 /* private field for the users */
5122 void *private;
5123
9ff162a8
JP
5124 struct list_head list;
5125 struct rcu_head rcu;
9ff162a8
JP
5126};
5127
6ea29da1 5128static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5129 struct list_head *adj_list)
9ff162a8 5130{
5d261913 5131 struct netdev_adjacent *adj;
5d261913 5132
2f268f12 5133 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5134 if (adj->dev == adj_dev)
5135 return adj;
9ff162a8
JP
5136 }
5137 return NULL;
5138}
5139
f1170fd4
DA
5140static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5141{
5142 struct net_device *dev = data;
5143
5144 return upper_dev == dev;
5145}
5146
9ff162a8
JP
5147/**
5148 * netdev_has_upper_dev - Check if device is linked to an upper device
5149 * @dev: device
5150 * @upper_dev: upper device to check
5151 *
5152 * Find out if a device is linked to specified upper device and return true
5153 * in case it is. Note that this checks only immediate upper device,
5154 * not through a complete stack of devices. The caller must hold the RTNL lock.
5155 */
5156bool netdev_has_upper_dev(struct net_device *dev,
5157 struct net_device *upper_dev)
5158{
5159 ASSERT_RTNL();
5160
f1170fd4
DA
5161 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5162 upper_dev);
9ff162a8
JP
5163}
5164EXPORT_SYMBOL(netdev_has_upper_dev);
5165
1a3f060c
DA
5166/**
5167 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5168 * @dev: device
5169 * @upper_dev: upper device to check
5170 *
5171 * Find out if a device is linked to specified upper device and return true
5172 * in case it is. Note that this checks the entire upper device chain.
5173 * The caller must hold rcu lock.
5174 */
5175
1a3f060c
DA
5176bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5177 struct net_device *upper_dev)
5178{
5179 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5180 upper_dev);
5181}
5182EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5183
9ff162a8
JP
5184/**
5185 * netdev_has_any_upper_dev - Check if device is linked to some device
5186 * @dev: device
5187 *
5188 * Find out if a device is linked to an upper device and return true in case
5189 * it is. The caller must hold the RTNL lock.
5190 */
1d143d9f 5191static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5192{
5193 ASSERT_RTNL();
5194
f1170fd4 5195 return !list_empty(&dev->adj_list.upper);
9ff162a8 5196}
9ff162a8
JP
5197
5198/**
5199 * netdev_master_upper_dev_get - Get master upper device
5200 * @dev: device
5201 *
5202 * Find a master upper device and return pointer to it or NULL in case
5203 * it's not there. The caller must hold the RTNL lock.
5204 */
5205struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5206{
aa9d8560 5207 struct netdev_adjacent *upper;
9ff162a8
JP
5208
5209 ASSERT_RTNL();
5210
2f268f12 5211 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5212 return NULL;
5213
2f268f12 5214 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5215 struct netdev_adjacent, list);
9ff162a8
JP
5216 if (likely(upper->master))
5217 return upper->dev;
5218 return NULL;
5219}
5220EXPORT_SYMBOL(netdev_master_upper_dev_get);
5221
b6ccba4c
VF
5222void *netdev_adjacent_get_private(struct list_head *adj_list)
5223{
5224 struct netdev_adjacent *adj;
5225
5226 adj = list_entry(adj_list, struct netdev_adjacent, list);
5227
5228 return adj->private;
5229}
5230EXPORT_SYMBOL(netdev_adjacent_get_private);
5231
44a40855
VY
5232/**
5233 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5234 * @dev: device
5235 * @iter: list_head ** of the current position
5236 *
5237 * Gets the next device from the dev's upper list, starting from iter
5238 * position. The caller must hold RCU read lock.
5239 */
5240struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5241 struct list_head **iter)
5242{
5243 struct netdev_adjacent *upper;
5244
5245 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5246
5247 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5248
5249 if (&upper->list == &dev->adj_list.upper)
5250 return NULL;
5251
5252 *iter = &upper->list;
5253
5254 return upper->dev;
5255}
5256EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5257
1a3f060c
DA
5258static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5259 struct list_head **iter)
5260{
5261 struct netdev_adjacent *upper;
5262
5263 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5264
5265 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5266
5267 if (&upper->list == &dev->adj_list.upper)
5268 return NULL;
5269
5270 *iter = &upper->list;
5271
5272 return upper->dev;
5273}
5274
5275int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5276 int (*fn)(struct net_device *dev,
5277 void *data),
5278 void *data)
5279{
5280 struct net_device *udev;
5281 struct list_head *iter;
5282 int ret;
5283
5284 for (iter = &dev->adj_list.upper,
5285 udev = netdev_next_upper_dev_rcu(dev, &iter);
5286 udev;
5287 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5288 /* first is the upper device itself */
5289 ret = fn(udev, data);
5290 if (ret)
5291 return ret;
5292
5293 /* then look at all of its upper devices */
5294 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5295 if (ret)
5296 return ret;
5297 }
5298
5299 return 0;
5300}
5301EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5302
31088a11
VF
5303/**
5304 * netdev_lower_get_next_private - Get the next ->private from the
5305 * lower neighbour list
5306 * @dev: device
5307 * @iter: list_head ** of the current position
5308 *
5309 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5310 * list, starting from iter position. The caller must hold either hold the
5311 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5312 * list will remain unchanged.
31088a11
VF
5313 */
5314void *netdev_lower_get_next_private(struct net_device *dev,
5315 struct list_head **iter)
5316{
5317 struct netdev_adjacent *lower;
5318
5319 lower = list_entry(*iter, struct netdev_adjacent, list);
5320
5321 if (&lower->list == &dev->adj_list.lower)
5322 return NULL;
5323
6859e7df 5324 *iter = lower->list.next;
31088a11
VF
5325
5326 return lower->private;
5327}
5328EXPORT_SYMBOL(netdev_lower_get_next_private);
5329
5330/**
5331 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5332 * lower neighbour list, RCU
5333 * variant
5334 * @dev: device
5335 * @iter: list_head ** of the current position
5336 *
5337 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5338 * list, starting from iter position. The caller must hold RCU read lock.
5339 */
5340void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5341 struct list_head **iter)
5342{
5343 struct netdev_adjacent *lower;
5344
5345 WARN_ON_ONCE(!rcu_read_lock_held());
5346
5347 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5348
5349 if (&lower->list == &dev->adj_list.lower)
5350 return NULL;
5351
6859e7df 5352 *iter = &lower->list;
31088a11
VF
5353
5354 return lower->private;
5355}
5356EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5357
4085ebe8
VY
5358/**
5359 * netdev_lower_get_next - Get the next device from the lower neighbour
5360 * list
5361 * @dev: device
5362 * @iter: list_head ** of the current position
5363 *
5364 * Gets the next netdev_adjacent from the dev's lower neighbour
5365 * list, starting from iter position. The caller must hold RTNL lock or
5366 * its own locking that guarantees that the neighbour lower
b469139e 5367 * list will remain unchanged.
4085ebe8
VY
5368 */
5369void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5370{
5371 struct netdev_adjacent *lower;
5372
cfdd28be 5373 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5374
5375 if (&lower->list == &dev->adj_list.lower)
5376 return NULL;
5377
cfdd28be 5378 *iter = lower->list.next;
4085ebe8
VY
5379
5380 return lower->dev;
5381}
5382EXPORT_SYMBOL(netdev_lower_get_next);
5383
1a3f060c
DA
5384static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5385 struct list_head **iter)
5386{
5387 struct netdev_adjacent *lower;
5388
5389 lower = list_entry(*iter, struct netdev_adjacent, list);
5390
5391 if (&lower->list == &dev->adj_list.lower)
5392 return NULL;
5393
5394 *iter = lower->list.next;
5395
5396 return lower->dev;
5397}
5398
5399int netdev_walk_all_lower_dev(struct net_device *dev,
5400 int (*fn)(struct net_device *dev,
5401 void *data),
5402 void *data)
5403{
5404 struct net_device *ldev;
5405 struct list_head *iter;
5406 int ret;
5407
5408 for (iter = &dev->adj_list.lower,
5409 ldev = netdev_next_lower_dev(dev, &iter);
5410 ldev;
5411 ldev = netdev_next_lower_dev(dev, &iter)) {
5412 /* first is the lower device itself */
5413 ret = fn(ldev, data);
5414 if (ret)
5415 return ret;
5416
5417 /* then look at all of its lower devices */
5418 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5419 if (ret)
5420 return ret;
5421 }
5422
5423 return 0;
5424}
5425EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5426
1a3f060c
DA
5427static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5428 struct list_head **iter)
5429{
5430 struct netdev_adjacent *lower;
5431
5432 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5433 if (&lower->list == &dev->adj_list.lower)
5434 return NULL;
5435
5436 *iter = &lower->list;
5437
5438 return lower->dev;
5439}
5440
5441int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5442 int (*fn)(struct net_device *dev,
5443 void *data),
5444 void *data)
5445{
5446 struct net_device *ldev;
5447 struct list_head *iter;
5448 int ret;
5449
5450 for (iter = &dev->adj_list.lower,
5451 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5452 ldev;
5453 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5454 /* first is the lower device itself */
5455 ret = fn(ldev, data);
5456 if (ret)
5457 return ret;
5458
5459 /* then look at all of its lower devices */
5460 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5461 if (ret)
5462 return ret;
5463 }
5464
5465 return 0;
5466}
5467EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5468
e001bfad 5469/**
5470 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5471 * lower neighbour list, RCU
5472 * variant
5473 * @dev: device
5474 *
5475 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5476 * list. The caller must hold RCU read lock.
5477 */
5478void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5479{
5480 struct netdev_adjacent *lower;
5481
5482 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5483 struct netdev_adjacent, list);
5484 if (lower)
5485 return lower->private;
5486 return NULL;
5487}
5488EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5489
9ff162a8
JP
5490/**
5491 * netdev_master_upper_dev_get_rcu - Get master upper device
5492 * @dev: device
5493 *
5494 * Find a master upper device and return pointer to it or NULL in case
5495 * it's not there. The caller must hold the RCU read lock.
5496 */
5497struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5498{
aa9d8560 5499 struct netdev_adjacent *upper;
9ff162a8 5500
2f268f12 5501 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5502 struct netdev_adjacent, list);
9ff162a8
JP
5503 if (upper && likely(upper->master))
5504 return upper->dev;
5505 return NULL;
5506}
5507EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5508
0a59f3a9 5509static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5510 struct net_device *adj_dev,
5511 struct list_head *dev_list)
5512{
5513 char linkname[IFNAMSIZ+7];
5514 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5515 "upper_%s" : "lower_%s", adj_dev->name);
5516 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5517 linkname);
5518}
0a59f3a9 5519static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5520 char *name,
5521 struct list_head *dev_list)
5522{
5523 char linkname[IFNAMSIZ+7];
5524 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5525 "upper_%s" : "lower_%s", name);
5526 sysfs_remove_link(&(dev->dev.kobj), linkname);
5527}
5528
7ce64c79
AF
5529static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5530 struct net_device *adj_dev,
5531 struct list_head *dev_list)
5532{
5533 return (dev_list == &dev->adj_list.upper ||
5534 dev_list == &dev->adj_list.lower) &&
5535 net_eq(dev_net(dev), dev_net(adj_dev));
5536}
3ee32707 5537
5d261913
VF
5538static int __netdev_adjacent_dev_insert(struct net_device *dev,
5539 struct net_device *adj_dev,
7863c054 5540 struct list_head *dev_list,
402dae96 5541 void *private, bool master)
5d261913
VF
5542{
5543 struct netdev_adjacent *adj;
842d67a7 5544 int ret;
5d261913 5545
6ea29da1 5546 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5547
5548 if (adj) {
790510d9 5549 adj->ref_nr += 1;
5d261913
VF
5550 return 0;
5551 }
5552
5553 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5554 if (!adj)
5555 return -ENOMEM;
5556
5557 adj->dev = adj_dev;
5558 adj->master = master;
790510d9 5559 adj->ref_nr = 1;
402dae96 5560 adj->private = private;
5d261913 5561 dev_hold(adj_dev);
2f268f12
VF
5562
5563 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5564 adj_dev->name, dev->name, adj_dev->name);
5d261913 5565
7ce64c79 5566 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5567 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5568 if (ret)
5569 goto free_adj;
5570 }
5571
7863c054 5572 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5573 if (master) {
5574 ret = sysfs_create_link(&(dev->dev.kobj),
5575 &(adj_dev->dev.kobj), "master");
5576 if (ret)
5831d66e 5577 goto remove_symlinks;
842d67a7 5578
7863c054 5579 list_add_rcu(&adj->list, dev_list);
842d67a7 5580 } else {
7863c054 5581 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5582 }
5d261913
VF
5583
5584 return 0;
842d67a7 5585
5831d66e 5586remove_symlinks:
7ce64c79 5587 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5588 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5589free_adj:
5590 kfree(adj);
974daef7 5591 dev_put(adj_dev);
842d67a7
VF
5592
5593 return ret;
5d261913
VF
5594}
5595
1d143d9f 5596static void __netdev_adjacent_dev_remove(struct net_device *dev,
5597 struct net_device *adj_dev,
93409033 5598 u16 ref_nr,
1d143d9f 5599 struct list_head *dev_list)
5d261913
VF
5600{
5601 struct netdev_adjacent *adj;
5602
6ea29da1 5603 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5604
2f268f12
VF
5605 if (!adj) {
5606 pr_err("tried to remove device %s from %s\n",
5607 dev->name, adj_dev->name);
5d261913 5608 BUG();
2f268f12 5609 }
5d261913 5610
93409033
AC
5611 if (adj->ref_nr > ref_nr) {
5612 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5613 ref_nr, adj->ref_nr-ref_nr);
5614 adj->ref_nr -= ref_nr;
5d261913
VF
5615 return;
5616 }
5617
842d67a7
VF
5618 if (adj->master)
5619 sysfs_remove_link(&(dev->dev.kobj), "master");
5620
7ce64c79 5621 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5622 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5623
5d261913 5624 list_del_rcu(&adj->list);
2f268f12
VF
5625 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5626 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5627 dev_put(adj_dev);
5628 kfree_rcu(adj, rcu);
5629}
5630
1d143d9f 5631static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5632 struct net_device *upper_dev,
5633 struct list_head *up_list,
5634 struct list_head *down_list,
5635 void *private, bool master)
5d261913
VF
5636{
5637 int ret;
5638
790510d9 5639 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 5640 private, master);
5d261913
VF
5641 if (ret)
5642 return ret;
5643
790510d9 5644 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 5645 private, false);
5d261913 5646 if (ret) {
790510d9 5647 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
5648 return ret;
5649 }
5650
5651 return 0;
5652}
5653
1d143d9f 5654static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5655 struct net_device *upper_dev,
93409033 5656 u16 ref_nr,
1d143d9f 5657 struct list_head *up_list,
5658 struct list_head *down_list)
5d261913 5659{
93409033
AC
5660 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5661 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
5662}
5663
1d143d9f 5664static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5665 struct net_device *upper_dev,
5666 void *private, bool master)
2f268f12 5667{
f1170fd4
DA
5668 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5669 &dev->adj_list.upper,
5670 &upper_dev->adj_list.lower,
5671 private, master);
5d261913
VF
5672}
5673
1d143d9f 5674static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5675 struct net_device *upper_dev)
2f268f12 5676{
93409033 5677 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
5678 &dev->adj_list.upper,
5679 &upper_dev->adj_list.lower);
5680}
5d261913 5681
9ff162a8 5682static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5683 struct net_device *upper_dev, bool master,
29bf24af 5684 void *upper_priv, void *upper_info)
9ff162a8 5685{
0e4ead9d 5686 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5687 int ret = 0;
9ff162a8
JP
5688
5689 ASSERT_RTNL();
5690
5691 if (dev == upper_dev)
5692 return -EBUSY;
5693
5694 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 5695 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
5696 return -EBUSY;
5697
f1170fd4 5698 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
5699 return -EEXIST;
5700
5701 if (master && netdev_master_upper_dev_get(dev))
5702 return -EBUSY;
5703
0e4ead9d
JP
5704 changeupper_info.upper_dev = upper_dev;
5705 changeupper_info.master = master;
5706 changeupper_info.linking = true;
29bf24af 5707 changeupper_info.upper_info = upper_info;
0e4ead9d 5708
573c7ba0
JP
5709 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5710 &changeupper_info.info);
5711 ret = notifier_to_errno(ret);
5712 if (ret)
5713 return ret;
5714
6dffb044 5715 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5716 master);
5d261913
VF
5717 if (ret)
5718 return ret;
9ff162a8 5719
b03804e7
IS
5720 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5721 &changeupper_info.info);
5722 ret = notifier_to_errno(ret);
5723 if (ret)
f1170fd4 5724 goto rollback;
b03804e7 5725
9ff162a8 5726 return 0;
5d261913 5727
f1170fd4 5728rollback:
2f268f12 5729 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5730
5731 return ret;
9ff162a8
JP
5732}
5733
5734/**
5735 * netdev_upper_dev_link - Add a link to the upper device
5736 * @dev: device
5737 * @upper_dev: new upper device
5738 *
5739 * Adds a link to device which is upper to this one. The caller must hold
5740 * the RTNL lock. On a failure a negative errno code is returned.
5741 * On success the reference counts are adjusted and the function
5742 * returns zero.
5743 */
5744int netdev_upper_dev_link(struct net_device *dev,
5745 struct net_device *upper_dev)
5746{
29bf24af 5747 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5748}
5749EXPORT_SYMBOL(netdev_upper_dev_link);
5750
5751/**
5752 * netdev_master_upper_dev_link - Add a master link to the upper device
5753 * @dev: device
5754 * @upper_dev: new upper device
6dffb044 5755 * @upper_priv: upper device private
29bf24af 5756 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5757 *
5758 * Adds a link to device which is upper to this one. In this case, only
5759 * one master upper device can be linked, although other non-master devices
5760 * might be linked as well. The caller must hold the RTNL lock.
5761 * On a failure a negative errno code is returned. On success the reference
5762 * counts are adjusted and the function returns zero.
5763 */
5764int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5765 struct net_device *upper_dev,
29bf24af 5766 void *upper_priv, void *upper_info)
9ff162a8 5767{
29bf24af
JP
5768 return __netdev_upper_dev_link(dev, upper_dev, true,
5769 upper_priv, upper_info);
9ff162a8
JP
5770}
5771EXPORT_SYMBOL(netdev_master_upper_dev_link);
5772
5773/**
5774 * netdev_upper_dev_unlink - Removes a link to upper device
5775 * @dev: device
5776 * @upper_dev: new upper device
5777 *
5778 * Removes a link to device which is upper to this one. The caller must hold
5779 * the RTNL lock.
5780 */
5781void netdev_upper_dev_unlink(struct net_device *dev,
5782 struct net_device *upper_dev)
5783{
0e4ead9d 5784 struct netdev_notifier_changeupper_info changeupper_info;
9ff162a8
JP
5785 ASSERT_RTNL();
5786
0e4ead9d
JP
5787 changeupper_info.upper_dev = upper_dev;
5788 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5789 changeupper_info.linking = false;
5790
573c7ba0
JP
5791 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5792 &changeupper_info.info);
5793
2f268f12 5794 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 5795
0e4ead9d
JP
5796 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5797 &changeupper_info.info);
9ff162a8
JP
5798}
5799EXPORT_SYMBOL(netdev_upper_dev_unlink);
5800
61bd3857
MS
5801/**
5802 * netdev_bonding_info_change - Dispatch event about slave change
5803 * @dev: device
4a26e453 5804 * @bonding_info: info to dispatch
61bd3857
MS
5805 *
5806 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5807 * The caller must hold the RTNL lock.
5808 */
5809void netdev_bonding_info_change(struct net_device *dev,
5810 struct netdev_bonding_info *bonding_info)
5811{
5812 struct netdev_notifier_bonding_info info;
5813
5814 memcpy(&info.bonding_info, bonding_info,
5815 sizeof(struct netdev_bonding_info));
5816 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5817 &info.info);
5818}
5819EXPORT_SYMBOL(netdev_bonding_info_change);
5820
2ce1ee17 5821static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5822{
5823 struct netdev_adjacent *iter;
5824
5825 struct net *net = dev_net(dev);
5826
5827 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5828 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5829 continue;
5830 netdev_adjacent_sysfs_add(iter->dev, dev,
5831 &iter->dev->adj_list.lower);
5832 netdev_adjacent_sysfs_add(dev, iter->dev,
5833 &dev->adj_list.upper);
5834 }
5835
5836 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5837 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5838 continue;
5839 netdev_adjacent_sysfs_add(iter->dev, dev,
5840 &iter->dev->adj_list.upper);
5841 netdev_adjacent_sysfs_add(dev, iter->dev,
5842 &dev->adj_list.lower);
5843 }
5844}
5845
2ce1ee17 5846static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5847{
5848 struct netdev_adjacent *iter;
5849
5850 struct net *net = dev_net(dev);
5851
5852 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5853 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5854 continue;
5855 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5856 &iter->dev->adj_list.lower);
5857 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5858 &dev->adj_list.upper);
5859 }
5860
5861 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5862 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5863 continue;
5864 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5865 &iter->dev->adj_list.upper);
5866 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5867 &dev->adj_list.lower);
5868 }
5869}
5870
5bb025fa 5871void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5872{
5bb025fa 5873 struct netdev_adjacent *iter;
402dae96 5874
4c75431a
AF
5875 struct net *net = dev_net(dev);
5876
5bb025fa 5877 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5878 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 5879 continue;
5bb025fa
VF
5880 netdev_adjacent_sysfs_del(iter->dev, oldname,
5881 &iter->dev->adj_list.lower);
5882 netdev_adjacent_sysfs_add(iter->dev, dev,
5883 &iter->dev->adj_list.lower);
5884 }
402dae96 5885
5bb025fa 5886 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5887 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 5888 continue;
5bb025fa
VF
5889 netdev_adjacent_sysfs_del(iter->dev, oldname,
5890 &iter->dev->adj_list.upper);
5891 netdev_adjacent_sysfs_add(iter->dev, dev,
5892 &iter->dev->adj_list.upper);
5893 }
402dae96 5894}
402dae96
VF
5895
5896void *netdev_lower_dev_get_private(struct net_device *dev,
5897 struct net_device *lower_dev)
5898{
5899 struct netdev_adjacent *lower;
5900
5901 if (!lower_dev)
5902 return NULL;
6ea29da1 5903 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
5904 if (!lower)
5905 return NULL;
5906
5907 return lower->private;
5908}
5909EXPORT_SYMBOL(netdev_lower_dev_get_private);
5910
4085ebe8 5911
952fcfd0 5912int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
5913{
5914 struct net_device *lower = NULL;
5915 struct list_head *iter;
5916 int max_nest = -1;
5917 int nest;
5918
5919 ASSERT_RTNL();
5920
5921 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 5922 nest = dev_get_nest_level(lower);
4085ebe8
VY
5923 if (max_nest < nest)
5924 max_nest = nest;
5925 }
5926
952fcfd0 5927 return max_nest + 1;
4085ebe8
VY
5928}
5929EXPORT_SYMBOL(dev_get_nest_level);
5930
04d48266
JP
5931/**
5932 * netdev_lower_change - Dispatch event about lower device state change
5933 * @lower_dev: device
5934 * @lower_state_info: state to dispatch
5935 *
5936 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5937 * The caller must hold the RTNL lock.
5938 */
5939void netdev_lower_state_changed(struct net_device *lower_dev,
5940 void *lower_state_info)
5941{
5942 struct netdev_notifier_changelowerstate_info changelowerstate_info;
5943
5944 ASSERT_RTNL();
5945 changelowerstate_info.lower_state_info = lower_state_info;
5946 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5947 &changelowerstate_info.info);
5948}
5949EXPORT_SYMBOL(netdev_lower_state_changed);
5950
18bfb924
JP
5951int netdev_default_l2upper_neigh_construct(struct net_device *dev,
5952 struct neighbour *n)
5953{
5954 struct net_device *lower_dev, *stop_dev;
5955 struct list_head *iter;
5956 int err;
5957
5958 netdev_for_each_lower_dev(dev, lower_dev, iter) {
5959 if (!lower_dev->netdev_ops->ndo_neigh_construct)
5960 continue;
5961 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
5962 if (err) {
5963 stop_dev = lower_dev;
5964 goto rollback;
5965 }
5966 }
5967 return 0;
5968
5969rollback:
5970 netdev_for_each_lower_dev(dev, lower_dev, iter) {
5971 if (lower_dev == stop_dev)
5972 break;
5973 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
5974 continue;
5975 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
5976 }
5977 return err;
5978}
5979EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
5980
5981void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
5982 struct neighbour *n)
5983{
5984 struct net_device *lower_dev;
5985 struct list_head *iter;
5986
5987 netdev_for_each_lower_dev(dev, lower_dev, iter) {
5988 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
5989 continue;
5990 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
5991 }
5992}
5993EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
5994
b6c40d68
PM
5995static void dev_change_rx_flags(struct net_device *dev, int flags)
5996{
d314774c
SH
5997 const struct net_device_ops *ops = dev->netdev_ops;
5998
d2615bf4 5999 if (ops->ndo_change_rx_flags)
d314774c 6000 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6001}
6002
991fb3f7 6003static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6004{
b536db93 6005 unsigned int old_flags = dev->flags;
d04a48b0
EB
6006 kuid_t uid;
6007 kgid_t gid;
1da177e4 6008
24023451
PM
6009 ASSERT_RTNL();
6010
dad9b335
WC
6011 dev->flags |= IFF_PROMISC;
6012 dev->promiscuity += inc;
6013 if (dev->promiscuity == 0) {
6014 /*
6015 * Avoid overflow.
6016 * If inc causes overflow, untouch promisc and return error.
6017 */
6018 if (inc < 0)
6019 dev->flags &= ~IFF_PROMISC;
6020 else {
6021 dev->promiscuity -= inc;
7b6cd1ce
JP
6022 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6023 dev->name);
dad9b335
WC
6024 return -EOVERFLOW;
6025 }
6026 }
52609c0b 6027 if (dev->flags != old_flags) {
7b6cd1ce
JP
6028 pr_info("device %s %s promiscuous mode\n",
6029 dev->name,
6030 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6031 if (audit_enabled) {
6032 current_uid_gid(&uid, &gid);
7759db82
KHK
6033 audit_log(current->audit_context, GFP_ATOMIC,
6034 AUDIT_ANOM_PROMISCUOUS,
6035 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6036 dev->name, (dev->flags & IFF_PROMISC),
6037 (old_flags & IFF_PROMISC),
e1760bd5 6038 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6039 from_kuid(&init_user_ns, uid),
6040 from_kgid(&init_user_ns, gid),
7759db82 6041 audit_get_sessionid(current));
8192b0c4 6042 }
24023451 6043
b6c40d68 6044 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6045 }
991fb3f7
ND
6046 if (notify)
6047 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6048 return 0;
1da177e4
LT
6049}
6050
4417da66
PM
6051/**
6052 * dev_set_promiscuity - update promiscuity count on a device
6053 * @dev: device
6054 * @inc: modifier
6055 *
6056 * Add or remove promiscuity from a device. While the count in the device
6057 * remains above zero the interface remains promiscuous. Once it hits zero
6058 * the device reverts back to normal filtering operation. A negative inc
6059 * value is used to drop promiscuity on the device.
dad9b335 6060 * Return 0 if successful or a negative errno code on error.
4417da66 6061 */
dad9b335 6062int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6063{
b536db93 6064 unsigned int old_flags = dev->flags;
dad9b335 6065 int err;
4417da66 6066
991fb3f7 6067 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6068 if (err < 0)
dad9b335 6069 return err;
4417da66
PM
6070 if (dev->flags != old_flags)
6071 dev_set_rx_mode(dev);
dad9b335 6072 return err;
4417da66 6073}
d1b19dff 6074EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6075
991fb3f7 6076static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6077{
991fb3f7 6078 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6079
24023451
PM
6080 ASSERT_RTNL();
6081
1da177e4 6082 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6083 dev->allmulti += inc;
6084 if (dev->allmulti == 0) {
6085 /*
6086 * Avoid overflow.
6087 * If inc causes overflow, untouch allmulti and return error.
6088 */
6089 if (inc < 0)
6090 dev->flags &= ~IFF_ALLMULTI;
6091 else {
6092 dev->allmulti -= inc;
7b6cd1ce
JP
6093 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6094 dev->name);
dad9b335
WC
6095 return -EOVERFLOW;
6096 }
6097 }
24023451 6098 if (dev->flags ^ old_flags) {
b6c40d68 6099 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6100 dev_set_rx_mode(dev);
991fb3f7
ND
6101 if (notify)
6102 __dev_notify_flags(dev, old_flags,
6103 dev->gflags ^ old_gflags);
24023451 6104 }
dad9b335 6105 return 0;
4417da66 6106}
991fb3f7
ND
6107
6108/**
6109 * dev_set_allmulti - update allmulti count on a device
6110 * @dev: device
6111 * @inc: modifier
6112 *
6113 * Add or remove reception of all multicast frames to a device. While the
6114 * count in the device remains above zero the interface remains listening
6115 * to all interfaces. Once it hits zero the device reverts back to normal
6116 * filtering operation. A negative @inc value is used to drop the counter
6117 * when releasing a resource needing all multicasts.
6118 * Return 0 if successful or a negative errno code on error.
6119 */
6120
6121int dev_set_allmulti(struct net_device *dev, int inc)
6122{
6123 return __dev_set_allmulti(dev, inc, true);
6124}
d1b19dff 6125EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6126
6127/*
6128 * Upload unicast and multicast address lists to device and
6129 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6130 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6131 * are present.
6132 */
6133void __dev_set_rx_mode(struct net_device *dev)
6134{
d314774c
SH
6135 const struct net_device_ops *ops = dev->netdev_ops;
6136
4417da66
PM
6137 /* dev_open will call this function so the list will stay sane. */
6138 if (!(dev->flags&IFF_UP))
6139 return;
6140
6141 if (!netif_device_present(dev))
40b77c94 6142 return;
4417da66 6143
01789349 6144 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6145 /* Unicast addresses changes may only happen under the rtnl,
6146 * therefore calling __dev_set_promiscuity here is safe.
6147 */
32e7bfc4 6148 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6149 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6150 dev->uc_promisc = true;
32e7bfc4 6151 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6152 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6153 dev->uc_promisc = false;
4417da66 6154 }
4417da66 6155 }
01789349
JP
6156
6157 if (ops->ndo_set_rx_mode)
6158 ops->ndo_set_rx_mode(dev);
4417da66
PM
6159}
6160
6161void dev_set_rx_mode(struct net_device *dev)
6162{
b9e40857 6163 netif_addr_lock_bh(dev);
4417da66 6164 __dev_set_rx_mode(dev);
b9e40857 6165 netif_addr_unlock_bh(dev);
1da177e4
LT
6166}
6167
f0db275a
SH
6168/**
6169 * dev_get_flags - get flags reported to userspace
6170 * @dev: device
6171 *
6172 * Get the combination of flag bits exported through APIs to userspace.
6173 */
95c96174 6174unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6175{
95c96174 6176 unsigned int flags;
1da177e4
LT
6177
6178 flags = (dev->flags & ~(IFF_PROMISC |
6179 IFF_ALLMULTI |
b00055aa
SR
6180 IFF_RUNNING |
6181 IFF_LOWER_UP |
6182 IFF_DORMANT)) |
1da177e4
LT
6183 (dev->gflags & (IFF_PROMISC |
6184 IFF_ALLMULTI));
6185
b00055aa
SR
6186 if (netif_running(dev)) {
6187 if (netif_oper_up(dev))
6188 flags |= IFF_RUNNING;
6189 if (netif_carrier_ok(dev))
6190 flags |= IFF_LOWER_UP;
6191 if (netif_dormant(dev))
6192 flags |= IFF_DORMANT;
6193 }
1da177e4
LT
6194
6195 return flags;
6196}
d1b19dff 6197EXPORT_SYMBOL(dev_get_flags);
1da177e4 6198
bd380811 6199int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6200{
b536db93 6201 unsigned int old_flags = dev->flags;
bd380811 6202 int ret;
1da177e4 6203
24023451
PM
6204 ASSERT_RTNL();
6205
1da177e4
LT
6206 /*
6207 * Set the flags on our device.
6208 */
6209
6210 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6211 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6212 IFF_AUTOMEDIA)) |
6213 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6214 IFF_ALLMULTI));
6215
6216 /*
6217 * Load in the correct multicast list now the flags have changed.
6218 */
6219
b6c40d68
PM
6220 if ((old_flags ^ flags) & IFF_MULTICAST)
6221 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6222
4417da66 6223 dev_set_rx_mode(dev);
1da177e4
LT
6224
6225 /*
6226 * Have we downed the interface. We handle IFF_UP ourselves
6227 * according to user attempts to set it, rather than blindly
6228 * setting it.
6229 */
6230
6231 ret = 0;
d215d10f 6232 if ((old_flags ^ flags) & IFF_UP)
bd380811 6233 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6234
1da177e4 6235 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6236 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6237 unsigned int old_flags = dev->flags;
d1b19dff 6238
1da177e4 6239 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6240
6241 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6242 if (dev->flags != old_flags)
6243 dev_set_rx_mode(dev);
1da177e4
LT
6244 }
6245
6246 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6247 is important. Some (broken) drivers set IFF_PROMISC, when
6248 IFF_ALLMULTI is requested not asking us and not reporting.
6249 */
6250 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6251 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6252
1da177e4 6253 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6254 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6255 }
6256
bd380811
PM
6257 return ret;
6258}
6259
a528c219
ND
6260void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6261 unsigned int gchanges)
bd380811
PM
6262{
6263 unsigned int changes = dev->flags ^ old_flags;
6264
a528c219 6265 if (gchanges)
7f294054 6266 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6267
bd380811
PM
6268 if (changes & IFF_UP) {
6269 if (dev->flags & IFF_UP)
6270 call_netdevice_notifiers(NETDEV_UP, dev);
6271 else
6272 call_netdevice_notifiers(NETDEV_DOWN, dev);
6273 }
6274
6275 if (dev->flags & IFF_UP &&
be9efd36
JP
6276 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6277 struct netdev_notifier_change_info change_info;
6278
6279 change_info.flags_changed = changes;
6280 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6281 &change_info.info);
6282 }
bd380811
PM
6283}
6284
6285/**
6286 * dev_change_flags - change device settings
6287 * @dev: device
6288 * @flags: device state flags
6289 *
6290 * Change settings on device based state flags. The flags are
6291 * in the userspace exported format.
6292 */
b536db93 6293int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6294{
b536db93 6295 int ret;
991fb3f7 6296 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6297
6298 ret = __dev_change_flags(dev, flags);
6299 if (ret < 0)
6300 return ret;
6301
991fb3f7 6302 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6303 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6304 return ret;
6305}
d1b19dff 6306EXPORT_SYMBOL(dev_change_flags);
1da177e4 6307
2315dc91
VF
6308static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6309{
6310 const struct net_device_ops *ops = dev->netdev_ops;
6311
6312 if (ops->ndo_change_mtu)
6313 return ops->ndo_change_mtu(dev, new_mtu);
6314
6315 dev->mtu = new_mtu;
6316 return 0;
6317}
6318
f0db275a
SH
6319/**
6320 * dev_set_mtu - Change maximum transfer unit
6321 * @dev: device
6322 * @new_mtu: new transfer unit
6323 *
6324 * Change the maximum transfer size of the network device.
6325 */
1da177e4
LT
6326int dev_set_mtu(struct net_device *dev, int new_mtu)
6327{
2315dc91 6328 int err, orig_mtu;
1da177e4
LT
6329
6330 if (new_mtu == dev->mtu)
6331 return 0;
6332
61e84623
JW
6333 /* MTU must be positive, and in range */
6334 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6335 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6336 dev->name, new_mtu, dev->min_mtu);
1da177e4 6337 return -EINVAL;
61e84623
JW
6338 }
6339
6340 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6341 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6342 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6343 return -EINVAL;
6344 }
1da177e4
LT
6345
6346 if (!netif_device_present(dev))
6347 return -ENODEV;
6348
1d486bfb
VF
6349 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6350 err = notifier_to_errno(err);
6351 if (err)
6352 return err;
d314774c 6353
2315dc91
VF
6354 orig_mtu = dev->mtu;
6355 err = __dev_set_mtu(dev, new_mtu);
d314774c 6356
2315dc91
VF
6357 if (!err) {
6358 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6359 err = notifier_to_errno(err);
6360 if (err) {
6361 /* setting mtu back and notifying everyone again,
6362 * so that they have a chance to revert changes.
6363 */
6364 __dev_set_mtu(dev, orig_mtu);
6365 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6366 }
6367 }
1da177e4
LT
6368 return err;
6369}
d1b19dff 6370EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6371
cbda10fa
VD
6372/**
6373 * dev_set_group - Change group this device belongs to
6374 * @dev: device
6375 * @new_group: group this device should belong to
6376 */
6377void dev_set_group(struct net_device *dev, int new_group)
6378{
6379 dev->group = new_group;
6380}
6381EXPORT_SYMBOL(dev_set_group);
6382
f0db275a
SH
6383/**
6384 * dev_set_mac_address - Change Media Access Control Address
6385 * @dev: device
6386 * @sa: new address
6387 *
6388 * Change the hardware (MAC) address of the device
6389 */
1da177e4
LT
6390int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6391{
d314774c 6392 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6393 int err;
6394
d314774c 6395 if (!ops->ndo_set_mac_address)
1da177e4
LT
6396 return -EOPNOTSUPP;
6397 if (sa->sa_family != dev->type)
6398 return -EINVAL;
6399 if (!netif_device_present(dev))
6400 return -ENODEV;
d314774c 6401 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6402 if (err)
6403 return err;
fbdeca2d 6404 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6405 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6406 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6407 return 0;
1da177e4 6408}
d1b19dff 6409EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6410
4bf84c35
JP
6411/**
6412 * dev_change_carrier - Change device carrier
6413 * @dev: device
691b3b7e 6414 * @new_carrier: new value
4bf84c35
JP
6415 *
6416 * Change device carrier
6417 */
6418int dev_change_carrier(struct net_device *dev, bool new_carrier)
6419{
6420 const struct net_device_ops *ops = dev->netdev_ops;
6421
6422 if (!ops->ndo_change_carrier)
6423 return -EOPNOTSUPP;
6424 if (!netif_device_present(dev))
6425 return -ENODEV;
6426 return ops->ndo_change_carrier(dev, new_carrier);
6427}
6428EXPORT_SYMBOL(dev_change_carrier);
6429
66b52b0d
JP
6430/**
6431 * dev_get_phys_port_id - Get device physical port ID
6432 * @dev: device
6433 * @ppid: port ID
6434 *
6435 * Get device physical port ID
6436 */
6437int dev_get_phys_port_id(struct net_device *dev,
02637fce 6438 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6439{
6440 const struct net_device_ops *ops = dev->netdev_ops;
6441
6442 if (!ops->ndo_get_phys_port_id)
6443 return -EOPNOTSUPP;
6444 return ops->ndo_get_phys_port_id(dev, ppid);
6445}
6446EXPORT_SYMBOL(dev_get_phys_port_id);
6447
db24a904
DA
6448/**
6449 * dev_get_phys_port_name - Get device physical port name
6450 * @dev: device
6451 * @name: port name
ed49e650 6452 * @len: limit of bytes to copy to name
db24a904
DA
6453 *
6454 * Get device physical port name
6455 */
6456int dev_get_phys_port_name(struct net_device *dev,
6457 char *name, size_t len)
6458{
6459 const struct net_device_ops *ops = dev->netdev_ops;
6460
6461 if (!ops->ndo_get_phys_port_name)
6462 return -EOPNOTSUPP;
6463 return ops->ndo_get_phys_port_name(dev, name, len);
6464}
6465EXPORT_SYMBOL(dev_get_phys_port_name);
6466
d746d707
AK
6467/**
6468 * dev_change_proto_down - update protocol port state information
6469 * @dev: device
6470 * @proto_down: new value
6471 *
6472 * This info can be used by switch drivers to set the phys state of the
6473 * port.
6474 */
6475int dev_change_proto_down(struct net_device *dev, bool proto_down)
6476{
6477 const struct net_device_ops *ops = dev->netdev_ops;
6478
6479 if (!ops->ndo_change_proto_down)
6480 return -EOPNOTSUPP;
6481 if (!netif_device_present(dev))
6482 return -ENODEV;
6483 return ops->ndo_change_proto_down(dev, proto_down);
6484}
6485EXPORT_SYMBOL(dev_change_proto_down);
6486
a7862b45
BB
6487/**
6488 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6489 * @dev: device
6490 * @fd: new program fd or negative value to clear
6491 *
6492 * Set or clear a bpf program for a device
6493 */
6494int dev_change_xdp_fd(struct net_device *dev, int fd)
6495{
6496 const struct net_device_ops *ops = dev->netdev_ops;
6497 struct bpf_prog *prog = NULL;
6498 struct netdev_xdp xdp = {};
6499 int err;
6500
6501 if (!ops->ndo_xdp)
6502 return -EOPNOTSUPP;
6503 if (fd >= 0) {
6504 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6505 if (IS_ERR(prog))
6506 return PTR_ERR(prog);
6507 }
6508
6509 xdp.command = XDP_SETUP_PROG;
6510 xdp.prog = prog;
6511 err = ops->ndo_xdp(dev, &xdp);
6512 if (err < 0 && prog)
6513 bpf_prog_put(prog);
6514
6515 return err;
6516}
6517EXPORT_SYMBOL(dev_change_xdp_fd);
6518
1da177e4
LT
6519/**
6520 * dev_new_index - allocate an ifindex
c4ea43c5 6521 * @net: the applicable net namespace
1da177e4
LT
6522 *
6523 * Returns a suitable unique value for a new device interface
6524 * number. The caller must hold the rtnl semaphore or the
6525 * dev_base_lock to be sure it remains unique.
6526 */
881d966b 6527static int dev_new_index(struct net *net)
1da177e4 6528{
aa79e66e 6529 int ifindex = net->ifindex;
1da177e4
LT
6530 for (;;) {
6531 if (++ifindex <= 0)
6532 ifindex = 1;
881d966b 6533 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6534 return net->ifindex = ifindex;
1da177e4
LT
6535 }
6536}
6537
1da177e4 6538/* Delayed registration/unregisteration */
3b5b34fd 6539static LIST_HEAD(net_todo_list);
200b916f 6540DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6541
6f05f629 6542static void net_set_todo(struct net_device *dev)
1da177e4 6543{
1da177e4 6544 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6545 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6546}
6547
9b5e383c 6548static void rollback_registered_many(struct list_head *head)
93ee31f1 6549{
e93737b0 6550 struct net_device *dev, *tmp;
5cde2829 6551 LIST_HEAD(close_head);
9b5e383c 6552
93ee31f1
DL
6553 BUG_ON(dev_boot_phase);
6554 ASSERT_RTNL();
6555
e93737b0 6556 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6557 /* Some devices call without registering
e93737b0
KK
6558 * for initialization unwind. Remove those
6559 * devices and proceed with the remaining.
9b5e383c
ED
6560 */
6561 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6562 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6563 dev->name, dev);
93ee31f1 6564
9b5e383c 6565 WARN_ON(1);
e93737b0
KK
6566 list_del(&dev->unreg_list);
6567 continue;
9b5e383c 6568 }
449f4544 6569 dev->dismantle = true;
9b5e383c 6570 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6571 }
93ee31f1 6572
44345724 6573 /* If device is running, close it first. */
5cde2829
EB
6574 list_for_each_entry(dev, head, unreg_list)
6575 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6576 dev_close_many(&close_head, true);
93ee31f1 6577
44345724 6578 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6579 /* And unlink it from device chain. */
6580 unlist_netdevice(dev);
93ee31f1 6581
9b5e383c
ED
6582 dev->reg_state = NETREG_UNREGISTERING;
6583 }
41852497 6584 flush_all_backlogs();
93ee31f1
DL
6585
6586 synchronize_net();
6587
9b5e383c 6588 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6589 struct sk_buff *skb = NULL;
6590
9b5e383c
ED
6591 /* Shutdown queueing discipline. */
6592 dev_shutdown(dev);
93ee31f1
DL
6593
6594
9b5e383c
ED
6595 /* Notify protocols, that we are about to destroy
6596 this device. They should clean all the things.
6597 */
6598 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6599
395eea6c
MB
6600 if (!dev->rtnl_link_ops ||
6601 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6602 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6603 GFP_KERNEL);
6604
9b5e383c
ED
6605 /*
6606 * Flush the unicast and multicast chains
6607 */
a748ee24 6608 dev_uc_flush(dev);
22bedad3 6609 dev_mc_flush(dev);
93ee31f1 6610
9b5e383c
ED
6611 if (dev->netdev_ops->ndo_uninit)
6612 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6613
395eea6c
MB
6614 if (skb)
6615 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6616
9ff162a8
JP
6617 /* Notifier chain MUST detach us all upper devices. */
6618 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6619
9b5e383c
ED
6620 /* Remove entries from kobject tree */
6621 netdev_unregister_kobject(dev);
024e9679
AD
6622#ifdef CONFIG_XPS
6623 /* Remove XPS queueing entries */
6624 netif_reset_xps_queues_gt(dev, 0);
6625#endif
9b5e383c 6626 }
93ee31f1 6627
850a545b 6628 synchronize_net();
395264d5 6629
a5ee1551 6630 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6631 dev_put(dev);
6632}
6633
6634static void rollback_registered(struct net_device *dev)
6635{
6636 LIST_HEAD(single);
6637
6638 list_add(&dev->unreg_list, &single);
6639 rollback_registered_many(&single);
ceaaec98 6640 list_del(&single);
93ee31f1
DL
6641}
6642
fd867d51
JW
6643static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6644 struct net_device *upper, netdev_features_t features)
6645{
6646 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6647 netdev_features_t feature;
5ba3f7d6 6648 int feature_bit;
fd867d51 6649
5ba3f7d6
JW
6650 for_each_netdev_feature(&upper_disables, feature_bit) {
6651 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6652 if (!(upper->wanted_features & feature)
6653 && (features & feature)) {
6654 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6655 &feature, upper->name);
6656 features &= ~feature;
6657 }
6658 }
6659
6660 return features;
6661}
6662
6663static void netdev_sync_lower_features(struct net_device *upper,
6664 struct net_device *lower, netdev_features_t features)
6665{
6666 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6667 netdev_features_t feature;
5ba3f7d6 6668 int feature_bit;
fd867d51 6669
5ba3f7d6
JW
6670 for_each_netdev_feature(&upper_disables, feature_bit) {
6671 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6672 if (!(features & feature) && (lower->features & feature)) {
6673 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6674 &feature, lower->name);
6675 lower->wanted_features &= ~feature;
6676 netdev_update_features(lower);
6677
6678 if (unlikely(lower->features & feature))
6679 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6680 &feature, lower->name);
6681 }
6682 }
6683}
6684
c8f44aff
MM
6685static netdev_features_t netdev_fix_features(struct net_device *dev,
6686 netdev_features_t features)
b63365a2 6687{
57422dc5
MM
6688 /* Fix illegal checksum combinations */
6689 if ((features & NETIF_F_HW_CSUM) &&
6690 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6691 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6692 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6693 }
6694
b63365a2 6695 /* TSO requires that SG is present as well. */
ea2d3688 6696 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6697 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6698 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6699 }
6700
ec5f0615
PS
6701 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6702 !(features & NETIF_F_IP_CSUM)) {
6703 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6704 features &= ~NETIF_F_TSO;
6705 features &= ~NETIF_F_TSO_ECN;
6706 }
6707
6708 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6709 !(features & NETIF_F_IPV6_CSUM)) {
6710 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6711 features &= ~NETIF_F_TSO6;
6712 }
6713
b1dc497b
AD
6714 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6715 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6716 features &= ~NETIF_F_TSO_MANGLEID;
6717
31d8b9e0
BH
6718 /* TSO ECN requires that TSO is present as well. */
6719 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6720 features &= ~NETIF_F_TSO_ECN;
6721
212b573f
MM
6722 /* Software GSO depends on SG. */
6723 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6724 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6725 features &= ~NETIF_F_GSO;
6726 }
6727
acd1130e 6728 /* UFO needs SG and checksumming */
b63365a2 6729 if (features & NETIF_F_UFO) {
79032644 6730 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6731 if (!(features & NETIF_F_HW_CSUM) &&
6732 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6733 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6734 netdev_dbg(dev,
acd1130e 6735 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6736 features &= ~NETIF_F_UFO;
6737 }
6738
6739 if (!(features & NETIF_F_SG)) {
6f404e44 6740 netdev_dbg(dev,
acd1130e 6741 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6742 features &= ~NETIF_F_UFO;
6743 }
6744 }
6745
802ab55a
AD
6746 /* GSO partial features require GSO partial be set */
6747 if ((features & dev->gso_partial_features) &&
6748 !(features & NETIF_F_GSO_PARTIAL)) {
6749 netdev_dbg(dev,
6750 "Dropping partially supported GSO features since no GSO partial.\n");
6751 features &= ~dev->gso_partial_features;
6752 }
6753
d0290214
JP
6754#ifdef CONFIG_NET_RX_BUSY_POLL
6755 if (dev->netdev_ops->ndo_busy_poll)
6756 features |= NETIF_F_BUSY_POLL;
6757 else
6758#endif
6759 features &= ~NETIF_F_BUSY_POLL;
6760
b63365a2
HX
6761 return features;
6762}
b63365a2 6763
6cb6a27c 6764int __netdev_update_features(struct net_device *dev)
5455c699 6765{
fd867d51 6766 struct net_device *upper, *lower;
c8f44aff 6767 netdev_features_t features;
fd867d51 6768 struct list_head *iter;
e7868a85 6769 int err = -1;
5455c699 6770
87267485
MM
6771 ASSERT_RTNL();
6772
5455c699
MM
6773 features = netdev_get_wanted_features(dev);
6774
6775 if (dev->netdev_ops->ndo_fix_features)
6776 features = dev->netdev_ops->ndo_fix_features(dev, features);
6777
6778 /* driver might be less strict about feature dependencies */
6779 features = netdev_fix_features(dev, features);
6780
fd867d51
JW
6781 /* some features can't be enabled if they're off an an upper device */
6782 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6783 features = netdev_sync_upper_features(dev, upper, features);
6784
5455c699 6785 if (dev->features == features)
e7868a85 6786 goto sync_lower;
5455c699 6787
c8f44aff
MM
6788 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6789 &dev->features, &features);
5455c699
MM
6790
6791 if (dev->netdev_ops->ndo_set_features)
6792 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6793 else
6794 err = 0;
5455c699 6795
6cb6a27c 6796 if (unlikely(err < 0)) {
5455c699 6797 netdev_err(dev,
c8f44aff
MM
6798 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6799 err, &features, &dev->features);
17b85d29
NA
6800 /* return non-0 since some features might have changed and
6801 * it's better to fire a spurious notification than miss it
6802 */
6803 return -1;
6cb6a27c
MM
6804 }
6805
e7868a85 6806sync_lower:
fd867d51
JW
6807 /* some features must be disabled on lower devices when disabled
6808 * on an upper device (think: bonding master or bridge)
6809 */
6810 netdev_for_each_lower_dev(dev, lower, iter)
6811 netdev_sync_lower_features(dev, lower, features);
6812
6cb6a27c
MM
6813 if (!err)
6814 dev->features = features;
6815
e7868a85 6816 return err < 0 ? 0 : 1;
6cb6a27c
MM
6817}
6818
afe12cc8
MM
6819/**
6820 * netdev_update_features - recalculate device features
6821 * @dev: the device to check
6822 *
6823 * Recalculate dev->features set and send notifications if it
6824 * has changed. Should be called after driver or hardware dependent
6825 * conditions might have changed that influence the features.
6826 */
6cb6a27c
MM
6827void netdev_update_features(struct net_device *dev)
6828{
6829 if (__netdev_update_features(dev))
6830 netdev_features_change(dev);
5455c699
MM
6831}
6832EXPORT_SYMBOL(netdev_update_features);
6833
afe12cc8
MM
6834/**
6835 * netdev_change_features - recalculate device features
6836 * @dev: the device to check
6837 *
6838 * Recalculate dev->features set and send notifications even
6839 * if they have not changed. Should be called instead of
6840 * netdev_update_features() if also dev->vlan_features might
6841 * have changed to allow the changes to be propagated to stacked
6842 * VLAN devices.
6843 */
6844void netdev_change_features(struct net_device *dev)
6845{
6846 __netdev_update_features(dev);
6847 netdev_features_change(dev);
6848}
6849EXPORT_SYMBOL(netdev_change_features);
6850
fc4a7489
PM
6851/**
6852 * netif_stacked_transfer_operstate - transfer operstate
6853 * @rootdev: the root or lower level device to transfer state from
6854 * @dev: the device to transfer operstate to
6855 *
6856 * Transfer operational state from root to device. This is normally
6857 * called when a stacking relationship exists between the root
6858 * device and the device(a leaf device).
6859 */
6860void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6861 struct net_device *dev)
6862{
6863 if (rootdev->operstate == IF_OPER_DORMANT)
6864 netif_dormant_on(dev);
6865 else
6866 netif_dormant_off(dev);
6867
6868 if (netif_carrier_ok(rootdev)) {
6869 if (!netif_carrier_ok(dev))
6870 netif_carrier_on(dev);
6871 } else {
6872 if (netif_carrier_ok(dev))
6873 netif_carrier_off(dev);
6874 }
6875}
6876EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6877
a953be53 6878#ifdef CONFIG_SYSFS
1b4bf461
ED
6879static int netif_alloc_rx_queues(struct net_device *dev)
6880{
1b4bf461 6881 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6882 struct netdev_rx_queue *rx;
10595902 6883 size_t sz = count * sizeof(*rx);
1b4bf461 6884
bd25fa7b 6885 BUG_ON(count < 1);
1b4bf461 6886
10595902
PG
6887 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6888 if (!rx) {
6889 rx = vzalloc(sz);
6890 if (!rx)
6891 return -ENOMEM;
6892 }
bd25fa7b
TH
6893 dev->_rx = rx;
6894
bd25fa7b 6895 for (i = 0; i < count; i++)
fe822240 6896 rx[i].dev = dev;
1b4bf461
ED
6897 return 0;
6898}
bf264145 6899#endif
1b4bf461 6900
aa942104
CG
6901static void netdev_init_one_queue(struct net_device *dev,
6902 struct netdev_queue *queue, void *_unused)
6903{
6904 /* Initialize queue lock */
6905 spin_lock_init(&queue->_xmit_lock);
6906 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6907 queue->xmit_lock_owner = -1;
b236da69 6908 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6909 queue->dev = dev;
114cf580
TH
6910#ifdef CONFIG_BQL
6911 dql_init(&queue->dql, HZ);
6912#endif
aa942104
CG
6913}
6914
60877a32
ED
6915static void netif_free_tx_queues(struct net_device *dev)
6916{
4cb28970 6917 kvfree(dev->_tx);
60877a32
ED
6918}
6919
e6484930
TH
6920static int netif_alloc_netdev_queues(struct net_device *dev)
6921{
6922 unsigned int count = dev->num_tx_queues;
6923 struct netdev_queue *tx;
60877a32 6924 size_t sz = count * sizeof(*tx);
e6484930 6925
d339727c
ED
6926 if (count < 1 || count > 0xffff)
6927 return -EINVAL;
62b5942a 6928
60877a32
ED
6929 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6930 if (!tx) {
6931 tx = vzalloc(sz);
6932 if (!tx)
6933 return -ENOMEM;
6934 }
e6484930 6935 dev->_tx = tx;
1d24eb48 6936
e6484930
TH
6937 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6938 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6939
6940 return 0;
e6484930
TH
6941}
6942
a2029240
DV
6943void netif_tx_stop_all_queues(struct net_device *dev)
6944{
6945 unsigned int i;
6946
6947 for (i = 0; i < dev->num_tx_queues; i++) {
6948 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6949 netif_tx_stop_queue(txq);
6950 }
6951}
6952EXPORT_SYMBOL(netif_tx_stop_all_queues);
6953
1da177e4
LT
6954/**
6955 * register_netdevice - register a network device
6956 * @dev: device to register
6957 *
6958 * Take a completed network device structure and add it to the kernel
6959 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6960 * chain. 0 is returned on success. A negative errno code is returned
6961 * on a failure to set up the device, or if the name is a duplicate.
6962 *
6963 * Callers must hold the rtnl semaphore. You may want
6964 * register_netdev() instead of this.
6965 *
6966 * BUGS:
6967 * The locking appears insufficient to guarantee two parallel registers
6968 * will not get the same name.
6969 */
6970
6971int register_netdevice(struct net_device *dev)
6972{
1da177e4 6973 int ret;
d314774c 6974 struct net *net = dev_net(dev);
1da177e4
LT
6975
6976 BUG_ON(dev_boot_phase);
6977 ASSERT_RTNL();
6978
b17a7c17
SH
6979 might_sleep();
6980
1da177e4
LT
6981 /* When net_device's are persistent, this will be fatal. */
6982 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6983 BUG_ON(!net);
1da177e4 6984
f1f28aa3 6985 spin_lock_init(&dev->addr_list_lock);
cf508b12 6986 netdev_set_addr_lockdep_class(dev);
1da177e4 6987
828de4f6 6988 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6989 if (ret < 0)
6990 goto out;
6991
1da177e4 6992 /* Init, if this function is available */
d314774c
SH
6993 if (dev->netdev_ops->ndo_init) {
6994 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6995 if (ret) {
6996 if (ret > 0)
6997 ret = -EIO;
90833aa4 6998 goto out;
1da177e4
LT
6999 }
7000 }
4ec93edb 7001
f646968f
PM
7002 if (((dev->hw_features | dev->features) &
7003 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7004 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7005 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7006 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7007 ret = -EINVAL;
7008 goto err_uninit;
7009 }
7010
9c7dafbf
PE
7011 ret = -EBUSY;
7012 if (!dev->ifindex)
7013 dev->ifindex = dev_new_index(net);
7014 else if (__dev_get_by_index(net, dev->ifindex))
7015 goto err_uninit;
7016
5455c699
MM
7017 /* Transfer changeable features to wanted_features and enable
7018 * software offloads (GSO and GRO).
7019 */
7020 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7021 dev->features |= NETIF_F_SOFT_FEATURES;
7022 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7023
cbc53e08 7024 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7025 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7026
7f348a60
AD
7027 /* If IPv4 TCP segmentation offload is supported we should also
7028 * allow the device to enable segmenting the frame with the option
7029 * of ignoring a static IP ID value. This doesn't enable the
7030 * feature itself but allows the user to enable it later.
7031 */
cbc53e08
AD
7032 if (dev->hw_features & NETIF_F_TSO)
7033 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7034 if (dev->vlan_features & NETIF_F_TSO)
7035 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7036 if (dev->mpls_features & NETIF_F_TSO)
7037 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7038 if (dev->hw_enc_features & NETIF_F_TSO)
7039 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7040
1180e7d6 7041 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7042 */
1180e7d6 7043 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7044
ee579677
PS
7045 /* Make NETIF_F_SG inheritable to tunnel devices.
7046 */
802ab55a 7047 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7048
0d89d203
SH
7049 /* Make NETIF_F_SG inheritable to MPLS.
7050 */
7051 dev->mpls_features |= NETIF_F_SG;
7052
7ffbe3fd
JB
7053 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7054 ret = notifier_to_errno(ret);
7055 if (ret)
7056 goto err_uninit;
7057
8b41d188 7058 ret = netdev_register_kobject(dev);
b17a7c17 7059 if (ret)
7ce1b0ed 7060 goto err_uninit;
b17a7c17
SH
7061 dev->reg_state = NETREG_REGISTERED;
7062
6cb6a27c 7063 __netdev_update_features(dev);
8e9b59b2 7064
1da177e4
LT
7065 /*
7066 * Default initial state at registry is that the
7067 * device is present.
7068 */
7069
7070 set_bit(__LINK_STATE_PRESENT, &dev->state);
7071
8f4cccbb
BH
7072 linkwatch_init_dev(dev);
7073
1da177e4 7074 dev_init_scheduler(dev);
1da177e4 7075 dev_hold(dev);
ce286d32 7076 list_netdevice(dev);
7bf23575 7077 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7078
948b337e
JP
7079 /* If the device has permanent device address, driver should
7080 * set dev_addr and also addr_assign_type should be set to
7081 * NET_ADDR_PERM (default value).
7082 */
7083 if (dev->addr_assign_type == NET_ADDR_PERM)
7084 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7085
1da177e4 7086 /* Notify protocols, that a new device appeared. */
056925ab 7087 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7088 ret = notifier_to_errno(ret);
93ee31f1
DL
7089 if (ret) {
7090 rollback_registered(dev);
7091 dev->reg_state = NETREG_UNREGISTERED;
7092 }
d90a909e
EB
7093 /*
7094 * Prevent userspace races by waiting until the network
7095 * device is fully setup before sending notifications.
7096 */
a2835763
PM
7097 if (!dev->rtnl_link_ops ||
7098 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7099 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7100
7101out:
7102 return ret;
7ce1b0ed
HX
7103
7104err_uninit:
d314774c
SH
7105 if (dev->netdev_ops->ndo_uninit)
7106 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7107 goto out;
1da177e4 7108}
d1b19dff 7109EXPORT_SYMBOL(register_netdevice);
1da177e4 7110
937f1ba5
BH
7111/**
7112 * init_dummy_netdev - init a dummy network device for NAPI
7113 * @dev: device to init
7114 *
7115 * This takes a network device structure and initialize the minimum
7116 * amount of fields so it can be used to schedule NAPI polls without
7117 * registering a full blown interface. This is to be used by drivers
7118 * that need to tie several hardware interfaces to a single NAPI
7119 * poll scheduler due to HW limitations.
7120 */
7121int init_dummy_netdev(struct net_device *dev)
7122{
7123 /* Clear everything. Note we don't initialize spinlocks
7124 * are they aren't supposed to be taken by any of the
7125 * NAPI code and this dummy netdev is supposed to be
7126 * only ever used for NAPI polls
7127 */
7128 memset(dev, 0, sizeof(struct net_device));
7129
7130 /* make sure we BUG if trying to hit standard
7131 * register/unregister code path
7132 */
7133 dev->reg_state = NETREG_DUMMY;
7134
937f1ba5
BH
7135 /* NAPI wants this */
7136 INIT_LIST_HEAD(&dev->napi_list);
7137
7138 /* a dummy interface is started by default */
7139 set_bit(__LINK_STATE_PRESENT, &dev->state);
7140 set_bit(__LINK_STATE_START, &dev->state);
7141
29b4433d
ED
7142 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7143 * because users of this 'device' dont need to change
7144 * its refcount.
7145 */
7146
937f1ba5
BH
7147 return 0;
7148}
7149EXPORT_SYMBOL_GPL(init_dummy_netdev);
7150
7151
1da177e4
LT
7152/**
7153 * register_netdev - register a network device
7154 * @dev: device to register
7155 *
7156 * Take a completed network device structure and add it to the kernel
7157 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7158 * chain. 0 is returned on success. A negative errno code is returned
7159 * on a failure to set up the device, or if the name is a duplicate.
7160 *
38b4da38 7161 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7162 * and expands the device name if you passed a format string to
7163 * alloc_netdev.
7164 */
7165int register_netdev(struct net_device *dev)
7166{
7167 int err;
7168
7169 rtnl_lock();
1da177e4 7170 err = register_netdevice(dev);
1da177e4
LT
7171 rtnl_unlock();
7172 return err;
7173}
7174EXPORT_SYMBOL(register_netdev);
7175
29b4433d
ED
7176int netdev_refcnt_read(const struct net_device *dev)
7177{
7178 int i, refcnt = 0;
7179
7180 for_each_possible_cpu(i)
7181 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7182 return refcnt;
7183}
7184EXPORT_SYMBOL(netdev_refcnt_read);
7185
2c53040f 7186/**
1da177e4 7187 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7188 * @dev: target net_device
1da177e4
LT
7189 *
7190 * This is called when unregistering network devices.
7191 *
7192 * Any protocol or device that holds a reference should register
7193 * for netdevice notification, and cleanup and put back the
7194 * reference if they receive an UNREGISTER event.
7195 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7196 * call dev_put.
1da177e4
LT
7197 */
7198static void netdev_wait_allrefs(struct net_device *dev)
7199{
7200 unsigned long rebroadcast_time, warning_time;
29b4433d 7201 int refcnt;
1da177e4 7202
e014debe
ED
7203 linkwatch_forget_dev(dev);
7204
1da177e4 7205 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7206 refcnt = netdev_refcnt_read(dev);
7207
7208 while (refcnt != 0) {
1da177e4 7209 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7210 rtnl_lock();
1da177e4
LT
7211
7212 /* Rebroadcast unregister notification */
056925ab 7213 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7214
748e2d93 7215 __rtnl_unlock();
0115e8e3 7216 rcu_barrier();
748e2d93
ED
7217 rtnl_lock();
7218
0115e8e3 7219 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7220 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7221 &dev->state)) {
7222 /* We must not have linkwatch events
7223 * pending on unregister. If this
7224 * happens, we simply run the queue
7225 * unscheduled, resulting in a noop
7226 * for this device.
7227 */
7228 linkwatch_run_queue();
7229 }
7230
6756ae4b 7231 __rtnl_unlock();
1da177e4
LT
7232
7233 rebroadcast_time = jiffies;
7234 }
7235
7236 msleep(250);
7237
29b4433d
ED
7238 refcnt = netdev_refcnt_read(dev);
7239
1da177e4 7240 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7241 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7242 dev->name, refcnt);
1da177e4
LT
7243 warning_time = jiffies;
7244 }
7245 }
7246}
7247
7248/* The sequence is:
7249 *
7250 * rtnl_lock();
7251 * ...
7252 * register_netdevice(x1);
7253 * register_netdevice(x2);
7254 * ...
7255 * unregister_netdevice(y1);
7256 * unregister_netdevice(y2);
7257 * ...
7258 * rtnl_unlock();
7259 * free_netdev(y1);
7260 * free_netdev(y2);
7261 *
58ec3b4d 7262 * We are invoked by rtnl_unlock().
1da177e4 7263 * This allows us to deal with problems:
b17a7c17 7264 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7265 * without deadlocking with linkwatch via keventd.
7266 * 2) Since we run with the RTNL semaphore not held, we can sleep
7267 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7268 *
7269 * We must not return until all unregister events added during
7270 * the interval the lock was held have been completed.
1da177e4 7271 */
1da177e4
LT
7272void netdev_run_todo(void)
7273{
626ab0e6 7274 struct list_head list;
1da177e4 7275
1da177e4 7276 /* Snapshot list, allow later requests */
626ab0e6 7277 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7278
7279 __rtnl_unlock();
626ab0e6 7280
0115e8e3
ED
7281
7282 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7283 if (!list_empty(&list))
7284 rcu_barrier();
7285
1da177e4
LT
7286 while (!list_empty(&list)) {
7287 struct net_device *dev
e5e26d75 7288 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7289 list_del(&dev->todo_list);
7290
748e2d93 7291 rtnl_lock();
0115e8e3 7292 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7293 __rtnl_unlock();
0115e8e3 7294
b17a7c17 7295 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7296 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7297 dev->name, dev->reg_state);
7298 dump_stack();
7299 continue;
7300 }
1da177e4 7301
b17a7c17 7302 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7303
b17a7c17 7304 netdev_wait_allrefs(dev);
1da177e4 7305
b17a7c17 7306 /* paranoia */
29b4433d 7307 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7308 BUG_ON(!list_empty(&dev->ptype_all));
7309 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7310 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7311 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7312 WARN_ON(dev->dn_ptr);
1da177e4 7313
b17a7c17
SH
7314 if (dev->destructor)
7315 dev->destructor(dev);
9093bbb2 7316
50624c93
EB
7317 /* Report a network device has been unregistered */
7318 rtnl_lock();
7319 dev_net(dev)->dev_unreg_count--;
7320 __rtnl_unlock();
7321 wake_up(&netdev_unregistering_wq);
7322
9093bbb2
SH
7323 /* Free network device */
7324 kobject_put(&dev->dev.kobj);
1da177e4 7325 }
1da177e4
LT
7326}
7327
9256645a
JW
7328/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7329 * all the same fields in the same order as net_device_stats, with only
7330 * the type differing, but rtnl_link_stats64 may have additional fields
7331 * at the end for newer counters.
3cfde79c 7332 */
77a1abf5
ED
7333void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7334 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7335{
7336#if BITS_PER_LONG == 64
9256645a 7337 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7338 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7339 /* zero out counters that only exist in rtnl_link_stats64 */
7340 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7341 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7342#else
9256645a 7343 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7344 const unsigned long *src = (const unsigned long *)netdev_stats;
7345 u64 *dst = (u64 *)stats64;
7346
9256645a 7347 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7348 for (i = 0; i < n; i++)
7349 dst[i] = src[i];
9256645a
JW
7350 /* zero out counters that only exist in rtnl_link_stats64 */
7351 memset((char *)stats64 + n * sizeof(u64), 0,
7352 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7353#endif
7354}
77a1abf5 7355EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7356
eeda3fd6
SH
7357/**
7358 * dev_get_stats - get network device statistics
7359 * @dev: device to get statistics from
28172739 7360 * @storage: place to store stats
eeda3fd6 7361 *
d7753516
BH
7362 * Get network statistics from device. Return @storage.
7363 * The device driver may provide its own method by setting
7364 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7365 * otherwise the internal statistics structure is used.
eeda3fd6 7366 */
d7753516
BH
7367struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7368 struct rtnl_link_stats64 *storage)
7004bf25 7369{
eeda3fd6
SH
7370 const struct net_device_ops *ops = dev->netdev_ops;
7371
28172739
ED
7372 if (ops->ndo_get_stats64) {
7373 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7374 ops->ndo_get_stats64(dev, storage);
7375 } else if (ops->ndo_get_stats) {
3cfde79c 7376 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7377 } else {
7378 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7379 }
caf586e5 7380 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7381 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7382 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7383 return storage;
c45d286e 7384}
eeda3fd6 7385EXPORT_SYMBOL(dev_get_stats);
c45d286e 7386
24824a09 7387struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7388{
24824a09 7389 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7390
24824a09
ED
7391#ifdef CONFIG_NET_CLS_ACT
7392 if (queue)
7393 return queue;
7394 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7395 if (!queue)
7396 return NULL;
7397 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7398 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7399 queue->qdisc_sleeping = &noop_qdisc;
7400 rcu_assign_pointer(dev->ingress_queue, queue);
7401#endif
7402 return queue;
bb949fbd
DM
7403}
7404
2c60db03
ED
7405static const struct ethtool_ops default_ethtool_ops;
7406
d07d7507
SG
7407void netdev_set_default_ethtool_ops(struct net_device *dev,
7408 const struct ethtool_ops *ops)
7409{
7410 if (dev->ethtool_ops == &default_ethtool_ops)
7411 dev->ethtool_ops = ops;
7412}
7413EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7414
74d332c1
ED
7415void netdev_freemem(struct net_device *dev)
7416{
7417 char *addr = (char *)dev - dev->padded;
7418
4cb28970 7419 kvfree(addr);
74d332c1
ED
7420}
7421
1da177e4 7422/**
36909ea4 7423 * alloc_netdev_mqs - allocate network device
c835a677
TG
7424 * @sizeof_priv: size of private data to allocate space for
7425 * @name: device name format string
7426 * @name_assign_type: origin of device name
7427 * @setup: callback to initialize device
7428 * @txqs: the number of TX subqueues to allocate
7429 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7430 *
7431 * Allocates a struct net_device with private data area for driver use
90e51adf 7432 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7433 * for each queue on the device.
1da177e4 7434 */
36909ea4 7435struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7436 unsigned char name_assign_type,
36909ea4
TH
7437 void (*setup)(struct net_device *),
7438 unsigned int txqs, unsigned int rxqs)
1da177e4 7439{
1da177e4 7440 struct net_device *dev;
7943986c 7441 size_t alloc_size;
1ce8e7b5 7442 struct net_device *p;
1da177e4 7443
b6fe17d6
SH
7444 BUG_ON(strlen(name) >= sizeof(dev->name));
7445
36909ea4 7446 if (txqs < 1) {
7b6cd1ce 7447 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7448 return NULL;
7449 }
7450
a953be53 7451#ifdef CONFIG_SYSFS
36909ea4 7452 if (rxqs < 1) {
7b6cd1ce 7453 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7454 return NULL;
7455 }
7456#endif
7457
fd2ea0a7 7458 alloc_size = sizeof(struct net_device);
d1643d24
AD
7459 if (sizeof_priv) {
7460 /* ensure 32-byte alignment of private area */
1ce8e7b5 7461 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7462 alloc_size += sizeof_priv;
7463 }
7464 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7465 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7466
74d332c1
ED
7467 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7468 if (!p)
7469 p = vzalloc(alloc_size);
62b5942a 7470 if (!p)
1da177e4 7471 return NULL;
1da177e4 7472
1ce8e7b5 7473 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7474 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7475
29b4433d
ED
7476 dev->pcpu_refcnt = alloc_percpu(int);
7477 if (!dev->pcpu_refcnt)
74d332c1 7478 goto free_dev;
ab9c73cc 7479
ab9c73cc 7480 if (dev_addr_init(dev))
29b4433d 7481 goto free_pcpu;
ab9c73cc 7482
22bedad3 7483 dev_mc_init(dev);
a748ee24 7484 dev_uc_init(dev);
ccffad25 7485
c346dca1 7486 dev_net_set(dev, &init_net);
1da177e4 7487
8d3bdbd5 7488 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7489 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7490
8d3bdbd5
DM
7491 INIT_LIST_HEAD(&dev->napi_list);
7492 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7493 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7494 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7495 INIT_LIST_HEAD(&dev->adj_list.upper);
7496 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
7497 INIT_LIST_HEAD(&dev->ptype_all);
7498 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7499#ifdef CONFIG_NET_SCHED
7500 hash_init(dev->qdisc_hash);
7501#endif
02875878 7502 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7503 setup(dev);
7504
a813104d 7505 if (!dev->tx_queue_len) {
f84bb1ea 7506 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7507 dev->tx_queue_len = 1;
7508 }
906470c1 7509
36909ea4
TH
7510 dev->num_tx_queues = txqs;
7511 dev->real_num_tx_queues = txqs;
ed9af2e8 7512 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7513 goto free_all;
e8a0464c 7514
a953be53 7515#ifdef CONFIG_SYSFS
36909ea4
TH
7516 dev->num_rx_queues = rxqs;
7517 dev->real_num_rx_queues = rxqs;
fe822240 7518 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7519 goto free_all;
df334545 7520#endif
0a9627f2 7521
1da177e4 7522 strcpy(dev->name, name);
c835a677 7523 dev->name_assign_type = name_assign_type;
cbda10fa 7524 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7525 if (!dev->ethtool_ops)
7526 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7527
7528 nf_hook_ingress_init(dev);
7529
1da177e4 7530 return dev;
ab9c73cc 7531
8d3bdbd5
DM
7532free_all:
7533 free_netdev(dev);
7534 return NULL;
7535
29b4433d
ED
7536free_pcpu:
7537 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7538free_dev:
7539 netdev_freemem(dev);
ab9c73cc 7540 return NULL;
1da177e4 7541}
36909ea4 7542EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7543
7544/**
7545 * free_netdev - free network device
7546 * @dev: device
7547 *
4ec93edb
YH
7548 * This function does the last stage of destroying an allocated device
7549 * interface. The reference to the device object is released.
1da177e4 7550 * If this is the last reference then it will be freed.
93d05d4a 7551 * Must be called in process context.
1da177e4
LT
7552 */
7553void free_netdev(struct net_device *dev)
7554{
d565b0a1
HX
7555 struct napi_struct *p, *n;
7556
93d05d4a 7557 might_sleep();
60877a32 7558 netif_free_tx_queues(dev);
a953be53 7559#ifdef CONFIG_SYSFS
10595902 7560 kvfree(dev->_rx);
fe822240 7561#endif
e8a0464c 7562
33d480ce 7563 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7564
f001fde5
JP
7565 /* Flush device addresses */
7566 dev_addr_flush(dev);
7567
d565b0a1
HX
7568 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7569 netif_napi_del(p);
7570
29b4433d
ED
7571 free_percpu(dev->pcpu_refcnt);
7572 dev->pcpu_refcnt = NULL;
7573
3041a069 7574 /* Compatibility with error handling in drivers */
1da177e4 7575 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7576 netdev_freemem(dev);
1da177e4
LT
7577 return;
7578 }
7579
7580 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7581 dev->reg_state = NETREG_RELEASED;
7582
43cb76d9
GKH
7583 /* will free via device release */
7584 put_device(&dev->dev);
1da177e4 7585}
d1b19dff 7586EXPORT_SYMBOL(free_netdev);
4ec93edb 7587
f0db275a
SH
7588/**
7589 * synchronize_net - Synchronize with packet receive processing
7590 *
7591 * Wait for packets currently being received to be done.
7592 * Does not block later packets from starting.
7593 */
4ec93edb 7594void synchronize_net(void)
1da177e4
LT
7595{
7596 might_sleep();
be3fc413
ED
7597 if (rtnl_is_locked())
7598 synchronize_rcu_expedited();
7599 else
7600 synchronize_rcu();
1da177e4 7601}
d1b19dff 7602EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7603
7604/**
44a0873d 7605 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7606 * @dev: device
44a0873d 7607 * @head: list
6ebfbc06 7608 *
1da177e4 7609 * This function shuts down a device interface and removes it
d59b54b1 7610 * from the kernel tables.
44a0873d 7611 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7612 *
7613 * Callers must hold the rtnl semaphore. You may want
7614 * unregister_netdev() instead of this.
7615 */
7616
44a0873d 7617void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7618{
a6620712
HX
7619 ASSERT_RTNL();
7620
44a0873d 7621 if (head) {
9fdce099 7622 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7623 } else {
7624 rollback_registered(dev);
7625 /* Finish processing unregister after unlock */
7626 net_set_todo(dev);
7627 }
1da177e4 7628}
44a0873d 7629EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7630
9b5e383c
ED
7631/**
7632 * unregister_netdevice_many - unregister many devices
7633 * @head: list of devices
87757a91
ED
7634 *
7635 * Note: As most callers use a stack allocated list_head,
7636 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7637 */
7638void unregister_netdevice_many(struct list_head *head)
7639{
7640 struct net_device *dev;
7641
7642 if (!list_empty(head)) {
7643 rollback_registered_many(head);
7644 list_for_each_entry(dev, head, unreg_list)
7645 net_set_todo(dev);
87757a91 7646 list_del(head);
9b5e383c
ED
7647 }
7648}
63c8099d 7649EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7650
1da177e4
LT
7651/**
7652 * unregister_netdev - remove device from the kernel
7653 * @dev: device
7654 *
7655 * This function shuts down a device interface and removes it
d59b54b1 7656 * from the kernel tables.
1da177e4
LT
7657 *
7658 * This is just a wrapper for unregister_netdevice that takes
7659 * the rtnl semaphore. In general you want to use this and not
7660 * unregister_netdevice.
7661 */
7662void unregister_netdev(struct net_device *dev)
7663{
7664 rtnl_lock();
7665 unregister_netdevice(dev);
7666 rtnl_unlock();
7667}
1da177e4
LT
7668EXPORT_SYMBOL(unregister_netdev);
7669
ce286d32
EB
7670/**
7671 * dev_change_net_namespace - move device to different nethost namespace
7672 * @dev: device
7673 * @net: network namespace
7674 * @pat: If not NULL name pattern to try if the current device name
7675 * is already taken in the destination network namespace.
7676 *
7677 * This function shuts down a device interface and moves it
7678 * to a new network namespace. On success 0 is returned, on
7679 * a failure a netagive errno code is returned.
7680 *
7681 * Callers must hold the rtnl semaphore.
7682 */
7683
7684int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7685{
ce286d32
EB
7686 int err;
7687
7688 ASSERT_RTNL();
7689
7690 /* Don't allow namespace local devices to be moved. */
7691 err = -EINVAL;
7692 if (dev->features & NETIF_F_NETNS_LOCAL)
7693 goto out;
7694
7695 /* Ensure the device has been registrered */
ce286d32
EB
7696 if (dev->reg_state != NETREG_REGISTERED)
7697 goto out;
7698
7699 /* Get out if there is nothing todo */
7700 err = 0;
878628fb 7701 if (net_eq(dev_net(dev), net))
ce286d32
EB
7702 goto out;
7703
7704 /* Pick the destination device name, and ensure
7705 * we can use it in the destination network namespace.
7706 */
7707 err = -EEXIST;
d9031024 7708 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7709 /* We get here if we can't use the current device name */
7710 if (!pat)
7711 goto out;
828de4f6 7712 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7713 goto out;
7714 }
7715
7716 /*
7717 * And now a mini version of register_netdevice unregister_netdevice.
7718 */
7719
7720 /* If device is running close it first. */
9b772652 7721 dev_close(dev);
ce286d32
EB
7722
7723 /* And unlink it from device chain */
7724 err = -ENODEV;
7725 unlist_netdevice(dev);
7726
7727 synchronize_net();
7728
7729 /* Shutdown queueing discipline. */
7730 dev_shutdown(dev);
7731
7732 /* Notify protocols, that we are about to destroy
7733 this device. They should clean all the things.
3b27e105
DL
7734
7735 Note that dev->reg_state stays at NETREG_REGISTERED.
7736 This is wanted because this way 8021q and macvlan know
7737 the device is just moving and can keep their slaves up.
ce286d32
EB
7738 */
7739 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7740 rcu_barrier();
7741 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7742 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7743
7744 /*
7745 * Flush the unicast and multicast chains
7746 */
a748ee24 7747 dev_uc_flush(dev);
22bedad3 7748 dev_mc_flush(dev);
ce286d32 7749
4e66ae2e
SH
7750 /* Send a netdev-removed uevent to the old namespace */
7751 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7752 netdev_adjacent_del_links(dev);
4e66ae2e 7753
ce286d32 7754 /* Actually switch the network namespace */
c346dca1 7755 dev_net_set(dev, net);
ce286d32 7756
ce286d32 7757 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7758 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7759 dev->ifindex = dev_new_index(net);
ce286d32 7760
4e66ae2e
SH
7761 /* Send a netdev-add uevent to the new namespace */
7762 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7763 netdev_adjacent_add_links(dev);
4e66ae2e 7764
8b41d188 7765 /* Fixup kobjects */
a1b3f594 7766 err = device_rename(&dev->dev, dev->name);
8b41d188 7767 WARN_ON(err);
ce286d32
EB
7768
7769 /* Add the device back in the hashes */
7770 list_netdevice(dev);
7771
7772 /* Notify protocols, that a new device appeared. */
7773 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7774
d90a909e
EB
7775 /*
7776 * Prevent userspace races by waiting until the network
7777 * device is fully setup before sending notifications.
7778 */
7f294054 7779 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7780
ce286d32
EB
7781 synchronize_net();
7782 err = 0;
7783out:
7784 return err;
7785}
463d0183 7786EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7787
1da177e4
LT
7788static int dev_cpu_callback(struct notifier_block *nfb,
7789 unsigned long action,
7790 void *ocpu)
7791{
7792 struct sk_buff **list_skb;
1da177e4
LT
7793 struct sk_buff *skb;
7794 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7795 struct softnet_data *sd, *oldsd;
7796
8bb78442 7797 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7798 return NOTIFY_OK;
7799
7800 local_irq_disable();
7801 cpu = smp_processor_id();
7802 sd = &per_cpu(softnet_data, cpu);
7803 oldsd = &per_cpu(softnet_data, oldcpu);
7804
7805 /* Find end of our completion_queue. */
7806 list_skb = &sd->completion_queue;
7807 while (*list_skb)
7808 list_skb = &(*list_skb)->next;
7809 /* Append completion queue from offline CPU. */
7810 *list_skb = oldsd->completion_queue;
7811 oldsd->completion_queue = NULL;
7812
1da177e4 7813 /* Append output queue from offline CPU. */
a9cbd588
CG
7814 if (oldsd->output_queue) {
7815 *sd->output_queue_tailp = oldsd->output_queue;
7816 sd->output_queue_tailp = oldsd->output_queue_tailp;
7817 oldsd->output_queue = NULL;
7818 oldsd->output_queue_tailp = &oldsd->output_queue;
7819 }
ac64da0b
ED
7820 /* Append NAPI poll list from offline CPU, with one exception :
7821 * process_backlog() must be called by cpu owning percpu backlog.
7822 * We properly handle process_queue & input_pkt_queue later.
7823 */
7824 while (!list_empty(&oldsd->poll_list)) {
7825 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7826 struct napi_struct,
7827 poll_list);
7828
7829 list_del_init(&napi->poll_list);
7830 if (napi->poll == process_backlog)
7831 napi->state = 0;
7832 else
7833 ____napi_schedule(sd, napi);
264524d5 7834 }
1da177e4
LT
7835
7836 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7837 local_irq_enable();
7838
7839 /* Process offline CPU's input_pkt_queue */
76cc8b13 7840 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7841 netif_rx_ni(skb);
76cc8b13 7842 input_queue_head_incr(oldsd);
fec5e652 7843 }
ac64da0b 7844 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7845 netif_rx_ni(skb);
76cc8b13
TH
7846 input_queue_head_incr(oldsd);
7847 }
1da177e4
LT
7848
7849 return NOTIFY_OK;
7850}
1da177e4
LT
7851
7852
7f353bf2 7853/**
b63365a2
HX
7854 * netdev_increment_features - increment feature set by one
7855 * @all: current feature set
7856 * @one: new feature set
7857 * @mask: mask feature set
7f353bf2
HX
7858 *
7859 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7860 * @one to the master device with current feature set @all. Will not
7861 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7862 */
c8f44aff
MM
7863netdev_features_t netdev_increment_features(netdev_features_t all,
7864 netdev_features_t one, netdev_features_t mask)
b63365a2 7865{
c8cd0989 7866 if (mask & NETIF_F_HW_CSUM)
a188222b 7867 mask |= NETIF_F_CSUM_MASK;
1742f183 7868 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7869
a188222b 7870 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 7871 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7872
1742f183 7873 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
7874 if (all & NETIF_F_HW_CSUM)
7875 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
7876
7877 return all;
7878}
b63365a2 7879EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7880
430f03cd 7881static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7882{
7883 int i;
7884 struct hlist_head *hash;
7885
7886 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7887 if (hash != NULL)
7888 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7889 INIT_HLIST_HEAD(&hash[i]);
7890
7891 return hash;
7892}
7893
881d966b 7894/* Initialize per network namespace state */
4665079c 7895static int __net_init netdev_init(struct net *net)
881d966b 7896{
734b6541
RM
7897 if (net != &init_net)
7898 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7899
30d97d35
PE
7900 net->dev_name_head = netdev_create_hash();
7901 if (net->dev_name_head == NULL)
7902 goto err_name;
881d966b 7903
30d97d35
PE
7904 net->dev_index_head = netdev_create_hash();
7905 if (net->dev_index_head == NULL)
7906 goto err_idx;
881d966b
EB
7907
7908 return 0;
30d97d35
PE
7909
7910err_idx:
7911 kfree(net->dev_name_head);
7912err_name:
7913 return -ENOMEM;
881d966b
EB
7914}
7915
f0db275a
SH
7916/**
7917 * netdev_drivername - network driver for the device
7918 * @dev: network device
f0db275a
SH
7919 *
7920 * Determine network driver for device.
7921 */
3019de12 7922const char *netdev_drivername(const struct net_device *dev)
6579e57b 7923{
cf04a4c7
SH
7924 const struct device_driver *driver;
7925 const struct device *parent;
3019de12 7926 const char *empty = "";
6579e57b
AV
7927
7928 parent = dev->dev.parent;
6579e57b 7929 if (!parent)
3019de12 7930 return empty;
6579e57b
AV
7931
7932 driver = parent->driver;
7933 if (driver && driver->name)
3019de12
DM
7934 return driver->name;
7935 return empty;
6579e57b
AV
7936}
7937
6ea754eb
JP
7938static void __netdev_printk(const char *level, const struct net_device *dev,
7939 struct va_format *vaf)
256df2f3 7940{
b004ff49 7941 if (dev && dev->dev.parent) {
6ea754eb
JP
7942 dev_printk_emit(level[1] - '0',
7943 dev->dev.parent,
7944 "%s %s %s%s: %pV",
7945 dev_driver_string(dev->dev.parent),
7946 dev_name(dev->dev.parent),
7947 netdev_name(dev), netdev_reg_state(dev),
7948 vaf);
b004ff49 7949 } else if (dev) {
6ea754eb
JP
7950 printk("%s%s%s: %pV",
7951 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7952 } else {
6ea754eb 7953 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7954 }
256df2f3
JP
7955}
7956
6ea754eb
JP
7957void netdev_printk(const char *level, const struct net_device *dev,
7958 const char *format, ...)
256df2f3
JP
7959{
7960 struct va_format vaf;
7961 va_list args;
256df2f3
JP
7962
7963 va_start(args, format);
7964
7965 vaf.fmt = format;
7966 vaf.va = &args;
7967
6ea754eb 7968 __netdev_printk(level, dev, &vaf);
b004ff49 7969
256df2f3 7970 va_end(args);
256df2f3
JP
7971}
7972EXPORT_SYMBOL(netdev_printk);
7973
7974#define define_netdev_printk_level(func, level) \
6ea754eb 7975void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7976{ \
256df2f3
JP
7977 struct va_format vaf; \
7978 va_list args; \
7979 \
7980 va_start(args, fmt); \
7981 \
7982 vaf.fmt = fmt; \
7983 vaf.va = &args; \
7984 \
6ea754eb 7985 __netdev_printk(level, dev, &vaf); \
b004ff49 7986 \
256df2f3 7987 va_end(args); \
256df2f3
JP
7988} \
7989EXPORT_SYMBOL(func);
7990
7991define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7992define_netdev_printk_level(netdev_alert, KERN_ALERT);
7993define_netdev_printk_level(netdev_crit, KERN_CRIT);
7994define_netdev_printk_level(netdev_err, KERN_ERR);
7995define_netdev_printk_level(netdev_warn, KERN_WARNING);
7996define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7997define_netdev_printk_level(netdev_info, KERN_INFO);
7998
4665079c 7999static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8000{
8001 kfree(net->dev_name_head);
8002 kfree(net->dev_index_head);
8003}
8004
022cbae6 8005static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8006 .init = netdev_init,
8007 .exit = netdev_exit,
8008};
8009
4665079c 8010static void __net_exit default_device_exit(struct net *net)
ce286d32 8011{
e008b5fc 8012 struct net_device *dev, *aux;
ce286d32 8013 /*
e008b5fc 8014 * Push all migratable network devices back to the
ce286d32
EB
8015 * initial network namespace
8016 */
8017 rtnl_lock();
e008b5fc 8018 for_each_netdev_safe(net, dev, aux) {
ce286d32 8019 int err;
aca51397 8020 char fb_name[IFNAMSIZ];
ce286d32
EB
8021
8022 /* Ignore unmoveable devices (i.e. loopback) */
8023 if (dev->features & NETIF_F_NETNS_LOCAL)
8024 continue;
8025
e008b5fc
EB
8026 /* Leave virtual devices for the generic cleanup */
8027 if (dev->rtnl_link_ops)
8028 continue;
d0c082ce 8029
25985edc 8030 /* Push remaining network devices to init_net */
aca51397
PE
8031 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8032 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8033 if (err) {
7b6cd1ce
JP
8034 pr_emerg("%s: failed to move %s to init_net: %d\n",
8035 __func__, dev->name, err);
aca51397 8036 BUG();
ce286d32
EB
8037 }
8038 }
8039 rtnl_unlock();
8040}
8041
50624c93
EB
8042static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8043{
8044 /* Return with the rtnl_lock held when there are no network
8045 * devices unregistering in any network namespace in net_list.
8046 */
8047 struct net *net;
8048 bool unregistering;
ff960a73 8049 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8050
ff960a73 8051 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8052 for (;;) {
50624c93
EB
8053 unregistering = false;
8054 rtnl_lock();
8055 list_for_each_entry(net, net_list, exit_list) {
8056 if (net->dev_unreg_count > 0) {
8057 unregistering = true;
8058 break;
8059 }
8060 }
8061 if (!unregistering)
8062 break;
8063 __rtnl_unlock();
ff960a73
PZ
8064
8065 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8066 }
ff960a73 8067 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8068}
8069
04dc7f6b
EB
8070static void __net_exit default_device_exit_batch(struct list_head *net_list)
8071{
8072 /* At exit all network devices most be removed from a network
b595076a 8073 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8074 * Do this across as many network namespaces as possible to
8075 * improve batching efficiency.
8076 */
8077 struct net_device *dev;
8078 struct net *net;
8079 LIST_HEAD(dev_kill_list);
8080
50624c93
EB
8081 /* To prevent network device cleanup code from dereferencing
8082 * loopback devices or network devices that have been freed
8083 * wait here for all pending unregistrations to complete,
8084 * before unregistring the loopback device and allowing the
8085 * network namespace be freed.
8086 *
8087 * The netdev todo list containing all network devices
8088 * unregistrations that happen in default_device_exit_batch
8089 * will run in the rtnl_unlock() at the end of
8090 * default_device_exit_batch.
8091 */
8092 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8093 list_for_each_entry(net, net_list, exit_list) {
8094 for_each_netdev_reverse(net, dev) {
b0ab2fab 8095 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8096 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8097 else
8098 unregister_netdevice_queue(dev, &dev_kill_list);
8099 }
8100 }
8101 unregister_netdevice_many(&dev_kill_list);
8102 rtnl_unlock();
8103}
8104
022cbae6 8105static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8106 .exit = default_device_exit,
04dc7f6b 8107 .exit_batch = default_device_exit_batch,
ce286d32
EB
8108};
8109
1da177e4
LT
8110/*
8111 * Initialize the DEV module. At boot time this walks the device list and
8112 * unhooks any devices that fail to initialise (normally hardware not
8113 * present) and leaves us with a valid list of present and active devices.
8114 *
8115 */
8116
8117/*
8118 * This is called single threaded during boot, so no need
8119 * to take the rtnl semaphore.
8120 */
8121static int __init net_dev_init(void)
8122{
8123 int i, rc = -ENOMEM;
8124
8125 BUG_ON(!dev_boot_phase);
8126
1da177e4
LT
8127 if (dev_proc_init())
8128 goto out;
8129
8b41d188 8130 if (netdev_kobject_init())
1da177e4
LT
8131 goto out;
8132
8133 INIT_LIST_HEAD(&ptype_all);
82d8a867 8134 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8135 INIT_LIST_HEAD(&ptype_base[i]);
8136
62532da9
VY
8137 INIT_LIST_HEAD(&offload_base);
8138
881d966b
EB
8139 if (register_pernet_subsys(&netdev_net_ops))
8140 goto out;
1da177e4
LT
8141
8142 /*
8143 * Initialise the packet receive queues.
8144 */
8145
6f912042 8146 for_each_possible_cpu(i) {
41852497 8147 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8148 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8149
41852497
ED
8150 INIT_WORK(flush, flush_backlog);
8151
e36fa2f7 8152 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8153 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8154 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8155 sd->output_queue_tailp = &sd->output_queue;
df334545 8156#ifdef CONFIG_RPS
e36fa2f7
ED
8157 sd->csd.func = rps_trigger_softirq;
8158 sd->csd.info = sd;
e36fa2f7 8159 sd->cpu = i;
1e94d72f 8160#endif
0a9627f2 8161
e36fa2f7
ED
8162 sd->backlog.poll = process_backlog;
8163 sd->backlog.weight = weight_p;
1da177e4
LT
8164 }
8165
1da177e4
LT
8166 dev_boot_phase = 0;
8167
505d4f73
EB
8168 /* The loopback device is special if any other network devices
8169 * is present in a network namespace the loopback device must
8170 * be present. Since we now dynamically allocate and free the
8171 * loopback device ensure this invariant is maintained by
8172 * keeping the loopback device as the first device on the
8173 * list of network devices. Ensuring the loopback devices
8174 * is the first device that appears and the last network device
8175 * that disappears.
8176 */
8177 if (register_pernet_device(&loopback_net_ops))
8178 goto out;
8179
8180 if (register_pernet_device(&default_device_ops))
8181 goto out;
8182
962cf36c
CM
8183 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8184 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8185
8186 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8187 dst_subsys_init();
1da177e4
LT
8188 rc = 0;
8189out:
8190 return rc;
8191}
8192
8193subsys_initcall(net_dev_init);