]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - net/core/dev.c
net: caif: Remove unused caif SPI driver
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
11d6011c 82#include <linux/rwsem.h>
1da177e4
LT
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
0187bdfb 92#include <linux/ethtool.h>
1da177e4 93#include <linux/skbuff.h>
a7862b45 94#include <linux/bpf.h>
b5cdae32 95#include <linux/bpf_trace.h>
457c4cbc 96#include <net/net_namespace.h>
1da177e4 97#include <net/sock.h>
02d62e86 98#include <net/busy_poll.h>
1da177e4 99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
b14a9fc4 101#include <net/dsa.h>
1da177e4 102#include <net/dst.h>
fc4099f1 103#include <net/dst_metadata.h>
1da177e4 104#include <net/pkt_sched.h>
87d83093 105#include <net/pkt_cls.h>
1da177e4 106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
caeda9b9 132#include <linux/inetdevice.h>
c445477d 133#include <linux/cpu_rmap.h>
c5905afb 134#include <linux/static_key.h>
af12fa6e 135#include <linux/hashtable.h>
60877a32 136#include <linux/vmalloc.h>
529d0489 137#include <linux/if_macvlan.h>
e7fd2885 138#include <linux/errqueue.h>
3b47d303 139#include <linux/hrtimer.h>
357b6cc5 140#include <linux/netfilter_ingress.h>
40e4e713 141#include <linux/crash_dump.h>
b72b5bf6 142#include <linux/sctp.h>
ae847f40 143#include <net/udp_tunnel.h>
6621dd29 144#include <linux/net_namespace.h>
aaa5d90b 145#include <linux/indirect_call_wrapper.h>
af3836df 146#include <net/devlink.h>
bd869245 147#include <linux/pm_runtime.h>
1da177e4 148
342709ef
PE
149#include "net-sysfs.h"
150
d565b0a1
HX
151#define MAX_GRO_SKBS 8
152
5d38a079
HX
153/* This should be increased if a protocol with a bigger head is added. */
154#define GRO_MAX_HEAD (MAX_HEADER + 128)
155
1da177e4 156static DEFINE_SPINLOCK(ptype_lock);
62532da9 157static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
158struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159struct list_head ptype_all __read_mostly; /* Taps */
62532da9 160static struct list_head offload_base __read_mostly;
1da177e4 161
ae78dbfa 162static int netif_rx_internal(struct sk_buff *skb);
54951194 163static int call_netdevice_notifiers_info(unsigned long val,
54951194 164 struct netdev_notifier_info *info);
26372605
PM
165static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
90b602f8 168static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 169
1da177e4 170/*
7562f876 171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
172 * semaphore.
173 *
c6d14c84 174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
7562f876 177 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
1da177e4 189DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
190EXPORT_SYMBOL(dev_base_lock);
191
6c557001
FW
192static DEFINE_MUTEX(ifalias_mutex);
193
af12fa6e
ET
194/* protects napi_hash addition/deletion and napi_gen_id */
195static DEFINE_SPINLOCK(napi_hash_lock);
196
52bd2d62 197static unsigned int napi_gen_id = NR_CPUS;
6180d9de 198static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 199
11d6011c 200static DECLARE_RWSEM(devnet_rename_sem);
c91f6df2 201
4e985ada
TG
202static inline void dev_base_seq_inc(struct net *net)
203{
643aa9cb 204 while (++net->dev_base_seq == 0)
205 ;
4e985ada
TG
206}
207
881d966b 208static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 209{
8387ff25 210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 211
08e9897d 212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
213}
214
881d966b 215static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 216{
7c28bd0b 217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
218}
219
e36fa2f7 220static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
221{
222#ifdef CONFIG_RPS
e36fa2f7 223 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
224#endif
225}
226
e36fa2f7 227static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
228{
229#ifdef CONFIG_RPS
e36fa2f7 230 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
231#endif
232}
233
ff927412
JP
234static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
235 const char *name)
236{
237 struct netdev_name_node *name_node;
238
239 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
240 if (!name_node)
241 return NULL;
242 INIT_HLIST_NODE(&name_node->hlist);
243 name_node->dev = dev;
244 name_node->name = name;
245 return name_node;
246}
247
248static struct netdev_name_node *
249netdev_name_node_head_alloc(struct net_device *dev)
250{
36fbf1e5
JP
251 struct netdev_name_node *name_node;
252
253 name_node = netdev_name_node_alloc(dev, dev->name);
254 if (!name_node)
255 return NULL;
256 INIT_LIST_HEAD(&name_node->list);
257 return name_node;
ff927412
JP
258}
259
260static void netdev_name_node_free(struct netdev_name_node *name_node)
261{
262 kfree(name_node);
263}
264
265static void netdev_name_node_add(struct net *net,
266 struct netdev_name_node *name_node)
267{
268 hlist_add_head_rcu(&name_node->hlist,
269 dev_name_hash(net, name_node->name));
270}
271
272static void netdev_name_node_del(struct netdev_name_node *name_node)
273{
274 hlist_del_rcu(&name_node->hlist);
275}
276
277static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
278 const char *name)
279{
280 struct hlist_head *head = dev_name_hash(net, name);
281 struct netdev_name_node *name_node;
282
283 hlist_for_each_entry(name_node, head, hlist)
284 if (!strcmp(name_node->name, name))
285 return name_node;
286 return NULL;
287}
288
289static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
290 const char *name)
291{
292 struct hlist_head *head = dev_name_hash(net, name);
293 struct netdev_name_node *name_node;
294
295 hlist_for_each_entry_rcu(name_node, head, hlist)
296 if (!strcmp(name_node->name, name))
297 return name_node;
298 return NULL;
299}
300
36fbf1e5
JP
301int netdev_name_node_alt_create(struct net_device *dev, const char *name)
302{
303 struct netdev_name_node *name_node;
304 struct net *net = dev_net(dev);
305
306 name_node = netdev_name_node_lookup(net, name);
307 if (name_node)
308 return -EEXIST;
309 name_node = netdev_name_node_alloc(dev, name);
310 if (!name_node)
311 return -ENOMEM;
312 netdev_name_node_add(net, name_node);
313 /* The node that holds dev->name acts as a head of per-device list. */
314 list_add_tail(&name_node->list, &dev->name_node->list);
315
316 return 0;
317}
318EXPORT_SYMBOL(netdev_name_node_alt_create);
319
320static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
321{
322 list_del(&name_node->list);
323 netdev_name_node_del(name_node);
324 kfree(name_node->name);
325 netdev_name_node_free(name_node);
326}
327
328int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
329{
330 struct netdev_name_node *name_node;
331 struct net *net = dev_net(dev);
332
333 name_node = netdev_name_node_lookup(net, name);
334 if (!name_node)
335 return -ENOENT;
e08ad805
ED
336 /* lookup might have found our primary name or a name belonging
337 * to another device.
338 */
339 if (name_node == dev->name_node || name_node->dev != dev)
340 return -EINVAL;
341
36fbf1e5
JP
342 __netdev_name_node_alt_destroy(name_node);
343
344 return 0;
345}
346EXPORT_SYMBOL(netdev_name_node_alt_destroy);
347
348static void netdev_name_node_alt_flush(struct net_device *dev)
349{
350 struct netdev_name_node *name_node, *tmp;
351
352 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
353 __netdev_name_node_alt_destroy(name_node);
354}
355
ce286d32 356/* Device list insertion */
53759be9 357static void list_netdevice(struct net_device *dev)
ce286d32 358{
c346dca1 359 struct net *net = dev_net(dev);
ce286d32
EB
360
361 ASSERT_RTNL();
362
363 write_lock_bh(&dev_base_lock);
c6d14c84 364 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 365 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
366 hlist_add_head_rcu(&dev->index_hlist,
367 dev_index_hash(net, dev->ifindex));
ce286d32 368 write_unlock_bh(&dev_base_lock);
4e985ada
TG
369
370 dev_base_seq_inc(net);
ce286d32
EB
371}
372
fb699dfd
ED
373/* Device list removal
374 * caller must respect a RCU grace period before freeing/reusing dev
375 */
ce286d32
EB
376static void unlist_netdevice(struct net_device *dev)
377{
378 ASSERT_RTNL();
379
380 /* Unlink dev from the device chain */
381 write_lock_bh(&dev_base_lock);
c6d14c84 382 list_del_rcu(&dev->dev_list);
ff927412 383 netdev_name_node_del(dev->name_node);
fb699dfd 384 hlist_del_rcu(&dev->index_hlist);
ce286d32 385 write_unlock_bh(&dev_base_lock);
4e985ada
TG
386
387 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
388}
389
1da177e4
LT
390/*
391 * Our notifier list
392 */
393
f07d5b94 394static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
395
396/*
397 * Device drivers call our routines to queue packets here. We empty the
398 * queue in the local softnet handler.
399 */
bea3348e 400
9958da05 401DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 402EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 403
1a33e10e
CW
404#ifdef CONFIG_LOCKDEP
405/*
406 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
407 * according to dev->type
408 */
409static const unsigned short netdev_lock_type[] = {
410 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
411 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
412 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
413 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
414 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
415 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
416 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
417 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
418 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
419 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
420 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
421 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
422 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
423 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
424 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
425
426static const char *const netdev_lock_name[] = {
427 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
428 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
429 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
430 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
431 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
432 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
433 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
434 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
435 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
436 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
437 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
438 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
439 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
440 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
441 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
442
443static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
845e0ebb 444static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
1a33e10e
CW
445
446static inline unsigned short netdev_lock_pos(unsigned short dev_type)
447{
448 int i;
449
450 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
451 if (netdev_lock_type[i] == dev_type)
452 return i;
453 /* the last key is used by default */
454 return ARRAY_SIZE(netdev_lock_type) - 1;
455}
456
457static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
458 unsigned short dev_type)
459{
460 int i;
461
462 i = netdev_lock_pos(dev_type);
463 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
464 netdev_lock_name[i]);
465}
845e0ebb
CW
466
467static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
468{
469 int i;
470
471 i = netdev_lock_pos(dev->type);
472 lockdep_set_class_and_name(&dev->addr_list_lock,
473 &netdev_addr_lock_key[i],
474 netdev_lock_name[i]);
475}
1a33e10e
CW
476#else
477static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
478 unsigned short dev_type)
479{
480}
845e0ebb
CW
481
482static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
483{
484}
1a33e10e
CW
485#endif
486
1da177e4 487/*******************************************************************************
eb13da1a 488 *
489 * Protocol management and registration routines
490 *
491 *******************************************************************************/
1da177e4 492
1da177e4 493
1da177e4
LT
494/*
495 * Add a protocol ID to the list. Now that the input handler is
496 * smarter we can dispense with all the messy stuff that used to be
497 * here.
498 *
499 * BEWARE!!! Protocol handlers, mangling input packets,
500 * MUST BE last in hash buckets and checking protocol handlers
501 * MUST start from promiscuous ptype_all chain in net_bh.
502 * It is true now, do not change it.
503 * Explanation follows: if protocol handler, mangling packet, will
504 * be the first on list, it is not able to sense, that packet
505 * is cloned and should be copied-on-write, so that it will
506 * change it and subsequent readers will get broken packet.
507 * --ANK (980803)
508 */
509
c07b68e8
ED
510static inline struct list_head *ptype_head(const struct packet_type *pt)
511{
512 if (pt->type == htons(ETH_P_ALL))
7866a621 513 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 514 else
7866a621
SN
515 return pt->dev ? &pt->dev->ptype_specific :
516 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
517}
518
1da177e4
LT
519/**
520 * dev_add_pack - add packet handler
521 * @pt: packet type declaration
522 *
523 * Add a protocol handler to the networking stack. The passed &packet_type
524 * is linked into kernel lists and may not be freed until it has been
525 * removed from the kernel lists.
526 *
4ec93edb 527 * This call does not sleep therefore it can not
1da177e4
LT
528 * guarantee all CPU's that are in middle of receiving packets
529 * will see the new packet type (until the next received packet).
530 */
531
532void dev_add_pack(struct packet_type *pt)
533{
c07b68e8 534 struct list_head *head = ptype_head(pt);
1da177e4 535
c07b68e8
ED
536 spin_lock(&ptype_lock);
537 list_add_rcu(&pt->list, head);
538 spin_unlock(&ptype_lock);
1da177e4 539}
d1b19dff 540EXPORT_SYMBOL(dev_add_pack);
1da177e4 541
1da177e4
LT
542/**
543 * __dev_remove_pack - remove packet handler
544 * @pt: packet type declaration
545 *
546 * Remove a protocol handler that was previously added to the kernel
547 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
548 * from the kernel lists and can be freed or reused once this function
4ec93edb 549 * returns.
1da177e4
LT
550 *
551 * The packet type might still be in use by receivers
552 * and must not be freed until after all the CPU's have gone
553 * through a quiescent state.
554 */
555void __dev_remove_pack(struct packet_type *pt)
556{
c07b68e8 557 struct list_head *head = ptype_head(pt);
1da177e4
LT
558 struct packet_type *pt1;
559
c07b68e8 560 spin_lock(&ptype_lock);
1da177e4
LT
561
562 list_for_each_entry(pt1, head, list) {
563 if (pt == pt1) {
564 list_del_rcu(&pt->list);
565 goto out;
566 }
567 }
568
7b6cd1ce 569 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 570out:
c07b68e8 571 spin_unlock(&ptype_lock);
1da177e4 572}
d1b19dff
ED
573EXPORT_SYMBOL(__dev_remove_pack);
574
1da177e4
LT
575/**
576 * dev_remove_pack - remove packet handler
577 * @pt: packet type declaration
578 *
579 * Remove a protocol handler that was previously added to the kernel
580 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
581 * from the kernel lists and can be freed or reused once this function
582 * returns.
583 *
584 * This call sleeps to guarantee that no CPU is looking at the packet
585 * type after return.
586 */
587void dev_remove_pack(struct packet_type *pt)
588{
589 __dev_remove_pack(pt);
4ec93edb 590
1da177e4
LT
591 synchronize_net();
592}
d1b19dff 593EXPORT_SYMBOL(dev_remove_pack);
1da177e4 594
62532da9
VY
595
596/**
597 * dev_add_offload - register offload handlers
598 * @po: protocol offload declaration
599 *
600 * Add protocol offload handlers to the networking stack. The passed
601 * &proto_offload is linked into kernel lists and may not be freed until
602 * it has been removed from the kernel lists.
603 *
604 * This call does not sleep therefore it can not
605 * guarantee all CPU's that are in middle of receiving packets
606 * will see the new offload handlers (until the next received packet).
607 */
608void dev_add_offload(struct packet_offload *po)
609{
bdef7de4 610 struct packet_offload *elem;
62532da9
VY
611
612 spin_lock(&offload_lock);
bdef7de4
DM
613 list_for_each_entry(elem, &offload_base, list) {
614 if (po->priority < elem->priority)
615 break;
616 }
617 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
618 spin_unlock(&offload_lock);
619}
620EXPORT_SYMBOL(dev_add_offload);
621
622/**
623 * __dev_remove_offload - remove offload handler
624 * @po: packet offload declaration
625 *
626 * Remove a protocol offload handler that was previously added to the
627 * kernel offload handlers by dev_add_offload(). The passed &offload_type
628 * is removed from the kernel lists and can be freed or reused once this
629 * function returns.
630 *
631 * The packet type might still be in use by receivers
632 * and must not be freed until after all the CPU's have gone
633 * through a quiescent state.
634 */
1d143d9f 635static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
636{
637 struct list_head *head = &offload_base;
638 struct packet_offload *po1;
639
c53aa505 640 spin_lock(&offload_lock);
62532da9
VY
641
642 list_for_each_entry(po1, head, list) {
643 if (po == po1) {
644 list_del_rcu(&po->list);
645 goto out;
646 }
647 }
648
649 pr_warn("dev_remove_offload: %p not found\n", po);
650out:
c53aa505 651 spin_unlock(&offload_lock);
62532da9 652}
62532da9
VY
653
654/**
655 * dev_remove_offload - remove packet offload handler
656 * @po: packet offload declaration
657 *
658 * Remove a packet offload handler that was previously added to the kernel
659 * offload handlers by dev_add_offload(). The passed &offload_type is
660 * removed from the kernel lists and can be freed or reused once this
661 * function returns.
662 *
663 * This call sleeps to guarantee that no CPU is looking at the packet
664 * type after return.
665 */
666void dev_remove_offload(struct packet_offload *po)
667{
668 __dev_remove_offload(po);
669
670 synchronize_net();
671}
672EXPORT_SYMBOL(dev_remove_offload);
673
1da177e4 674/******************************************************************************
eb13da1a 675 *
676 * Device Boot-time Settings Routines
677 *
678 ******************************************************************************/
1da177e4
LT
679
680/* Boot time configuration table */
681static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
682
683/**
684 * netdev_boot_setup_add - add new setup entry
685 * @name: name of the device
686 * @map: configured settings for the device
687 *
688 * Adds new setup entry to the dev_boot_setup list. The function
689 * returns 0 on error and 1 on success. This is a generic routine to
690 * all netdevices.
691 */
692static int netdev_boot_setup_add(char *name, struct ifmap *map)
693{
694 struct netdev_boot_setup *s;
695 int i;
696
697 s = dev_boot_setup;
698 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
699 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
700 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 701 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
702 memcpy(&s[i].map, map, sizeof(s[i].map));
703 break;
704 }
705 }
706
707 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
708}
709
710/**
722c9a0c 711 * netdev_boot_setup_check - check boot time settings
712 * @dev: the netdevice
1da177e4 713 *
722c9a0c 714 * Check boot time settings for the device.
715 * The found settings are set for the device to be used
716 * later in the device probing.
717 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
718 */
719int netdev_boot_setup_check(struct net_device *dev)
720{
721 struct netdev_boot_setup *s = dev_boot_setup;
722 int i;
723
724 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
725 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 726 !strcmp(dev->name, s[i].name)) {
722c9a0c 727 dev->irq = s[i].map.irq;
728 dev->base_addr = s[i].map.base_addr;
729 dev->mem_start = s[i].map.mem_start;
730 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
731 return 1;
732 }
733 }
734 return 0;
735}
d1b19dff 736EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
737
738
739/**
722c9a0c 740 * netdev_boot_base - get address from boot time settings
741 * @prefix: prefix for network device
742 * @unit: id for network device
743 *
744 * Check boot time settings for the base address of device.
745 * The found settings are set for the device to be used
746 * later in the device probing.
747 * Returns 0 if no settings found.
1da177e4
LT
748 */
749unsigned long netdev_boot_base(const char *prefix, int unit)
750{
751 const struct netdev_boot_setup *s = dev_boot_setup;
752 char name[IFNAMSIZ];
753 int i;
754
755 sprintf(name, "%s%d", prefix, unit);
756
757 /*
758 * If device already registered then return base of 1
759 * to indicate not to probe for this interface
760 */
881d966b 761 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
762 return 1;
763
764 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
765 if (!strcmp(name, s[i].name))
766 return s[i].map.base_addr;
767 return 0;
768}
769
770/*
771 * Saves at boot time configured settings for any netdevice.
772 */
773int __init netdev_boot_setup(char *str)
774{
775 int ints[5];
776 struct ifmap map;
777
778 str = get_options(str, ARRAY_SIZE(ints), ints);
779 if (!str || !*str)
780 return 0;
781
782 /* Save settings */
783 memset(&map, 0, sizeof(map));
784 if (ints[0] > 0)
785 map.irq = ints[1];
786 if (ints[0] > 1)
787 map.base_addr = ints[2];
788 if (ints[0] > 2)
789 map.mem_start = ints[3];
790 if (ints[0] > 3)
791 map.mem_end = ints[4];
792
793 /* Add new entry to the list */
794 return netdev_boot_setup_add(str, &map);
795}
796
797__setup("netdev=", netdev_boot_setup);
798
799/*******************************************************************************
eb13da1a 800 *
801 * Device Interface Subroutines
802 *
803 *******************************************************************************/
1da177e4 804
a54acb3a
ND
805/**
806 * dev_get_iflink - get 'iflink' value of a interface
807 * @dev: targeted interface
808 *
809 * Indicates the ifindex the interface is linked to.
810 * Physical interfaces have the same 'ifindex' and 'iflink' values.
811 */
812
813int dev_get_iflink(const struct net_device *dev)
814{
815 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
816 return dev->netdev_ops->ndo_get_iflink(dev);
817
7a66bbc9 818 return dev->ifindex;
a54acb3a
ND
819}
820EXPORT_SYMBOL(dev_get_iflink);
821
fc4099f1
PS
822/**
823 * dev_fill_metadata_dst - Retrieve tunnel egress information.
824 * @dev: targeted interface
825 * @skb: The packet.
826 *
827 * For better visibility of tunnel traffic OVS needs to retrieve
828 * egress tunnel information for a packet. Following API allows
829 * user to get this info.
830 */
831int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
832{
833 struct ip_tunnel_info *info;
834
835 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
836 return -EINVAL;
837
838 info = skb_tunnel_info_unclone(skb);
839 if (!info)
840 return -ENOMEM;
841 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
842 return -EINVAL;
843
844 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
845}
846EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
847
1da177e4
LT
848/**
849 * __dev_get_by_name - find a device by its name
c4ea43c5 850 * @net: the applicable net namespace
1da177e4
LT
851 * @name: name to find
852 *
853 * Find an interface by name. Must be called under RTNL semaphore
854 * or @dev_base_lock. If the name is found a pointer to the device
855 * is returned. If the name is not found then %NULL is returned. The
856 * reference counters are not incremented so the caller must be
857 * careful with locks.
858 */
859
881d966b 860struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 861{
ff927412 862 struct netdev_name_node *node_name;
1da177e4 863
ff927412
JP
864 node_name = netdev_name_node_lookup(net, name);
865 return node_name ? node_name->dev : NULL;
1da177e4 866}
d1b19dff 867EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 868
72c9528b 869/**
722c9a0c 870 * dev_get_by_name_rcu - find a device by its name
871 * @net: the applicable net namespace
872 * @name: name to find
873 *
874 * Find an interface by name.
875 * If the name is found a pointer to the device is returned.
876 * If the name is not found then %NULL is returned.
877 * The reference counters are not incremented so the caller must be
878 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
879 */
880
881struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882{
ff927412 883 struct netdev_name_node *node_name;
72c9528b 884
ff927412
JP
885 node_name = netdev_name_node_lookup_rcu(net, name);
886 return node_name ? node_name->dev : NULL;
72c9528b
ED
887}
888EXPORT_SYMBOL(dev_get_by_name_rcu);
889
1da177e4
LT
890/**
891 * dev_get_by_name - find a device by its name
c4ea43c5 892 * @net: the applicable net namespace
1da177e4
LT
893 * @name: name to find
894 *
895 * Find an interface by name. This can be called from any
896 * context and does its own locking. The returned handle has
897 * the usage count incremented and the caller must use dev_put() to
898 * release it when it is no longer needed. %NULL is returned if no
899 * matching device is found.
900 */
901
881d966b 902struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
903{
904 struct net_device *dev;
905
72c9528b
ED
906 rcu_read_lock();
907 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
908 if (dev)
909 dev_hold(dev);
72c9528b 910 rcu_read_unlock();
1da177e4
LT
911 return dev;
912}
d1b19dff 913EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
914
915/**
916 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 917 * @net: the applicable net namespace
1da177e4
LT
918 * @ifindex: index of device
919 *
920 * Search for an interface by index. Returns %NULL if the device
921 * is not found or a pointer to the device. The device has not
922 * had its reference counter increased so the caller must be careful
923 * about locking. The caller must hold either the RTNL semaphore
924 * or @dev_base_lock.
925 */
926
881d966b 927struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 928{
0bd8d536
ED
929 struct net_device *dev;
930 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 931
b67bfe0d 932 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
933 if (dev->ifindex == ifindex)
934 return dev;
0bd8d536 935
1da177e4
LT
936 return NULL;
937}
d1b19dff 938EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 939
fb699dfd
ED
940/**
941 * dev_get_by_index_rcu - find a device by its ifindex
942 * @net: the applicable net namespace
943 * @ifindex: index of device
944 *
945 * Search for an interface by index. Returns %NULL if the device
946 * is not found or a pointer to the device. The device has not
947 * had its reference counter increased so the caller must be careful
948 * about locking. The caller must hold RCU lock.
949 */
950
951struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
952{
fb699dfd
ED
953 struct net_device *dev;
954 struct hlist_head *head = dev_index_hash(net, ifindex);
955
b67bfe0d 956 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
957 if (dev->ifindex == ifindex)
958 return dev;
959
960 return NULL;
961}
962EXPORT_SYMBOL(dev_get_by_index_rcu);
963
1da177e4
LT
964
965/**
966 * dev_get_by_index - find a device by its ifindex
c4ea43c5 967 * @net: the applicable net namespace
1da177e4
LT
968 * @ifindex: index of device
969 *
970 * Search for an interface by index. Returns NULL if the device
971 * is not found or a pointer to the device. The device returned has
972 * had a reference added and the pointer is safe until the user calls
973 * dev_put to indicate they have finished with it.
974 */
975
881d966b 976struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
977{
978 struct net_device *dev;
979
fb699dfd
ED
980 rcu_read_lock();
981 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
982 if (dev)
983 dev_hold(dev);
fb699dfd 984 rcu_read_unlock();
1da177e4
LT
985 return dev;
986}
d1b19dff 987EXPORT_SYMBOL(dev_get_by_index);
1da177e4 988
90b602f8
ML
989/**
990 * dev_get_by_napi_id - find a device by napi_id
991 * @napi_id: ID of the NAPI struct
992 *
993 * Search for an interface by NAPI ID. Returns %NULL if the device
994 * is not found or a pointer to the device. The device has not had
995 * its reference counter increased so the caller must be careful
996 * about locking. The caller must hold RCU lock.
997 */
998
999struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1000{
1001 struct napi_struct *napi;
1002
1003 WARN_ON_ONCE(!rcu_read_lock_held());
1004
1005 if (napi_id < MIN_NAPI_ID)
1006 return NULL;
1007
1008 napi = napi_by_id(napi_id);
1009
1010 return napi ? napi->dev : NULL;
1011}
1012EXPORT_SYMBOL(dev_get_by_napi_id);
1013
5dbe7c17
NS
1014/**
1015 * netdev_get_name - get a netdevice name, knowing its ifindex.
1016 * @net: network namespace
1017 * @name: a pointer to the buffer where the name will be stored.
1018 * @ifindex: the ifindex of the interface to get the name from.
5dbe7c17
NS
1019 */
1020int netdev_get_name(struct net *net, char *name, int ifindex)
1021{
1022 struct net_device *dev;
11d6011c 1023 int ret;
5dbe7c17 1024
11d6011c 1025 down_read(&devnet_rename_sem);
5dbe7c17 1026 rcu_read_lock();
11d6011c 1027
5dbe7c17
NS
1028 dev = dev_get_by_index_rcu(net, ifindex);
1029 if (!dev) {
11d6011c
AD
1030 ret = -ENODEV;
1031 goto out;
5dbe7c17
NS
1032 }
1033
1034 strcpy(name, dev->name);
5dbe7c17 1035
11d6011c
AD
1036 ret = 0;
1037out:
1038 rcu_read_unlock();
1039 up_read(&devnet_rename_sem);
1040 return ret;
5dbe7c17
NS
1041}
1042
1da177e4 1043/**
941666c2 1044 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 1045 * @net: the applicable net namespace
1da177e4
LT
1046 * @type: media type of device
1047 * @ha: hardware address
1048 *
1049 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
1050 * is not found or a pointer to the device.
1051 * The caller must hold RCU or RTNL.
941666c2 1052 * The returned device has not had its ref count increased
1da177e4
LT
1053 * and the caller must therefore be careful about locking
1054 *
1da177e4
LT
1055 */
1056
941666c2
ED
1057struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1058 const char *ha)
1da177e4
LT
1059{
1060 struct net_device *dev;
1061
941666c2 1062 for_each_netdev_rcu(net, dev)
1da177e4
LT
1063 if (dev->type == type &&
1064 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
1065 return dev;
1066
1067 return NULL;
1da177e4 1068}
941666c2 1069EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 1070
881d966b 1071struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
1072{
1073 struct net_device *dev;
1074
4e9cac2b 1075 ASSERT_RTNL();
881d966b 1076 for_each_netdev(net, dev)
4e9cac2b 1077 if (dev->type == type)
7562f876
PE
1078 return dev;
1079
1080 return NULL;
4e9cac2b 1081}
4e9cac2b
PM
1082EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1083
881d966b 1084struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 1085{
99fe3c39 1086 struct net_device *dev, *ret = NULL;
4e9cac2b 1087
99fe3c39
ED
1088 rcu_read_lock();
1089 for_each_netdev_rcu(net, dev)
1090 if (dev->type == type) {
1091 dev_hold(dev);
1092 ret = dev;
1093 break;
1094 }
1095 rcu_read_unlock();
1096 return ret;
1da177e4 1097}
1da177e4
LT
1098EXPORT_SYMBOL(dev_getfirstbyhwtype);
1099
1100/**
6c555490 1101 * __dev_get_by_flags - find any device with given flags
c4ea43c5 1102 * @net: the applicable net namespace
1da177e4
LT
1103 * @if_flags: IFF_* values
1104 * @mask: bitmask of bits in if_flags to check
1105 *
1106 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 1107 * is not found or a pointer to the device. Must be called inside
6c555490 1108 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1109 */
1110
6c555490
WC
1111struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1112 unsigned short mask)
1da177e4 1113{
7562f876 1114 struct net_device *dev, *ret;
1da177e4 1115
6c555490
WC
1116 ASSERT_RTNL();
1117
7562f876 1118 ret = NULL;
6c555490 1119 for_each_netdev(net, dev) {
1da177e4 1120 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1121 ret = dev;
1da177e4
LT
1122 break;
1123 }
1124 }
7562f876 1125 return ret;
1da177e4 1126}
6c555490 1127EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1128
1129/**
1130 * dev_valid_name - check if name is okay for network device
1131 * @name: name string
1132 *
1133 * Network device names need to be valid file names to
4250b75b 1134 * allow sysfs to work. We also disallow any kind of
c7fa9d18 1135 * whitespace.
1da177e4 1136 */
95f050bf 1137bool dev_valid_name(const char *name)
1da177e4 1138{
c7fa9d18 1139 if (*name == '\0')
95f050bf 1140 return false;
a9d48205 1141 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1142 return false;
c7fa9d18 1143 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1144 return false;
c7fa9d18
DM
1145
1146 while (*name) {
a4176a93 1147 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1148 return false;
c7fa9d18
DM
1149 name++;
1150 }
95f050bf 1151 return true;
1da177e4 1152}
d1b19dff 1153EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1154
1155/**
b267b179
EB
1156 * __dev_alloc_name - allocate a name for a device
1157 * @net: network namespace to allocate the device name in
1da177e4 1158 * @name: name format string
b267b179 1159 * @buf: scratch buffer and result name string
1da177e4
LT
1160 *
1161 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1162 * id. It scans list of devices to build up a free map, then chooses
1163 * the first empty slot. The caller must hold the dev_base or rtnl lock
1164 * while allocating the name and adding the device in order to avoid
1165 * duplicates.
1166 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1168 */
1169
b267b179 1170static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1171{
1172 int i = 0;
1da177e4
LT
1173 const char *p;
1174 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1175 unsigned long *inuse;
1da177e4
LT
1176 struct net_device *d;
1177
93809105
RV
1178 if (!dev_valid_name(name))
1179 return -EINVAL;
1180
51f299dd 1181 p = strchr(name, '%');
1da177e4
LT
1182 if (p) {
1183 /*
1184 * Verify the string as this thing may have come from
1185 * the user. There must be either one "%d" and no other "%"
1186 * characters.
1187 */
1188 if (p[1] != 'd' || strchr(p + 2, '%'))
1189 return -EINVAL;
1190
1191 /* Use one page as a bit array of possible slots */
cfcabdcc 1192 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1193 if (!inuse)
1194 return -ENOMEM;
1195
881d966b 1196 for_each_netdev(net, d) {
1da177e4
LT
1197 if (!sscanf(d->name, name, &i))
1198 continue;
1199 if (i < 0 || i >= max_netdevices)
1200 continue;
1201
1202 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1203 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1204 if (!strncmp(buf, d->name, IFNAMSIZ))
1205 set_bit(i, inuse);
1206 }
1207
1208 i = find_first_zero_bit(inuse, max_netdevices);
1209 free_page((unsigned long) inuse);
1210 }
1211
6224abda 1212 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1213 if (!__dev_get_by_name(net, buf))
1da177e4 1214 return i;
1da177e4
LT
1215
1216 /* It is possible to run out of possible slots
1217 * when the name is long and there isn't enough space left
1218 * for the digits, or if all bits are used.
1219 */
029b6d14 1220 return -ENFILE;
1da177e4
LT
1221}
1222
2c88b855
RV
1223static int dev_alloc_name_ns(struct net *net,
1224 struct net_device *dev,
1225 const char *name)
1226{
1227 char buf[IFNAMSIZ];
1228 int ret;
1229
c46d7642 1230 BUG_ON(!net);
2c88b855
RV
1231 ret = __dev_alloc_name(net, name, buf);
1232 if (ret >= 0)
1233 strlcpy(dev->name, buf, IFNAMSIZ);
1234 return ret;
1da177e4
LT
1235}
1236
b267b179
EB
1237/**
1238 * dev_alloc_name - allocate a name for a device
1239 * @dev: device
1240 * @name: name format string
1241 *
1242 * Passed a format string - eg "lt%d" it will try and find a suitable
1243 * id. It scans list of devices to build up a free map, then chooses
1244 * the first empty slot. The caller must hold the dev_base or rtnl lock
1245 * while allocating the name and adding the device in order to avoid
1246 * duplicates.
1247 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1248 * Returns the number of the unit assigned or a negative errno code.
1249 */
1250
1251int dev_alloc_name(struct net_device *dev, const char *name)
1252{
c46d7642 1253 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1254}
d1b19dff 1255EXPORT_SYMBOL(dev_alloc_name);
b267b179 1256
bacb7e18
ED
1257static int dev_get_valid_name(struct net *net, struct net_device *dev,
1258 const char *name)
828de4f6 1259{
55a5ec9b
DM
1260 BUG_ON(!net);
1261
1262 if (!dev_valid_name(name))
1263 return -EINVAL;
1264
1265 if (strchr(name, '%'))
1266 return dev_alloc_name_ns(net, dev, name);
1267 else if (__dev_get_by_name(net, name))
1268 return -EEXIST;
1269 else if (dev->name != name)
1270 strlcpy(dev->name, name, IFNAMSIZ);
1271
1272 return 0;
d9031024 1273}
1da177e4
LT
1274
1275/**
1276 * dev_change_name - change name of a device
1277 * @dev: device
1278 * @newname: name (or format string) must be at least IFNAMSIZ
1279 *
1280 * Change name of a device, can pass format strings "eth%d".
1281 * for wildcarding.
1282 */
cf04a4c7 1283int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1284{
238fa362 1285 unsigned char old_assign_type;
fcc5a03a 1286 char oldname[IFNAMSIZ];
1da177e4 1287 int err = 0;
fcc5a03a 1288 int ret;
881d966b 1289 struct net *net;
1da177e4
LT
1290
1291 ASSERT_RTNL();
c346dca1 1292 BUG_ON(!dev_net(dev));
1da177e4 1293
c346dca1 1294 net = dev_net(dev);
8065a779
SWL
1295
1296 /* Some auto-enslaved devices e.g. failover slaves are
1297 * special, as userspace might rename the device after
1298 * the interface had been brought up and running since
1299 * the point kernel initiated auto-enslavement. Allow
1300 * live name change even when these slave devices are
1301 * up and running.
1302 *
1303 * Typically, users of these auto-enslaving devices
1304 * don't actually care about slave name change, as
1305 * they are supposed to operate on master interface
1306 * directly.
1307 */
1308 if (dev->flags & IFF_UP &&
1309 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1310 return -EBUSY;
1311
11d6011c 1312 down_write(&devnet_rename_sem);
c91f6df2
BH
1313
1314 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
11d6011c 1315 up_write(&devnet_rename_sem);
c8d90dca 1316 return 0;
c91f6df2 1317 }
c8d90dca 1318
fcc5a03a
HX
1319 memcpy(oldname, dev->name, IFNAMSIZ);
1320
828de4f6 1321 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1322 if (err < 0) {
11d6011c 1323 up_write(&devnet_rename_sem);
d9031024 1324 return err;
c91f6df2 1325 }
1da177e4 1326
6fe82a39
VF
1327 if (oldname[0] && !strchr(oldname, '%'))
1328 netdev_info(dev, "renamed from %s\n", oldname);
1329
238fa362
TG
1330 old_assign_type = dev->name_assign_type;
1331 dev->name_assign_type = NET_NAME_RENAMED;
1332
fcc5a03a 1333rollback:
a1b3f594
EB
1334 ret = device_rename(&dev->dev, dev->name);
1335 if (ret) {
1336 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1337 dev->name_assign_type = old_assign_type;
11d6011c 1338 up_write(&devnet_rename_sem);
a1b3f594 1339 return ret;
dcc99773 1340 }
7f988eab 1341
11d6011c 1342 up_write(&devnet_rename_sem);
c91f6df2 1343
5bb025fa
VF
1344 netdev_adjacent_rename_links(dev, oldname);
1345
7f988eab 1346 write_lock_bh(&dev_base_lock);
ff927412 1347 netdev_name_node_del(dev->name_node);
72c9528b
ED
1348 write_unlock_bh(&dev_base_lock);
1349
1350 synchronize_rcu();
1351
1352 write_lock_bh(&dev_base_lock);
ff927412 1353 netdev_name_node_add(net, dev->name_node);
7f988eab
HX
1354 write_unlock_bh(&dev_base_lock);
1355
056925ab 1356 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1357 ret = notifier_to_errno(ret);
1358
1359 if (ret) {
91e9c07b
ED
1360 /* err >= 0 after dev_alloc_name() or stores the first errno */
1361 if (err >= 0) {
fcc5a03a 1362 err = ret;
11d6011c 1363 down_write(&devnet_rename_sem);
fcc5a03a 1364 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1365 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1366 dev->name_assign_type = old_assign_type;
1367 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1368 goto rollback;
91e9c07b 1369 } else {
7b6cd1ce 1370 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1371 dev->name, ret);
fcc5a03a
HX
1372 }
1373 }
1da177e4
LT
1374
1375 return err;
1376}
1377
0b815a1a
SH
1378/**
1379 * dev_set_alias - change ifalias of a device
1380 * @dev: device
1381 * @alias: name up to IFALIASZ
f0db275a 1382 * @len: limit of bytes to copy from info
0b815a1a
SH
1383 *
1384 * Set ifalias for a device,
1385 */
1386int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1387{
6c557001 1388 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1389
1390 if (len >= IFALIASZ)
1391 return -EINVAL;
1392
6c557001
FW
1393 if (len) {
1394 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1395 if (!new_alias)
1396 return -ENOMEM;
1397
1398 memcpy(new_alias->ifalias, alias, len);
1399 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1400 }
1401
6c557001 1402 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1403 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1404 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1405 mutex_unlock(&ifalias_mutex);
1406
1407 if (new_alias)
1408 kfree_rcu(new_alias, rcuhead);
0b815a1a 1409
0b815a1a
SH
1410 return len;
1411}
0fe554a4 1412EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1413
6c557001
FW
1414/**
1415 * dev_get_alias - get ifalias of a device
1416 * @dev: device
20e88320 1417 * @name: buffer to store name of ifalias
6c557001
FW
1418 * @len: size of buffer
1419 *
1420 * get ifalias for a device. Caller must make sure dev cannot go
1421 * away, e.g. rcu read lock or own a reference count to device.
1422 */
1423int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1424{
1425 const struct dev_ifalias *alias;
1426 int ret = 0;
1427
1428 rcu_read_lock();
1429 alias = rcu_dereference(dev->ifalias);
1430 if (alias)
1431 ret = snprintf(name, len, "%s", alias->ifalias);
1432 rcu_read_unlock();
1433
1434 return ret;
1435}
0b815a1a 1436
d8a33ac4 1437/**
3041a069 1438 * netdev_features_change - device changes features
d8a33ac4
SH
1439 * @dev: device to cause notification
1440 *
1441 * Called to indicate a device has changed features.
1442 */
1443void netdev_features_change(struct net_device *dev)
1444{
056925ab 1445 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1446}
1447EXPORT_SYMBOL(netdev_features_change);
1448
1da177e4
LT
1449/**
1450 * netdev_state_change - device changes state
1451 * @dev: device to cause notification
1452 *
1453 * Called to indicate a device has changed state. This function calls
1454 * the notifier chains for netdev_chain and sends a NEWLINK message
1455 * to the routing socket.
1456 */
1457void netdev_state_change(struct net_device *dev)
1458{
1459 if (dev->flags & IFF_UP) {
51d0c047
DA
1460 struct netdev_notifier_change_info change_info = {
1461 .info.dev = dev,
1462 };
54951194 1463
51d0c047 1464 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1465 &change_info.info);
7f294054 1466 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1467 }
1468}
d1b19dff 1469EXPORT_SYMBOL(netdev_state_change);
1da177e4 1470
ee89bab1 1471/**
722c9a0c 1472 * netdev_notify_peers - notify network peers about existence of @dev
1473 * @dev: network device
ee89bab1
AW
1474 *
1475 * Generate traffic such that interested network peers are aware of
1476 * @dev, such as by generating a gratuitous ARP. This may be used when
1477 * a device wants to inform the rest of the network about some sort of
1478 * reconfiguration such as a failover event or virtual machine
1479 * migration.
1480 */
1481void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1482{
ee89bab1
AW
1483 rtnl_lock();
1484 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1485 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1486 rtnl_unlock();
c1da4ac7 1487}
ee89bab1 1488EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1489
40c900aa 1490static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1491{
d314774c 1492 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1493 int ret;
1da177e4 1494
e46b66bc
BH
1495 ASSERT_RTNL();
1496
bd869245
HK
1497 if (!netif_device_present(dev)) {
1498 /* may be detached because parent is runtime-suspended */
1499 if (dev->dev.parent)
1500 pm_runtime_resume(dev->dev.parent);
1501 if (!netif_device_present(dev))
1502 return -ENODEV;
1503 }
1da177e4 1504
ca99ca14
NH
1505 /* Block netpoll from trying to do any rx path servicing.
1506 * If we don't do this there is a chance ndo_poll_controller
1507 * or ndo_poll may be running while we open the device
1508 */
66b5552f 1509 netpoll_poll_disable(dev);
ca99ca14 1510
40c900aa 1511 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1512 ret = notifier_to_errno(ret);
1513 if (ret)
1514 return ret;
1515
1da177e4 1516 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1517
d314774c
SH
1518 if (ops->ndo_validate_addr)
1519 ret = ops->ndo_validate_addr(dev);
bada339b 1520
d314774c
SH
1521 if (!ret && ops->ndo_open)
1522 ret = ops->ndo_open(dev);
1da177e4 1523
66b5552f 1524 netpoll_poll_enable(dev);
ca99ca14 1525
bada339b
JG
1526 if (ret)
1527 clear_bit(__LINK_STATE_START, &dev->state);
1528 else {
1da177e4 1529 dev->flags |= IFF_UP;
4417da66 1530 dev_set_rx_mode(dev);
1da177e4 1531 dev_activate(dev);
7bf23575 1532 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1533 }
bada339b 1534
1da177e4
LT
1535 return ret;
1536}
1537
1538/**
bd380811 1539 * dev_open - prepare an interface for use.
00f54e68
PM
1540 * @dev: device to open
1541 * @extack: netlink extended ack
1da177e4 1542 *
bd380811
PM
1543 * Takes a device from down to up state. The device's private open
1544 * function is invoked and then the multicast lists are loaded. Finally
1545 * the device is moved into the up state and a %NETDEV_UP message is
1546 * sent to the netdev notifier chain.
1547 *
1548 * Calling this function on an active interface is a nop. On a failure
1549 * a negative errno code is returned.
1da177e4 1550 */
00f54e68 1551int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1552{
1553 int ret;
1554
bd380811
PM
1555 if (dev->flags & IFF_UP)
1556 return 0;
1557
40c900aa 1558 ret = __dev_open(dev, extack);
bd380811
PM
1559 if (ret < 0)
1560 return ret;
1561
7f294054 1562 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1563 call_netdevice_notifiers(NETDEV_UP, dev);
1564
1565 return ret;
1566}
1567EXPORT_SYMBOL(dev_open);
1568
7051b88a 1569static void __dev_close_many(struct list_head *head)
1da177e4 1570{
44345724 1571 struct net_device *dev;
e46b66bc 1572
bd380811 1573 ASSERT_RTNL();
9d5010db
DM
1574 might_sleep();
1575
5cde2829 1576 list_for_each_entry(dev, head, close_list) {
3f4df206 1577 /* Temporarily disable netpoll until the interface is down */
66b5552f 1578 netpoll_poll_disable(dev);
3f4df206 1579
44345724 1580 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1581
44345724 1582 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1583
44345724
OP
1584 /* Synchronize to scheduled poll. We cannot touch poll list, it
1585 * can be even on different cpu. So just clear netif_running().
1586 *
1587 * dev->stop() will invoke napi_disable() on all of it's
1588 * napi_struct instances on this device.
1589 */
4e857c58 1590 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1591 }
1da177e4 1592
44345724 1593 dev_deactivate_many(head);
d8b2a4d2 1594
5cde2829 1595 list_for_each_entry(dev, head, close_list) {
44345724 1596 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1597
44345724
OP
1598 /*
1599 * Call the device specific close. This cannot fail.
1600 * Only if device is UP
1601 *
1602 * We allow it to be called even after a DETACH hot-plug
1603 * event.
1604 */
1605 if (ops->ndo_stop)
1606 ops->ndo_stop(dev);
1607
44345724 1608 dev->flags &= ~IFF_UP;
66b5552f 1609 netpoll_poll_enable(dev);
44345724 1610 }
44345724
OP
1611}
1612
7051b88a 1613static void __dev_close(struct net_device *dev)
44345724
OP
1614{
1615 LIST_HEAD(single);
1616
5cde2829 1617 list_add(&dev->close_list, &single);
7051b88a 1618 __dev_close_many(&single);
f87e6f47 1619 list_del(&single);
44345724
OP
1620}
1621
7051b88a 1622void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1623{
1624 struct net_device *dev, *tmp;
1da177e4 1625
5cde2829
EB
1626 /* Remove the devices that don't need to be closed */
1627 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1628 if (!(dev->flags & IFF_UP))
5cde2829 1629 list_del_init(&dev->close_list);
44345724
OP
1630
1631 __dev_close_many(head);
1da177e4 1632
5cde2829 1633 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1634 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1635 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1636 if (unlink)
1637 list_del_init(&dev->close_list);
44345724 1638 }
bd380811 1639}
99c4a26a 1640EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1641
1642/**
1643 * dev_close - shutdown an interface.
1644 * @dev: device to shutdown
1645 *
1646 * This function moves an active device into down state. A
1647 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1648 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1649 * chain.
1650 */
7051b88a 1651void dev_close(struct net_device *dev)
bd380811 1652{
e14a5993
ED
1653 if (dev->flags & IFF_UP) {
1654 LIST_HEAD(single);
1da177e4 1655
5cde2829 1656 list_add(&dev->close_list, &single);
99c4a26a 1657 dev_close_many(&single, true);
e14a5993
ED
1658 list_del(&single);
1659 }
1da177e4 1660}
d1b19dff 1661EXPORT_SYMBOL(dev_close);
1da177e4
LT
1662
1663
0187bdfb
BH
1664/**
1665 * dev_disable_lro - disable Large Receive Offload on a device
1666 * @dev: device
1667 *
1668 * Disable Large Receive Offload (LRO) on a net device. Must be
1669 * called under RTNL. This is needed if received packets may be
1670 * forwarded to another interface.
1671 */
1672void dev_disable_lro(struct net_device *dev)
1673{
fbe168ba
MK
1674 struct net_device *lower_dev;
1675 struct list_head *iter;
529d0489 1676
bc5787c6
MM
1677 dev->wanted_features &= ~NETIF_F_LRO;
1678 netdev_update_features(dev);
27660515 1679
22d5969f
MM
1680 if (unlikely(dev->features & NETIF_F_LRO))
1681 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1682
1683 netdev_for_each_lower_dev(dev, lower_dev, iter)
1684 dev_disable_lro(lower_dev);
0187bdfb
BH
1685}
1686EXPORT_SYMBOL(dev_disable_lro);
1687
56f5aa77
MC
1688/**
1689 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1690 * @dev: device
1691 *
1692 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1693 * called under RTNL. This is needed if Generic XDP is installed on
1694 * the device.
1695 */
1696static void dev_disable_gro_hw(struct net_device *dev)
1697{
1698 dev->wanted_features &= ~NETIF_F_GRO_HW;
1699 netdev_update_features(dev);
1700
1701 if (unlikely(dev->features & NETIF_F_GRO_HW))
1702 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1703}
1704
ede2762d
KT
1705const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1706{
1707#define N(val) \
1708 case NETDEV_##val: \
1709 return "NETDEV_" __stringify(val);
1710 switch (cmd) {
1711 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1712 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1713 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1714 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1715 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1716 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1717 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1718 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1719 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1720 N(PRE_CHANGEADDR)
3f5ecd8a 1721 }
ede2762d
KT
1722#undef N
1723 return "UNKNOWN_NETDEV_EVENT";
1724}
1725EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1726
351638e7
JP
1727static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1728 struct net_device *dev)
1729{
51d0c047
DA
1730 struct netdev_notifier_info info = {
1731 .dev = dev,
1732 };
351638e7 1733
351638e7
JP
1734 return nb->notifier_call(nb, val, &info);
1735}
0187bdfb 1736
afa0df59
JP
1737static int call_netdevice_register_notifiers(struct notifier_block *nb,
1738 struct net_device *dev)
1739{
1740 int err;
1741
1742 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1743 err = notifier_to_errno(err);
1744 if (err)
1745 return err;
1746
1747 if (!(dev->flags & IFF_UP))
1748 return 0;
1749
1750 call_netdevice_notifier(nb, NETDEV_UP, dev);
1751 return 0;
1752}
1753
1754static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1755 struct net_device *dev)
1756{
1757 if (dev->flags & IFF_UP) {
1758 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1759 dev);
1760 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1761 }
1762 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1763}
1764
1765static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1766 struct net *net)
1767{
1768 struct net_device *dev;
1769 int err;
1770
1771 for_each_netdev(net, dev) {
1772 err = call_netdevice_register_notifiers(nb, dev);
1773 if (err)
1774 goto rollback;
1775 }
1776 return 0;
1777
1778rollback:
1779 for_each_netdev_continue_reverse(net, dev)
1780 call_netdevice_unregister_notifiers(nb, dev);
1781 return err;
1782}
1783
1784static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1785 struct net *net)
1786{
1787 struct net_device *dev;
1788
1789 for_each_netdev(net, dev)
1790 call_netdevice_unregister_notifiers(nb, dev);
1791}
1792
881d966b
EB
1793static int dev_boot_phase = 1;
1794
1da177e4 1795/**
722c9a0c 1796 * register_netdevice_notifier - register a network notifier block
1797 * @nb: notifier
1da177e4 1798 *
722c9a0c 1799 * Register a notifier to be called when network device events occur.
1800 * The notifier passed is linked into the kernel structures and must
1801 * not be reused until it has been unregistered. A negative errno code
1802 * is returned on a failure.
1da177e4 1803 *
722c9a0c 1804 * When registered all registration and up events are replayed
1805 * to the new notifier to allow device to have a race free
1806 * view of the network device list.
1da177e4
LT
1807 */
1808
1809int register_netdevice_notifier(struct notifier_block *nb)
1810{
881d966b 1811 struct net *net;
1da177e4
LT
1812 int err;
1813
328fbe74
KT
1814 /* Close race with setup_net() and cleanup_net() */
1815 down_write(&pernet_ops_rwsem);
1da177e4 1816 rtnl_lock();
f07d5b94 1817 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1818 if (err)
1819 goto unlock;
881d966b
EB
1820 if (dev_boot_phase)
1821 goto unlock;
1822 for_each_net(net) {
afa0df59
JP
1823 err = call_netdevice_register_net_notifiers(nb, net);
1824 if (err)
1825 goto rollback;
1da177e4 1826 }
fcc5a03a
HX
1827
1828unlock:
1da177e4 1829 rtnl_unlock();
328fbe74 1830 up_write(&pernet_ops_rwsem);
1da177e4 1831 return err;
fcc5a03a
HX
1832
1833rollback:
afa0df59
JP
1834 for_each_net_continue_reverse(net)
1835 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1836
1837 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1838 goto unlock;
1da177e4 1839}
d1b19dff 1840EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1841
1842/**
722c9a0c 1843 * unregister_netdevice_notifier - unregister a network notifier block
1844 * @nb: notifier
1da177e4 1845 *
722c9a0c 1846 * Unregister a notifier previously registered by
1847 * register_netdevice_notifier(). The notifier is unlinked into the
1848 * kernel structures and may then be reused. A negative errno code
1849 * is returned on a failure.
7d3d43da 1850 *
722c9a0c 1851 * After unregistering unregister and down device events are synthesized
1852 * for all devices on the device list to the removed notifier to remove
1853 * the need for special case cleanup code.
1da177e4
LT
1854 */
1855
1856int unregister_netdevice_notifier(struct notifier_block *nb)
1857{
7d3d43da 1858 struct net *net;
9f514950
HX
1859 int err;
1860
328fbe74
KT
1861 /* Close race with setup_net() and cleanup_net() */
1862 down_write(&pernet_ops_rwsem);
9f514950 1863 rtnl_lock();
f07d5b94 1864 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1865 if (err)
1866 goto unlock;
1867
48b3a137
JP
1868 for_each_net(net)
1869 call_netdevice_unregister_net_notifiers(nb, net);
1870
7d3d43da 1871unlock:
9f514950 1872 rtnl_unlock();
328fbe74 1873 up_write(&pernet_ops_rwsem);
9f514950 1874 return err;
1da177e4 1875}
d1b19dff 1876EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1877
1f637703
JP
1878static int __register_netdevice_notifier_net(struct net *net,
1879 struct notifier_block *nb,
1880 bool ignore_call_fail)
1881{
1882 int err;
1883
1884 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1885 if (err)
1886 return err;
1887 if (dev_boot_phase)
1888 return 0;
1889
1890 err = call_netdevice_register_net_notifiers(nb, net);
1891 if (err && !ignore_call_fail)
1892 goto chain_unregister;
1893
1894 return 0;
1895
1896chain_unregister:
1897 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1898 return err;
1899}
1900
1901static int __unregister_netdevice_notifier_net(struct net *net,
1902 struct notifier_block *nb)
1903{
1904 int err;
1905
1906 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1907 if (err)
1908 return err;
1909
1910 call_netdevice_unregister_net_notifiers(nb, net);
1911 return 0;
1912}
1913
a30c7b42
JP
1914/**
1915 * register_netdevice_notifier_net - register a per-netns network notifier block
1916 * @net: network namespace
1917 * @nb: notifier
1918 *
1919 * Register a notifier to be called when network device events occur.
1920 * The notifier passed is linked into the kernel structures and must
1921 * not be reused until it has been unregistered. A negative errno code
1922 * is returned on a failure.
1923 *
1924 * When registered all registration and up events are replayed
1925 * to the new notifier to allow device to have a race free
1926 * view of the network device list.
1927 */
1928
1929int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1930{
1931 int err;
1932
1933 rtnl_lock();
1f637703 1934 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
1935 rtnl_unlock();
1936 return err;
a30c7b42
JP
1937}
1938EXPORT_SYMBOL(register_netdevice_notifier_net);
1939
1940/**
1941 * unregister_netdevice_notifier_net - unregister a per-netns
1942 * network notifier block
1943 * @net: network namespace
1944 * @nb: notifier
1945 *
1946 * Unregister a notifier previously registered by
1947 * register_netdevice_notifier(). The notifier is unlinked into the
1948 * kernel structures and may then be reused. A negative errno code
1949 * is returned on a failure.
1950 *
1951 * After unregistering unregister and down device events are synthesized
1952 * for all devices on the device list to the removed notifier to remove
1953 * the need for special case cleanup code.
1954 */
1955
1956int unregister_netdevice_notifier_net(struct net *net,
1957 struct notifier_block *nb)
1958{
1959 int err;
1960
1961 rtnl_lock();
1f637703 1962 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
1963 rtnl_unlock();
1964 return err;
1965}
1966EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 1967
93642e14
JP
1968int register_netdevice_notifier_dev_net(struct net_device *dev,
1969 struct notifier_block *nb,
1970 struct netdev_net_notifier *nn)
1971{
1972 int err;
a30c7b42 1973
93642e14
JP
1974 rtnl_lock();
1975 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1976 if (!err) {
1977 nn->nb = nb;
1978 list_add(&nn->list, &dev->net_notifier_list);
1979 }
a30c7b42
JP
1980 rtnl_unlock();
1981 return err;
1982}
93642e14
JP
1983EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1984
1985int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1986 struct notifier_block *nb,
1987 struct netdev_net_notifier *nn)
1988{
1989 int err;
1990
1991 rtnl_lock();
1992 list_del(&nn->list);
1993 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1994 rtnl_unlock();
1995 return err;
1996}
1997EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1998
1999static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2000 struct net *net)
2001{
2002 struct netdev_net_notifier *nn;
2003
2004 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2005 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2006 __register_netdevice_notifier_net(net, nn->nb, true);
2007 }
2008}
a30c7b42 2009
351638e7
JP
2010/**
2011 * call_netdevice_notifiers_info - call all network notifier blocks
2012 * @val: value passed unmodified to notifier function
351638e7
JP
2013 * @info: notifier information data
2014 *
2015 * Call all network notifier blocks. Parameters and return value
2016 * are as for raw_notifier_call_chain().
2017 */
2018
1d143d9f 2019static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 2020 struct netdev_notifier_info *info)
351638e7 2021{
a30c7b42
JP
2022 struct net *net = dev_net(info->dev);
2023 int ret;
2024
351638e7 2025 ASSERT_RTNL();
a30c7b42
JP
2026
2027 /* Run per-netns notifier block chain first, then run the global one.
2028 * Hopefully, one day, the global one is going to be removed after
2029 * all notifier block registrators get converted to be per-netns.
2030 */
2031 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2032 if (ret & NOTIFY_STOP_MASK)
2033 return ret;
351638e7
JP
2034 return raw_notifier_call_chain(&netdev_chain, val, info);
2035}
351638e7 2036
26372605
PM
2037static int call_netdevice_notifiers_extack(unsigned long val,
2038 struct net_device *dev,
2039 struct netlink_ext_ack *extack)
2040{
2041 struct netdev_notifier_info info = {
2042 .dev = dev,
2043 .extack = extack,
2044 };
2045
2046 return call_netdevice_notifiers_info(val, &info);
2047}
2048
1da177e4
LT
2049/**
2050 * call_netdevice_notifiers - call all network notifier blocks
2051 * @val: value passed unmodified to notifier function
c4ea43c5 2052 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
2053 *
2054 * Call all network notifier blocks. Parameters and return value
f07d5b94 2055 * are as for raw_notifier_call_chain().
1da177e4
LT
2056 */
2057
ad7379d4 2058int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 2059{
26372605 2060 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 2061}
edf947f1 2062EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 2063
af7d6cce
SD
2064/**
2065 * call_netdevice_notifiers_mtu - call all network notifier blocks
2066 * @val: value passed unmodified to notifier function
2067 * @dev: net_device pointer passed unmodified to notifier function
2068 * @arg: additional u32 argument passed to the notifier function
2069 *
2070 * Call all network notifier blocks. Parameters and return value
2071 * are as for raw_notifier_call_chain().
2072 */
2073static int call_netdevice_notifiers_mtu(unsigned long val,
2074 struct net_device *dev, u32 arg)
2075{
2076 struct netdev_notifier_info_ext info = {
2077 .info.dev = dev,
2078 .ext.mtu = arg,
2079 };
2080
2081 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2082
2083 return call_netdevice_notifiers_info(val, &info.info);
2084}
2085
1cf51900 2086#ifdef CONFIG_NET_INGRESS
aabf6772 2087static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
2088
2089void net_inc_ingress_queue(void)
2090{
aabf6772 2091 static_branch_inc(&ingress_needed_key);
4577139b
DB
2092}
2093EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2094
2095void net_dec_ingress_queue(void)
2096{
aabf6772 2097 static_branch_dec(&ingress_needed_key);
4577139b
DB
2098}
2099EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2100#endif
2101
1f211a1b 2102#ifdef CONFIG_NET_EGRESS
aabf6772 2103static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2104
2105void net_inc_egress_queue(void)
2106{
aabf6772 2107 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2108}
2109EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2110
2111void net_dec_egress_queue(void)
2112{
aabf6772 2113 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2114}
2115EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2116#endif
2117
39e83922 2118static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 2119#ifdef CONFIG_JUMP_LABEL
b90e5794 2120static atomic_t netstamp_needed_deferred;
13baa00a 2121static atomic_t netstamp_wanted;
5fa8bbda 2122static void netstamp_clear(struct work_struct *work)
1da177e4 2123{
b90e5794 2124 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2125 int wanted;
b90e5794 2126
13baa00a
ED
2127 wanted = atomic_add_return(deferred, &netstamp_wanted);
2128 if (wanted > 0)
39e83922 2129 static_branch_enable(&netstamp_needed_key);
13baa00a 2130 else
39e83922 2131 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2132}
2133static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2134#endif
5fa8bbda
ED
2135
2136void net_enable_timestamp(void)
2137{
e9666d10 2138#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2139 int wanted;
2140
2141 while (1) {
2142 wanted = atomic_read(&netstamp_wanted);
2143 if (wanted <= 0)
2144 break;
2145 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2146 return;
2147 }
2148 atomic_inc(&netstamp_needed_deferred);
2149 schedule_work(&netstamp_work);
2150#else
39e83922 2151 static_branch_inc(&netstamp_needed_key);
13baa00a 2152#endif
1da177e4 2153}
d1b19dff 2154EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2155
2156void net_disable_timestamp(void)
2157{
e9666d10 2158#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2159 int wanted;
2160
2161 while (1) {
2162 wanted = atomic_read(&netstamp_wanted);
2163 if (wanted <= 1)
2164 break;
2165 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2166 return;
2167 }
2168 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2169 schedule_work(&netstamp_work);
2170#else
39e83922 2171 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2172#endif
1da177e4 2173}
d1b19dff 2174EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2175
3b098e2d 2176static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2177{
2456e855 2178 skb->tstamp = 0;
39e83922 2179 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 2180 __net_timestamp(skb);
1da177e4
LT
2181}
2182
39e83922
DB
2183#define net_timestamp_check(COND, SKB) \
2184 if (static_branch_unlikely(&netstamp_needed_key)) { \
2185 if ((COND) && !(SKB)->tstamp) \
2186 __net_timestamp(SKB); \
2187 } \
3b098e2d 2188
f4b05d27 2189bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
2190{
2191 unsigned int len;
2192
2193 if (!(dev->flags & IFF_UP))
2194 return false;
2195
2196 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2197 if (skb->len <= len)
2198 return true;
2199
2200 /* if TSO is enabled, we don't care about the length as the packet
2201 * could be forwarded without being segmented before
2202 */
2203 if (skb_is_gso(skb))
2204 return true;
2205
2206 return false;
2207}
1ee481fb 2208EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2209
a0265d28
HX
2210int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2211{
4e3264d2 2212 int ret = ____dev_forward_skb(dev, skb);
a0265d28 2213
4e3264d2
MKL
2214 if (likely(!ret)) {
2215 skb->protocol = eth_type_trans(skb, dev);
2216 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2217 }
a0265d28 2218
4e3264d2 2219 return ret;
a0265d28
HX
2220}
2221EXPORT_SYMBOL_GPL(__dev_forward_skb);
2222
44540960
AB
2223/**
2224 * dev_forward_skb - loopback an skb to another netif
2225 *
2226 * @dev: destination network device
2227 * @skb: buffer to forward
2228 *
2229 * return values:
2230 * NET_RX_SUCCESS (no congestion)
6ec82562 2231 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2232 *
2233 * dev_forward_skb can be used for injecting an skb from the
2234 * start_xmit function of one device into the receive queue
2235 * of another device.
2236 *
2237 * The receiving device may be in another namespace, so
2238 * we have to clear all information in the skb that could
2239 * impact namespace isolation.
2240 */
2241int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2242{
a0265d28 2243 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2244}
2245EXPORT_SYMBOL_GPL(dev_forward_skb);
2246
71d9dec2
CG
2247static inline int deliver_skb(struct sk_buff *skb,
2248 struct packet_type *pt_prev,
2249 struct net_device *orig_dev)
2250{
1f8b977a 2251 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2252 return -ENOMEM;
63354797 2253 refcount_inc(&skb->users);
71d9dec2
CG
2254 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2255}
2256
7866a621
SN
2257static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2258 struct packet_type **pt,
fbcb2170
JP
2259 struct net_device *orig_dev,
2260 __be16 type,
7866a621
SN
2261 struct list_head *ptype_list)
2262{
2263 struct packet_type *ptype, *pt_prev = *pt;
2264
2265 list_for_each_entry_rcu(ptype, ptype_list, list) {
2266 if (ptype->type != type)
2267 continue;
2268 if (pt_prev)
fbcb2170 2269 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2270 pt_prev = ptype;
2271 }
2272 *pt = pt_prev;
2273}
2274
c0de08d0
EL
2275static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2276{
a3d744e9 2277 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2278 return false;
2279
2280 if (ptype->id_match)
2281 return ptype->id_match(ptype, skb->sk);
2282 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2283 return true;
2284
2285 return false;
2286}
2287
9f9a742d
MR
2288/**
2289 * dev_nit_active - return true if any network interface taps are in use
2290 *
2291 * @dev: network device to check for the presence of taps
2292 */
2293bool dev_nit_active(struct net_device *dev)
2294{
2295 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2296}
2297EXPORT_SYMBOL_GPL(dev_nit_active);
2298
1da177e4
LT
2299/*
2300 * Support routine. Sends outgoing frames to any network
2301 * taps currently in use.
2302 */
2303
74b20582 2304void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2305{
2306 struct packet_type *ptype;
71d9dec2
CG
2307 struct sk_buff *skb2 = NULL;
2308 struct packet_type *pt_prev = NULL;
7866a621 2309 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2310
1da177e4 2311 rcu_read_lock();
7866a621
SN
2312again:
2313 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2314 if (ptype->ignore_outgoing)
2315 continue;
2316
1da177e4
LT
2317 /* Never send packets back to the socket
2318 * they originated from - MvS (miquels@drinkel.ow.org)
2319 */
7866a621
SN
2320 if (skb_loop_sk(ptype, skb))
2321 continue;
71d9dec2 2322
7866a621
SN
2323 if (pt_prev) {
2324 deliver_skb(skb2, pt_prev, skb->dev);
2325 pt_prev = ptype;
2326 continue;
2327 }
1da177e4 2328
7866a621
SN
2329 /* need to clone skb, done only once */
2330 skb2 = skb_clone(skb, GFP_ATOMIC);
2331 if (!skb2)
2332 goto out_unlock;
70978182 2333
7866a621 2334 net_timestamp_set(skb2);
1da177e4 2335
7866a621
SN
2336 /* skb->nh should be correctly
2337 * set by sender, so that the second statement is
2338 * just protection against buggy protocols.
2339 */
2340 skb_reset_mac_header(skb2);
2341
2342 if (skb_network_header(skb2) < skb2->data ||
2343 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2344 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2345 ntohs(skb2->protocol),
2346 dev->name);
2347 skb_reset_network_header(skb2);
1da177e4 2348 }
7866a621
SN
2349
2350 skb2->transport_header = skb2->network_header;
2351 skb2->pkt_type = PACKET_OUTGOING;
2352 pt_prev = ptype;
2353 }
2354
2355 if (ptype_list == &ptype_all) {
2356 ptype_list = &dev->ptype_all;
2357 goto again;
1da177e4 2358 }
7866a621 2359out_unlock:
581fe0ea
WB
2360 if (pt_prev) {
2361 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2362 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2363 else
2364 kfree_skb(skb2);
2365 }
1da177e4
LT
2366 rcu_read_unlock();
2367}
74b20582 2368EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2369
2c53040f
BH
2370/**
2371 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2372 * @dev: Network device
2373 * @txq: number of queues available
2374 *
2375 * If real_num_tx_queues is changed the tc mappings may no longer be
2376 * valid. To resolve this verify the tc mapping remains valid and if
2377 * not NULL the mapping. With no priorities mapping to this
2378 * offset/count pair it will no longer be used. In the worst case TC0
2379 * is invalid nothing can be done so disable priority mappings. If is
2380 * expected that drivers will fix this mapping if they can before
2381 * calling netif_set_real_num_tx_queues.
2382 */
bb134d22 2383static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2384{
2385 int i;
2386 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2387
2388 /* If TC0 is invalidated disable TC mapping */
2389 if (tc->offset + tc->count > txq) {
7b6cd1ce 2390 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2391 dev->num_tc = 0;
2392 return;
2393 }
2394
2395 /* Invalidated prio to tc mappings set to TC0 */
2396 for (i = 1; i < TC_BITMASK + 1; i++) {
2397 int q = netdev_get_prio_tc_map(dev, i);
2398
2399 tc = &dev->tc_to_txq[q];
2400 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2401 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2402 i, q);
4f57c087
JF
2403 netdev_set_prio_tc_map(dev, i, 0);
2404 }
2405 }
2406}
2407
8d059b0f
AD
2408int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2409{
2410 if (dev->num_tc) {
2411 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2412 int i;
2413
ffcfe25b 2414 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2415 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2416 if ((txq - tc->offset) < tc->count)
2417 return i;
2418 }
2419
ffcfe25b 2420 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2421 return -1;
2422 }
2423
2424 return 0;
2425}
8a5f2166 2426EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2427
537c00de 2428#ifdef CONFIG_XPS
04157469
AN
2429struct static_key xps_needed __read_mostly;
2430EXPORT_SYMBOL(xps_needed);
2431struct static_key xps_rxqs_needed __read_mostly;
2432EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2433static DEFINE_MUTEX(xps_map_mutex);
2434#define xmap_dereference(P) \
2435 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2436
6234f874
AD
2437static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2438 int tci, u16 index)
537c00de 2439{
10cdc3f3
AD
2440 struct xps_map *map = NULL;
2441 int pos;
537c00de 2442
10cdc3f3 2443 if (dev_maps)
80d19669 2444 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2445 if (!map)
2446 return false;
537c00de 2447
6234f874
AD
2448 for (pos = map->len; pos--;) {
2449 if (map->queues[pos] != index)
2450 continue;
2451
2452 if (map->len > 1) {
2453 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2454 break;
537c00de 2455 }
6234f874 2456
80d19669 2457 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2458 kfree_rcu(map, rcu);
2459 return false;
537c00de
AD
2460 }
2461
6234f874 2462 return true;
10cdc3f3
AD
2463}
2464
6234f874
AD
2465static bool remove_xps_queue_cpu(struct net_device *dev,
2466 struct xps_dev_maps *dev_maps,
2467 int cpu, u16 offset, u16 count)
2468{
184c449f
AD
2469 int num_tc = dev->num_tc ? : 1;
2470 bool active = false;
2471 int tci;
6234f874 2472
184c449f
AD
2473 for (tci = cpu * num_tc; num_tc--; tci++) {
2474 int i, j;
2475
2476 for (i = count, j = offset; i--; j++) {
6358d49a 2477 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2478 break;
2479 }
2480
2481 active |= i < 0;
6234f874
AD
2482 }
2483
184c449f 2484 return active;
6234f874
AD
2485}
2486
867d0ad4
SD
2487static void reset_xps_maps(struct net_device *dev,
2488 struct xps_dev_maps *dev_maps,
2489 bool is_rxqs_map)
2490{
2491 if (is_rxqs_map) {
2492 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2493 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2494 } else {
2495 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2496 }
2497 static_key_slow_dec_cpuslocked(&xps_needed);
2498 kfree_rcu(dev_maps, rcu);
2499}
2500
80d19669
AN
2501static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2502 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2503 u16 offset, u16 count, bool is_rxqs_map)
2504{
2505 bool active = false;
2506 int i, j;
2507
2508 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2509 j < nr_ids;)
2510 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2511 count);
867d0ad4
SD
2512 if (!active)
2513 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2514
f28c020f
SD
2515 if (!is_rxqs_map) {
2516 for (i = offset + (count - 1); count--; i--) {
2517 netdev_queue_numa_node_write(
2518 netdev_get_tx_queue(dev, i),
2519 NUMA_NO_NODE);
80d19669 2520 }
80d19669
AN
2521 }
2522}
2523
6234f874
AD
2524static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2525 u16 count)
10cdc3f3 2526{
80d19669 2527 const unsigned long *possible_mask = NULL;
10cdc3f3 2528 struct xps_dev_maps *dev_maps;
80d19669 2529 unsigned int nr_ids;
10cdc3f3 2530
04157469
AN
2531 if (!static_key_false(&xps_needed))
2532 return;
10cdc3f3 2533
4d99f660 2534 cpus_read_lock();
04157469 2535 mutex_lock(&xps_map_mutex);
10cdc3f3 2536
04157469
AN
2537 if (static_key_false(&xps_rxqs_needed)) {
2538 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2539 if (dev_maps) {
2540 nr_ids = dev->num_rx_queues;
2541 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2542 offset, count, true);
2543 }
537c00de
AD
2544 }
2545
80d19669
AN
2546 dev_maps = xmap_dereference(dev->xps_cpus_map);
2547 if (!dev_maps)
2548 goto out_no_maps;
2549
2550 if (num_possible_cpus() > 1)
2551 possible_mask = cpumask_bits(cpu_possible_mask);
2552 nr_ids = nr_cpu_ids;
2553 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2554 false);
024e9679 2555
537c00de
AD
2556out_no_maps:
2557 mutex_unlock(&xps_map_mutex);
4d99f660 2558 cpus_read_unlock();
537c00de
AD
2559}
2560
6234f874
AD
2561static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2562{
2563 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2564}
2565
80d19669
AN
2566static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2567 u16 index, bool is_rxqs_map)
01c5f864
AD
2568{
2569 struct xps_map *new_map;
2570 int alloc_len = XPS_MIN_MAP_ALLOC;
2571 int i, pos;
2572
2573 for (pos = 0; map && pos < map->len; pos++) {
2574 if (map->queues[pos] != index)
2575 continue;
2576 return map;
2577 }
2578
80d19669 2579 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2580 if (map) {
2581 if (pos < map->alloc_len)
2582 return map;
2583
2584 alloc_len = map->alloc_len * 2;
2585 }
2586
80d19669
AN
2587 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2588 * map
2589 */
2590 if (is_rxqs_map)
2591 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2592 else
2593 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2594 cpu_to_node(attr_index));
01c5f864
AD
2595 if (!new_map)
2596 return NULL;
2597
2598 for (i = 0; i < pos; i++)
2599 new_map->queues[i] = map->queues[i];
2600 new_map->alloc_len = alloc_len;
2601 new_map->len = pos;
2602
2603 return new_map;
2604}
2605
4d99f660 2606/* Must be called under cpus_read_lock */
80d19669
AN
2607int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2608 u16 index, bool is_rxqs_map)
537c00de 2609{
80d19669 2610 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2611 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2612 int i, j, tci, numa_node_id = -2;
184c449f 2613 int maps_sz, num_tc = 1, tc = 0;
537c00de 2614 struct xps_map *map, *new_map;
01c5f864 2615 bool active = false;
80d19669 2616 unsigned int nr_ids;
537c00de 2617
184c449f 2618 if (dev->num_tc) {
ffcfe25b 2619 /* Do not allow XPS on subordinate device directly */
184c449f 2620 num_tc = dev->num_tc;
ffcfe25b
AD
2621 if (num_tc < 0)
2622 return -EINVAL;
2623
2624 /* If queue belongs to subordinate dev use its map */
2625 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2626
184c449f
AD
2627 tc = netdev_txq_to_tc(dev, index);
2628 if (tc < 0)
2629 return -EINVAL;
2630 }
2631
537c00de 2632 mutex_lock(&xps_map_mutex);
80d19669
AN
2633 if (is_rxqs_map) {
2634 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2635 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2636 nr_ids = dev->num_rx_queues;
2637 } else {
2638 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2639 if (num_possible_cpus() > 1) {
2640 online_mask = cpumask_bits(cpu_online_mask);
2641 possible_mask = cpumask_bits(cpu_possible_mask);
2642 }
2643 dev_maps = xmap_dereference(dev->xps_cpus_map);
2644 nr_ids = nr_cpu_ids;
2645 }
537c00de 2646
80d19669
AN
2647 if (maps_sz < L1_CACHE_BYTES)
2648 maps_sz = L1_CACHE_BYTES;
537c00de 2649
01c5f864 2650 /* allocate memory for queue storage */
80d19669
AN
2651 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2652 j < nr_ids;) {
01c5f864
AD
2653 if (!new_dev_maps)
2654 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2655 if (!new_dev_maps) {
2656 mutex_unlock(&xps_map_mutex);
01c5f864 2657 return -ENOMEM;
2bb60cb9 2658 }
01c5f864 2659
80d19669
AN
2660 tci = j * num_tc + tc;
2661 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2662 NULL;
2663
80d19669 2664 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2665 if (!map)
2666 goto error;
2667
80d19669 2668 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2669 }
2670
2671 if (!new_dev_maps)
2672 goto out_no_new_maps;
2673
867d0ad4
SD
2674 if (!dev_maps) {
2675 /* Increment static keys at most once per type */
2676 static_key_slow_inc_cpuslocked(&xps_needed);
2677 if (is_rxqs_map)
2678 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2679 }
04157469 2680
80d19669
AN
2681 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2682 j < nr_ids;) {
184c449f 2683 /* copy maps belonging to foreign traffic classes */
80d19669 2684 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2685 /* fill in the new device map from the old device map */
80d19669
AN
2686 map = xmap_dereference(dev_maps->attr_map[tci]);
2687 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2688 }
2689
2690 /* We need to explicitly update tci as prevous loop
2691 * could break out early if dev_maps is NULL.
2692 */
80d19669 2693 tci = j * num_tc + tc;
184c449f 2694
80d19669
AN
2695 if (netif_attr_test_mask(j, mask, nr_ids) &&
2696 netif_attr_test_online(j, online_mask, nr_ids)) {
2697 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2698 int pos = 0;
2699
80d19669 2700 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2701 while ((pos < map->len) && (map->queues[pos] != index))
2702 pos++;
2703
2704 if (pos == map->len)
2705 map->queues[map->len++] = index;
537c00de 2706#ifdef CONFIG_NUMA
80d19669
AN
2707 if (!is_rxqs_map) {
2708 if (numa_node_id == -2)
2709 numa_node_id = cpu_to_node(j);
2710 else if (numa_node_id != cpu_to_node(j))
2711 numa_node_id = -1;
2712 }
537c00de 2713#endif
01c5f864
AD
2714 } else if (dev_maps) {
2715 /* fill in the new device map from the old device map */
80d19669
AN
2716 map = xmap_dereference(dev_maps->attr_map[tci]);
2717 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2718 }
01c5f864 2719
184c449f
AD
2720 /* copy maps belonging to foreign traffic classes */
2721 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2722 /* fill in the new device map from the old device map */
80d19669
AN
2723 map = xmap_dereference(dev_maps->attr_map[tci]);
2724 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2725 }
537c00de
AD
2726 }
2727
80d19669
AN
2728 if (is_rxqs_map)
2729 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2730 else
2731 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2732
537c00de 2733 /* Cleanup old maps */
184c449f
AD
2734 if (!dev_maps)
2735 goto out_no_old_maps;
2736
80d19669
AN
2737 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2738 j < nr_ids;) {
2739 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2740 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2741 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2742 if (map && map != new_map)
2743 kfree_rcu(map, rcu);
2744 }
537c00de
AD
2745 }
2746
184c449f
AD
2747 kfree_rcu(dev_maps, rcu);
2748
2749out_no_old_maps:
01c5f864
AD
2750 dev_maps = new_dev_maps;
2751 active = true;
537c00de 2752
01c5f864 2753out_no_new_maps:
80d19669
AN
2754 if (!is_rxqs_map) {
2755 /* update Tx queue numa node */
2756 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2757 (numa_node_id >= 0) ?
2758 numa_node_id : NUMA_NO_NODE);
2759 }
537c00de 2760
01c5f864
AD
2761 if (!dev_maps)
2762 goto out_no_maps;
2763
80d19669
AN
2764 /* removes tx-queue from unused CPUs/rx-queues */
2765 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2766 j < nr_ids;) {
2767 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2768 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2769 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2770 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2771 active |= remove_xps_queue(dev_maps, tci, index);
2772 for (i = num_tc - tc, tci++; --i; tci++)
2773 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2774 }
2775
2776 /* free map if not active */
867d0ad4
SD
2777 if (!active)
2778 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2779
2780out_no_maps:
537c00de
AD
2781 mutex_unlock(&xps_map_mutex);
2782
2783 return 0;
2784error:
01c5f864 2785 /* remove any maps that we added */
80d19669
AN
2786 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2787 j < nr_ids;) {
2788 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2789 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2790 map = dev_maps ?
80d19669 2791 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2792 NULL;
2793 if (new_map && new_map != map)
2794 kfree(new_map);
2795 }
01c5f864
AD
2796 }
2797
537c00de
AD
2798 mutex_unlock(&xps_map_mutex);
2799
537c00de
AD
2800 kfree(new_dev_maps);
2801 return -ENOMEM;
2802}
4d99f660 2803EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2804
2805int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2806 u16 index)
2807{
4d99f660
AV
2808 int ret;
2809
2810 cpus_read_lock();
2811 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2812 cpus_read_unlock();
2813
2814 return ret;
80d19669 2815}
537c00de
AD
2816EXPORT_SYMBOL(netif_set_xps_queue);
2817
2818#endif
ffcfe25b
AD
2819static void netdev_unbind_all_sb_channels(struct net_device *dev)
2820{
2821 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2822
2823 /* Unbind any subordinate channels */
2824 while (txq-- != &dev->_tx[0]) {
2825 if (txq->sb_dev)
2826 netdev_unbind_sb_channel(dev, txq->sb_dev);
2827 }
2828}
2829
9cf1f6a8
AD
2830void netdev_reset_tc(struct net_device *dev)
2831{
6234f874
AD
2832#ifdef CONFIG_XPS
2833 netif_reset_xps_queues_gt(dev, 0);
2834#endif
ffcfe25b
AD
2835 netdev_unbind_all_sb_channels(dev);
2836
2837 /* Reset TC configuration of device */
9cf1f6a8
AD
2838 dev->num_tc = 0;
2839 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2840 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2841}
2842EXPORT_SYMBOL(netdev_reset_tc);
2843
2844int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2845{
2846 if (tc >= dev->num_tc)
2847 return -EINVAL;
2848
6234f874
AD
2849#ifdef CONFIG_XPS
2850 netif_reset_xps_queues(dev, offset, count);
2851#endif
9cf1f6a8
AD
2852 dev->tc_to_txq[tc].count = count;
2853 dev->tc_to_txq[tc].offset = offset;
2854 return 0;
2855}
2856EXPORT_SYMBOL(netdev_set_tc_queue);
2857
2858int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2859{
2860 if (num_tc > TC_MAX_QUEUE)
2861 return -EINVAL;
2862
6234f874
AD
2863#ifdef CONFIG_XPS
2864 netif_reset_xps_queues_gt(dev, 0);
2865#endif
ffcfe25b
AD
2866 netdev_unbind_all_sb_channels(dev);
2867
9cf1f6a8
AD
2868 dev->num_tc = num_tc;
2869 return 0;
2870}
2871EXPORT_SYMBOL(netdev_set_num_tc);
2872
ffcfe25b
AD
2873void netdev_unbind_sb_channel(struct net_device *dev,
2874 struct net_device *sb_dev)
2875{
2876 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2877
2878#ifdef CONFIG_XPS
2879 netif_reset_xps_queues_gt(sb_dev, 0);
2880#endif
2881 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2882 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2883
2884 while (txq-- != &dev->_tx[0]) {
2885 if (txq->sb_dev == sb_dev)
2886 txq->sb_dev = NULL;
2887 }
2888}
2889EXPORT_SYMBOL(netdev_unbind_sb_channel);
2890
2891int netdev_bind_sb_channel_queue(struct net_device *dev,
2892 struct net_device *sb_dev,
2893 u8 tc, u16 count, u16 offset)
2894{
2895 /* Make certain the sb_dev and dev are already configured */
2896 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2897 return -EINVAL;
2898
2899 /* We cannot hand out queues we don't have */
2900 if ((offset + count) > dev->real_num_tx_queues)
2901 return -EINVAL;
2902
2903 /* Record the mapping */
2904 sb_dev->tc_to_txq[tc].count = count;
2905 sb_dev->tc_to_txq[tc].offset = offset;
2906
2907 /* Provide a way for Tx queue to find the tc_to_txq map or
2908 * XPS map for itself.
2909 */
2910 while (count--)
2911 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2912
2913 return 0;
2914}
2915EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2916
2917int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2918{
2919 /* Do not use a multiqueue device to represent a subordinate channel */
2920 if (netif_is_multiqueue(dev))
2921 return -ENODEV;
2922
2923 /* We allow channels 1 - 32767 to be used for subordinate channels.
2924 * Channel 0 is meant to be "native" mode and used only to represent
2925 * the main root device. We allow writing 0 to reset the device back
2926 * to normal mode after being used as a subordinate channel.
2927 */
2928 if (channel > S16_MAX)
2929 return -EINVAL;
2930
2931 dev->num_tc = -channel;
2932
2933 return 0;
2934}
2935EXPORT_SYMBOL(netdev_set_sb_channel);
2936
f0796d5c
JF
2937/*
2938 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2939 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2940 */
e6484930 2941int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2942{
ac5b7019 2943 bool disabling;
1d24eb48
TH
2944 int rc;
2945
ac5b7019
JK
2946 disabling = txq < dev->real_num_tx_queues;
2947
e6484930
TH
2948 if (txq < 1 || txq > dev->num_tx_queues)
2949 return -EINVAL;
f0796d5c 2950
5c56580b
BH
2951 if (dev->reg_state == NETREG_REGISTERED ||
2952 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2953 ASSERT_RTNL();
2954
1d24eb48
TH
2955 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2956 txq);
bf264145
TH
2957 if (rc)
2958 return rc;
2959
4f57c087
JF
2960 if (dev->num_tc)
2961 netif_setup_tc(dev, txq);
2962
ac5b7019
JK
2963 dev->real_num_tx_queues = txq;
2964
2965 if (disabling) {
2966 synchronize_net();
e6484930 2967 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2968#ifdef CONFIG_XPS
2969 netif_reset_xps_queues_gt(dev, txq);
2970#endif
2971 }
ac5b7019
JK
2972 } else {
2973 dev->real_num_tx_queues = txq;
f0796d5c 2974 }
e6484930 2975
e6484930 2976 return 0;
f0796d5c
JF
2977}
2978EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2979
a953be53 2980#ifdef CONFIG_SYSFS
62fe0b40
BH
2981/**
2982 * netif_set_real_num_rx_queues - set actual number of RX queues used
2983 * @dev: Network device
2984 * @rxq: Actual number of RX queues
2985 *
2986 * This must be called either with the rtnl_lock held or before
2987 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2988 * negative error code. If called before registration, it always
2989 * succeeds.
62fe0b40
BH
2990 */
2991int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2992{
2993 int rc;
2994
bd25fa7b
TH
2995 if (rxq < 1 || rxq > dev->num_rx_queues)
2996 return -EINVAL;
2997
62fe0b40
BH
2998 if (dev->reg_state == NETREG_REGISTERED) {
2999 ASSERT_RTNL();
3000
62fe0b40
BH
3001 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3002 rxq);
3003 if (rc)
3004 return rc;
62fe0b40
BH
3005 }
3006
3007 dev->real_num_rx_queues = rxq;
3008 return 0;
3009}
3010EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3011#endif
3012
2c53040f
BH
3013/**
3014 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
3015 *
3016 * This routine should set an upper limit on the number of RSS queues
3017 * used by default by multiqueue devices.
3018 */
a55b138b 3019int netif_get_num_default_rss_queues(void)
16917b87 3020{
40e4e713
HS
3021 return is_kdump_kernel() ?
3022 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
3023}
3024EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3025
3bcb846c 3026static void __netif_reschedule(struct Qdisc *q)
56079431 3027{
def82a1d
JP
3028 struct softnet_data *sd;
3029 unsigned long flags;
56079431 3030
def82a1d 3031 local_irq_save(flags);
903ceff7 3032 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
3033 q->next_sched = NULL;
3034 *sd->output_queue_tailp = q;
3035 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
3036 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3037 local_irq_restore(flags);
3038}
3039
3040void __netif_schedule(struct Qdisc *q)
3041{
3042 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3043 __netif_reschedule(q);
56079431
DV
3044}
3045EXPORT_SYMBOL(__netif_schedule);
3046
e6247027
ED
3047struct dev_kfree_skb_cb {
3048 enum skb_free_reason reason;
3049};
3050
3051static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 3052{
e6247027
ED
3053 return (struct dev_kfree_skb_cb *)skb->cb;
3054}
3055
46e5da40
JF
3056void netif_schedule_queue(struct netdev_queue *txq)
3057{
3058 rcu_read_lock();
5be5515a 3059 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
3060 struct Qdisc *q = rcu_dereference(txq->qdisc);
3061
3062 __netif_schedule(q);
3063 }
3064 rcu_read_unlock();
3065}
3066EXPORT_SYMBOL(netif_schedule_queue);
3067
46e5da40
JF
3068void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3069{
3070 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3071 struct Qdisc *q;
3072
3073 rcu_read_lock();
3074 q = rcu_dereference(dev_queue->qdisc);
3075 __netif_schedule(q);
3076 rcu_read_unlock();
3077 }
3078}
3079EXPORT_SYMBOL(netif_tx_wake_queue);
3080
e6247027 3081void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 3082{
e6247027 3083 unsigned long flags;
56079431 3084
9899886d
MJ
3085 if (unlikely(!skb))
3086 return;
3087
63354797 3088 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 3089 smp_rmb();
63354797
RE
3090 refcount_set(&skb->users, 0);
3091 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3092 return;
bea3348e 3093 }
e6247027
ED
3094 get_kfree_skb_cb(skb)->reason = reason;
3095 local_irq_save(flags);
3096 skb->next = __this_cpu_read(softnet_data.completion_queue);
3097 __this_cpu_write(softnet_data.completion_queue, skb);
3098 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3099 local_irq_restore(flags);
56079431 3100}
e6247027 3101EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3102
e6247027 3103void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
3104{
3105 if (in_irq() || irqs_disabled())
e6247027 3106 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3107 else
3108 dev_kfree_skb(skb);
3109}
e6247027 3110EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3111
3112
bea3348e
SH
3113/**
3114 * netif_device_detach - mark device as removed
3115 * @dev: network device
3116 *
3117 * Mark device as removed from system and therefore no longer available.
3118 */
56079431
DV
3119void netif_device_detach(struct net_device *dev)
3120{
3121 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3122 netif_running(dev)) {
d543103a 3123 netif_tx_stop_all_queues(dev);
56079431
DV
3124 }
3125}
3126EXPORT_SYMBOL(netif_device_detach);
3127
bea3348e
SH
3128/**
3129 * netif_device_attach - mark device as attached
3130 * @dev: network device
3131 *
3132 * Mark device as attached from system and restart if needed.
3133 */
56079431
DV
3134void netif_device_attach(struct net_device *dev)
3135{
3136 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3137 netif_running(dev)) {
d543103a 3138 netif_tx_wake_all_queues(dev);
4ec93edb 3139 __netdev_watchdog_up(dev);
56079431
DV
3140 }
3141}
3142EXPORT_SYMBOL(netif_device_attach);
3143
5605c762
JP
3144/*
3145 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3146 * to be used as a distribution range.
3147 */
eadec877
AD
3148static u16 skb_tx_hash(const struct net_device *dev,
3149 const struct net_device *sb_dev,
3150 struct sk_buff *skb)
5605c762
JP
3151{
3152 u32 hash;
3153 u16 qoffset = 0;
1b837d48 3154 u16 qcount = dev->real_num_tx_queues;
5605c762 3155
eadec877
AD
3156 if (dev->num_tc) {
3157 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3158
3159 qoffset = sb_dev->tc_to_txq[tc].offset;
3160 qcount = sb_dev->tc_to_txq[tc].count;
3161 }
3162
5605c762
JP
3163 if (skb_rx_queue_recorded(skb)) {
3164 hash = skb_get_rx_queue(skb);
6e11d157
AN
3165 if (hash >= qoffset)
3166 hash -= qoffset;
1b837d48
AD
3167 while (unlikely(hash >= qcount))
3168 hash -= qcount;
eadec877 3169 return hash + qoffset;
5605c762
JP
3170 }
3171
3172 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3173}
5605c762 3174
36c92474
BH
3175static void skb_warn_bad_offload(const struct sk_buff *skb)
3176{
84d15ae5 3177 static const netdev_features_t null_features;
36c92474 3178 struct net_device *dev = skb->dev;
88ad4175 3179 const char *name = "";
36c92474 3180
c846ad9b
BG
3181 if (!net_ratelimit())
3182 return;
3183
88ad4175
BM
3184 if (dev) {
3185 if (dev->dev.parent)
3186 name = dev_driver_string(dev->dev.parent);
3187 else
3188 name = netdev_name(dev);
3189 }
6413139d
WB
3190 skb_dump(KERN_WARNING, skb, false);
3191 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3192 name, dev ? &dev->features : &null_features,
6413139d 3193 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3194}
3195
1da177e4
LT
3196/*
3197 * Invalidate hardware checksum when packet is to be mangled, and
3198 * complete checksum manually on outgoing path.
3199 */
84fa7933 3200int skb_checksum_help(struct sk_buff *skb)
1da177e4 3201{
d3bc23e7 3202 __wsum csum;
663ead3b 3203 int ret = 0, offset;
1da177e4 3204
84fa7933 3205 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3206 goto out_set_summed;
3207
3208 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
3209 skb_warn_bad_offload(skb);
3210 return -EINVAL;
1da177e4
LT
3211 }
3212
cef401de
ED
3213 /* Before computing a checksum, we should make sure no frag could
3214 * be modified by an external entity : checksum could be wrong.
3215 */
3216 if (skb_has_shared_frag(skb)) {
3217 ret = __skb_linearize(skb);
3218 if (ret)
3219 goto out;
3220 }
3221
55508d60 3222 offset = skb_checksum_start_offset(skb);
a030847e
HX
3223 BUG_ON(offset >= skb_headlen(skb));
3224 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3225
3226 offset += skb->csum_offset;
3227 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3228
8211fbfa
HK
3229 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3230 if (ret)
3231 goto out;
1da177e4 3232
4f2e4ad5 3233 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3234out_set_summed:
1da177e4 3235 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3236out:
1da177e4
LT
3237 return ret;
3238}
d1b19dff 3239EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3240
b72b5bf6
DC
3241int skb_crc32c_csum_help(struct sk_buff *skb)
3242{
3243 __le32 crc32c_csum;
3244 int ret = 0, offset, start;
3245
3246 if (skb->ip_summed != CHECKSUM_PARTIAL)
3247 goto out;
3248
3249 if (unlikely(skb_is_gso(skb)))
3250 goto out;
3251
3252 /* Before computing a checksum, we should make sure no frag could
3253 * be modified by an external entity : checksum could be wrong.
3254 */
3255 if (unlikely(skb_has_shared_frag(skb))) {
3256 ret = __skb_linearize(skb);
3257 if (ret)
3258 goto out;
3259 }
3260 start = skb_checksum_start_offset(skb);
3261 offset = start + offsetof(struct sctphdr, checksum);
3262 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3263 ret = -EINVAL;
3264 goto out;
3265 }
8211fbfa
HK
3266
3267 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3268 if (ret)
3269 goto out;
3270
b72b5bf6
DC
3271 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3272 skb->len - start, ~(__u32)0,
3273 crc32c_csum_stub));
3274 *(__le32 *)(skb->data + offset) = crc32c_csum;
3275 skb->ip_summed = CHECKSUM_NONE;
dba00306 3276 skb->csum_not_inet = 0;
b72b5bf6
DC
3277out:
3278 return ret;
3279}
3280
53d6471c 3281__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3282{
252e3346 3283 __be16 type = skb->protocol;
f6a78bfc 3284
19acc327
PS
3285 /* Tunnel gso handlers can set protocol to ethernet. */
3286 if (type == htons(ETH_P_TEB)) {
3287 struct ethhdr *eth;
3288
3289 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3290 return 0;
3291
1dfe82eb 3292 eth = (struct ethhdr *)skb->data;
19acc327
PS
3293 type = eth->h_proto;
3294 }
3295
d4bcef3f 3296 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3297}
3298
3299/**
3300 * skb_mac_gso_segment - mac layer segmentation handler.
3301 * @skb: buffer to segment
3302 * @features: features for the output path (see dev->features)
3303 */
3304struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3305 netdev_features_t features)
3306{
3307 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3308 struct packet_offload *ptype;
53d6471c
VY
3309 int vlan_depth = skb->mac_len;
3310 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3311
3312 if (unlikely(!type))
3313 return ERR_PTR(-EINVAL);
3314
53d6471c 3315 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3316
3317 rcu_read_lock();
22061d80 3318 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3319 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3320 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3321 break;
3322 }
3323 }
3324 rcu_read_unlock();
3325
98e399f8 3326 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3327
f6a78bfc
HX
3328 return segs;
3329}
05e8ef4a
PS
3330EXPORT_SYMBOL(skb_mac_gso_segment);
3331
3332
3333/* openvswitch calls this on rx path, so we need a different check.
3334 */
3335static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3336{
3337 if (tx_path)
0c19f846
WB
3338 return skb->ip_summed != CHECKSUM_PARTIAL &&
3339 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3340
3341 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3342}
3343
3344/**
3345 * __skb_gso_segment - Perform segmentation on skb.
3346 * @skb: buffer to segment
3347 * @features: features for the output path (see dev->features)
3348 * @tx_path: whether it is called in TX path
3349 *
3350 * This function segments the given skb and returns a list of segments.
3351 *
3352 * It may return NULL if the skb requires no segmentation. This is
3353 * only possible when GSO is used for verifying header integrity.
9207f9d4 3354 *
a08e7fd9 3355 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3356 */
3357struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3358 netdev_features_t features, bool tx_path)
3359{
b2504a5d
ED
3360 struct sk_buff *segs;
3361
05e8ef4a
PS
3362 if (unlikely(skb_needs_check(skb, tx_path))) {
3363 int err;
3364
b2504a5d 3365 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3366 err = skb_cow_head(skb, 0);
3367 if (err < 0)
05e8ef4a
PS
3368 return ERR_PTR(err);
3369 }
3370
802ab55a
AD
3371 /* Only report GSO partial support if it will enable us to
3372 * support segmentation on this frame without needing additional
3373 * work.
3374 */
3375 if (features & NETIF_F_GSO_PARTIAL) {
3376 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3377 struct net_device *dev = skb->dev;
3378
3379 partial_features |= dev->features & dev->gso_partial_features;
3380 if (!skb_gso_ok(skb, features | partial_features))
3381 features &= ~NETIF_F_GSO_PARTIAL;
3382 }
3383
a08e7fd9 3384 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
9207f9d4
KK
3385 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3386
68c33163 3387 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3388 SKB_GSO_CB(skb)->encap_level = 0;
3389
05e8ef4a
PS
3390 skb_reset_mac_header(skb);
3391 skb_reset_mac_len(skb);
3392
b2504a5d
ED
3393 segs = skb_mac_gso_segment(skb, features);
3394
3a1296a3 3395 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3396 skb_warn_bad_offload(skb);
3397
3398 return segs;
05e8ef4a 3399}
12b0004d 3400EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3401
fb286bb2
HX
3402/* Take action when hardware reception checksum errors are detected. */
3403#ifdef CONFIG_BUG
7fe50ac8 3404void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3405{
3406 if (net_ratelimit()) {
7b6cd1ce 3407 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
6413139d 3408 skb_dump(KERN_ERR, skb, true);
fb286bb2
HX
3409 dump_stack();
3410 }
3411}
3412EXPORT_SYMBOL(netdev_rx_csum_fault);
3413#endif
3414
ab74cfeb 3415/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3416static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3417{
3d3a8533 3418#ifdef CONFIG_HIGHMEM
1da177e4 3419 int i;
f4563a75 3420
5acbbd42 3421 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3422 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3423 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3424
ea2ab693 3425 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3426 return 1;
ea2ab693 3427 }
5acbbd42 3428 }
3d3a8533 3429#endif
1da177e4
LT
3430 return 0;
3431}
1da177e4 3432
3b392ddb
SH
3433/* If MPLS offload request, verify we are testing hardware MPLS features
3434 * instead of standard features for the netdev.
3435 */
d0edc7bf 3436#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3437static netdev_features_t net_mpls_features(struct sk_buff *skb,
3438 netdev_features_t features,
3439 __be16 type)
3440{
25cd9ba0 3441 if (eth_p_mpls(type))
3b392ddb
SH
3442 features &= skb->dev->mpls_features;
3443
3444 return features;
3445}
3446#else
3447static netdev_features_t net_mpls_features(struct sk_buff *skb,
3448 netdev_features_t features,
3449 __be16 type)
3450{
3451 return features;
3452}
3453#endif
3454
c8f44aff 3455static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3456 netdev_features_t features)
f01a5236 3457{
3b392ddb
SH
3458 __be16 type;
3459
9fc95f50 3460 type = skb_network_protocol(skb, NULL);
3b392ddb 3461 features = net_mpls_features(skb, features, type);
53d6471c 3462
c0d680e5 3463 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3464 !can_checksum_protocol(features, type)) {
996e8021 3465 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3466 }
7be2c82c
ED
3467 if (illegal_highdma(skb->dev, skb))
3468 features &= ~NETIF_F_SG;
f01a5236
JG
3469
3470 return features;
3471}
3472
e38f3025
TM
3473netdev_features_t passthru_features_check(struct sk_buff *skb,
3474 struct net_device *dev,
3475 netdev_features_t features)
3476{
3477 return features;
3478}
3479EXPORT_SYMBOL(passthru_features_check);
3480
7ce23672 3481static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3482 struct net_device *dev,
3483 netdev_features_t features)
3484{
3485 return vlan_features_check(skb, features);
3486}
3487
cbc53e08
AD
3488static netdev_features_t gso_features_check(const struct sk_buff *skb,
3489 struct net_device *dev,
3490 netdev_features_t features)
3491{
3492 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3493
3494 if (gso_segs > dev->gso_max_segs)
3495 return features & ~NETIF_F_GSO_MASK;
3496
802ab55a
AD
3497 /* Support for GSO partial features requires software
3498 * intervention before we can actually process the packets
3499 * so we need to strip support for any partial features now
3500 * and we can pull them back in after we have partially
3501 * segmented the frame.
3502 */
3503 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3504 features &= ~dev->gso_partial_features;
3505
3506 /* Make sure to clear the IPv4 ID mangling feature if the
3507 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3508 */
3509 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3510 struct iphdr *iph = skb->encapsulation ?
3511 inner_ip_hdr(skb) : ip_hdr(skb);
3512
3513 if (!(iph->frag_off & htons(IP_DF)))
3514 features &= ~NETIF_F_TSO_MANGLEID;
3515 }
3516
3517 return features;
3518}
3519
c1e756bf 3520netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3521{
5f35227e 3522 struct net_device *dev = skb->dev;
fcbeb976 3523 netdev_features_t features = dev->features;
58e998c6 3524
cbc53e08
AD
3525 if (skb_is_gso(skb))
3526 features = gso_features_check(skb, dev, features);
30b678d8 3527
5f35227e
JG
3528 /* If encapsulation offload request, verify we are testing
3529 * hardware encapsulation features instead of standard
3530 * features for the netdev
3531 */
3532 if (skb->encapsulation)
3533 features &= dev->hw_enc_features;
3534
f5a7fb88
TM
3535 if (skb_vlan_tagged(skb))
3536 features = netdev_intersect_features(features,
3537 dev->vlan_features |
3538 NETIF_F_HW_VLAN_CTAG_TX |
3539 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3540
5f35227e
JG
3541 if (dev->netdev_ops->ndo_features_check)
3542 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3543 features);
8cb65d00
TM
3544 else
3545 features &= dflt_features_check(skb, dev, features);
5f35227e 3546
c1e756bf 3547 return harmonize_features(skb, features);
58e998c6 3548}
c1e756bf 3549EXPORT_SYMBOL(netif_skb_features);
58e998c6 3550
2ea25513 3551static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3552 struct netdev_queue *txq, bool more)
f6a78bfc 3553{
2ea25513
DM
3554 unsigned int len;
3555 int rc;
00829823 3556
9f9a742d 3557 if (dev_nit_active(dev))
2ea25513 3558 dev_queue_xmit_nit(skb, dev);
fc741216 3559
2ea25513
DM
3560 len = skb->len;
3561 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3562 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3563 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3564
2ea25513
DM
3565 return rc;
3566}
7b9c6090 3567
8dcda22a
DM
3568struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3569 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3570{
3571 struct sk_buff *skb = first;
3572 int rc = NETDEV_TX_OK;
7b9c6090 3573
7f2e870f
DM
3574 while (skb) {
3575 struct sk_buff *next = skb->next;
fc70fb64 3576
a8305bff 3577 skb_mark_not_on_list(skb);
95f6b3dd 3578 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3579 if (unlikely(!dev_xmit_complete(rc))) {
3580 skb->next = next;
3581 goto out;
3582 }
6afff0ca 3583
7f2e870f 3584 skb = next;
fe60faa5 3585 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3586 rc = NETDEV_TX_BUSY;
3587 break;
9ccb8975 3588 }
7f2e870f 3589 }
9ccb8975 3590
7f2e870f
DM
3591out:
3592 *ret = rc;
3593 return skb;
3594}
b40863c6 3595
1ff0dc94
ED
3596static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3597 netdev_features_t features)
f6a78bfc 3598{
df8a39de 3599 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3600 !vlan_hw_offload_capable(features, skb->vlan_proto))
3601 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3602 return skb;
3603}
f6a78bfc 3604
43c26a1a
DC
3605int skb_csum_hwoffload_help(struct sk_buff *skb,
3606 const netdev_features_t features)
3607{
3608 if (unlikely(skb->csum_not_inet))
3609 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3610 skb_crc32c_csum_help(skb);
3611
3612 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3613}
3614EXPORT_SYMBOL(skb_csum_hwoffload_help);
3615
f53c7239 3616static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3617{
3618 netdev_features_t features;
f6a78bfc 3619
eae3f88e
DM
3620 features = netif_skb_features(skb);
3621 skb = validate_xmit_vlan(skb, features);
3622 if (unlikely(!skb))
3623 goto out_null;
7b9c6090 3624
ebf4e808
IL
3625 skb = sk_validate_xmit_skb(skb, dev);
3626 if (unlikely(!skb))
3627 goto out_null;
3628
8b86a61d 3629 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3630 struct sk_buff *segs;
3631
3632 segs = skb_gso_segment(skb, features);
cecda693 3633 if (IS_ERR(segs)) {
af6dabc9 3634 goto out_kfree_skb;
cecda693
JW
3635 } else if (segs) {
3636 consume_skb(skb);
3637 skb = segs;
f6a78bfc 3638 }
eae3f88e
DM
3639 } else {
3640 if (skb_needs_linearize(skb, features) &&
3641 __skb_linearize(skb))
3642 goto out_kfree_skb;
4ec93edb 3643
eae3f88e
DM
3644 /* If packet is not checksummed and device does not
3645 * support checksumming for this protocol, complete
3646 * checksumming here.
3647 */
3648 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3649 if (skb->encapsulation)
3650 skb_set_inner_transport_header(skb,
3651 skb_checksum_start_offset(skb));
3652 else
3653 skb_set_transport_header(skb,
3654 skb_checksum_start_offset(skb));
43c26a1a 3655 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3656 goto out_kfree_skb;
7b9c6090 3657 }
0c772159 3658 }
7b9c6090 3659
f53c7239 3660 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3661
eae3f88e 3662 return skb;
fc70fb64 3663
f6a78bfc
HX
3664out_kfree_skb:
3665 kfree_skb(skb);
eae3f88e 3666out_null:
d21fd63e 3667 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3668 return NULL;
3669}
6afff0ca 3670
f53c7239 3671struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3672{
3673 struct sk_buff *next, *head = NULL, *tail;
3674
bec3cfdc 3675 for (; skb != NULL; skb = next) {
55a93b3e 3676 next = skb->next;
a8305bff 3677 skb_mark_not_on_list(skb);
bec3cfdc
ED
3678
3679 /* in case skb wont be segmented, point to itself */
3680 skb->prev = skb;
3681
f53c7239 3682 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3683 if (!skb)
3684 continue;
55a93b3e 3685
bec3cfdc
ED
3686 if (!head)
3687 head = skb;
3688 else
3689 tail->next = skb;
3690 /* If skb was segmented, skb->prev points to
3691 * the last segment. If not, it still contains skb.
3692 */
3693 tail = skb->prev;
55a93b3e
ED
3694 }
3695 return head;
f6a78bfc 3696}
104ba78c 3697EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3698
1def9238
ED
3699static void qdisc_pkt_len_init(struct sk_buff *skb)
3700{
3701 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3702
3703 qdisc_skb_cb(skb)->pkt_len = skb->len;
3704
3705 /* To get more precise estimation of bytes sent on wire,
3706 * we add to pkt_len the headers size of all segments
3707 */
a0dce875 3708 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3709 unsigned int hdr_len;
15e5a030 3710 u16 gso_segs = shinfo->gso_segs;
1def9238 3711
757b8b1d
ED
3712 /* mac layer + network layer */
3713 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3714
3715 /* + transport layer */
7c68d1a6
ED
3716 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3717 const struct tcphdr *th;
3718 struct tcphdr _tcphdr;
3719
3720 th = skb_header_pointer(skb, skb_transport_offset(skb),
3721 sizeof(_tcphdr), &_tcphdr);
3722 if (likely(th))
3723 hdr_len += __tcp_hdrlen(th);
3724 } else {
3725 struct udphdr _udphdr;
3726
3727 if (skb_header_pointer(skb, skb_transport_offset(skb),
3728 sizeof(_udphdr), &_udphdr))
3729 hdr_len += sizeof(struct udphdr);
3730 }
15e5a030
JW
3731
3732 if (shinfo->gso_type & SKB_GSO_DODGY)
3733 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3734 shinfo->gso_size);
3735
3736 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3737 }
3738}
3739
bbd8a0d3
KK
3740static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3741 struct net_device *dev,
3742 struct netdev_queue *txq)
3743{
3744 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3745 struct sk_buff *to_free = NULL;
a2da570d 3746 bool contended;
bbd8a0d3
KK
3747 int rc;
3748
a2da570d 3749 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3750
3751 if (q->flags & TCQ_F_NOLOCK) {
ac5c66f2 3752 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
379349e9 3753 qdisc_run(q);
6b3ba914
JF
3754
3755 if (unlikely(to_free))
3756 kfree_skb_list(to_free);
3757 return rc;
3758 }
3759
79640a4c
ED
3760 /*
3761 * Heuristic to force contended enqueues to serialize on a
3762 * separate lock before trying to get qdisc main lock.
f9eb8aea 3763 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3764 * often and dequeue packets faster.
79640a4c 3765 */
a2da570d 3766 contended = qdisc_is_running(q);
79640a4c
ED
3767 if (unlikely(contended))
3768 spin_lock(&q->busylock);
3769
bbd8a0d3
KK
3770 spin_lock(root_lock);
3771 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3772 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3773 rc = NET_XMIT_DROP;
3774 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3775 qdisc_run_begin(q)) {
bbd8a0d3
KK
3776 /*
3777 * This is a work-conserving queue; there are no old skbs
3778 * waiting to be sent out; and the qdisc is not running -
3779 * xmit the skb directly.
3780 */
bfe0d029 3781
bfe0d029
ED
3782 qdisc_bstats_update(q, skb);
3783
55a93b3e 3784 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3785 if (unlikely(contended)) {
3786 spin_unlock(&q->busylock);
3787 contended = false;
3788 }
bbd8a0d3 3789 __qdisc_run(q);
6c148184 3790 }
bbd8a0d3 3791
6c148184 3792 qdisc_run_end(q);
bbd8a0d3
KK
3793 rc = NET_XMIT_SUCCESS;
3794 } else {
ac5c66f2 3795 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3796 if (qdisc_run_begin(q)) {
3797 if (unlikely(contended)) {
3798 spin_unlock(&q->busylock);
3799 contended = false;
3800 }
3801 __qdisc_run(q);
6c148184 3802 qdisc_run_end(q);
79640a4c 3803 }
bbd8a0d3
KK
3804 }
3805 spin_unlock(root_lock);
520ac30f
ED
3806 if (unlikely(to_free))
3807 kfree_skb_list(to_free);
79640a4c
ED
3808 if (unlikely(contended))
3809 spin_unlock(&q->busylock);
bbd8a0d3
KK
3810 return rc;
3811}
3812
86f8515f 3813#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3814static void skb_update_prio(struct sk_buff *skb)
3815{
4dcb31d4
ED
3816 const struct netprio_map *map;
3817 const struct sock *sk;
3818 unsigned int prioidx;
5bc1421e 3819
4dcb31d4
ED
3820 if (skb->priority)
3821 return;
3822 map = rcu_dereference_bh(skb->dev->priomap);
3823 if (!map)
3824 return;
3825 sk = skb_to_full_sk(skb);
3826 if (!sk)
3827 return;
91c68ce2 3828
4dcb31d4
ED
3829 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3830
3831 if (prioidx < map->priomap_len)
3832 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3833}
3834#else
3835#define skb_update_prio(skb)
3836#endif
3837
95603e22
MM
3838/**
3839 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3840 * @net: network namespace this loopback is happening in
3841 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3842 * @skb: buffer to transmit
3843 */
0c4b51f0 3844int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3845{
3846 skb_reset_mac_header(skb);
3847 __skb_pull(skb, skb_network_offset(skb));
3848 skb->pkt_type = PACKET_LOOPBACK;
3849 skb->ip_summed = CHECKSUM_UNNECESSARY;
3850 WARN_ON(!skb_dst(skb));
3851 skb_dst_force(skb);
3852 netif_rx_ni(skb);
3853 return 0;
3854}
3855EXPORT_SYMBOL(dev_loopback_xmit);
3856
1f211a1b
DB
3857#ifdef CONFIG_NET_EGRESS
3858static struct sk_buff *
3859sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3860{
46209401 3861 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3862 struct tcf_result cl_res;
3863
46209401 3864 if (!miniq)
1f211a1b
DB
3865 return skb;
3866
8dc07fdb 3867 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3868 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3869
46209401 3870 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3871 case TC_ACT_OK:
3872 case TC_ACT_RECLASSIFY:
3873 skb->tc_index = TC_H_MIN(cl_res.classid);
3874 break;
3875 case TC_ACT_SHOT:
46209401 3876 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3877 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3878 kfree_skb(skb);
3879 return NULL;
1f211a1b
DB
3880 case TC_ACT_STOLEN:
3881 case TC_ACT_QUEUED:
e25ea21f 3882 case TC_ACT_TRAP:
1f211a1b 3883 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3884 consume_skb(skb);
1f211a1b
DB
3885 return NULL;
3886 case TC_ACT_REDIRECT:
3887 /* No need to push/pop skb's mac_header here on egress! */
3888 skb_do_redirect(skb);
3889 *ret = NET_XMIT_SUCCESS;
3890 return NULL;
3891 default:
3892 break;
3893 }
357b6cc5 3894
1f211a1b
DB
3895 return skb;
3896}
3897#endif /* CONFIG_NET_EGRESS */
3898
fc9bab24
AN
3899#ifdef CONFIG_XPS
3900static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3901 struct xps_dev_maps *dev_maps, unsigned int tci)
3902{
3903 struct xps_map *map;
3904 int queue_index = -1;
3905
3906 if (dev->num_tc) {
3907 tci *= dev->num_tc;
3908 tci += netdev_get_prio_tc_map(dev, skb->priority);
3909 }
3910
3911 map = rcu_dereference(dev_maps->attr_map[tci]);
3912 if (map) {
3913 if (map->len == 1)
3914 queue_index = map->queues[0];
3915 else
3916 queue_index = map->queues[reciprocal_scale(
3917 skb_get_hash(skb), map->len)];
3918 if (unlikely(queue_index >= dev->real_num_tx_queues))
3919 queue_index = -1;
3920 }
3921 return queue_index;
3922}
3923#endif
3924
eadec877
AD
3925static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3926 struct sk_buff *skb)
638b2a69
JP
3927{
3928#ifdef CONFIG_XPS
3929 struct xps_dev_maps *dev_maps;
fc9bab24 3930 struct sock *sk = skb->sk;
638b2a69
JP
3931 int queue_index = -1;
3932
04157469
AN
3933 if (!static_key_false(&xps_needed))
3934 return -1;
3935
638b2a69 3936 rcu_read_lock();
fc9bab24
AN
3937 if (!static_key_false(&xps_rxqs_needed))
3938 goto get_cpus_map;
3939
eadec877 3940 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3941 if (dev_maps) {
fc9bab24 3942 int tci = sk_rx_queue_get(sk);
184c449f 3943
fc9bab24
AN
3944 if (tci >= 0 && tci < dev->num_rx_queues)
3945 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3946 tci);
3947 }
184c449f 3948
fc9bab24
AN
3949get_cpus_map:
3950 if (queue_index < 0) {
eadec877 3951 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3952 if (dev_maps) {
3953 unsigned int tci = skb->sender_cpu - 1;
3954
3955 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3956 tci);
638b2a69
JP
3957 }
3958 }
3959 rcu_read_unlock();
3960
3961 return queue_index;
3962#else
3963 return -1;
3964#endif
3965}
3966
a4ea8a3d 3967u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3968 struct net_device *sb_dev)
a4ea8a3d
AD
3969{
3970 return 0;
3971}
3972EXPORT_SYMBOL(dev_pick_tx_zero);
3973
3974u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 3975 struct net_device *sb_dev)
a4ea8a3d
AD
3976{
3977 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3978}
3979EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3980
b71b5837
PA
3981u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3982 struct net_device *sb_dev)
638b2a69
JP
3983{
3984 struct sock *sk = skb->sk;
3985 int queue_index = sk_tx_queue_get(sk);
3986
eadec877
AD
3987 sb_dev = sb_dev ? : dev;
3988
638b2a69
JP
3989 if (queue_index < 0 || skb->ooo_okay ||
3990 queue_index >= dev->real_num_tx_queues) {
eadec877 3991 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 3992
638b2a69 3993 if (new_index < 0)
eadec877 3994 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
3995
3996 if (queue_index != new_index && sk &&
004a5d01 3997 sk_fullsock(sk) &&
638b2a69
JP
3998 rcu_access_pointer(sk->sk_dst_cache))
3999 sk_tx_queue_set(sk, new_index);
4000
4001 queue_index = new_index;
4002 }
4003
4004 return queue_index;
4005}
b71b5837 4006EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 4007
4bd97d51
PA
4008struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4009 struct sk_buff *skb,
4010 struct net_device *sb_dev)
638b2a69
JP
4011{
4012 int queue_index = 0;
4013
4014#ifdef CONFIG_XPS
52bd2d62
ED
4015 u32 sender_cpu = skb->sender_cpu - 1;
4016
4017 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
4018 skb->sender_cpu = raw_smp_processor_id() + 1;
4019#endif
4020
4021 if (dev->real_num_tx_queues != 1) {
4022 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 4023
638b2a69 4024 if (ops->ndo_select_queue)
a350ecce 4025 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 4026 else
4bd97d51 4027 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 4028
d584527c 4029 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
4030 }
4031
4032 skb_set_queue_mapping(skb, queue_index);
4033 return netdev_get_tx_queue(dev, queue_index);
4034}
4035
d29f749e 4036/**
9d08dd3d 4037 * __dev_queue_xmit - transmit a buffer
d29f749e 4038 * @skb: buffer to transmit
eadec877 4039 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
4040 *
4041 * Queue a buffer for transmission to a network device. The caller must
4042 * have set the device and priority and built the buffer before calling
4043 * this function. The function can be called from an interrupt.
4044 *
4045 * A negative errno code is returned on a failure. A success does not
4046 * guarantee the frame will be transmitted as it may be dropped due
4047 * to congestion or traffic shaping.
4048 *
4049 * -----------------------------------------------------------------------------------
4050 * I notice this method can also return errors from the queue disciplines,
4051 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4052 * be positive.
4053 *
4054 * Regardless of the return value, the skb is consumed, so it is currently
4055 * difficult to retry a send to this method. (You can bump the ref count
4056 * before sending to hold a reference for retry if you are careful.)
4057 *
4058 * When calling this method, interrupts MUST be enabled. This is because
4059 * the BH enable code must have IRQs enabled so that it will not deadlock.
4060 * --BLG
4061 */
eadec877 4062static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
4063{
4064 struct net_device *dev = skb->dev;
dc2b4847 4065 struct netdev_queue *txq;
1da177e4
LT
4066 struct Qdisc *q;
4067 int rc = -ENOMEM;
f53c7239 4068 bool again = false;
1da177e4 4069
6d1ccff6
ED
4070 skb_reset_mac_header(skb);
4071
e7fd2885
WB
4072 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4073 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4074
4ec93edb
YH
4075 /* Disable soft irqs for various locks below. Also
4076 * stops preemption for RCU.
1da177e4 4077 */
4ec93edb 4078 rcu_read_lock_bh();
1da177e4 4079
5bc1421e
NH
4080 skb_update_prio(skb);
4081
1f211a1b
DB
4082 qdisc_pkt_len_init(skb);
4083#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 4084 skb->tc_at_ingress = 0;
357b6cc5 4085# ifdef CONFIG_NET_EGRESS
aabf6772 4086 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
4087 skb = sch_handle_egress(skb, &rc, dev);
4088 if (!skb)
4089 goto out;
4090 }
357b6cc5 4091# endif
1f211a1b 4092#endif
02875878
ED
4093 /* If device/qdisc don't need skb->dst, release it right now while
4094 * its hot in this cpu cache.
4095 */
4096 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4097 skb_dst_drop(skb);
4098 else
4099 skb_dst_force(skb);
4100
4bd97d51 4101 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4102 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4103
cf66ba58 4104 trace_net_dev_queue(skb);
1da177e4 4105 if (q->enqueue) {
bbd8a0d3 4106 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4107 goto out;
1da177e4
LT
4108 }
4109
4110 /* The device has no queue. Common case for software devices:
eb13da1a 4111 * loopback, all the sorts of tunnels...
1da177e4 4112
eb13da1a 4113 * Really, it is unlikely that netif_tx_lock protection is necessary
4114 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4115 * counters.)
4116 * However, it is possible, that they rely on protection
4117 * made by us here.
1da177e4 4118
eb13da1a 4119 * Check this and shot the lock. It is not prone from deadlocks.
4120 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4121 */
4122 if (dev->flags & IFF_UP) {
4123 int cpu = smp_processor_id(); /* ok because BHs are off */
4124
c773e847 4125 if (txq->xmit_lock_owner != cpu) {
97cdcf37 4126 if (dev_xmit_recursion())
745e20f1
ED
4127 goto recursion_alert;
4128
f53c7239 4129 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4130 if (!skb)
d21fd63e 4131 goto out;
1f59533f 4132
c773e847 4133 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4134
73466498 4135 if (!netif_xmit_stopped(txq)) {
97cdcf37 4136 dev_xmit_recursion_inc();
ce93718f 4137 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4138 dev_xmit_recursion_dec();
572a9d7b 4139 if (dev_xmit_complete(rc)) {
c773e847 4140 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4141 goto out;
4142 }
4143 }
c773e847 4144 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4145 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4146 dev->name);
1da177e4
LT
4147 } else {
4148 /* Recursion is detected! It is possible,
745e20f1
ED
4149 * unfortunately
4150 */
4151recursion_alert:
e87cc472
JP
4152 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4153 dev->name);
1da177e4
LT
4154 }
4155 }
4156
4157 rc = -ENETDOWN;
d4828d85 4158 rcu_read_unlock_bh();
1da177e4 4159
015f0688 4160 atomic_long_inc(&dev->tx_dropped);
1f59533f 4161 kfree_skb_list(skb);
1da177e4
LT
4162 return rc;
4163out:
d4828d85 4164 rcu_read_unlock_bh();
1da177e4
LT
4165 return rc;
4166}
f663dd9a 4167
2b4aa3ce 4168int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4169{
4170 return __dev_queue_xmit(skb, NULL);
4171}
2b4aa3ce 4172EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4173
eadec877 4174int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4175{
eadec877 4176 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4177}
4178EXPORT_SYMBOL(dev_queue_xmit_accel);
4179
865b03f2
MK
4180int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4181{
4182 struct net_device *dev = skb->dev;
4183 struct sk_buff *orig_skb = skb;
4184 struct netdev_queue *txq;
4185 int ret = NETDEV_TX_BUSY;
4186 bool again = false;
4187
4188 if (unlikely(!netif_running(dev) ||
4189 !netif_carrier_ok(dev)))
4190 goto drop;
4191
4192 skb = validate_xmit_skb_list(skb, dev, &again);
4193 if (skb != orig_skb)
4194 goto drop;
4195
4196 skb_set_queue_mapping(skb, queue_id);
4197 txq = skb_get_tx_queue(dev, skb);
4198
4199 local_bh_disable();
4200
0ad6f6e7 4201 dev_xmit_recursion_inc();
865b03f2
MK
4202 HARD_TX_LOCK(dev, txq, smp_processor_id());
4203 if (!netif_xmit_frozen_or_drv_stopped(txq))
4204 ret = netdev_start_xmit(skb, dev, txq, false);
4205 HARD_TX_UNLOCK(dev, txq);
0ad6f6e7 4206 dev_xmit_recursion_dec();
865b03f2
MK
4207
4208 local_bh_enable();
4209
4210 if (!dev_xmit_complete(ret))
4211 kfree_skb(skb);
4212
4213 return ret;
4214drop:
4215 atomic_long_inc(&dev->tx_dropped);
4216 kfree_skb_list(skb);
4217 return NET_XMIT_DROP;
4218}
4219EXPORT_SYMBOL(dev_direct_xmit);
1da177e4 4220
eb13da1a 4221/*************************************************************************
4222 * Receiver routines
4223 *************************************************************************/
1da177e4 4224
6b2bedc3 4225int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4226EXPORT_SYMBOL(netdev_max_backlog);
4227
3b098e2d 4228int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4229int netdev_budget __read_mostly = 300;
a4837980
KK
4230/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4231unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3d48b53f
MT
4232int weight_p __read_mostly = 64; /* old backlog weight */
4233int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4234int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4235int dev_rx_weight __read_mostly = 64;
4236int dev_tx_weight __read_mostly = 64;
323ebb61
EC
4237/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4238int gro_normal_batch __read_mostly = 8;
1da177e4 4239
eecfd7c4
ED
4240/* Called with irq disabled */
4241static inline void ____napi_schedule(struct softnet_data *sd,
4242 struct napi_struct *napi)
4243{
4244 list_add_tail(&napi->poll_list, &sd->poll_list);
4245 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4246}
4247
bfb564e7
KK
4248#ifdef CONFIG_RPS
4249
4250/* One global table that all flow-based protocols share. */
6e3f7faf 4251struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4252EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4253u32 rps_cpu_mask __read_mostly;
4254EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4255
dc05360f 4256struct static_key_false rps_needed __read_mostly;
3df97ba8 4257EXPORT_SYMBOL(rps_needed);
dc05360f 4258struct static_key_false rfs_needed __read_mostly;
13bfff25 4259EXPORT_SYMBOL(rfs_needed);
adc9300e 4260
c445477d
BH
4261static struct rps_dev_flow *
4262set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4263 struct rps_dev_flow *rflow, u16 next_cpu)
4264{
a31196b0 4265 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4266#ifdef CONFIG_RFS_ACCEL
4267 struct netdev_rx_queue *rxqueue;
4268 struct rps_dev_flow_table *flow_table;
4269 struct rps_dev_flow *old_rflow;
4270 u32 flow_id;
4271 u16 rxq_index;
4272 int rc;
4273
4274 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4275 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4276 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4277 goto out;
4278 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4279 if (rxq_index == skb_get_rx_queue(skb))
4280 goto out;
4281
4282 rxqueue = dev->_rx + rxq_index;
4283 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4284 if (!flow_table)
4285 goto out;
61b905da 4286 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4287 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4288 rxq_index, flow_id);
4289 if (rc < 0)
4290 goto out;
4291 old_rflow = rflow;
4292 rflow = &flow_table->flows[flow_id];
c445477d
BH
4293 rflow->filter = rc;
4294 if (old_rflow->filter == rflow->filter)
4295 old_rflow->filter = RPS_NO_FILTER;
4296 out:
4297#endif
4298 rflow->last_qtail =
09994d1b 4299 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4300 }
4301
09994d1b 4302 rflow->cpu = next_cpu;
c445477d
BH
4303 return rflow;
4304}
4305
bfb564e7
KK
4306/*
4307 * get_rps_cpu is called from netif_receive_skb and returns the target
4308 * CPU from the RPS map of the receiving queue for a given skb.
4309 * rcu_read_lock must be held on entry.
4310 */
4311static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4312 struct rps_dev_flow **rflowp)
4313{
567e4b79
ED
4314 const struct rps_sock_flow_table *sock_flow_table;
4315 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4316 struct rps_dev_flow_table *flow_table;
567e4b79 4317 struct rps_map *map;
bfb564e7 4318 int cpu = -1;
567e4b79 4319 u32 tcpu;
61b905da 4320 u32 hash;
bfb564e7
KK
4321
4322 if (skb_rx_queue_recorded(skb)) {
4323 u16 index = skb_get_rx_queue(skb);
567e4b79 4324
62fe0b40
BH
4325 if (unlikely(index >= dev->real_num_rx_queues)) {
4326 WARN_ONCE(dev->real_num_rx_queues > 1,
4327 "%s received packet on queue %u, but number "
4328 "of RX queues is %u\n",
4329 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4330 goto done;
4331 }
567e4b79
ED
4332 rxqueue += index;
4333 }
bfb564e7 4334
567e4b79
ED
4335 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4336
4337 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4338 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4339 if (!flow_table && !map)
bfb564e7
KK
4340 goto done;
4341
2d47b459 4342 skb_reset_network_header(skb);
61b905da
TH
4343 hash = skb_get_hash(skb);
4344 if (!hash)
bfb564e7
KK
4345 goto done;
4346
fec5e652
TH
4347 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4348 if (flow_table && sock_flow_table) {
fec5e652 4349 struct rps_dev_flow *rflow;
567e4b79
ED
4350 u32 next_cpu;
4351 u32 ident;
4352
4353 /* First check into global flow table if there is a match */
4354 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4355 if ((ident ^ hash) & ~rps_cpu_mask)
4356 goto try_rps;
fec5e652 4357
567e4b79
ED
4358 next_cpu = ident & rps_cpu_mask;
4359
4360 /* OK, now we know there is a match,
4361 * we can look at the local (per receive queue) flow table
4362 */
61b905da 4363 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4364 tcpu = rflow->cpu;
4365
fec5e652
TH
4366 /*
4367 * If the desired CPU (where last recvmsg was done) is
4368 * different from current CPU (one in the rx-queue flow
4369 * table entry), switch if one of the following holds:
a31196b0 4370 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4371 * - Current CPU is offline.
4372 * - The current CPU's queue tail has advanced beyond the
4373 * last packet that was enqueued using this table entry.
4374 * This guarantees that all previous packets for the flow
4375 * have been dequeued, thus preserving in order delivery.
4376 */
4377 if (unlikely(tcpu != next_cpu) &&
a31196b0 4378 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4379 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4380 rflow->last_qtail)) >= 0)) {
4381 tcpu = next_cpu;
c445477d 4382 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4383 }
c445477d 4384
a31196b0 4385 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4386 *rflowp = rflow;
4387 cpu = tcpu;
4388 goto done;
4389 }
4390 }
4391
567e4b79
ED
4392try_rps:
4393
0a9627f2 4394 if (map) {
8fc54f68 4395 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4396 if (cpu_online(tcpu)) {
4397 cpu = tcpu;
4398 goto done;
4399 }
4400 }
4401
4402done:
0a9627f2
TH
4403 return cpu;
4404}
4405
c445477d
BH
4406#ifdef CONFIG_RFS_ACCEL
4407
4408/**
4409 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4410 * @dev: Device on which the filter was set
4411 * @rxq_index: RX queue index
4412 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4413 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4414 *
4415 * Drivers that implement ndo_rx_flow_steer() should periodically call
4416 * this function for each installed filter and remove the filters for
4417 * which it returns %true.
4418 */
4419bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4420 u32 flow_id, u16 filter_id)
4421{
4422 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4423 struct rps_dev_flow_table *flow_table;
4424 struct rps_dev_flow *rflow;
4425 bool expire = true;
a31196b0 4426 unsigned int cpu;
c445477d
BH
4427
4428 rcu_read_lock();
4429 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4430 if (flow_table && flow_id <= flow_table->mask) {
4431 rflow = &flow_table->flows[flow_id];
6aa7de05 4432 cpu = READ_ONCE(rflow->cpu);
a31196b0 4433 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4434 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4435 rflow->last_qtail) <
4436 (int)(10 * flow_table->mask)))
4437 expire = false;
4438 }
4439 rcu_read_unlock();
4440 return expire;
4441}
4442EXPORT_SYMBOL(rps_may_expire_flow);
4443
4444#endif /* CONFIG_RFS_ACCEL */
4445
0a9627f2 4446/* Called from hardirq (IPI) context */
e36fa2f7 4447static void rps_trigger_softirq(void *data)
0a9627f2 4448{
e36fa2f7
ED
4449 struct softnet_data *sd = data;
4450
eecfd7c4 4451 ____napi_schedule(sd, &sd->backlog);
dee42870 4452 sd->received_rps++;
0a9627f2 4453}
e36fa2f7 4454
fec5e652 4455#endif /* CONFIG_RPS */
0a9627f2 4456
e36fa2f7
ED
4457/*
4458 * Check if this softnet_data structure is another cpu one
4459 * If yes, queue it to our IPI list and return 1
4460 * If no, return 0
4461 */
4462static int rps_ipi_queued(struct softnet_data *sd)
4463{
4464#ifdef CONFIG_RPS
903ceff7 4465 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4466
4467 if (sd != mysd) {
4468 sd->rps_ipi_next = mysd->rps_ipi_list;
4469 mysd->rps_ipi_list = sd;
4470
4471 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4472 return 1;
4473 }
4474#endif /* CONFIG_RPS */
4475 return 0;
4476}
4477
99bbc707
WB
4478#ifdef CONFIG_NET_FLOW_LIMIT
4479int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4480#endif
4481
4482static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4483{
4484#ifdef CONFIG_NET_FLOW_LIMIT
4485 struct sd_flow_limit *fl;
4486 struct softnet_data *sd;
4487 unsigned int old_flow, new_flow;
4488
4489 if (qlen < (netdev_max_backlog >> 1))
4490 return false;
4491
903ceff7 4492 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4493
4494 rcu_read_lock();
4495 fl = rcu_dereference(sd->flow_limit);
4496 if (fl) {
3958afa1 4497 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4498 old_flow = fl->history[fl->history_head];
4499 fl->history[fl->history_head] = new_flow;
4500
4501 fl->history_head++;
4502 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4503
4504 if (likely(fl->buckets[old_flow]))
4505 fl->buckets[old_flow]--;
4506
4507 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4508 fl->count++;
4509 rcu_read_unlock();
4510 return true;
4511 }
4512 }
4513 rcu_read_unlock();
4514#endif
4515 return false;
4516}
4517
0a9627f2
TH
4518/*
4519 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4520 * queue (may be a remote CPU queue).
4521 */
fec5e652
TH
4522static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4523 unsigned int *qtail)
0a9627f2 4524{
e36fa2f7 4525 struct softnet_data *sd;
0a9627f2 4526 unsigned long flags;
99bbc707 4527 unsigned int qlen;
0a9627f2 4528
e36fa2f7 4529 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4530
4531 local_irq_save(flags);
0a9627f2 4532
e36fa2f7 4533 rps_lock(sd);
e9e4dd32
JA
4534 if (!netif_running(skb->dev))
4535 goto drop;
99bbc707
WB
4536 qlen = skb_queue_len(&sd->input_pkt_queue);
4537 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4538 if (qlen) {
0a9627f2 4539enqueue:
e36fa2f7 4540 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4541 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4542 rps_unlock(sd);
152102c7 4543 local_irq_restore(flags);
0a9627f2
TH
4544 return NET_RX_SUCCESS;
4545 }
4546
ebda37c2
ED
4547 /* Schedule NAPI for backlog device
4548 * We can use non atomic operation since we own the queue lock
4549 */
4550 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4551 if (!rps_ipi_queued(sd))
eecfd7c4 4552 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4553 }
4554 goto enqueue;
4555 }
4556
e9e4dd32 4557drop:
dee42870 4558 sd->dropped++;
e36fa2f7 4559 rps_unlock(sd);
0a9627f2 4560
0a9627f2
TH
4561 local_irq_restore(flags);
4562
caf586e5 4563 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4564 kfree_skb(skb);
4565 return NET_RX_DROP;
4566}
1da177e4 4567
e817f856
JDB
4568static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4569{
4570 struct net_device *dev = skb->dev;
4571 struct netdev_rx_queue *rxqueue;
4572
4573 rxqueue = dev->_rx;
4574
4575 if (skb_rx_queue_recorded(skb)) {
4576 u16 index = skb_get_rx_queue(skb);
4577
4578 if (unlikely(index >= dev->real_num_rx_queues)) {
4579 WARN_ONCE(dev->real_num_rx_queues > 1,
4580 "%s received packet on queue %u, but number "
4581 "of RX queues is %u\n",
4582 dev->name, index, dev->real_num_rx_queues);
4583
4584 return rxqueue; /* Return first rxqueue */
4585 }
4586 rxqueue += index;
4587 }
4588 return rxqueue;
4589}
4590
d4455169 4591static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4592 struct xdp_buff *xdp,
d4455169
JF
4593 struct bpf_prog *xdp_prog)
4594{
e817f856 4595 struct netdev_rx_queue *rxqueue;
198d83bb 4596 void *orig_data, *orig_data_end;
de8f3a83 4597 u32 metalen, act = XDP_DROP;
29724956
JDB
4598 __be16 orig_eth_type;
4599 struct ethhdr *eth;
4600 bool orig_bcast;
d4455169
JF
4601 int hlen, off;
4602 u32 mac_len;
4603
4604 /* Reinjected packets coming from act_mirred or similar should
4605 * not get XDP generic processing.
4606 */
2c64605b 4607 if (skb_is_redirected(skb))
d4455169
JF
4608 return XDP_PASS;
4609
de8f3a83
DB
4610 /* XDP packets must be linear and must have sufficient headroom
4611 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4612 * native XDP provides, thus we need to do it here as well.
4613 */
ad1e03b2 4614 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
de8f3a83
DB
4615 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4616 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4617 int troom = skb->tail + skb->data_len - skb->end;
4618
4619 /* In case we have to go down the path and also linearize,
4620 * then lets do the pskb_expand_head() work just once here.
4621 */
4622 if (pskb_expand_head(skb,
4623 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4624 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4625 goto do_drop;
2d17d8d7 4626 if (skb_linearize(skb))
de8f3a83
DB
4627 goto do_drop;
4628 }
d4455169
JF
4629
4630 /* The XDP program wants to see the packet starting at the MAC
4631 * header.
4632 */
4633 mac_len = skb->data - skb_mac_header(skb);
4634 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4635 xdp->data = skb->data - mac_len;
4636 xdp->data_meta = xdp->data;
4637 xdp->data_end = xdp->data + hlen;
4638 xdp->data_hard_start = skb->data - skb_headroom(skb);
a075767b
JDB
4639
4640 /* SKB "head" area always have tailroom for skb_shared_info */
4641 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4642 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4643
02671e23
BT
4644 orig_data_end = xdp->data_end;
4645 orig_data = xdp->data;
29724956
JDB
4646 eth = (struct ethhdr *)xdp->data;
4647 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4648 orig_eth_type = eth->h_proto;
d4455169 4649
e817f856 4650 rxqueue = netif_get_rxqueue(skb);
02671e23 4651 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4652
02671e23 4653 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4654
065af355 4655 /* check if bpf_xdp_adjust_head was used */
02671e23 4656 off = xdp->data - orig_data;
065af355
JDB
4657 if (off) {
4658 if (off > 0)
4659 __skb_pull(skb, off);
4660 else if (off < 0)
4661 __skb_push(skb, -off);
4662
4663 skb->mac_header += off;
4664 skb_reset_network_header(skb);
4665 }
d4455169 4666
a075767b
JDB
4667 /* check if bpf_xdp_adjust_tail was used */
4668 off = xdp->data_end - orig_data_end;
f7613120 4669 if (off != 0) {
02671e23 4670 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
a075767b 4671 skb->len += off; /* positive on grow, negative on shrink */
f7613120 4672 }
198d83bb 4673
29724956
JDB
4674 /* check if XDP changed eth hdr such SKB needs update */
4675 eth = (struct ethhdr *)xdp->data;
4676 if ((orig_eth_type != eth->h_proto) ||
4677 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4678 __skb_push(skb, ETH_HLEN);
4679 skb->protocol = eth_type_trans(skb, skb->dev);
4680 }
4681
d4455169 4682 switch (act) {
6103aa96 4683 case XDP_REDIRECT:
d4455169
JF
4684 case XDP_TX:
4685 __skb_push(skb, mac_len);
de8f3a83 4686 break;
d4455169 4687 case XDP_PASS:
02671e23 4688 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4689 if (metalen)
4690 skb_metadata_set(skb, metalen);
d4455169 4691 break;
d4455169
JF
4692 default:
4693 bpf_warn_invalid_xdp_action(act);
df561f66 4694 fallthrough;
d4455169
JF
4695 case XDP_ABORTED:
4696 trace_xdp_exception(skb->dev, xdp_prog, act);
df561f66 4697 fallthrough;
d4455169
JF
4698 case XDP_DROP:
4699 do_drop:
4700 kfree_skb(skb);
4701 break;
4702 }
4703
4704 return act;
4705}
4706
4707/* When doing generic XDP we have to bypass the qdisc layer and the
4708 * network taps in order to match in-driver-XDP behavior.
4709 */
7c497478 4710void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4711{
4712 struct net_device *dev = skb->dev;
4713 struct netdev_queue *txq;
4714 bool free_skb = true;
4715 int cpu, rc;
4716
4bd97d51 4717 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4718 cpu = smp_processor_id();
4719 HARD_TX_LOCK(dev, txq, cpu);
4720 if (!netif_xmit_stopped(txq)) {
4721 rc = netdev_start_xmit(skb, dev, txq, 0);
4722 if (dev_xmit_complete(rc))
4723 free_skb = false;
4724 }
4725 HARD_TX_UNLOCK(dev, txq);
4726 if (free_skb) {
4727 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4728 kfree_skb(skb);
4729 }
4730}
4731
02786475 4732static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4733
7c497478 4734int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4735{
d4455169 4736 if (xdp_prog) {
02671e23
BT
4737 struct xdp_buff xdp;
4738 u32 act;
6103aa96 4739 int err;
d4455169 4740
02671e23 4741 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4742 if (act != XDP_PASS) {
6103aa96
JF
4743 switch (act) {
4744 case XDP_REDIRECT:
2facaad6 4745 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4746 &xdp, xdp_prog);
6103aa96
JF
4747 if (err)
4748 goto out_redir;
02671e23 4749 break;
6103aa96 4750 case XDP_TX:
d4455169 4751 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4752 break;
4753 }
d4455169
JF
4754 return XDP_DROP;
4755 }
4756 }
4757 return XDP_PASS;
6103aa96 4758out_redir:
6103aa96
JF
4759 kfree_skb(skb);
4760 return XDP_DROP;
d4455169 4761}
7c497478 4762EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4763
ae78dbfa 4764static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4765{
b0e28f1e 4766 int ret;
1da177e4 4767
588f0330 4768 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4769
cf66ba58 4770 trace_netif_rx(skb);
d4455169 4771
df334545 4772#ifdef CONFIG_RPS
dc05360f 4773 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4774 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4775 int cpu;
4776
cece1945 4777 preempt_disable();
b0e28f1e 4778 rcu_read_lock();
fec5e652
TH
4779
4780 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4781 if (cpu < 0)
4782 cpu = smp_processor_id();
fec5e652
TH
4783
4784 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4785
b0e28f1e 4786 rcu_read_unlock();
cece1945 4787 preempt_enable();
adc9300e
ED
4788 } else
4789#endif
fec5e652
TH
4790 {
4791 unsigned int qtail;
f4563a75 4792
fec5e652
TH
4793 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4794 put_cpu();
4795 }
b0e28f1e 4796 return ret;
1da177e4 4797}
ae78dbfa
BH
4798
4799/**
4800 * netif_rx - post buffer to the network code
4801 * @skb: buffer to post
4802 *
4803 * This function receives a packet from a device driver and queues it for
4804 * the upper (protocol) levels to process. It always succeeds. The buffer
4805 * may be dropped during processing for congestion control or by the
4806 * protocol layers.
4807 *
4808 * return values:
4809 * NET_RX_SUCCESS (no congestion)
4810 * NET_RX_DROP (packet was dropped)
4811 *
4812 */
4813
4814int netif_rx(struct sk_buff *skb)
4815{
b0e3f1bd
GB
4816 int ret;
4817
ae78dbfa
BH
4818 trace_netif_rx_entry(skb);
4819
b0e3f1bd
GB
4820 ret = netif_rx_internal(skb);
4821 trace_netif_rx_exit(ret);
4822
4823 return ret;
ae78dbfa 4824}
d1b19dff 4825EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4826
4827int netif_rx_ni(struct sk_buff *skb)
4828{
4829 int err;
4830
ae78dbfa
BH
4831 trace_netif_rx_ni_entry(skb);
4832
1da177e4 4833 preempt_disable();
ae78dbfa 4834 err = netif_rx_internal(skb);
1da177e4
LT
4835 if (local_softirq_pending())
4836 do_softirq();
4837 preempt_enable();
b0e3f1bd 4838 trace_netif_rx_ni_exit(err);
1da177e4
LT
4839
4840 return err;
4841}
1da177e4
LT
4842EXPORT_SYMBOL(netif_rx_ni);
4843
0766f788 4844static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4845{
903ceff7 4846 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4847
4848 if (sd->completion_queue) {
4849 struct sk_buff *clist;
4850
4851 local_irq_disable();
4852 clist = sd->completion_queue;
4853 sd->completion_queue = NULL;
4854 local_irq_enable();
4855
4856 while (clist) {
4857 struct sk_buff *skb = clist;
f4563a75 4858
1da177e4
LT
4859 clist = clist->next;
4860
63354797 4861 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4862 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4863 trace_consume_skb(skb);
4864 else
4865 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4866
4867 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4868 __kfree_skb(skb);
4869 else
4870 __kfree_skb_defer(skb);
1da177e4 4871 }
15fad714
JDB
4872
4873 __kfree_skb_flush();
1da177e4
LT
4874 }
4875
4876 if (sd->output_queue) {
37437bb2 4877 struct Qdisc *head;
1da177e4
LT
4878
4879 local_irq_disable();
4880 head = sd->output_queue;
4881 sd->output_queue = NULL;
a9cbd588 4882 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4883 local_irq_enable();
4884
4885 while (head) {
37437bb2 4886 struct Qdisc *q = head;
6b3ba914 4887 spinlock_t *root_lock = NULL;
37437bb2 4888
1da177e4
LT
4889 head = head->next_sched;
4890
6b3ba914
JF
4891 if (!(q->flags & TCQ_F_NOLOCK)) {
4892 root_lock = qdisc_lock(q);
4893 spin_lock(root_lock);
4894 }
3bcb846c
ED
4895 /* We need to make sure head->next_sched is read
4896 * before clearing __QDISC_STATE_SCHED
4897 */
4898 smp_mb__before_atomic();
4899 clear_bit(__QDISC_STATE_SCHED, &q->state);
4900 qdisc_run(q);
6b3ba914
JF
4901 if (root_lock)
4902 spin_unlock(root_lock);
1da177e4
LT
4903 }
4904 }
f53c7239
SK
4905
4906 xfrm_dev_backlog(sd);
1da177e4
LT
4907}
4908
181402a5 4909#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4910/* This hook is defined here for ATM LANE */
4911int (*br_fdb_test_addr_hook)(struct net_device *dev,
4912 unsigned char *addr) __read_mostly;
4fb019a0 4913EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4914#endif
1da177e4 4915
1f211a1b
DB
4916static inline struct sk_buff *
4917sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4918 struct net_device *orig_dev)
f697c3e8 4919{
e7582bab 4920#ifdef CONFIG_NET_CLS_ACT
46209401 4921 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4922 struct tcf_result cl_res;
24824a09 4923
c9e99fd0
DB
4924 /* If there's at least one ingress present somewhere (so
4925 * we get here via enabled static key), remaining devices
4926 * that are not configured with an ingress qdisc will bail
d2788d34 4927 * out here.
c9e99fd0 4928 */
46209401 4929 if (!miniq)
4577139b 4930 return skb;
46209401 4931
f697c3e8
HX
4932 if (*pt_prev) {
4933 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4934 *pt_prev = NULL;
1da177e4
LT
4935 }
4936
3365495c 4937 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4938 skb->tc_at_ingress = 1;
46209401 4939 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4940
7d17c544
PB
4941 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4942 &cl_res, false)) {
d2788d34
DB
4943 case TC_ACT_OK:
4944 case TC_ACT_RECLASSIFY:
4945 skb->tc_index = TC_H_MIN(cl_res.classid);
4946 break;
4947 case TC_ACT_SHOT:
46209401 4948 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4949 kfree_skb(skb);
4950 return NULL;
d2788d34
DB
4951 case TC_ACT_STOLEN:
4952 case TC_ACT_QUEUED:
e25ea21f 4953 case TC_ACT_TRAP:
8a3a4c6e 4954 consume_skb(skb);
d2788d34 4955 return NULL;
27b29f63
AS
4956 case TC_ACT_REDIRECT:
4957 /* skb_mac_header check was done by cls/act_bpf, so
4958 * we can safely push the L2 header back before
4959 * redirecting to another netdev
4960 */
4961 __skb_push(skb, skb->mac_len);
4962 skb_do_redirect(skb);
4963 return NULL;
720f22fe 4964 case TC_ACT_CONSUMED:
cd11b164 4965 return NULL;
d2788d34
DB
4966 default:
4967 break;
f697c3e8 4968 }
e7582bab 4969#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4970 return skb;
4971}
1da177e4 4972
24b27fc4
MB
4973/**
4974 * netdev_is_rx_handler_busy - check if receive handler is registered
4975 * @dev: device to check
4976 *
4977 * Check if a receive handler is already registered for a given device.
4978 * Return true if there one.
4979 *
4980 * The caller must hold the rtnl_mutex.
4981 */
4982bool netdev_is_rx_handler_busy(struct net_device *dev)
4983{
4984 ASSERT_RTNL();
4985 return dev && rtnl_dereference(dev->rx_handler);
4986}
4987EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4988
ab95bfe0
JP
4989/**
4990 * netdev_rx_handler_register - register receive handler
4991 * @dev: device to register a handler for
4992 * @rx_handler: receive handler to register
93e2c32b 4993 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4994 *
e227867f 4995 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4996 * called from __netif_receive_skb. A negative errno code is returned
4997 * on a failure.
4998 *
4999 * The caller must hold the rtnl_mutex.
8a4eb573
JP
5000 *
5001 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
5002 */
5003int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
5004 rx_handler_func_t *rx_handler,
5005 void *rx_handler_data)
ab95bfe0 5006{
1b7cd004 5007 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
5008 return -EBUSY;
5009
f5426250
PA
5010 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5011 return -EINVAL;
5012
00cfec37 5013 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 5014 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
5015 rcu_assign_pointer(dev->rx_handler, rx_handler);
5016
5017 return 0;
5018}
5019EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5020
5021/**
5022 * netdev_rx_handler_unregister - unregister receive handler
5023 * @dev: device to unregister a handler from
5024 *
166ec369 5025 * Unregister a receive handler from a device.
ab95bfe0
JP
5026 *
5027 * The caller must hold the rtnl_mutex.
5028 */
5029void netdev_rx_handler_unregister(struct net_device *dev)
5030{
5031
5032 ASSERT_RTNL();
a9b3cd7f 5033 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
5034 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5035 * section has a guarantee to see a non NULL rx_handler_data
5036 * as well.
5037 */
5038 synchronize_net();
a9b3cd7f 5039 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
5040}
5041EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5042
b4b9e355
MG
5043/*
5044 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5045 * the special handling of PFMEMALLOC skbs.
5046 */
5047static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5048{
5049 switch (skb->protocol) {
2b8837ae
JP
5050 case htons(ETH_P_ARP):
5051 case htons(ETH_P_IP):
5052 case htons(ETH_P_IPV6):
5053 case htons(ETH_P_8021Q):
5054 case htons(ETH_P_8021AD):
b4b9e355
MG
5055 return true;
5056 default:
5057 return false;
5058 }
5059}
5060
e687ad60
PN
5061static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5062 int *ret, struct net_device *orig_dev)
5063{
5064 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
5065 int ingress_retval;
5066
e687ad60
PN
5067 if (*pt_prev) {
5068 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5069 *pt_prev = NULL;
5070 }
5071
2c1e2703
AC
5072 rcu_read_lock();
5073 ingress_retval = nf_hook_ingress(skb);
5074 rcu_read_unlock();
5075 return ingress_retval;
e687ad60
PN
5076 }
5077 return 0;
5078}
e687ad60 5079
c0bbbdc3 5080static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
88eb1944 5081 struct packet_type **ppt_prev)
1da177e4
LT
5082{
5083 struct packet_type *ptype, *pt_prev;
ab95bfe0 5084 rx_handler_func_t *rx_handler;
c0bbbdc3 5085 struct sk_buff *skb = *pskb;
f2ccd8fa 5086 struct net_device *orig_dev;
8a4eb573 5087 bool deliver_exact = false;
1da177e4 5088 int ret = NET_RX_DROP;
252e3346 5089 __be16 type;
1da177e4 5090
588f0330 5091 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5092
cf66ba58 5093 trace_netif_receive_skb(skb);
9b22ea56 5094
cc9bd5ce 5095 orig_dev = skb->dev;
8f903c70 5096
c1d2bbe1 5097 skb_reset_network_header(skb);
fda55eca
ED
5098 if (!skb_transport_header_was_set(skb))
5099 skb_reset_transport_header(skb);
0b5c9db1 5100 skb_reset_mac_len(skb);
1da177e4
LT
5101
5102 pt_prev = NULL;
5103
63d8ea7f 5104another_round:
b6858177 5105 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5106
5107 __this_cpu_inc(softnet_data.processed);
5108
458bf2f2
SH
5109 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5110 int ret2;
5111
5112 preempt_disable();
5113 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5114 preempt_enable();
5115
c0bbbdc3
BS
5116 if (ret2 != XDP_PASS) {
5117 ret = NET_RX_DROP;
5118 goto out;
5119 }
458bf2f2
SH
5120 skb_reset_mac_len(skb);
5121 }
5122
8ad227ff
PM
5123 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5124 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 5125 skb = skb_vlan_untag(skb);
bcc6d479 5126 if (unlikely(!skb))
2c17d27c 5127 goto out;
bcc6d479
JP
5128 }
5129
e7246e12
WB
5130 if (skb_skip_tc_classify(skb))
5131 goto skip_classify;
1da177e4 5132
9754e293 5133 if (pfmemalloc)
b4b9e355
MG
5134 goto skip_taps;
5135
1da177e4 5136 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5137 if (pt_prev)
5138 ret = deliver_skb(skb, pt_prev, orig_dev);
5139 pt_prev = ptype;
5140 }
5141
5142 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5143 if (pt_prev)
5144 ret = deliver_skb(skb, pt_prev, orig_dev);
5145 pt_prev = ptype;
1da177e4
LT
5146 }
5147
b4b9e355 5148skip_taps:
1cf51900 5149#ifdef CONFIG_NET_INGRESS
aabf6772 5150 if (static_branch_unlikely(&ingress_needed_key)) {
1f211a1b 5151 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 5152 if (!skb)
2c17d27c 5153 goto out;
e687ad60
PN
5154
5155 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5156 goto out;
4577139b 5157 }
1cf51900 5158#endif
2c64605b 5159 skb_reset_redirect(skb);
e7246e12 5160skip_classify:
9754e293 5161 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5162 goto drop;
5163
df8a39de 5164 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5165 if (pt_prev) {
5166 ret = deliver_skb(skb, pt_prev, orig_dev);
5167 pt_prev = NULL;
5168 }
48cc32d3 5169 if (vlan_do_receive(&skb))
2425717b
JF
5170 goto another_round;
5171 else if (unlikely(!skb))
2c17d27c 5172 goto out;
2425717b
JF
5173 }
5174
48cc32d3 5175 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5176 if (rx_handler) {
5177 if (pt_prev) {
5178 ret = deliver_skb(skb, pt_prev, orig_dev);
5179 pt_prev = NULL;
5180 }
8a4eb573
JP
5181 switch (rx_handler(&skb)) {
5182 case RX_HANDLER_CONSUMED:
3bc1b1ad 5183 ret = NET_RX_SUCCESS;
2c17d27c 5184 goto out;
8a4eb573 5185 case RX_HANDLER_ANOTHER:
63d8ea7f 5186 goto another_round;
8a4eb573
JP
5187 case RX_HANDLER_EXACT:
5188 deliver_exact = true;
5189 case RX_HANDLER_PASS:
5190 break;
5191 default:
5192 BUG();
5193 }
ab95bfe0 5194 }
1da177e4 5195
b14a9fc4 5196 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
36b2f61a
GV
5197check_vlan_id:
5198 if (skb_vlan_tag_get_id(skb)) {
5199 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5200 * find vlan device.
5201 */
d4b812de 5202 skb->pkt_type = PACKET_OTHERHOST;
36b2f61a
GV
5203 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5204 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5205 /* Outer header is 802.1P with vlan 0, inner header is
5206 * 802.1Q or 802.1AD and vlan_do_receive() above could
5207 * not find vlan dev for vlan id 0.
5208 */
5209 __vlan_hwaccel_clear_tag(skb);
5210 skb = skb_vlan_untag(skb);
5211 if (unlikely(!skb))
5212 goto out;
5213 if (vlan_do_receive(&skb))
5214 /* After stripping off 802.1P header with vlan 0
5215 * vlan dev is found for inner header.
5216 */
5217 goto another_round;
5218 else if (unlikely(!skb))
5219 goto out;
5220 else
5221 /* We have stripped outer 802.1P vlan 0 header.
5222 * But could not find vlan dev.
5223 * check again for vlan id to set OTHERHOST.
5224 */
5225 goto check_vlan_id;
5226 }
d4b812de
ED
5227 /* Note: we might in the future use prio bits
5228 * and set skb->priority like in vlan_do_receive()
5229 * For the time being, just ignore Priority Code Point
5230 */
b1817524 5231 __vlan_hwaccel_clear_tag(skb);
d4b812de 5232 }
48cc32d3 5233
7866a621
SN
5234 type = skb->protocol;
5235
63d8ea7f 5236 /* deliver only exact match when indicated */
7866a621
SN
5237 if (likely(!deliver_exact)) {
5238 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5239 &ptype_base[ntohs(type) &
5240 PTYPE_HASH_MASK]);
5241 }
1f3c8804 5242
7866a621
SN
5243 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5244 &orig_dev->ptype_specific);
5245
5246 if (unlikely(skb->dev != orig_dev)) {
5247 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5248 &skb->dev->ptype_specific);
1da177e4
LT
5249 }
5250
5251 if (pt_prev) {
1f8b977a 5252 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5253 goto drop;
88eb1944 5254 *ppt_prev = pt_prev;
1da177e4 5255 } else {
b4b9e355 5256drop:
6e7333d3
JW
5257 if (!deliver_exact)
5258 atomic_long_inc(&skb->dev->rx_dropped);
5259 else
5260 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
5261 kfree_skb(skb);
5262 /* Jamal, now you will not able to escape explaining
5263 * me how you were going to use this. :-)
5264 */
5265 ret = NET_RX_DROP;
5266 }
5267
2c17d27c 5268out:
c0bbbdc3
BS
5269 /* The invariant here is that if *ppt_prev is not NULL
5270 * then skb should also be non-NULL.
5271 *
5272 * Apparently *ppt_prev assignment above holds this invariant due to
5273 * skb dereferencing near it.
5274 */
5275 *pskb = skb;
9754e293
DM
5276 return ret;
5277}
5278
88eb1944
EC
5279static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5280{
5281 struct net_device *orig_dev = skb->dev;
5282 struct packet_type *pt_prev = NULL;
5283 int ret;
5284
c0bbbdc3 5285 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
88eb1944 5286 if (pt_prev)
f5737cba
PA
5287 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5288 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5289 return ret;
5290}
5291
1c601d82
JDB
5292/**
5293 * netif_receive_skb_core - special purpose version of netif_receive_skb
5294 * @skb: buffer to process
5295 *
5296 * More direct receive version of netif_receive_skb(). It should
5297 * only be used by callers that have a need to skip RPS and Generic XDP.
2de9780f 5298 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
1c601d82
JDB
5299 *
5300 * This function may only be called from softirq context and interrupts
5301 * should be enabled.
5302 *
5303 * Return values (usually ignored):
5304 * NET_RX_SUCCESS: no congestion
5305 * NET_RX_DROP: packet was dropped
5306 */
5307int netif_receive_skb_core(struct sk_buff *skb)
5308{
5309 int ret;
5310
5311 rcu_read_lock();
88eb1944 5312 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5313 rcu_read_unlock();
5314
5315 return ret;
5316}
5317EXPORT_SYMBOL(netif_receive_skb_core);
5318
88eb1944
EC
5319static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5320 struct packet_type *pt_prev,
5321 struct net_device *orig_dev)
4ce0017a
EC
5322{
5323 struct sk_buff *skb, *next;
5324
88eb1944
EC
5325 if (!pt_prev)
5326 return;
5327 if (list_empty(head))
5328 return;
17266ee9 5329 if (pt_prev->list_func != NULL)
fdf71426
PA
5330 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5331 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5332 else
9a5a90d1
AL
5333 list_for_each_entry_safe(skb, next, head, list) {
5334 skb_list_del_init(skb);
fdf71426 5335 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5336 }
88eb1944
EC
5337}
5338
5339static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5340{
5341 /* Fast-path assumptions:
5342 * - There is no RX handler.
5343 * - Only one packet_type matches.
5344 * If either of these fails, we will end up doing some per-packet
5345 * processing in-line, then handling the 'last ptype' for the whole
5346 * sublist. This can't cause out-of-order delivery to any single ptype,
5347 * because the 'last ptype' must be constant across the sublist, and all
5348 * other ptypes are handled per-packet.
5349 */
5350 /* Current (common) ptype of sublist */
5351 struct packet_type *pt_curr = NULL;
5352 /* Current (common) orig_dev of sublist */
5353 struct net_device *od_curr = NULL;
5354 struct list_head sublist;
5355 struct sk_buff *skb, *next;
5356
9af86f93 5357 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5358 list_for_each_entry_safe(skb, next, head, list) {
5359 struct net_device *orig_dev = skb->dev;
5360 struct packet_type *pt_prev = NULL;
5361
22f6bbb7 5362 skb_list_del_init(skb);
c0bbbdc3 5363 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
9af86f93
EC
5364 if (!pt_prev)
5365 continue;
88eb1944
EC
5366 if (pt_curr != pt_prev || od_curr != orig_dev) {
5367 /* dispatch old sublist */
88eb1944
EC
5368 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5369 /* start new sublist */
9af86f93 5370 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5371 pt_curr = pt_prev;
5372 od_curr = orig_dev;
5373 }
9af86f93 5374 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5375 }
5376
5377 /* dispatch final sublist */
9af86f93 5378 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5379}
5380
9754e293
DM
5381static int __netif_receive_skb(struct sk_buff *skb)
5382{
5383 int ret;
5384
5385 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5386 unsigned int noreclaim_flag;
9754e293
DM
5387
5388 /*
5389 * PFMEMALLOC skbs are special, they should
5390 * - be delivered to SOCK_MEMALLOC sockets only
5391 * - stay away from userspace
5392 * - have bounded memory usage
5393 *
5394 * Use PF_MEMALLOC as this saves us from propagating the allocation
5395 * context down to all allocation sites.
5396 */
f1083048 5397 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5398 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5399 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5400 } else
88eb1944 5401 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5402
1da177e4
LT
5403 return ret;
5404}
0a9627f2 5405
4ce0017a
EC
5406static void __netif_receive_skb_list(struct list_head *head)
5407{
5408 unsigned long noreclaim_flag = 0;
5409 struct sk_buff *skb, *next;
5410 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5411
5412 list_for_each_entry_safe(skb, next, head, list) {
5413 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5414 struct list_head sublist;
5415
5416 /* Handle the previous sublist */
5417 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5418 if (!list_empty(&sublist))
5419 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5420 pfmemalloc = !pfmemalloc;
5421 /* See comments in __netif_receive_skb */
5422 if (pfmemalloc)
5423 noreclaim_flag = memalloc_noreclaim_save();
5424 else
5425 memalloc_noreclaim_restore(noreclaim_flag);
5426 }
5427 }
5428 /* Handle the remaining sublist */
b9f463d6
EC
5429 if (!list_empty(head))
5430 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5431 /* Restore pflags */
5432 if (pfmemalloc)
5433 memalloc_noreclaim_restore(noreclaim_flag);
5434}
5435
f4e63525 5436static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5437{
58038695 5438 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5439 struct bpf_prog *new = xdp->prog;
5440 int ret = 0;
5441
fbee97fe
DA
5442 if (new) {
5443 u32 i;
5444
984fe94f
YZ
5445 mutex_lock(&new->aux->used_maps_mutex);
5446
fbee97fe
DA
5447 /* generic XDP does not work with DEVMAPs that can
5448 * have a bpf_prog installed on an entry
5449 */
5450 for (i = 0; i < new->aux->used_map_cnt; i++) {
984fe94f
YZ
5451 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5452 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5453 mutex_unlock(&new->aux->used_maps_mutex);
92164774 5454 return -EINVAL;
984fe94f 5455 }
fbee97fe 5456 }
984fe94f
YZ
5457
5458 mutex_unlock(&new->aux->used_maps_mutex);
fbee97fe
DA
5459 }
5460
b5cdae32 5461 switch (xdp->command) {
58038695 5462 case XDP_SETUP_PROG:
b5cdae32
DM
5463 rcu_assign_pointer(dev->xdp_prog, new);
5464 if (old)
5465 bpf_prog_put(old);
5466
5467 if (old && !new) {
02786475 5468 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5469 } else if (new && !old) {
02786475 5470 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5471 dev_disable_lro(dev);
56f5aa77 5472 dev_disable_gro_hw(dev);
b5cdae32
DM
5473 }
5474 break;
b5cdae32 5475
b5cdae32
DM
5476 default:
5477 ret = -EINVAL;
5478 break;
5479 }
5480
5481 return ret;
5482}
5483
ae78dbfa 5484static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5485{
2c17d27c
JA
5486 int ret;
5487
588f0330 5488 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5489
c1f19b51
RC
5490 if (skb_defer_rx_timestamp(skb))
5491 return NET_RX_SUCCESS;
5492
bbbe211c 5493 rcu_read_lock();
df334545 5494#ifdef CONFIG_RPS
dc05360f 5495 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5496 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5497 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5498
3b098e2d
ED
5499 if (cpu >= 0) {
5500 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5501 rcu_read_unlock();
adc9300e 5502 return ret;
3b098e2d 5503 }
fec5e652 5504 }
1e94d72f 5505#endif
2c17d27c
JA
5506 ret = __netif_receive_skb(skb);
5507 rcu_read_unlock();
5508 return ret;
0a9627f2 5509}
ae78dbfa 5510
7da517a3
EC
5511static void netif_receive_skb_list_internal(struct list_head *head)
5512{
7da517a3 5513 struct sk_buff *skb, *next;
8c057efa 5514 struct list_head sublist;
7da517a3 5515
8c057efa 5516 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5517 list_for_each_entry_safe(skb, next, head, list) {
5518 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5519 skb_list_del_init(skb);
8c057efa
EC
5520 if (!skb_defer_rx_timestamp(skb))
5521 list_add_tail(&skb->list, &sublist);
7da517a3 5522 }
8c057efa 5523 list_splice_init(&sublist, head);
7da517a3 5524
7da517a3
EC
5525 rcu_read_lock();
5526#ifdef CONFIG_RPS
dc05360f 5527 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5528 list_for_each_entry_safe(skb, next, head, list) {
5529 struct rps_dev_flow voidflow, *rflow = &voidflow;
5530 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5531
5532 if (cpu >= 0) {
8c057efa 5533 /* Will be handled, remove from list */
22f6bbb7 5534 skb_list_del_init(skb);
8c057efa 5535 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5536 }
5537 }
5538 }
5539#endif
5540 __netif_receive_skb_list(head);
5541 rcu_read_unlock();
5542}
5543
ae78dbfa
BH
5544/**
5545 * netif_receive_skb - process receive buffer from network
5546 * @skb: buffer to process
5547 *
5548 * netif_receive_skb() is the main receive data processing function.
5549 * It always succeeds. The buffer may be dropped during processing
5550 * for congestion control or by the protocol layers.
5551 *
5552 * This function may only be called from softirq context and interrupts
5553 * should be enabled.
5554 *
5555 * Return values (usually ignored):
5556 * NET_RX_SUCCESS: no congestion
5557 * NET_RX_DROP: packet was dropped
5558 */
04eb4489 5559int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5560{
b0e3f1bd
GB
5561 int ret;
5562
ae78dbfa
BH
5563 trace_netif_receive_skb_entry(skb);
5564
b0e3f1bd
GB
5565 ret = netif_receive_skb_internal(skb);
5566 trace_netif_receive_skb_exit(ret);
5567
5568 return ret;
ae78dbfa 5569}
04eb4489 5570EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5571
f6ad8c1b
EC
5572/**
5573 * netif_receive_skb_list - process many receive buffers from network
5574 * @head: list of skbs to process.
5575 *
7da517a3
EC
5576 * Since return value of netif_receive_skb() is normally ignored, and
5577 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5578 *
5579 * This function may only be called from softirq context and interrupts
5580 * should be enabled.
5581 */
5582void netif_receive_skb_list(struct list_head *head)
5583{
7da517a3 5584 struct sk_buff *skb;
f6ad8c1b 5585
b9f463d6
EC
5586 if (list_empty(head))
5587 return;
b0e3f1bd
GB
5588 if (trace_netif_receive_skb_list_entry_enabled()) {
5589 list_for_each_entry(skb, head, list)
5590 trace_netif_receive_skb_list_entry(skb);
5591 }
7da517a3 5592 netif_receive_skb_list_internal(head);
b0e3f1bd 5593 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5594}
5595EXPORT_SYMBOL(netif_receive_skb_list);
5596
ce1e2a77 5597static DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5598
5599/* Network device is going away, flush any packets still pending */
5600static void flush_backlog(struct work_struct *work)
6e583ce5 5601{
6e583ce5 5602 struct sk_buff *skb, *tmp;
145dd5f9
PA
5603 struct softnet_data *sd;
5604
5605 local_bh_disable();
5606 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5607
145dd5f9 5608 local_irq_disable();
e36fa2f7 5609 rps_lock(sd);
6e7676c1 5610 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5611 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5612 __skb_unlink(skb, &sd->input_pkt_queue);
7df5cb75 5613 dev_kfree_skb_irq(skb);
76cc8b13 5614 input_queue_head_incr(sd);
6e583ce5 5615 }
6e7676c1 5616 }
e36fa2f7 5617 rps_unlock(sd);
145dd5f9 5618 local_irq_enable();
6e7676c1
CG
5619
5620 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5621 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5622 __skb_unlink(skb, &sd->process_queue);
5623 kfree_skb(skb);
76cc8b13 5624 input_queue_head_incr(sd);
6e7676c1
CG
5625 }
5626 }
145dd5f9
PA
5627 local_bh_enable();
5628}
5629
2de79ee2
PA
5630static bool flush_required(int cpu)
5631{
5632#if IS_ENABLED(CONFIG_RPS)
5633 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5634 bool do_flush;
5635
5636 local_irq_disable();
5637 rps_lock(sd);
5638
5639 /* as insertion into process_queue happens with the rps lock held,
5640 * process_queue access may race only with dequeue
5641 */
5642 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5643 !skb_queue_empty_lockless(&sd->process_queue);
5644 rps_unlock(sd);
5645 local_irq_enable();
5646
5647 return do_flush;
5648#endif
5649 /* without RPS we can't safely check input_pkt_queue: during a
5650 * concurrent remote skb_queue_splice() we can detect as empty both
5651 * input_pkt_queue and process_queue even if the latter could end-up
5652 * containing a lot of packets.
5653 */
5654 return true;
5655}
5656
41852497 5657static void flush_all_backlogs(void)
145dd5f9 5658{
2de79ee2 5659 static cpumask_t flush_cpus;
145dd5f9
PA
5660 unsigned int cpu;
5661
2de79ee2
PA
5662 /* since we are under rtnl lock protection we can use static data
5663 * for the cpumask and avoid allocating on stack the possibly
5664 * large mask
5665 */
5666 ASSERT_RTNL();
5667
145dd5f9
PA
5668 get_online_cpus();
5669
2de79ee2
PA
5670 cpumask_clear(&flush_cpus);
5671 for_each_online_cpu(cpu) {
5672 if (flush_required(cpu)) {
5673 queue_work_on(cpu, system_highpri_wq,
5674 per_cpu_ptr(&flush_works, cpu));
5675 cpumask_set_cpu(cpu, &flush_cpus);
5676 }
5677 }
145dd5f9 5678
2de79ee2
PA
5679 /* we can have in flight packet[s] on the cpus we are not flushing,
5680 * synchronize_net() in rollback_registered_many() will take care of
5681 * them
5682 */
5683 for_each_cpu(cpu, &flush_cpus)
41852497 5684 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5685
5686 put_online_cpus();
6e583ce5
SH
5687}
5688
c8079432
MM
5689/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5690static void gro_normal_list(struct napi_struct *napi)
5691{
5692 if (!napi->rx_count)
5693 return;
5694 netif_receive_skb_list_internal(&napi->rx_list);
5695 INIT_LIST_HEAD(&napi->rx_list);
5696 napi->rx_count = 0;
5697}
5698
5699/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5700 * pass the whole batch up to the stack.
5701 */
5702static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5703{
5704 list_add_tail(&skb->list, &napi->rx_list);
5705 if (++napi->rx_count >= gro_normal_batch)
5706 gro_normal_list(napi);
5707}
5708
aaa5d90b
PA
5709INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5710INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
c8079432 5711static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5712{
22061d80 5713 struct packet_offload *ptype;
d565b0a1 5714 __be16 type = skb->protocol;
22061d80 5715 struct list_head *head = &offload_base;
d565b0a1
HX
5716 int err = -ENOENT;
5717
c3c7c254
ED
5718 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5719
fc59f9a3
HX
5720 if (NAPI_GRO_CB(skb)->count == 1) {
5721 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5722 goto out;
fc59f9a3 5723 }
d565b0a1
HX
5724
5725 rcu_read_lock();
5726 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5727 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5728 continue;
5729
aaa5d90b
PA
5730 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5731 ipv6_gro_complete, inet_gro_complete,
5732 skb, 0);
d565b0a1
HX
5733 break;
5734 }
5735 rcu_read_unlock();
5736
5737 if (err) {
5738 WARN_ON(&ptype->list == head);
5739 kfree_skb(skb);
5740 return NET_RX_SUCCESS;
5741 }
5742
5743out:
c8079432
MM
5744 gro_normal_one(napi, skb);
5745 return NET_RX_SUCCESS;
d565b0a1
HX
5746}
5747
6312fe77 5748static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5749 bool flush_old)
d565b0a1 5750{
6312fe77 5751 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5752 struct sk_buff *skb, *p;
2e71a6f8 5753
07d78363 5754 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5755 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5756 return;
992cba7e 5757 skb_list_del_init(skb);
c8079432 5758 napi_gro_complete(napi, skb);
6312fe77 5759 napi->gro_hash[index].count--;
d565b0a1 5760 }
d9f37d01
LR
5761
5762 if (!napi->gro_hash[index].count)
5763 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5764}
07d78363 5765
6312fe77 5766/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5767 * youngest packets at the head of it.
5768 * Complete skbs in reverse order to reduce latencies.
5769 */
5770void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5771{
42519ede
ED
5772 unsigned long bitmask = napi->gro_bitmask;
5773 unsigned int i, base = ~0U;
07d78363 5774
42519ede
ED
5775 while ((i = ffs(bitmask)) != 0) {
5776 bitmask >>= i;
5777 base += i;
5778 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5779 }
07d78363 5780}
86cac58b 5781EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5782
07d78363
DM
5783static struct list_head *gro_list_prepare(struct napi_struct *napi,
5784 struct sk_buff *skb)
89c5fa33 5785{
89c5fa33 5786 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5787 u32 hash = skb_get_hash_raw(skb);
07d78363 5788 struct list_head *head;
d4546c25 5789 struct sk_buff *p;
89c5fa33 5790
6312fe77 5791 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5792 list_for_each_entry(p, head, list) {
89c5fa33
ED
5793 unsigned long diffs;
5794
0b4cec8c
TH
5795 NAPI_GRO_CB(p)->flush = 0;
5796
5797 if (hash != skb_get_hash_raw(p)) {
5798 NAPI_GRO_CB(p)->same_flow = 0;
5799 continue;
5800 }
5801
89c5fa33 5802 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5803 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5804 if (skb_vlan_tag_present(p))
fc5141cb 5805 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
ce87fc6c 5806 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5807 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5808 if (maclen == ETH_HLEN)
5809 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5810 skb_mac_header(skb));
89c5fa33
ED
5811 else if (!diffs)
5812 diffs = memcmp(skb_mac_header(p),
a50e233c 5813 skb_mac_header(skb),
89c5fa33
ED
5814 maclen);
5815 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5816 }
07d78363
DM
5817
5818 return head;
89c5fa33
ED
5819}
5820
299603e8
JC
5821static void skb_gro_reset_offset(struct sk_buff *skb)
5822{
5823 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5824 const skb_frag_t *frag0 = &pinfo->frags[0];
5825
5826 NAPI_GRO_CB(skb)->data_offset = 0;
5827 NAPI_GRO_CB(skb)->frag0 = NULL;
5828 NAPI_GRO_CB(skb)->frag0_len = 0;
5829
8aef998d 5830 if (!skb_headlen(skb) && pinfo->nr_frags &&
299603e8
JC
5831 !PageHighMem(skb_frag_page(frag0))) {
5832 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5833 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5834 skb_frag_size(frag0),
5835 skb->end - skb->tail);
89c5fa33
ED
5836 }
5837}
5838
a50e233c
ED
5839static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5840{
5841 struct skb_shared_info *pinfo = skb_shinfo(skb);
5842
5843 BUG_ON(skb->end - skb->tail < grow);
5844
5845 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5846
5847 skb->data_len -= grow;
5848 skb->tail += grow;
5849
b54c9d5b 5850 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
5851 skb_frag_size_sub(&pinfo->frags[0], grow);
5852
5853 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5854 skb_frag_unref(skb, 0);
5855 memmove(pinfo->frags, pinfo->frags + 1,
5856 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5857 }
5858}
5859
c8079432 5860static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
07d78363 5861{
6312fe77 5862 struct sk_buff *oldest;
07d78363 5863
6312fe77 5864 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5865
6312fe77 5866 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5867 * impossible.
5868 */
5869 if (WARN_ON_ONCE(!oldest))
5870 return;
5871
d9f37d01
LR
5872 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5873 * SKB to the chain.
07d78363 5874 */
ece23711 5875 skb_list_del_init(oldest);
c8079432 5876 napi_gro_complete(napi, oldest);
07d78363
DM
5877}
5878
aaa5d90b
PA
5879INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5880 struct sk_buff *));
5881INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5882 struct sk_buff *));
bb728820 5883static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5884{
6312fe77 5885 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5886 struct list_head *head = &offload_base;
22061d80 5887 struct packet_offload *ptype;
d565b0a1 5888 __be16 type = skb->protocol;
07d78363 5889 struct list_head *gro_head;
d4546c25 5890 struct sk_buff *pp = NULL;
5b252f0c 5891 enum gro_result ret;
d4546c25 5892 int same_flow;
a50e233c 5893 int grow;
d565b0a1 5894
b5cdae32 5895 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5896 goto normal;
5897
07d78363 5898 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5899
d565b0a1
HX
5900 rcu_read_lock();
5901 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5902 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5903 continue;
5904
86911732 5905 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5906 skb_reset_mac_len(skb);
d565b0a1 5907 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5908 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5909 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5910 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5911 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5912 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5913 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5914 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5915
662880f4
TH
5916 /* Setup for GRO checksum validation */
5917 switch (skb->ip_summed) {
5918 case CHECKSUM_COMPLETE:
5919 NAPI_GRO_CB(skb)->csum = skb->csum;
5920 NAPI_GRO_CB(skb)->csum_valid = 1;
5921 NAPI_GRO_CB(skb)->csum_cnt = 0;
5922 break;
5923 case CHECKSUM_UNNECESSARY:
5924 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5925 NAPI_GRO_CB(skb)->csum_valid = 0;
5926 break;
5927 default:
5928 NAPI_GRO_CB(skb)->csum_cnt = 0;
5929 NAPI_GRO_CB(skb)->csum_valid = 0;
5930 }
d565b0a1 5931
aaa5d90b
PA
5932 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5933 ipv6_gro_receive, inet_gro_receive,
5934 gro_head, skb);
d565b0a1
HX
5935 break;
5936 }
5937 rcu_read_unlock();
5938
5939 if (&ptype->list == head)
5940 goto normal;
5941
45586c70 5942 if (PTR_ERR(pp) == -EINPROGRESS) {
25393d3f
SK
5943 ret = GRO_CONSUMED;
5944 goto ok;
5945 }
5946
0da2afd5 5947 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5948 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5949
d565b0a1 5950 if (pp) {
992cba7e 5951 skb_list_del_init(pp);
c8079432 5952 napi_gro_complete(napi, pp);
6312fe77 5953 napi->gro_hash[hash].count--;
d565b0a1
HX
5954 }
5955
0da2afd5 5956 if (same_flow)
d565b0a1
HX
5957 goto ok;
5958
600adc18 5959 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5960 goto normal;
d565b0a1 5961
6312fe77 5962 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
c8079432 5963 gro_flush_oldest(napi, gro_head);
600adc18 5964 } else {
6312fe77 5965 napi->gro_hash[hash].count++;
600adc18 5966 }
d565b0a1 5967 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 5968 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 5969 NAPI_GRO_CB(skb)->last = skb;
86911732 5970 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 5971 list_add(&skb->list, gro_head);
5d0d9be8 5972 ret = GRO_HELD;
d565b0a1 5973
ad0f9904 5974pull:
a50e233c
ED
5975 grow = skb_gro_offset(skb) - skb_headlen(skb);
5976 if (grow > 0)
5977 gro_pull_from_frag0(skb, grow);
d565b0a1 5978ok:
d9f37d01
LR
5979 if (napi->gro_hash[hash].count) {
5980 if (!test_bit(hash, &napi->gro_bitmask))
5981 __set_bit(hash, &napi->gro_bitmask);
5982 } else if (test_bit(hash, &napi->gro_bitmask)) {
5983 __clear_bit(hash, &napi->gro_bitmask);
5984 }
5985
5d0d9be8 5986 return ret;
d565b0a1
HX
5987
5988normal:
ad0f9904
HX
5989 ret = GRO_NORMAL;
5990 goto pull;
5d38a079 5991}
96e93eab 5992
bf5a755f
JC
5993struct packet_offload *gro_find_receive_by_type(__be16 type)
5994{
5995 struct list_head *offload_head = &offload_base;
5996 struct packet_offload *ptype;
5997
5998 list_for_each_entry_rcu(ptype, offload_head, list) {
5999 if (ptype->type != type || !ptype->callbacks.gro_receive)
6000 continue;
6001 return ptype;
6002 }
6003 return NULL;
6004}
e27a2f83 6005EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
6006
6007struct packet_offload *gro_find_complete_by_type(__be16 type)
6008{
6009 struct list_head *offload_head = &offload_base;
6010 struct packet_offload *ptype;
6011
6012 list_for_each_entry_rcu(ptype, offload_head, list) {
6013 if (ptype->type != type || !ptype->callbacks.gro_complete)
6014 continue;
6015 return ptype;
6016 }
6017 return NULL;
6018}
e27a2f83 6019EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 6020
e44699d2
MK
6021static void napi_skb_free_stolen_head(struct sk_buff *skb)
6022{
6023 skb_dst_drop(skb);
174e2381 6024 skb_ext_put(skb);
e44699d2
MK
6025 kmem_cache_free(skbuff_head_cache, skb);
6026}
6027
6570bc79
AL
6028static gro_result_t napi_skb_finish(struct napi_struct *napi,
6029 struct sk_buff *skb,
6030 gro_result_t ret)
5d38a079 6031{
5d0d9be8
HX
6032 switch (ret) {
6033 case GRO_NORMAL:
6570bc79 6034 gro_normal_one(napi, skb);
c7c4b3b6 6035 break;
5d38a079 6036
5d0d9be8 6037 case GRO_DROP:
5d38a079
HX
6038 kfree_skb(skb);
6039 break;
5b252f0c 6040
daa86548 6041 case GRO_MERGED_FREE:
e44699d2
MK
6042 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6043 napi_skb_free_stolen_head(skb);
6044 else
d7e8883c 6045 __kfree_skb(skb);
daa86548
ED
6046 break;
6047
5b252f0c
BH
6048 case GRO_HELD:
6049 case GRO_MERGED:
25393d3f 6050 case GRO_CONSUMED:
5b252f0c 6051 break;
5d38a079
HX
6052 }
6053
c7c4b3b6 6054 return ret;
5d0d9be8 6055}
5d0d9be8 6056
c7c4b3b6 6057gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 6058{
b0e3f1bd
GB
6059 gro_result_t ret;
6060
93f93a44 6061 skb_mark_napi_id(skb, napi);
ae78dbfa 6062 trace_napi_gro_receive_entry(skb);
86911732 6063
a50e233c
ED
6064 skb_gro_reset_offset(skb);
6065
6570bc79 6066 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
b0e3f1bd
GB
6067 trace_napi_gro_receive_exit(ret);
6068
6069 return ret;
d565b0a1
HX
6070}
6071EXPORT_SYMBOL(napi_gro_receive);
6072
d0c2b0d2 6073static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 6074{
93a35f59
ED
6075 if (unlikely(skb->pfmemalloc)) {
6076 consume_skb(skb);
6077 return;
6078 }
96e93eab 6079 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
6080 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6081 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 6082 __vlan_hwaccel_clear_tag(skb);
66c46d74 6083 skb->dev = napi->dev;
6d152e23 6084 skb->skb_iif = 0;
33d9a2c7
ED
6085
6086 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6087 skb->pkt_type = PACKET_HOST;
6088
c3caf119
JC
6089 skb->encapsulation = 0;
6090 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 6091 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
174e2381 6092 skb_ext_reset(skb);
96e93eab
HX
6093
6094 napi->skb = skb;
6095}
96e93eab 6096
76620aaf 6097struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 6098{
5d38a079 6099 struct sk_buff *skb = napi->skb;
5d38a079
HX
6100
6101 if (!skb) {
fd11a83d 6102 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
6103 if (skb) {
6104 napi->skb = skb;
6105 skb_mark_napi_id(skb, napi);
6106 }
80595d59 6107 }
96e93eab
HX
6108 return skb;
6109}
76620aaf 6110EXPORT_SYMBOL(napi_get_frags);
96e93eab 6111
a50e233c
ED
6112static gro_result_t napi_frags_finish(struct napi_struct *napi,
6113 struct sk_buff *skb,
6114 gro_result_t ret)
96e93eab 6115{
5d0d9be8
HX
6116 switch (ret) {
6117 case GRO_NORMAL:
a50e233c
ED
6118 case GRO_HELD:
6119 __skb_push(skb, ETH_HLEN);
6120 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61
EC
6121 if (ret == GRO_NORMAL)
6122 gro_normal_one(napi, skb);
86911732 6123 break;
5d38a079 6124
5d0d9be8 6125 case GRO_DROP:
5d0d9be8
HX
6126 napi_reuse_skb(napi, skb);
6127 break;
5b252f0c 6128
e44699d2
MK
6129 case GRO_MERGED_FREE:
6130 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6131 napi_skb_free_stolen_head(skb);
6132 else
6133 napi_reuse_skb(napi, skb);
6134 break;
6135
5b252f0c 6136 case GRO_MERGED:
25393d3f 6137 case GRO_CONSUMED:
5b252f0c 6138 break;
5d0d9be8 6139 }
5d38a079 6140
c7c4b3b6 6141 return ret;
5d38a079 6142}
5d0d9be8 6143
a50e233c
ED
6144/* Upper GRO stack assumes network header starts at gro_offset=0
6145 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6146 * We copy ethernet header into skb->data to have a common layout.
6147 */
4adb9c4a 6148static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
6149{
6150 struct sk_buff *skb = napi->skb;
a50e233c
ED
6151 const struct ethhdr *eth;
6152 unsigned int hlen = sizeof(*eth);
76620aaf
HX
6153
6154 napi->skb = NULL;
6155
a50e233c
ED
6156 skb_reset_mac_header(skb);
6157 skb_gro_reset_offset(skb);
6158
a50e233c
ED
6159 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6160 eth = skb_gro_header_slow(skb, hlen, 0);
6161 if (unlikely(!eth)) {
4da46ceb
AC
6162 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6163 __func__, napi->dev->name);
a50e233c
ED
6164 napi_reuse_skb(napi, skb);
6165 return NULL;
6166 }
6167 } else {
a4270d67 6168 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
6169 gro_pull_from_frag0(skb, hlen);
6170 NAPI_GRO_CB(skb)->frag0 += hlen;
6171 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 6172 }
a50e233c
ED
6173 __skb_pull(skb, hlen);
6174
6175 /*
6176 * This works because the only protocols we care about don't require
6177 * special handling.
6178 * We'll fix it up properly in napi_frags_finish()
6179 */
6180 skb->protocol = eth->h_proto;
76620aaf 6181
76620aaf
HX
6182 return skb;
6183}
76620aaf 6184
c7c4b3b6 6185gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 6186{
b0e3f1bd 6187 gro_result_t ret;
76620aaf 6188 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
6189
6190 if (!skb)
c7c4b3b6 6191 return GRO_DROP;
5d0d9be8 6192
ae78dbfa
BH
6193 trace_napi_gro_frags_entry(skb);
6194
b0e3f1bd
GB
6195 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6196 trace_napi_gro_frags_exit(ret);
6197
6198 return ret;
5d0d9be8 6199}
5d38a079
HX
6200EXPORT_SYMBOL(napi_gro_frags);
6201
573e8fca
TH
6202/* Compute the checksum from gro_offset and return the folded value
6203 * after adding in any pseudo checksum.
6204 */
6205__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6206{
6207 __wsum wsum;
6208 __sum16 sum;
6209
6210 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6211
6212 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6213 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 6214 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
6215 if (likely(!sum)) {
6216 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6217 !skb->csum_complete_sw)
7fe50ac8 6218 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
6219 }
6220
6221 NAPI_GRO_CB(skb)->csum = wsum;
6222 NAPI_GRO_CB(skb)->csum_valid = 1;
6223
6224 return sum;
6225}
6226EXPORT_SYMBOL(__skb_gro_checksum_complete);
6227
773fc8f6 6228static void net_rps_send_ipi(struct softnet_data *remsd)
6229{
6230#ifdef CONFIG_RPS
6231 while (remsd) {
6232 struct softnet_data *next = remsd->rps_ipi_next;
6233
6234 if (cpu_online(remsd->cpu))
6235 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6236 remsd = next;
6237 }
6238#endif
6239}
6240
e326bed2 6241/*
855abcf0 6242 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
6243 * Note: called with local irq disabled, but exits with local irq enabled.
6244 */
6245static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6246{
6247#ifdef CONFIG_RPS
6248 struct softnet_data *remsd = sd->rps_ipi_list;
6249
6250 if (remsd) {
6251 sd->rps_ipi_list = NULL;
6252
6253 local_irq_enable();
6254
6255 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 6256 net_rps_send_ipi(remsd);
e326bed2
ED
6257 } else
6258#endif
6259 local_irq_enable();
6260}
6261
d75b1ade
ED
6262static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6263{
6264#ifdef CONFIG_RPS
6265 return sd->rps_ipi_list != NULL;
6266#else
6267 return false;
6268#endif
6269}
6270
bea3348e 6271static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 6272{
eecfd7c4 6273 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
6274 bool again = true;
6275 int work = 0;
1da177e4 6276
e326bed2
ED
6277 /* Check if we have pending ipi, its better to send them now,
6278 * not waiting net_rx_action() end.
6279 */
d75b1ade 6280 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
6281 local_irq_disable();
6282 net_rps_action_and_irq_enable(sd);
6283 }
d75b1ade 6284
3d48b53f 6285 napi->weight = dev_rx_weight;
145dd5f9 6286 while (again) {
1da177e4 6287 struct sk_buff *skb;
6e7676c1
CG
6288
6289 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 6290 rcu_read_lock();
6e7676c1 6291 __netif_receive_skb(skb);
2c17d27c 6292 rcu_read_unlock();
76cc8b13 6293 input_queue_head_incr(sd);
145dd5f9 6294 if (++work >= quota)
76cc8b13 6295 return work;
145dd5f9 6296
6e7676c1 6297 }
1da177e4 6298
145dd5f9 6299 local_irq_disable();
e36fa2f7 6300 rps_lock(sd);
11ef7a89 6301 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
6302 /*
6303 * Inline a custom version of __napi_complete().
6304 * only current cpu owns and manipulates this napi,
11ef7a89
TH
6305 * and NAPI_STATE_SCHED is the only possible flag set
6306 * on backlog.
6307 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
6308 * and we dont need an smp_mb() memory barrier.
6309 */
eecfd7c4 6310 napi->state = 0;
145dd5f9
PA
6311 again = false;
6312 } else {
6313 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6314 &sd->process_queue);
bea3348e 6315 }
e36fa2f7 6316 rps_unlock(sd);
145dd5f9 6317 local_irq_enable();
6e7676c1 6318 }
1da177e4 6319
bea3348e
SH
6320 return work;
6321}
1da177e4 6322
bea3348e
SH
6323/**
6324 * __napi_schedule - schedule for receive
c4ea43c5 6325 * @n: entry to schedule
bea3348e 6326 *
bc9ad166
ED
6327 * The entry's receive function will be scheduled to run.
6328 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 6329 */
b5606c2d 6330void __napi_schedule(struct napi_struct *n)
bea3348e
SH
6331{
6332 unsigned long flags;
1da177e4 6333
bea3348e 6334 local_irq_save(flags);
903ceff7 6335 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 6336 local_irq_restore(flags);
1da177e4 6337}
bea3348e
SH
6338EXPORT_SYMBOL(__napi_schedule);
6339
39e6c820
ED
6340/**
6341 * napi_schedule_prep - check if napi can be scheduled
6342 * @n: napi context
6343 *
6344 * Test if NAPI routine is already running, and if not mark
ee1a4c84 6345 * it as running. This is used as a condition variable to
39e6c820
ED
6346 * insure only one NAPI poll instance runs. We also make
6347 * sure there is no pending NAPI disable.
6348 */
6349bool napi_schedule_prep(struct napi_struct *n)
6350{
6351 unsigned long val, new;
6352
6353 do {
6354 val = READ_ONCE(n->state);
6355 if (unlikely(val & NAPIF_STATE_DISABLE))
6356 return false;
6357 new = val | NAPIF_STATE_SCHED;
6358
6359 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6360 * This was suggested by Alexander Duyck, as compiler
6361 * emits better code than :
6362 * if (val & NAPIF_STATE_SCHED)
6363 * new |= NAPIF_STATE_MISSED;
6364 */
6365 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6366 NAPIF_STATE_MISSED;
6367 } while (cmpxchg(&n->state, val, new) != val);
6368
6369 return !(val & NAPIF_STATE_SCHED);
6370}
6371EXPORT_SYMBOL(napi_schedule_prep);
6372
bc9ad166
ED
6373/**
6374 * __napi_schedule_irqoff - schedule for receive
6375 * @n: entry to schedule
6376 *
6377 * Variant of __napi_schedule() assuming hard irqs are masked
6378 */
6379void __napi_schedule_irqoff(struct napi_struct *n)
6380{
6381 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6382}
6383EXPORT_SYMBOL(__napi_schedule_irqoff);
6384
364b6055 6385bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6386{
6f8b12d6
ED
6387 unsigned long flags, val, new, timeout = 0;
6388 bool ret = true;
d565b0a1
HX
6389
6390 /*
217f6974
ED
6391 * 1) Don't let napi dequeue from the cpu poll list
6392 * just in case its running on a different cpu.
6393 * 2) If we are busy polling, do nothing here, we have
6394 * the guarantee we will be called later.
d565b0a1 6395 */
217f6974
ED
6396 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6397 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6398 return false;
d565b0a1 6399
6f8b12d6
ED
6400 if (work_done) {
6401 if (n->gro_bitmask)
7e417a66
ED
6402 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6403 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6f8b12d6
ED
6404 }
6405 if (n->defer_hard_irqs_count > 0) {
6406 n->defer_hard_irqs_count--;
7e417a66 6407 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6f8b12d6
ED
6408 if (timeout)
6409 ret = false;
6410 }
6411 if (n->gro_bitmask) {
605108ac
PA
6412 /* When the NAPI instance uses a timeout and keeps postponing
6413 * it, we need to bound somehow the time packets are kept in
6414 * the GRO layer
6415 */
6416 napi_gro_flush(n, !!timeout);
3b47d303 6417 }
c8079432
MM
6418
6419 gro_normal_list(n);
6420
02c1602e 6421 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6422 /* If n->poll_list is not empty, we need to mask irqs */
6423 local_irq_save(flags);
02c1602e 6424 list_del_init(&n->poll_list);
d75b1ade
ED
6425 local_irq_restore(flags);
6426 }
39e6c820
ED
6427
6428 do {
6429 val = READ_ONCE(n->state);
6430
6431 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6432
6433 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6434
6435 /* If STATE_MISSED was set, leave STATE_SCHED set,
6436 * because we will call napi->poll() one more time.
6437 * This C code was suggested by Alexander Duyck to help gcc.
6438 */
6439 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6440 NAPIF_STATE_SCHED;
6441 } while (cmpxchg(&n->state, val, new) != val);
6442
6443 if (unlikely(val & NAPIF_STATE_MISSED)) {
6444 __napi_schedule(n);
6445 return false;
6446 }
6447
6f8b12d6
ED
6448 if (timeout)
6449 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6450 HRTIMER_MODE_REL_PINNED);
6451 return ret;
d565b0a1 6452}
3b47d303 6453EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6454
af12fa6e 6455/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6456static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6457{
6458 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6459 struct napi_struct *napi;
6460
6461 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6462 if (napi->napi_id == napi_id)
6463 return napi;
6464
6465 return NULL;
6466}
02d62e86
ED
6467
6468#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6469
ce6aea93 6470#define BUSY_POLL_BUDGET 8
217f6974
ED
6471
6472static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6473{
6474 int rc;
6475
39e6c820
ED
6476 /* Busy polling means there is a high chance device driver hard irq
6477 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6478 * set in napi_schedule_prep().
6479 * Since we are about to call napi->poll() once more, we can safely
6480 * clear NAPI_STATE_MISSED.
6481 *
6482 * Note: x86 could use a single "lock and ..." instruction
6483 * to perform these two clear_bit()
6484 */
6485 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6486 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6487
6488 local_bh_disable();
6489
6490 /* All we really want here is to re-enable device interrupts.
6491 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6492 */
6493 rc = napi->poll(napi, BUSY_POLL_BUDGET);
323ebb61
EC
6494 /* We can't gro_normal_list() here, because napi->poll() might have
6495 * rearmed the napi (napi_complete_done()) in which case it could
6496 * already be running on another CPU.
6497 */
1e22391e 6498 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974 6499 netpoll_poll_unlock(have_poll_lock);
323ebb61
EC
6500 if (rc == BUSY_POLL_BUDGET) {
6501 /* As the whole budget was spent, we still own the napi so can
6502 * safely handle the rx_list.
6503 */
6504 gro_normal_list(napi);
217f6974 6505 __napi_schedule(napi);
323ebb61 6506 }
217f6974 6507 local_bh_enable();
217f6974
ED
6508}
6509
7db6b048
SS
6510void napi_busy_loop(unsigned int napi_id,
6511 bool (*loop_end)(void *, unsigned long),
6512 void *loop_end_arg)
02d62e86 6513{
7db6b048 6514 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6515 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6516 void *have_poll_lock = NULL;
02d62e86 6517 struct napi_struct *napi;
217f6974
ED
6518
6519restart:
217f6974 6520 napi_poll = NULL;
02d62e86 6521
2a028ecb 6522 rcu_read_lock();
02d62e86 6523
545cd5e5 6524 napi = napi_by_id(napi_id);
02d62e86
ED
6525 if (!napi)
6526 goto out;
6527
217f6974
ED
6528 preempt_disable();
6529 for (;;) {
2b5cd0df
AD
6530 int work = 0;
6531
2a028ecb 6532 local_bh_disable();
217f6974
ED
6533 if (!napi_poll) {
6534 unsigned long val = READ_ONCE(napi->state);
6535
6536 /* If multiple threads are competing for this napi,
6537 * we avoid dirtying napi->state as much as we can.
6538 */
6539 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6540 NAPIF_STATE_IN_BUSY_POLL))
6541 goto count;
6542 if (cmpxchg(&napi->state, val,
6543 val | NAPIF_STATE_IN_BUSY_POLL |
6544 NAPIF_STATE_SCHED) != val)
6545 goto count;
6546 have_poll_lock = netpoll_poll_lock(napi);
6547 napi_poll = napi->poll;
6548 }
2b5cd0df
AD
6549 work = napi_poll(napi, BUSY_POLL_BUDGET);
6550 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
323ebb61 6551 gro_normal_list(napi);
217f6974 6552count:
2b5cd0df 6553 if (work > 0)
7db6b048 6554 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6555 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6556 local_bh_enable();
02d62e86 6557
7db6b048 6558 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6559 break;
02d62e86 6560
217f6974
ED
6561 if (unlikely(need_resched())) {
6562 if (napi_poll)
6563 busy_poll_stop(napi, have_poll_lock);
6564 preempt_enable();
6565 rcu_read_unlock();
6566 cond_resched();
7db6b048 6567 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6568 return;
217f6974
ED
6569 goto restart;
6570 }
6cdf89b1 6571 cpu_relax();
217f6974
ED
6572 }
6573 if (napi_poll)
6574 busy_poll_stop(napi, have_poll_lock);
6575 preempt_enable();
02d62e86 6576out:
2a028ecb 6577 rcu_read_unlock();
02d62e86 6578}
7db6b048 6579EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6580
6581#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6582
149d6ad8 6583static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6584{
4d092dd2 6585 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
52bd2d62 6586 return;
af12fa6e 6587
52bd2d62 6588 spin_lock(&napi_hash_lock);
af12fa6e 6589
545cd5e5 6590 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6591 do {
545cd5e5
AD
6592 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6593 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6594 } while (napi_by_id(napi_gen_id));
6595 napi->napi_id = napi_gen_id;
af12fa6e 6596
52bd2d62
ED
6597 hlist_add_head_rcu(&napi->napi_hash_node,
6598 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6599
52bd2d62 6600 spin_unlock(&napi_hash_lock);
af12fa6e 6601}
af12fa6e
ET
6602
6603/* Warning : caller is responsible to make sure rcu grace period
6604 * is respected before freeing memory containing @napi
6605 */
5198d545 6606static void napi_hash_del(struct napi_struct *napi)
af12fa6e
ET
6607{
6608 spin_lock(&napi_hash_lock);
6609
4d092dd2 6610 hlist_del_init_rcu(&napi->napi_hash_node);
5198d545 6611
af12fa6e
ET
6612 spin_unlock(&napi_hash_lock);
6613}
af12fa6e 6614
3b47d303
ED
6615static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6616{
6617 struct napi_struct *napi;
6618
6619 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6620
6621 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6622 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6623 */
6f8b12d6 6624 if (!napi_disable_pending(napi) &&
39e6c820
ED
6625 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6626 __napi_schedule_irqoff(napi);
3b47d303
ED
6627
6628 return HRTIMER_NORESTART;
6629}
6630
7c4ec749 6631static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6632{
07d78363
DM
6633 int i;
6634
6312fe77
LR
6635 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6636 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6637 napi->gro_hash[i].count = 0;
6638 }
7c4ec749
DM
6639 napi->gro_bitmask = 0;
6640}
6641
6642void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6643 int (*poll)(struct napi_struct *, int), int weight)
6644{
4d092dd2
JK
6645 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6646 return;
6647
7c4ec749 6648 INIT_LIST_HEAD(&napi->poll_list);
4d092dd2 6649 INIT_HLIST_NODE(&napi->napi_hash_node);
7c4ec749
DM
6650 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6651 napi->timer.function = napi_watchdog;
6652 init_gro_hash(napi);
5d38a079 6653 napi->skb = NULL;
323ebb61
EC
6654 INIT_LIST_HEAD(&napi->rx_list);
6655 napi->rx_count = 0;
d565b0a1 6656 napi->poll = poll;
82dc3c63 6657 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6658 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6659 weight);
d565b0a1 6660 napi->weight = weight;
d565b0a1 6661 napi->dev = dev;
5d38a079 6662#ifdef CONFIG_NETPOLL
d565b0a1
HX
6663 napi->poll_owner = -1;
6664#endif
6665 set_bit(NAPI_STATE_SCHED, &napi->state);
96e97bc0
JK
6666 set_bit(NAPI_STATE_NPSVC, &napi->state);
6667 list_add_rcu(&napi->dev_list, &dev->napi_list);
93d05d4a 6668 napi_hash_add(napi);
d565b0a1
HX
6669}
6670EXPORT_SYMBOL(netif_napi_add);
6671
3b47d303
ED
6672void napi_disable(struct napi_struct *n)
6673{
6674 might_sleep();
6675 set_bit(NAPI_STATE_DISABLE, &n->state);
6676
6677 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6678 msleep(1);
2d8bff12
NH
6679 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6680 msleep(1);
3b47d303
ED
6681
6682 hrtimer_cancel(&n->timer);
6683
6684 clear_bit(NAPI_STATE_DISABLE, &n->state);
6685}
6686EXPORT_SYMBOL(napi_disable);
6687
07d78363 6688static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6689{
07d78363 6690 int i;
d4546c25 6691
07d78363
DM
6692 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6693 struct sk_buff *skb, *n;
6694
6312fe77 6695 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6696 kfree_skb(skb);
6312fe77 6697 napi->gro_hash[i].count = 0;
07d78363 6698 }
d4546c25
DM
6699}
6700
93d05d4a 6701/* Must be called in process context */
5198d545 6702void __netif_napi_del(struct napi_struct *napi)
d565b0a1 6703{
4d092dd2
JK
6704 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6705 return;
6706
5198d545 6707 napi_hash_del(napi);
5251ef82 6708 list_del_rcu(&napi->dev_list);
76620aaf 6709 napi_free_frags(napi);
d565b0a1 6710
07d78363 6711 flush_gro_hash(napi);
d9f37d01 6712 napi->gro_bitmask = 0;
d565b0a1 6713}
5198d545 6714EXPORT_SYMBOL(__netif_napi_del);
d565b0a1 6715
726ce70e
HX
6716static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6717{
6718 void *have;
6719 int work, weight;
6720
6721 list_del_init(&n->poll_list);
6722
6723 have = netpoll_poll_lock(n);
6724
6725 weight = n->weight;
6726
6727 /* This NAPI_STATE_SCHED test is for avoiding a race
6728 * with netpoll's poll_napi(). Only the entity which
6729 * obtains the lock and sees NAPI_STATE_SCHED set will
6730 * actually make the ->poll() call. Therefore we avoid
6731 * accidentally calling ->poll() when NAPI is not scheduled.
6732 */
6733 work = 0;
6734 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6735 work = n->poll(n, weight);
1db19db7 6736 trace_napi_poll(n, work, weight);
726ce70e
HX
6737 }
6738
427d5838
ED
6739 if (unlikely(work > weight))
6740 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6741 n->poll, work, weight);
726ce70e
HX
6742
6743 if (likely(work < weight))
6744 goto out_unlock;
6745
6746 /* Drivers must not modify the NAPI state if they
6747 * consume the entire weight. In such cases this code
6748 * still "owns" the NAPI instance and therefore can
6749 * move the instance around on the list at-will.
6750 */
6751 if (unlikely(napi_disable_pending(n))) {
6752 napi_complete(n);
6753 goto out_unlock;
6754 }
6755
d9f37d01 6756 if (n->gro_bitmask) {
726ce70e
HX
6757 /* flush too old packets
6758 * If HZ < 1000, flush all packets.
6759 */
6760 napi_gro_flush(n, HZ >= 1000);
6761 }
6762
c8079432
MM
6763 gro_normal_list(n);
6764
001ce546
HX
6765 /* Some drivers may have called napi_schedule
6766 * prior to exhausting their budget.
6767 */
6768 if (unlikely(!list_empty(&n->poll_list))) {
6769 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6770 n->dev ? n->dev->name : "backlog");
6771 goto out_unlock;
6772 }
6773
726ce70e
HX
6774 list_add_tail(&n->poll_list, repoll);
6775
6776out_unlock:
6777 netpoll_poll_unlock(have);
6778
6779 return work;
6780}
6781
0766f788 6782static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6783{
903ceff7 6784 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6785 unsigned long time_limit = jiffies +
6786 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6787 int budget = netdev_budget;
d75b1ade
ED
6788 LIST_HEAD(list);
6789 LIST_HEAD(repoll);
53fb95d3 6790
1da177e4 6791 local_irq_disable();
d75b1ade
ED
6792 list_splice_init(&sd->poll_list, &list);
6793 local_irq_enable();
1da177e4 6794
ceb8d5bf 6795 for (;;) {
bea3348e 6796 struct napi_struct *n;
1da177e4 6797
ceb8d5bf
HX
6798 if (list_empty(&list)) {
6799 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6800 goto out;
ceb8d5bf
HX
6801 break;
6802 }
6803
6bd373eb
HX
6804 n = list_first_entry(&list, struct napi_struct, poll_list);
6805 budget -= napi_poll(n, &repoll);
6806
d75b1ade 6807 /* If softirq window is exhausted then punt.
24f8b238
SH
6808 * Allow this to run for 2 jiffies since which will allow
6809 * an average latency of 1.5/HZ.
bea3348e 6810 */
ceb8d5bf
HX
6811 if (unlikely(budget <= 0 ||
6812 time_after_eq(jiffies, time_limit))) {
6813 sd->time_squeeze++;
6814 break;
6815 }
1da177e4 6816 }
d75b1ade 6817
d75b1ade
ED
6818 local_irq_disable();
6819
6820 list_splice_tail_init(&sd->poll_list, &list);
6821 list_splice_tail(&repoll, &list);
6822 list_splice(&list, &sd->poll_list);
6823 if (!list_empty(&sd->poll_list))
6824 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6825
e326bed2 6826 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6827out:
6828 __kfree_skb_flush();
1da177e4
LT
6829}
6830
aa9d8560 6831struct netdev_adjacent {
9ff162a8 6832 struct net_device *dev;
5d261913
VF
6833
6834 /* upper master flag, there can only be one master device per list */
9ff162a8 6835 bool master;
5d261913 6836
32b6d34f
TY
6837 /* lookup ignore flag */
6838 bool ignore;
6839
5d261913
VF
6840 /* counter for the number of times this device was added to us */
6841 u16 ref_nr;
6842
402dae96
VF
6843 /* private field for the users */
6844 void *private;
6845
9ff162a8
JP
6846 struct list_head list;
6847 struct rcu_head rcu;
9ff162a8
JP
6848};
6849
6ea29da1 6850static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6851 struct list_head *adj_list)
9ff162a8 6852{
5d261913 6853 struct netdev_adjacent *adj;
5d261913 6854
2f268f12 6855 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6856 if (adj->dev == adj_dev)
6857 return adj;
9ff162a8
JP
6858 }
6859 return NULL;
6860}
6861
32b6d34f 6862static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
f1170fd4
DA
6863{
6864 struct net_device *dev = data;
6865
6866 return upper_dev == dev;
6867}
6868
9ff162a8
JP
6869/**
6870 * netdev_has_upper_dev - Check if device is linked to an upper device
6871 * @dev: device
6872 * @upper_dev: upper device to check
6873 *
6874 * Find out if a device is linked to specified upper device and return true
6875 * in case it is. Note that this checks only immediate upper device,
6876 * not through a complete stack of devices. The caller must hold the RTNL lock.
6877 */
6878bool netdev_has_upper_dev(struct net_device *dev,
6879 struct net_device *upper_dev)
6880{
6881 ASSERT_RTNL();
6882
32b6d34f 6883 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
f1170fd4 6884 upper_dev);
9ff162a8
JP
6885}
6886EXPORT_SYMBOL(netdev_has_upper_dev);
6887
1a3f060c
DA
6888/**
6889 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6890 * @dev: device
6891 * @upper_dev: upper device to check
6892 *
6893 * Find out if a device is linked to specified upper device and return true
6894 * in case it is. Note that this checks the entire upper device chain.
6895 * The caller must hold rcu lock.
6896 */
6897
1a3f060c
DA
6898bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6899 struct net_device *upper_dev)
6900{
32b6d34f 6901 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
1a3f060c
DA
6902 upper_dev);
6903}
6904EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6905
9ff162a8
JP
6906/**
6907 * netdev_has_any_upper_dev - Check if device is linked to some device
6908 * @dev: device
6909 *
6910 * Find out if a device is linked to an upper device and return true in case
6911 * it is. The caller must hold the RTNL lock.
6912 */
25cc72a3 6913bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6914{
6915 ASSERT_RTNL();
6916
f1170fd4 6917 return !list_empty(&dev->adj_list.upper);
9ff162a8 6918}
25cc72a3 6919EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6920
6921/**
6922 * netdev_master_upper_dev_get - Get master upper device
6923 * @dev: device
6924 *
6925 * Find a master upper device and return pointer to it or NULL in case
6926 * it's not there. The caller must hold the RTNL lock.
6927 */
6928struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6929{
aa9d8560 6930 struct netdev_adjacent *upper;
9ff162a8
JP
6931
6932 ASSERT_RTNL();
6933
2f268f12 6934 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6935 return NULL;
6936
2f268f12 6937 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6938 struct netdev_adjacent, list);
9ff162a8
JP
6939 if (likely(upper->master))
6940 return upper->dev;
6941 return NULL;
6942}
6943EXPORT_SYMBOL(netdev_master_upper_dev_get);
6944
32b6d34f
TY
6945static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6946{
6947 struct netdev_adjacent *upper;
6948
6949 ASSERT_RTNL();
6950
6951 if (list_empty(&dev->adj_list.upper))
6952 return NULL;
6953
6954 upper = list_first_entry(&dev->adj_list.upper,
6955 struct netdev_adjacent, list);
6956 if (likely(upper->master) && !upper->ignore)
6957 return upper->dev;
6958 return NULL;
6959}
6960
0f524a80
DA
6961/**
6962 * netdev_has_any_lower_dev - Check if device is linked to some device
6963 * @dev: device
6964 *
6965 * Find out if a device is linked to a lower device and return true in case
6966 * it is. The caller must hold the RTNL lock.
6967 */
6968static bool netdev_has_any_lower_dev(struct net_device *dev)
6969{
6970 ASSERT_RTNL();
6971
6972 return !list_empty(&dev->adj_list.lower);
6973}
6974
b6ccba4c
VF
6975void *netdev_adjacent_get_private(struct list_head *adj_list)
6976{
6977 struct netdev_adjacent *adj;
6978
6979 adj = list_entry(adj_list, struct netdev_adjacent, list);
6980
6981 return adj->private;
6982}
6983EXPORT_SYMBOL(netdev_adjacent_get_private);
6984
44a40855
VY
6985/**
6986 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6987 * @dev: device
6988 * @iter: list_head ** of the current position
6989 *
6990 * Gets the next device from the dev's upper list, starting from iter
6991 * position. The caller must hold RCU read lock.
6992 */
6993struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6994 struct list_head **iter)
6995{
6996 struct netdev_adjacent *upper;
6997
6998 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6999
7000 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7001
7002 if (&upper->list == &dev->adj_list.upper)
7003 return NULL;
7004
7005 *iter = &upper->list;
7006
7007 return upper->dev;
7008}
7009EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7010
32b6d34f
TY
7011static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7012 struct list_head **iter,
7013 bool *ignore)
5343da4c
TY
7014{
7015 struct netdev_adjacent *upper;
7016
7017 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7018
7019 if (&upper->list == &dev->adj_list.upper)
7020 return NULL;
7021
7022 *iter = &upper->list;
32b6d34f 7023 *ignore = upper->ignore;
5343da4c
TY
7024
7025 return upper->dev;
7026}
7027
1a3f060c
DA
7028static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7029 struct list_head **iter)
7030{
7031 struct netdev_adjacent *upper;
7032
7033 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7034
7035 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7036
7037 if (&upper->list == &dev->adj_list.upper)
7038 return NULL;
7039
7040 *iter = &upper->list;
7041
7042 return upper->dev;
7043}
7044
32b6d34f
TY
7045static int __netdev_walk_all_upper_dev(struct net_device *dev,
7046 int (*fn)(struct net_device *dev,
7047 void *data),
7048 void *data)
5343da4c
TY
7049{
7050 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7051 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7052 int ret, cur = 0;
32b6d34f 7053 bool ignore;
5343da4c
TY
7054
7055 now = dev;
7056 iter = &dev->adj_list.upper;
7057
7058 while (1) {
7059 if (now != dev) {
7060 ret = fn(now, data);
7061 if (ret)
7062 return ret;
7063 }
7064
7065 next = NULL;
7066 while (1) {
32b6d34f 7067 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
7068 if (!udev)
7069 break;
32b6d34f
TY
7070 if (ignore)
7071 continue;
5343da4c
TY
7072
7073 next = udev;
7074 niter = &udev->adj_list.upper;
7075 dev_stack[cur] = now;
7076 iter_stack[cur++] = iter;
7077 break;
7078 }
7079
7080 if (!next) {
7081 if (!cur)
7082 return 0;
7083 next = dev_stack[--cur];
7084 niter = iter_stack[cur];
7085 }
7086
7087 now = next;
7088 iter = niter;
7089 }
7090
7091 return 0;
7092}
7093
1a3f060c
DA
7094int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7095 int (*fn)(struct net_device *dev,
7096 void *data),
7097 void *data)
7098{
5343da4c
TY
7099 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7100 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7101 int ret, cur = 0;
1a3f060c 7102
5343da4c
TY
7103 now = dev;
7104 iter = &dev->adj_list.upper;
1a3f060c 7105
5343da4c
TY
7106 while (1) {
7107 if (now != dev) {
7108 ret = fn(now, data);
7109 if (ret)
7110 return ret;
7111 }
7112
7113 next = NULL;
7114 while (1) {
7115 udev = netdev_next_upper_dev_rcu(now, &iter);
7116 if (!udev)
7117 break;
7118
7119 next = udev;
7120 niter = &udev->adj_list.upper;
7121 dev_stack[cur] = now;
7122 iter_stack[cur++] = iter;
7123 break;
7124 }
7125
7126 if (!next) {
7127 if (!cur)
7128 return 0;
7129 next = dev_stack[--cur];
7130 niter = iter_stack[cur];
7131 }
7132
7133 now = next;
7134 iter = niter;
1a3f060c
DA
7135 }
7136
7137 return 0;
7138}
7139EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7140
32b6d34f
TY
7141static bool __netdev_has_upper_dev(struct net_device *dev,
7142 struct net_device *upper_dev)
7143{
7144 ASSERT_RTNL();
7145
7146 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7147 upper_dev);
7148}
7149
31088a11
VF
7150/**
7151 * netdev_lower_get_next_private - Get the next ->private from the
7152 * lower neighbour list
7153 * @dev: device
7154 * @iter: list_head ** of the current position
7155 *
7156 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7157 * list, starting from iter position. The caller must hold either hold the
7158 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 7159 * list will remain unchanged.
31088a11
VF
7160 */
7161void *netdev_lower_get_next_private(struct net_device *dev,
7162 struct list_head **iter)
7163{
7164 struct netdev_adjacent *lower;
7165
7166 lower = list_entry(*iter, struct netdev_adjacent, list);
7167
7168 if (&lower->list == &dev->adj_list.lower)
7169 return NULL;
7170
6859e7df 7171 *iter = lower->list.next;
31088a11
VF
7172
7173 return lower->private;
7174}
7175EXPORT_SYMBOL(netdev_lower_get_next_private);
7176
7177/**
7178 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7179 * lower neighbour list, RCU
7180 * variant
7181 * @dev: device
7182 * @iter: list_head ** of the current position
7183 *
7184 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7185 * list, starting from iter position. The caller must hold RCU read lock.
7186 */
7187void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7188 struct list_head **iter)
7189{
7190 struct netdev_adjacent *lower;
7191
7192 WARN_ON_ONCE(!rcu_read_lock_held());
7193
7194 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7195
7196 if (&lower->list == &dev->adj_list.lower)
7197 return NULL;
7198
6859e7df 7199 *iter = &lower->list;
31088a11
VF
7200
7201 return lower->private;
7202}
7203EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7204
4085ebe8
VY
7205/**
7206 * netdev_lower_get_next - Get the next device from the lower neighbour
7207 * list
7208 * @dev: device
7209 * @iter: list_head ** of the current position
7210 *
7211 * Gets the next netdev_adjacent from the dev's lower neighbour
7212 * list, starting from iter position. The caller must hold RTNL lock or
7213 * its own locking that guarantees that the neighbour lower
b469139e 7214 * list will remain unchanged.
4085ebe8
VY
7215 */
7216void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7217{
7218 struct netdev_adjacent *lower;
7219
cfdd28be 7220 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7221
7222 if (&lower->list == &dev->adj_list.lower)
7223 return NULL;
7224
cfdd28be 7225 *iter = lower->list.next;
4085ebe8
VY
7226
7227 return lower->dev;
7228}
7229EXPORT_SYMBOL(netdev_lower_get_next);
7230
1a3f060c
DA
7231static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7232 struct list_head **iter)
7233{
7234 struct netdev_adjacent *lower;
7235
46b5ab1a 7236 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7237
7238 if (&lower->list == &dev->adj_list.lower)
7239 return NULL;
7240
46b5ab1a 7241 *iter = &lower->list;
1a3f060c
DA
7242
7243 return lower->dev;
7244}
7245
32b6d34f
TY
7246static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7247 struct list_head **iter,
7248 bool *ignore)
7249{
7250 struct netdev_adjacent *lower;
7251
7252 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7253
7254 if (&lower->list == &dev->adj_list.lower)
7255 return NULL;
7256
7257 *iter = &lower->list;
7258 *ignore = lower->ignore;
7259
7260 return lower->dev;
7261}
7262
1a3f060c
DA
7263int netdev_walk_all_lower_dev(struct net_device *dev,
7264 int (*fn)(struct net_device *dev,
7265 void *data),
7266 void *data)
7267{
5343da4c
TY
7268 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7269 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7270 int ret, cur = 0;
1a3f060c 7271
5343da4c
TY
7272 now = dev;
7273 iter = &dev->adj_list.lower;
1a3f060c 7274
5343da4c
TY
7275 while (1) {
7276 if (now != dev) {
7277 ret = fn(now, data);
7278 if (ret)
7279 return ret;
7280 }
7281
7282 next = NULL;
7283 while (1) {
7284 ldev = netdev_next_lower_dev(now, &iter);
7285 if (!ldev)
7286 break;
7287
7288 next = ldev;
7289 niter = &ldev->adj_list.lower;
7290 dev_stack[cur] = now;
7291 iter_stack[cur++] = iter;
7292 break;
7293 }
7294
7295 if (!next) {
7296 if (!cur)
7297 return 0;
7298 next = dev_stack[--cur];
7299 niter = iter_stack[cur];
7300 }
7301
7302 now = next;
7303 iter = niter;
1a3f060c
DA
7304 }
7305
7306 return 0;
7307}
7308EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7309
32b6d34f
TY
7310static int __netdev_walk_all_lower_dev(struct net_device *dev,
7311 int (*fn)(struct net_device *dev,
7312 void *data),
7313 void *data)
7314{
7315 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7316 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7317 int ret, cur = 0;
7318 bool ignore;
7319
7320 now = dev;
7321 iter = &dev->adj_list.lower;
7322
7323 while (1) {
7324 if (now != dev) {
7325 ret = fn(now, data);
7326 if (ret)
7327 return ret;
7328 }
7329
7330 next = NULL;
7331 while (1) {
7332 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7333 if (!ldev)
7334 break;
7335 if (ignore)
7336 continue;
7337
7338 next = ldev;
7339 niter = &ldev->adj_list.lower;
7340 dev_stack[cur] = now;
7341 iter_stack[cur++] = iter;
7342 break;
7343 }
7344
7345 if (!next) {
7346 if (!cur)
7347 return 0;
7348 next = dev_stack[--cur];
7349 niter = iter_stack[cur];
7350 }
7351
7352 now = next;
7353 iter = niter;
7354 }
7355
7356 return 0;
7357}
7358
7151affe
TY
7359struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7360 struct list_head **iter)
1a3f060c
DA
7361{
7362 struct netdev_adjacent *lower;
7363
7364 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7365 if (&lower->list == &dev->adj_list.lower)
7366 return NULL;
7367
7368 *iter = &lower->list;
7369
7370 return lower->dev;
7371}
7151affe 7372EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
1a3f060c 7373
5343da4c
TY
7374static u8 __netdev_upper_depth(struct net_device *dev)
7375{
7376 struct net_device *udev;
7377 struct list_head *iter;
7378 u8 max_depth = 0;
32b6d34f 7379 bool ignore;
5343da4c
TY
7380
7381 for (iter = &dev->adj_list.upper,
32b6d34f 7382 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7383 udev;
32b6d34f
TY
7384 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7385 if (ignore)
7386 continue;
5343da4c
TY
7387 if (max_depth < udev->upper_level)
7388 max_depth = udev->upper_level;
7389 }
7390
7391 return max_depth;
7392}
7393
7394static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7395{
7396 struct net_device *ldev;
7397 struct list_head *iter;
5343da4c 7398 u8 max_depth = 0;
32b6d34f 7399 bool ignore;
1a3f060c
DA
7400
7401 for (iter = &dev->adj_list.lower,
32b6d34f 7402 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7403 ldev;
32b6d34f
TY
7404 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7405 if (ignore)
7406 continue;
5343da4c
TY
7407 if (max_depth < ldev->lower_level)
7408 max_depth = ldev->lower_level;
7409 }
1a3f060c 7410
5343da4c
TY
7411 return max_depth;
7412}
7413
7414static int __netdev_update_upper_level(struct net_device *dev, void *data)
7415{
7416 dev->upper_level = __netdev_upper_depth(dev) + 1;
7417 return 0;
7418}
7419
7420static int __netdev_update_lower_level(struct net_device *dev, void *data)
7421{
7422 dev->lower_level = __netdev_lower_depth(dev) + 1;
7423 return 0;
7424}
7425
7426int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7427 int (*fn)(struct net_device *dev,
7428 void *data),
7429 void *data)
7430{
7431 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7432 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7433 int ret, cur = 0;
7434
7435 now = dev;
7436 iter = &dev->adj_list.lower;
7437
7438 while (1) {
7439 if (now != dev) {
7440 ret = fn(now, data);
7441 if (ret)
7442 return ret;
7443 }
7444
7445 next = NULL;
7446 while (1) {
7447 ldev = netdev_next_lower_dev_rcu(now, &iter);
7448 if (!ldev)
7449 break;
7450
7451 next = ldev;
7452 niter = &ldev->adj_list.lower;
7453 dev_stack[cur] = now;
7454 iter_stack[cur++] = iter;
7455 break;
7456 }
7457
7458 if (!next) {
7459 if (!cur)
7460 return 0;
7461 next = dev_stack[--cur];
7462 niter = iter_stack[cur];
7463 }
7464
7465 now = next;
7466 iter = niter;
1a3f060c
DA
7467 }
7468
7469 return 0;
7470}
7471EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7472
e001bfad 7473/**
7474 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7475 * lower neighbour list, RCU
7476 * variant
7477 * @dev: device
7478 *
7479 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7480 * list. The caller must hold RCU read lock.
7481 */
7482void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7483{
7484 struct netdev_adjacent *lower;
7485
7486 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7487 struct netdev_adjacent, list);
7488 if (lower)
7489 return lower->private;
7490 return NULL;
7491}
7492EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7493
9ff162a8
JP
7494/**
7495 * netdev_master_upper_dev_get_rcu - Get master upper device
7496 * @dev: device
7497 *
7498 * Find a master upper device and return pointer to it or NULL in case
7499 * it's not there. The caller must hold the RCU read lock.
7500 */
7501struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7502{
aa9d8560 7503 struct netdev_adjacent *upper;
9ff162a8 7504
2f268f12 7505 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7506 struct netdev_adjacent, list);
9ff162a8
JP
7507 if (upper && likely(upper->master))
7508 return upper->dev;
7509 return NULL;
7510}
7511EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7512
0a59f3a9 7513static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7514 struct net_device *adj_dev,
7515 struct list_head *dev_list)
7516{
7517 char linkname[IFNAMSIZ+7];
f4563a75 7518
3ee32707
VF
7519 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7520 "upper_%s" : "lower_%s", adj_dev->name);
7521 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7522 linkname);
7523}
0a59f3a9 7524static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7525 char *name,
7526 struct list_head *dev_list)
7527{
7528 char linkname[IFNAMSIZ+7];
f4563a75 7529
3ee32707
VF
7530 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7531 "upper_%s" : "lower_%s", name);
7532 sysfs_remove_link(&(dev->dev.kobj), linkname);
7533}
7534
7ce64c79
AF
7535static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7536 struct net_device *adj_dev,
7537 struct list_head *dev_list)
7538{
7539 return (dev_list == &dev->adj_list.upper ||
7540 dev_list == &dev->adj_list.lower) &&
7541 net_eq(dev_net(dev), dev_net(adj_dev));
7542}
3ee32707 7543
5d261913
VF
7544static int __netdev_adjacent_dev_insert(struct net_device *dev,
7545 struct net_device *adj_dev,
7863c054 7546 struct list_head *dev_list,
402dae96 7547 void *private, bool master)
5d261913
VF
7548{
7549 struct netdev_adjacent *adj;
842d67a7 7550 int ret;
5d261913 7551
6ea29da1 7552 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7553
7554 if (adj) {
790510d9 7555 adj->ref_nr += 1;
67b62f98
DA
7556 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7557 dev->name, adj_dev->name, adj->ref_nr);
7558
5d261913
VF
7559 return 0;
7560 }
7561
7562 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7563 if (!adj)
7564 return -ENOMEM;
7565
7566 adj->dev = adj_dev;
7567 adj->master = master;
790510d9 7568 adj->ref_nr = 1;
402dae96 7569 adj->private = private;
32b6d34f 7570 adj->ignore = false;
5d261913 7571 dev_hold(adj_dev);
2f268f12 7572
67b62f98
DA
7573 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7574 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7575
7ce64c79 7576 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7577 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7578 if (ret)
7579 goto free_adj;
7580 }
7581
7863c054 7582 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7583 if (master) {
7584 ret = sysfs_create_link(&(dev->dev.kobj),
7585 &(adj_dev->dev.kobj), "master");
7586 if (ret)
5831d66e 7587 goto remove_symlinks;
842d67a7 7588
7863c054 7589 list_add_rcu(&adj->list, dev_list);
842d67a7 7590 } else {
7863c054 7591 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7592 }
5d261913
VF
7593
7594 return 0;
842d67a7 7595
5831d66e 7596remove_symlinks:
7ce64c79 7597 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7598 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
7599free_adj:
7600 kfree(adj);
974daef7 7601 dev_put(adj_dev);
842d67a7
VF
7602
7603 return ret;
5d261913
VF
7604}
7605
1d143d9f 7606static void __netdev_adjacent_dev_remove(struct net_device *dev,
7607 struct net_device *adj_dev,
93409033 7608 u16 ref_nr,
1d143d9f 7609 struct list_head *dev_list)
5d261913
VF
7610{
7611 struct netdev_adjacent *adj;
7612
67b62f98
DA
7613 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7614 dev->name, adj_dev->name, ref_nr);
7615
6ea29da1 7616 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7617
2f268f12 7618 if (!adj) {
67b62f98 7619 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7620 dev->name, adj_dev->name);
67b62f98
DA
7621 WARN_ON(1);
7622 return;
2f268f12 7623 }
5d261913 7624
93409033 7625 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7626 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7627 dev->name, adj_dev->name, ref_nr,
7628 adj->ref_nr - ref_nr);
93409033 7629 adj->ref_nr -= ref_nr;
5d261913
VF
7630 return;
7631 }
7632
842d67a7
VF
7633 if (adj->master)
7634 sysfs_remove_link(&(dev->dev.kobj), "master");
7635
7ce64c79 7636 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7637 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7638
5d261913 7639 list_del_rcu(&adj->list);
67b62f98 7640 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7641 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
7642 dev_put(adj_dev);
7643 kfree_rcu(adj, rcu);
7644}
7645
1d143d9f 7646static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7647 struct net_device *upper_dev,
7648 struct list_head *up_list,
7649 struct list_head *down_list,
7650 void *private, bool master)
5d261913
VF
7651{
7652 int ret;
7653
790510d9 7654 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7655 private, master);
5d261913
VF
7656 if (ret)
7657 return ret;
7658
790510d9 7659 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7660 private, false);
5d261913 7661 if (ret) {
790510d9 7662 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7663 return ret;
7664 }
7665
7666 return 0;
7667}
7668
1d143d9f 7669static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7670 struct net_device *upper_dev,
93409033 7671 u16 ref_nr,
1d143d9f 7672 struct list_head *up_list,
7673 struct list_head *down_list)
5d261913 7674{
93409033
AC
7675 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7676 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7677}
7678
1d143d9f 7679static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7680 struct net_device *upper_dev,
7681 void *private, bool master)
2f268f12 7682{
f1170fd4
DA
7683 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7684 &dev->adj_list.upper,
7685 &upper_dev->adj_list.lower,
7686 private, master);
5d261913
VF
7687}
7688
1d143d9f 7689static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7690 struct net_device *upper_dev)
2f268f12 7691{
93409033 7692 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7693 &dev->adj_list.upper,
7694 &upper_dev->adj_list.lower);
7695}
5d261913 7696
9ff162a8 7697static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7698 struct net_device *upper_dev, bool master,
42ab19ee
DA
7699 void *upper_priv, void *upper_info,
7700 struct netlink_ext_ack *extack)
9ff162a8 7701{
51d0c047
DA
7702 struct netdev_notifier_changeupper_info changeupper_info = {
7703 .info = {
7704 .dev = dev,
42ab19ee 7705 .extack = extack,
51d0c047
DA
7706 },
7707 .upper_dev = upper_dev,
7708 .master = master,
7709 .linking = true,
7710 .upper_info = upper_info,
7711 };
50d629e7 7712 struct net_device *master_dev;
5d261913 7713 int ret = 0;
9ff162a8
JP
7714
7715 ASSERT_RTNL();
7716
7717 if (dev == upper_dev)
7718 return -EBUSY;
7719
7720 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 7721 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7722 return -EBUSY;
7723
5343da4c
TY
7724 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7725 return -EMLINK;
7726
50d629e7 7727 if (!master) {
32b6d34f 7728 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
7729 return -EEXIST;
7730 } else {
32b6d34f 7731 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
7732 if (master_dev)
7733 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7734 }
9ff162a8 7735
51d0c047 7736 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7737 &changeupper_info.info);
7738 ret = notifier_to_errno(ret);
7739 if (ret)
7740 return ret;
7741
6dffb044 7742 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7743 master);
5d261913
VF
7744 if (ret)
7745 return ret;
9ff162a8 7746
51d0c047 7747 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7748 &changeupper_info.info);
7749 ret = notifier_to_errno(ret);
7750 if (ret)
f1170fd4 7751 goto rollback;
b03804e7 7752
5343da4c 7753 __netdev_update_upper_level(dev, NULL);
32b6d34f 7754 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7755
7756 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7757 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7758 NULL);
5343da4c 7759
9ff162a8 7760 return 0;
5d261913 7761
f1170fd4 7762rollback:
2f268f12 7763 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7764
7765 return ret;
9ff162a8
JP
7766}
7767
7768/**
7769 * netdev_upper_dev_link - Add a link to the upper device
7770 * @dev: device
7771 * @upper_dev: new upper device
7a006d59 7772 * @extack: netlink extended ack
9ff162a8
JP
7773 *
7774 * Adds a link to device which is upper to this one. The caller must hold
7775 * the RTNL lock. On a failure a negative errno code is returned.
7776 * On success the reference counts are adjusted and the function
7777 * returns zero.
7778 */
7779int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7780 struct net_device *upper_dev,
7781 struct netlink_ext_ack *extack)
9ff162a8 7782{
42ab19ee
DA
7783 return __netdev_upper_dev_link(dev, upper_dev, false,
7784 NULL, NULL, extack);
9ff162a8
JP
7785}
7786EXPORT_SYMBOL(netdev_upper_dev_link);
7787
7788/**
7789 * netdev_master_upper_dev_link - Add a master link to the upper device
7790 * @dev: device
7791 * @upper_dev: new upper device
6dffb044 7792 * @upper_priv: upper device private
29bf24af 7793 * @upper_info: upper info to be passed down via notifier
7a006d59 7794 * @extack: netlink extended ack
9ff162a8
JP
7795 *
7796 * Adds a link to device which is upper to this one. In this case, only
7797 * one master upper device can be linked, although other non-master devices
7798 * might be linked as well. The caller must hold the RTNL lock.
7799 * On a failure a negative errno code is returned. On success the reference
7800 * counts are adjusted and the function returns zero.
7801 */
7802int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7803 struct net_device *upper_dev,
42ab19ee
DA
7804 void *upper_priv, void *upper_info,
7805 struct netlink_ext_ack *extack)
9ff162a8 7806{
29bf24af 7807 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 7808 upper_priv, upper_info, extack);
9ff162a8
JP
7809}
7810EXPORT_SYMBOL(netdev_master_upper_dev_link);
7811
7812/**
7813 * netdev_upper_dev_unlink - Removes a link to upper device
7814 * @dev: device
7815 * @upper_dev: new upper device
7816 *
7817 * Removes a link to device which is upper to this one. The caller must hold
7818 * the RTNL lock.
7819 */
7820void netdev_upper_dev_unlink(struct net_device *dev,
7821 struct net_device *upper_dev)
7822{
51d0c047
DA
7823 struct netdev_notifier_changeupper_info changeupper_info = {
7824 .info = {
7825 .dev = dev,
7826 },
7827 .upper_dev = upper_dev,
7828 .linking = false,
7829 };
f4563a75 7830
9ff162a8
JP
7831 ASSERT_RTNL();
7832
0e4ead9d 7833 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7834
51d0c047 7835 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7836 &changeupper_info.info);
7837
2f268f12 7838 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7839
51d0c047 7840 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7841 &changeupper_info.info);
5343da4c
TY
7842
7843 __netdev_update_upper_level(dev, NULL);
32b6d34f 7844 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7845
7846 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7847 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7848 NULL);
9ff162a8
JP
7849}
7850EXPORT_SYMBOL(netdev_upper_dev_unlink);
7851
32b6d34f
TY
7852static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7853 struct net_device *lower_dev,
7854 bool val)
7855{
7856 struct netdev_adjacent *adj;
7857
7858 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7859 if (adj)
7860 adj->ignore = val;
7861
7862 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7863 if (adj)
7864 adj->ignore = val;
7865}
7866
7867static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7868 struct net_device *lower_dev)
7869{
7870 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7871}
7872
7873static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7874 struct net_device *lower_dev)
7875{
7876 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7877}
7878
7879int netdev_adjacent_change_prepare(struct net_device *old_dev,
7880 struct net_device *new_dev,
7881 struct net_device *dev,
7882 struct netlink_ext_ack *extack)
7883{
7884 int err;
7885
7886 if (!new_dev)
7887 return 0;
7888
7889 if (old_dev && new_dev != old_dev)
7890 netdev_adjacent_dev_disable(dev, old_dev);
7891
7892 err = netdev_upper_dev_link(new_dev, dev, extack);
7893 if (err) {
7894 if (old_dev && new_dev != old_dev)
7895 netdev_adjacent_dev_enable(dev, old_dev);
7896 return err;
7897 }
7898
7899 return 0;
7900}
7901EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7902
7903void netdev_adjacent_change_commit(struct net_device *old_dev,
7904 struct net_device *new_dev,
7905 struct net_device *dev)
7906{
7907 if (!new_dev || !old_dev)
7908 return;
7909
7910 if (new_dev == old_dev)
7911 return;
7912
7913 netdev_adjacent_dev_enable(dev, old_dev);
7914 netdev_upper_dev_unlink(old_dev, dev);
7915}
7916EXPORT_SYMBOL(netdev_adjacent_change_commit);
7917
7918void netdev_adjacent_change_abort(struct net_device *old_dev,
7919 struct net_device *new_dev,
7920 struct net_device *dev)
7921{
7922 if (!new_dev)
7923 return;
7924
7925 if (old_dev && new_dev != old_dev)
7926 netdev_adjacent_dev_enable(dev, old_dev);
7927
7928 netdev_upper_dev_unlink(new_dev, dev);
7929}
7930EXPORT_SYMBOL(netdev_adjacent_change_abort);
7931
61bd3857
MS
7932/**
7933 * netdev_bonding_info_change - Dispatch event about slave change
7934 * @dev: device
4a26e453 7935 * @bonding_info: info to dispatch
61bd3857
MS
7936 *
7937 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7938 * The caller must hold the RTNL lock.
7939 */
7940void netdev_bonding_info_change(struct net_device *dev,
7941 struct netdev_bonding_info *bonding_info)
7942{
51d0c047
DA
7943 struct netdev_notifier_bonding_info info = {
7944 .info.dev = dev,
7945 };
61bd3857
MS
7946
7947 memcpy(&info.bonding_info, bonding_info,
7948 sizeof(struct netdev_bonding_info));
51d0c047 7949 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7950 &info.info);
7951}
7952EXPORT_SYMBOL(netdev_bonding_info_change);
7953
cff9f12b
MG
7954/**
7955 * netdev_get_xmit_slave - Get the xmit slave of master device
8842500d 7956 * @dev: device
cff9f12b
MG
7957 * @skb: The packet
7958 * @all_slaves: assume all the slaves are active
7959 *
7960 * The reference counters are not incremented so the caller must be
7961 * careful with locks. The caller must hold RCU lock.
7962 * %NULL is returned if no slave is found.
7963 */
7964
7965struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7966 struct sk_buff *skb,
7967 bool all_slaves)
7968{
7969 const struct net_device_ops *ops = dev->netdev_ops;
7970
7971 if (!ops->ndo_get_xmit_slave)
7972 return NULL;
7973 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7974}
7975EXPORT_SYMBOL(netdev_get_xmit_slave);
7976
2ce1ee17 7977static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
7978{
7979 struct netdev_adjacent *iter;
7980
7981 struct net *net = dev_net(dev);
7982
7983 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7984 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7985 continue;
7986 netdev_adjacent_sysfs_add(iter->dev, dev,
7987 &iter->dev->adj_list.lower);
7988 netdev_adjacent_sysfs_add(dev, iter->dev,
7989 &dev->adj_list.upper);
7990 }
7991
7992 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7993 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7994 continue;
7995 netdev_adjacent_sysfs_add(iter->dev, dev,
7996 &iter->dev->adj_list.upper);
7997 netdev_adjacent_sysfs_add(dev, iter->dev,
7998 &dev->adj_list.lower);
7999 }
8000}
8001
2ce1ee17 8002static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
8003{
8004 struct netdev_adjacent *iter;
8005
8006 struct net *net = dev_net(dev);
8007
8008 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8009 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8010 continue;
8011 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8012 &iter->dev->adj_list.lower);
8013 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8014 &dev->adj_list.upper);
8015 }
8016
8017 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8018 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8019 continue;
8020 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8021 &iter->dev->adj_list.upper);
8022 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8023 &dev->adj_list.lower);
8024 }
8025}
8026
5bb025fa 8027void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 8028{
5bb025fa 8029 struct netdev_adjacent *iter;
402dae96 8030
4c75431a
AF
8031 struct net *net = dev_net(dev);
8032
5bb025fa 8033 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8034 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8035 continue;
5bb025fa
VF
8036 netdev_adjacent_sysfs_del(iter->dev, oldname,
8037 &iter->dev->adj_list.lower);
8038 netdev_adjacent_sysfs_add(iter->dev, dev,
8039 &iter->dev->adj_list.lower);
8040 }
402dae96 8041
5bb025fa 8042 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8043 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8044 continue;
5bb025fa
VF
8045 netdev_adjacent_sysfs_del(iter->dev, oldname,
8046 &iter->dev->adj_list.upper);
8047 netdev_adjacent_sysfs_add(iter->dev, dev,
8048 &iter->dev->adj_list.upper);
8049 }
402dae96 8050}
402dae96
VF
8051
8052void *netdev_lower_dev_get_private(struct net_device *dev,
8053 struct net_device *lower_dev)
8054{
8055 struct netdev_adjacent *lower;
8056
8057 if (!lower_dev)
8058 return NULL;
6ea29da1 8059 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
8060 if (!lower)
8061 return NULL;
8062
8063 return lower->private;
8064}
8065EXPORT_SYMBOL(netdev_lower_dev_get_private);
8066
4085ebe8 8067
04d48266
JP
8068/**
8069 * netdev_lower_change - Dispatch event about lower device state change
8070 * @lower_dev: device
8071 * @lower_state_info: state to dispatch
8072 *
8073 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8074 * The caller must hold the RTNL lock.
8075 */
8076void netdev_lower_state_changed(struct net_device *lower_dev,
8077 void *lower_state_info)
8078{
51d0c047
DA
8079 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8080 .info.dev = lower_dev,
8081 };
04d48266
JP
8082
8083 ASSERT_RTNL();
8084 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 8085 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
8086 &changelowerstate_info.info);
8087}
8088EXPORT_SYMBOL(netdev_lower_state_changed);
8089
b6c40d68
PM
8090static void dev_change_rx_flags(struct net_device *dev, int flags)
8091{
d314774c
SH
8092 const struct net_device_ops *ops = dev->netdev_ops;
8093
d2615bf4 8094 if (ops->ndo_change_rx_flags)
d314774c 8095 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
8096}
8097
991fb3f7 8098static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 8099{
b536db93 8100 unsigned int old_flags = dev->flags;
d04a48b0
EB
8101 kuid_t uid;
8102 kgid_t gid;
1da177e4 8103
24023451
PM
8104 ASSERT_RTNL();
8105
dad9b335
WC
8106 dev->flags |= IFF_PROMISC;
8107 dev->promiscuity += inc;
8108 if (dev->promiscuity == 0) {
8109 /*
8110 * Avoid overflow.
8111 * If inc causes overflow, untouch promisc and return error.
8112 */
8113 if (inc < 0)
8114 dev->flags &= ~IFF_PROMISC;
8115 else {
8116 dev->promiscuity -= inc;
7b6cd1ce
JP
8117 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8118 dev->name);
dad9b335
WC
8119 return -EOVERFLOW;
8120 }
8121 }
52609c0b 8122 if (dev->flags != old_flags) {
7b6cd1ce
JP
8123 pr_info("device %s %s promiscuous mode\n",
8124 dev->name,
8125 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
8126 if (audit_enabled) {
8127 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
8128 audit_log(audit_context(), GFP_ATOMIC,
8129 AUDIT_ANOM_PROMISCUOUS,
8130 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8131 dev->name, (dev->flags & IFF_PROMISC),
8132 (old_flags & IFF_PROMISC),
8133 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8134 from_kuid(&init_user_ns, uid),
8135 from_kgid(&init_user_ns, gid),
8136 audit_get_sessionid(current));
8192b0c4 8137 }
24023451 8138
b6c40d68 8139 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 8140 }
991fb3f7
ND
8141 if (notify)
8142 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 8143 return 0;
1da177e4
LT
8144}
8145
4417da66
PM
8146/**
8147 * dev_set_promiscuity - update promiscuity count on a device
8148 * @dev: device
8149 * @inc: modifier
8150 *
8151 * Add or remove promiscuity from a device. While the count in the device
8152 * remains above zero the interface remains promiscuous. Once it hits zero
8153 * the device reverts back to normal filtering operation. A negative inc
8154 * value is used to drop promiscuity on the device.
dad9b335 8155 * Return 0 if successful or a negative errno code on error.
4417da66 8156 */
dad9b335 8157int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 8158{
b536db93 8159 unsigned int old_flags = dev->flags;
dad9b335 8160 int err;
4417da66 8161
991fb3f7 8162 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 8163 if (err < 0)
dad9b335 8164 return err;
4417da66
PM
8165 if (dev->flags != old_flags)
8166 dev_set_rx_mode(dev);
dad9b335 8167 return err;
4417da66 8168}
d1b19dff 8169EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 8170
991fb3f7 8171static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 8172{
991fb3f7 8173 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 8174
24023451
PM
8175 ASSERT_RTNL();
8176
1da177e4 8177 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
8178 dev->allmulti += inc;
8179 if (dev->allmulti == 0) {
8180 /*
8181 * Avoid overflow.
8182 * If inc causes overflow, untouch allmulti and return error.
8183 */
8184 if (inc < 0)
8185 dev->flags &= ~IFF_ALLMULTI;
8186 else {
8187 dev->allmulti -= inc;
7b6cd1ce
JP
8188 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8189 dev->name);
dad9b335
WC
8190 return -EOVERFLOW;
8191 }
8192 }
24023451 8193 if (dev->flags ^ old_flags) {
b6c40d68 8194 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8195 dev_set_rx_mode(dev);
991fb3f7
ND
8196 if (notify)
8197 __dev_notify_flags(dev, old_flags,
8198 dev->gflags ^ old_gflags);
24023451 8199 }
dad9b335 8200 return 0;
4417da66 8201}
991fb3f7
ND
8202
8203/**
8204 * dev_set_allmulti - update allmulti count on a device
8205 * @dev: device
8206 * @inc: modifier
8207 *
8208 * Add or remove reception of all multicast frames to a device. While the
8209 * count in the device remains above zero the interface remains listening
8210 * to all interfaces. Once it hits zero the device reverts back to normal
8211 * filtering operation. A negative @inc value is used to drop the counter
8212 * when releasing a resource needing all multicasts.
8213 * Return 0 if successful or a negative errno code on error.
8214 */
8215
8216int dev_set_allmulti(struct net_device *dev, int inc)
8217{
8218 return __dev_set_allmulti(dev, inc, true);
8219}
d1b19dff 8220EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8221
8222/*
8223 * Upload unicast and multicast address lists to device and
8224 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8225 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8226 * are present.
8227 */
8228void __dev_set_rx_mode(struct net_device *dev)
8229{
d314774c
SH
8230 const struct net_device_ops *ops = dev->netdev_ops;
8231
4417da66
PM
8232 /* dev_open will call this function so the list will stay sane. */
8233 if (!(dev->flags&IFF_UP))
8234 return;
8235
8236 if (!netif_device_present(dev))
40b77c94 8237 return;
4417da66 8238
01789349 8239 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8240 /* Unicast addresses changes may only happen under the rtnl,
8241 * therefore calling __dev_set_promiscuity here is safe.
8242 */
32e7bfc4 8243 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8244 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8245 dev->uc_promisc = true;
32e7bfc4 8246 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8247 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8248 dev->uc_promisc = false;
4417da66 8249 }
4417da66 8250 }
01789349
JP
8251
8252 if (ops->ndo_set_rx_mode)
8253 ops->ndo_set_rx_mode(dev);
4417da66
PM
8254}
8255
8256void dev_set_rx_mode(struct net_device *dev)
8257{
b9e40857 8258 netif_addr_lock_bh(dev);
4417da66 8259 __dev_set_rx_mode(dev);
b9e40857 8260 netif_addr_unlock_bh(dev);
1da177e4
LT
8261}
8262
f0db275a
SH
8263/**
8264 * dev_get_flags - get flags reported to userspace
8265 * @dev: device
8266 *
8267 * Get the combination of flag bits exported through APIs to userspace.
8268 */
95c96174 8269unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8270{
95c96174 8271 unsigned int flags;
1da177e4
LT
8272
8273 flags = (dev->flags & ~(IFF_PROMISC |
8274 IFF_ALLMULTI |
b00055aa
SR
8275 IFF_RUNNING |
8276 IFF_LOWER_UP |
8277 IFF_DORMANT)) |
1da177e4
LT
8278 (dev->gflags & (IFF_PROMISC |
8279 IFF_ALLMULTI));
8280
b00055aa
SR
8281 if (netif_running(dev)) {
8282 if (netif_oper_up(dev))
8283 flags |= IFF_RUNNING;
8284 if (netif_carrier_ok(dev))
8285 flags |= IFF_LOWER_UP;
8286 if (netif_dormant(dev))
8287 flags |= IFF_DORMANT;
8288 }
1da177e4
LT
8289
8290 return flags;
8291}
d1b19dff 8292EXPORT_SYMBOL(dev_get_flags);
1da177e4 8293
6d040321
PM
8294int __dev_change_flags(struct net_device *dev, unsigned int flags,
8295 struct netlink_ext_ack *extack)
1da177e4 8296{
b536db93 8297 unsigned int old_flags = dev->flags;
bd380811 8298 int ret;
1da177e4 8299
24023451
PM
8300 ASSERT_RTNL();
8301
1da177e4
LT
8302 /*
8303 * Set the flags on our device.
8304 */
8305
8306 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8307 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8308 IFF_AUTOMEDIA)) |
8309 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8310 IFF_ALLMULTI));
8311
8312 /*
8313 * Load in the correct multicast list now the flags have changed.
8314 */
8315
b6c40d68
PM
8316 if ((old_flags ^ flags) & IFF_MULTICAST)
8317 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8318
4417da66 8319 dev_set_rx_mode(dev);
1da177e4
LT
8320
8321 /*
8322 * Have we downed the interface. We handle IFF_UP ourselves
8323 * according to user attempts to set it, rather than blindly
8324 * setting it.
8325 */
8326
8327 ret = 0;
7051b88a 8328 if ((old_flags ^ flags) & IFF_UP) {
8329 if (old_flags & IFF_UP)
8330 __dev_close(dev);
8331 else
40c900aa 8332 ret = __dev_open(dev, extack);
7051b88a 8333 }
1da177e4 8334
1da177e4 8335 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8336 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8337 unsigned int old_flags = dev->flags;
d1b19dff 8338
1da177e4 8339 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8340
8341 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8342 if (dev->flags != old_flags)
8343 dev_set_rx_mode(dev);
1da177e4
LT
8344 }
8345
8346 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8347 * is important. Some (broken) drivers set IFF_PROMISC, when
8348 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8349 */
8350 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8351 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8352
1da177e4 8353 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8354 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8355 }
8356
bd380811
PM
8357 return ret;
8358}
8359
a528c219
ND
8360void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8361 unsigned int gchanges)
bd380811
PM
8362{
8363 unsigned int changes = dev->flags ^ old_flags;
8364
a528c219 8365 if (gchanges)
7f294054 8366 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8367
bd380811
PM
8368 if (changes & IFF_UP) {
8369 if (dev->flags & IFF_UP)
8370 call_netdevice_notifiers(NETDEV_UP, dev);
8371 else
8372 call_netdevice_notifiers(NETDEV_DOWN, dev);
8373 }
8374
8375 if (dev->flags & IFF_UP &&
be9efd36 8376 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8377 struct netdev_notifier_change_info change_info = {
8378 .info = {
8379 .dev = dev,
8380 },
8381 .flags_changed = changes,
8382 };
be9efd36 8383
51d0c047 8384 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8385 }
bd380811
PM
8386}
8387
8388/**
8389 * dev_change_flags - change device settings
8390 * @dev: device
8391 * @flags: device state flags
567c5e13 8392 * @extack: netlink extended ack
bd380811
PM
8393 *
8394 * Change settings on device based state flags. The flags are
8395 * in the userspace exported format.
8396 */
567c5e13
PM
8397int dev_change_flags(struct net_device *dev, unsigned int flags,
8398 struct netlink_ext_ack *extack)
bd380811 8399{
b536db93 8400 int ret;
991fb3f7 8401 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8402
6d040321 8403 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8404 if (ret < 0)
8405 return ret;
8406
991fb3f7 8407 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8408 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8409 return ret;
8410}
d1b19dff 8411EXPORT_SYMBOL(dev_change_flags);
1da177e4 8412
f51048c3 8413int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8414{
8415 const struct net_device_ops *ops = dev->netdev_ops;
8416
8417 if (ops->ndo_change_mtu)
8418 return ops->ndo_change_mtu(dev, new_mtu);
8419
501a90c9
ED
8420 /* Pairs with all the lockless reads of dev->mtu in the stack */
8421 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8422 return 0;
8423}
f51048c3 8424EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8425
d836f5c6
ED
8426int dev_validate_mtu(struct net_device *dev, int new_mtu,
8427 struct netlink_ext_ack *extack)
8428{
8429 /* MTU must be positive, and in range */
8430 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8431 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8432 return -EINVAL;
8433 }
8434
8435 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8436 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8437 return -EINVAL;
8438 }
8439 return 0;
8440}
8441
f0db275a 8442/**
7a4c53be 8443 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8444 * @dev: device
8445 * @new_mtu: new transfer unit
7a4c53be 8446 * @extack: netlink extended ack
f0db275a
SH
8447 *
8448 * Change the maximum transfer size of the network device.
8449 */
7a4c53be
SH
8450int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8451 struct netlink_ext_ack *extack)
1da177e4 8452{
2315dc91 8453 int err, orig_mtu;
1da177e4
LT
8454
8455 if (new_mtu == dev->mtu)
8456 return 0;
8457
d836f5c6
ED
8458 err = dev_validate_mtu(dev, new_mtu, extack);
8459 if (err)
8460 return err;
1da177e4
LT
8461
8462 if (!netif_device_present(dev))
8463 return -ENODEV;
8464
1d486bfb
VF
8465 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8466 err = notifier_to_errno(err);
8467 if (err)
8468 return err;
d314774c 8469
2315dc91
VF
8470 orig_mtu = dev->mtu;
8471 err = __dev_set_mtu(dev, new_mtu);
d314774c 8472
2315dc91 8473 if (!err) {
af7d6cce
SD
8474 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8475 orig_mtu);
2315dc91
VF
8476 err = notifier_to_errno(err);
8477 if (err) {
8478 /* setting mtu back and notifying everyone again,
8479 * so that they have a chance to revert changes.
8480 */
8481 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8482 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8483 new_mtu);
2315dc91
VF
8484 }
8485 }
1da177e4
LT
8486 return err;
8487}
7a4c53be
SH
8488
8489int dev_set_mtu(struct net_device *dev, int new_mtu)
8490{
8491 struct netlink_ext_ack extack;
8492 int err;
8493
a6bcfc89 8494 memset(&extack, 0, sizeof(extack));
7a4c53be 8495 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8496 if (err && extack._msg)
7a4c53be
SH
8497 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8498 return err;
8499}
d1b19dff 8500EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8501
6a643ddb
CW
8502/**
8503 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8504 * @dev: device
8505 * @new_len: new tx queue length
8506 */
8507int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8508{
8509 unsigned int orig_len = dev->tx_queue_len;
8510 int res;
8511
8512 if (new_len != (unsigned int)new_len)
8513 return -ERANGE;
8514
8515 if (new_len != orig_len) {
8516 dev->tx_queue_len = new_len;
8517 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8518 res = notifier_to_errno(res);
7effaf06
TT
8519 if (res)
8520 goto err_rollback;
8521 res = dev_qdisc_change_tx_queue_len(dev);
8522 if (res)
8523 goto err_rollback;
6a643ddb
CW
8524 }
8525
8526 return 0;
7effaf06
TT
8527
8528err_rollback:
8529 netdev_err(dev, "refused to change device tx_queue_len\n");
8530 dev->tx_queue_len = orig_len;
8531 return res;
6a643ddb
CW
8532}
8533
cbda10fa
VD
8534/**
8535 * dev_set_group - Change group this device belongs to
8536 * @dev: device
8537 * @new_group: group this device should belong to
8538 */
8539void dev_set_group(struct net_device *dev, int new_group)
8540{
8541 dev->group = new_group;
8542}
8543EXPORT_SYMBOL(dev_set_group);
8544
d59cdf94
PM
8545/**
8546 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8547 * @dev: device
8548 * @addr: new address
8549 * @extack: netlink extended ack
8550 */
8551int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8552 struct netlink_ext_ack *extack)
8553{
8554 struct netdev_notifier_pre_changeaddr_info info = {
8555 .info.dev = dev,
8556 .info.extack = extack,
8557 .dev_addr = addr,
8558 };
8559 int rc;
8560
8561 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8562 return notifier_to_errno(rc);
8563}
8564EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8565
f0db275a
SH
8566/**
8567 * dev_set_mac_address - Change Media Access Control Address
8568 * @dev: device
8569 * @sa: new address
3a37a963 8570 * @extack: netlink extended ack
f0db275a
SH
8571 *
8572 * Change the hardware (MAC) address of the device
8573 */
3a37a963
PM
8574int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8575 struct netlink_ext_ack *extack)
1da177e4 8576{
d314774c 8577 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
8578 int err;
8579
d314774c 8580 if (!ops->ndo_set_mac_address)
1da177e4
LT
8581 return -EOPNOTSUPP;
8582 if (sa->sa_family != dev->type)
8583 return -EINVAL;
8584 if (!netif_device_present(dev))
8585 return -ENODEV;
d59cdf94
PM
8586 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8587 if (err)
8588 return err;
d314774c 8589 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
8590 if (err)
8591 return err;
fbdeca2d 8592 dev->addr_assign_type = NET_ADDR_SET;
f6521516 8593 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 8594 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 8595 return 0;
1da177e4 8596}
d1b19dff 8597EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 8598
4bf84c35
JP
8599/**
8600 * dev_change_carrier - Change device carrier
8601 * @dev: device
691b3b7e 8602 * @new_carrier: new value
4bf84c35
JP
8603 *
8604 * Change device carrier
8605 */
8606int dev_change_carrier(struct net_device *dev, bool new_carrier)
8607{
8608 const struct net_device_ops *ops = dev->netdev_ops;
8609
8610 if (!ops->ndo_change_carrier)
8611 return -EOPNOTSUPP;
8612 if (!netif_device_present(dev))
8613 return -ENODEV;
8614 return ops->ndo_change_carrier(dev, new_carrier);
8615}
8616EXPORT_SYMBOL(dev_change_carrier);
8617
66b52b0d
JP
8618/**
8619 * dev_get_phys_port_id - Get device physical port ID
8620 * @dev: device
8621 * @ppid: port ID
8622 *
8623 * Get device physical port ID
8624 */
8625int dev_get_phys_port_id(struct net_device *dev,
02637fce 8626 struct netdev_phys_item_id *ppid)
66b52b0d
JP
8627{
8628 const struct net_device_ops *ops = dev->netdev_ops;
8629
8630 if (!ops->ndo_get_phys_port_id)
8631 return -EOPNOTSUPP;
8632 return ops->ndo_get_phys_port_id(dev, ppid);
8633}
8634EXPORT_SYMBOL(dev_get_phys_port_id);
8635
db24a904
DA
8636/**
8637 * dev_get_phys_port_name - Get device physical port name
8638 * @dev: device
8639 * @name: port name
ed49e650 8640 * @len: limit of bytes to copy to name
db24a904
DA
8641 *
8642 * Get device physical port name
8643 */
8644int dev_get_phys_port_name(struct net_device *dev,
8645 char *name, size_t len)
8646{
8647 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 8648 int err;
db24a904 8649
af3836df
JP
8650 if (ops->ndo_get_phys_port_name) {
8651 err = ops->ndo_get_phys_port_name(dev, name, len);
8652 if (err != -EOPNOTSUPP)
8653 return err;
8654 }
8655 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
8656}
8657EXPORT_SYMBOL(dev_get_phys_port_name);
8658
d6abc596
FF
8659/**
8660 * dev_get_port_parent_id - Get the device's port parent identifier
8661 * @dev: network device
8662 * @ppid: pointer to a storage for the port's parent identifier
8663 * @recurse: allow/disallow recursion to lower devices
8664 *
8665 * Get the devices's port parent identifier
8666 */
8667int dev_get_port_parent_id(struct net_device *dev,
8668 struct netdev_phys_item_id *ppid,
8669 bool recurse)
8670{
8671 const struct net_device_ops *ops = dev->netdev_ops;
8672 struct netdev_phys_item_id first = { };
8673 struct net_device *lower_dev;
8674 struct list_head *iter;
7e1146e8
JP
8675 int err;
8676
8677 if (ops->ndo_get_port_parent_id) {
8678 err = ops->ndo_get_port_parent_id(dev, ppid);
8679 if (err != -EOPNOTSUPP)
8680 return err;
8681 }
d6abc596 8682
7e1146e8
JP
8683 err = devlink_compat_switch_id_get(dev, ppid);
8684 if (!err || err != -EOPNOTSUPP)
8685 return err;
d6abc596
FF
8686
8687 if (!recurse)
7e1146e8 8688 return -EOPNOTSUPP;
d6abc596
FF
8689
8690 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8691 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8692 if (err)
8693 break;
8694 if (!first.id_len)
8695 first = *ppid;
8696 else if (memcmp(&first, ppid, sizeof(*ppid)))
e1b9efe6 8697 return -EOPNOTSUPP;
d6abc596
FF
8698 }
8699
8700 return err;
8701}
8702EXPORT_SYMBOL(dev_get_port_parent_id);
8703
8704/**
8705 * netdev_port_same_parent_id - Indicate if two network devices have
8706 * the same port parent identifier
8707 * @a: first network device
8708 * @b: second network device
8709 */
8710bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8711{
8712 struct netdev_phys_item_id a_id = { };
8713 struct netdev_phys_item_id b_id = { };
8714
8715 if (dev_get_port_parent_id(a, &a_id, true) ||
8716 dev_get_port_parent_id(b, &b_id, true))
8717 return false;
8718
8719 return netdev_phys_item_id_same(&a_id, &b_id);
8720}
8721EXPORT_SYMBOL(netdev_port_same_parent_id);
8722
d746d707
AK
8723/**
8724 * dev_change_proto_down - update protocol port state information
8725 * @dev: device
8726 * @proto_down: new value
8727 *
8728 * This info can be used by switch drivers to set the phys state of the
8729 * port.
8730 */
8731int dev_change_proto_down(struct net_device *dev, bool proto_down)
8732{
8733 const struct net_device_ops *ops = dev->netdev_ops;
8734
8735 if (!ops->ndo_change_proto_down)
8736 return -EOPNOTSUPP;
8737 if (!netif_device_present(dev))
8738 return -ENODEV;
8739 return ops->ndo_change_proto_down(dev, proto_down);
8740}
8741EXPORT_SYMBOL(dev_change_proto_down);
8742
b5899679
AR
8743/**
8744 * dev_change_proto_down_generic - generic implementation for
8745 * ndo_change_proto_down that sets carrier according to
8746 * proto_down.
8747 *
8748 * @dev: device
8749 * @proto_down: new value
8750 */
8751int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8752{
8753 if (proto_down)
8754 netif_carrier_off(dev);
8755 else
8756 netif_carrier_on(dev);
8757 dev->proto_down = proto_down;
8758 return 0;
8759}
8760EXPORT_SYMBOL(dev_change_proto_down_generic);
8761
829eb208
RP
8762/**
8763 * dev_change_proto_down_reason - proto down reason
8764 *
8765 * @dev: device
8766 * @mask: proto down mask
8767 * @value: proto down value
8768 */
8769void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8770 u32 value)
8771{
8772 int b;
8773
8774 if (!mask) {
8775 dev->proto_down_reason = value;
8776 } else {
8777 for_each_set_bit(b, &mask, 32) {
8778 if (value & (1 << b))
8779 dev->proto_down_reason |= BIT(b);
8780 else
8781 dev->proto_down_reason &= ~BIT(b);
8782 }
8783 }
8784}
8785EXPORT_SYMBOL(dev_change_proto_down_reason);
8786
aa8d3a71
AN
8787struct bpf_xdp_link {
8788 struct bpf_link link;
8789 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8790 int flags;
8791};
8792
c8a36f19 8793static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
d67b9cd2 8794{
7f0a8382
AN
8795 if (flags & XDP_FLAGS_HW_MODE)
8796 return XDP_MODE_HW;
8797 if (flags & XDP_FLAGS_DRV_MODE)
8798 return XDP_MODE_DRV;
c8a36f19
AN
8799 if (flags & XDP_FLAGS_SKB_MODE)
8800 return XDP_MODE_SKB;
8801 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
7f0a8382 8802}
d67b9cd2 8803
7f0a8382
AN
8804static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8805{
8806 switch (mode) {
8807 case XDP_MODE_SKB:
8808 return generic_xdp_install;
8809 case XDP_MODE_DRV:
8810 case XDP_MODE_HW:
8811 return dev->netdev_ops->ndo_bpf;
8812 default:
8813 return NULL;
8814 };
8815}
118b4aa2 8816
aa8d3a71
AN
8817static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8818 enum bpf_xdp_mode mode)
8819{
8820 return dev->xdp_state[mode].link;
8821}
8822
7f0a8382
AN
8823static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8824 enum bpf_xdp_mode mode)
8825{
aa8d3a71
AN
8826 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8827
8828 if (link)
8829 return link->link.prog;
7f0a8382
AN
8830 return dev->xdp_state[mode].prog;
8831}
8832
8833u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8834{
8835 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
118b4aa2 8836
7f0a8382
AN
8837 return prog ? prog->aux->id : 0;
8838}
58038695 8839
aa8d3a71
AN
8840static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8841 struct bpf_xdp_link *link)
8842{
8843 dev->xdp_state[mode].link = link;
8844 dev->xdp_state[mode].prog = NULL;
d67b9cd2
DB
8845}
8846
7f0a8382
AN
8847static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8848 struct bpf_prog *prog)
8849{
aa8d3a71 8850 dev->xdp_state[mode].link = NULL;
7f0a8382 8851 dev->xdp_state[mode].prog = prog;
d67b9cd2
DB
8852}
8853
7f0a8382
AN
8854static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8855 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8856 u32 flags, struct bpf_prog *prog)
d67b9cd2 8857{
f4e63525 8858 struct netdev_bpf xdp;
7e6897f9
BT
8859 int err;
8860
d67b9cd2 8861 memset(&xdp, 0, sizeof(xdp));
7f0a8382 8862 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
d67b9cd2 8863 xdp.extack = extack;
32d60277 8864 xdp.flags = flags;
d67b9cd2
DB
8865 xdp.prog = prog;
8866
7f0a8382
AN
8867 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8868 * "moved" into driver), so they don't increment it on their own, but
8869 * they do decrement refcnt when program is detached or replaced.
8870 * Given net_device also owns link/prog, we need to bump refcnt here
8871 * to prevent drivers from underflowing it.
8872 */
8873 if (prog)
8874 bpf_prog_inc(prog);
7e6897f9 8875 err = bpf_op(dev, &xdp);
7f0a8382
AN
8876 if (err) {
8877 if (prog)
8878 bpf_prog_put(prog);
8879 return err;
8880 }
7e6897f9 8881
7f0a8382
AN
8882 if (mode != XDP_MODE_HW)
8883 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
7e6897f9 8884
7f0a8382 8885 return 0;
d67b9cd2
DB
8886}
8887
bd0b2e7f
JK
8888static void dev_xdp_uninstall(struct net_device *dev)
8889{
aa8d3a71 8890 struct bpf_xdp_link *link;
7f0a8382
AN
8891 struct bpf_prog *prog;
8892 enum bpf_xdp_mode mode;
8893 bpf_op_t bpf_op;
bd0b2e7f 8894
7f0a8382 8895 ASSERT_RTNL();
bd0b2e7f 8896
7f0a8382
AN
8897 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8898 prog = dev_xdp_prog(dev, mode);
8899 if (!prog)
8900 continue;
bd0b2e7f 8901
7f0a8382
AN
8902 bpf_op = dev_xdp_bpf_op(dev, mode);
8903 if (!bpf_op)
8904 continue;
bd0b2e7f 8905
7f0a8382
AN
8906 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8907
aa8d3a71
AN
8908 /* auto-detach link from net device */
8909 link = dev_xdp_link(dev, mode);
8910 if (link)
8911 link->dev = NULL;
8912 else
8913 bpf_prog_put(prog);
8914
8915 dev_xdp_set_link(dev, mode, NULL);
7f0a8382 8916 }
bd0b2e7f
JK
8917}
8918
d4baa936 8919static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
aa8d3a71
AN
8920 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8921 struct bpf_prog *old_prog, u32 flags)
a7862b45 8922{
d4baa936
AN
8923 struct bpf_prog *cur_prog;
8924 enum bpf_xdp_mode mode;
7f0a8382 8925 bpf_op_t bpf_op;
a7862b45
BB
8926 int err;
8927
85de8576
DB
8928 ASSERT_RTNL();
8929
aa8d3a71
AN
8930 /* either link or prog attachment, never both */
8931 if (link && (new_prog || old_prog))
8932 return -EINVAL;
8933 /* link supports only XDP mode flags */
8934 if (link && (flags & ~XDP_FLAGS_MODES)) {
8935 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8936 return -EINVAL;
8937 }
d4baa936
AN
8938 /* just one XDP mode bit should be set, zero defaults to SKB mode */
8939 if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
8940 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8941 return -EINVAL;
8942 }
8943 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8944 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8945 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8946 return -EINVAL;
01dde20c 8947 }
a25717d2 8948
c8a36f19 8949 mode = dev_xdp_mode(dev, flags);
aa8d3a71
AN
8950 /* can't replace attached link */
8951 if (dev_xdp_link(dev, mode)) {
8952 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8953 return -EBUSY;
01dde20c 8954 }
c14a9f63 8955
d4baa936 8956 cur_prog = dev_xdp_prog(dev, mode);
aa8d3a71
AN
8957 /* can't replace attached prog with link */
8958 if (link && cur_prog) {
8959 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8960 return -EBUSY;
8961 }
d4baa936
AN
8962 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8963 NL_SET_ERR_MSG(extack, "Active program does not match expected");
8964 return -EEXIST;
92234c8f 8965 }
c14a9f63 8966
aa8d3a71
AN
8967 /* put effective new program into new_prog */
8968 if (link)
8969 new_prog = link->link.prog;
85de8576 8970
d4baa936
AN
8971 if (new_prog) {
8972 bool offload = mode == XDP_MODE_HW;
7f0a8382
AN
8973 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8974 ? XDP_MODE_DRV : XDP_MODE_SKB;
441a3303 8975
068d9d1e
AN
8976 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8977 NL_SET_ERR_MSG(extack, "XDP program already attached");
8978 return -EBUSY;
8979 }
d4baa936 8980 if (!offload && dev_xdp_prog(dev, other_mode)) {
7f0a8382 8981 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
d67b9cd2 8982 return -EEXIST;
01dde20c 8983 }
d4baa936 8984 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
7f0a8382 8985 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
441a3303
JK
8986 return -EINVAL;
8987 }
d4baa936 8988 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
fbee97fe 8989 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
fbee97fe
DA
8990 return -EINVAL;
8991 }
d4baa936
AN
8992 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
8993 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
92164774
LB
8994 return -EINVAL;
8995 }
d4baa936 8996 }
92164774 8997
d4baa936
AN
8998 /* don't call drivers if the effective program didn't change */
8999 if (new_prog != cur_prog) {
9000 bpf_op = dev_xdp_bpf_op(dev, mode);
9001 if (!bpf_op) {
9002 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9003 return -EOPNOTSUPP;
c14a9f63 9004 }
a7862b45 9005
d4baa936
AN
9006 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9007 if (err)
9008 return err;
7f0a8382 9009 }
d4baa936 9010
aa8d3a71
AN
9011 if (link)
9012 dev_xdp_set_link(dev, mode, link);
9013 else
9014 dev_xdp_set_prog(dev, mode, new_prog);
d4baa936
AN
9015 if (cur_prog)
9016 bpf_prog_put(cur_prog);
a7862b45 9017
7f0a8382 9018 return 0;
a7862b45 9019}
a7862b45 9020
aa8d3a71
AN
9021static int dev_xdp_attach_link(struct net_device *dev,
9022 struct netlink_ext_ack *extack,
9023 struct bpf_xdp_link *link)
9024{
9025 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9026}
9027
9028static int dev_xdp_detach_link(struct net_device *dev,
9029 struct netlink_ext_ack *extack,
9030 struct bpf_xdp_link *link)
9031{
9032 enum bpf_xdp_mode mode;
9033 bpf_op_t bpf_op;
9034
9035 ASSERT_RTNL();
9036
c8a36f19 9037 mode = dev_xdp_mode(dev, link->flags);
aa8d3a71
AN
9038 if (dev_xdp_link(dev, mode) != link)
9039 return -EINVAL;
9040
9041 bpf_op = dev_xdp_bpf_op(dev, mode);
9042 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9043 dev_xdp_set_link(dev, mode, NULL);
9044 return 0;
9045}
9046
9047static void bpf_xdp_link_release(struct bpf_link *link)
9048{
9049 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9050
9051 rtnl_lock();
9052
9053 /* if racing with net_device's tear down, xdp_link->dev might be
9054 * already NULL, in which case link was already auto-detached
9055 */
73b11c2a 9056 if (xdp_link->dev) {
aa8d3a71 9057 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
73b11c2a
AN
9058 xdp_link->dev = NULL;
9059 }
aa8d3a71
AN
9060
9061 rtnl_unlock();
9062}
9063
73b11c2a
AN
9064static int bpf_xdp_link_detach(struct bpf_link *link)
9065{
9066 bpf_xdp_link_release(link);
9067 return 0;
9068}
9069
aa8d3a71
AN
9070static void bpf_xdp_link_dealloc(struct bpf_link *link)
9071{
9072 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9073
9074 kfree(xdp_link);
9075}
9076
c1931c97
AN
9077static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9078 struct seq_file *seq)
9079{
9080 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9081 u32 ifindex = 0;
9082
9083 rtnl_lock();
9084 if (xdp_link->dev)
9085 ifindex = xdp_link->dev->ifindex;
9086 rtnl_unlock();
9087
9088 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9089}
9090
9091static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9092 struct bpf_link_info *info)
9093{
9094 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9095 u32 ifindex = 0;
9096
9097 rtnl_lock();
9098 if (xdp_link->dev)
9099 ifindex = xdp_link->dev->ifindex;
9100 rtnl_unlock();
9101
9102 info->xdp.ifindex = ifindex;
9103 return 0;
9104}
9105
026a4c28
AN
9106static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9107 struct bpf_prog *old_prog)
9108{
9109 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9110 enum bpf_xdp_mode mode;
9111 bpf_op_t bpf_op;
9112 int err = 0;
9113
9114 rtnl_lock();
9115
9116 /* link might have been auto-released already, so fail */
9117 if (!xdp_link->dev) {
9118 err = -ENOLINK;
9119 goto out_unlock;
9120 }
9121
9122 if (old_prog && link->prog != old_prog) {
9123 err = -EPERM;
9124 goto out_unlock;
9125 }
9126 old_prog = link->prog;
9127 if (old_prog == new_prog) {
9128 /* no-op, don't disturb drivers */
9129 bpf_prog_put(new_prog);
9130 goto out_unlock;
9131 }
9132
c8a36f19 9133 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
026a4c28
AN
9134 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9135 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9136 xdp_link->flags, new_prog);
9137 if (err)
9138 goto out_unlock;
9139
9140 old_prog = xchg(&link->prog, new_prog);
9141 bpf_prog_put(old_prog);
9142
9143out_unlock:
9144 rtnl_unlock();
9145 return err;
9146}
9147
aa8d3a71
AN
9148static const struct bpf_link_ops bpf_xdp_link_lops = {
9149 .release = bpf_xdp_link_release,
9150 .dealloc = bpf_xdp_link_dealloc,
73b11c2a 9151 .detach = bpf_xdp_link_detach,
c1931c97
AN
9152 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9153 .fill_link_info = bpf_xdp_link_fill_link_info,
026a4c28 9154 .update_prog = bpf_xdp_link_update,
aa8d3a71
AN
9155};
9156
9157int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9158{
9159 struct net *net = current->nsproxy->net_ns;
9160 struct bpf_link_primer link_primer;
9161 struct bpf_xdp_link *link;
9162 struct net_device *dev;
9163 int err, fd;
9164
9165 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9166 if (!dev)
9167 return -EINVAL;
9168
9169 link = kzalloc(sizeof(*link), GFP_USER);
9170 if (!link) {
9171 err = -ENOMEM;
9172 goto out_put_dev;
9173 }
9174
9175 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9176 link->dev = dev;
9177 link->flags = attr->link_create.flags;
9178
9179 err = bpf_link_prime(&link->link, &link_primer);
9180 if (err) {
9181 kfree(link);
9182 goto out_put_dev;
9183 }
9184
9185 rtnl_lock();
9186 err = dev_xdp_attach_link(dev, NULL, link);
9187 rtnl_unlock();
9188
9189 if (err) {
9190 bpf_link_cleanup(&link_primer);
9191 goto out_put_dev;
9192 }
9193
9194 fd = bpf_link_settle(&link_primer);
9195 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9196 dev_put(dev);
9197 return fd;
9198
9199out_put_dev:
9200 dev_put(dev);
9201 return err;
9202}
9203
d4baa936
AN
9204/**
9205 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9206 * @dev: device
9207 * @extack: netlink extended ack
9208 * @fd: new program fd or negative value to clear
9209 * @expected_fd: old program fd that userspace expects to replace or clear
9210 * @flags: xdp-related flags
9211 *
9212 * Set or clear a bpf program for a device
9213 */
9214int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9215 int fd, int expected_fd, u32 flags)
9216{
c8a36f19 9217 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
d4baa936
AN
9218 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9219 int err;
9220
9221 ASSERT_RTNL();
9222
9223 if (fd >= 0) {
9224 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9225 mode != XDP_MODE_SKB);
9226 if (IS_ERR(new_prog))
9227 return PTR_ERR(new_prog);
9228 }
9229
9230 if (expected_fd >= 0) {
9231 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9232 mode != XDP_MODE_SKB);
9233 if (IS_ERR(old_prog)) {
9234 err = PTR_ERR(old_prog);
9235 old_prog = NULL;
9236 goto err_out;
c14a9f63 9237 }
a7862b45
BB
9238 }
9239
aa8d3a71 9240 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
a7862b45 9241
d4baa936
AN
9242err_out:
9243 if (err && new_prog)
9244 bpf_prog_put(new_prog);
9245 if (old_prog)
9246 bpf_prog_put(old_prog);
a7862b45
BB
9247 return err;
9248}
a7862b45 9249
1da177e4
LT
9250/**
9251 * dev_new_index - allocate an ifindex
c4ea43c5 9252 * @net: the applicable net namespace
1da177e4
LT
9253 *
9254 * Returns a suitable unique value for a new device interface
9255 * number. The caller must hold the rtnl semaphore or the
9256 * dev_base_lock to be sure it remains unique.
9257 */
881d966b 9258static int dev_new_index(struct net *net)
1da177e4 9259{
aa79e66e 9260 int ifindex = net->ifindex;
f4563a75 9261
1da177e4
LT
9262 for (;;) {
9263 if (++ifindex <= 0)
9264 ifindex = 1;
881d966b 9265 if (!__dev_get_by_index(net, ifindex))
aa79e66e 9266 return net->ifindex = ifindex;
1da177e4
LT
9267 }
9268}
9269
1da177e4 9270/* Delayed registration/unregisteration */
3b5b34fd 9271static LIST_HEAD(net_todo_list);
200b916f 9272DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 9273
6f05f629 9274static void net_set_todo(struct net_device *dev)
1da177e4 9275{
1da177e4 9276 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 9277 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
9278}
9279
9b5e383c 9280static void rollback_registered_many(struct list_head *head)
93ee31f1 9281{
e93737b0 9282 struct net_device *dev, *tmp;
5cde2829 9283 LIST_HEAD(close_head);
9b5e383c 9284
93ee31f1
DL
9285 BUG_ON(dev_boot_phase);
9286 ASSERT_RTNL();
9287
e93737b0 9288 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 9289 /* Some devices call without registering
e93737b0
KK
9290 * for initialization unwind. Remove those
9291 * devices and proceed with the remaining.
9b5e383c
ED
9292 */
9293 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
9294 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9295 dev->name, dev);
93ee31f1 9296
9b5e383c 9297 WARN_ON(1);
e93737b0
KK
9298 list_del(&dev->unreg_list);
9299 continue;
9b5e383c 9300 }
449f4544 9301 dev->dismantle = true;
9b5e383c 9302 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 9303 }
93ee31f1 9304
44345724 9305 /* If device is running, close it first. */
5cde2829
EB
9306 list_for_each_entry(dev, head, unreg_list)
9307 list_add_tail(&dev->close_list, &close_head);
99c4a26a 9308 dev_close_many(&close_head, true);
93ee31f1 9309
44345724 9310 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
9311 /* And unlink it from device chain. */
9312 unlist_netdevice(dev);
93ee31f1 9313
9b5e383c
ED
9314 dev->reg_state = NETREG_UNREGISTERING;
9315 }
41852497 9316 flush_all_backlogs();
93ee31f1
DL
9317
9318 synchronize_net();
9319
9b5e383c 9320 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
9321 struct sk_buff *skb = NULL;
9322
9b5e383c
ED
9323 /* Shutdown queueing discipline. */
9324 dev_shutdown(dev);
93ee31f1 9325
bd0b2e7f 9326 dev_xdp_uninstall(dev);
93ee31f1 9327
9b5e383c 9328 /* Notify protocols, that we are about to destroy
eb13da1a 9329 * this device. They should clean all the things.
9330 */
9b5e383c 9331 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 9332
395eea6c
MB
9333 if (!dev->rtnl_link_ops ||
9334 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 9335 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 9336 GFP_KERNEL, NULL, 0);
395eea6c 9337
9b5e383c
ED
9338 /*
9339 * Flush the unicast and multicast chains
9340 */
a748ee24 9341 dev_uc_flush(dev);
22bedad3 9342 dev_mc_flush(dev);
93ee31f1 9343
36fbf1e5 9344 netdev_name_node_alt_flush(dev);
ff927412
JP
9345 netdev_name_node_free(dev->name_node);
9346
9b5e383c
ED
9347 if (dev->netdev_ops->ndo_uninit)
9348 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 9349
395eea6c
MB
9350 if (skb)
9351 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 9352
9ff162a8
JP
9353 /* Notifier chain MUST detach us all upper devices. */
9354 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 9355 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 9356
9b5e383c
ED
9357 /* Remove entries from kobject tree */
9358 netdev_unregister_kobject(dev);
024e9679
AD
9359#ifdef CONFIG_XPS
9360 /* Remove XPS queueing entries */
9361 netif_reset_xps_queues_gt(dev, 0);
9362#endif
9b5e383c 9363 }
93ee31f1 9364
850a545b 9365 synchronize_net();
395264d5 9366
a5ee1551 9367 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
9368 dev_put(dev);
9369}
9370
9371static void rollback_registered(struct net_device *dev)
9372{
9373 LIST_HEAD(single);
9374
9375 list_add(&dev->unreg_list, &single);
9376 rollback_registered_many(&single);
ceaaec98 9377 list_del(&single);
93ee31f1
DL
9378}
9379
fd867d51
JW
9380static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9381 struct net_device *upper, netdev_features_t features)
9382{
9383 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9384 netdev_features_t feature;
5ba3f7d6 9385 int feature_bit;
fd867d51 9386
3b89ea9c 9387 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9388 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9389 if (!(upper->wanted_features & feature)
9390 && (features & feature)) {
9391 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9392 &feature, upper->name);
9393 features &= ~feature;
9394 }
9395 }
9396
9397 return features;
9398}
9399
9400static void netdev_sync_lower_features(struct net_device *upper,
9401 struct net_device *lower, netdev_features_t features)
9402{
9403 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9404 netdev_features_t feature;
5ba3f7d6 9405 int feature_bit;
fd867d51 9406
3b89ea9c 9407 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9408 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9409 if (!(features & feature) && (lower->features & feature)) {
9410 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9411 &feature, lower->name);
9412 lower->wanted_features &= ~feature;
dd912306 9413 __netdev_update_features(lower);
fd867d51
JW
9414
9415 if (unlikely(lower->features & feature))
9416 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9417 &feature, lower->name);
dd912306
CW
9418 else
9419 netdev_features_change(lower);
fd867d51
JW
9420 }
9421 }
9422}
9423
c8f44aff
MM
9424static netdev_features_t netdev_fix_features(struct net_device *dev,
9425 netdev_features_t features)
b63365a2 9426{
57422dc5
MM
9427 /* Fix illegal checksum combinations */
9428 if ((features & NETIF_F_HW_CSUM) &&
9429 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 9430 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
9431 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9432 }
9433
b63365a2 9434 /* TSO requires that SG is present as well. */
ea2d3688 9435 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 9436 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 9437 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
9438 }
9439
ec5f0615
PS
9440 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9441 !(features & NETIF_F_IP_CSUM)) {
9442 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9443 features &= ~NETIF_F_TSO;
9444 features &= ~NETIF_F_TSO_ECN;
9445 }
9446
9447 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9448 !(features & NETIF_F_IPV6_CSUM)) {
9449 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9450 features &= ~NETIF_F_TSO6;
9451 }
9452
b1dc497b
AD
9453 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9454 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9455 features &= ~NETIF_F_TSO_MANGLEID;
9456
31d8b9e0
BH
9457 /* TSO ECN requires that TSO is present as well. */
9458 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9459 features &= ~NETIF_F_TSO_ECN;
9460
212b573f
MM
9461 /* Software GSO depends on SG. */
9462 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 9463 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
9464 features &= ~NETIF_F_GSO;
9465 }
9466
802ab55a
AD
9467 /* GSO partial features require GSO partial be set */
9468 if ((features & dev->gso_partial_features) &&
9469 !(features & NETIF_F_GSO_PARTIAL)) {
9470 netdev_dbg(dev,
9471 "Dropping partially supported GSO features since no GSO partial.\n");
9472 features &= ~dev->gso_partial_features;
9473 }
9474
fb1f5f79
MC
9475 if (!(features & NETIF_F_RXCSUM)) {
9476 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9477 * successfully merged by hardware must also have the
9478 * checksum verified by hardware. If the user does not
9479 * want to enable RXCSUM, logically, we should disable GRO_HW.
9480 */
9481 if (features & NETIF_F_GRO_HW) {
9482 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9483 features &= ~NETIF_F_GRO_HW;
9484 }
9485 }
9486
de8d5ab2
GP
9487 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9488 if (features & NETIF_F_RXFCS) {
9489 if (features & NETIF_F_LRO) {
9490 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9491 features &= ~NETIF_F_LRO;
9492 }
9493
9494 if (features & NETIF_F_GRO_HW) {
9495 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9496 features &= ~NETIF_F_GRO_HW;
9497 }
e6c6a929
GP
9498 }
9499
b63365a2
HX
9500 return features;
9501}
b63365a2 9502
6cb6a27c 9503int __netdev_update_features(struct net_device *dev)
5455c699 9504{
fd867d51 9505 struct net_device *upper, *lower;
c8f44aff 9506 netdev_features_t features;
fd867d51 9507 struct list_head *iter;
e7868a85 9508 int err = -1;
5455c699 9509
87267485
MM
9510 ASSERT_RTNL();
9511
5455c699
MM
9512 features = netdev_get_wanted_features(dev);
9513
9514 if (dev->netdev_ops->ndo_fix_features)
9515 features = dev->netdev_ops->ndo_fix_features(dev, features);
9516
9517 /* driver might be less strict about feature dependencies */
9518 features = netdev_fix_features(dev, features);
9519
4250b75b 9520 /* some features can't be enabled if they're off on an upper device */
fd867d51
JW
9521 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9522 features = netdev_sync_upper_features(dev, upper, features);
9523
5455c699 9524 if (dev->features == features)
e7868a85 9525 goto sync_lower;
5455c699 9526
c8f44aff
MM
9527 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9528 &dev->features, &features);
5455c699
MM
9529
9530 if (dev->netdev_ops->ndo_set_features)
9531 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9532 else
9533 err = 0;
5455c699 9534
6cb6a27c 9535 if (unlikely(err < 0)) {
5455c699 9536 netdev_err(dev,
c8f44aff
MM
9537 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9538 err, &features, &dev->features);
17b85d29
NA
9539 /* return non-0 since some features might have changed and
9540 * it's better to fire a spurious notification than miss it
9541 */
9542 return -1;
6cb6a27c
MM
9543 }
9544
e7868a85 9545sync_lower:
fd867d51
JW
9546 /* some features must be disabled on lower devices when disabled
9547 * on an upper device (think: bonding master or bridge)
9548 */
9549 netdev_for_each_lower_dev(dev, lower, iter)
9550 netdev_sync_lower_features(dev, lower, features);
9551
ae847f40
SD
9552 if (!err) {
9553 netdev_features_t diff = features ^ dev->features;
9554
9555 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9556 /* udp_tunnel_{get,drop}_rx_info both need
9557 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9558 * device, or they won't do anything.
9559 * Thus we need to update dev->features
9560 * *before* calling udp_tunnel_get_rx_info,
9561 * but *after* calling udp_tunnel_drop_rx_info.
9562 */
9563 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9564 dev->features = features;
9565 udp_tunnel_get_rx_info(dev);
9566 } else {
9567 udp_tunnel_drop_rx_info(dev);
9568 }
9569 }
9570
9daae9bd
GP
9571 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9572 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9573 dev->features = features;
9574 err |= vlan_get_rx_ctag_filter_info(dev);
9575 } else {
9576 vlan_drop_rx_ctag_filter_info(dev);
9577 }
9578 }
9579
9580 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9581 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9582 dev->features = features;
9583 err |= vlan_get_rx_stag_filter_info(dev);
9584 } else {
9585 vlan_drop_rx_stag_filter_info(dev);
9586 }
9587 }
9588
6cb6a27c 9589 dev->features = features;
ae847f40 9590 }
6cb6a27c 9591
e7868a85 9592 return err < 0 ? 0 : 1;
6cb6a27c
MM
9593}
9594
afe12cc8
MM
9595/**
9596 * netdev_update_features - recalculate device features
9597 * @dev: the device to check
9598 *
9599 * Recalculate dev->features set and send notifications if it
9600 * has changed. Should be called after driver or hardware dependent
9601 * conditions might have changed that influence the features.
9602 */
6cb6a27c
MM
9603void netdev_update_features(struct net_device *dev)
9604{
9605 if (__netdev_update_features(dev))
9606 netdev_features_change(dev);
5455c699
MM
9607}
9608EXPORT_SYMBOL(netdev_update_features);
9609
afe12cc8
MM
9610/**
9611 * netdev_change_features - recalculate device features
9612 * @dev: the device to check
9613 *
9614 * Recalculate dev->features set and send notifications even
9615 * if they have not changed. Should be called instead of
9616 * netdev_update_features() if also dev->vlan_features might
9617 * have changed to allow the changes to be propagated to stacked
9618 * VLAN devices.
9619 */
9620void netdev_change_features(struct net_device *dev)
9621{
9622 __netdev_update_features(dev);
9623 netdev_features_change(dev);
9624}
9625EXPORT_SYMBOL(netdev_change_features);
9626
fc4a7489
PM
9627/**
9628 * netif_stacked_transfer_operstate - transfer operstate
9629 * @rootdev: the root or lower level device to transfer state from
9630 * @dev: the device to transfer operstate to
9631 *
9632 * Transfer operational state from root to device. This is normally
9633 * called when a stacking relationship exists between the root
9634 * device and the device(a leaf device).
9635 */
9636void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9637 struct net_device *dev)
9638{
9639 if (rootdev->operstate == IF_OPER_DORMANT)
9640 netif_dormant_on(dev);
9641 else
9642 netif_dormant_off(dev);
9643
eec517cd
AL
9644 if (rootdev->operstate == IF_OPER_TESTING)
9645 netif_testing_on(dev);
9646 else
9647 netif_testing_off(dev);
9648
0575c86b
ZS
9649 if (netif_carrier_ok(rootdev))
9650 netif_carrier_on(dev);
9651 else
9652 netif_carrier_off(dev);
fc4a7489
PM
9653}
9654EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9655
1b4bf461
ED
9656static int netif_alloc_rx_queues(struct net_device *dev)
9657{
1b4bf461 9658 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 9659 struct netdev_rx_queue *rx;
10595902 9660 size_t sz = count * sizeof(*rx);
e817f856 9661 int err = 0;
1b4bf461 9662
bd25fa7b 9663 BUG_ON(count < 1);
1b4bf461 9664
dcda9b04 9665 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9666 if (!rx)
9667 return -ENOMEM;
9668
bd25fa7b
TH
9669 dev->_rx = rx;
9670
e817f856 9671 for (i = 0; i < count; i++) {
fe822240 9672 rx[i].dev = dev;
e817f856
JDB
9673
9674 /* XDP RX-queue setup */
9675 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9676 if (err < 0)
9677 goto err_rxq_info;
9678 }
1b4bf461 9679 return 0;
e817f856
JDB
9680
9681err_rxq_info:
9682 /* Rollback successful reg's and free other resources */
9683 while (i--)
9684 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 9685 kvfree(dev->_rx);
e817f856
JDB
9686 dev->_rx = NULL;
9687 return err;
9688}
9689
9690static void netif_free_rx_queues(struct net_device *dev)
9691{
9692 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
9693
9694 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9695 if (!dev->_rx)
9696 return;
9697
e817f856 9698 for (i = 0; i < count; i++)
82aaff2f
JK
9699 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9700
9701 kvfree(dev->_rx);
1b4bf461
ED
9702}
9703
aa942104
CG
9704static void netdev_init_one_queue(struct net_device *dev,
9705 struct netdev_queue *queue, void *_unused)
9706{
9707 /* Initialize queue lock */
9708 spin_lock_init(&queue->_xmit_lock);
1a33e10e 9709 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
aa942104 9710 queue->xmit_lock_owner = -1;
b236da69 9711 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 9712 queue->dev = dev;
114cf580
TH
9713#ifdef CONFIG_BQL
9714 dql_init(&queue->dql, HZ);
9715#endif
aa942104
CG
9716}
9717
60877a32
ED
9718static void netif_free_tx_queues(struct net_device *dev)
9719{
4cb28970 9720 kvfree(dev->_tx);
60877a32
ED
9721}
9722
e6484930
TH
9723static int netif_alloc_netdev_queues(struct net_device *dev)
9724{
9725 unsigned int count = dev->num_tx_queues;
9726 struct netdev_queue *tx;
60877a32 9727 size_t sz = count * sizeof(*tx);
e6484930 9728
d339727c
ED
9729 if (count < 1 || count > 0xffff)
9730 return -EINVAL;
62b5942a 9731
dcda9b04 9732 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9733 if (!tx)
9734 return -ENOMEM;
9735
e6484930 9736 dev->_tx = tx;
1d24eb48 9737
e6484930
TH
9738 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9739 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
9740
9741 return 0;
e6484930
TH
9742}
9743
a2029240
DV
9744void netif_tx_stop_all_queues(struct net_device *dev)
9745{
9746 unsigned int i;
9747
9748 for (i = 0; i < dev->num_tx_queues; i++) {
9749 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 9750
a2029240
DV
9751 netif_tx_stop_queue(txq);
9752 }
9753}
9754EXPORT_SYMBOL(netif_tx_stop_all_queues);
9755
1da177e4
LT
9756/**
9757 * register_netdevice - register a network device
9758 * @dev: device to register
9759 *
9760 * Take a completed network device structure and add it to the kernel
9761 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9762 * chain. 0 is returned on success. A negative errno code is returned
9763 * on a failure to set up the device, or if the name is a duplicate.
9764 *
9765 * Callers must hold the rtnl semaphore. You may want
9766 * register_netdev() instead of this.
9767 *
9768 * BUGS:
9769 * The locking appears insufficient to guarantee two parallel registers
9770 * will not get the same name.
9771 */
9772
9773int register_netdevice(struct net_device *dev)
9774{
1da177e4 9775 int ret;
d314774c 9776 struct net *net = dev_net(dev);
1da177e4 9777
e283de3a
FF
9778 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9779 NETDEV_FEATURE_COUNT);
1da177e4
LT
9780 BUG_ON(dev_boot_phase);
9781 ASSERT_RTNL();
9782
b17a7c17
SH
9783 might_sleep();
9784
1da177e4
LT
9785 /* When net_device's are persistent, this will be fatal. */
9786 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 9787 BUG_ON(!net);
1da177e4 9788
9000edb7
JK
9789 ret = ethtool_check_ops(dev->ethtool_ops);
9790 if (ret)
9791 return ret;
9792
f1f28aa3 9793 spin_lock_init(&dev->addr_list_lock);
845e0ebb 9794 netdev_set_addr_lockdep_class(dev);
1da177e4 9795
828de4f6 9796 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
9797 if (ret < 0)
9798 goto out;
9799
9077f052 9800 ret = -ENOMEM;
ff927412
JP
9801 dev->name_node = netdev_name_node_head_alloc(dev);
9802 if (!dev->name_node)
9803 goto out;
9804
1da177e4 9805 /* Init, if this function is available */
d314774c
SH
9806 if (dev->netdev_ops->ndo_init) {
9807 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
9808 if (ret) {
9809 if (ret > 0)
9810 ret = -EIO;
42c17fa6 9811 goto err_free_name;
1da177e4
LT
9812 }
9813 }
4ec93edb 9814
f646968f
PM
9815 if (((dev->hw_features | dev->features) &
9816 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
9817 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9818 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9819 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9820 ret = -EINVAL;
9821 goto err_uninit;
9822 }
9823
9c7dafbf
PE
9824 ret = -EBUSY;
9825 if (!dev->ifindex)
9826 dev->ifindex = dev_new_index(net);
9827 else if (__dev_get_by_index(net, dev->ifindex))
9828 goto err_uninit;
9829
5455c699
MM
9830 /* Transfer changeable features to wanted_features and enable
9831 * software offloads (GSO and GRO).
9832 */
1a3c998f 9833 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 9834 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
9835
9836 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9837 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9838 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9839 }
9840
14d1232f 9841 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 9842
cbc53e08 9843 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 9844 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 9845
7f348a60
AD
9846 /* If IPv4 TCP segmentation offload is supported we should also
9847 * allow the device to enable segmenting the frame with the option
9848 * of ignoring a static IP ID value. This doesn't enable the
9849 * feature itself but allows the user to enable it later.
9850 */
cbc53e08
AD
9851 if (dev->hw_features & NETIF_F_TSO)
9852 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
9853 if (dev->vlan_features & NETIF_F_TSO)
9854 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9855 if (dev->mpls_features & NETIF_F_TSO)
9856 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9857 if (dev->hw_enc_features & NETIF_F_TSO)
9858 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 9859
1180e7d6 9860 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 9861 */
1180e7d6 9862 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 9863
ee579677
PS
9864 /* Make NETIF_F_SG inheritable to tunnel devices.
9865 */
802ab55a 9866 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 9867
0d89d203
SH
9868 /* Make NETIF_F_SG inheritable to MPLS.
9869 */
9870 dev->mpls_features |= NETIF_F_SG;
9871
7ffbe3fd
JB
9872 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9873 ret = notifier_to_errno(ret);
9874 if (ret)
9875 goto err_uninit;
9876
8b41d188 9877 ret = netdev_register_kobject(dev);
cb626bf5
JH
9878 if (ret) {
9879 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 9880 goto err_uninit;
cb626bf5 9881 }
b17a7c17
SH
9882 dev->reg_state = NETREG_REGISTERED;
9883
6cb6a27c 9884 __netdev_update_features(dev);
8e9b59b2 9885
1da177e4
LT
9886 /*
9887 * Default initial state at registry is that the
9888 * device is present.
9889 */
9890
9891 set_bit(__LINK_STATE_PRESENT, &dev->state);
9892
8f4cccbb
BH
9893 linkwatch_init_dev(dev);
9894
1da177e4 9895 dev_init_scheduler(dev);
1da177e4 9896 dev_hold(dev);
ce286d32 9897 list_netdevice(dev);
7bf23575 9898 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 9899
948b337e
JP
9900 /* If the device has permanent device address, driver should
9901 * set dev_addr and also addr_assign_type should be set to
9902 * NET_ADDR_PERM (default value).
9903 */
9904 if (dev->addr_assign_type == NET_ADDR_PERM)
9905 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9906
1da177e4 9907 /* Notify protocols, that a new device appeared. */
056925ab 9908 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 9909 ret = notifier_to_errno(ret);
93ee31f1
DL
9910 if (ret) {
9911 rollback_registered(dev);
10cc514f
SAK
9912 rcu_barrier();
9913
93ee31f1 9914 dev->reg_state = NETREG_UNREGISTERED;
814152a8
YY
9915 /* We should put the kobject that hold in
9916 * netdev_unregister_kobject(), otherwise
9917 * the net device cannot be freed when
9918 * driver calls free_netdev(), because the
9919 * kobject is being hold.
9920 */
9921 kobject_put(&dev->dev.kobj);
93ee31f1 9922 }
d90a909e
EB
9923 /*
9924 * Prevent userspace races by waiting until the network
9925 * device is fully setup before sending notifications.
9926 */
a2835763
PM
9927 if (!dev->rtnl_link_ops ||
9928 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 9929 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
9930
9931out:
9932 return ret;
7ce1b0ed
HX
9933
9934err_uninit:
d314774c
SH
9935 if (dev->netdev_ops->ndo_uninit)
9936 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
9937 if (dev->priv_destructor)
9938 dev->priv_destructor(dev);
42c17fa6
DC
9939err_free_name:
9940 netdev_name_node_free(dev->name_node);
7ce1b0ed 9941 goto out;
1da177e4 9942}
d1b19dff 9943EXPORT_SYMBOL(register_netdevice);
1da177e4 9944
937f1ba5
BH
9945/**
9946 * init_dummy_netdev - init a dummy network device for NAPI
9947 * @dev: device to init
9948 *
9949 * This takes a network device structure and initialize the minimum
9950 * amount of fields so it can be used to schedule NAPI polls without
9951 * registering a full blown interface. This is to be used by drivers
9952 * that need to tie several hardware interfaces to a single NAPI
9953 * poll scheduler due to HW limitations.
9954 */
9955int init_dummy_netdev(struct net_device *dev)
9956{
9957 /* Clear everything. Note we don't initialize spinlocks
9958 * are they aren't supposed to be taken by any of the
9959 * NAPI code and this dummy netdev is supposed to be
9960 * only ever used for NAPI polls
9961 */
9962 memset(dev, 0, sizeof(struct net_device));
9963
9964 /* make sure we BUG if trying to hit standard
9965 * register/unregister code path
9966 */
9967 dev->reg_state = NETREG_DUMMY;
9968
937f1ba5
BH
9969 /* NAPI wants this */
9970 INIT_LIST_HEAD(&dev->napi_list);
9971
9972 /* a dummy interface is started by default */
9973 set_bit(__LINK_STATE_PRESENT, &dev->state);
9974 set_bit(__LINK_STATE_START, &dev->state);
9975
35edfdc7
JE
9976 /* napi_busy_loop stats accounting wants this */
9977 dev_net_set(dev, &init_net);
9978
29b4433d
ED
9979 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9980 * because users of this 'device' dont need to change
9981 * its refcount.
9982 */
9983
937f1ba5
BH
9984 return 0;
9985}
9986EXPORT_SYMBOL_GPL(init_dummy_netdev);
9987
9988
1da177e4
LT
9989/**
9990 * register_netdev - register a network device
9991 * @dev: device to register
9992 *
9993 * Take a completed network device structure and add it to the kernel
9994 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9995 * chain. 0 is returned on success. A negative errno code is returned
9996 * on a failure to set up the device, or if the name is a duplicate.
9997 *
38b4da38 9998 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
9999 * and expands the device name if you passed a format string to
10000 * alloc_netdev.
10001 */
10002int register_netdev(struct net_device *dev)
10003{
10004 int err;
10005
b0f3debc
KT
10006 if (rtnl_lock_killable())
10007 return -EINTR;
1da177e4 10008 err = register_netdevice(dev);
1da177e4
LT
10009 rtnl_unlock();
10010 return err;
10011}
10012EXPORT_SYMBOL(register_netdev);
10013
29b4433d
ED
10014int netdev_refcnt_read(const struct net_device *dev)
10015{
10016 int i, refcnt = 0;
10017
10018 for_each_possible_cpu(i)
10019 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10020 return refcnt;
10021}
10022EXPORT_SYMBOL(netdev_refcnt_read);
10023
de2b541b
MCC
10024#define WAIT_REFS_MIN_MSECS 1
10025#define WAIT_REFS_MAX_MSECS 250
2c53040f 10026/**
1da177e4 10027 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 10028 * @dev: target net_device
1da177e4
LT
10029 *
10030 * This is called when unregistering network devices.
10031 *
10032 * Any protocol or device that holds a reference should register
10033 * for netdevice notification, and cleanup and put back the
10034 * reference if they receive an UNREGISTER event.
10035 * We can get stuck here if buggy protocols don't correctly
4ec93edb 10036 * call dev_put.
1da177e4
LT
10037 */
10038static void netdev_wait_allrefs(struct net_device *dev)
10039{
10040 unsigned long rebroadcast_time, warning_time;
0e4be9e5 10041 int wait = 0, refcnt;
1da177e4 10042
e014debe
ED
10043 linkwatch_forget_dev(dev);
10044
1da177e4 10045 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
10046 refcnt = netdev_refcnt_read(dev);
10047
10048 while (refcnt != 0) {
1da177e4 10049 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 10050 rtnl_lock();
1da177e4
LT
10051
10052 /* Rebroadcast unregister notification */
056925ab 10053 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 10054
748e2d93 10055 __rtnl_unlock();
0115e8e3 10056 rcu_barrier();
748e2d93
ED
10057 rtnl_lock();
10058
1da177e4
LT
10059 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10060 &dev->state)) {
10061 /* We must not have linkwatch events
10062 * pending on unregister. If this
10063 * happens, we simply run the queue
10064 * unscheduled, resulting in a noop
10065 * for this device.
10066 */
10067 linkwatch_run_queue();
10068 }
10069
6756ae4b 10070 __rtnl_unlock();
1da177e4
LT
10071
10072 rebroadcast_time = jiffies;
10073 }
10074
0e4be9e5
FR
10075 if (!wait) {
10076 rcu_barrier();
10077 wait = WAIT_REFS_MIN_MSECS;
10078 } else {
10079 msleep(wait);
10080 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10081 }
1da177e4 10082
29b4433d
ED
10083 refcnt = netdev_refcnt_read(dev);
10084
d7c04b05 10085 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
10086 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10087 dev->name, refcnt);
1da177e4
LT
10088 warning_time = jiffies;
10089 }
10090 }
10091}
10092
10093/* The sequence is:
10094 *
10095 * rtnl_lock();
10096 * ...
10097 * register_netdevice(x1);
10098 * register_netdevice(x2);
10099 * ...
10100 * unregister_netdevice(y1);
10101 * unregister_netdevice(y2);
10102 * ...
10103 * rtnl_unlock();
10104 * free_netdev(y1);
10105 * free_netdev(y2);
10106 *
58ec3b4d 10107 * We are invoked by rtnl_unlock().
1da177e4 10108 * This allows us to deal with problems:
b17a7c17 10109 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
10110 * without deadlocking with linkwatch via keventd.
10111 * 2) Since we run with the RTNL semaphore not held, we can sleep
10112 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
10113 *
10114 * We must not return until all unregister events added during
10115 * the interval the lock was held have been completed.
1da177e4 10116 */
1da177e4
LT
10117void netdev_run_todo(void)
10118{
626ab0e6 10119 struct list_head list;
1da177e4 10120
1da177e4 10121 /* Snapshot list, allow later requests */
626ab0e6 10122 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
10123
10124 __rtnl_unlock();
626ab0e6 10125
0115e8e3
ED
10126
10127 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
10128 if (!list_empty(&list))
10129 rcu_barrier();
10130
1da177e4
LT
10131 while (!list_empty(&list)) {
10132 struct net_device *dev
e5e26d75 10133 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
10134 list_del(&dev->todo_list);
10135
b17a7c17 10136 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 10137 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
10138 dev->name, dev->reg_state);
10139 dump_stack();
10140 continue;
10141 }
1da177e4 10142
b17a7c17 10143 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 10144
b17a7c17 10145 netdev_wait_allrefs(dev);
1da177e4 10146
b17a7c17 10147 /* paranoia */
29b4433d 10148 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
10149 BUG_ON(!list_empty(&dev->ptype_all));
10150 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
10151 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10152 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 10153#if IS_ENABLED(CONFIG_DECNET)
547b792c 10154 WARN_ON(dev->dn_ptr);
330c7272 10155#endif
cf124db5
DM
10156 if (dev->priv_destructor)
10157 dev->priv_destructor(dev);
10158 if (dev->needs_free_netdev)
10159 free_netdev(dev);
9093bbb2 10160
50624c93
EB
10161 /* Report a network device has been unregistered */
10162 rtnl_lock();
10163 dev_net(dev)->dev_unreg_count--;
10164 __rtnl_unlock();
10165 wake_up(&netdev_unregistering_wq);
10166
9093bbb2
SH
10167 /* Free network device */
10168 kobject_put(&dev->dev.kobj);
1da177e4 10169 }
1da177e4
LT
10170}
10171
9256645a
JW
10172/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10173 * all the same fields in the same order as net_device_stats, with only
10174 * the type differing, but rtnl_link_stats64 may have additional fields
10175 * at the end for newer counters.
3cfde79c 10176 */
77a1abf5
ED
10177void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10178 const struct net_device_stats *netdev_stats)
3cfde79c
BH
10179{
10180#if BITS_PER_LONG == 64
9256645a 10181 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 10182 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
10183 /* zero out counters that only exist in rtnl_link_stats64 */
10184 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10185 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 10186#else
9256645a 10187 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
10188 const unsigned long *src = (const unsigned long *)netdev_stats;
10189 u64 *dst = (u64 *)stats64;
10190
9256645a 10191 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
10192 for (i = 0; i < n; i++)
10193 dst[i] = src[i];
9256645a
JW
10194 /* zero out counters that only exist in rtnl_link_stats64 */
10195 memset((char *)stats64 + n * sizeof(u64), 0,
10196 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
10197#endif
10198}
77a1abf5 10199EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 10200
eeda3fd6
SH
10201/**
10202 * dev_get_stats - get network device statistics
10203 * @dev: device to get statistics from
28172739 10204 * @storage: place to store stats
eeda3fd6 10205 *
d7753516
BH
10206 * Get network statistics from device. Return @storage.
10207 * The device driver may provide its own method by setting
10208 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10209 * otherwise the internal statistics structure is used.
eeda3fd6 10210 */
d7753516
BH
10211struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10212 struct rtnl_link_stats64 *storage)
7004bf25 10213{
eeda3fd6
SH
10214 const struct net_device_ops *ops = dev->netdev_ops;
10215
28172739
ED
10216 if (ops->ndo_get_stats64) {
10217 memset(storage, 0, sizeof(*storage));
caf586e5
ED
10218 ops->ndo_get_stats64(dev, storage);
10219 } else if (ops->ndo_get_stats) {
3cfde79c 10220 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
10221 } else {
10222 netdev_stats_to_stats64(storage, &dev->stats);
28172739 10223 }
6f64ec74
ED
10224 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10225 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10226 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 10227 return storage;
c45d286e 10228}
eeda3fd6 10229EXPORT_SYMBOL(dev_get_stats);
c45d286e 10230
24824a09 10231struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 10232{
24824a09 10233 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 10234
24824a09
ED
10235#ifdef CONFIG_NET_CLS_ACT
10236 if (queue)
10237 return queue;
10238 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10239 if (!queue)
10240 return NULL;
10241 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 10242 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
10243 queue->qdisc_sleeping = &noop_qdisc;
10244 rcu_assign_pointer(dev->ingress_queue, queue);
10245#endif
10246 return queue;
bb949fbd
DM
10247}
10248
2c60db03
ED
10249static const struct ethtool_ops default_ethtool_ops;
10250
d07d7507
SG
10251void netdev_set_default_ethtool_ops(struct net_device *dev,
10252 const struct ethtool_ops *ops)
10253{
10254 if (dev->ethtool_ops == &default_ethtool_ops)
10255 dev->ethtool_ops = ops;
10256}
10257EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10258
74d332c1
ED
10259void netdev_freemem(struct net_device *dev)
10260{
10261 char *addr = (char *)dev - dev->padded;
10262
4cb28970 10263 kvfree(addr);
74d332c1
ED
10264}
10265
1da177e4 10266/**
722c9a0c 10267 * alloc_netdev_mqs - allocate network device
10268 * @sizeof_priv: size of private data to allocate space for
10269 * @name: device name format string
10270 * @name_assign_type: origin of device name
10271 * @setup: callback to initialize device
10272 * @txqs: the number of TX subqueues to allocate
10273 * @rxqs: the number of RX subqueues to allocate
10274 *
10275 * Allocates a struct net_device with private data area for driver use
10276 * and performs basic initialization. Also allocates subqueue structs
10277 * for each queue on the device.
1da177e4 10278 */
36909ea4 10279struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 10280 unsigned char name_assign_type,
36909ea4
TH
10281 void (*setup)(struct net_device *),
10282 unsigned int txqs, unsigned int rxqs)
1da177e4 10283{
1da177e4 10284 struct net_device *dev;
52a59bd5 10285 unsigned int alloc_size;
1ce8e7b5 10286 struct net_device *p;
1da177e4 10287
b6fe17d6
SH
10288 BUG_ON(strlen(name) >= sizeof(dev->name));
10289
36909ea4 10290 if (txqs < 1) {
7b6cd1ce 10291 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
10292 return NULL;
10293 }
10294
36909ea4 10295 if (rxqs < 1) {
7b6cd1ce 10296 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
10297 return NULL;
10298 }
36909ea4 10299
fd2ea0a7 10300 alloc_size = sizeof(struct net_device);
d1643d24
AD
10301 if (sizeof_priv) {
10302 /* ensure 32-byte alignment of private area */
1ce8e7b5 10303 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
10304 alloc_size += sizeof_priv;
10305 }
10306 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 10307 alloc_size += NETDEV_ALIGN - 1;
1da177e4 10308
dcda9b04 10309 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 10310 if (!p)
1da177e4 10311 return NULL;
1da177e4 10312
1ce8e7b5 10313 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 10314 dev->padded = (char *)dev - (char *)p;
ab9c73cc 10315
29b4433d
ED
10316 dev->pcpu_refcnt = alloc_percpu(int);
10317 if (!dev->pcpu_refcnt)
74d332c1 10318 goto free_dev;
ab9c73cc 10319
ab9c73cc 10320 if (dev_addr_init(dev))
29b4433d 10321 goto free_pcpu;
ab9c73cc 10322
22bedad3 10323 dev_mc_init(dev);
a748ee24 10324 dev_uc_init(dev);
ccffad25 10325
c346dca1 10326 dev_net_set(dev, &init_net);
1da177e4 10327
8d3bdbd5 10328 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 10329 dev->gso_max_segs = GSO_MAX_SEGS;
5343da4c
TY
10330 dev->upper_level = 1;
10331 dev->lower_level = 1;
8d3bdbd5 10332
8d3bdbd5
DM
10333 INIT_LIST_HEAD(&dev->napi_list);
10334 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 10335 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 10336 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
10337 INIT_LIST_HEAD(&dev->adj_list.upper);
10338 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
10339 INIT_LIST_HEAD(&dev->ptype_all);
10340 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 10341 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
10342#ifdef CONFIG_NET_SCHED
10343 hash_init(dev->qdisc_hash);
10344#endif
02875878 10345 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
10346 setup(dev);
10347
a813104d 10348 if (!dev->tx_queue_len) {
f84bb1ea 10349 dev->priv_flags |= IFF_NO_QUEUE;
11597084 10350 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 10351 }
906470c1 10352
36909ea4
TH
10353 dev->num_tx_queues = txqs;
10354 dev->real_num_tx_queues = txqs;
ed9af2e8 10355 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 10356 goto free_all;
e8a0464c 10357
36909ea4
TH
10358 dev->num_rx_queues = rxqs;
10359 dev->real_num_rx_queues = rxqs;
fe822240 10360 if (netif_alloc_rx_queues(dev))
8d3bdbd5 10361 goto free_all;
0a9627f2 10362
1da177e4 10363 strcpy(dev->name, name);
c835a677 10364 dev->name_assign_type = name_assign_type;
cbda10fa 10365 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
10366 if (!dev->ethtool_ops)
10367 dev->ethtool_ops = &default_ethtool_ops;
e687ad60 10368
357b6cc5 10369 nf_hook_ingress_init(dev);
e687ad60 10370
1da177e4 10371 return dev;
ab9c73cc 10372
8d3bdbd5
DM
10373free_all:
10374 free_netdev(dev);
10375 return NULL;
10376
29b4433d
ED
10377free_pcpu:
10378 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
10379free_dev:
10380 netdev_freemem(dev);
ab9c73cc 10381 return NULL;
1da177e4 10382}
36909ea4 10383EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
10384
10385/**
722c9a0c 10386 * free_netdev - free network device
10387 * @dev: device
1da177e4 10388 *
722c9a0c 10389 * This function does the last stage of destroying an allocated device
10390 * interface. The reference to the device object is released. If this
10391 * is the last reference then it will be freed.Must be called in process
10392 * context.
1da177e4
LT
10393 */
10394void free_netdev(struct net_device *dev)
10395{
d565b0a1
HX
10396 struct napi_struct *p, *n;
10397
93d05d4a 10398 might_sleep();
60877a32 10399 netif_free_tx_queues(dev);
e817f856 10400 netif_free_rx_queues(dev);
e8a0464c 10401
33d480ce 10402 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 10403
f001fde5
JP
10404 /* Flush device addresses */
10405 dev_addr_flush(dev);
10406
d565b0a1
HX
10407 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10408 netif_napi_del(p);
10409
29b4433d
ED
10410 free_percpu(dev->pcpu_refcnt);
10411 dev->pcpu_refcnt = NULL;
75ccae62
THJ
10412 free_percpu(dev->xdp_bulkq);
10413 dev->xdp_bulkq = NULL;
29b4433d 10414
3041a069 10415 /* Compatibility with error handling in drivers */
1da177e4 10416 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 10417 netdev_freemem(dev);
1da177e4
LT
10418 return;
10419 }
10420
10421 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10422 dev->reg_state = NETREG_RELEASED;
10423
43cb76d9
GKH
10424 /* will free via device release */
10425 put_device(&dev->dev);
1da177e4 10426}
d1b19dff 10427EXPORT_SYMBOL(free_netdev);
4ec93edb 10428
f0db275a
SH
10429/**
10430 * synchronize_net - Synchronize with packet receive processing
10431 *
10432 * Wait for packets currently being received to be done.
10433 * Does not block later packets from starting.
10434 */
4ec93edb 10435void synchronize_net(void)
1da177e4
LT
10436{
10437 might_sleep();
be3fc413
ED
10438 if (rtnl_is_locked())
10439 synchronize_rcu_expedited();
10440 else
10441 synchronize_rcu();
1da177e4 10442}
d1b19dff 10443EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
10444
10445/**
44a0873d 10446 * unregister_netdevice_queue - remove device from the kernel
1da177e4 10447 * @dev: device
44a0873d 10448 * @head: list
6ebfbc06 10449 *
1da177e4 10450 * This function shuts down a device interface and removes it
d59b54b1 10451 * from the kernel tables.
44a0873d 10452 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
10453 *
10454 * Callers must hold the rtnl semaphore. You may want
10455 * unregister_netdev() instead of this.
10456 */
10457
44a0873d 10458void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 10459{
a6620712
HX
10460 ASSERT_RTNL();
10461
44a0873d 10462 if (head) {
9fdce099 10463 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
10464 } else {
10465 rollback_registered(dev);
10466 /* Finish processing unregister after unlock */
10467 net_set_todo(dev);
10468 }
1da177e4 10469}
44a0873d 10470EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 10471
9b5e383c
ED
10472/**
10473 * unregister_netdevice_many - unregister many devices
10474 * @head: list of devices
87757a91
ED
10475 *
10476 * Note: As most callers use a stack allocated list_head,
10477 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
10478 */
10479void unregister_netdevice_many(struct list_head *head)
10480{
10481 struct net_device *dev;
10482
10483 if (!list_empty(head)) {
10484 rollback_registered_many(head);
10485 list_for_each_entry(dev, head, unreg_list)
10486 net_set_todo(dev);
87757a91 10487 list_del(head);
9b5e383c
ED
10488 }
10489}
63c8099d 10490EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 10491
1da177e4
LT
10492/**
10493 * unregister_netdev - remove device from the kernel
10494 * @dev: device
10495 *
10496 * This function shuts down a device interface and removes it
d59b54b1 10497 * from the kernel tables.
1da177e4
LT
10498 *
10499 * This is just a wrapper for unregister_netdevice that takes
10500 * the rtnl semaphore. In general you want to use this and not
10501 * unregister_netdevice.
10502 */
10503void unregister_netdev(struct net_device *dev)
10504{
10505 rtnl_lock();
10506 unregister_netdevice(dev);
10507 rtnl_unlock();
10508}
1da177e4
LT
10509EXPORT_SYMBOL(unregister_netdev);
10510
ce286d32
EB
10511/**
10512 * dev_change_net_namespace - move device to different nethost namespace
10513 * @dev: device
10514 * @net: network namespace
10515 * @pat: If not NULL name pattern to try if the current device name
10516 * is already taken in the destination network namespace.
10517 *
10518 * This function shuts down a device interface and moves it
10519 * to a new network namespace. On success 0 is returned, on
10520 * a failure a netagive errno code is returned.
10521 *
10522 * Callers must hold the rtnl semaphore.
10523 */
10524
10525int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10526{
ef6a4c88 10527 struct net *net_old = dev_net(dev);
38e01b30 10528 int err, new_nsid, new_ifindex;
ce286d32
EB
10529
10530 ASSERT_RTNL();
10531
10532 /* Don't allow namespace local devices to be moved. */
10533 err = -EINVAL;
10534 if (dev->features & NETIF_F_NETNS_LOCAL)
10535 goto out;
10536
10537 /* Ensure the device has been registrered */
ce286d32
EB
10538 if (dev->reg_state != NETREG_REGISTERED)
10539 goto out;
10540
10541 /* Get out if there is nothing todo */
10542 err = 0;
ef6a4c88 10543 if (net_eq(net_old, net))
ce286d32
EB
10544 goto out;
10545
10546 /* Pick the destination device name, and ensure
10547 * we can use it in the destination network namespace.
10548 */
10549 err = -EEXIST;
d9031024 10550 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
10551 /* We get here if we can't use the current device name */
10552 if (!pat)
10553 goto out;
7892bd08
LR
10554 err = dev_get_valid_name(net, dev, pat);
10555 if (err < 0)
ce286d32
EB
10556 goto out;
10557 }
10558
10559 /*
10560 * And now a mini version of register_netdevice unregister_netdevice.
10561 */
10562
10563 /* If device is running close it first. */
9b772652 10564 dev_close(dev);
ce286d32
EB
10565
10566 /* And unlink it from device chain */
ce286d32
EB
10567 unlist_netdevice(dev);
10568
10569 synchronize_net();
10570
10571 /* Shutdown queueing discipline. */
10572 dev_shutdown(dev);
10573
10574 /* Notify protocols, that we are about to destroy
eb13da1a 10575 * this device. They should clean all the things.
10576 *
10577 * Note that dev->reg_state stays at NETREG_REGISTERED.
10578 * This is wanted because this way 8021q and macvlan know
10579 * the device is just moving and can keep their slaves up.
10580 */
ce286d32 10581 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 10582 rcu_barrier();
38e01b30 10583
d4e4fdf9 10584 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30
ND
10585 /* If there is an ifindex conflict assign a new one */
10586 if (__dev_get_by_index(net, dev->ifindex))
10587 new_ifindex = dev_new_index(net);
10588 else
10589 new_ifindex = dev->ifindex;
10590
10591 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10592 new_ifindex);
ce286d32
EB
10593
10594 /*
10595 * Flush the unicast and multicast chains
10596 */
a748ee24 10597 dev_uc_flush(dev);
22bedad3 10598 dev_mc_flush(dev);
ce286d32 10599
4e66ae2e
SH
10600 /* Send a netdev-removed uevent to the old namespace */
10601 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 10602 netdev_adjacent_del_links(dev);
4e66ae2e 10603
93642e14
JP
10604 /* Move per-net netdevice notifiers that are following the netdevice */
10605 move_netdevice_notifiers_dev_net(dev, net);
10606
ce286d32 10607 /* Actually switch the network namespace */
c346dca1 10608 dev_net_set(dev, net);
38e01b30 10609 dev->ifindex = new_ifindex;
ce286d32 10610
4e66ae2e
SH
10611 /* Send a netdev-add uevent to the new namespace */
10612 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 10613 netdev_adjacent_add_links(dev);
4e66ae2e 10614
8b41d188 10615 /* Fixup kobjects */
a1b3f594 10616 err = device_rename(&dev->dev, dev->name);
8b41d188 10617 WARN_ON(err);
ce286d32 10618
ef6a4c88
CB
10619 /* Adapt owner in case owning user namespace of target network
10620 * namespace is different from the original one.
10621 */
10622 err = netdev_change_owner(dev, net_old, net);
10623 WARN_ON(err);
10624
ce286d32
EB
10625 /* Add the device back in the hashes */
10626 list_netdevice(dev);
10627
10628 /* Notify protocols, that a new device appeared. */
10629 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10630
d90a909e
EB
10631 /*
10632 * Prevent userspace races by waiting until the network
10633 * device is fully setup before sending notifications.
10634 */
7f294054 10635 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 10636
ce286d32
EB
10637 synchronize_net();
10638 err = 0;
10639out:
10640 return err;
10641}
463d0183 10642EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 10643
f0bf90de 10644static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
10645{
10646 struct sk_buff **list_skb;
1da177e4 10647 struct sk_buff *skb;
f0bf90de 10648 unsigned int cpu;
97d8b6e3 10649 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 10650
1da177e4
LT
10651 local_irq_disable();
10652 cpu = smp_processor_id();
10653 sd = &per_cpu(softnet_data, cpu);
10654 oldsd = &per_cpu(softnet_data, oldcpu);
10655
10656 /* Find end of our completion_queue. */
10657 list_skb = &sd->completion_queue;
10658 while (*list_skb)
10659 list_skb = &(*list_skb)->next;
10660 /* Append completion queue from offline CPU. */
10661 *list_skb = oldsd->completion_queue;
10662 oldsd->completion_queue = NULL;
10663
1da177e4 10664 /* Append output queue from offline CPU. */
a9cbd588
CG
10665 if (oldsd->output_queue) {
10666 *sd->output_queue_tailp = oldsd->output_queue;
10667 sd->output_queue_tailp = oldsd->output_queue_tailp;
10668 oldsd->output_queue = NULL;
10669 oldsd->output_queue_tailp = &oldsd->output_queue;
10670 }
ac64da0b
ED
10671 /* Append NAPI poll list from offline CPU, with one exception :
10672 * process_backlog() must be called by cpu owning percpu backlog.
10673 * We properly handle process_queue & input_pkt_queue later.
10674 */
10675 while (!list_empty(&oldsd->poll_list)) {
10676 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10677 struct napi_struct,
10678 poll_list);
10679
10680 list_del_init(&napi->poll_list);
10681 if (napi->poll == process_backlog)
10682 napi->state = 0;
10683 else
10684 ____napi_schedule(sd, napi);
264524d5 10685 }
1da177e4
LT
10686
10687 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10688 local_irq_enable();
10689
773fc8f6 10690#ifdef CONFIG_RPS
10691 remsd = oldsd->rps_ipi_list;
10692 oldsd->rps_ipi_list = NULL;
10693#endif
10694 /* send out pending IPI's on offline CPU */
10695 net_rps_send_ipi(remsd);
10696
1da177e4 10697 /* Process offline CPU's input_pkt_queue */
76cc8b13 10698 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 10699 netif_rx_ni(skb);
76cc8b13 10700 input_queue_head_incr(oldsd);
fec5e652 10701 }
ac64da0b 10702 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 10703 netif_rx_ni(skb);
76cc8b13
TH
10704 input_queue_head_incr(oldsd);
10705 }
1da177e4 10706
f0bf90de 10707 return 0;
1da177e4 10708}
1da177e4 10709
7f353bf2 10710/**
b63365a2
HX
10711 * netdev_increment_features - increment feature set by one
10712 * @all: current feature set
10713 * @one: new feature set
10714 * @mask: mask feature set
7f353bf2
HX
10715 *
10716 * Computes a new feature set after adding a device with feature set
b63365a2
HX
10717 * @one to the master device with current feature set @all. Will not
10718 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 10719 */
c8f44aff
MM
10720netdev_features_t netdev_increment_features(netdev_features_t all,
10721 netdev_features_t one, netdev_features_t mask)
b63365a2 10722{
c8cd0989 10723 if (mask & NETIF_F_HW_CSUM)
a188222b 10724 mask |= NETIF_F_CSUM_MASK;
1742f183 10725 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 10726
a188222b 10727 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 10728 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 10729
1742f183 10730 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
10731 if (all & NETIF_F_HW_CSUM)
10732 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
10733
10734 return all;
10735}
b63365a2 10736EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 10737
430f03cd 10738static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
10739{
10740 int i;
10741 struct hlist_head *hash;
10742
6da2ec56 10743 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
10744 if (hash != NULL)
10745 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10746 INIT_HLIST_HEAD(&hash[i]);
10747
10748 return hash;
10749}
10750
881d966b 10751/* Initialize per network namespace state */
4665079c 10752static int __net_init netdev_init(struct net *net)
881d966b 10753{
d9f37d01 10754 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 10755 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 10756
734b6541
RM
10757 if (net != &init_net)
10758 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 10759
30d97d35
PE
10760 net->dev_name_head = netdev_create_hash();
10761 if (net->dev_name_head == NULL)
10762 goto err_name;
881d966b 10763
30d97d35
PE
10764 net->dev_index_head = netdev_create_hash();
10765 if (net->dev_index_head == NULL)
10766 goto err_idx;
881d966b 10767
a30c7b42
JP
10768 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10769
881d966b 10770 return 0;
30d97d35
PE
10771
10772err_idx:
10773 kfree(net->dev_name_head);
10774err_name:
10775 return -ENOMEM;
881d966b
EB
10776}
10777
f0db275a
SH
10778/**
10779 * netdev_drivername - network driver for the device
10780 * @dev: network device
f0db275a
SH
10781 *
10782 * Determine network driver for device.
10783 */
3019de12 10784const char *netdev_drivername(const struct net_device *dev)
6579e57b 10785{
cf04a4c7
SH
10786 const struct device_driver *driver;
10787 const struct device *parent;
3019de12 10788 const char *empty = "";
6579e57b
AV
10789
10790 parent = dev->dev.parent;
6579e57b 10791 if (!parent)
3019de12 10792 return empty;
6579e57b
AV
10793
10794 driver = parent->driver;
10795 if (driver && driver->name)
3019de12
DM
10796 return driver->name;
10797 return empty;
6579e57b
AV
10798}
10799
6ea754eb
JP
10800static void __netdev_printk(const char *level, const struct net_device *dev,
10801 struct va_format *vaf)
256df2f3 10802{
b004ff49 10803 if (dev && dev->dev.parent) {
6ea754eb
JP
10804 dev_printk_emit(level[1] - '0',
10805 dev->dev.parent,
10806 "%s %s %s%s: %pV",
10807 dev_driver_string(dev->dev.parent),
10808 dev_name(dev->dev.parent),
10809 netdev_name(dev), netdev_reg_state(dev),
10810 vaf);
b004ff49 10811 } else if (dev) {
6ea754eb
JP
10812 printk("%s%s%s: %pV",
10813 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 10814 } else {
6ea754eb 10815 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 10816 }
256df2f3
JP
10817}
10818
6ea754eb
JP
10819void netdev_printk(const char *level, const struct net_device *dev,
10820 const char *format, ...)
256df2f3
JP
10821{
10822 struct va_format vaf;
10823 va_list args;
256df2f3
JP
10824
10825 va_start(args, format);
10826
10827 vaf.fmt = format;
10828 vaf.va = &args;
10829
6ea754eb 10830 __netdev_printk(level, dev, &vaf);
b004ff49 10831
256df2f3 10832 va_end(args);
256df2f3
JP
10833}
10834EXPORT_SYMBOL(netdev_printk);
10835
10836#define define_netdev_printk_level(func, level) \
6ea754eb 10837void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 10838{ \
256df2f3
JP
10839 struct va_format vaf; \
10840 va_list args; \
10841 \
10842 va_start(args, fmt); \
10843 \
10844 vaf.fmt = fmt; \
10845 vaf.va = &args; \
10846 \
6ea754eb 10847 __netdev_printk(level, dev, &vaf); \
b004ff49 10848 \
256df2f3 10849 va_end(args); \
256df2f3
JP
10850} \
10851EXPORT_SYMBOL(func);
10852
10853define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10854define_netdev_printk_level(netdev_alert, KERN_ALERT);
10855define_netdev_printk_level(netdev_crit, KERN_CRIT);
10856define_netdev_printk_level(netdev_err, KERN_ERR);
10857define_netdev_printk_level(netdev_warn, KERN_WARNING);
10858define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10859define_netdev_printk_level(netdev_info, KERN_INFO);
10860
4665079c 10861static void __net_exit netdev_exit(struct net *net)
881d966b
EB
10862{
10863 kfree(net->dev_name_head);
10864 kfree(net->dev_index_head);
ee21b18b
VA
10865 if (net != &init_net)
10866 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
10867}
10868
022cbae6 10869static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
10870 .init = netdev_init,
10871 .exit = netdev_exit,
10872};
10873
4665079c 10874static void __net_exit default_device_exit(struct net *net)
ce286d32 10875{
e008b5fc 10876 struct net_device *dev, *aux;
ce286d32 10877 /*
e008b5fc 10878 * Push all migratable network devices back to the
ce286d32
EB
10879 * initial network namespace
10880 */
10881 rtnl_lock();
e008b5fc 10882 for_each_netdev_safe(net, dev, aux) {
ce286d32 10883 int err;
aca51397 10884 char fb_name[IFNAMSIZ];
ce286d32
EB
10885
10886 /* Ignore unmoveable devices (i.e. loopback) */
10887 if (dev->features & NETIF_F_NETNS_LOCAL)
10888 continue;
10889
e008b5fc
EB
10890 /* Leave virtual devices for the generic cleanup */
10891 if (dev->rtnl_link_ops)
10892 continue;
d0c082ce 10893
25985edc 10894 /* Push remaining network devices to init_net */
aca51397 10895 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
10896 if (__dev_get_by_name(&init_net, fb_name))
10897 snprintf(fb_name, IFNAMSIZ, "dev%%d");
aca51397 10898 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 10899 if (err) {
7b6cd1ce
JP
10900 pr_emerg("%s: failed to move %s to init_net: %d\n",
10901 __func__, dev->name, err);
aca51397 10902 BUG();
ce286d32
EB
10903 }
10904 }
10905 rtnl_unlock();
10906}
10907
50624c93
EB
10908static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10909{
10910 /* Return with the rtnl_lock held when there are no network
10911 * devices unregistering in any network namespace in net_list.
10912 */
10913 struct net *net;
10914 bool unregistering;
ff960a73 10915 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 10916
ff960a73 10917 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 10918 for (;;) {
50624c93
EB
10919 unregistering = false;
10920 rtnl_lock();
10921 list_for_each_entry(net, net_list, exit_list) {
10922 if (net->dev_unreg_count > 0) {
10923 unregistering = true;
10924 break;
10925 }
10926 }
10927 if (!unregistering)
10928 break;
10929 __rtnl_unlock();
ff960a73
PZ
10930
10931 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 10932 }
ff960a73 10933 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
10934}
10935
04dc7f6b
EB
10936static void __net_exit default_device_exit_batch(struct list_head *net_list)
10937{
10938 /* At exit all network devices most be removed from a network
b595076a 10939 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
10940 * Do this across as many network namespaces as possible to
10941 * improve batching efficiency.
10942 */
10943 struct net_device *dev;
10944 struct net *net;
10945 LIST_HEAD(dev_kill_list);
10946
50624c93
EB
10947 /* To prevent network device cleanup code from dereferencing
10948 * loopback devices or network devices that have been freed
10949 * wait here for all pending unregistrations to complete,
10950 * before unregistring the loopback device and allowing the
10951 * network namespace be freed.
10952 *
10953 * The netdev todo list containing all network devices
10954 * unregistrations that happen in default_device_exit_batch
10955 * will run in the rtnl_unlock() at the end of
10956 * default_device_exit_batch.
10957 */
10958 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
10959 list_for_each_entry(net, net_list, exit_list) {
10960 for_each_netdev_reverse(net, dev) {
b0ab2fab 10961 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
10962 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10963 else
10964 unregister_netdevice_queue(dev, &dev_kill_list);
10965 }
10966 }
10967 unregister_netdevice_many(&dev_kill_list);
10968 rtnl_unlock();
10969}
10970
022cbae6 10971static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 10972 .exit = default_device_exit,
04dc7f6b 10973 .exit_batch = default_device_exit_batch,
ce286d32
EB
10974};
10975
1da177e4
LT
10976/*
10977 * Initialize the DEV module. At boot time this walks the device list and
10978 * unhooks any devices that fail to initialise (normally hardware not
10979 * present) and leaves us with a valid list of present and active devices.
10980 *
10981 */
10982
10983/*
10984 * This is called single threaded during boot, so no need
10985 * to take the rtnl semaphore.
10986 */
10987static int __init net_dev_init(void)
10988{
10989 int i, rc = -ENOMEM;
10990
10991 BUG_ON(!dev_boot_phase);
10992
1da177e4
LT
10993 if (dev_proc_init())
10994 goto out;
10995
8b41d188 10996 if (netdev_kobject_init())
1da177e4
LT
10997 goto out;
10998
10999 INIT_LIST_HEAD(&ptype_all);
82d8a867 11000 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
11001 INIT_LIST_HEAD(&ptype_base[i]);
11002
62532da9
VY
11003 INIT_LIST_HEAD(&offload_base);
11004
881d966b
EB
11005 if (register_pernet_subsys(&netdev_net_ops))
11006 goto out;
1da177e4
LT
11007
11008 /*
11009 * Initialise the packet receive queues.
11010 */
11011
6f912042 11012 for_each_possible_cpu(i) {
41852497 11013 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 11014 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 11015
41852497
ED
11016 INIT_WORK(flush, flush_backlog);
11017
e36fa2f7 11018 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 11019 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
11020#ifdef CONFIG_XFRM_OFFLOAD
11021 skb_queue_head_init(&sd->xfrm_backlog);
11022#endif
e36fa2f7 11023 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 11024 sd->output_queue_tailp = &sd->output_queue;
df334545 11025#ifdef CONFIG_RPS
e36fa2f7
ED
11026 sd->csd.func = rps_trigger_softirq;
11027 sd->csd.info = sd;
e36fa2f7 11028 sd->cpu = i;
1e94d72f 11029#endif
0a9627f2 11030
7c4ec749 11031 init_gro_hash(&sd->backlog);
e36fa2f7
ED
11032 sd->backlog.poll = process_backlog;
11033 sd->backlog.weight = weight_p;
1da177e4
LT
11034 }
11035
1da177e4
LT
11036 dev_boot_phase = 0;
11037
505d4f73
EB
11038 /* The loopback device is special if any other network devices
11039 * is present in a network namespace the loopback device must
11040 * be present. Since we now dynamically allocate and free the
11041 * loopback device ensure this invariant is maintained by
11042 * keeping the loopback device as the first device on the
11043 * list of network devices. Ensuring the loopback devices
11044 * is the first device that appears and the last network device
11045 * that disappears.
11046 */
11047 if (register_pernet_device(&loopback_net_ops))
11048 goto out;
11049
11050 if (register_pernet_device(&default_device_ops))
11051 goto out;
11052
962cf36c
CM
11053 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11054 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 11055
f0bf90de
SAS
11056 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11057 NULL, dev_cpu_dead);
11058 WARN_ON(rc < 0);
1da177e4
LT
11059 rc = 0;
11060out:
11061 return rc;
11062}
11063
11064subsys_initcall(net_dev_init);