]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/core/dev.c
Merge branch 'tcp-eor'
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4 98#include <net/sock.h>
02d62e86 99#include <net/busy_poll.h>
1da177e4 100#include <linux/rtnetlink.h>
1da177e4 101#include <linux/stat.h>
1da177e4 102#include <net/dst.h>
fc4099f1 103#include <net/dst_metadata.h>
1da177e4
LT
104#include <net/pkt_sched.h>
105#include <net/checksum.h>
44540960 106#include <net/xfrm.h>
1da177e4
LT
107#include <linux/highmem.h>
108#include <linux/init.h>
1da177e4 109#include <linux/module.h>
1da177e4
LT
110#include <linux/netpoll.h>
111#include <linux/rcupdate.h>
112#include <linux/delay.h>
1da177e4 113#include <net/iw_handler.h>
1da177e4 114#include <asm/current.h>
5bdb9886 115#include <linux/audit.h>
db217334 116#include <linux/dmaengine.h>
f6a78bfc 117#include <linux/err.h>
c7fa9d18 118#include <linux/ctype.h>
723e98b7 119#include <linux/if_arp.h>
6de329e2 120#include <linux/if_vlan.h>
8f0f2223 121#include <linux/ip.h>
ad55dcaf 122#include <net/ip.h>
25cd9ba0 123#include <net/mpls.h>
8f0f2223
DM
124#include <linux/ipv6.h>
125#include <linux/in.h>
b6b2fed1
DM
126#include <linux/jhash.h>
127#include <linux/random.h>
9cbc1cb8 128#include <trace/events/napi.h>
cf66ba58 129#include <trace/events/net.h>
07dc22e7 130#include <trace/events/skb.h>
5acbbd42 131#include <linux/pci.h>
caeda9b9 132#include <linux/inetdevice.h>
c445477d 133#include <linux/cpu_rmap.h>
c5905afb 134#include <linux/static_key.h>
af12fa6e 135#include <linux/hashtable.h>
60877a32 136#include <linux/vmalloc.h>
529d0489 137#include <linux/if_macvlan.h>
e7fd2885 138#include <linux/errqueue.h>
3b47d303 139#include <linux/hrtimer.h>
e687ad60 140#include <linux/netfilter_ingress.h>
6ae23ad3 141#include <linux/sctp.h>
1da177e4 142
342709ef
PE
143#include "net-sysfs.h"
144
d565b0a1
HX
145/* Instead of increasing this, you should create a hash table. */
146#define MAX_GRO_SKBS 8
147
5d38a079
HX
148/* This should be increased if a protocol with a bigger head is added. */
149#define GRO_MAX_HEAD (MAX_HEADER + 128)
150
1da177e4 151static DEFINE_SPINLOCK(ptype_lock);
62532da9 152static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
153struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154struct list_head ptype_all __read_mostly; /* Taps */
62532da9 155static struct list_head offload_base __read_mostly;
1da177e4 156
ae78dbfa 157static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
158static int call_netdevice_notifiers_info(unsigned long val,
159 struct net_device *dev,
160 struct netdev_notifier_info *info);
ae78dbfa 161
1da177e4 162/*
7562f876 163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
164 * semaphore.
165 *
c6d14c84 166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
167 *
168 * Writers must hold the rtnl semaphore while they loop through the
7562f876 169 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
170 * actual updates. This allows pure readers to access the list even
171 * while a writer is preparing to update it.
172 *
173 * To put it another way, dev_base_lock is held for writing only to
174 * protect against pure readers; the rtnl semaphore provides the
175 * protection against other writers.
176 *
177 * See, for example usages, register_netdevice() and
178 * unregister_netdevice(), which must be called with the rtnl
179 * semaphore held.
180 */
1da177e4 181DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
182EXPORT_SYMBOL(dev_base_lock);
183
af12fa6e
ET
184/* protects napi_hash addition/deletion and napi_gen_id */
185static DEFINE_SPINLOCK(napi_hash_lock);
186
52bd2d62 187static unsigned int napi_gen_id = NR_CPUS;
6180d9de 188static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 189
18afa4b0 190static seqcount_t devnet_rename_seq;
c91f6df2 191
4e985ada
TG
192static inline void dev_base_seq_inc(struct net *net)
193{
194 while (++net->dev_base_seq == 0);
195}
196
881d966b 197static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 198{
95c96174
ED
199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
08e9897d 201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
202}
203
881d966b 204static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 205{
7c28bd0b 206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
207}
208
e36fa2f7 209static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
210{
211#ifdef CONFIG_RPS
e36fa2f7 212 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
213#endif
214}
215
e36fa2f7 216static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
217{
218#ifdef CONFIG_RPS
e36fa2f7 219 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
220#endif
221}
222
ce286d32 223/* Device list insertion */
53759be9 224static void list_netdevice(struct net_device *dev)
ce286d32 225{
c346dca1 226 struct net *net = dev_net(dev);
ce286d32
EB
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
c6d14c84 231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
ce286d32 235 write_unlock_bh(&dev_base_lock);
4e985ada
TG
236
237 dev_base_seq_inc(net);
ce286d32
EB
238}
239
fb699dfd
ED
240/* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
ce286d32
EB
243static void unlist_netdevice(struct net_device *dev)
244{
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
c6d14c84 249 list_del_rcu(&dev->dev_list);
72c9528b 250 hlist_del_rcu(&dev->name_hlist);
fb699dfd 251 hlist_del_rcu(&dev->index_hlist);
ce286d32 252 write_unlock_bh(&dev_base_lock);
4e985ada
TG
253
254 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
255}
256
1da177e4
LT
257/*
258 * Our notifier list
259 */
260
f07d5b94 261static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
262
263/*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
bea3348e 267
9958da05 268DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 269EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 270
cf508b12 271#ifdef CONFIG_LOCKDEP
723e98b7 272/*
c773e847 273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
274 * according to dev->type
275 */
276static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 292
36cbd3dc 293static const char *const netdev_lock_name[] =
723e98b7
JP
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
309
310static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 311static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
312
313static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314{
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322}
323
cf508b12
DM
324static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
723e98b7
JP
326{
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332}
cf508b12
DM
333
334static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335{
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342}
723e98b7 343#else
cf508b12
DM
344static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346{
347}
348static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
349{
350}
351#endif
1da177e4
LT
352
353/*******************************************************************************
354
355 Protocol management and registration routines
356
357*******************************************************************************/
358
1da177e4
LT
359/*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
c07b68e8
ED
375static inline struct list_head *ptype_head(const struct packet_type *pt)
376{
377 if (pt->type == htons(ETH_P_ALL))
7866a621 378 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 379 else
7866a621
SN
380 return pt->dev ? &pt->dev->ptype_specific :
381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
382}
383
1da177e4
LT
384/**
385 * dev_add_pack - add packet handler
386 * @pt: packet type declaration
387 *
388 * Add a protocol handler to the networking stack. The passed &packet_type
389 * is linked into kernel lists and may not be freed until it has been
390 * removed from the kernel lists.
391 *
4ec93edb 392 * This call does not sleep therefore it can not
1da177e4
LT
393 * guarantee all CPU's that are in middle of receiving packets
394 * will see the new packet type (until the next received packet).
395 */
396
397void dev_add_pack(struct packet_type *pt)
398{
c07b68e8 399 struct list_head *head = ptype_head(pt);
1da177e4 400
c07b68e8
ED
401 spin_lock(&ptype_lock);
402 list_add_rcu(&pt->list, head);
403 spin_unlock(&ptype_lock);
1da177e4 404}
d1b19dff 405EXPORT_SYMBOL(dev_add_pack);
1da177e4 406
1da177e4
LT
407/**
408 * __dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
410 *
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
4ec93edb 414 * returns.
1da177e4
LT
415 *
416 * The packet type might still be in use by receivers
417 * and must not be freed until after all the CPU's have gone
418 * through a quiescent state.
419 */
420void __dev_remove_pack(struct packet_type *pt)
421{
c07b68e8 422 struct list_head *head = ptype_head(pt);
1da177e4
LT
423 struct packet_type *pt1;
424
c07b68e8 425 spin_lock(&ptype_lock);
1da177e4
LT
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
7b6cd1ce 434 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 435out:
c07b68e8 436 spin_unlock(&ptype_lock);
1da177e4 437}
d1b19dff
ED
438EXPORT_SYMBOL(__dev_remove_pack);
439
1da177e4
LT
440/**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452void dev_remove_pack(struct packet_type *pt)
453{
454 __dev_remove_pack(pt);
4ec93edb 455
1da177e4
LT
456 synchronize_net();
457}
d1b19dff 458EXPORT_SYMBOL(dev_remove_pack);
1da177e4 459
62532da9
VY
460
461/**
462 * dev_add_offload - register offload handlers
463 * @po: protocol offload declaration
464 *
465 * Add protocol offload handlers to the networking stack. The passed
466 * &proto_offload is linked into kernel lists and may not be freed until
467 * it has been removed from the kernel lists.
468 *
469 * This call does not sleep therefore it can not
470 * guarantee all CPU's that are in middle of receiving packets
471 * will see the new offload handlers (until the next received packet).
472 */
473void dev_add_offload(struct packet_offload *po)
474{
bdef7de4 475 struct packet_offload *elem;
62532da9
VY
476
477 spin_lock(&offload_lock);
bdef7de4
DM
478 list_for_each_entry(elem, &offload_base, list) {
479 if (po->priority < elem->priority)
480 break;
481 }
482 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
483 spin_unlock(&offload_lock);
484}
485EXPORT_SYMBOL(dev_add_offload);
486
487/**
488 * __dev_remove_offload - remove offload handler
489 * @po: packet offload declaration
490 *
491 * Remove a protocol offload handler that was previously added to the
492 * kernel offload handlers by dev_add_offload(). The passed &offload_type
493 * is removed from the kernel lists and can be freed or reused once this
494 * function returns.
495 *
496 * The packet type might still be in use by receivers
497 * and must not be freed until after all the CPU's have gone
498 * through a quiescent state.
499 */
1d143d9f 500static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
501{
502 struct list_head *head = &offload_base;
503 struct packet_offload *po1;
504
c53aa505 505 spin_lock(&offload_lock);
62532da9
VY
506
507 list_for_each_entry(po1, head, list) {
508 if (po == po1) {
509 list_del_rcu(&po->list);
510 goto out;
511 }
512 }
513
514 pr_warn("dev_remove_offload: %p not found\n", po);
515out:
c53aa505 516 spin_unlock(&offload_lock);
62532da9 517}
62532da9
VY
518
519/**
520 * dev_remove_offload - remove packet offload handler
521 * @po: packet offload declaration
522 *
523 * Remove a packet offload handler that was previously added to the kernel
524 * offload handlers by dev_add_offload(). The passed &offload_type is
525 * removed from the kernel lists and can be freed or reused once this
526 * function returns.
527 *
528 * This call sleeps to guarantee that no CPU is looking at the packet
529 * type after return.
530 */
531void dev_remove_offload(struct packet_offload *po)
532{
533 __dev_remove_offload(po);
534
535 synchronize_net();
536}
537EXPORT_SYMBOL(dev_remove_offload);
538
1da177e4
LT
539/******************************************************************************
540
541 Device Boot-time Settings Routines
542
543*******************************************************************************/
544
545/* Boot time configuration table */
546static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548/**
549 * netdev_boot_setup_add - add new setup entry
550 * @name: name of the device
551 * @map: configured settings for the device
552 *
553 * Adds new setup entry to the dev_boot_setup list. The function
554 * returns 0 on error and 1 on success. This is a generic routine to
555 * all netdevices.
556 */
557static int netdev_boot_setup_add(char *name, struct ifmap *map)
558{
559 struct netdev_boot_setup *s;
560 int i;
561
562 s = dev_boot_setup;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 566 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
567 memcpy(&s[i].map, map, sizeof(s[i].map));
568 break;
569 }
570 }
571
572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573}
574
575/**
576 * netdev_boot_setup_check - check boot time settings
577 * @dev: the netdevice
578 *
579 * Check boot time settings for the device.
580 * The found settings are set for the device to be used
581 * later in the device probing.
582 * Returns 0 if no settings found, 1 if they are.
583 */
584int netdev_boot_setup_check(struct net_device *dev)
585{
586 struct netdev_boot_setup *s = dev_boot_setup;
587 int i;
588
589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 591 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
592 dev->irq = s[i].map.irq;
593 dev->base_addr = s[i].map.base_addr;
594 dev->mem_start = s[i].map.mem_start;
595 dev->mem_end = s[i].map.mem_end;
596 return 1;
597 }
598 }
599 return 0;
600}
d1b19dff 601EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
602
603
604/**
605 * netdev_boot_base - get address from boot time settings
606 * @prefix: prefix for network device
607 * @unit: id for network device
608 *
609 * Check boot time settings for the base address of device.
610 * The found settings are set for the device to be used
611 * later in the device probing.
612 * Returns 0 if no settings found.
613 */
614unsigned long netdev_boot_base(const char *prefix, int unit)
615{
616 const struct netdev_boot_setup *s = dev_boot_setup;
617 char name[IFNAMSIZ];
618 int i;
619
620 sprintf(name, "%s%d", prefix, unit);
621
622 /*
623 * If device already registered then return base of 1
624 * to indicate not to probe for this interface
625 */
881d966b 626 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
627 return 1;
628
629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 if (!strcmp(name, s[i].name))
631 return s[i].map.base_addr;
632 return 0;
633}
634
635/*
636 * Saves at boot time configured settings for any netdevice.
637 */
638int __init netdev_boot_setup(char *str)
639{
640 int ints[5];
641 struct ifmap map;
642
643 str = get_options(str, ARRAY_SIZE(ints), ints);
644 if (!str || !*str)
645 return 0;
646
647 /* Save settings */
648 memset(&map, 0, sizeof(map));
649 if (ints[0] > 0)
650 map.irq = ints[1];
651 if (ints[0] > 1)
652 map.base_addr = ints[2];
653 if (ints[0] > 2)
654 map.mem_start = ints[3];
655 if (ints[0] > 3)
656 map.mem_end = ints[4];
657
658 /* Add new entry to the list */
659 return netdev_boot_setup_add(str, &map);
660}
661
662__setup("netdev=", netdev_boot_setup);
663
664/*******************************************************************************
665
666 Device Interface Subroutines
667
668*******************************************************************************/
669
a54acb3a
ND
670/**
671 * dev_get_iflink - get 'iflink' value of a interface
672 * @dev: targeted interface
673 *
674 * Indicates the ifindex the interface is linked to.
675 * Physical interfaces have the same 'ifindex' and 'iflink' values.
676 */
677
678int dev_get_iflink(const struct net_device *dev)
679{
680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 return dev->netdev_ops->ndo_get_iflink(dev);
682
7a66bbc9 683 return dev->ifindex;
a54acb3a
ND
684}
685EXPORT_SYMBOL(dev_get_iflink);
686
fc4099f1
PS
687/**
688 * dev_fill_metadata_dst - Retrieve tunnel egress information.
689 * @dev: targeted interface
690 * @skb: The packet.
691 *
692 * For better visibility of tunnel traffic OVS needs to retrieve
693 * egress tunnel information for a packet. Following API allows
694 * user to get this info.
695 */
696int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697{
698 struct ip_tunnel_info *info;
699
700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
701 return -EINVAL;
702
703 info = skb_tunnel_info_unclone(skb);
704 if (!info)
705 return -ENOMEM;
706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 return -EINVAL;
708
709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710}
711EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
1da177e4
LT
713/**
714 * __dev_get_by_name - find a device by its name
c4ea43c5 715 * @net: the applicable net namespace
1da177e4
LT
716 * @name: name to find
717 *
718 * Find an interface by name. Must be called under RTNL semaphore
719 * or @dev_base_lock. If the name is found a pointer to the device
720 * is returned. If the name is not found then %NULL is returned. The
721 * reference counters are not incremented so the caller must be
722 * careful with locks.
723 */
724
881d966b 725struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 726{
0bd8d536
ED
727 struct net_device *dev;
728 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 729
b67bfe0d 730 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
731 if (!strncmp(dev->name, name, IFNAMSIZ))
732 return dev;
0bd8d536 733
1da177e4
LT
734 return NULL;
735}
d1b19dff 736EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 737
72c9528b
ED
738/**
739 * dev_get_by_name_rcu - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
742 *
743 * Find an interface by name.
744 * If the name is found a pointer to the device is returned.
745 * If the name is not found then %NULL is returned.
746 * The reference counters are not incremented so the caller must be
747 * careful with locks. The caller must hold RCU lock.
748 */
749
750struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751{
72c9528b
ED
752 struct net_device *dev;
753 struct hlist_head *head = dev_name_hash(net, name);
754
b67bfe0d 755 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
756 if (!strncmp(dev->name, name, IFNAMSIZ))
757 return dev;
758
759 return NULL;
760}
761EXPORT_SYMBOL(dev_get_by_name_rcu);
762
1da177e4
LT
763/**
764 * dev_get_by_name - find a device by its name
c4ea43c5 765 * @net: the applicable net namespace
1da177e4
LT
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
881d966b 775struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
776{
777 struct net_device *dev;
778
72c9528b
ED
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
781 if (dev)
782 dev_hold(dev);
72c9528b 783 rcu_read_unlock();
1da177e4
LT
784 return dev;
785}
d1b19dff 786EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
787
788/**
789 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 790 * @net: the applicable net namespace
1da177e4
LT
791 * @ifindex: index of device
792 *
793 * Search for an interface by index. Returns %NULL if the device
794 * is not found or a pointer to the device. The device has not
795 * had its reference counter increased so the caller must be careful
796 * about locking. The caller must hold either the RTNL semaphore
797 * or @dev_base_lock.
798 */
799
881d966b 800struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 801{
0bd8d536
ED
802 struct net_device *dev;
803 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 804
b67bfe0d 805 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
806 if (dev->ifindex == ifindex)
807 return dev;
0bd8d536 808
1da177e4
LT
809 return NULL;
810}
d1b19dff 811EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 812
fb699dfd
ED
813/**
814 * dev_get_by_index_rcu - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
817 *
818 * Search for an interface by index. Returns %NULL if the device
819 * is not found or a pointer to the device. The device has not
820 * had its reference counter increased so the caller must be careful
821 * about locking. The caller must hold RCU lock.
822 */
823
824struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825{
fb699dfd
ED
826 struct net_device *dev;
827 struct hlist_head *head = dev_index_hash(net, ifindex);
828
b67bfe0d 829 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
830 if (dev->ifindex == ifindex)
831 return dev;
832
833 return NULL;
834}
835EXPORT_SYMBOL(dev_get_by_index_rcu);
836
1da177e4
LT
837
838/**
839 * dev_get_by_index - find a device by its ifindex
c4ea43c5 840 * @net: the applicable net namespace
1da177e4
LT
841 * @ifindex: index of device
842 *
843 * Search for an interface by index. Returns NULL if the device
844 * is not found or a pointer to the device. The device returned has
845 * had a reference added and the pointer is safe until the user calls
846 * dev_put to indicate they have finished with it.
847 */
848
881d966b 849struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
850{
851 struct net_device *dev;
852
fb699dfd
ED
853 rcu_read_lock();
854 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
855 if (dev)
856 dev_hold(dev);
fb699dfd 857 rcu_read_unlock();
1da177e4
LT
858 return dev;
859}
d1b19dff 860EXPORT_SYMBOL(dev_get_by_index);
1da177e4 861
5dbe7c17
NS
862/**
863 * netdev_get_name - get a netdevice name, knowing its ifindex.
864 * @net: network namespace
865 * @name: a pointer to the buffer where the name will be stored.
866 * @ifindex: the ifindex of the interface to get the name from.
867 *
868 * The use of raw_seqcount_begin() and cond_resched() before
869 * retrying is required as we want to give the writers a chance
870 * to complete when CONFIG_PREEMPT is not set.
871 */
872int netdev_get_name(struct net *net, char *name, int ifindex)
873{
874 struct net_device *dev;
875 unsigned int seq;
876
877retry:
878 seq = raw_seqcount_begin(&devnet_rename_seq);
879 rcu_read_lock();
880 dev = dev_get_by_index_rcu(net, ifindex);
881 if (!dev) {
882 rcu_read_unlock();
883 return -ENODEV;
884 }
885
886 strcpy(name, dev->name);
887 rcu_read_unlock();
888 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 cond_resched();
890 goto retry;
891 }
892
893 return 0;
894}
895
1da177e4 896/**
941666c2 897 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 898 * @net: the applicable net namespace
1da177e4
LT
899 * @type: media type of device
900 * @ha: hardware address
901 *
902 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
903 * is not found or a pointer to the device.
904 * The caller must hold RCU or RTNL.
941666c2 905 * The returned device has not had its ref count increased
1da177e4
LT
906 * and the caller must therefore be careful about locking
907 *
1da177e4
LT
908 */
909
941666c2
ED
910struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 const char *ha)
1da177e4
LT
912{
913 struct net_device *dev;
914
941666c2 915 for_each_netdev_rcu(net, dev)
1da177e4
LT
916 if (dev->type == type &&
917 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
918 return dev;
919
920 return NULL;
1da177e4 921}
941666c2 922EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 923
881d966b 924struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
925{
926 struct net_device *dev;
927
4e9cac2b 928 ASSERT_RTNL();
881d966b 929 for_each_netdev(net, dev)
4e9cac2b 930 if (dev->type == type)
7562f876
PE
931 return dev;
932
933 return NULL;
4e9cac2b 934}
4e9cac2b
PM
935EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
881d966b 937struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 938{
99fe3c39 939 struct net_device *dev, *ret = NULL;
4e9cac2b 940
99fe3c39
ED
941 rcu_read_lock();
942 for_each_netdev_rcu(net, dev)
943 if (dev->type == type) {
944 dev_hold(dev);
945 ret = dev;
946 break;
947 }
948 rcu_read_unlock();
949 return ret;
1da177e4 950}
1da177e4
LT
951EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953/**
6c555490 954 * __dev_get_by_flags - find any device with given flags
c4ea43c5 955 * @net: the applicable net namespace
1da177e4
LT
956 * @if_flags: IFF_* values
957 * @mask: bitmask of bits in if_flags to check
958 *
959 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 960 * is not found or a pointer to the device. Must be called inside
6c555490 961 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
962 */
963
6c555490
WC
964struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 unsigned short mask)
1da177e4 966{
7562f876 967 struct net_device *dev, *ret;
1da177e4 968
6c555490
WC
969 ASSERT_RTNL();
970
7562f876 971 ret = NULL;
6c555490 972 for_each_netdev(net, dev) {
1da177e4 973 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 974 ret = dev;
1da177e4
LT
975 break;
976 }
977 }
7562f876 978 return ret;
1da177e4 979}
6c555490 980EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
981
982/**
983 * dev_valid_name - check if name is okay for network device
984 * @name: name string
985 *
986 * Network device names need to be valid file names to
c7fa9d18
DM
987 * to allow sysfs to work. We also disallow any kind of
988 * whitespace.
1da177e4 989 */
95f050bf 990bool dev_valid_name(const char *name)
1da177e4 991{
c7fa9d18 992 if (*name == '\0')
95f050bf 993 return false;
b6fe17d6 994 if (strlen(name) >= IFNAMSIZ)
95f050bf 995 return false;
c7fa9d18 996 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 997 return false;
c7fa9d18
DM
998
999 while (*name) {
a4176a93 1000 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1001 return false;
c7fa9d18
DM
1002 name++;
1003 }
95f050bf 1004 return true;
1da177e4 1005}
d1b19dff 1006EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1007
1008/**
b267b179
EB
1009 * __dev_alloc_name - allocate a name for a device
1010 * @net: network namespace to allocate the device name in
1da177e4 1011 * @name: name format string
b267b179 1012 * @buf: scratch buffer and result name string
1da177e4
LT
1013 *
1014 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1015 * id. It scans list of devices to build up a free map, then chooses
1016 * the first empty slot. The caller must hold the dev_base or rtnl lock
1017 * while allocating the name and adding the device in order to avoid
1018 * duplicates.
1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1021 */
1022
b267b179 1023static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1024{
1025 int i = 0;
1da177e4
LT
1026 const char *p;
1027 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1028 unsigned long *inuse;
1da177e4
LT
1029 struct net_device *d;
1030
1031 p = strnchr(name, IFNAMSIZ-1, '%');
1032 if (p) {
1033 /*
1034 * Verify the string as this thing may have come from
1035 * the user. There must be either one "%d" and no other "%"
1036 * characters.
1037 */
1038 if (p[1] != 'd' || strchr(p + 2, '%'))
1039 return -EINVAL;
1040
1041 /* Use one page as a bit array of possible slots */
cfcabdcc 1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1043 if (!inuse)
1044 return -ENOMEM;
1045
881d966b 1046 for_each_netdev(net, d) {
1da177e4
LT
1047 if (!sscanf(d->name, name, &i))
1048 continue;
1049 if (i < 0 || i >= max_netdevices)
1050 continue;
1051
1052 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1053 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1054 if (!strncmp(buf, d->name, IFNAMSIZ))
1055 set_bit(i, inuse);
1056 }
1057
1058 i = find_first_zero_bit(inuse, max_netdevices);
1059 free_page((unsigned long) inuse);
1060 }
1061
d9031024
OP
1062 if (buf != name)
1063 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1064 if (!__dev_get_by_name(net, buf))
1da177e4 1065 return i;
1da177e4
LT
1066
1067 /* It is possible to run out of possible slots
1068 * when the name is long and there isn't enough space left
1069 * for the digits, or if all bits are used.
1070 */
1071 return -ENFILE;
1072}
1073
b267b179
EB
1074/**
1075 * dev_alloc_name - allocate a name for a device
1076 * @dev: device
1077 * @name: name format string
1078 *
1079 * Passed a format string - eg "lt%d" it will try and find a suitable
1080 * id. It scans list of devices to build up a free map, then chooses
1081 * the first empty slot. The caller must hold the dev_base or rtnl lock
1082 * while allocating the name and adding the device in order to avoid
1083 * duplicates.
1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 * Returns the number of the unit assigned or a negative errno code.
1086 */
1087
1088int dev_alloc_name(struct net_device *dev, const char *name)
1089{
1090 char buf[IFNAMSIZ];
1091 struct net *net;
1092 int ret;
1093
c346dca1
YH
1094 BUG_ON(!dev_net(dev));
1095 net = dev_net(dev);
b267b179
EB
1096 ret = __dev_alloc_name(net, name, buf);
1097 if (ret >= 0)
1098 strlcpy(dev->name, buf, IFNAMSIZ);
1099 return ret;
1100}
d1b19dff 1101EXPORT_SYMBOL(dev_alloc_name);
b267b179 1102
828de4f6
G
1103static int dev_alloc_name_ns(struct net *net,
1104 struct net_device *dev,
1105 const char *name)
d9031024 1106{
828de4f6
G
1107 char buf[IFNAMSIZ];
1108 int ret;
8ce6cebc 1109
828de4f6
G
1110 ret = __dev_alloc_name(net, name, buf);
1111 if (ret >= 0)
1112 strlcpy(dev->name, buf, IFNAMSIZ);
1113 return ret;
1114}
1115
1116static int dev_get_valid_name(struct net *net,
1117 struct net_device *dev,
1118 const char *name)
1119{
1120 BUG_ON(!net);
8ce6cebc 1121
d9031024
OP
1122 if (!dev_valid_name(name))
1123 return -EINVAL;
1124
1c5cae81 1125 if (strchr(name, '%'))
828de4f6 1126 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1127 else if (__dev_get_by_name(net, name))
1128 return -EEXIST;
8ce6cebc
DL
1129 else if (dev->name != name)
1130 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1131
1132 return 0;
1133}
1da177e4
LT
1134
1135/**
1136 * dev_change_name - change name of a device
1137 * @dev: device
1138 * @newname: name (or format string) must be at least IFNAMSIZ
1139 *
1140 * Change name of a device, can pass format strings "eth%d".
1141 * for wildcarding.
1142 */
cf04a4c7 1143int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1144{
238fa362 1145 unsigned char old_assign_type;
fcc5a03a 1146 char oldname[IFNAMSIZ];
1da177e4 1147 int err = 0;
fcc5a03a 1148 int ret;
881d966b 1149 struct net *net;
1da177e4
LT
1150
1151 ASSERT_RTNL();
c346dca1 1152 BUG_ON(!dev_net(dev));
1da177e4 1153
c346dca1 1154 net = dev_net(dev);
1da177e4
LT
1155 if (dev->flags & IFF_UP)
1156 return -EBUSY;
1157
30e6c9fa 1158 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1159
1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1161 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1162 return 0;
c91f6df2 1163 }
c8d90dca 1164
fcc5a03a
HX
1165 memcpy(oldname, dev->name, IFNAMSIZ);
1166
828de4f6 1167 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1168 if (err < 0) {
30e6c9fa 1169 write_seqcount_end(&devnet_rename_seq);
d9031024 1170 return err;
c91f6df2 1171 }
1da177e4 1172
6fe82a39
VF
1173 if (oldname[0] && !strchr(oldname, '%'))
1174 netdev_info(dev, "renamed from %s\n", oldname);
1175
238fa362
TG
1176 old_assign_type = dev->name_assign_type;
1177 dev->name_assign_type = NET_NAME_RENAMED;
1178
fcc5a03a 1179rollback:
a1b3f594
EB
1180 ret = device_rename(&dev->dev, dev->name);
1181 if (ret) {
1182 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1183 dev->name_assign_type = old_assign_type;
30e6c9fa 1184 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1185 return ret;
dcc99773 1186 }
7f988eab 1187
30e6c9fa 1188 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1189
5bb025fa
VF
1190 netdev_adjacent_rename_links(dev, oldname);
1191
7f988eab 1192 write_lock_bh(&dev_base_lock);
372b2312 1193 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1194 write_unlock_bh(&dev_base_lock);
1195
1196 synchronize_rcu();
1197
1198 write_lock_bh(&dev_base_lock);
1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1200 write_unlock_bh(&dev_base_lock);
1201
056925ab 1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1203 ret = notifier_to_errno(ret);
1204
1205 if (ret) {
91e9c07b
ED
1206 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207 if (err >= 0) {
fcc5a03a 1208 err = ret;
30e6c9fa 1209 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1210 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1211 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1212 dev->name_assign_type = old_assign_type;
1213 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1214 goto rollback;
91e9c07b 1215 } else {
7b6cd1ce 1216 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1217 dev->name, ret);
fcc5a03a
HX
1218 }
1219 }
1da177e4
LT
1220
1221 return err;
1222}
1223
0b815a1a
SH
1224/**
1225 * dev_set_alias - change ifalias of a device
1226 * @dev: device
1227 * @alias: name up to IFALIASZ
f0db275a 1228 * @len: limit of bytes to copy from info
0b815a1a
SH
1229 *
1230 * Set ifalias for a device,
1231 */
1232int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233{
7364e445
AK
1234 char *new_ifalias;
1235
0b815a1a
SH
1236 ASSERT_RTNL();
1237
1238 if (len >= IFALIASZ)
1239 return -EINVAL;
1240
96ca4a2c 1241 if (!len) {
388dfc2d
SK
1242 kfree(dev->ifalias);
1243 dev->ifalias = NULL;
96ca4a2c
OH
1244 return 0;
1245 }
1246
7364e445
AK
1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 if (!new_ifalias)
0b815a1a 1249 return -ENOMEM;
7364e445 1250 dev->ifalias = new_ifalias;
0b815a1a
SH
1251
1252 strlcpy(dev->ifalias, alias, len+1);
1253 return len;
1254}
1255
1256
d8a33ac4 1257/**
3041a069 1258 * netdev_features_change - device changes features
d8a33ac4
SH
1259 * @dev: device to cause notification
1260 *
1261 * Called to indicate a device has changed features.
1262 */
1263void netdev_features_change(struct net_device *dev)
1264{
056925ab 1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1266}
1267EXPORT_SYMBOL(netdev_features_change);
1268
1da177e4
LT
1269/**
1270 * netdev_state_change - device changes state
1271 * @dev: device to cause notification
1272 *
1273 * Called to indicate a device has changed state. This function calls
1274 * the notifier chains for netdev_chain and sends a NEWLINK message
1275 * to the routing socket.
1276 */
1277void netdev_state_change(struct net_device *dev)
1278{
1279 if (dev->flags & IFF_UP) {
54951194
LP
1280 struct netdev_notifier_change_info change_info;
1281
1282 change_info.flags_changed = 0;
1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 &change_info.info);
7f294054 1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1286 }
1287}
d1b19dff 1288EXPORT_SYMBOL(netdev_state_change);
1da177e4 1289
ee89bab1
AW
1290/**
1291 * netdev_notify_peers - notify network peers about existence of @dev
1292 * @dev: network device
1293 *
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1298 * migration.
1299 */
1300void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1301{
ee89bab1
AW
1302 rtnl_lock();
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 rtnl_unlock();
c1da4ac7 1305}
ee89bab1 1306EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1307
bd380811 1308static int __dev_open(struct net_device *dev)
1da177e4 1309{
d314774c 1310 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1311 int ret;
1da177e4 1312
e46b66bc
BH
1313 ASSERT_RTNL();
1314
1da177e4
LT
1315 if (!netif_device_present(dev))
1316 return -ENODEV;
1317
ca99ca14
NH
1318 /* Block netpoll from trying to do any rx path servicing.
1319 * If we don't do this there is a chance ndo_poll_controller
1320 * or ndo_poll may be running while we open the device
1321 */
66b5552f 1322 netpoll_poll_disable(dev);
ca99ca14 1323
3b8bcfd5
JB
1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 ret = notifier_to_errno(ret);
1326 if (ret)
1327 return ret;
1328
1da177e4 1329 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1330
d314774c
SH
1331 if (ops->ndo_validate_addr)
1332 ret = ops->ndo_validate_addr(dev);
bada339b 1333
d314774c
SH
1334 if (!ret && ops->ndo_open)
1335 ret = ops->ndo_open(dev);
1da177e4 1336
66b5552f 1337 netpoll_poll_enable(dev);
ca99ca14 1338
bada339b
JG
1339 if (ret)
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341 else {
1da177e4 1342 dev->flags |= IFF_UP;
4417da66 1343 dev_set_rx_mode(dev);
1da177e4 1344 dev_activate(dev);
7bf23575 1345 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1346 }
bada339b 1347
1da177e4
LT
1348 return ret;
1349}
1350
1351/**
bd380811
PM
1352 * dev_open - prepare an interface for use.
1353 * @dev: device to open
1da177e4 1354 *
bd380811
PM
1355 * Takes a device from down to up state. The device's private open
1356 * function is invoked and then the multicast lists are loaded. Finally
1357 * the device is moved into the up state and a %NETDEV_UP message is
1358 * sent to the netdev notifier chain.
1359 *
1360 * Calling this function on an active interface is a nop. On a failure
1361 * a negative errno code is returned.
1da177e4 1362 */
bd380811
PM
1363int dev_open(struct net_device *dev)
1364{
1365 int ret;
1366
bd380811
PM
1367 if (dev->flags & IFF_UP)
1368 return 0;
1369
bd380811
PM
1370 ret = __dev_open(dev);
1371 if (ret < 0)
1372 return ret;
1373
7f294054 1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1375 call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377 return ret;
1378}
1379EXPORT_SYMBOL(dev_open);
1380
44345724 1381static int __dev_close_many(struct list_head *head)
1da177e4 1382{
44345724 1383 struct net_device *dev;
e46b66bc 1384
bd380811 1385 ASSERT_RTNL();
9d5010db
DM
1386 might_sleep();
1387
5cde2829 1388 list_for_each_entry(dev, head, close_list) {
3f4df206 1389 /* Temporarily disable netpoll until the interface is down */
66b5552f 1390 netpoll_poll_disable(dev);
3f4df206 1391
44345724 1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1393
44345724 1394 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1395
44345724
OP
1396 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397 * can be even on different cpu. So just clear netif_running().
1398 *
1399 * dev->stop() will invoke napi_disable() on all of it's
1400 * napi_struct instances on this device.
1401 */
4e857c58 1402 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1403 }
1da177e4 1404
44345724 1405 dev_deactivate_many(head);
d8b2a4d2 1406
5cde2829 1407 list_for_each_entry(dev, head, close_list) {
44345724 1408 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1409
44345724
OP
1410 /*
1411 * Call the device specific close. This cannot fail.
1412 * Only if device is UP
1413 *
1414 * We allow it to be called even after a DETACH hot-plug
1415 * event.
1416 */
1417 if (ops->ndo_stop)
1418 ops->ndo_stop(dev);
1419
44345724 1420 dev->flags &= ~IFF_UP;
66b5552f 1421 netpoll_poll_enable(dev);
44345724
OP
1422 }
1423
1424 return 0;
1425}
1426
1427static int __dev_close(struct net_device *dev)
1428{
f87e6f47 1429 int retval;
44345724
OP
1430 LIST_HEAD(single);
1431
5cde2829 1432 list_add(&dev->close_list, &single);
f87e6f47
LT
1433 retval = __dev_close_many(&single);
1434 list_del(&single);
ca99ca14 1435
f87e6f47 1436 return retval;
44345724
OP
1437}
1438
99c4a26a 1439int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1440{
1441 struct net_device *dev, *tmp;
1da177e4 1442
5cde2829
EB
1443 /* Remove the devices that don't need to be closed */
1444 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1445 if (!(dev->flags & IFF_UP))
5cde2829 1446 list_del_init(&dev->close_list);
44345724
OP
1447
1448 __dev_close_many(head);
1da177e4 1449
5cde2829 1450 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1452 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1453 if (unlink)
1454 list_del_init(&dev->close_list);
44345724 1455 }
bd380811
PM
1456
1457 return 0;
1458}
99c4a26a 1459EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1460
1461/**
1462 * dev_close - shutdown an interface.
1463 * @dev: device to shutdown
1464 *
1465 * This function moves an active device into down state. A
1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468 * chain.
1469 */
1470int dev_close(struct net_device *dev)
1471{
e14a5993
ED
1472 if (dev->flags & IFF_UP) {
1473 LIST_HEAD(single);
1da177e4 1474
5cde2829 1475 list_add(&dev->close_list, &single);
99c4a26a 1476 dev_close_many(&single, true);
e14a5993
ED
1477 list_del(&single);
1478 }
da6e378b 1479 return 0;
1da177e4 1480}
d1b19dff 1481EXPORT_SYMBOL(dev_close);
1da177e4
LT
1482
1483
0187bdfb
BH
1484/**
1485 * dev_disable_lro - disable Large Receive Offload on a device
1486 * @dev: device
1487 *
1488 * Disable Large Receive Offload (LRO) on a net device. Must be
1489 * called under RTNL. This is needed if received packets may be
1490 * forwarded to another interface.
1491 */
1492void dev_disable_lro(struct net_device *dev)
1493{
fbe168ba
MK
1494 struct net_device *lower_dev;
1495 struct list_head *iter;
529d0489 1496
bc5787c6
MM
1497 dev->wanted_features &= ~NETIF_F_LRO;
1498 netdev_update_features(dev);
27660515 1499
22d5969f
MM
1500 if (unlikely(dev->features & NETIF_F_LRO))
1501 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1502
1503 netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 dev_disable_lro(lower_dev);
0187bdfb
BH
1505}
1506EXPORT_SYMBOL(dev_disable_lro);
1507
351638e7
JP
1508static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 struct net_device *dev)
1510{
1511 struct netdev_notifier_info info;
1512
1513 netdev_notifier_info_init(&info, dev);
1514 return nb->notifier_call(nb, val, &info);
1515}
0187bdfb 1516
881d966b
EB
1517static int dev_boot_phase = 1;
1518
1da177e4
LT
1519/**
1520 * register_netdevice_notifier - register a network notifier block
1521 * @nb: notifier
1522 *
1523 * Register a notifier to be called when network device events occur.
1524 * The notifier passed is linked into the kernel structures and must
1525 * not be reused until it has been unregistered. A negative errno code
1526 * is returned on a failure.
1527 *
1528 * When registered all registration and up events are replayed
4ec93edb 1529 * to the new notifier to allow device to have a race free
1da177e4
LT
1530 * view of the network device list.
1531 */
1532
1533int register_netdevice_notifier(struct notifier_block *nb)
1534{
1535 struct net_device *dev;
fcc5a03a 1536 struct net_device *last;
881d966b 1537 struct net *net;
1da177e4
LT
1538 int err;
1539
1540 rtnl_lock();
f07d5b94 1541 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1542 if (err)
1543 goto unlock;
881d966b
EB
1544 if (dev_boot_phase)
1545 goto unlock;
1546 for_each_net(net) {
1547 for_each_netdev(net, dev) {
351638e7 1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1549 err = notifier_to_errno(err);
1550 if (err)
1551 goto rollback;
1552
1553 if (!(dev->flags & IFF_UP))
1554 continue;
1da177e4 1555
351638e7 1556 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1557 }
1da177e4 1558 }
fcc5a03a
HX
1559
1560unlock:
1da177e4
LT
1561 rtnl_unlock();
1562 return err;
fcc5a03a
HX
1563
1564rollback:
1565 last = dev;
881d966b
EB
1566 for_each_net(net) {
1567 for_each_netdev(net, dev) {
1568 if (dev == last)
8f891489 1569 goto outroll;
fcc5a03a 1570
881d966b 1571 if (dev->flags & IFF_UP) {
351638e7
JP
1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 dev);
1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1575 }
351638e7 1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1577 }
fcc5a03a 1578 }
c67625a1 1579
8f891489 1580outroll:
c67625a1 1581 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1582 goto unlock;
1da177e4 1583}
d1b19dff 1584EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1585
1586/**
1587 * unregister_netdevice_notifier - unregister a network notifier block
1588 * @nb: notifier
1589 *
1590 * Unregister a notifier previously registered by
1591 * register_netdevice_notifier(). The notifier is unlinked into the
1592 * kernel structures and may then be reused. A negative errno code
1593 * is returned on a failure.
7d3d43da
EB
1594 *
1595 * After unregistering unregister and down device events are synthesized
1596 * for all devices on the device list to the removed notifier to remove
1597 * the need for special case cleanup code.
1da177e4
LT
1598 */
1599
1600int unregister_netdevice_notifier(struct notifier_block *nb)
1601{
7d3d43da
EB
1602 struct net_device *dev;
1603 struct net *net;
9f514950
HX
1604 int err;
1605
1606 rtnl_lock();
f07d5b94 1607 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1608 if (err)
1609 goto unlock;
1610
1611 for_each_net(net) {
1612 for_each_netdev(net, dev) {
1613 if (dev->flags & IFF_UP) {
351638e7
JP
1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 dev);
1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1617 }
351638e7 1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1619 }
1620 }
1621unlock:
9f514950
HX
1622 rtnl_unlock();
1623 return err;
1da177e4 1624}
d1b19dff 1625EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1626
351638e7
JP
1627/**
1628 * call_netdevice_notifiers_info - call all network notifier blocks
1629 * @val: value passed unmodified to notifier function
1630 * @dev: net_device pointer passed unmodified to notifier function
1631 * @info: notifier information data
1632 *
1633 * Call all network notifier blocks. Parameters and return value
1634 * are as for raw_notifier_call_chain().
1635 */
1636
1d143d9f 1637static int call_netdevice_notifiers_info(unsigned long val,
1638 struct net_device *dev,
1639 struct netdev_notifier_info *info)
351638e7
JP
1640{
1641 ASSERT_RTNL();
1642 netdev_notifier_info_init(info, dev);
1643 return raw_notifier_call_chain(&netdev_chain, val, info);
1644}
351638e7 1645
1da177e4
LT
1646/**
1647 * call_netdevice_notifiers - call all network notifier blocks
1648 * @val: value passed unmodified to notifier function
c4ea43c5 1649 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1650 *
1651 * Call all network notifier blocks. Parameters and return value
f07d5b94 1652 * are as for raw_notifier_call_chain().
1da177e4
LT
1653 */
1654
ad7379d4 1655int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1656{
351638e7
JP
1657 struct netdev_notifier_info info;
1658
1659 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1660}
edf947f1 1661EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1662
1cf51900 1663#ifdef CONFIG_NET_INGRESS
4577139b
DB
1664static struct static_key ingress_needed __read_mostly;
1665
1666void net_inc_ingress_queue(void)
1667{
1668 static_key_slow_inc(&ingress_needed);
1669}
1670EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672void net_dec_ingress_queue(void)
1673{
1674 static_key_slow_dec(&ingress_needed);
1675}
1676EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677#endif
1678
1f211a1b
DB
1679#ifdef CONFIG_NET_EGRESS
1680static struct static_key egress_needed __read_mostly;
1681
1682void net_inc_egress_queue(void)
1683{
1684 static_key_slow_inc(&egress_needed);
1685}
1686EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688void net_dec_egress_queue(void)
1689{
1690 static_key_slow_dec(&egress_needed);
1691}
1692EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693#endif
1694
c5905afb 1695static struct static_key netstamp_needed __read_mostly;
b90e5794 1696#ifdef HAVE_JUMP_LABEL
c5905afb 1697/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1698 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1699 * static_key_slow_dec() calls.
b90e5794
ED
1700 */
1701static atomic_t netstamp_needed_deferred;
1702#endif
1da177e4
LT
1703
1704void net_enable_timestamp(void)
1705{
b90e5794
ED
1706#ifdef HAVE_JUMP_LABEL
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709 if (deferred) {
1710 while (--deferred)
c5905afb 1711 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1712 return;
1713 }
1714#endif
c5905afb 1715 static_key_slow_inc(&netstamp_needed);
1da177e4 1716}
d1b19dff 1717EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1718
1719void net_disable_timestamp(void)
1720{
b90e5794
ED
1721#ifdef HAVE_JUMP_LABEL
1722 if (in_interrupt()) {
1723 atomic_inc(&netstamp_needed_deferred);
1724 return;
1725 }
1726#endif
c5905afb 1727 static_key_slow_dec(&netstamp_needed);
1da177e4 1728}
d1b19dff 1729EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1730
3b098e2d 1731static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1732{
588f0330 1733 skb->tstamp.tv64 = 0;
c5905afb 1734 if (static_key_false(&netstamp_needed))
a61bbcf2 1735 __net_timestamp(skb);
1da177e4
LT
1736}
1737
588f0330 1738#define net_timestamp_check(COND, SKB) \
c5905afb 1739 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1740 if ((COND) && !(SKB)->tstamp.tv64) \
1741 __net_timestamp(SKB); \
1742 } \
3b098e2d 1743
1ee481fb 1744bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1745{
1746 unsigned int len;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return false;
1750
1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 if (skb->len <= len)
1753 return true;
1754
1755 /* if TSO is enabled, we don't care about the length as the packet
1756 * could be forwarded without being segmented before
1757 */
1758 if (skb_is_gso(skb))
1759 return true;
1760
1761 return false;
1762}
1ee481fb 1763EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1764
a0265d28
HX
1765int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766{
bbbf2df0
WB
1767 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1769 atomic_long_inc(&dev->rx_dropped);
1770 kfree_skb(skb);
1771 return NET_RX_DROP;
1772 }
1773
1774 skb_scrub_packet(skb, true);
08b4b8ea 1775 skb->priority = 0;
a0265d28 1776 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1778
1779 return 0;
1780}
1781EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
44540960
AB
1783/**
1784 * dev_forward_skb - loopback an skb to another netif
1785 *
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1788 *
1789 * return values:
1790 * NET_RX_SUCCESS (no congestion)
6ec82562 1791 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1792 *
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1796 *
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1800 */
1801int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802{
a0265d28 1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1804}
1805EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
71d9dec2
CG
1807static inline int deliver_skb(struct sk_buff *skb,
1808 struct packet_type *pt_prev,
1809 struct net_device *orig_dev)
1810{
1080e512
MT
1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 return -ENOMEM;
71d9dec2
CG
1813 atomic_inc(&skb->users);
1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815}
1816
7866a621
SN
1817static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 struct packet_type **pt,
fbcb2170
JP
1819 struct net_device *orig_dev,
1820 __be16 type,
7866a621
SN
1821 struct list_head *ptype_list)
1822{
1823 struct packet_type *ptype, *pt_prev = *pt;
1824
1825 list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 if (ptype->type != type)
1827 continue;
1828 if (pt_prev)
fbcb2170 1829 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1830 pt_prev = ptype;
1831 }
1832 *pt = pt_prev;
1833}
1834
c0de08d0
EL
1835static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836{
a3d744e9 1837 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1838 return false;
1839
1840 if (ptype->id_match)
1841 return ptype->id_match(ptype, skb->sk);
1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 return true;
1844
1845 return false;
1846}
1847
1da177e4
LT
1848/*
1849 * Support routine. Sends outgoing frames to any network
1850 * taps currently in use.
1851 */
1852
f6a78bfc 1853static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1854{
1855 struct packet_type *ptype;
71d9dec2
CG
1856 struct sk_buff *skb2 = NULL;
1857 struct packet_type *pt_prev = NULL;
7866a621 1858 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1859
1da177e4 1860 rcu_read_lock();
7866a621
SN
1861again:
1862 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1863 /* Never send packets back to the socket
1864 * they originated from - MvS (miquels@drinkel.ow.org)
1865 */
7866a621
SN
1866 if (skb_loop_sk(ptype, skb))
1867 continue;
71d9dec2 1868
7866a621
SN
1869 if (pt_prev) {
1870 deliver_skb(skb2, pt_prev, skb->dev);
1871 pt_prev = ptype;
1872 continue;
1873 }
1da177e4 1874
7866a621
SN
1875 /* need to clone skb, done only once */
1876 skb2 = skb_clone(skb, GFP_ATOMIC);
1877 if (!skb2)
1878 goto out_unlock;
70978182 1879
7866a621 1880 net_timestamp_set(skb2);
1da177e4 1881
7866a621
SN
1882 /* skb->nh should be correctly
1883 * set by sender, so that the second statement is
1884 * just protection against buggy protocols.
1885 */
1886 skb_reset_mac_header(skb2);
1887
1888 if (skb_network_header(skb2) < skb2->data ||
1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 ntohs(skb2->protocol),
1892 dev->name);
1893 skb_reset_network_header(skb2);
1da177e4 1894 }
7866a621
SN
1895
1896 skb2->transport_header = skb2->network_header;
1897 skb2->pkt_type = PACKET_OUTGOING;
1898 pt_prev = ptype;
1899 }
1900
1901 if (ptype_list == &ptype_all) {
1902 ptype_list = &dev->ptype_all;
1903 goto again;
1da177e4 1904 }
7866a621 1905out_unlock:
71d9dec2
CG
1906 if (pt_prev)
1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1908 rcu_read_unlock();
1909}
1910
2c53040f
BH
1911/**
1912 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1913 * @dev: Network device
1914 * @txq: number of queues available
1915 *
1916 * If real_num_tx_queues is changed the tc mappings may no longer be
1917 * valid. To resolve this verify the tc mapping remains valid and if
1918 * not NULL the mapping. With no priorities mapping to this
1919 * offset/count pair it will no longer be used. In the worst case TC0
1920 * is invalid nothing can be done so disable priority mappings. If is
1921 * expected that drivers will fix this mapping if they can before
1922 * calling netif_set_real_num_tx_queues.
1923 */
bb134d22 1924static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1925{
1926 int i;
1927 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928
1929 /* If TC0 is invalidated disable TC mapping */
1930 if (tc->offset + tc->count > txq) {
7b6cd1ce 1931 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1932 dev->num_tc = 0;
1933 return;
1934 }
1935
1936 /* Invalidated prio to tc mappings set to TC0 */
1937 for (i = 1; i < TC_BITMASK + 1; i++) {
1938 int q = netdev_get_prio_tc_map(dev, i);
1939
1940 tc = &dev->tc_to_txq[q];
1941 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1942 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943 i, q);
4f57c087
JF
1944 netdev_set_prio_tc_map(dev, i, 0);
1945 }
1946 }
1947}
1948
537c00de
AD
1949#ifdef CONFIG_XPS
1950static DEFINE_MUTEX(xps_map_mutex);
1951#define xmap_dereference(P) \
1952 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953
10cdc3f3
AD
1954static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955 int cpu, u16 index)
537c00de 1956{
10cdc3f3
AD
1957 struct xps_map *map = NULL;
1958 int pos;
537c00de 1959
10cdc3f3
AD
1960 if (dev_maps)
1961 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1962
10cdc3f3
AD
1963 for (pos = 0; map && pos < map->len; pos++) {
1964 if (map->queues[pos] == index) {
537c00de
AD
1965 if (map->len > 1) {
1966 map->queues[pos] = map->queues[--map->len];
1967 } else {
10cdc3f3 1968 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1969 kfree_rcu(map, rcu);
1970 map = NULL;
1971 }
10cdc3f3 1972 break;
537c00de 1973 }
537c00de
AD
1974 }
1975
10cdc3f3
AD
1976 return map;
1977}
1978
024e9679 1979static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1980{
1981 struct xps_dev_maps *dev_maps;
024e9679 1982 int cpu, i;
10cdc3f3
AD
1983 bool active = false;
1984
1985 mutex_lock(&xps_map_mutex);
1986 dev_maps = xmap_dereference(dev->xps_maps);
1987
1988 if (!dev_maps)
1989 goto out_no_maps;
1990
1991 for_each_possible_cpu(cpu) {
024e9679
AD
1992 for (i = index; i < dev->num_tx_queues; i++) {
1993 if (!remove_xps_queue(dev_maps, cpu, i))
1994 break;
1995 }
1996 if (i == dev->num_tx_queues)
10cdc3f3
AD
1997 active = true;
1998 }
1999
2000 if (!active) {
537c00de
AD
2001 RCU_INIT_POINTER(dev->xps_maps, NULL);
2002 kfree_rcu(dev_maps, rcu);
2003 }
2004
024e9679
AD
2005 for (i = index; i < dev->num_tx_queues; i++)
2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007 NUMA_NO_NODE);
2008
537c00de
AD
2009out_no_maps:
2010 mutex_unlock(&xps_map_mutex);
2011}
2012
01c5f864
AD
2013static struct xps_map *expand_xps_map(struct xps_map *map,
2014 int cpu, u16 index)
2015{
2016 struct xps_map *new_map;
2017 int alloc_len = XPS_MIN_MAP_ALLOC;
2018 int i, pos;
2019
2020 for (pos = 0; map && pos < map->len; pos++) {
2021 if (map->queues[pos] != index)
2022 continue;
2023 return map;
2024 }
2025
2026 /* Need to add queue to this CPU's existing map */
2027 if (map) {
2028 if (pos < map->alloc_len)
2029 return map;
2030
2031 alloc_len = map->alloc_len * 2;
2032 }
2033
2034 /* Need to allocate new map to store queue on this CPU's map */
2035 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036 cpu_to_node(cpu));
2037 if (!new_map)
2038 return NULL;
2039
2040 for (i = 0; i < pos; i++)
2041 new_map->queues[i] = map->queues[i];
2042 new_map->alloc_len = alloc_len;
2043 new_map->len = pos;
2044
2045 return new_map;
2046}
2047
3573540c
MT
2048int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049 u16 index)
537c00de 2050{
01c5f864 2051 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2052 struct xps_map *map, *new_map;
537c00de 2053 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2054 int cpu, numa_node_id = -2;
2055 bool active = false;
537c00de
AD
2056
2057 mutex_lock(&xps_map_mutex);
2058
2059 dev_maps = xmap_dereference(dev->xps_maps);
2060
01c5f864
AD
2061 /* allocate memory for queue storage */
2062 for_each_online_cpu(cpu) {
2063 if (!cpumask_test_cpu(cpu, mask))
2064 continue;
2065
2066 if (!new_dev_maps)
2067 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2068 if (!new_dev_maps) {
2069 mutex_unlock(&xps_map_mutex);
01c5f864 2070 return -ENOMEM;
2bb60cb9 2071 }
01c5f864
AD
2072
2073 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074 NULL;
2075
2076 map = expand_xps_map(map, cpu, index);
2077 if (!map)
2078 goto error;
2079
2080 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081 }
2082
2083 if (!new_dev_maps)
2084 goto out_no_new_maps;
2085
537c00de 2086 for_each_possible_cpu(cpu) {
01c5f864
AD
2087 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088 /* add queue to CPU maps */
2089 int pos = 0;
2090
2091 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092 while ((pos < map->len) && (map->queues[pos] != index))
2093 pos++;
2094
2095 if (pos == map->len)
2096 map->queues[map->len++] = index;
537c00de 2097#ifdef CONFIG_NUMA
537c00de
AD
2098 if (numa_node_id == -2)
2099 numa_node_id = cpu_to_node(cpu);
2100 else if (numa_node_id != cpu_to_node(cpu))
2101 numa_node_id = -1;
537c00de 2102#endif
01c5f864
AD
2103 } else if (dev_maps) {
2104 /* fill in the new device map from the old device map */
2105 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2107 }
01c5f864 2108
537c00de
AD
2109 }
2110
01c5f864
AD
2111 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112
537c00de 2113 /* Cleanup old maps */
01c5f864
AD
2114 if (dev_maps) {
2115 for_each_possible_cpu(cpu) {
2116 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118 if (map && map != new_map)
2119 kfree_rcu(map, rcu);
2120 }
537c00de 2121
01c5f864 2122 kfree_rcu(dev_maps, rcu);
537c00de
AD
2123 }
2124
01c5f864
AD
2125 dev_maps = new_dev_maps;
2126 active = true;
537c00de 2127
01c5f864
AD
2128out_no_new_maps:
2129 /* update Tx queue numa node */
537c00de
AD
2130 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131 (numa_node_id >= 0) ? numa_node_id :
2132 NUMA_NO_NODE);
2133
01c5f864
AD
2134 if (!dev_maps)
2135 goto out_no_maps;
2136
2137 /* removes queue from unused CPUs */
2138 for_each_possible_cpu(cpu) {
2139 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140 continue;
2141
2142 if (remove_xps_queue(dev_maps, cpu, index))
2143 active = true;
2144 }
2145
2146 /* free map if not active */
2147 if (!active) {
2148 RCU_INIT_POINTER(dev->xps_maps, NULL);
2149 kfree_rcu(dev_maps, rcu);
2150 }
2151
2152out_no_maps:
537c00de
AD
2153 mutex_unlock(&xps_map_mutex);
2154
2155 return 0;
2156error:
01c5f864
AD
2157 /* remove any maps that we added */
2158 for_each_possible_cpu(cpu) {
2159 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161 NULL;
2162 if (new_map && new_map != map)
2163 kfree(new_map);
2164 }
2165
537c00de
AD
2166 mutex_unlock(&xps_map_mutex);
2167
537c00de
AD
2168 kfree(new_dev_maps);
2169 return -ENOMEM;
2170}
2171EXPORT_SYMBOL(netif_set_xps_queue);
2172
2173#endif
f0796d5c
JF
2174/*
2175 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177 */
e6484930 2178int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2179{
1d24eb48
TH
2180 int rc;
2181
e6484930
TH
2182 if (txq < 1 || txq > dev->num_tx_queues)
2183 return -EINVAL;
f0796d5c 2184
5c56580b
BH
2185 if (dev->reg_state == NETREG_REGISTERED ||
2186 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2187 ASSERT_RTNL();
2188
1d24eb48
TH
2189 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190 txq);
bf264145
TH
2191 if (rc)
2192 return rc;
2193
4f57c087
JF
2194 if (dev->num_tc)
2195 netif_setup_tc(dev, txq);
2196
024e9679 2197 if (txq < dev->real_num_tx_queues) {
e6484930 2198 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2199#ifdef CONFIG_XPS
2200 netif_reset_xps_queues_gt(dev, txq);
2201#endif
2202 }
f0796d5c 2203 }
e6484930
TH
2204
2205 dev->real_num_tx_queues = txq;
2206 return 0;
f0796d5c
JF
2207}
2208EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2209
a953be53 2210#ifdef CONFIG_SYSFS
62fe0b40
BH
2211/**
2212 * netif_set_real_num_rx_queues - set actual number of RX queues used
2213 * @dev: Network device
2214 * @rxq: Actual number of RX queues
2215 *
2216 * This must be called either with the rtnl_lock held or before
2217 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2218 * negative error code. If called before registration, it always
2219 * succeeds.
62fe0b40
BH
2220 */
2221int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222{
2223 int rc;
2224
bd25fa7b
TH
2225 if (rxq < 1 || rxq > dev->num_rx_queues)
2226 return -EINVAL;
2227
62fe0b40
BH
2228 if (dev->reg_state == NETREG_REGISTERED) {
2229 ASSERT_RTNL();
2230
62fe0b40
BH
2231 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232 rxq);
2233 if (rc)
2234 return rc;
62fe0b40
BH
2235 }
2236
2237 dev->real_num_rx_queues = rxq;
2238 return 0;
2239}
2240EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241#endif
2242
2c53040f
BH
2243/**
2244 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2245 *
2246 * This routine should set an upper limit on the number of RSS queues
2247 * used by default by multiqueue devices.
2248 */
a55b138b 2249int netif_get_num_default_rss_queues(void)
16917b87
YM
2250{
2251 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2252}
2253EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254
def82a1d 2255static inline void __netif_reschedule(struct Qdisc *q)
56079431 2256{
def82a1d
JP
2257 struct softnet_data *sd;
2258 unsigned long flags;
56079431 2259
def82a1d 2260 local_irq_save(flags);
903ceff7 2261 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2262 q->next_sched = NULL;
2263 *sd->output_queue_tailp = q;
2264 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2265 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266 local_irq_restore(flags);
2267}
2268
2269void __netif_schedule(struct Qdisc *q)
2270{
2271 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272 __netif_reschedule(q);
56079431
DV
2273}
2274EXPORT_SYMBOL(__netif_schedule);
2275
e6247027
ED
2276struct dev_kfree_skb_cb {
2277 enum skb_free_reason reason;
2278};
2279
2280static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2281{
e6247027
ED
2282 return (struct dev_kfree_skb_cb *)skb->cb;
2283}
2284
46e5da40
JF
2285void netif_schedule_queue(struct netdev_queue *txq)
2286{
2287 rcu_read_lock();
2288 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289 struct Qdisc *q = rcu_dereference(txq->qdisc);
2290
2291 __netif_schedule(q);
2292 }
2293 rcu_read_unlock();
2294}
2295EXPORT_SYMBOL(netif_schedule_queue);
2296
2297/**
2298 * netif_wake_subqueue - allow sending packets on subqueue
2299 * @dev: network device
2300 * @queue_index: sub queue index
2301 *
2302 * Resume individual transmit queue of a device with multiple transmit queues.
2303 */
2304void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305{
2306 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307
2308 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309 struct Qdisc *q;
2310
2311 rcu_read_lock();
2312 q = rcu_dereference(txq->qdisc);
2313 __netif_schedule(q);
2314 rcu_read_unlock();
2315 }
2316}
2317EXPORT_SYMBOL(netif_wake_subqueue);
2318
2319void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320{
2321 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322 struct Qdisc *q;
2323
2324 rcu_read_lock();
2325 q = rcu_dereference(dev_queue->qdisc);
2326 __netif_schedule(q);
2327 rcu_read_unlock();
2328 }
2329}
2330EXPORT_SYMBOL(netif_tx_wake_queue);
2331
e6247027 2332void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2333{
e6247027 2334 unsigned long flags;
56079431 2335
e6247027
ED
2336 if (likely(atomic_read(&skb->users) == 1)) {
2337 smp_rmb();
2338 atomic_set(&skb->users, 0);
2339 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2340 return;
bea3348e 2341 }
e6247027
ED
2342 get_kfree_skb_cb(skb)->reason = reason;
2343 local_irq_save(flags);
2344 skb->next = __this_cpu_read(softnet_data.completion_queue);
2345 __this_cpu_write(softnet_data.completion_queue, skb);
2346 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347 local_irq_restore(flags);
56079431 2348}
e6247027 2349EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2350
e6247027 2351void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2352{
2353 if (in_irq() || irqs_disabled())
e6247027 2354 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2355 else
2356 dev_kfree_skb(skb);
2357}
e6247027 2358EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2359
2360
bea3348e
SH
2361/**
2362 * netif_device_detach - mark device as removed
2363 * @dev: network device
2364 *
2365 * Mark device as removed from system and therefore no longer available.
2366 */
56079431
DV
2367void netif_device_detach(struct net_device *dev)
2368{
2369 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370 netif_running(dev)) {
d543103a 2371 netif_tx_stop_all_queues(dev);
56079431
DV
2372 }
2373}
2374EXPORT_SYMBOL(netif_device_detach);
2375
bea3348e
SH
2376/**
2377 * netif_device_attach - mark device as attached
2378 * @dev: network device
2379 *
2380 * Mark device as attached from system and restart if needed.
2381 */
56079431
DV
2382void netif_device_attach(struct net_device *dev)
2383{
2384 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385 netif_running(dev)) {
d543103a 2386 netif_tx_wake_all_queues(dev);
4ec93edb 2387 __netdev_watchdog_up(dev);
56079431
DV
2388 }
2389}
2390EXPORT_SYMBOL(netif_device_attach);
2391
5605c762
JP
2392/*
2393 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394 * to be used as a distribution range.
2395 */
2396u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397 unsigned int num_tx_queues)
2398{
2399 u32 hash;
2400 u16 qoffset = 0;
2401 u16 qcount = num_tx_queues;
2402
2403 if (skb_rx_queue_recorded(skb)) {
2404 hash = skb_get_rx_queue(skb);
2405 while (unlikely(hash >= num_tx_queues))
2406 hash -= num_tx_queues;
2407 return hash;
2408 }
2409
2410 if (dev->num_tc) {
2411 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412 qoffset = dev->tc_to_txq[tc].offset;
2413 qcount = dev->tc_to_txq[tc].count;
2414 }
2415
2416 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417}
2418EXPORT_SYMBOL(__skb_tx_hash);
2419
36c92474
BH
2420static void skb_warn_bad_offload(const struct sk_buff *skb)
2421{
65e9d2fa 2422 static const netdev_features_t null_features = 0;
36c92474 2423 struct net_device *dev = skb->dev;
88ad4175 2424 const char *name = "";
36c92474 2425
c846ad9b
BG
2426 if (!net_ratelimit())
2427 return;
2428
88ad4175
BM
2429 if (dev) {
2430 if (dev->dev.parent)
2431 name = dev_driver_string(dev->dev.parent);
2432 else
2433 name = netdev_name(dev);
2434 }
36c92474
BH
2435 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436 "gso_type=%d ip_summed=%d\n",
88ad4175 2437 name, dev ? &dev->features : &null_features,
65e9d2fa 2438 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2439 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440 skb_shinfo(skb)->gso_type, skb->ip_summed);
2441}
2442
1da177e4
LT
2443/*
2444 * Invalidate hardware checksum when packet is to be mangled, and
2445 * complete checksum manually on outgoing path.
2446 */
84fa7933 2447int skb_checksum_help(struct sk_buff *skb)
1da177e4 2448{
d3bc23e7 2449 __wsum csum;
663ead3b 2450 int ret = 0, offset;
1da177e4 2451
84fa7933 2452 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2453 goto out_set_summed;
2454
2455 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2456 skb_warn_bad_offload(skb);
2457 return -EINVAL;
1da177e4
LT
2458 }
2459
cef401de
ED
2460 /* Before computing a checksum, we should make sure no frag could
2461 * be modified by an external entity : checksum could be wrong.
2462 */
2463 if (skb_has_shared_frag(skb)) {
2464 ret = __skb_linearize(skb);
2465 if (ret)
2466 goto out;
2467 }
2468
55508d60 2469 offset = skb_checksum_start_offset(skb);
a030847e
HX
2470 BUG_ON(offset >= skb_headlen(skb));
2471 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472
2473 offset += skb->csum_offset;
2474 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475
2476 if (skb_cloned(skb) &&
2477 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2478 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479 if (ret)
2480 goto out;
2481 }
2482
a030847e 2483 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2484out_set_summed:
1da177e4 2485 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2486out:
1da177e4
LT
2487 return ret;
2488}
d1b19dff 2489EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2490
6ae23ad3
TH
2491/* skb_csum_offload_check - Driver helper function to determine if a device
2492 * with limited checksum offload capabilities is able to offload the checksum
2493 * for a given packet.
2494 *
2495 * Arguments:
2496 * skb - sk_buff for the packet in question
2497 * spec - contains the description of what device can offload
2498 * csum_encapped - returns true if the checksum being offloaded is
2499 * encpasulated. That is it is checksum for the transport header
2500 * in the inner headers.
2501 * checksum_help - when set indicates that helper function should
2502 * call skb_checksum_help if offload checks fail
2503 *
2504 * Returns:
2505 * true: Packet has passed the checksum checks and should be offloadable to
2506 * the device (a driver may still need to check for additional
2507 * restrictions of its device)
2508 * false: Checksum is not offloadable. If checksum_help was set then
2509 * skb_checksum_help was called to resolve checksum for non-GSO
2510 * packets and when IP protocol is not SCTP
2511 */
2512bool __skb_csum_offload_chk(struct sk_buff *skb,
2513 const struct skb_csum_offl_spec *spec,
2514 bool *csum_encapped,
2515 bool csum_help)
2516{
2517 struct iphdr *iph;
2518 struct ipv6hdr *ipv6;
2519 void *nhdr;
2520 int protocol;
2521 u8 ip_proto;
2522
2523 if (skb->protocol == htons(ETH_P_8021Q) ||
2524 skb->protocol == htons(ETH_P_8021AD)) {
2525 if (!spec->vlan_okay)
2526 goto need_help;
2527 }
2528
2529 /* We check whether the checksum refers to a transport layer checksum in
2530 * the outermost header or an encapsulated transport layer checksum that
2531 * corresponds to the inner headers of the skb. If the checksum is for
2532 * something else in the packet we need help.
2533 */
2534 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535 /* Non-encapsulated checksum */
2536 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537 nhdr = skb_network_header(skb);
2538 *csum_encapped = false;
2539 if (spec->no_not_encapped)
2540 goto need_help;
2541 } else if (skb->encapsulation && spec->encap_okay &&
2542 skb_checksum_start_offset(skb) ==
2543 skb_inner_transport_offset(skb)) {
2544 /* Encapsulated checksum */
2545 *csum_encapped = true;
2546 switch (skb->inner_protocol_type) {
2547 case ENCAP_TYPE_ETHER:
2548 protocol = eproto_to_ipproto(skb->inner_protocol);
2549 break;
2550 case ENCAP_TYPE_IPPROTO:
2551 protocol = skb->inner_protocol;
2552 break;
2553 }
2554 nhdr = skb_inner_network_header(skb);
2555 } else {
2556 goto need_help;
2557 }
2558
2559 switch (protocol) {
2560 case IPPROTO_IP:
2561 if (!spec->ipv4_okay)
2562 goto need_help;
2563 iph = nhdr;
2564 ip_proto = iph->protocol;
2565 if (iph->ihl != 5 && !spec->ip_options_okay)
2566 goto need_help;
2567 break;
2568 case IPPROTO_IPV6:
2569 if (!spec->ipv6_okay)
2570 goto need_help;
2571 if (spec->no_encapped_ipv6 && *csum_encapped)
2572 goto need_help;
2573 ipv6 = nhdr;
2574 nhdr += sizeof(*ipv6);
2575 ip_proto = ipv6->nexthdr;
2576 break;
2577 default:
2578 goto need_help;
2579 }
2580
2581ip_proto_again:
2582 switch (ip_proto) {
2583 case IPPROTO_TCP:
2584 if (!spec->tcp_okay ||
2585 skb->csum_offset != offsetof(struct tcphdr, check))
2586 goto need_help;
2587 break;
2588 case IPPROTO_UDP:
2589 if (!spec->udp_okay ||
2590 skb->csum_offset != offsetof(struct udphdr, check))
2591 goto need_help;
2592 break;
2593 case IPPROTO_SCTP:
2594 if (!spec->sctp_okay ||
2595 skb->csum_offset != offsetof(struct sctphdr, checksum))
2596 goto cant_help;
2597 break;
2598 case NEXTHDR_HOP:
2599 case NEXTHDR_ROUTING:
2600 case NEXTHDR_DEST: {
2601 u8 *opthdr = nhdr;
2602
2603 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604 goto need_help;
2605
2606 ip_proto = opthdr[0];
2607 nhdr += (opthdr[1] + 1) << 3;
2608
2609 goto ip_proto_again;
2610 }
2611 default:
2612 goto need_help;
2613 }
2614
2615 /* Passed the tests for offloading checksum */
2616 return true;
2617
2618need_help:
2619 if (csum_help && !skb_shinfo(skb)->gso_size)
2620 skb_checksum_help(skb);
2621cant_help:
2622 return false;
2623}
2624EXPORT_SYMBOL(__skb_csum_offload_chk);
2625
53d6471c 2626__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2627{
252e3346 2628 __be16 type = skb->protocol;
f6a78bfc 2629
19acc327
PS
2630 /* Tunnel gso handlers can set protocol to ethernet. */
2631 if (type == htons(ETH_P_TEB)) {
2632 struct ethhdr *eth;
2633
2634 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635 return 0;
2636
2637 eth = (struct ethhdr *)skb_mac_header(skb);
2638 type = eth->h_proto;
2639 }
2640
d4bcef3f 2641 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2642}
2643
2644/**
2645 * skb_mac_gso_segment - mac layer segmentation handler.
2646 * @skb: buffer to segment
2647 * @features: features for the output path (see dev->features)
2648 */
2649struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650 netdev_features_t features)
2651{
2652 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653 struct packet_offload *ptype;
53d6471c
VY
2654 int vlan_depth = skb->mac_len;
2655 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2656
2657 if (unlikely(!type))
2658 return ERR_PTR(-EINVAL);
2659
53d6471c 2660 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2661
2662 rcu_read_lock();
22061d80 2663 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2664 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2665 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2666 break;
2667 }
2668 }
2669 rcu_read_unlock();
2670
98e399f8 2671 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2672
f6a78bfc
HX
2673 return segs;
2674}
05e8ef4a
PS
2675EXPORT_SYMBOL(skb_mac_gso_segment);
2676
2677
2678/* openvswitch calls this on rx path, so we need a different check.
2679 */
2680static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681{
2682 if (tx_path)
2683 return skb->ip_summed != CHECKSUM_PARTIAL;
2684 else
2685 return skb->ip_summed == CHECKSUM_NONE;
2686}
2687
2688/**
2689 * __skb_gso_segment - Perform segmentation on skb.
2690 * @skb: buffer to segment
2691 * @features: features for the output path (see dev->features)
2692 * @tx_path: whether it is called in TX path
2693 *
2694 * This function segments the given skb and returns a list of segments.
2695 *
2696 * It may return NULL if the skb requires no segmentation. This is
2697 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2698 *
2699 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2700 */
2701struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702 netdev_features_t features, bool tx_path)
2703{
2704 if (unlikely(skb_needs_check(skb, tx_path))) {
2705 int err;
2706
2707 skb_warn_bad_offload(skb);
2708
a40e0a66 2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
05e8ef4a
PS
2711 return ERR_PTR(err);
2712 }
2713
802ab55a
AD
2714 /* Only report GSO partial support if it will enable us to
2715 * support segmentation on this frame without needing additional
2716 * work.
2717 */
2718 if (features & NETIF_F_GSO_PARTIAL) {
2719 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2720 struct net_device *dev = skb->dev;
2721
2722 partial_features |= dev->features & dev->gso_partial_features;
2723 if (!skb_gso_ok(skb, features | partial_features))
2724 features &= ~NETIF_F_GSO_PARTIAL;
2725 }
2726
9207f9d4
KK
2727 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2728 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2729
68c33163 2730 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2731 SKB_GSO_CB(skb)->encap_level = 0;
2732
05e8ef4a
PS
2733 skb_reset_mac_header(skb);
2734 skb_reset_mac_len(skb);
2735
2736 return skb_mac_gso_segment(skb, features);
2737}
12b0004d 2738EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2739
fb286bb2
HX
2740/* Take action when hardware reception checksum errors are detected. */
2741#ifdef CONFIG_BUG
2742void netdev_rx_csum_fault(struct net_device *dev)
2743{
2744 if (net_ratelimit()) {
7b6cd1ce 2745 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2746 dump_stack();
2747 }
2748}
2749EXPORT_SYMBOL(netdev_rx_csum_fault);
2750#endif
2751
1da177e4
LT
2752/* Actually, we should eliminate this check as soon as we know, that:
2753 * 1. IOMMU is present and allows to map all the memory.
2754 * 2. No high memory really exists on this machine.
2755 */
2756
c1e756bf 2757static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2758{
3d3a8533 2759#ifdef CONFIG_HIGHMEM
1da177e4 2760 int i;
5acbbd42 2761 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2762 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2763 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2764 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2765 return 1;
ea2ab693 2766 }
5acbbd42 2767 }
1da177e4 2768
5acbbd42
FT
2769 if (PCI_DMA_BUS_IS_PHYS) {
2770 struct device *pdev = dev->dev.parent;
1da177e4 2771
9092c658
ED
2772 if (!pdev)
2773 return 0;
5acbbd42 2774 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2775 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2776 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2777 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2778 return 1;
2779 }
2780 }
3d3a8533 2781#endif
1da177e4
LT
2782 return 0;
2783}
1da177e4 2784
3b392ddb
SH
2785/* If MPLS offload request, verify we are testing hardware MPLS features
2786 * instead of standard features for the netdev.
2787 */
d0edc7bf 2788#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2789static netdev_features_t net_mpls_features(struct sk_buff *skb,
2790 netdev_features_t features,
2791 __be16 type)
2792{
25cd9ba0 2793 if (eth_p_mpls(type))
3b392ddb
SH
2794 features &= skb->dev->mpls_features;
2795
2796 return features;
2797}
2798#else
2799static netdev_features_t net_mpls_features(struct sk_buff *skb,
2800 netdev_features_t features,
2801 __be16 type)
2802{
2803 return features;
2804}
2805#endif
2806
c8f44aff 2807static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2808 netdev_features_t features)
f01a5236 2809{
53d6471c 2810 int tmp;
3b392ddb
SH
2811 __be16 type;
2812
2813 type = skb_network_protocol(skb, &tmp);
2814 features = net_mpls_features(skb, features, type);
53d6471c 2815
c0d680e5 2816 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2817 !can_checksum_protocol(features, type)) {
a188222b 2818 features &= ~NETIF_F_CSUM_MASK;
c1e756bf 2819 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2820 features &= ~NETIF_F_SG;
2821 }
2822
2823 return features;
2824}
2825
e38f3025
TM
2826netdev_features_t passthru_features_check(struct sk_buff *skb,
2827 struct net_device *dev,
2828 netdev_features_t features)
2829{
2830 return features;
2831}
2832EXPORT_SYMBOL(passthru_features_check);
2833
8cb65d00
TM
2834static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2835 struct net_device *dev,
2836 netdev_features_t features)
2837{
2838 return vlan_features_check(skb, features);
2839}
2840
cbc53e08
AD
2841static netdev_features_t gso_features_check(const struct sk_buff *skb,
2842 struct net_device *dev,
2843 netdev_features_t features)
2844{
2845 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2846
2847 if (gso_segs > dev->gso_max_segs)
2848 return features & ~NETIF_F_GSO_MASK;
2849
802ab55a
AD
2850 /* Support for GSO partial features requires software
2851 * intervention before we can actually process the packets
2852 * so we need to strip support for any partial features now
2853 * and we can pull them back in after we have partially
2854 * segmented the frame.
2855 */
2856 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2857 features &= ~dev->gso_partial_features;
2858
2859 /* Make sure to clear the IPv4 ID mangling feature if the
2860 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2861 */
2862 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2863 struct iphdr *iph = skb->encapsulation ?
2864 inner_ip_hdr(skb) : ip_hdr(skb);
2865
2866 if (!(iph->frag_off & htons(IP_DF)))
2867 features &= ~NETIF_F_TSO_MANGLEID;
2868 }
2869
2870 return features;
2871}
2872
c1e756bf 2873netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2874{
5f35227e 2875 struct net_device *dev = skb->dev;
fcbeb976 2876 netdev_features_t features = dev->features;
58e998c6 2877
cbc53e08
AD
2878 if (skb_is_gso(skb))
2879 features = gso_features_check(skb, dev, features);
30b678d8 2880
5f35227e
JG
2881 /* If encapsulation offload request, verify we are testing
2882 * hardware encapsulation features instead of standard
2883 * features for the netdev
2884 */
2885 if (skb->encapsulation)
2886 features &= dev->hw_enc_features;
2887
f5a7fb88
TM
2888 if (skb_vlan_tagged(skb))
2889 features = netdev_intersect_features(features,
2890 dev->vlan_features |
2891 NETIF_F_HW_VLAN_CTAG_TX |
2892 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2893
5f35227e
JG
2894 if (dev->netdev_ops->ndo_features_check)
2895 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2896 features);
8cb65d00
TM
2897 else
2898 features &= dflt_features_check(skb, dev, features);
5f35227e 2899
c1e756bf 2900 return harmonize_features(skb, features);
58e998c6 2901}
c1e756bf 2902EXPORT_SYMBOL(netif_skb_features);
58e998c6 2903
2ea25513 2904static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2905 struct netdev_queue *txq, bool more)
f6a78bfc 2906{
2ea25513
DM
2907 unsigned int len;
2908 int rc;
00829823 2909
7866a621 2910 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2911 dev_queue_xmit_nit(skb, dev);
fc741216 2912
2ea25513
DM
2913 len = skb->len;
2914 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2915 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2916 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2917
2ea25513
DM
2918 return rc;
2919}
7b9c6090 2920
8dcda22a
DM
2921struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2922 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2923{
2924 struct sk_buff *skb = first;
2925 int rc = NETDEV_TX_OK;
7b9c6090 2926
7f2e870f
DM
2927 while (skb) {
2928 struct sk_buff *next = skb->next;
fc70fb64 2929
7f2e870f 2930 skb->next = NULL;
95f6b3dd 2931 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2932 if (unlikely(!dev_xmit_complete(rc))) {
2933 skb->next = next;
2934 goto out;
2935 }
6afff0ca 2936
7f2e870f
DM
2937 skb = next;
2938 if (netif_xmit_stopped(txq) && skb) {
2939 rc = NETDEV_TX_BUSY;
2940 break;
9ccb8975 2941 }
7f2e870f 2942 }
9ccb8975 2943
7f2e870f
DM
2944out:
2945 *ret = rc;
2946 return skb;
2947}
b40863c6 2948
1ff0dc94
ED
2949static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2950 netdev_features_t features)
f6a78bfc 2951{
df8a39de 2952 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2953 !vlan_hw_offload_capable(features, skb->vlan_proto))
2954 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2955 return skb;
2956}
f6a78bfc 2957
55a93b3e 2958static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2959{
2960 netdev_features_t features;
f6a78bfc 2961
eae3f88e
DM
2962 features = netif_skb_features(skb);
2963 skb = validate_xmit_vlan(skb, features);
2964 if (unlikely(!skb))
2965 goto out_null;
7b9c6090 2966
8b86a61d 2967 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2968 struct sk_buff *segs;
2969
2970 segs = skb_gso_segment(skb, features);
cecda693 2971 if (IS_ERR(segs)) {
af6dabc9 2972 goto out_kfree_skb;
cecda693
JW
2973 } else if (segs) {
2974 consume_skb(skb);
2975 skb = segs;
f6a78bfc 2976 }
eae3f88e
DM
2977 } else {
2978 if (skb_needs_linearize(skb, features) &&
2979 __skb_linearize(skb))
2980 goto out_kfree_skb;
4ec93edb 2981
eae3f88e
DM
2982 /* If packet is not checksummed and device does not
2983 * support checksumming for this protocol, complete
2984 * checksumming here.
2985 */
2986 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2987 if (skb->encapsulation)
2988 skb_set_inner_transport_header(skb,
2989 skb_checksum_start_offset(skb));
2990 else
2991 skb_set_transport_header(skb,
2992 skb_checksum_start_offset(skb));
a188222b 2993 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2994 skb_checksum_help(skb))
2995 goto out_kfree_skb;
7b9c6090 2996 }
0c772159 2997 }
7b9c6090 2998
eae3f88e 2999 return skb;
fc70fb64 3000
f6a78bfc
HX
3001out_kfree_skb:
3002 kfree_skb(skb);
eae3f88e 3003out_null:
d21fd63e 3004 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3005 return NULL;
3006}
6afff0ca 3007
55a93b3e
ED
3008struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3009{
3010 struct sk_buff *next, *head = NULL, *tail;
3011
bec3cfdc 3012 for (; skb != NULL; skb = next) {
55a93b3e
ED
3013 next = skb->next;
3014 skb->next = NULL;
bec3cfdc
ED
3015
3016 /* in case skb wont be segmented, point to itself */
3017 skb->prev = skb;
3018
55a93b3e 3019 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3020 if (!skb)
3021 continue;
55a93b3e 3022
bec3cfdc
ED
3023 if (!head)
3024 head = skb;
3025 else
3026 tail->next = skb;
3027 /* If skb was segmented, skb->prev points to
3028 * the last segment. If not, it still contains skb.
3029 */
3030 tail = skb->prev;
55a93b3e
ED
3031 }
3032 return head;
f6a78bfc
HX
3033}
3034
1def9238
ED
3035static void qdisc_pkt_len_init(struct sk_buff *skb)
3036{
3037 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3038
3039 qdisc_skb_cb(skb)->pkt_len = skb->len;
3040
3041 /* To get more precise estimation of bytes sent on wire,
3042 * we add to pkt_len the headers size of all segments
3043 */
3044 if (shinfo->gso_size) {
757b8b1d 3045 unsigned int hdr_len;
15e5a030 3046 u16 gso_segs = shinfo->gso_segs;
1def9238 3047
757b8b1d
ED
3048 /* mac layer + network layer */
3049 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3050
3051 /* + transport layer */
1def9238
ED
3052 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3053 hdr_len += tcp_hdrlen(skb);
3054 else
3055 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3056
3057 if (shinfo->gso_type & SKB_GSO_DODGY)
3058 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3059 shinfo->gso_size);
3060
3061 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3062 }
3063}
3064
bbd8a0d3
KK
3065static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3066 struct net_device *dev,
3067 struct netdev_queue *txq)
3068{
3069 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 3070 bool contended;
bbd8a0d3
KK
3071 int rc;
3072
a2da570d 3073 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3074 /*
3075 * Heuristic to force contended enqueues to serialize on a
3076 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
3077 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3078 * often and dequeue packets faster.
79640a4c 3079 */
a2da570d 3080 contended = qdisc_is_running(q);
79640a4c
ED
3081 if (unlikely(contended))
3082 spin_lock(&q->busylock);
3083
bbd8a0d3
KK
3084 spin_lock(root_lock);
3085 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3086 kfree_skb(skb);
3087 rc = NET_XMIT_DROP;
3088 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3089 qdisc_run_begin(q)) {
bbd8a0d3
KK
3090 /*
3091 * This is a work-conserving queue; there are no old skbs
3092 * waiting to be sent out; and the qdisc is not running -
3093 * xmit the skb directly.
3094 */
bfe0d029 3095
bfe0d029
ED
3096 qdisc_bstats_update(q, skb);
3097
55a93b3e 3098 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3099 if (unlikely(contended)) {
3100 spin_unlock(&q->busylock);
3101 contended = false;
3102 }
bbd8a0d3 3103 __qdisc_run(q);
79640a4c 3104 } else
bc135b23 3105 qdisc_run_end(q);
bbd8a0d3
KK
3106
3107 rc = NET_XMIT_SUCCESS;
3108 } else {
a2da570d 3109 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
3110 if (qdisc_run_begin(q)) {
3111 if (unlikely(contended)) {
3112 spin_unlock(&q->busylock);
3113 contended = false;
3114 }
3115 __qdisc_run(q);
3116 }
bbd8a0d3
KK
3117 }
3118 spin_unlock(root_lock);
79640a4c
ED
3119 if (unlikely(contended))
3120 spin_unlock(&q->busylock);
bbd8a0d3
KK
3121 return rc;
3122}
3123
86f8515f 3124#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3125static void skb_update_prio(struct sk_buff *skb)
3126{
6977a79d 3127 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3128
91c68ce2 3129 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3130 unsigned int prioidx =
3131 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3132
3133 if (prioidx < map->priomap_len)
3134 skb->priority = map->priomap[prioidx];
3135 }
5bc1421e
NH
3136}
3137#else
3138#define skb_update_prio(skb)
3139#endif
3140
f60e5990 3141DEFINE_PER_CPU(int, xmit_recursion);
3142EXPORT_SYMBOL(xmit_recursion);
3143
11a766ce 3144#define RECURSION_LIMIT 10
745e20f1 3145
95603e22
MM
3146/**
3147 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3148 * @net: network namespace this loopback is happening in
3149 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3150 * @skb: buffer to transmit
3151 */
0c4b51f0 3152int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3153{
3154 skb_reset_mac_header(skb);
3155 __skb_pull(skb, skb_network_offset(skb));
3156 skb->pkt_type = PACKET_LOOPBACK;
3157 skb->ip_summed = CHECKSUM_UNNECESSARY;
3158 WARN_ON(!skb_dst(skb));
3159 skb_dst_force(skb);
3160 netif_rx_ni(skb);
3161 return 0;
3162}
3163EXPORT_SYMBOL(dev_loopback_xmit);
3164
1f211a1b
DB
3165#ifdef CONFIG_NET_EGRESS
3166static struct sk_buff *
3167sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3168{
3169 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3170 struct tcf_result cl_res;
3171
3172 if (!cl)
3173 return skb;
3174
3175 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3176 * earlier by the caller.
3177 */
3178 qdisc_bstats_cpu_update(cl->q, skb);
3179
3180 switch (tc_classify(skb, cl, &cl_res, false)) {
3181 case TC_ACT_OK:
3182 case TC_ACT_RECLASSIFY:
3183 skb->tc_index = TC_H_MIN(cl_res.classid);
3184 break;
3185 case TC_ACT_SHOT:
3186 qdisc_qstats_cpu_drop(cl->q);
3187 *ret = NET_XMIT_DROP;
3188 goto drop;
3189 case TC_ACT_STOLEN:
3190 case TC_ACT_QUEUED:
3191 *ret = NET_XMIT_SUCCESS;
3192drop:
3193 kfree_skb(skb);
3194 return NULL;
3195 case TC_ACT_REDIRECT:
3196 /* No need to push/pop skb's mac_header here on egress! */
3197 skb_do_redirect(skb);
3198 *ret = NET_XMIT_SUCCESS;
3199 return NULL;
3200 default:
3201 break;
3202 }
3203
3204 return skb;
3205}
3206#endif /* CONFIG_NET_EGRESS */
3207
638b2a69
JP
3208static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3209{
3210#ifdef CONFIG_XPS
3211 struct xps_dev_maps *dev_maps;
3212 struct xps_map *map;
3213 int queue_index = -1;
3214
3215 rcu_read_lock();
3216 dev_maps = rcu_dereference(dev->xps_maps);
3217 if (dev_maps) {
3218 map = rcu_dereference(
3219 dev_maps->cpu_map[skb->sender_cpu - 1]);
3220 if (map) {
3221 if (map->len == 1)
3222 queue_index = map->queues[0];
3223 else
3224 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3225 map->len)];
3226 if (unlikely(queue_index >= dev->real_num_tx_queues))
3227 queue_index = -1;
3228 }
3229 }
3230 rcu_read_unlock();
3231
3232 return queue_index;
3233#else
3234 return -1;
3235#endif
3236}
3237
3238static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3239{
3240 struct sock *sk = skb->sk;
3241 int queue_index = sk_tx_queue_get(sk);
3242
3243 if (queue_index < 0 || skb->ooo_okay ||
3244 queue_index >= dev->real_num_tx_queues) {
3245 int new_index = get_xps_queue(dev, skb);
3246 if (new_index < 0)
3247 new_index = skb_tx_hash(dev, skb);
3248
3249 if (queue_index != new_index && sk &&
004a5d01 3250 sk_fullsock(sk) &&
638b2a69
JP
3251 rcu_access_pointer(sk->sk_dst_cache))
3252 sk_tx_queue_set(sk, new_index);
3253
3254 queue_index = new_index;
3255 }
3256
3257 return queue_index;
3258}
3259
3260struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3261 struct sk_buff *skb,
3262 void *accel_priv)
3263{
3264 int queue_index = 0;
3265
3266#ifdef CONFIG_XPS
52bd2d62
ED
3267 u32 sender_cpu = skb->sender_cpu - 1;
3268
3269 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3270 skb->sender_cpu = raw_smp_processor_id() + 1;
3271#endif
3272
3273 if (dev->real_num_tx_queues != 1) {
3274 const struct net_device_ops *ops = dev->netdev_ops;
3275 if (ops->ndo_select_queue)
3276 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3277 __netdev_pick_tx);
3278 else
3279 queue_index = __netdev_pick_tx(dev, skb);
3280
3281 if (!accel_priv)
3282 queue_index = netdev_cap_txqueue(dev, queue_index);
3283 }
3284
3285 skb_set_queue_mapping(skb, queue_index);
3286 return netdev_get_tx_queue(dev, queue_index);
3287}
3288
d29f749e 3289/**
9d08dd3d 3290 * __dev_queue_xmit - transmit a buffer
d29f749e 3291 * @skb: buffer to transmit
9d08dd3d 3292 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3293 *
3294 * Queue a buffer for transmission to a network device. The caller must
3295 * have set the device and priority and built the buffer before calling
3296 * this function. The function can be called from an interrupt.
3297 *
3298 * A negative errno code is returned on a failure. A success does not
3299 * guarantee the frame will be transmitted as it may be dropped due
3300 * to congestion or traffic shaping.
3301 *
3302 * -----------------------------------------------------------------------------------
3303 * I notice this method can also return errors from the queue disciplines,
3304 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3305 * be positive.
3306 *
3307 * Regardless of the return value, the skb is consumed, so it is currently
3308 * difficult to retry a send to this method. (You can bump the ref count
3309 * before sending to hold a reference for retry if you are careful.)
3310 *
3311 * When calling this method, interrupts MUST be enabled. This is because
3312 * the BH enable code must have IRQs enabled so that it will not deadlock.
3313 * --BLG
3314 */
0a59f3a9 3315static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3316{
3317 struct net_device *dev = skb->dev;
dc2b4847 3318 struct netdev_queue *txq;
1da177e4
LT
3319 struct Qdisc *q;
3320 int rc = -ENOMEM;
3321
6d1ccff6
ED
3322 skb_reset_mac_header(skb);
3323
e7fd2885
WB
3324 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3325 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3326
4ec93edb
YH
3327 /* Disable soft irqs for various locks below. Also
3328 * stops preemption for RCU.
1da177e4 3329 */
4ec93edb 3330 rcu_read_lock_bh();
1da177e4 3331
5bc1421e
NH
3332 skb_update_prio(skb);
3333
1f211a1b
DB
3334 qdisc_pkt_len_init(skb);
3335#ifdef CONFIG_NET_CLS_ACT
3336 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3337# ifdef CONFIG_NET_EGRESS
3338 if (static_key_false(&egress_needed)) {
3339 skb = sch_handle_egress(skb, &rc, dev);
3340 if (!skb)
3341 goto out;
3342 }
3343# endif
3344#endif
02875878
ED
3345 /* If device/qdisc don't need skb->dst, release it right now while
3346 * its hot in this cpu cache.
3347 */
3348 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3349 skb_dst_drop(skb);
3350 else
3351 skb_dst_force(skb);
3352
0c4f691f
SF
3353#ifdef CONFIG_NET_SWITCHDEV
3354 /* Don't forward if offload device already forwarded */
3355 if (skb->offload_fwd_mark &&
3356 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3357 consume_skb(skb);
3358 rc = NET_XMIT_SUCCESS;
3359 goto out;
3360 }
3361#endif
3362
f663dd9a 3363 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3364 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3365
cf66ba58 3366 trace_net_dev_queue(skb);
1da177e4 3367 if (q->enqueue) {
bbd8a0d3 3368 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3369 goto out;
1da177e4
LT
3370 }
3371
3372 /* The device has no queue. Common case for software devices:
3373 loopback, all the sorts of tunnels...
3374
932ff279
HX
3375 Really, it is unlikely that netif_tx_lock protection is necessary
3376 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3377 counters.)
3378 However, it is possible, that they rely on protection
3379 made by us here.
3380
3381 Check this and shot the lock. It is not prone from deadlocks.
3382 Either shot noqueue qdisc, it is even simpler 8)
3383 */
3384 if (dev->flags & IFF_UP) {
3385 int cpu = smp_processor_id(); /* ok because BHs are off */
3386
c773e847 3387 if (txq->xmit_lock_owner != cpu) {
1da177e4 3388
745e20f1
ED
3389 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3390 goto recursion_alert;
3391
1f59533f
JDB
3392 skb = validate_xmit_skb(skb, dev);
3393 if (!skb)
d21fd63e 3394 goto out;
1f59533f 3395
c773e847 3396 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3397
73466498 3398 if (!netif_xmit_stopped(txq)) {
745e20f1 3399 __this_cpu_inc(xmit_recursion);
ce93718f 3400 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3401 __this_cpu_dec(xmit_recursion);
572a9d7b 3402 if (dev_xmit_complete(rc)) {
c773e847 3403 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3404 goto out;
3405 }
3406 }
c773e847 3407 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3408 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3409 dev->name);
1da177e4
LT
3410 } else {
3411 /* Recursion is detected! It is possible,
745e20f1
ED
3412 * unfortunately
3413 */
3414recursion_alert:
e87cc472
JP
3415 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3416 dev->name);
1da177e4
LT
3417 }
3418 }
3419
3420 rc = -ENETDOWN;
d4828d85 3421 rcu_read_unlock_bh();
1da177e4 3422
015f0688 3423 atomic_long_inc(&dev->tx_dropped);
1f59533f 3424 kfree_skb_list(skb);
1da177e4
LT
3425 return rc;
3426out:
d4828d85 3427 rcu_read_unlock_bh();
1da177e4
LT
3428 return rc;
3429}
f663dd9a 3430
2b4aa3ce 3431int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3432{
3433 return __dev_queue_xmit(skb, NULL);
3434}
2b4aa3ce 3435EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3436
f663dd9a
JW
3437int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3438{
3439 return __dev_queue_xmit(skb, accel_priv);
3440}
3441EXPORT_SYMBOL(dev_queue_xmit_accel);
3442
1da177e4
LT
3443
3444/*=======================================================================
3445 Receiver routines
3446 =======================================================================*/
3447
6b2bedc3 3448int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3449EXPORT_SYMBOL(netdev_max_backlog);
3450
3b098e2d 3451int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3452int netdev_budget __read_mostly = 300;
3453int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3454
eecfd7c4
ED
3455/* Called with irq disabled */
3456static inline void ____napi_schedule(struct softnet_data *sd,
3457 struct napi_struct *napi)
3458{
3459 list_add_tail(&napi->poll_list, &sd->poll_list);
3460 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3461}
3462
bfb564e7
KK
3463#ifdef CONFIG_RPS
3464
3465/* One global table that all flow-based protocols share. */
6e3f7faf 3466struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3467EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3468u32 rps_cpu_mask __read_mostly;
3469EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3470
c5905afb 3471struct static_key rps_needed __read_mostly;
adc9300e 3472
c445477d
BH
3473static struct rps_dev_flow *
3474set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3475 struct rps_dev_flow *rflow, u16 next_cpu)
3476{
a31196b0 3477 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3478#ifdef CONFIG_RFS_ACCEL
3479 struct netdev_rx_queue *rxqueue;
3480 struct rps_dev_flow_table *flow_table;
3481 struct rps_dev_flow *old_rflow;
3482 u32 flow_id;
3483 u16 rxq_index;
3484 int rc;
3485
3486 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3487 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3488 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3489 goto out;
3490 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3491 if (rxq_index == skb_get_rx_queue(skb))
3492 goto out;
3493
3494 rxqueue = dev->_rx + rxq_index;
3495 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3496 if (!flow_table)
3497 goto out;
61b905da 3498 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3499 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3500 rxq_index, flow_id);
3501 if (rc < 0)
3502 goto out;
3503 old_rflow = rflow;
3504 rflow = &flow_table->flows[flow_id];
c445477d
BH
3505 rflow->filter = rc;
3506 if (old_rflow->filter == rflow->filter)
3507 old_rflow->filter = RPS_NO_FILTER;
3508 out:
3509#endif
3510 rflow->last_qtail =
09994d1b 3511 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3512 }
3513
09994d1b 3514 rflow->cpu = next_cpu;
c445477d
BH
3515 return rflow;
3516}
3517
bfb564e7
KK
3518/*
3519 * get_rps_cpu is called from netif_receive_skb and returns the target
3520 * CPU from the RPS map of the receiving queue for a given skb.
3521 * rcu_read_lock must be held on entry.
3522 */
3523static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3524 struct rps_dev_flow **rflowp)
3525{
567e4b79
ED
3526 const struct rps_sock_flow_table *sock_flow_table;
3527 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3528 struct rps_dev_flow_table *flow_table;
567e4b79 3529 struct rps_map *map;
bfb564e7 3530 int cpu = -1;
567e4b79 3531 u32 tcpu;
61b905da 3532 u32 hash;
bfb564e7
KK
3533
3534 if (skb_rx_queue_recorded(skb)) {
3535 u16 index = skb_get_rx_queue(skb);
567e4b79 3536
62fe0b40
BH
3537 if (unlikely(index >= dev->real_num_rx_queues)) {
3538 WARN_ONCE(dev->real_num_rx_queues > 1,
3539 "%s received packet on queue %u, but number "
3540 "of RX queues is %u\n",
3541 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3542 goto done;
3543 }
567e4b79
ED
3544 rxqueue += index;
3545 }
bfb564e7 3546
567e4b79
ED
3547 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3548
3549 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3550 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3551 if (!flow_table && !map)
bfb564e7
KK
3552 goto done;
3553
2d47b459 3554 skb_reset_network_header(skb);
61b905da
TH
3555 hash = skb_get_hash(skb);
3556 if (!hash)
bfb564e7
KK
3557 goto done;
3558
fec5e652
TH
3559 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3560 if (flow_table && sock_flow_table) {
fec5e652 3561 struct rps_dev_flow *rflow;
567e4b79
ED
3562 u32 next_cpu;
3563 u32 ident;
3564
3565 /* First check into global flow table if there is a match */
3566 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3567 if ((ident ^ hash) & ~rps_cpu_mask)
3568 goto try_rps;
fec5e652 3569
567e4b79
ED
3570 next_cpu = ident & rps_cpu_mask;
3571
3572 /* OK, now we know there is a match,
3573 * we can look at the local (per receive queue) flow table
3574 */
61b905da 3575 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3576 tcpu = rflow->cpu;
3577
fec5e652
TH
3578 /*
3579 * If the desired CPU (where last recvmsg was done) is
3580 * different from current CPU (one in the rx-queue flow
3581 * table entry), switch if one of the following holds:
a31196b0 3582 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3583 * - Current CPU is offline.
3584 * - The current CPU's queue tail has advanced beyond the
3585 * last packet that was enqueued using this table entry.
3586 * This guarantees that all previous packets for the flow
3587 * have been dequeued, thus preserving in order delivery.
3588 */
3589 if (unlikely(tcpu != next_cpu) &&
a31196b0 3590 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3591 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3592 rflow->last_qtail)) >= 0)) {
3593 tcpu = next_cpu;
c445477d 3594 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3595 }
c445477d 3596
a31196b0 3597 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3598 *rflowp = rflow;
3599 cpu = tcpu;
3600 goto done;
3601 }
3602 }
3603
567e4b79
ED
3604try_rps:
3605
0a9627f2 3606 if (map) {
8fc54f68 3607 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3608 if (cpu_online(tcpu)) {
3609 cpu = tcpu;
3610 goto done;
3611 }
3612 }
3613
3614done:
0a9627f2
TH
3615 return cpu;
3616}
3617
c445477d
BH
3618#ifdef CONFIG_RFS_ACCEL
3619
3620/**
3621 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3622 * @dev: Device on which the filter was set
3623 * @rxq_index: RX queue index
3624 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3625 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3626 *
3627 * Drivers that implement ndo_rx_flow_steer() should periodically call
3628 * this function for each installed filter and remove the filters for
3629 * which it returns %true.
3630 */
3631bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3632 u32 flow_id, u16 filter_id)
3633{
3634 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3635 struct rps_dev_flow_table *flow_table;
3636 struct rps_dev_flow *rflow;
3637 bool expire = true;
a31196b0 3638 unsigned int cpu;
c445477d
BH
3639
3640 rcu_read_lock();
3641 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3642 if (flow_table && flow_id <= flow_table->mask) {
3643 rflow = &flow_table->flows[flow_id];
3644 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3645 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3646 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3647 rflow->last_qtail) <
3648 (int)(10 * flow_table->mask)))
3649 expire = false;
3650 }
3651 rcu_read_unlock();
3652 return expire;
3653}
3654EXPORT_SYMBOL(rps_may_expire_flow);
3655
3656#endif /* CONFIG_RFS_ACCEL */
3657
0a9627f2 3658/* Called from hardirq (IPI) context */
e36fa2f7 3659static void rps_trigger_softirq(void *data)
0a9627f2 3660{
e36fa2f7
ED
3661 struct softnet_data *sd = data;
3662
eecfd7c4 3663 ____napi_schedule(sd, &sd->backlog);
dee42870 3664 sd->received_rps++;
0a9627f2 3665}
e36fa2f7 3666
fec5e652 3667#endif /* CONFIG_RPS */
0a9627f2 3668
e36fa2f7
ED
3669/*
3670 * Check if this softnet_data structure is another cpu one
3671 * If yes, queue it to our IPI list and return 1
3672 * If no, return 0
3673 */
3674static int rps_ipi_queued(struct softnet_data *sd)
3675{
3676#ifdef CONFIG_RPS
903ceff7 3677 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3678
3679 if (sd != mysd) {
3680 sd->rps_ipi_next = mysd->rps_ipi_list;
3681 mysd->rps_ipi_list = sd;
3682
3683 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3684 return 1;
3685 }
3686#endif /* CONFIG_RPS */
3687 return 0;
3688}
3689
99bbc707
WB
3690#ifdef CONFIG_NET_FLOW_LIMIT
3691int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3692#endif
3693
3694static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3695{
3696#ifdef CONFIG_NET_FLOW_LIMIT
3697 struct sd_flow_limit *fl;
3698 struct softnet_data *sd;
3699 unsigned int old_flow, new_flow;
3700
3701 if (qlen < (netdev_max_backlog >> 1))
3702 return false;
3703
903ceff7 3704 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3705
3706 rcu_read_lock();
3707 fl = rcu_dereference(sd->flow_limit);
3708 if (fl) {
3958afa1 3709 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3710 old_flow = fl->history[fl->history_head];
3711 fl->history[fl->history_head] = new_flow;
3712
3713 fl->history_head++;
3714 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3715
3716 if (likely(fl->buckets[old_flow]))
3717 fl->buckets[old_flow]--;
3718
3719 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3720 fl->count++;
3721 rcu_read_unlock();
3722 return true;
3723 }
3724 }
3725 rcu_read_unlock();
3726#endif
3727 return false;
3728}
3729
0a9627f2
TH
3730/*
3731 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3732 * queue (may be a remote CPU queue).
3733 */
fec5e652
TH
3734static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3735 unsigned int *qtail)
0a9627f2 3736{
e36fa2f7 3737 struct softnet_data *sd;
0a9627f2 3738 unsigned long flags;
99bbc707 3739 unsigned int qlen;
0a9627f2 3740
e36fa2f7 3741 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3742
3743 local_irq_save(flags);
0a9627f2 3744
e36fa2f7 3745 rps_lock(sd);
e9e4dd32
JA
3746 if (!netif_running(skb->dev))
3747 goto drop;
99bbc707
WB
3748 qlen = skb_queue_len(&sd->input_pkt_queue);
3749 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3750 if (qlen) {
0a9627f2 3751enqueue:
e36fa2f7 3752 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3753 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3754 rps_unlock(sd);
152102c7 3755 local_irq_restore(flags);
0a9627f2
TH
3756 return NET_RX_SUCCESS;
3757 }
3758
ebda37c2
ED
3759 /* Schedule NAPI for backlog device
3760 * We can use non atomic operation since we own the queue lock
3761 */
3762 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3763 if (!rps_ipi_queued(sd))
eecfd7c4 3764 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3765 }
3766 goto enqueue;
3767 }
3768
e9e4dd32 3769drop:
dee42870 3770 sd->dropped++;
e36fa2f7 3771 rps_unlock(sd);
0a9627f2 3772
0a9627f2
TH
3773 local_irq_restore(flags);
3774
caf586e5 3775 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3776 kfree_skb(skb);
3777 return NET_RX_DROP;
3778}
1da177e4 3779
ae78dbfa 3780static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3781{
b0e28f1e 3782 int ret;
1da177e4 3783
588f0330 3784 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3785
cf66ba58 3786 trace_netif_rx(skb);
df334545 3787#ifdef CONFIG_RPS
c5905afb 3788 if (static_key_false(&rps_needed)) {
fec5e652 3789 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3790 int cpu;
3791
cece1945 3792 preempt_disable();
b0e28f1e 3793 rcu_read_lock();
fec5e652
TH
3794
3795 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3796 if (cpu < 0)
3797 cpu = smp_processor_id();
fec5e652
TH
3798
3799 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3800
b0e28f1e 3801 rcu_read_unlock();
cece1945 3802 preempt_enable();
adc9300e
ED
3803 } else
3804#endif
fec5e652
TH
3805 {
3806 unsigned int qtail;
3807 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3808 put_cpu();
3809 }
b0e28f1e 3810 return ret;
1da177e4 3811}
ae78dbfa
BH
3812
3813/**
3814 * netif_rx - post buffer to the network code
3815 * @skb: buffer to post
3816 *
3817 * This function receives a packet from a device driver and queues it for
3818 * the upper (protocol) levels to process. It always succeeds. The buffer
3819 * may be dropped during processing for congestion control or by the
3820 * protocol layers.
3821 *
3822 * return values:
3823 * NET_RX_SUCCESS (no congestion)
3824 * NET_RX_DROP (packet was dropped)
3825 *
3826 */
3827
3828int netif_rx(struct sk_buff *skb)
3829{
3830 trace_netif_rx_entry(skb);
3831
3832 return netif_rx_internal(skb);
3833}
d1b19dff 3834EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3835
3836int netif_rx_ni(struct sk_buff *skb)
3837{
3838 int err;
3839
ae78dbfa
BH
3840 trace_netif_rx_ni_entry(skb);
3841
1da177e4 3842 preempt_disable();
ae78dbfa 3843 err = netif_rx_internal(skb);
1da177e4
LT
3844 if (local_softirq_pending())
3845 do_softirq();
3846 preempt_enable();
3847
3848 return err;
3849}
1da177e4
LT
3850EXPORT_SYMBOL(netif_rx_ni);
3851
1da177e4
LT
3852static void net_tx_action(struct softirq_action *h)
3853{
903ceff7 3854 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3855
3856 if (sd->completion_queue) {
3857 struct sk_buff *clist;
3858
3859 local_irq_disable();
3860 clist = sd->completion_queue;
3861 sd->completion_queue = NULL;
3862 local_irq_enable();
3863
3864 while (clist) {
3865 struct sk_buff *skb = clist;
3866 clist = clist->next;
3867
547b792c 3868 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3869 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3870 trace_consume_skb(skb);
3871 else
3872 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3873
3874 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3875 __kfree_skb(skb);
3876 else
3877 __kfree_skb_defer(skb);
1da177e4 3878 }
15fad714
JDB
3879
3880 __kfree_skb_flush();
1da177e4
LT
3881 }
3882
3883 if (sd->output_queue) {
37437bb2 3884 struct Qdisc *head;
1da177e4
LT
3885
3886 local_irq_disable();
3887 head = sd->output_queue;
3888 sd->output_queue = NULL;
a9cbd588 3889 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3890 local_irq_enable();
3891
3892 while (head) {
37437bb2
DM
3893 struct Qdisc *q = head;
3894 spinlock_t *root_lock;
3895
1da177e4
LT
3896 head = head->next_sched;
3897
5fb66229 3898 root_lock = qdisc_lock(q);
37437bb2 3899 if (spin_trylock(root_lock)) {
4e857c58 3900 smp_mb__before_atomic();
def82a1d
JP
3901 clear_bit(__QDISC_STATE_SCHED,
3902 &q->state);
37437bb2
DM
3903 qdisc_run(q);
3904 spin_unlock(root_lock);
1da177e4 3905 } else {
195648bb 3906 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3907 &q->state)) {
195648bb 3908 __netif_reschedule(q);
e8a83e10 3909 } else {
4e857c58 3910 smp_mb__before_atomic();
e8a83e10
JP
3911 clear_bit(__QDISC_STATE_SCHED,
3912 &q->state);
3913 }
1da177e4
LT
3914 }
3915 }
3916 }
3917}
3918
ab95bfe0
JP
3919#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3920 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3921/* This hook is defined here for ATM LANE */
3922int (*br_fdb_test_addr_hook)(struct net_device *dev,
3923 unsigned char *addr) __read_mostly;
4fb019a0 3924EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3925#endif
1da177e4 3926
1f211a1b
DB
3927static inline struct sk_buff *
3928sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3929 struct net_device *orig_dev)
f697c3e8 3930{
e7582bab 3931#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3932 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3933 struct tcf_result cl_res;
24824a09 3934
c9e99fd0
DB
3935 /* If there's at least one ingress present somewhere (so
3936 * we get here via enabled static key), remaining devices
3937 * that are not configured with an ingress qdisc will bail
d2788d34 3938 * out here.
c9e99fd0 3939 */
d2788d34 3940 if (!cl)
4577139b 3941 return skb;
f697c3e8
HX
3942 if (*pt_prev) {
3943 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3944 *pt_prev = NULL;
1da177e4
LT
3945 }
3946
3365495c 3947 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3948 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3949 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3950
3b3ae880 3951 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3952 case TC_ACT_OK:
3953 case TC_ACT_RECLASSIFY:
3954 skb->tc_index = TC_H_MIN(cl_res.classid);
3955 break;
3956 case TC_ACT_SHOT:
24ea591d 3957 qdisc_qstats_cpu_drop(cl->q);
d2788d34
DB
3958 case TC_ACT_STOLEN:
3959 case TC_ACT_QUEUED:
3960 kfree_skb(skb);
3961 return NULL;
27b29f63
AS
3962 case TC_ACT_REDIRECT:
3963 /* skb_mac_header check was done by cls/act_bpf, so
3964 * we can safely push the L2 header back before
3965 * redirecting to another netdev
3966 */
3967 __skb_push(skb, skb->mac_len);
3968 skb_do_redirect(skb);
3969 return NULL;
d2788d34
DB
3970 default:
3971 break;
f697c3e8 3972 }
e7582bab 3973#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3974 return skb;
3975}
1da177e4 3976
ab95bfe0
JP
3977/**
3978 * netdev_rx_handler_register - register receive handler
3979 * @dev: device to register a handler for
3980 * @rx_handler: receive handler to register
93e2c32b 3981 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3982 *
e227867f 3983 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3984 * called from __netif_receive_skb. A negative errno code is returned
3985 * on a failure.
3986 *
3987 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3988 *
3989 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3990 */
3991int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3992 rx_handler_func_t *rx_handler,
3993 void *rx_handler_data)
ab95bfe0
JP
3994{
3995 ASSERT_RTNL();
3996
3997 if (dev->rx_handler)
3998 return -EBUSY;
3999
00cfec37 4000 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4001 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4002 rcu_assign_pointer(dev->rx_handler, rx_handler);
4003
4004 return 0;
4005}
4006EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4007
4008/**
4009 * netdev_rx_handler_unregister - unregister receive handler
4010 * @dev: device to unregister a handler from
4011 *
166ec369 4012 * Unregister a receive handler from a device.
ab95bfe0
JP
4013 *
4014 * The caller must hold the rtnl_mutex.
4015 */
4016void netdev_rx_handler_unregister(struct net_device *dev)
4017{
4018
4019 ASSERT_RTNL();
a9b3cd7f 4020 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4021 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4022 * section has a guarantee to see a non NULL rx_handler_data
4023 * as well.
4024 */
4025 synchronize_net();
a9b3cd7f 4026 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4027}
4028EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4029
b4b9e355
MG
4030/*
4031 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4032 * the special handling of PFMEMALLOC skbs.
4033 */
4034static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4035{
4036 switch (skb->protocol) {
2b8837ae
JP
4037 case htons(ETH_P_ARP):
4038 case htons(ETH_P_IP):
4039 case htons(ETH_P_IPV6):
4040 case htons(ETH_P_8021Q):
4041 case htons(ETH_P_8021AD):
b4b9e355
MG
4042 return true;
4043 default:
4044 return false;
4045 }
4046}
4047
e687ad60
PN
4048static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4049 int *ret, struct net_device *orig_dev)
4050{
e7582bab 4051#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
4052 if (nf_hook_ingress_active(skb)) {
4053 if (*pt_prev) {
4054 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4055 *pt_prev = NULL;
4056 }
4057
4058 return nf_hook_ingress(skb);
4059 }
e7582bab 4060#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4061 return 0;
4062}
e687ad60 4063
9754e293 4064static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4065{
4066 struct packet_type *ptype, *pt_prev;
ab95bfe0 4067 rx_handler_func_t *rx_handler;
f2ccd8fa 4068 struct net_device *orig_dev;
8a4eb573 4069 bool deliver_exact = false;
1da177e4 4070 int ret = NET_RX_DROP;
252e3346 4071 __be16 type;
1da177e4 4072
588f0330 4073 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4074
cf66ba58 4075 trace_netif_receive_skb(skb);
9b22ea56 4076
cc9bd5ce 4077 orig_dev = skb->dev;
8f903c70 4078
c1d2bbe1 4079 skb_reset_network_header(skb);
fda55eca
ED
4080 if (!skb_transport_header_was_set(skb))
4081 skb_reset_transport_header(skb);
0b5c9db1 4082 skb_reset_mac_len(skb);
1da177e4
LT
4083
4084 pt_prev = NULL;
4085
63d8ea7f 4086another_round:
b6858177 4087 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4088
4089 __this_cpu_inc(softnet_data.processed);
4090
8ad227ff
PM
4091 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4092 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4093 skb = skb_vlan_untag(skb);
bcc6d479 4094 if (unlikely(!skb))
2c17d27c 4095 goto out;
bcc6d479
JP
4096 }
4097
1da177e4
LT
4098#ifdef CONFIG_NET_CLS_ACT
4099 if (skb->tc_verd & TC_NCLS) {
4100 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4101 goto ncls;
4102 }
4103#endif
4104
9754e293 4105 if (pfmemalloc)
b4b9e355
MG
4106 goto skip_taps;
4107
1da177e4 4108 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4109 if (pt_prev)
4110 ret = deliver_skb(skb, pt_prev, orig_dev);
4111 pt_prev = ptype;
4112 }
4113
4114 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4115 if (pt_prev)
4116 ret = deliver_skb(skb, pt_prev, orig_dev);
4117 pt_prev = ptype;
1da177e4
LT
4118 }
4119
b4b9e355 4120skip_taps:
1cf51900 4121#ifdef CONFIG_NET_INGRESS
4577139b 4122 if (static_key_false(&ingress_needed)) {
1f211a1b 4123 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4124 if (!skb)
2c17d27c 4125 goto out;
e687ad60
PN
4126
4127 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4128 goto out;
4577139b 4129 }
1cf51900
PN
4130#endif
4131#ifdef CONFIG_NET_CLS_ACT
4577139b 4132 skb->tc_verd = 0;
1da177e4
LT
4133ncls:
4134#endif
9754e293 4135 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4136 goto drop;
4137
df8a39de 4138 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4139 if (pt_prev) {
4140 ret = deliver_skb(skb, pt_prev, orig_dev);
4141 pt_prev = NULL;
4142 }
48cc32d3 4143 if (vlan_do_receive(&skb))
2425717b
JF
4144 goto another_round;
4145 else if (unlikely(!skb))
2c17d27c 4146 goto out;
2425717b
JF
4147 }
4148
48cc32d3 4149 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4150 if (rx_handler) {
4151 if (pt_prev) {
4152 ret = deliver_skb(skb, pt_prev, orig_dev);
4153 pt_prev = NULL;
4154 }
8a4eb573
JP
4155 switch (rx_handler(&skb)) {
4156 case RX_HANDLER_CONSUMED:
3bc1b1ad 4157 ret = NET_RX_SUCCESS;
2c17d27c 4158 goto out;
8a4eb573 4159 case RX_HANDLER_ANOTHER:
63d8ea7f 4160 goto another_round;
8a4eb573
JP
4161 case RX_HANDLER_EXACT:
4162 deliver_exact = true;
4163 case RX_HANDLER_PASS:
4164 break;
4165 default:
4166 BUG();
4167 }
ab95bfe0 4168 }
1da177e4 4169
df8a39de
JP
4170 if (unlikely(skb_vlan_tag_present(skb))) {
4171 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4172 skb->pkt_type = PACKET_OTHERHOST;
4173 /* Note: we might in the future use prio bits
4174 * and set skb->priority like in vlan_do_receive()
4175 * For the time being, just ignore Priority Code Point
4176 */
4177 skb->vlan_tci = 0;
4178 }
48cc32d3 4179
7866a621
SN
4180 type = skb->protocol;
4181
63d8ea7f 4182 /* deliver only exact match when indicated */
7866a621
SN
4183 if (likely(!deliver_exact)) {
4184 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4185 &ptype_base[ntohs(type) &
4186 PTYPE_HASH_MASK]);
4187 }
1f3c8804 4188
7866a621
SN
4189 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4190 &orig_dev->ptype_specific);
4191
4192 if (unlikely(skb->dev != orig_dev)) {
4193 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4194 &skb->dev->ptype_specific);
1da177e4
LT
4195 }
4196
4197 if (pt_prev) {
1080e512 4198 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4199 goto drop;
1080e512
MT
4200 else
4201 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4202 } else {
b4b9e355 4203drop:
6e7333d3
JW
4204 if (!deliver_exact)
4205 atomic_long_inc(&skb->dev->rx_dropped);
4206 else
4207 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4208 kfree_skb(skb);
4209 /* Jamal, now you will not able to escape explaining
4210 * me how you were going to use this. :-)
4211 */
4212 ret = NET_RX_DROP;
4213 }
4214
2c17d27c 4215out:
9754e293
DM
4216 return ret;
4217}
4218
4219static int __netif_receive_skb(struct sk_buff *skb)
4220{
4221 int ret;
4222
4223 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4224 unsigned long pflags = current->flags;
4225
4226 /*
4227 * PFMEMALLOC skbs are special, they should
4228 * - be delivered to SOCK_MEMALLOC sockets only
4229 * - stay away from userspace
4230 * - have bounded memory usage
4231 *
4232 * Use PF_MEMALLOC as this saves us from propagating the allocation
4233 * context down to all allocation sites.
4234 */
4235 current->flags |= PF_MEMALLOC;
4236 ret = __netif_receive_skb_core(skb, true);
4237 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4238 } else
4239 ret = __netif_receive_skb_core(skb, false);
4240
1da177e4
LT
4241 return ret;
4242}
0a9627f2 4243
ae78dbfa 4244static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4245{
2c17d27c
JA
4246 int ret;
4247
588f0330 4248 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4249
c1f19b51
RC
4250 if (skb_defer_rx_timestamp(skb))
4251 return NET_RX_SUCCESS;
4252
2c17d27c
JA
4253 rcu_read_lock();
4254
df334545 4255#ifdef CONFIG_RPS
c5905afb 4256 if (static_key_false(&rps_needed)) {
3b098e2d 4257 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4258 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4259
3b098e2d
ED
4260 if (cpu >= 0) {
4261 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4262 rcu_read_unlock();
adc9300e 4263 return ret;
3b098e2d 4264 }
fec5e652 4265 }
1e94d72f 4266#endif
2c17d27c
JA
4267 ret = __netif_receive_skb(skb);
4268 rcu_read_unlock();
4269 return ret;
0a9627f2 4270}
ae78dbfa
BH
4271
4272/**
4273 * netif_receive_skb - process receive buffer from network
4274 * @skb: buffer to process
4275 *
4276 * netif_receive_skb() is the main receive data processing function.
4277 * It always succeeds. The buffer may be dropped during processing
4278 * for congestion control or by the protocol layers.
4279 *
4280 * This function may only be called from softirq context and interrupts
4281 * should be enabled.
4282 *
4283 * Return values (usually ignored):
4284 * NET_RX_SUCCESS: no congestion
4285 * NET_RX_DROP: packet was dropped
4286 */
04eb4489 4287int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4288{
4289 trace_netif_receive_skb_entry(skb);
4290
4291 return netif_receive_skb_internal(skb);
4292}
04eb4489 4293EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4294
88751275
ED
4295/* Network device is going away, flush any packets still pending
4296 * Called with irqs disabled.
4297 */
152102c7 4298static void flush_backlog(void *arg)
6e583ce5 4299{
152102c7 4300 struct net_device *dev = arg;
903ceff7 4301 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
4302 struct sk_buff *skb, *tmp;
4303
e36fa2f7 4304 rps_lock(sd);
6e7676c1 4305 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 4306 if (skb->dev == dev) {
e36fa2f7 4307 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4308 kfree_skb(skb);
76cc8b13 4309 input_queue_head_incr(sd);
6e583ce5 4310 }
6e7676c1 4311 }
e36fa2f7 4312 rps_unlock(sd);
6e7676c1
CG
4313
4314 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4315 if (skb->dev == dev) {
4316 __skb_unlink(skb, &sd->process_queue);
4317 kfree_skb(skb);
76cc8b13 4318 input_queue_head_incr(sd);
6e7676c1
CG
4319 }
4320 }
6e583ce5
SH
4321}
4322
d565b0a1
HX
4323static int napi_gro_complete(struct sk_buff *skb)
4324{
22061d80 4325 struct packet_offload *ptype;
d565b0a1 4326 __be16 type = skb->protocol;
22061d80 4327 struct list_head *head = &offload_base;
d565b0a1
HX
4328 int err = -ENOENT;
4329
c3c7c254
ED
4330 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4331
fc59f9a3
HX
4332 if (NAPI_GRO_CB(skb)->count == 1) {
4333 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4334 goto out;
fc59f9a3 4335 }
d565b0a1
HX
4336
4337 rcu_read_lock();
4338 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4339 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4340 continue;
4341
299603e8 4342 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4343 break;
4344 }
4345 rcu_read_unlock();
4346
4347 if (err) {
4348 WARN_ON(&ptype->list == head);
4349 kfree_skb(skb);
4350 return NET_RX_SUCCESS;
4351 }
4352
4353out:
ae78dbfa 4354 return netif_receive_skb_internal(skb);
d565b0a1
HX
4355}
4356
2e71a6f8
ED
4357/* napi->gro_list contains packets ordered by age.
4358 * youngest packets at the head of it.
4359 * Complete skbs in reverse order to reduce latencies.
4360 */
4361void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4362{
2e71a6f8 4363 struct sk_buff *skb, *prev = NULL;
d565b0a1 4364
2e71a6f8
ED
4365 /* scan list and build reverse chain */
4366 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4367 skb->prev = prev;
4368 prev = skb;
4369 }
4370
4371 for (skb = prev; skb; skb = prev) {
d565b0a1 4372 skb->next = NULL;
2e71a6f8
ED
4373
4374 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4375 return;
4376
4377 prev = skb->prev;
d565b0a1 4378 napi_gro_complete(skb);
2e71a6f8 4379 napi->gro_count--;
d565b0a1
HX
4380 }
4381
4382 napi->gro_list = NULL;
4383}
86cac58b 4384EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4385
89c5fa33
ED
4386static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4387{
4388 struct sk_buff *p;
4389 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4390 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4391
4392 for (p = napi->gro_list; p; p = p->next) {
4393 unsigned long diffs;
4394
0b4cec8c
TH
4395 NAPI_GRO_CB(p)->flush = 0;
4396
4397 if (hash != skb_get_hash_raw(p)) {
4398 NAPI_GRO_CB(p)->same_flow = 0;
4399 continue;
4400 }
4401
89c5fa33
ED
4402 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4403 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4404 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4405 if (maclen == ETH_HLEN)
4406 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4407 skb_mac_header(skb));
89c5fa33
ED
4408 else if (!diffs)
4409 diffs = memcmp(skb_mac_header(p),
a50e233c 4410 skb_mac_header(skb),
89c5fa33
ED
4411 maclen);
4412 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4413 }
4414}
4415
299603e8
JC
4416static void skb_gro_reset_offset(struct sk_buff *skb)
4417{
4418 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4419 const skb_frag_t *frag0 = &pinfo->frags[0];
4420
4421 NAPI_GRO_CB(skb)->data_offset = 0;
4422 NAPI_GRO_CB(skb)->frag0 = NULL;
4423 NAPI_GRO_CB(skb)->frag0_len = 0;
4424
4425 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4426 pinfo->nr_frags &&
4427 !PageHighMem(skb_frag_page(frag0))) {
4428 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4429 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4430 }
4431}
4432
a50e233c
ED
4433static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4434{
4435 struct skb_shared_info *pinfo = skb_shinfo(skb);
4436
4437 BUG_ON(skb->end - skb->tail < grow);
4438
4439 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4440
4441 skb->data_len -= grow;
4442 skb->tail += grow;
4443
4444 pinfo->frags[0].page_offset += grow;
4445 skb_frag_size_sub(&pinfo->frags[0], grow);
4446
4447 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4448 skb_frag_unref(skb, 0);
4449 memmove(pinfo->frags, pinfo->frags + 1,
4450 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4451 }
4452}
4453
bb728820 4454static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4455{
4456 struct sk_buff **pp = NULL;
22061d80 4457 struct packet_offload *ptype;
d565b0a1 4458 __be16 type = skb->protocol;
22061d80 4459 struct list_head *head = &offload_base;
0da2afd5 4460 int same_flow;
5b252f0c 4461 enum gro_result ret;
a50e233c 4462 int grow;
d565b0a1 4463
9c62a68d 4464 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4465 goto normal;
4466
5a212329 4467 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4468 goto normal;
4469
89c5fa33
ED
4470 gro_list_prepare(napi, skb);
4471
d565b0a1
HX
4472 rcu_read_lock();
4473 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4474 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4475 continue;
4476
86911732 4477 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4478 skb_reset_mac_len(skb);
d565b0a1
HX
4479 NAPI_GRO_CB(skb)->same_flow = 0;
4480 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4481 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4482 NAPI_GRO_CB(skb)->encap_mark = 0;
a0ca153f 4483 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4484 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4485 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4486
662880f4
TH
4487 /* Setup for GRO checksum validation */
4488 switch (skb->ip_summed) {
4489 case CHECKSUM_COMPLETE:
4490 NAPI_GRO_CB(skb)->csum = skb->csum;
4491 NAPI_GRO_CB(skb)->csum_valid = 1;
4492 NAPI_GRO_CB(skb)->csum_cnt = 0;
4493 break;
4494 case CHECKSUM_UNNECESSARY:
4495 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4496 NAPI_GRO_CB(skb)->csum_valid = 0;
4497 break;
4498 default:
4499 NAPI_GRO_CB(skb)->csum_cnt = 0;
4500 NAPI_GRO_CB(skb)->csum_valid = 0;
4501 }
d565b0a1 4502
f191a1d1 4503 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4504 break;
4505 }
4506 rcu_read_unlock();
4507
4508 if (&ptype->list == head)
4509 goto normal;
4510
0da2afd5 4511 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4512 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4513
d565b0a1
HX
4514 if (pp) {
4515 struct sk_buff *nskb = *pp;
4516
4517 *pp = nskb->next;
4518 nskb->next = NULL;
4519 napi_gro_complete(nskb);
4ae5544f 4520 napi->gro_count--;
d565b0a1
HX
4521 }
4522
0da2afd5 4523 if (same_flow)
d565b0a1
HX
4524 goto ok;
4525
600adc18 4526 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4527 goto normal;
d565b0a1 4528
600adc18
ED
4529 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4530 struct sk_buff *nskb = napi->gro_list;
4531
4532 /* locate the end of the list to select the 'oldest' flow */
4533 while (nskb->next) {
4534 pp = &nskb->next;
4535 nskb = *pp;
4536 }
4537 *pp = NULL;
4538 nskb->next = NULL;
4539 napi_gro_complete(nskb);
4540 } else {
4541 napi->gro_count++;
4542 }
d565b0a1 4543 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4544 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4545 NAPI_GRO_CB(skb)->last = skb;
86911732 4546 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4547 skb->next = napi->gro_list;
4548 napi->gro_list = skb;
5d0d9be8 4549 ret = GRO_HELD;
d565b0a1 4550
ad0f9904 4551pull:
a50e233c
ED
4552 grow = skb_gro_offset(skb) - skb_headlen(skb);
4553 if (grow > 0)
4554 gro_pull_from_frag0(skb, grow);
d565b0a1 4555ok:
5d0d9be8 4556 return ret;
d565b0a1
HX
4557
4558normal:
ad0f9904
HX
4559 ret = GRO_NORMAL;
4560 goto pull;
5d38a079 4561}
96e93eab 4562
bf5a755f
JC
4563struct packet_offload *gro_find_receive_by_type(__be16 type)
4564{
4565 struct list_head *offload_head = &offload_base;
4566 struct packet_offload *ptype;
4567
4568 list_for_each_entry_rcu(ptype, offload_head, list) {
4569 if (ptype->type != type || !ptype->callbacks.gro_receive)
4570 continue;
4571 return ptype;
4572 }
4573 return NULL;
4574}
e27a2f83 4575EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4576
4577struct packet_offload *gro_find_complete_by_type(__be16 type)
4578{
4579 struct list_head *offload_head = &offload_base;
4580 struct packet_offload *ptype;
4581
4582 list_for_each_entry_rcu(ptype, offload_head, list) {
4583 if (ptype->type != type || !ptype->callbacks.gro_complete)
4584 continue;
4585 return ptype;
4586 }
4587 return NULL;
4588}
e27a2f83 4589EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4590
bb728820 4591static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4592{
5d0d9be8
HX
4593 switch (ret) {
4594 case GRO_NORMAL:
ae78dbfa 4595 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4596 ret = GRO_DROP;
4597 break;
5d38a079 4598
5d0d9be8 4599 case GRO_DROP:
5d38a079
HX
4600 kfree_skb(skb);
4601 break;
5b252f0c 4602
daa86548 4603 case GRO_MERGED_FREE:
ce87fc6c
JG
4604 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4605 skb_dst_drop(skb);
d7e8883c 4606 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4607 } else {
d7e8883c 4608 __kfree_skb(skb);
ce87fc6c 4609 }
daa86548
ED
4610 break;
4611
5b252f0c
BH
4612 case GRO_HELD:
4613 case GRO_MERGED:
4614 break;
5d38a079
HX
4615 }
4616
c7c4b3b6 4617 return ret;
5d0d9be8 4618}
5d0d9be8 4619
c7c4b3b6 4620gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4621{
93f93a44 4622 skb_mark_napi_id(skb, napi);
ae78dbfa 4623 trace_napi_gro_receive_entry(skb);
86911732 4624
a50e233c
ED
4625 skb_gro_reset_offset(skb);
4626
89c5fa33 4627 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4628}
4629EXPORT_SYMBOL(napi_gro_receive);
4630
d0c2b0d2 4631static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4632{
93a35f59
ED
4633 if (unlikely(skb->pfmemalloc)) {
4634 consume_skb(skb);
4635 return;
4636 }
96e93eab 4637 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4638 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4639 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4640 skb->vlan_tci = 0;
66c46d74 4641 skb->dev = napi->dev;
6d152e23 4642 skb->skb_iif = 0;
c3caf119
JC
4643 skb->encapsulation = 0;
4644 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4645 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4646
4647 napi->skb = skb;
4648}
96e93eab 4649
76620aaf 4650struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4651{
5d38a079 4652 struct sk_buff *skb = napi->skb;
5d38a079
HX
4653
4654 if (!skb) {
fd11a83d 4655 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4656 if (skb) {
4657 napi->skb = skb;
4658 skb_mark_napi_id(skb, napi);
4659 }
80595d59 4660 }
96e93eab
HX
4661 return skb;
4662}
76620aaf 4663EXPORT_SYMBOL(napi_get_frags);
96e93eab 4664
a50e233c
ED
4665static gro_result_t napi_frags_finish(struct napi_struct *napi,
4666 struct sk_buff *skb,
4667 gro_result_t ret)
96e93eab 4668{
5d0d9be8
HX
4669 switch (ret) {
4670 case GRO_NORMAL:
a50e233c
ED
4671 case GRO_HELD:
4672 __skb_push(skb, ETH_HLEN);
4673 skb->protocol = eth_type_trans(skb, skb->dev);
4674 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4675 ret = GRO_DROP;
86911732 4676 break;
5d38a079 4677
5d0d9be8 4678 case GRO_DROP:
5d0d9be8
HX
4679 case GRO_MERGED_FREE:
4680 napi_reuse_skb(napi, skb);
4681 break;
5b252f0c
BH
4682
4683 case GRO_MERGED:
4684 break;
5d0d9be8 4685 }
5d38a079 4686
c7c4b3b6 4687 return ret;
5d38a079 4688}
5d0d9be8 4689
a50e233c
ED
4690/* Upper GRO stack assumes network header starts at gro_offset=0
4691 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4692 * We copy ethernet header into skb->data to have a common layout.
4693 */
4adb9c4a 4694static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4695{
4696 struct sk_buff *skb = napi->skb;
a50e233c
ED
4697 const struct ethhdr *eth;
4698 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4699
4700 napi->skb = NULL;
4701
a50e233c
ED
4702 skb_reset_mac_header(skb);
4703 skb_gro_reset_offset(skb);
4704
4705 eth = skb_gro_header_fast(skb, 0);
4706 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4707 eth = skb_gro_header_slow(skb, hlen, 0);
4708 if (unlikely(!eth)) {
4da46ceb
AC
4709 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4710 __func__, napi->dev->name);
a50e233c
ED
4711 napi_reuse_skb(napi, skb);
4712 return NULL;
4713 }
4714 } else {
4715 gro_pull_from_frag0(skb, hlen);
4716 NAPI_GRO_CB(skb)->frag0 += hlen;
4717 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4718 }
a50e233c
ED
4719 __skb_pull(skb, hlen);
4720
4721 /*
4722 * This works because the only protocols we care about don't require
4723 * special handling.
4724 * We'll fix it up properly in napi_frags_finish()
4725 */
4726 skb->protocol = eth->h_proto;
76620aaf 4727
76620aaf
HX
4728 return skb;
4729}
76620aaf 4730
c7c4b3b6 4731gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4732{
76620aaf 4733 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4734
4735 if (!skb)
c7c4b3b6 4736 return GRO_DROP;
5d0d9be8 4737
ae78dbfa
BH
4738 trace_napi_gro_frags_entry(skb);
4739
89c5fa33 4740 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4741}
5d38a079
HX
4742EXPORT_SYMBOL(napi_gro_frags);
4743
573e8fca
TH
4744/* Compute the checksum from gro_offset and return the folded value
4745 * after adding in any pseudo checksum.
4746 */
4747__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4748{
4749 __wsum wsum;
4750 __sum16 sum;
4751
4752 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4753
4754 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4755 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4756 if (likely(!sum)) {
4757 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4758 !skb->csum_complete_sw)
4759 netdev_rx_csum_fault(skb->dev);
4760 }
4761
4762 NAPI_GRO_CB(skb)->csum = wsum;
4763 NAPI_GRO_CB(skb)->csum_valid = 1;
4764
4765 return sum;
4766}
4767EXPORT_SYMBOL(__skb_gro_checksum_complete);
4768
e326bed2 4769/*
855abcf0 4770 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4771 * Note: called with local irq disabled, but exits with local irq enabled.
4772 */
4773static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4774{
4775#ifdef CONFIG_RPS
4776 struct softnet_data *remsd = sd->rps_ipi_list;
4777
4778 if (remsd) {
4779 sd->rps_ipi_list = NULL;
4780
4781 local_irq_enable();
4782
4783 /* Send pending IPI's to kick RPS processing on remote cpus. */
4784 while (remsd) {
4785 struct softnet_data *next = remsd->rps_ipi_next;
4786
4787 if (cpu_online(remsd->cpu))
c46fff2a 4788 smp_call_function_single_async(remsd->cpu,
fce8ad15 4789 &remsd->csd);
e326bed2
ED
4790 remsd = next;
4791 }
4792 } else
4793#endif
4794 local_irq_enable();
4795}
4796
d75b1ade
ED
4797static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4798{
4799#ifdef CONFIG_RPS
4800 return sd->rps_ipi_list != NULL;
4801#else
4802 return false;
4803#endif
4804}
4805
bea3348e 4806static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4807{
4808 int work = 0;
eecfd7c4 4809 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4810
e326bed2
ED
4811 /* Check if we have pending ipi, its better to send them now,
4812 * not waiting net_rx_action() end.
4813 */
d75b1ade 4814 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4815 local_irq_disable();
4816 net_rps_action_and_irq_enable(sd);
4817 }
d75b1ade 4818
bea3348e 4819 napi->weight = weight_p;
6e7676c1 4820 local_irq_disable();
11ef7a89 4821 while (1) {
1da177e4 4822 struct sk_buff *skb;
6e7676c1
CG
4823
4824 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4825 rcu_read_lock();
6e7676c1
CG
4826 local_irq_enable();
4827 __netif_receive_skb(skb);
2c17d27c 4828 rcu_read_unlock();
6e7676c1 4829 local_irq_disable();
76cc8b13
TH
4830 input_queue_head_incr(sd);
4831 if (++work >= quota) {
4832 local_irq_enable();
4833 return work;
4834 }
6e7676c1 4835 }
1da177e4 4836
e36fa2f7 4837 rps_lock(sd);
11ef7a89 4838 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4839 /*
4840 * Inline a custom version of __napi_complete().
4841 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4842 * and NAPI_STATE_SCHED is the only possible flag set
4843 * on backlog.
4844 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4845 * and we dont need an smp_mb() memory barrier.
4846 */
eecfd7c4 4847 napi->state = 0;
11ef7a89 4848 rps_unlock(sd);
eecfd7c4 4849
11ef7a89 4850 break;
bea3348e 4851 }
11ef7a89
TH
4852
4853 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4854 &sd->process_queue);
e36fa2f7 4855 rps_unlock(sd);
6e7676c1
CG
4856 }
4857 local_irq_enable();
1da177e4 4858
bea3348e
SH
4859 return work;
4860}
1da177e4 4861
bea3348e
SH
4862/**
4863 * __napi_schedule - schedule for receive
c4ea43c5 4864 * @n: entry to schedule
bea3348e 4865 *
bc9ad166
ED
4866 * The entry's receive function will be scheduled to run.
4867 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4868 */
b5606c2d 4869void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4870{
4871 unsigned long flags;
1da177e4 4872
bea3348e 4873 local_irq_save(flags);
903ceff7 4874 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4875 local_irq_restore(flags);
1da177e4 4876}
bea3348e
SH
4877EXPORT_SYMBOL(__napi_schedule);
4878
bc9ad166
ED
4879/**
4880 * __napi_schedule_irqoff - schedule for receive
4881 * @n: entry to schedule
4882 *
4883 * Variant of __napi_schedule() assuming hard irqs are masked
4884 */
4885void __napi_schedule_irqoff(struct napi_struct *n)
4886{
4887 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4888}
4889EXPORT_SYMBOL(__napi_schedule_irqoff);
4890
d565b0a1
HX
4891void __napi_complete(struct napi_struct *n)
4892{
4893 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4894
d75b1ade 4895 list_del_init(&n->poll_list);
4e857c58 4896 smp_mb__before_atomic();
d565b0a1
HX
4897 clear_bit(NAPI_STATE_SCHED, &n->state);
4898}
4899EXPORT_SYMBOL(__napi_complete);
4900
3b47d303 4901void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4902{
4903 unsigned long flags;
4904
4905 /*
4906 * don't let napi dequeue from the cpu poll list
4907 * just in case its running on a different cpu
4908 */
4909 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4910 return;
4911
3b47d303
ED
4912 if (n->gro_list) {
4913 unsigned long timeout = 0;
d75b1ade 4914
3b47d303
ED
4915 if (work_done)
4916 timeout = n->dev->gro_flush_timeout;
4917
4918 if (timeout)
4919 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4920 HRTIMER_MODE_REL_PINNED);
4921 else
4922 napi_gro_flush(n, false);
4923 }
d75b1ade
ED
4924 if (likely(list_empty(&n->poll_list))) {
4925 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4926 } else {
4927 /* If n->poll_list is not empty, we need to mask irqs */
4928 local_irq_save(flags);
4929 __napi_complete(n);
4930 local_irq_restore(flags);
4931 }
d565b0a1 4932}
3b47d303 4933EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4934
af12fa6e 4935/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4936static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4937{
4938 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4939 struct napi_struct *napi;
4940
4941 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4942 if (napi->napi_id == napi_id)
4943 return napi;
4944
4945 return NULL;
4946}
02d62e86
ED
4947
4948#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4949#define BUSY_POLL_BUDGET 8
02d62e86
ED
4950bool sk_busy_loop(struct sock *sk, int nonblock)
4951{
4952 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4953 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4954 struct napi_struct *napi;
4955 int rc = false;
4956
2a028ecb 4957 rcu_read_lock();
02d62e86
ED
4958
4959 napi = napi_by_id(sk->sk_napi_id);
4960 if (!napi)
4961 goto out;
4962
ce6aea93
ED
4963 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4964 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4965
4966 do {
ce6aea93 4967 rc = 0;
2a028ecb 4968 local_bh_disable();
ce6aea93
ED
4969 if (busy_poll) {
4970 rc = busy_poll(napi);
4971 } else if (napi_schedule_prep(napi)) {
4972 void *have = netpoll_poll_lock(napi);
4973
4974 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4975 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4976 trace_napi_poll(napi);
4977 if (rc == BUSY_POLL_BUDGET) {
4978 napi_complete_done(napi, rc);
4979 napi_schedule(napi);
4980 }
4981 }
4982 netpoll_poll_unlock(have);
4983 }
2a028ecb 4984 if (rc > 0)
02a1d6e7
ED
4985 __NET_ADD_STATS(sock_net(sk),
4986 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 4987 local_bh_enable();
02d62e86
ED
4988
4989 if (rc == LL_FLUSH_FAILED)
4990 break; /* permanent failure */
4991
02d62e86 4992 cpu_relax();
02d62e86
ED
4993 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4994 !need_resched() && !busy_loop_timeout(end_time));
4995
4996 rc = !skb_queue_empty(&sk->sk_receive_queue);
4997out:
2a028ecb 4998 rcu_read_unlock();
02d62e86
ED
4999 return rc;
5000}
5001EXPORT_SYMBOL(sk_busy_loop);
5002
5003#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
5004
5005void napi_hash_add(struct napi_struct *napi)
5006{
d64b5e85
ED
5007 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5008 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5009 return;
af12fa6e 5010
52bd2d62 5011 spin_lock(&napi_hash_lock);
af12fa6e 5012
52bd2d62
ED
5013 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5014 do {
5015 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5016 napi_gen_id = NR_CPUS + 1;
5017 } while (napi_by_id(napi_gen_id));
5018 napi->napi_id = napi_gen_id;
af12fa6e 5019
52bd2d62
ED
5020 hlist_add_head_rcu(&napi->napi_hash_node,
5021 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5022
52bd2d62 5023 spin_unlock(&napi_hash_lock);
af12fa6e
ET
5024}
5025EXPORT_SYMBOL_GPL(napi_hash_add);
5026
5027/* Warning : caller is responsible to make sure rcu grace period
5028 * is respected before freeing memory containing @napi
5029 */
34cbe27e 5030bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5031{
34cbe27e
ED
5032 bool rcu_sync_needed = false;
5033
af12fa6e
ET
5034 spin_lock(&napi_hash_lock);
5035
34cbe27e
ED
5036 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5037 rcu_sync_needed = true;
af12fa6e 5038 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5039 }
af12fa6e 5040 spin_unlock(&napi_hash_lock);
34cbe27e 5041 return rcu_sync_needed;
af12fa6e
ET
5042}
5043EXPORT_SYMBOL_GPL(napi_hash_del);
5044
3b47d303
ED
5045static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5046{
5047 struct napi_struct *napi;
5048
5049 napi = container_of(timer, struct napi_struct, timer);
5050 if (napi->gro_list)
5051 napi_schedule(napi);
5052
5053 return HRTIMER_NORESTART;
5054}
5055
d565b0a1
HX
5056void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5057 int (*poll)(struct napi_struct *, int), int weight)
5058{
5059 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5060 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5061 napi->timer.function = napi_watchdog;
4ae5544f 5062 napi->gro_count = 0;
d565b0a1 5063 napi->gro_list = NULL;
5d38a079 5064 napi->skb = NULL;
d565b0a1 5065 napi->poll = poll;
82dc3c63
ED
5066 if (weight > NAPI_POLL_WEIGHT)
5067 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5068 weight, dev->name);
d565b0a1
HX
5069 napi->weight = weight;
5070 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5071 napi->dev = dev;
5d38a079 5072#ifdef CONFIG_NETPOLL
d565b0a1
HX
5073 spin_lock_init(&napi->poll_lock);
5074 napi->poll_owner = -1;
5075#endif
5076 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5077 napi_hash_add(napi);
d565b0a1
HX
5078}
5079EXPORT_SYMBOL(netif_napi_add);
5080
3b47d303
ED
5081void napi_disable(struct napi_struct *n)
5082{
5083 might_sleep();
5084 set_bit(NAPI_STATE_DISABLE, &n->state);
5085
5086 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5087 msleep(1);
2d8bff12
NH
5088 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5089 msleep(1);
3b47d303
ED
5090
5091 hrtimer_cancel(&n->timer);
5092
5093 clear_bit(NAPI_STATE_DISABLE, &n->state);
5094}
5095EXPORT_SYMBOL(napi_disable);
5096
93d05d4a 5097/* Must be called in process context */
d565b0a1
HX
5098void netif_napi_del(struct napi_struct *napi)
5099{
93d05d4a
ED
5100 might_sleep();
5101 if (napi_hash_del(napi))
5102 synchronize_net();
d7b06636 5103 list_del_init(&napi->dev_list);
76620aaf 5104 napi_free_frags(napi);
d565b0a1 5105
289dccbe 5106 kfree_skb_list(napi->gro_list);
d565b0a1 5107 napi->gro_list = NULL;
4ae5544f 5108 napi->gro_count = 0;
d565b0a1
HX
5109}
5110EXPORT_SYMBOL(netif_napi_del);
5111
726ce70e
HX
5112static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5113{
5114 void *have;
5115 int work, weight;
5116
5117 list_del_init(&n->poll_list);
5118
5119 have = netpoll_poll_lock(n);
5120
5121 weight = n->weight;
5122
5123 /* This NAPI_STATE_SCHED test is for avoiding a race
5124 * with netpoll's poll_napi(). Only the entity which
5125 * obtains the lock and sees NAPI_STATE_SCHED set will
5126 * actually make the ->poll() call. Therefore we avoid
5127 * accidentally calling ->poll() when NAPI is not scheduled.
5128 */
5129 work = 0;
5130 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5131 work = n->poll(n, weight);
5132 trace_napi_poll(n);
5133 }
5134
5135 WARN_ON_ONCE(work > weight);
5136
5137 if (likely(work < weight))
5138 goto out_unlock;
5139
5140 /* Drivers must not modify the NAPI state if they
5141 * consume the entire weight. In such cases this code
5142 * still "owns" the NAPI instance and therefore can
5143 * move the instance around on the list at-will.
5144 */
5145 if (unlikely(napi_disable_pending(n))) {
5146 napi_complete(n);
5147 goto out_unlock;
5148 }
5149
5150 if (n->gro_list) {
5151 /* flush too old packets
5152 * If HZ < 1000, flush all packets.
5153 */
5154 napi_gro_flush(n, HZ >= 1000);
5155 }
5156
001ce546
HX
5157 /* Some drivers may have called napi_schedule
5158 * prior to exhausting their budget.
5159 */
5160 if (unlikely(!list_empty(&n->poll_list))) {
5161 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5162 n->dev ? n->dev->name : "backlog");
5163 goto out_unlock;
5164 }
5165
726ce70e
HX
5166 list_add_tail(&n->poll_list, repoll);
5167
5168out_unlock:
5169 netpoll_poll_unlock(have);
5170
5171 return work;
5172}
5173
1da177e4
LT
5174static void net_rx_action(struct softirq_action *h)
5175{
903ceff7 5176 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5177 unsigned long time_limit = jiffies + 2;
51b0bded 5178 int budget = netdev_budget;
d75b1ade
ED
5179 LIST_HEAD(list);
5180 LIST_HEAD(repoll);
53fb95d3 5181
1da177e4 5182 local_irq_disable();
d75b1ade
ED
5183 list_splice_init(&sd->poll_list, &list);
5184 local_irq_enable();
1da177e4 5185
ceb8d5bf 5186 for (;;) {
bea3348e 5187 struct napi_struct *n;
1da177e4 5188
ceb8d5bf
HX
5189 if (list_empty(&list)) {
5190 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5191 return;
5192 break;
5193 }
5194
6bd373eb
HX
5195 n = list_first_entry(&list, struct napi_struct, poll_list);
5196 budget -= napi_poll(n, &repoll);
5197
d75b1ade 5198 /* If softirq window is exhausted then punt.
24f8b238
SH
5199 * Allow this to run for 2 jiffies since which will allow
5200 * an average latency of 1.5/HZ.
bea3348e 5201 */
ceb8d5bf
HX
5202 if (unlikely(budget <= 0 ||
5203 time_after_eq(jiffies, time_limit))) {
5204 sd->time_squeeze++;
5205 break;
5206 }
1da177e4 5207 }
d75b1ade 5208
795bb1c0 5209 __kfree_skb_flush();
d75b1ade
ED
5210 local_irq_disable();
5211
5212 list_splice_tail_init(&sd->poll_list, &list);
5213 list_splice_tail(&repoll, &list);
5214 list_splice(&list, &sd->poll_list);
5215 if (!list_empty(&sd->poll_list))
5216 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5217
e326bed2 5218 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5219}
5220
aa9d8560 5221struct netdev_adjacent {
9ff162a8 5222 struct net_device *dev;
5d261913
VF
5223
5224 /* upper master flag, there can only be one master device per list */
9ff162a8 5225 bool master;
5d261913 5226
5d261913
VF
5227 /* counter for the number of times this device was added to us */
5228 u16 ref_nr;
5229
402dae96
VF
5230 /* private field for the users */
5231 void *private;
5232
9ff162a8
JP
5233 struct list_head list;
5234 struct rcu_head rcu;
9ff162a8
JP
5235};
5236
6ea29da1 5237static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5238 struct list_head *adj_list)
9ff162a8 5239{
5d261913 5240 struct netdev_adjacent *adj;
5d261913 5241
2f268f12 5242 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5243 if (adj->dev == adj_dev)
5244 return adj;
9ff162a8
JP
5245 }
5246 return NULL;
5247}
5248
5249/**
5250 * netdev_has_upper_dev - Check if device is linked to an upper device
5251 * @dev: device
5252 * @upper_dev: upper device to check
5253 *
5254 * Find out if a device is linked to specified upper device and return true
5255 * in case it is. Note that this checks only immediate upper device,
5256 * not through a complete stack of devices. The caller must hold the RTNL lock.
5257 */
5258bool netdev_has_upper_dev(struct net_device *dev,
5259 struct net_device *upper_dev)
5260{
5261 ASSERT_RTNL();
5262
6ea29da1 5263 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
5264}
5265EXPORT_SYMBOL(netdev_has_upper_dev);
5266
5267/**
5268 * netdev_has_any_upper_dev - Check if device is linked to some device
5269 * @dev: device
5270 *
5271 * Find out if a device is linked to an upper device and return true in case
5272 * it is. The caller must hold the RTNL lock.
5273 */
1d143d9f 5274static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5275{
5276 ASSERT_RTNL();
5277
2f268f12 5278 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 5279}
9ff162a8
JP
5280
5281/**
5282 * netdev_master_upper_dev_get - Get master upper device
5283 * @dev: device
5284 *
5285 * Find a master upper device and return pointer to it or NULL in case
5286 * it's not there. The caller must hold the RTNL lock.
5287 */
5288struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5289{
aa9d8560 5290 struct netdev_adjacent *upper;
9ff162a8
JP
5291
5292 ASSERT_RTNL();
5293
2f268f12 5294 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5295 return NULL;
5296
2f268f12 5297 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5298 struct netdev_adjacent, list);
9ff162a8
JP
5299 if (likely(upper->master))
5300 return upper->dev;
5301 return NULL;
5302}
5303EXPORT_SYMBOL(netdev_master_upper_dev_get);
5304
b6ccba4c
VF
5305void *netdev_adjacent_get_private(struct list_head *adj_list)
5306{
5307 struct netdev_adjacent *adj;
5308
5309 adj = list_entry(adj_list, struct netdev_adjacent, list);
5310
5311 return adj->private;
5312}
5313EXPORT_SYMBOL(netdev_adjacent_get_private);
5314
44a40855
VY
5315/**
5316 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5317 * @dev: device
5318 * @iter: list_head ** of the current position
5319 *
5320 * Gets the next device from the dev's upper list, starting from iter
5321 * position. The caller must hold RCU read lock.
5322 */
5323struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5324 struct list_head **iter)
5325{
5326 struct netdev_adjacent *upper;
5327
5328 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5329
5330 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5331
5332 if (&upper->list == &dev->adj_list.upper)
5333 return NULL;
5334
5335 *iter = &upper->list;
5336
5337 return upper->dev;
5338}
5339EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5340
31088a11
VF
5341/**
5342 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5343 * @dev: device
5344 * @iter: list_head ** of the current position
5345 *
5346 * Gets the next device from the dev's upper list, starting from iter
5347 * position. The caller must hold RCU read lock.
5348 */
2f268f12
VF
5349struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5350 struct list_head **iter)
48311f46
VF
5351{
5352 struct netdev_adjacent *upper;
5353
85328240 5354 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5355
5356 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5357
2f268f12 5358 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5359 return NULL;
5360
5361 *iter = &upper->list;
5362
5363 return upper->dev;
5364}
2f268f12 5365EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5366
31088a11
VF
5367/**
5368 * netdev_lower_get_next_private - Get the next ->private from the
5369 * lower neighbour list
5370 * @dev: device
5371 * @iter: list_head ** of the current position
5372 *
5373 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5374 * list, starting from iter position. The caller must hold either hold the
5375 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5376 * list will remain unchanged.
31088a11
VF
5377 */
5378void *netdev_lower_get_next_private(struct net_device *dev,
5379 struct list_head **iter)
5380{
5381 struct netdev_adjacent *lower;
5382
5383 lower = list_entry(*iter, struct netdev_adjacent, list);
5384
5385 if (&lower->list == &dev->adj_list.lower)
5386 return NULL;
5387
6859e7df 5388 *iter = lower->list.next;
31088a11
VF
5389
5390 return lower->private;
5391}
5392EXPORT_SYMBOL(netdev_lower_get_next_private);
5393
5394/**
5395 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5396 * lower neighbour list, RCU
5397 * variant
5398 * @dev: device
5399 * @iter: list_head ** of the current position
5400 *
5401 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5402 * list, starting from iter position. The caller must hold RCU read lock.
5403 */
5404void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5405 struct list_head **iter)
5406{
5407 struct netdev_adjacent *lower;
5408
5409 WARN_ON_ONCE(!rcu_read_lock_held());
5410
5411 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5412
5413 if (&lower->list == &dev->adj_list.lower)
5414 return NULL;
5415
6859e7df 5416 *iter = &lower->list;
31088a11
VF
5417
5418 return lower->private;
5419}
5420EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5421
4085ebe8
VY
5422/**
5423 * netdev_lower_get_next - Get the next device from the lower neighbour
5424 * list
5425 * @dev: device
5426 * @iter: list_head ** of the current position
5427 *
5428 * Gets the next netdev_adjacent from the dev's lower neighbour
5429 * list, starting from iter position. The caller must hold RTNL lock or
5430 * its own locking that guarantees that the neighbour lower
b469139e 5431 * list will remain unchanged.
4085ebe8
VY
5432 */
5433void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5434{
5435 struct netdev_adjacent *lower;
5436
cfdd28be 5437 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5438
5439 if (&lower->list == &dev->adj_list.lower)
5440 return NULL;
5441
cfdd28be 5442 *iter = lower->list.next;
4085ebe8
VY
5443
5444 return lower->dev;
5445}
5446EXPORT_SYMBOL(netdev_lower_get_next);
5447
e001bfad 5448/**
5449 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5450 * lower neighbour list, RCU
5451 * variant
5452 * @dev: device
5453 *
5454 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5455 * list. The caller must hold RCU read lock.
5456 */
5457void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5458{
5459 struct netdev_adjacent *lower;
5460
5461 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5462 struct netdev_adjacent, list);
5463 if (lower)
5464 return lower->private;
5465 return NULL;
5466}
5467EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5468
9ff162a8
JP
5469/**
5470 * netdev_master_upper_dev_get_rcu - Get master upper device
5471 * @dev: device
5472 *
5473 * Find a master upper device and return pointer to it or NULL in case
5474 * it's not there. The caller must hold the RCU read lock.
5475 */
5476struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5477{
aa9d8560 5478 struct netdev_adjacent *upper;
9ff162a8 5479
2f268f12 5480 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5481 struct netdev_adjacent, list);
9ff162a8
JP
5482 if (upper && likely(upper->master))
5483 return upper->dev;
5484 return NULL;
5485}
5486EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5487
0a59f3a9 5488static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5489 struct net_device *adj_dev,
5490 struct list_head *dev_list)
5491{
5492 char linkname[IFNAMSIZ+7];
5493 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5494 "upper_%s" : "lower_%s", adj_dev->name);
5495 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5496 linkname);
5497}
0a59f3a9 5498static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5499 char *name,
5500 struct list_head *dev_list)
5501{
5502 char linkname[IFNAMSIZ+7];
5503 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5504 "upper_%s" : "lower_%s", name);
5505 sysfs_remove_link(&(dev->dev.kobj), linkname);
5506}
5507
7ce64c79
AF
5508static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5509 struct net_device *adj_dev,
5510 struct list_head *dev_list)
5511{
5512 return (dev_list == &dev->adj_list.upper ||
5513 dev_list == &dev->adj_list.lower) &&
5514 net_eq(dev_net(dev), dev_net(adj_dev));
5515}
3ee32707 5516
5d261913
VF
5517static int __netdev_adjacent_dev_insert(struct net_device *dev,
5518 struct net_device *adj_dev,
7863c054 5519 struct list_head *dev_list,
402dae96 5520 void *private, bool master)
5d261913
VF
5521{
5522 struct netdev_adjacent *adj;
842d67a7 5523 int ret;
5d261913 5524
6ea29da1 5525 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5526
5527 if (adj) {
5d261913
VF
5528 adj->ref_nr++;
5529 return 0;
5530 }
5531
5532 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5533 if (!adj)
5534 return -ENOMEM;
5535
5536 adj->dev = adj_dev;
5537 adj->master = master;
5d261913 5538 adj->ref_nr = 1;
402dae96 5539 adj->private = private;
5d261913 5540 dev_hold(adj_dev);
2f268f12
VF
5541
5542 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5543 adj_dev->name, dev->name, adj_dev->name);
5d261913 5544
7ce64c79 5545 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5546 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5547 if (ret)
5548 goto free_adj;
5549 }
5550
7863c054 5551 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5552 if (master) {
5553 ret = sysfs_create_link(&(dev->dev.kobj),
5554 &(adj_dev->dev.kobj), "master");
5555 if (ret)
5831d66e 5556 goto remove_symlinks;
842d67a7 5557
7863c054 5558 list_add_rcu(&adj->list, dev_list);
842d67a7 5559 } else {
7863c054 5560 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5561 }
5d261913
VF
5562
5563 return 0;
842d67a7 5564
5831d66e 5565remove_symlinks:
7ce64c79 5566 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5567 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5568free_adj:
5569 kfree(adj);
974daef7 5570 dev_put(adj_dev);
842d67a7
VF
5571
5572 return ret;
5d261913
VF
5573}
5574
1d143d9f 5575static void __netdev_adjacent_dev_remove(struct net_device *dev,
5576 struct net_device *adj_dev,
5577 struct list_head *dev_list)
5d261913
VF
5578{
5579 struct netdev_adjacent *adj;
5580
6ea29da1 5581 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5582
2f268f12
VF
5583 if (!adj) {
5584 pr_err("tried to remove device %s from %s\n",
5585 dev->name, adj_dev->name);
5d261913 5586 BUG();
2f268f12 5587 }
5d261913
VF
5588
5589 if (adj->ref_nr > 1) {
2f268f12
VF
5590 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5591 adj->ref_nr-1);
5d261913
VF
5592 adj->ref_nr--;
5593 return;
5594 }
5595
842d67a7
VF
5596 if (adj->master)
5597 sysfs_remove_link(&(dev->dev.kobj), "master");
5598
7ce64c79 5599 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5600 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5601
5d261913 5602 list_del_rcu(&adj->list);
2f268f12
VF
5603 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5604 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5605 dev_put(adj_dev);
5606 kfree_rcu(adj, rcu);
5607}
5608
1d143d9f 5609static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5610 struct net_device *upper_dev,
5611 struct list_head *up_list,
5612 struct list_head *down_list,
5613 void *private, bool master)
5d261913
VF
5614{
5615 int ret;
5616
402dae96
VF
5617 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5618 master);
5d261913
VF
5619 if (ret)
5620 return ret;
5621
402dae96
VF
5622 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5623 false);
5d261913 5624 if (ret) {
2f268f12 5625 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5626 return ret;
5627 }
5628
5629 return 0;
5630}
5631
1d143d9f 5632static int __netdev_adjacent_dev_link(struct net_device *dev,
5633 struct net_device *upper_dev)
5d261913 5634{
2f268f12
VF
5635 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5636 &dev->all_adj_list.upper,
5637 &upper_dev->all_adj_list.lower,
402dae96 5638 NULL, false);
5d261913
VF
5639}
5640
1d143d9f 5641static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5642 struct net_device *upper_dev,
5643 struct list_head *up_list,
5644 struct list_head *down_list)
5d261913 5645{
2f268f12
VF
5646 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5647 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5648}
5649
1d143d9f 5650static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5651 struct net_device *upper_dev)
5d261913 5652{
2f268f12
VF
5653 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5654 &dev->all_adj_list.upper,
5655 &upper_dev->all_adj_list.lower);
5656}
5657
1d143d9f 5658static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5659 struct net_device *upper_dev,
5660 void *private, bool master)
2f268f12
VF
5661{
5662 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5663
5664 if (ret)
5665 return ret;
5666
5667 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5668 &dev->adj_list.upper,
5669 &upper_dev->adj_list.lower,
402dae96 5670 private, master);
2f268f12
VF
5671 if (ret) {
5672 __netdev_adjacent_dev_unlink(dev, upper_dev);
5673 return ret;
5674 }
5675
5676 return 0;
5d261913
VF
5677}
5678
1d143d9f 5679static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5680 struct net_device *upper_dev)
2f268f12
VF
5681{
5682 __netdev_adjacent_dev_unlink(dev, upper_dev);
5683 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5684 &dev->adj_list.upper,
5685 &upper_dev->adj_list.lower);
5686}
5d261913 5687
9ff162a8 5688static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5689 struct net_device *upper_dev, bool master,
29bf24af 5690 void *upper_priv, void *upper_info)
9ff162a8 5691{
0e4ead9d 5692 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5693 struct netdev_adjacent *i, *j, *to_i, *to_j;
5694 int ret = 0;
9ff162a8
JP
5695
5696 ASSERT_RTNL();
5697
5698 if (dev == upper_dev)
5699 return -EBUSY;
5700
5701 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5702 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5703 return -EBUSY;
5704
6ea29da1 5705 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5706 return -EEXIST;
5707
5708 if (master && netdev_master_upper_dev_get(dev))
5709 return -EBUSY;
5710
0e4ead9d
JP
5711 changeupper_info.upper_dev = upper_dev;
5712 changeupper_info.master = master;
5713 changeupper_info.linking = true;
29bf24af 5714 changeupper_info.upper_info = upper_info;
0e4ead9d 5715
573c7ba0
JP
5716 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5717 &changeupper_info.info);
5718 ret = notifier_to_errno(ret);
5719 if (ret)
5720 return ret;
5721
6dffb044 5722 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5723 master);
5d261913
VF
5724 if (ret)
5725 return ret;
9ff162a8 5726
5d261913 5727 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5728 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5729 * versa, and don't forget the devices itself. All of these
5730 * links are non-neighbours.
5731 */
2f268f12
VF
5732 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5733 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5734 pr_debug("Interlinking %s with %s, non-neighbour\n",
5735 i->dev->name, j->dev->name);
5d261913
VF
5736 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5737 if (ret)
5738 goto rollback_mesh;
5739 }
5740 }
5741
5742 /* add dev to every upper_dev's upper device */
2f268f12
VF
5743 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5744 pr_debug("linking %s's upper device %s with %s\n",
5745 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5746 ret = __netdev_adjacent_dev_link(dev, i->dev);
5747 if (ret)
5748 goto rollback_upper_mesh;
5749 }
5750
5751 /* add upper_dev to every dev's lower device */
2f268f12
VF
5752 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5753 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5754 i->dev->name, upper_dev->name);
5d261913
VF
5755 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5756 if (ret)
5757 goto rollback_lower_mesh;
5758 }
9ff162a8 5759
b03804e7
IS
5760 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5761 &changeupper_info.info);
5762 ret = notifier_to_errno(ret);
5763 if (ret)
5764 goto rollback_lower_mesh;
5765
9ff162a8 5766 return 0;
5d261913
VF
5767
5768rollback_lower_mesh:
5769 to_i = i;
2f268f12 5770 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5771 if (i == to_i)
5772 break;
5773 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5774 }
5775
5776 i = NULL;
5777
5778rollback_upper_mesh:
5779 to_i = i;
2f268f12 5780 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5781 if (i == to_i)
5782 break;
5783 __netdev_adjacent_dev_unlink(dev, i->dev);
5784 }
5785
5786 i = j = NULL;
5787
5788rollback_mesh:
5789 to_i = i;
5790 to_j = j;
2f268f12
VF
5791 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5792 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5793 if (i == to_i && j == to_j)
5794 break;
5795 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5796 }
5797 if (i == to_i)
5798 break;
5799 }
5800
2f268f12 5801 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5802
5803 return ret;
9ff162a8
JP
5804}
5805
5806/**
5807 * netdev_upper_dev_link - Add a link to the upper device
5808 * @dev: device
5809 * @upper_dev: new upper device
5810 *
5811 * Adds a link to device which is upper to this one. The caller must hold
5812 * the RTNL lock. On a failure a negative errno code is returned.
5813 * On success the reference counts are adjusted and the function
5814 * returns zero.
5815 */
5816int netdev_upper_dev_link(struct net_device *dev,
5817 struct net_device *upper_dev)
5818{
29bf24af 5819 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5820}
5821EXPORT_SYMBOL(netdev_upper_dev_link);
5822
5823/**
5824 * netdev_master_upper_dev_link - Add a master link to the upper device
5825 * @dev: device
5826 * @upper_dev: new upper device
6dffb044 5827 * @upper_priv: upper device private
29bf24af 5828 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5829 *
5830 * Adds a link to device which is upper to this one. In this case, only
5831 * one master upper device can be linked, although other non-master devices
5832 * might be linked as well. The caller must hold the RTNL lock.
5833 * On a failure a negative errno code is returned. On success the reference
5834 * counts are adjusted and the function returns zero.
5835 */
5836int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5837 struct net_device *upper_dev,
29bf24af 5838 void *upper_priv, void *upper_info)
9ff162a8 5839{
29bf24af
JP
5840 return __netdev_upper_dev_link(dev, upper_dev, true,
5841 upper_priv, upper_info);
9ff162a8
JP
5842}
5843EXPORT_SYMBOL(netdev_master_upper_dev_link);
5844
5845/**
5846 * netdev_upper_dev_unlink - Removes a link to upper device
5847 * @dev: device
5848 * @upper_dev: new upper device
5849 *
5850 * Removes a link to device which is upper to this one. The caller must hold
5851 * the RTNL lock.
5852 */
5853void netdev_upper_dev_unlink(struct net_device *dev,
5854 struct net_device *upper_dev)
5855{
0e4ead9d 5856 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5857 struct netdev_adjacent *i, *j;
9ff162a8
JP
5858 ASSERT_RTNL();
5859
0e4ead9d
JP
5860 changeupper_info.upper_dev = upper_dev;
5861 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5862 changeupper_info.linking = false;
5863
573c7ba0
JP
5864 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5865 &changeupper_info.info);
5866
2f268f12 5867 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5868
5869 /* Here is the tricky part. We must remove all dev's lower
5870 * devices from all upper_dev's upper devices and vice
5871 * versa, to maintain the graph relationship.
5872 */
2f268f12
VF
5873 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5874 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5875 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5876
5877 /* remove also the devices itself from lower/upper device
5878 * list
5879 */
2f268f12 5880 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5881 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5882
2f268f12 5883 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5884 __netdev_adjacent_dev_unlink(dev, i->dev);
5885
0e4ead9d
JP
5886 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5887 &changeupper_info.info);
9ff162a8
JP
5888}
5889EXPORT_SYMBOL(netdev_upper_dev_unlink);
5890
61bd3857
MS
5891/**
5892 * netdev_bonding_info_change - Dispatch event about slave change
5893 * @dev: device
4a26e453 5894 * @bonding_info: info to dispatch
61bd3857
MS
5895 *
5896 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5897 * The caller must hold the RTNL lock.
5898 */
5899void netdev_bonding_info_change(struct net_device *dev,
5900 struct netdev_bonding_info *bonding_info)
5901{
5902 struct netdev_notifier_bonding_info info;
5903
5904 memcpy(&info.bonding_info, bonding_info,
5905 sizeof(struct netdev_bonding_info));
5906 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5907 &info.info);
5908}
5909EXPORT_SYMBOL(netdev_bonding_info_change);
5910
2ce1ee17 5911static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5912{
5913 struct netdev_adjacent *iter;
5914
5915 struct net *net = dev_net(dev);
5916
5917 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5918 if (!net_eq(net,dev_net(iter->dev)))
5919 continue;
5920 netdev_adjacent_sysfs_add(iter->dev, dev,
5921 &iter->dev->adj_list.lower);
5922 netdev_adjacent_sysfs_add(dev, iter->dev,
5923 &dev->adj_list.upper);
5924 }
5925
5926 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5927 if (!net_eq(net,dev_net(iter->dev)))
5928 continue;
5929 netdev_adjacent_sysfs_add(iter->dev, dev,
5930 &iter->dev->adj_list.upper);
5931 netdev_adjacent_sysfs_add(dev, iter->dev,
5932 &dev->adj_list.lower);
5933 }
5934}
5935
2ce1ee17 5936static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5937{
5938 struct netdev_adjacent *iter;
5939
5940 struct net *net = dev_net(dev);
5941
5942 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5943 if (!net_eq(net,dev_net(iter->dev)))
5944 continue;
5945 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5946 &iter->dev->adj_list.lower);
5947 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5948 &dev->adj_list.upper);
5949 }
5950
5951 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5952 if (!net_eq(net,dev_net(iter->dev)))
5953 continue;
5954 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5955 &iter->dev->adj_list.upper);
5956 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5957 &dev->adj_list.lower);
5958 }
5959}
5960
5bb025fa 5961void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5962{
5bb025fa 5963 struct netdev_adjacent *iter;
402dae96 5964
4c75431a
AF
5965 struct net *net = dev_net(dev);
5966
5bb025fa 5967 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5968 if (!net_eq(net,dev_net(iter->dev)))
5969 continue;
5bb025fa
VF
5970 netdev_adjacent_sysfs_del(iter->dev, oldname,
5971 &iter->dev->adj_list.lower);
5972 netdev_adjacent_sysfs_add(iter->dev, dev,
5973 &iter->dev->adj_list.lower);
5974 }
402dae96 5975
5bb025fa 5976 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5977 if (!net_eq(net,dev_net(iter->dev)))
5978 continue;
5bb025fa
VF
5979 netdev_adjacent_sysfs_del(iter->dev, oldname,
5980 &iter->dev->adj_list.upper);
5981 netdev_adjacent_sysfs_add(iter->dev, dev,
5982 &iter->dev->adj_list.upper);
5983 }
402dae96 5984}
402dae96
VF
5985
5986void *netdev_lower_dev_get_private(struct net_device *dev,
5987 struct net_device *lower_dev)
5988{
5989 struct netdev_adjacent *lower;
5990
5991 if (!lower_dev)
5992 return NULL;
6ea29da1 5993 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
5994 if (!lower)
5995 return NULL;
5996
5997 return lower->private;
5998}
5999EXPORT_SYMBOL(netdev_lower_dev_get_private);
6000
4085ebe8
VY
6001
6002int dev_get_nest_level(struct net_device *dev,
b618aaa9 6003 bool (*type_check)(const struct net_device *dev))
4085ebe8
VY
6004{
6005 struct net_device *lower = NULL;
6006 struct list_head *iter;
6007 int max_nest = -1;
6008 int nest;
6009
6010 ASSERT_RTNL();
6011
6012 netdev_for_each_lower_dev(dev, lower, iter) {
6013 nest = dev_get_nest_level(lower, type_check);
6014 if (max_nest < nest)
6015 max_nest = nest;
6016 }
6017
6018 if (type_check(dev))
6019 max_nest++;
6020
6021 return max_nest;
6022}
6023EXPORT_SYMBOL(dev_get_nest_level);
6024
04d48266
JP
6025/**
6026 * netdev_lower_change - Dispatch event about lower device state change
6027 * @lower_dev: device
6028 * @lower_state_info: state to dispatch
6029 *
6030 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6031 * The caller must hold the RTNL lock.
6032 */
6033void netdev_lower_state_changed(struct net_device *lower_dev,
6034 void *lower_state_info)
6035{
6036 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6037
6038 ASSERT_RTNL();
6039 changelowerstate_info.lower_state_info = lower_state_info;
6040 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6041 &changelowerstate_info.info);
6042}
6043EXPORT_SYMBOL(netdev_lower_state_changed);
6044
b6c40d68
PM
6045static void dev_change_rx_flags(struct net_device *dev, int flags)
6046{
d314774c
SH
6047 const struct net_device_ops *ops = dev->netdev_ops;
6048
d2615bf4 6049 if (ops->ndo_change_rx_flags)
d314774c 6050 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6051}
6052
991fb3f7 6053static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6054{
b536db93 6055 unsigned int old_flags = dev->flags;
d04a48b0
EB
6056 kuid_t uid;
6057 kgid_t gid;
1da177e4 6058
24023451
PM
6059 ASSERT_RTNL();
6060
dad9b335
WC
6061 dev->flags |= IFF_PROMISC;
6062 dev->promiscuity += inc;
6063 if (dev->promiscuity == 0) {
6064 /*
6065 * Avoid overflow.
6066 * If inc causes overflow, untouch promisc and return error.
6067 */
6068 if (inc < 0)
6069 dev->flags &= ~IFF_PROMISC;
6070 else {
6071 dev->promiscuity -= inc;
7b6cd1ce
JP
6072 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6073 dev->name);
dad9b335
WC
6074 return -EOVERFLOW;
6075 }
6076 }
52609c0b 6077 if (dev->flags != old_flags) {
7b6cd1ce
JP
6078 pr_info("device %s %s promiscuous mode\n",
6079 dev->name,
6080 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6081 if (audit_enabled) {
6082 current_uid_gid(&uid, &gid);
7759db82
KHK
6083 audit_log(current->audit_context, GFP_ATOMIC,
6084 AUDIT_ANOM_PROMISCUOUS,
6085 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6086 dev->name, (dev->flags & IFF_PROMISC),
6087 (old_flags & IFF_PROMISC),
e1760bd5 6088 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6089 from_kuid(&init_user_ns, uid),
6090 from_kgid(&init_user_ns, gid),
7759db82 6091 audit_get_sessionid(current));
8192b0c4 6092 }
24023451 6093
b6c40d68 6094 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6095 }
991fb3f7
ND
6096 if (notify)
6097 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6098 return 0;
1da177e4
LT
6099}
6100
4417da66
PM
6101/**
6102 * dev_set_promiscuity - update promiscuity count on a device
6103 * @dev: device
6104 * @inc: modifier
6105 *
6106 * Add or remove promiscuity from a device. While the count in the device
6107 * remains above zero the interface remains promiscuous. Once it hits zero
6108 * the device reverts back to normal filtering operation. A negative inc
6109 * value is used to drop promiscuity on the device.
dad9b335 6110 * Return 0 if successful or a negative errno code on error.
4417da66 6111 */
dad9b335 6112int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6113{
b536db93 6114 unsigned int old_flags = dev->flags;
dad9b335 6115 int err;
4417da66 6116
991fb3f7 6117 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6118 if (err < 0)
dad9b335 6119 return err;
4417da66
PM
6120 if (dev->flags != old_flags)
6121 dev_set_rx_mode(dev);
dad9b335 6122 return err;
4417da66 6123}
d1b19dff 6124EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6125
991fb3f7 6126static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6127{
991fb3f7 6128 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6129
24023451
PM
6130 ASSERT_RTNL();
6131
1da177e4 6132 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6133 dev->allmulti += inc;
6134 if (dev->allmulti == 0) {
6135 /*
6136 * Avoid overflow.
6137 * If inc causes overflow, untouch allmulti and return error.
6138 */
6139 if (inc < 0)
6140 dev->flags &= ~IFF_ALLMULTI;
6141 else {
6142 dev->allmulti -= inc;
7b6cd1ce
JP
6143 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6144 dev->name);
dad9b335
WC
6145 return -EOVERFLOW;
6146 }
6147 }
24023451 6148 if (dev->flags ^ old_flags) {
b6c40d68 6149 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6150 dev_set_rx_mode(dev);
991fb3f7
ND
6151 if (notify)
6152 __dev_notify_flags(dev, old_flags,
6153 dev->gflags ^ old_gflags);
24023451 6154 }
dad9b335 6155 return 0;
4417da66 6156}
991fb3f7
ND
6157
6158/**
6159 * dev_set_allmulti - update allmulti count on a device
6160 * @dev: device
6161 * @inc: modifier
6162 *
6163 * Add or remove reception of all multicast frames to a device. While the
6164 * count in the device remains above zero the interface remains listening
6165 * to all interfaces. Once it hits zero the device reverts back to normal
6166 * filtering operation. A negative @inc value is used to drop the counter
6167 * when releasing a resource needing all multicasts.
6168 * Return 0 if successful or a negative errno code on error.
6169 */
6170
6171int dev_set_allmulti(struct net_device *dev, int inc)
6172{
6173 return __dev_set_allmulti(dev, inc, true);
6174}
d1b19dff 6175EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6176
6177/*
6178 * Upload unicast and multicast address lists to device and
6179 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6180 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6181 * are present.
6182 */
6183void __dev_set_rx_mode(struct net_device *dev)
6184{
d314774c
SH
6185 const struct net_device_ops *ops = dev->netdev_ops;
6186
4417da66
PM
6187 /* dev_open will call this function so the list will stay sane. */
6188 if (!(dev->flags&IFF_UP))
6189 return;
6190
6191 if (!netif_device_present(dev))
40b77c94 6192 return;
4417da66 6193
01789349 6194 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6195 /* Unicast addresses changes may only happen under the rtnl,
6196 * therefore calling __dev_set_promiscuity here is safe.
6197 */
32e7bfc4 6198 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6199 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6200 dev->uc_promisc = true;
32e7bfc4 6201 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6202 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6203 dev->uc_promisc = false;
4417da66 6204 }
4417da66 6205 }
01789349
JP
6206
6207 if (ops->ndo_set_rx_mode)
6208 ops->ndo_set_rx_mode(dev);
4417da66
PM
6209}
6210
6211void dev_set_rx_mode(struct net_device *dev)
6212{
b9e40857 6213 netif_addr_lock_bh(dev);
4417da66 6214 __dev_set_rx_mode(dev);
b9e40857 6215 netif_addr_unlock_bh(dev);
1da177e4
LT
6216}
6217
f0db275a
SH
6218/**
6219 * dev_get_flags - get flags reported to userspace
6220 * @dev: device
6221 *
6222 * Get the combination of flag bits exported through APIs to userspace.
6223 */
95c96174 6224unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6225{
95c96174 6226 unsigned int flags;
1da177e4
LT
6227
6228 flags = (dev->flags & ~(IFF_PROMISC |
6229 IFF_ALLMULTI |
b00055aa
SR
6230 IFF_RUNNING |
6231 IFF_LOWER_UP |
6232 IFF_DORMANT)) |
1da177e4
LT
6233 (dev->gflags & (IFF_PROMISC |
6234 IFF_ALLMULTI));
6235
b00055aa
SR
6236 if (netif_running(dev)) {
6237 if (netif_oper_up(dev))
6238 flags |= IFF_RUNNING;
6239 if (netif_carrier_ok(dev))
6240 flags |= IFF_LOWER_UP;
6241 if (netif_dormant(dev))
6242 flags |= IFF_DORMANT;
6243 }
1da177e4
LT
6244
6245 return flags;
6246}
d1b19dff 6247EXPORT_SYMBOL(dev_get_flags);
1da177e4 6248
bd380811 6249int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6250{
b536db93 6251 unsigned int old_flags = dev->flags;
bd380811 6252 int ret;
1da177e4 6253
24023451
PM
6254 ASSERT_RTNL();
6255
1da177e4
LT
6256 /*
6257 * Set the flags on our device.
6258 */
6259
6260 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6261 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6262 IFF_AUTOMEDIA)) |
6263 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6264 IFF_ALLMULTI));
6265
6266 /*
6267 * Load in the correct multicast list now the flags have changed.
6268 */
6269
b6c40d68
PM
6270 if ((old_flags ^ flags) & IFF_MULTICAST)
6271 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6272
4417da66 6273 dev_set_rx_mode(dev);
1da177e4
LT
6274
6275 /*
6276 * Have we downed the interface. We handle IFF_UP ourselves
6277 * according to user attempts to set it, rather than blindly
6278 * setting it.
6279 */
6280
6281 ret = 0;
d215d10f 6282 if ((old_flags ^ flags) & IFF_UP)
bd380811 6283 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6284
1da177e4 6285 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6286 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6287 unsigned int old_flags = dev->flags;
d1b19dff 6288
1da177e4 6289 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6290
6291 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6292 if (dev->flags != old_flags)
6293 dev_set_rx_mode(dev);
1da177e4
LT
6294 }
6295
6296 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6297 is important. Some (broken) drivers set IFF_PROMISC, when
6298 IFF_ALLMULTI is requested not asking us and not reporting.
6299 */
6300 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6301 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6302
1da177e4 6303 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6304 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6305 }
6306
bd380811
PM
6307 return ret;
6308}
6309
a528c219
ND
6310void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6311 unsigned int gchanges)
bd380811
PM
6312{
6313 unsigned int changes = dev->flags ^ old_flags;
6314
a528c219 6315 if (gchanges)
7f294054 6316 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6317
bd380811
PM
6318 if (changes & IFF_UP) {
6319 if (dev->flags & IFF_UP)
6320 call_netdevice_notifiers(NETDEV_UP, dev);
6321 else
6322 call_netdevice_notifiers(NETDEV_DOWN, dev);
6323 }
6324
6325 if (dev->flags & IFF_UP &&
be9efd36
JP
6326 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6327 struct netdev_notifier_change_info change_info;
6328
6329 change_info.flags_changed = changes;
6330 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6331 &change_info.info);
6332 }
bd380811
PM
6333}
6334
6335/**
6336 * dev_change_flags - change device settings
6337 * @dev: device
6338 * @flags: device state flags
6339 *
6340 * Change settings on device based state flags. The flags are
6341 * in the userspace exported format.
6342 */
b536db93 6343int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6344{
b536db93 6345 int ret;
991fb3f7 6346 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6347
6348 ret = __dev_change_flags(dev, flags);
6349 if (ret < 0)
6350 return ret;
6351
991fb3f7 6352 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6353 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6354 return ret;
6355}
d1b19dff 6356EXPORT_SYMBOL(dev_change_flags);
1da177e4 6357
2315dc91
VF
6358static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6359{
6360 const struct net_device_ops *ops = dev->netdev_ops;
6361
6362 if (ops->ndo_change_mtu)
6363 return ops->ndo_change_mtu(dev, new_mtu);
6364
6365 dev->mtu = new_mtu;
6366 return 0;
6367}
6368
f0db275a
SH
6369/**
6370 * dev_set_mtu - Change maximum transfer unit
6371 * @dev: device
6372 * @new_mtu: new transfer unit
6373 *
6374 * Change the maximum transfer size of the network device.
6375 */
1da177e4
LT
6376int dev_set_mtu(struct net_device *dev, int new_mtu)
6377{
2315dc91 6378 int err, orig_mtu;
1da177e4
LT
6379
6380 if (new_mtu == dev->mtu)
6381 return 0;
6382
6383 /* MTU must be positive. */
6384 if (new_mtu < 0)
6385 return -EINVAL;
6386
6387 if (!netif_device_present(dev))
6388 return -ENODEV;
6389
1d486bfb
VF
6390 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6391 err = notifier_to_errno(err);
6392 if (err)
6393 return err;
d314774c 6394
2315dc91
VF
6395 orig_mtu = dev->mtu;
6396 err = __dev_set_mtu(dev, new_mtu);
d314774c 6397
2315dc91
VF
6398 if (!err) {
6399 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6400 err = notifier_to_errno(err);
6401 if (err) {
6402 /* setting mtu back and notifying everyone again,
6403 * so that they have a chance to revert changes.
6404 */
6405 __dev_set_mtu(dev, orig_mtu);
6406 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6407 }
6408 }
1da177e4
LT
6409 return err;
6410}
d1b19dff 6411EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6412
cbda10fa
VD
6413/**
6414 * dev_set_group - Change group this device belongs to
6415 * @dev: device
6416 * @new_group: group this device should belong to
6417 */
6418void dev_set_group(struct net_device *dev, int new_group)
6419{
6420 dev->group = new_group;
6421}
6422EXPORT_SYMBOL(dev_set_group);
6423
f0db275a
SH
6424/**
6425 * dev_set_mac_address - Change Media Access Control Address
6426 * @dev: device
6427 * @sa: new address
6428 *
6429 * Change the hardware (MAC) address of the device
6430 */
1da177e4
LT
6431int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6432{
d314774c 6433 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6434 int err;
6435
d314774c 6436 if (!ops->ndo_set_mac_address)
1da177e4
LT
6437 return -EOPNOTSUPP;
6438 if (sa->sa_family != dev->type)
6439 return -EINVAL;
6440 if (!netif_device_present(dev))
6441 return -ENODEV;
d314774c 6442 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6443 if (err)
6444 return err;
fbdeca2d 6445 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6446 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6447 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6448 return 0;
1da177e4 6449}
d1b19dff 6450EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6451
4bf84c35
JP
6452/**
6453 * dev_change_carrier - Change device carrier
6454 * @dev: device
691b3b7e 6455 * @new_carrier: new value
4bf84c35
JP
6456 *
6457 * Change device carrier
6458 */
6459int dev_change_carrier(struct net_device *dev, bool new_carrier)
6460{
6461 const struct net_device_ops *ops = dev->netdev_ops;
6462
6463 if (!ops->ndo_change_carrier)
6464 return -EOPNOTSUPP;
6465 if (!netif_device_present(dev))
6466 return -ENODEV;
6467 return ops->ndo_change_carrier(dev, new_carrier);
6468}
6469EXPORT_SYMBOL(dev_change_carrier);
6470
66b52b0d
JP
6471/**
6472 * dev_get_phys_port_id - Get device physical port ID
6473 * @dev: device
6474 * @ppid: port ID
6475 *
6476 * Get device physical port ID
6477 */
6478int dev_get_phys_port_id(struct net_device *dev,
02637fce 6479 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6480{
6481 const struct net_device_ops *ops = dev->netdev_ops;
6482
6483 if (!ops->ndo_get_phys_port_id)
6484 return -EOPNOTSUPP;
6485 return ops->ndo_get_phys_port_id(dev, ppid);
6486}
6487EXPORT_SYMBOL(dev_get_phys_port_id);
6488
db24a904
DA
6489/**
6490 * dev_get_phys_port_name - Get device physical port name
6491 * @dev: device
6492 * @name: port name
ed49e650 6493 * @len: limit of bytes to copy to name
db24a904
DA
6494 *
6495 * Get device physical port name
6496 */
6497int dev_get_phys_port_name(struct net_device *dev,
6498 char *name, size_t len)
6499{
6500 const struct net_device_ops *ops = dev->netdev_ops;
6501
6502 if (!ops->ndo_get_phys_port_name)
6503 return -EOPNOTSUPP;
6504 return ops->ndo_get_phys_port_name(dev, name, len);
6505}
6506EXPORT_SYMBOL(dev_get_phys_port_name);
6507
d746d707
AK
6508/**
6509 * dev_change_proto_down - update protocol port state information
6510 * @dev: device
6511 * @proto_down: new value
6512 *
6513 * This info can be used by switch drivers to set the phys state of the
6514 * port.
6515 */
6516int dev_change_proto_down(struct net_device *dev, bool proto_down)
6517{
6518 const struct net_device_ops *ops = dev->netdev_ops;
6519
6520 if (!ops->ndo_change_proto_down)
6521 return -EOPNOTSUPP;
6522 if (!netif_device_present(dev))
6523 return -ENODEV;
6524 return ops->ndo_change_proto_down(dev, proto_down);
6525}
6526EXPORT_SYMBOL(dev_change_proto_down);
6527
1da177e4
LT
6528/**
6529 * dev_new_index - allocate an ifindex
c4ea43c5 6530 * @net: the applicable net namespace
1da177e4
LT
6531 *
6532 * Returns a suitable unique value for a new device interface
6533 * number. The caller must hold the rtnl semaphore or the
6534 * dev_base_lock to be sure it remains unique.
6535 */
881d966b 6536static int dev_new_index(struct net *net)
1da177e4 6537{
aa79e66e 6538 int ifindex = net->ifindex;
1da177e4
LT
6539 for (;;) {
6540 if (++ifindex <= 0)
6541 ifindex = 1;
881d966b 6542 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6543 return net->ifindex = ifindex;
1da177e4
LT
6544 }
6545}
6546
1da177e4 6547/* Delayed registration/unregisteration */
3b5b34fd 6548static LIST_HEAD(net_todo_list);
200b916f 6549DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6550
6f05f629 6551static void net_set_todo(struct net_device *dev)
1da177e4 6552{
1da177e4 6553 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6554 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6555}
6556
9b5e383c 6557static void rollback_registered_many(struct list_head *head)
93ee31f1 6558{
e93737b0 6559 struct net_device *dev, *tmp;
5cde2829 6560 LIST_HEAD(close_head);
9b5e383c 6561
93ee31f1
DL
6562 BUG_ON(dev_boot_phase);
6563 ASSERT_RTNL();
6564
e93737b0 6565 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6566 /* Some devices call without registering
e93737b0
KK
6567 * for initialization unwind. Remove those
6568 * devices and proceed with the remaining.
9b5e383c
ED
6569 */
6570 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6571 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6572 dev->name, dev);
93ee31f1 6573
9b5e383c 6574 WARN_ON(1);
e93737b0
KK
6575 list_del(&dev->unreg_list);
6576 continue;
9b5e383c 6577 }
449f4544 6578 dev->dismantle = true;
9b5e383c 6579 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6580 }
93ee31f1 6581
44345724 6582 /* If device is running, close it first. */
5cde2829
EB
6583 list_for_each_entry(dev, head, unreg_list)
6584 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6585 dev_close_many(&close_head, true);
93ee31f1 6586
44345724 6587 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6588 /* And unlink it from device chain. */
6589 unlist_netdevice(dev);
93ee31f1 6590
9b5e383c 6591 dev->reg_state = NETREG_UNREGISTERING;
e9e4dd32 6592 on_each_cpu(flush_backlog, dev, 1);
9b5e383c 6593 }
93ee31f1
DL
6594
6595 synchronize_net();
6596
9b5e383c 6597 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6598 struct sk_buff *skb = NULL;
6599
9b5e383c
ED
6600 /* Shutdown queueing discipline. */
6601 dev_shutdown(dev);
93ee31f1
DL
6602
6603
9b5e383c
ED
6604 /* Notify protocols, that we are about to destroy
6605 this device. They should clean all the things.
6606 */
6607 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6608
395eea6c
MB
6609 if (!dev->rtnl_link_ops ||
6610 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6611 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6612 GFP_KERNEL);
6613
9b5e383c
ED
6614 /*
6615 * Flush the unicast and multicast chains
6616 */
a748ee24 6617 dev_uc_flush(dev);
22bedad3 6618 dev_mc_flush(dev);
93ee31f1 6619
9b5e383c
ED
6620 if (dev->netdev_ops->ndo_uninit)
6621 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6622
395eea6c
MB
6623 if (skb)
6624 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6625
9ff162a8
JP
6626 /* Notifier chain MUST detach us all upper devices. */
6627 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6628
9b5e383c
ED
6629 /* Remove entries from kobject tree */
6630 netdev_unregister_kobject(dev);
024e9679
AD
6631#ifdef CONFIG_XPS
6632 /* Remove XPS queueing entries */
6633 netif_reset_xps_queues_gt(dev, 0);
6634#endif
9b5e383c 6635 }
93ee31f1 6636
850a545b 6637 synchronize_net();
395264d5 6638
a5ee1551 6639 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6640 dev_put(dev);
6641}
6642
6643static void rollback_registered(struct net_device *dev)
6644{
6645 LIST_HEAD(single);
6646
6647 list_add(&dev->unreg_list, &single);
6648 rollback_registered_many(&single);
ceaaec98 6649 list_del(&single);
93ee31f1
DL
6650}
6651
fd867d51
JW
6652static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6653 struct net_device *upper, netdev_features_t features)
6654{
6655 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6656 netdev_features_t feature;
5ba3f7d6 6657 int feature_bit;
fd867d51 6658
5ba3f7d6
JW
6659 for_each_netdev_feature(&upper_disables, feature_bit) {
6660 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6661 if (!(upper->wanted_features & feature)
6662 && (features & feature)) {
6663 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6664 &feature, upper->name);
6665 features &= ~feature;
6666 }
6667 }
6668
6669 return features;
6670}
6671
6672static void netdev_sync_lower_features(struct net_device *upper,
6673 struct net_device *lower, netdev_features_t features)
6674{
6675 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6676 netdev_features_t feature;
5ba3f7d6 6677 int feature_bit;
fd867d51 6678
5ba3f7d6
JW
6679 for_each_netdev_feature(&upper_disables, feature_bit) {
6680 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6681 if (!(features & feature) && (lower->features & feature)) {
6682 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6683 &feature, lower->name);
6684 lower->wanted_features &= ~feature;
6685 netdev_update_features(lower);
6686
6687 if (unlikely(lower->features & feature))
6688 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6689 &feature, lower->name);
6690 }
6691 }
6692}
6693
c8f44aff
MM
6694static netdev_features_t netdev_fix_features(struct net_device *dev,
6695 netdev_features_t features)
b63365a2 6696{
57422dc5
MM
6697 /* Fix illegal checksum combinations */
6698 if ((features & NETIF_F_HW_CSUM) &&
6699 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6700 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6701 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6702 }
6703
b63365a2 6704 /* TSO requires that SG is present as well. */
ea2d3688 6705 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6706 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6707 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6708 }
6709
ec5f0615
PS
6710 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6711 !(features & NETIF_F_IP_CSUM)) {
6712 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6713 features &= ~NETIF_F_TSO;
6714 features &= ~NETIF_F_TSO_ECN;
6715 }
6716
6717 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6718 !(features & NETIF_F_IPV6_CSUM)) {
6719 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6720 features &= ~NETIF_F_TSO6;
6721 }
6722
31d8b9e0
BH
6723 /* TSO ECN requires that TSO is present as well. */
6724 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6725 features &= ~NETIF_F_TSO_ECN;
6726
212b573f
MM
6727 /* Software GSO depends on SG. */
6728 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6729 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6730 features &= ~NETIF_F_GSO;
6731 }
6732
acd1130e 6733 /* UFO needs SG and checksumming */
b63365a2 6734 if (features & NETIF_F_UFO) {
79032644 6735 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6736 if (!(features & NETIF_F_HW_CSUM) &&
6737 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6738 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6739 netdev_dbg(dev,
acd1130e 6740 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6741 features &= ~NETIF_F_UFO;
6742 }
6743
6744 if (!(features & NETIF_F_SG)) {
6f404e44 6745 netdev_dbg(dev,
acd1130e 6746 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6747 features &= ~NETIF_F_UFO;
6748 }
6749 }
6750
802ab55a
AD
6751 /* GSO partial features require GSO partial be set */
6752 if ((features & dev->gso_partial_features) &&
6753 !(features & NETIF_F_GSO_PARTIAL)) {
6754 netdev_dbg(dev,
6755 "Dropping partially supported GSO features since no GSO partial.\n");
6756 features &= ~dev->gso_partial_features;
6757 }
6758
d0290214
JP
6759#ifdef CONFIG_NET_RX_BUSY_POLL
6760 if (dev->netdev_ops->ndo_busy_poll)
6761 features |= NETIF_F_BUSY_POLL;
6762 else
6763#endif
6764 features &= ~NETIF_F_BUSY_POLL;
6765
b63365a2
HX
6766 return features;
6767}
b63365a2 6768
6cb6a27c 6769int __netdev_update_features(struct net_device *dev)
5455c699 6770{
fd867d51 6771 struct net_device *upper, *lower;
c8f44aff 6772 netdev_features_t features;
fd867d51 6773 struct list_head *iter;
e7868a85 6774 int err = -1;
5455c699 6775
87267485
MM
6776 ASSERT_RTNL();
6777
5455c699
MM
6778 features = netdev_get_wanted_features(dev);
6779
6780 if (dev->netdev_ops->ndo_fix_features)
6781 features = dev->netdev_ops->ndo_fix_features(dev, features);
6782
6783 /* driver might be less strict about feature dependencies */
6784 features = netdev_fix_features(dev, features);
6785
fd867d51
JW
6786 /* some features can't be enabled if they're off an an upper device */
6787 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6788 features = netdev_sync_upper_features(dev, upper, features);
6789
5455c699 6790 if (dev->features == features)
e7868a85 6791 goto sync_lower;
5455c699 6792
c8f44aff
MM
6793 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6794 &dev->features, &features);
5455c699
MM
6795
6796 if (dev->netdev_ops->ndo_set_features)
6797 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6798 else
6799 err = 0;
5455c699 6800
6cb6a27c 6801 if (unlikely(err < 0)) {
5455c699 6802 netdev_err(dev,
c8f44aff
MM
6803 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6804 err, &features, &dev->features);
17b85d29
NA
6805 /* return non-0 since some features might have changed and
6806 * it's better to fire a spurious notification than miss it
6807 */
6808 return -1;
6cb6a27c
MM
6809 }
6810
e7868a85 6811sync_lower:
fd867d51
JW
6812 /* some features must be disabled on lower devices when disabled
6813 * on an upper device (think: bonding master or bridge)
6814 */
6815 netdev_for_each_lower_dev(dev, lower, iter)
6816 netdev_sync_lower_features(dev, lower, features);
6817
6cb6a27c
MM
6818 if (!err)
6819 dev->features = features;
6820
e7868a85 6821 return err < 0 ? 0 : 1;
6cb6a27c
MM
6822}
6823
afe12cc8
MM
6824/**
6825 * netdev_update_features - recalculate device features
6826 * @dev: the device to check
6827 *
6828 * Recalculate dev->features set and send notifications if it
6829 * has changed. Should be called after driver or hardware dependent
6830 * conditions might have changed that influence the features.
6831 */
6cb6a27c
MM
6832void netdev_update_features(struct net_device *dev)
6833{
6834 if (__netdev_update_features(dev))
6835 netdev_features_change(dev);
5455c699
MM
6836}
6837EXPORT_SYMBOL(netdev_update_features);
6838
afe12cc8
MM
6839/**
6840 * netdev_change_features - recalculate device features
6841 * @dev: the device to check
6842 *
6843 * Recalculate dev->features set and send notifications even
6844 * if they have not changed. Should be called instead of
6845 * netdev_update_features() if also dev->vlan_features might
6846 * have changed to allow the changes to be propagated to stacked
6847 * VLAN devices.
6848 */
6849void netdev_change_features(struct net_device *dev)
6850{
6851 __netdev_update_features(dev);
6852 netdev_features_change(dev);
6853}
6854EXPORT_SYMBOL(netdev_change_features);
6855
fc4a7489
PM
6856/**
6857 * netif_stacked_transfer_operstate - transfer operstate
6858 * @rootdev: the root or lower level device to transfer state from
6859 * @dev: the device to transfer operstate to
6860 *
6861 * Transfer operational state from root to device. This is normally
6862 * called when a stacking relationship exists between the root
6863 * device and the device(a leaf device).
6864 */
6865void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6866 struct net_device *dev)
6867{
6868 if (rootdev->operstate == IF_OPER_DORMANT)
6869 netif_dormant_on(dev);
6870 else
6871 netif_dormant_off(dev);
6872
6873 if (netif_carrier_ok(rootdev)) {
6874 if (!netif_carrier_ok(dev))
6875 netif_carrier_on(dev);
6876 } else {
6877 if (netif_carrier_ok(dev))
6878 netif_carrier_off(dev);
6879 }
6880}
6881EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6882
a953be53 6883#ifdef CONFIG_SYSFS
1b4bf461
ED
6884static int netif_alloc_rx_queues(struct net_device *dev)
6885{
1b4bf461 6886 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6887 struct netdev_rx_queue *rx;
10595902 6888 size_t sz = count * sizeof(*rx);
1b4bf461 6889
bd25fa7b 6890 BUG_ON(count < 1);
1b4bf461 6891
10595902
PG
6892 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6893 if (!rx) {
6894 rx = vzalloc(sz);
6895 if (!rx)
6896 return -ENOMEM;
6897 }
bd25fa7b
TH
6898 dev->_rx = rx;
6899
bd25fa7b 6900 for (i = 0; i < count; i++)
fe822240 6901 rx[i].dev = dev;
1b4bf461
ED
6902 return 0;
6903}
bf264145 6904#endif
1b4bf461 6905
aa942104
CG
6906static void netdev_init_one_queue(struct net_device *dev,
6907 struct netdev_queue *queue, void *_unused)
6908{
6909 /* Initialize queue lock */
6910 spin_lock_init(&queue->_xmit_lock);
6911 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6912 queue->xmit_lock_owner = -1;
b236da69 6913 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6914 queue->dev = dev;
114cf580
TH
6915#ifdef CONFIG_BQL
6916 dql_init(&queue->dql, HZ);
6917#endif
aa942104
CG
6918}
6919
60877a32
ED
6920static void netif_free_tx_queues(struct net_device *dev)
6921{
4cb28970 6922 kvfree(dev->_tx);
60877a32
ED
6923}
6924
e6484930
TH
6925static int netif_alloc_netdev_queues(struct net_device *dev)
6926{
6927 unsigned int count = dev->num_tx_queues;
6928 struct netdev_queue *tx;
60877a32 6929 size_t sz = count * sizeof(*tx);
e6484930 6930
d339727c
ED
6931 if (count < 1 || count > 0xffff)
6932 return -EINVAL;
62b5942a 6933
60877a32
ED
6934 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6935 if (!tx) {
6936 tx = vzalloc(sz);
6937 if (!tx)
6938 return -ENOMEM;
6939 }
e6484930 6940 dev->_tx = tx;
1d24eb48 6941
e6484930
TH
6942 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6943 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6944
6945 return 0;
e6484930
TH
6946}
6947
a2029240
DV
6948void netif_tx_stop_all_queues(struct net_device *dev)
6949{
6950 unsigned int i;
6951
6952 for (i = 0; i < dev->num_tx_queues; i++) {
6953 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6954 netif_tx_stop_queue(txq);
6955 }
6956}
6957EXPORT_SYMBOL(netif_tx_stop_all_queues);
6958
1da177e4
LT
6959/**
6960 * register_netdevice - register a network device
6961 * @dev: device to register
6962 *
6963 * Take a completed network device structure and add it to the kernel
6964 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6965 * chain. 0 is returned on success. A negative errno code is returned
6966 * on a failure to set up the device, or if the name is a duplicate.
6967 *
6968 * Callers must hold the rtnl semaphore. You may want
6969 * register_netdev() instead of this.
6970 *
6971 * BUGS:
6972 * The locking appears insufficient to guarantee two parallel registers
6973 * will not get the same name.
6974 */
6975
6976int register_netdevice(struct net_device *dev)
6977{
1da177e4 6978 int ret;
d314774c 6979 struct net *net = dev_net(dev);
1da177e4
LT
6980
6981 BUG_ON(dev_boot_phase);
6982 ASSERT_RTNL();
6983
b17a7c17
SH
6984 might_sleep();
6985
1da177e4
LT
6986 /* When net_device's are persistent, this will be fatal. */
6987 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6988 BUG_ON(!net);
1da177e4 6989
f1f28aa3 6990 spin_lock_init(&dev->addr_list_lock);
cf508b12 6991 netdev_set_addr_lockdep_class(dev);
1da177e4 6992
828de4f6 6993 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6994 if (ret < 0)
6995 goto out;
6996
1da177e4 6997 /* Init, if this function is available */
d314774c
SH
6998 if (dev->netdev_ops->ndo_init) {
6999 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7000 if (ret) {
7001 if (ret > 0)
7002 ret = -EIO;
90833aa4 7003 goto out;
1da177e4
LT
7004 }
7005 }
4ec93edb 7006
f646968f
PM
7007 if (((dev->hw_features | dev->features) &
7008 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7009 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7010 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7011 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7012 ret = -EINVAL;
7013 goto err_uninit;
7014 }
7015
9c7dafbf
PE
7016 ret = -EBUSY;
7017 if (!dev->ifindex)
7018 dev->ifindex = dev_new_index(net);
7019 else if (__dev_get_by_index(net, dev->ifindex))
7020 goto err_uninit;
7021
5455c699
MM
7022 /* Transfer changeable features to wanted_features and enable
7023 * software offloads (GSO and GRO).
7024 */
7025 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7026 dev->features |= NETIF_F_SOFT_FEATURES;
7027 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7028
cbc53e08 7029 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7030 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7031
7f348a60
AD
7032 /* If IPv4 TCP segmentation offload is supported we should also
7033 * allow the device to enable segmenting the frame with the option
7034 * of ignoring a static IP ID value. This doesn't enable the
7035 * feature itself but allows the user to enable it later.
7036 */
cbc53e08
AD
7037 if (dev->hw_features & NETIF_F_TSO)
7038 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7039 if (dev->vlan_features & NETIF_F_TSO)
7040 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7041 if (dev->mpls_features & NETIF_F_TSO)
7042 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7043 if (dev->hw_enc_features & NETIF_F_TSO)
7044 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7045
1180e7d6 7046 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7047 */
1180e7d6 7048 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7049
ee579677
PS
7050 /* Make NETIF_F_SG inheritable to tunnel devices.
7051 */
802ab55a 7052 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7053
0d89d203
SH
7054 /* Make NETIF_F_SG inheritable to MPLS.
7055 */
7056 dev->mpls_features |= NETIF_F_SG;
7057
7ffbe3fd
JB
7058 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7059 ret = notifier_to_errno(ret);
7060 if (ret)
7061 goto err_uninit;
7062
8b41d188 7063 ret = netdev_register_kobject(dev);
b17a7c17 7064 if (ret)
7ce1b0ed 7065 goto err_uninit;
b17a7c17
SH
7066 dev->reg_state = NETREG_REGISTERED;
7067
6cb6a27c 7068 __netdev_update_features(dev);
8e9b59b2 7069
1da177e4
LT
7070 /*
7071 * Default initial state at registry is that the
7072 * device is present.
7073 */
7074
7075 set_bit(__LINK_STATE_PRESENT, &dev->state);
7076
8f4cccbb
BH
7077 linkwatch_init_dev(dev);
7078
1da177e4 7079 dev_init_scheduler(dev);
1da177e4 7080 dev_hold(dev);
ce286d32 7081 list_netdevice(dev);
7bf23575 7082 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7083
948b337e
JP
7084 /* If the device has permanent device address, driver should
7085 * set dev_addr and also addr_assign_type should be set to
7086 * NET_ADDR_PERM (default value).
7087 */
7088 if (dev->addr_assign_type == NET_ADDR_PERM)
7089 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7090
1da177e4 7091 /* Notify protocols, that a new device appeared. */
056925ab 7092 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7093 ret = notifier_to_errno(ret);
93ee31f1
DL
7094 if (ret) {
7095 rollback_registered(dev);
7096 dev->reg_state = NETREG_UNREGISTERED;
7097 }
d90a909e
EB
7098 /*
7099 * Prevent userspace races by waiting until the network
7100 * device is fully setup before sending notifications.
7101 */
a2835763
PM
7102 if (!dev->rtnl_link_ops ||
7103 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7104 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7105
7106out:
7107 return ret;
7ce1b0ed
HX
7108
7109err_uninit:
d314774c
SH
7110 if (dev->netdev_ops->ndo_uninit)
7111 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7112 goto out;
1da177e4 7113}
d1b19dff 7114EXPORT_SYMBOL(register_netdevice);
1da177e4 7115
937f1ba5
BH
7116/**
7117 * init_dummy_netdev - init a dummy network device for NAPI
7118 * @dev: device to init
7119 *
7120 * This takes a network device structure and initialize the minimum
7121 * amount of fields so it can be used to schedule NAPI polls without
7122 * registering a full blown interface. This is to be used by drivers
7123 * that need to tie several hardware interfaces to a single NAPI
7124 * poll scheduler due to HW limitations.
7125 */
7126int init_dummy_netdev(struct net_device *dev)
7127{
7128 /* Clear everything. Note we don't initialize spinlocks
7129 * are they aren't supposed to be taken by any of the
7130 * NAPI code and this dummy netdev is supposed to be
7131 * only ever used for NAPI polls
7132 */
7133 memset(dev, 0, sizeof(struct net_device));
7134
7135 /* make sure we BUG if trying to hit standard
7136 * register/unregister code path
7137 */
7138 dev->reg_state = NETREG_DUMMY;
7139
937f1ba5
BH
7140 /* NAPI wants this */
7141 INIT_LIST_HEAD(&dev->napi_list);
7142
7143 /* a dummy interface is started by default */
7144 set_bit(__LINK_STATE_PRESENT, &dev->state);
7145 set_bit(__LINK_STATE_START, &dev->state);
7146
29b4433d
ED
7147 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7148 * because users of this 'device' dont need to change
7149 * its refcount.
7150 */
7151
937f1ba5
BH
7152 return 0;
7153}
7154EXPORT_SYMBOL_GPL(init_dummy_netdev);
7155
7156
1da177e4
LT
7157/**
7158 * register_netdev - register a network device
7159 * @dev: device to register
7160 *
7161 * Take a completed network device structure and add it to the kernel
7162 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7163 * chain. 0 is returned on success. A negative errno code is returned
7164 * on a failure to set up the device, or if the name is a duplicate.
7165 *
38b4da38 7166 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7167 * and expands the device name if you passed a format string to
7168 * alloc_netdev.
7169 */
7170int register_netdev(struct net_device *dev)
7171{
7172 int err;
7173
7174 rtnl_lock();
1da177e4 7175 err = register_netdevice(dev);
1da177e4
LT
7176 rtnl_unlock();
7177 return err;
7178}
7179EXPORT_SYMBOL(register_netdev);
7180
29b4433d
ED
7181int netdev_refcnt_read(const struct net_device *dev)
7182{
7183 int i, refcnt = 0;
7184
7185 for_each_possible_cpu(i)
7186 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7187 return refcnt;
7188}
7189EXPORT_SYMBOL(netdev_refcnt_read);
7190
2c53040f 7191/**
1da177e4 7192 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7193 * @dev: target net_device
1da177e4
LT
7194 *
7195 * This is called when unregistering network devices.
7196 *
7197 * Any protocol or device that holds a reference should register
7198 * for netdevice notification, and cleanup and put back the
7199 * reference if they receive an UNREGISTER event.
7200 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7201 * call dev_put.
1da177e4
LT
7202 */
7203static void netdev_wait_allrefs(struct net_device *dev)
7204{
7205 unsigned long rebroadcast_time, warning_time;
29b4433d 7206 int refcnt;
1da177e4 7207
e014debe
ED
7208 linkwatch_forget_dev(dev);
7209
1da177e4 7210 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7211 refcnt = netdev_refcnt_read(dev);
7212
7213 while (refcnt != 0) {
1da177e4 7214 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7215 rtnl_lock();
1da177e4
LT
7216
7217 /* Rebroadcast unregister notification */
056925ab 7218 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7219
748e2d93 7220 __rtnl_unlock();
0115e8e3 7221 rcu_barrier();
748e2d93
ED
7222 rtnl_lock();
7223
0115e8e3 7224 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7225 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7226 &dev->state)) {
7227 /* We must not have linkwatch events
7228 * pending on unregister. If this
7229 * happens, we simply run the queue
7230 * unscheduled, resulting in a noop
7231 * for this device.
7232 */
7233 linkwatch_run_queue();
7234 }
7235
6756ae4b 7236 __rtnl_unlock();
1da177e4
LT
7237
7238 rebroadcast_time = jiffies;
7239 }
7240
7241 msleep(250);
7242
29b4433d
ED
7243 refcnt = netdev_refcnt_read(dev);
7244
1da177e4 7245 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7246 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7247 dev->name, refcnt);
1da177e4
LT
7248 warning_time = jiffies;
7249 }
7250 }
7251}
7252
7253/* The sequence is:
7254 *
7255 * rtnl_lock();
7256 * ...
7257 * register_netdevice(x1);
7258 * register_netdevice(x2);
7259 * ...
7260 * unregister_netdevice(y1);
7261 * unregister_netdevice(y2);
7262 * ...
7263 * rtnl_unlock();
7264 * free_netdev(y1);
7265 * free_netdev(y2);
7266 *
58ec3b4d 7267 * We are invoked by rtnl_unlock().
1da177e4 7268 * This allows us to deal with problems:
b17a7c17 7269 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7270 * without deadlocking with linkwatch via keventd.
7271 * 2) Since we run with the RTNL semaphore not held, we can sleep
7272 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7273 *
7274 * We must not return until all unregister events added during
7275 * the interval the lock was held have been completed.
1da177e4 7276 */
1da177e4
LT
7277void netdev_run_todo(void)
7278{
626ab0e6 7279 struct list_head list;
1da177e4 7280
1da177e4 7281 /* Snapshot list, allow later requests */
626ab0e6 7282 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7283
7284 __rtnl_unlock();
626ab0e6 7285
0115e8e3
ED
7286
7287 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7288 if (!list_empty(&list))
7289 rcu_barrier();
7290
1da177e4
LT
7291 while (!list_empty(&list)) {
7292 struct net_device *dev
e5e26d75 7293 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7294 list_del(&dev->todo_list);
7295
748e2d93 7296 rtnl_lock();
0115e8e3 7297 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7298 __rtnl_unlock();
0115e8e3 7299
b17a7c17 7300 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7301 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7302 dev->name, dev->reg_state);
7303 dump_stack();
7304 continue;
7305 }
1da177e4 7306
b17a7c17 7307 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7308
b17a7c17 7309 netdev_wait_allrefs(dev);
1da177e4 7310
b17a7c17 7311 /* paranoia */
29b4433d 7312 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7313 BUG_ON(!list_empty(&dev->ptype_all));
7314 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7315 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7316 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7317 WARN_ON(dev->dn_ptr);
1da177e4 7318
b17a7c17
SH
7319 if (dev->destructor)
7320 dev->destructor(dev);
9093bbb2 7321
50624c93
EB
7322 /* Report a network device has been unregistered */
7323 rtnl_lock();
7324 dev_net(dev)->dev_unreg_count--;
7325 __rtnl_unlock();
7326 wake_up(&netdev_unregistering_wq);
7327
9093bbb2
SH
7328 /* Free network device */
7329 kobject_put(&dev->dev.kobj);
1da177e4 7330 }
1da177e4
LT
7331}
7332
9256645a
JW
7333/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7334 * all the same fields in the same order as net_device_stats, with only
7335 * the type differing, but rtnl_link_stats64 may have additional fields
7336 * at the end for newer counters.
3cfde79c 7337 */
77a1abf5
ED
7338void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7339 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7340{
7341#if BITS_PER_LONG == 64
9256645a 7342 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7343 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7344 /* zero out counters that only exist in rtnl_link_stats64 */
7345 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7346 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7347#else
9256645a 7348 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7349 const unsigned long *src = (const unsigned long *)netdev_stats;
7350 u64 *dst = (u64 *)stats64;
7351
9256645a 7352 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7353 for (i = 0; i < n; i++)
7354 dst[i] = src[i];
9256645a
JW
7355 /* zero out counters that only exist in rtnl_link_stats64 */
7356 memset((char *)stats64 + n * sizeof(u64), 0,
7357 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7358#endif
7359}
77a1abf5 7360EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7361
eeda3fd6
SH
7362/**
7363 * dev_get_stats - get network device statistics
7364 * @dev: device to get statistics from
28172739 7365 * @storage: place to store stats
eeda3fd6 7366 *
d7753516
BH
7367 * Get network statistics from device. Return @storage.
7368 * The device driver may provide its own method by setting
7369 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7370 * otherwise the internal statistics structure is used.
eeda3fd6 7371 */
d7753516
BH
7372struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7373 struct rtnl_link_stats64 *storage)
7004bf25 7374{
eeda3fd6
SH
7375 const struct net_device_ops *ops = dev->netdev_ops;
7376
28172739
ED
7377 if (ops->ndo_get_stats64) {
7378 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7379 ops->ndo_get_stats64(dev, storage);
7380 } else if (ops->ndo_get_stats) {
3cfde79c 7381 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7382 } else {
7383 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7384 }
caf586e5 7385 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7386 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7387 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7388 return storage;
c45d286e 7389}
eeda3fd6 7390EXPORT_SYMBOL(dev_get_stats);
c45d286e 7391
24824a09 7392struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7393{
24824a09 7394 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7395
24824a09
ED
7396#ifdef CONFIG_NET_CLS_ACT
7397 if (queue)
7398 return queue;
7399 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7400 if (!queue)
7401 return NULL;
7402 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7403 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7404 queue->qdisc_sleeping = &noop_qdisc;
7405 rcu_assign_pointer(dev->ingress_queue, queue);
7406#endif
7407 return queue;
bb949fbd
DM
7408}
7409
2c60db03
ED
7410static const struct ethtool_ops default_ethtool_ops;
7411
d07d7507
SG
7412void netdev_set_default_ethtool_ops(struct net_device *dev,
7413 const struct ethtool_ops *ops)
7414{
7415 if (dev->ethtool_ops == &default_ethtool_ops)
7416 dev->ethtool_ops = ops;
7417}
7418EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7419
74d332c1
ED
7420void netdev_freemem(struct net_device *dev)
7421{
7422 char *addr = (char *)dev - dev->padded;
7423
4cb28970 7424 kvfree(addr);
74d332c1
ED
7425}
7426
1da177e4 7427/**
36909ea4 7428 * alloc_netdev_mqs - allocate network device
c835a677
TG
7429 * @sizeof_priv: size of private data to allocate space for
7430 * @name: device name format string
7431 * @name_assign_type: origin of device name
7432 * @setup: callback to initialize device
7433 * @txqs: the number of TX subqueues to allocate
7434 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7435 *
7436 * Allocates a struct net_device with private data area for driver use
90e51adf 7437 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7438 * for each queue on the device.
1da177e4 7439 */
36909ea4 7440struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7441 unsigned char name_assign_type,
36909ea4
TH
7442 void (*setup)(struct net_device *),
7443 unsigned int txqs, unsigned int rxqs)
1da177e4 7444{
1da177e4 7445 struct net_device *dev;
7943986c 7446 size_t alloc_size;
1ce8e7b5 7447 struct net_device *p;
1da177e4 7448
b6fe17d6
SH
7449 BUG_ON(strlen(name) >= sizeof(dev->name));
7450
36909ea4 7451 if (txqs < 1) {
7b6cd1ce 7452 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7453 return NULL;
7454 }
7455
a953be53 7456#ifdef CONFIG_SYSFS
36909ea4 7457 if (rxqs < 1) {
7b6cd1ce 7458 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7459 return NULL;
7460 }
7461#endif
7462
fd2ea0a7 7463 alloc_size = sizeof(struct net_device);
d1643d24
AD
7464 if (sizeof_priv) {
7465 /* ensure 32-byte alignment of private area */
1ce8e7b5 7466 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7467 alloc_size += sizeof_priv;
7468 }
7469 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7470 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7471
74d332c1
ED
7472 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7473 if (!p)
7474 p = vzalloc(alloc_size);
62b5942a 7475 if (!p)
1da177e4 7476 return NULL;
1da177e4 7477
1ce8e7b5 7478 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7479 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7480
29b4433d
ED
7481 dev->pcpu_refcnt = alloc_percpu(int);
7482 if (!dev->pcpu_refcnt)
74d332c1 7483 goto free_dev;
ab9c73cc 7484
ab9c73cc 7485 if (dev_addr_init(dev))
29b4433d 7486 goto free_pcpu;
ab9c73cc 7487
22bedad3 7488 dev_mc_init(dev);
a748ee24 7489 dev_uc_init(dev);
ccffad25 7490
c346dca1 7491 dev_net_set(dev, &init_net);
1da177e4 7492
8d3bdbd5 7493 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7494 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7495
8d3bdbd5
DM
7496 INIT_LIST_HEAD(&dev->napi_list);
7497 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7498 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7499 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7500 INIT_LIST_HEAD(&dev->adj_list.upper);
7501 INIT_LIST_HEAD(&dev->adj_list.lower);
7502 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7503 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7504 INIT_LIST_HEAD(&dev->ptype_all);
7505 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 7506 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7507 setup(dev);
7508
a813104d 7509 if (!dev->tx_queue_len) {
f84bb1ea 7510 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7511 dev->tx_queue_len = 1;
7512 }
906470c1 7513
36909ea4
TH
7514 dev->num_tx_queues = txqs;
7515 dev->real_num_tx_queues = txqs;
ed9af2e8 7516 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7517 goto free_all;
e8a0464c 7518
a953be53 7519#ifdef CONFIG_SYSFS
36909ea4
TH
7520 dev->num_rx_queues = rxqs;
7521 dev->real_num_rx_queues = rxqs;
fe822240 7522 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7523 goto free_all;
df334545 7524#endif
0a9627f2 7525
1da177e4 7526 strcpy(dev->name, name);
c835a677 7527 dev->name_assign_type = name_assign_type;
cbda10fa 7528 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7529 if (!dev->ethtool_ops)
7530 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7531
7532 nf_hook_ingress_init(dev);
7533
1da177e4 7534 return dev;
ab9c73cc 7535
8d3bdbd5
DM
7536free_all:
7537 free_netdev(dev);
7538 return NULL;
7539
29b4433d
ED
7540free_pcpu:
7541 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7542free_dev:
7543 netdev_freemem(dev);
ab9c73cc 7544 return NULL;
1da177e4 7545}
36909ea4 7546EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7547
7548/**
7549 * free_netdev - free network device
7550 * @dev: device
7551 *
4ec93edb
YH
7552 * This function does the last stage of destroying an allocated device
7553 * interface. The reference to the device object is released.
1da177e4 7554 * If this is the last reference then it will be freed.
93d05d4a 7555 * Must be called in process context.
1da177e4
LT
7556 */
7557void free_netdev(struct net_device *dev)
7558{
d565b0a1
HX
7559 struct napi_struct *p, *n;
7560
93d05d4a 7561 might_sleep();
60877a32 7562 netif_free_tx_queues(dev);
a953be53 7563#ifdef CONFIG_SYSFS
10595902 7564 kvfree(dev->_rx);
fe822240 7565#endif
e8a0464c 7566
33d480ce 7567 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7568
f001fde5
JP
7569 /* Flush device addresses */
7570 dev_addr_flush(dev);
7571
d565b0a1
HX
7572 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7573 netif_napi_del(p);
7574
29b4433d
ED
7575 free_percpu(dev->pcpu_refcnt);
7576 dev->pcpu_refcnt = NULL;
7577
3041a069 7578 /* Compatibility with error handling in drivers */
1da177e4 7579 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7580 netdev_freemem(dev);
1da177e4
LT
7581 return;
7582 }
7583
7584 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7585 dev->reg_state = NETREG_RELEASED;
7586
43cb76d9
GKH
7587 /* will free via device release */
7588 put_device(&dev->dev);
1da177e4 7589}
d1b19dff 7590EXPORT_SYMBOL(free_netdev);
4ec93edb 7591
f0db275a
SH
7592/**
7593 * synchronize_net - Synchronize with packet receive processing
7594 *
7595 * Wait for packets currently being received to be done.
7596 * Does not block later packets from starting.
7597 */
4ec93edb 7598void synchronize_net(void)
1da177e4
LT
7599{
7600 might_sleep();
be3fc413
ED
7601 if (rtnl_is_locked())
7602 synchronize_rcu_expedited();
7603 else
7604 synchronize_rcu();
1da177e4 7605}
d1b19dff 7606EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7607
7608/**
44a0873d 7609 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7610 * @dev: device
44a0873d 7611 * @head: list
6ebfbc06 7612 *
1da177e4 7613 * This function shuts down a device interface and removes it
d59b54b1 7614 * from the kernel tables.
44a0873d 7615 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7616 *
7617 * Callers must hold the rtnl semaphore. You may want
7618 * unregister_netdev() instead of this.
7619 */
7620
44a0873d 7621void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7622{
a6620712
HX
7623 ASSERT_RTNL();
7624
44a0873d 7625 if (head) {
9fdce099 7626 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7627 } else {
7628 rollback_registered(dev);
7629 /* Finish processing unregister after unlock */
7630 net_set_todo(dev);
7631 }
1da177e4 7632}
44a0873d 7633EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7634
9b5e383c
ED
7635/**
7636 * unregister_netdevice_many - unregister many devices
7637 * @head: list of devices
87757a91
ED
7638 *
7639 * Note: As most callers use a stack allocated list_head,
7640 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7641 */
7642void unregister_netdevice_many(struct list_head *head)
7643{
7644 struct net_device *dev;
7645
7646 if (!list_empty(head)) {
7647 rollback_registered_many(head);
7648 list_for_each_entry(dev, head, unreg_list)
7649 net_set_todo(dev);
87757a91 7650 list_del(head);
9b5e383c
ED
7651 }
7652}
63c8099d 7653EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7654
1da177e4
LT
7655/**
7656 * unregister_netdev - remove device from the kernel
7657 * @dev: device
7658 *
7659 * This function shuts down a device interface and removes it
d59b54b1 7660 * from the kernel tables.
1da177e4
LT
7661 *
7662 * This is just a wrapper for unregister_netdevice that takes
7663 * the rtnl semaphore. In general you want to use this and not
7664 * unregister_netdevice.
7665 */
7666void unregister_netdev(struct net_device *dev)
7667{
7668 rtnl_lock();
7669 unregister_netdevice(dev);
7670 rtnl_unlock();
7671}
1da177e4
LT
7672EXPORT_SYMBOL(unregister_netdev);
7673
ce286d32
EB
7674/**
7675 * dev_change_net_namespace - move device to different nethost namespace
7676 * @dev: device
7677 * @net: network namespace
7678 * @pat: If not NULL name pattern to try if the current device name
7679 * is already taken in the destination network namespace.
7680 *
7681 * This function shuts down a device interface and moves it
7682 * to a new network namespace. On success 0 is returned, on
7683 * a failure a netagive errno code is returned.
7684 *
7685 * Callers must hold the rtnl semaphore.
7686 */
7687
7688int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7689{
ce286d32
EB
7690 int err;
7691
7692 ASSERT_RTNL();
7693
7694 /* Don't allow namespace local devices to be moved. */
7695 err = -EINVAL;
7696 if (dev->features & NETIF_F_NETNS_LOCAL)
7697 goto out;
7698
7699 /* Ensure the device has been registrered */
ce286d32
EB
7700 if (dev->reg_state != NETREG_REGISTERED)
7701 goto out;
7702
7703 /* Get out if there is nothing todo */
7704 err = 0;
878628fb 7705 if (net_eq(dev_net(dev), net))
ce286d32
EB
7706 goto out;
7707
7708 /* Pick the destination device name, and ensure
7709 * we can use it in the destination network namespace.
7710 */
7711 err = -EEXIST;
d9031024 7712 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7713 /* We get here if we can't use the current device name */
7714 if (!pat)
7715 goto out;
828de4f6 7716 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7717 goto out;
7718 }
7719
7720 /*
7721 * And now a mini version of register_netdevice unregister_netdevice.
7722 */
7723
7724 /* If device is running close it first. */
9b772652 7725 dev_close(dev);
ce286d32
EB
7726
7727 /* And unlink it from device chain */
7728 err = -ENODEV;
7729 unlist_netdevice(dev);
7730
7731 synchronize_net();
7732
7733 /* Shutdown queueing discipline. */
7734 dev_shutdown(dev);
7735
7736 /* Notify protocols, that we are about to destroy
7737 this device. They should clean all the things.
3b27e105
DL
7738
7739 Note that dev->reg_state stays at NETREG_REGISTERED.
7740 This is wanted because this way 8021q and macvlan know
7741 the device is just moving and can keep their slaves up.
ce286d32
EB
7742 */
7743 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7744 rcu_barrier();
7745 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7746 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7747
7748 /*
7749 * Flush the unicast and multicast chains
7750 */
a748ee24 7751 dev_uc_flush(dev);
22bedad3 7752 dev_mc_flush(dev);
ce286d32 7753
4e66ae2e
SH
7754 /* Send a netdev-removed uevent to the old namespace */
7755 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7756 netdev_adjacent_del_links(dev);
4e66ae2e 7757
ce286d32 7758 /* Actually switch the network namespace */
c346dca1 7759 dev_net_set(dev, net);
ce286d32 7760
ce286d32 7761 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7762 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7763 dev->ifindex = dev_new_index(net);
ce286d32 7764
4e66ae2e
SH
7765 /* Send a netdev-add uevent to the new namespace */
7766 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7767 netdev_adjacent_add_links(dev);
4e66ae2e 7768
8b41d188 7769 /* Fixup kobjects */
a1b3f594 7770 err = device_rename(&dev->dev, dev->name);
8b41d188 7771 WARN_ON(err);
ce286d32
EB
7772
7773 /* Add the device back in the hashes */
7774 list_netdevice(dev);
7775
7776 /* Notify protocols, that a new device appeared. */
7777 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7778
d90a909e
EB
7779 /*
7780 * Prevent userspace races by waiting until the network
7781 * device is fully setup before sending notifications.
7782 */
7f294054 7783 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7784
ce286d32
EB
7785 synchronize_net();
7786 err = 0;
7787out:
7788 return err;
7789}
463d0183 7790EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7791
1da177e4
LT
7792static int dev_cpu_callback(struct notifier_block *nfb,
7793 unsigned long action,
7794 void *ocpu)
7795{
7796 struct sk_buff **list_skb;
1da177e4
LT
7797 struct sk_buff *skb;
7798 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7799 struct softnet_data *sd, *oldsd;
7800
8bb78442 7801 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7802 return NOTIFY_OK;
7803
7804 local_irq_disable();
7805 cpu = smp_processor_id();
7806 sd = &per_cpu(softnet_data, cpu);
7807 oldsd = &per_cpu(softnet_data, oldcpu);
7808
7809 /* Find end of our completion_queue. */
7810 list_skb = &sd->completion_queue;
7811 while (*list_skb)
7812 list_skb = &(*list_skb)->next;
7813 /* Append completion queue from offline CPU. */
7814 *list_skb = oldsd->completion_queue;
7815 oldsd->completion_queue = NULL;
7816
1da177e4 7817 /* Append output queue from offline CPU. */
a9cbd588
CG
7818 if (oldsd->output_queue) {
7819 *sd->output_queue_tailp = oldsd->output_queue;
7820 sd->output_queue_tailp = oldsd->output_queue_tailp;
7821 oldsd->output_queue = NULL;
7822 oldsd->output_queue_tailp = &oldsd->output_queue;
7823 }
ac64da0b
ED
7824 /* Append NAPI poll list from offline CPU, with one exception :
7825 * process_backlog() must be called by cpu owning percpu backlog.
7826 * We properly handle process_queue & input_pkt_queue later.
7827 */
7828 while (!list_empty(&oldsd->poll_list)) {
7829 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7830 struct napi_struct,
7831 poll_list);
7832
7833 list_del_init(&napi->poll_list);
7834 if (napi->poll == process_backlog)
7835 napi->state = 0;
7836 else
7837 ____napi_schedule(sd, napi);
264524d5 7838 }
1da177e4
LT
7839
7840 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7841 local_irq_enable();
7842
7843 /* Process offline CPU's input_pkt_queue */
76cc8b13 7844 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7845 netif_rx_ni(skb);
76cc8b13 7846 input_queue_head_incr(oldsd);
fec5e652 7847 }
ac64da0b 7848 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7849 netif_rx_ni(skb);
76cc8b13
TH
7850 input_queue_head_incr(oldsd);
7851 }
1da177e4
LT
7852
7853 return NOTIFY_OK;
7854}
1da177e4
LT
7855
7856
7f353bf2 7857/**
b63365a2
HX
7858 * netdev_increment_features - increment feature set by one
7859 * @all: current feature set
7860 * @one: new feature set
7861 * @mask: mask feature set
7f353bf2
HX
7862 *
7863 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7864 * @one to the master device with current feature set @all. Will not
7865 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7866 */
c8f44aff
MM
7867netdev_features_t netdev_increment_features(netdev_features_t all,
7868 netdev_features_t one, netdev_features_t mask)
b63365a2 7869{
c8cd0989 7870 if (mask & NETIF_F_HW_CSUM)
a188222b 7871 mask |= NETIF_F_CSUM_MASK;
1742f183 7872 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7873
a188222b 7874 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 7875 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7876
1742f183 7877 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
7878 if (all & NETIF_F_HW_CSUM)
7879 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
7880
7881 return all;
7882}
b63365a2 7883EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7884
430f03cd 7885static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7886{
7887 int i;
7888 struct hlist_head *hash;
7889
7890 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7891 if (hash != NULL)
7892 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7893 INIT_HLIST_HEAD(&hash[i]);
7894
7895 return hash;
7896}
7897
881d966b 7898/* Initialize per network namespace state */
4665079c 7899static int __net_init netdev_init(struct net *net)
881d966b 7900{
734b6541
RM
7901 if (net != &init_net)
7902 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7903
30d97d35
PE
7904 net->dev_name_head = netdev_create_hash();
7905 if (net->dev_name_head == NULL)
7906 goto err_name;
881d966b 7907
30d97d35
PE
7908 net->dev_index_head = netdev_create_hash();
7909 if (net->dev_index_head == NULL)
7910 goto err_idx;
881d966b
EB
7911
7912 return 0;
30d97d35
PE
7913
7914err_idx:
7915 kfree(net->dev_name_head);
7916err_name:
7917 return -ENOMEM;
881d966b
EB
7918}
7919
f0db275a
SH
7920/**
7921 * netdev_drivername - network driver for the device
7922 * @dev: network device
f0db275a
SH
7923 *
7924 * Determine network driver for device.
7925 */
3019de12 7926const char *netdev_drivername(const struct net_device *dev)
6579e57b 7927{
cf04a4c7
SH
7928 const struct device_driver *driver;
7929 const struct device *parent;
3019de12 7930 const char *empty = "";
6579e57b
AV
7931
7932 parent = dev->dev.parent;
6579e57b 7933 if (!parent)
3019de12 7934 return empty;
6579e57b
AV
7935
7936 driver = parent->driver;
7937 if (driver && driver->name)
3019de12
DM
7938 return driver->name;
7939 return empty;
6579e57b
AV
7940}
7941
6ea754eb
JP
7942static void __netdev_printk(const char *level, const struct net_device *dev,
7943 struct va_format *vaf)
256df2f3 7944{
b004ff49 7945 if (dev && dev->dev.parent) {
6ea754eb
JP
7946 dev_printk_emit(level[1] - '0',
7947 dev->dev.parent,
7948 "%s %s %s%s: %pV",
7949 dev_driver_string(dev->dev.parent),
7950 dev_name(dev->dev.parent),
7951 netdev_name(dev), netdev_reg_state(dev),
7952 vaf);
b004ff49 7953 } else if (dev) {
6ea754eb
JP
7954 printk("%s%s%s: %pV",
7955 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7956 } else {
6ea754eb 7957 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7958 }
256df2f3
JP
7959}
7960
6ea754eb
JP
7961void netdev_printk(const char *level, const struct net_device *dev,
7962 const char *format, ...)
256df2f3
JP
7963{
7964 struct va_format vaf;
7965 va_list args;
256df2f3
JP
7966
7967 va_start(args, format);
7968
7969 vaf.fmt = format;
7970 vaf.va = &args;
7971
6ea754eb 7972 __netdev_printk(level, dev, &vaf);
b004ff49 7973
256df2f3 7974 va_end(args);
256df2f3
JP
7975}
7976EXPORT_SYMBOL(netdev_printk);
7977
7978#define define_netdev_printk_level(func, level) \
6ea754eb 7979void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7980{ \
256df2f3
JP
7981 struct va_format vaf; \
7982 va_list args; \
7983 \
7984 va_start(args, fmt); \
7985 \
7986 vaf.fmt = fmt; \
7987 vaf.va = &args; \
7988 \
6ea754eb 7989 __netdev_printk(level, dev, &vaf); \
b004ff49 7990 \
256df2f3 7991 va_end(args); \
256df2f3
JP
7992} \
7993EXPORT_SYMBOL(func);
7994
7995define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7996define_netdev_printk_level(netdev_alert, KERN_ALERT);
7997define_netdev_printk_level(netdev_crit, KERN_CRIT);
7998define_netdev_printk_level(netdev_err, KERN_ERR);
7999define_netdev_printk_level(netdev_warn, KERN_WARNING);
8000define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8001define_netdev_printk_level(netdev_info, KERN_INFO);
8002
4665079c 8003static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8004{
8005 kfree(net->dev_name_head);
8006 kfree(net->dev_index_head);
8007}
8008
022cbae6 8009static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8010 .init = netdev_init,
8011 .exit = netdev_exit,
8012};
8013
4665079c 8014static void __net_exit default_device_exit(struct net *net)
ce286d32 8015{
e008b5fc 8016 struct net_device *dev, *aux;
ce286d32 8017 /*
e008b5fc 8018 * Push all migratable network devices back to the
ce286d32
EB
8019 * initial network namespace
8020 */
8021 rtnl_lock();
e008b5fc 8022 for_each_netdev_safe(net, dev, aux) {
ce286d32 8023 int err;
aca51397 8024 char fb_name[IFNAMSIZ];
ce286d32
EB
8025
8026 /* Ignore unmoveable devices (i.e. loopback) */
8027 if (dev->features & NETIF_F_NETNS_LOCAL)
8028 continue;
8029
e008b5fc
EB
8030 /* Leave virtual devices for the generic cleanup */
8031 if (dev->rtnl_link_ops)
8032 continue;
d0c082ce 8033
25985edc 8034 /* Push remaining network devices to init_net */
aca51397
PE
8035 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8036 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8037 if (err) {
7b6cd1ce
JP
8038 pr_emerg("%s: failed to move %s to init_net: %d\n",
8039 __func__, dev->name, err);
aca51397 8040 BUG();
ce286d32
EB
8041 }
8042 }
8043 rtnl_unlock();
8044}
8045
50624c93
EB
8046static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8047{
8048 /* Return with the rtnl_lock held when there are no network
8049 * devices unregistering in any network namespace in net_list.
8050 */
8051 struct net *net;
8052 bool unregistering;
ff960a73 8053 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8054
ff960a73 8055 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8056 for (;;) {
50624c93
EB
8057 unregistering = false;
8058 rtnl_lock();
8059 list_for_each_entry(net, net_list, exit_list) {
8060 if (net->dev_unreg_count > 0) {
8061 unregistering = true;
8062 break;
8063 }
8064 }
8065 if (!unregistering)
8066 break;
8067 __rtnl_unlock();
ff960a73
PZ
8068
8069 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8070 }
ff960a73 8071 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8072}
8073
04dc7f6b
EB
8074static void __net_exit default_device_exit_batch(struct list_head *net_list)
8075{
8076 /* At exit all network devices most be removed from a network
b595076a 8077 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8078 * Do this across as many network namespaces as possible to
8079 * improve batching efficiency.
8080 */
8081 struct net_device *dev;
8082 struct net *net;
8083 LIST_HEAD(dev_kill_list);
8084
50624c93
EB
8085 /* To prevent network device cleanup code from dereferencing
8086 * loopback devices or network devices that have been freed
8087 * wait here for all pending unregistrations to complete,
8088 * before unregistring the loopback device and allowing the
8089 * network namespace be freed.
8090 *
8091 * The netdev todo list containing all network devices
8092 * unregistrations that happen in default_device_exit_batch
8093 * will run in the rtnl_unlock() at the end of
8094 * default_device_exit_batch.
8095 */
8096 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8097 list_for_each_entry(net, net_list, exit_list) {
8098 for_each_netdev_reverse(net, dev) {
b0ab2fab 8099 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8100 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8101 else
8102 unregister_netdevice_queue(dev, &dev_kill_list);
8103 }
8104 }
8105 unregister_netdevice_many(&dev_kill_list);
8106 rtnl_unlock();
8107}
8108
022cbae6 8109static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8110 .exit = default_device_exit,
04dc7f6b 8111 .exit_batch = default_device_exit_batch,
ce286d32
EB
8112};
8113
1da177e4
LT
8114/*
8115 * Initialize the DEV module. At boot time this walks the device list and
8116 * unhooks any devices that fail to initialise (normally hardware not
8117 * present) and leaves us with a valid list of present and active devices.
8118 *
8119 */
8120
8121/*
8122 * This is called single threaded during boot, so no need
8123 * to take the rtnl semaphore.
8124 */
8125static int __init net_dev_init(void)
8126{
8127 int i, rc = -ENOMEM;
8128
8129 BUG_ON(!dev_boot_phase);
8130
1da177e4
LT
8131 if (dev_proc_init())
8132 goto out;
8133
8b41d188 8134 if (netdev_kobject_init())
1da177e4
LT
8135 goto out;
8136
8137 INIT_LIST_HEAD(&ptype_all);
82d8a867 8138 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8139 INIT_LIST_HEAD(&ptype_base[i]);
8140
62532da9
VY
8141 INIT_LIST_HEAD(&offload_base);
8142
881d966b
EB
8143 if (register_pernet_subsys(&netdev_net_ops))
8144 goto out;
1da177e4
LT
8145
8146 /*
8147 * Initialise the packet receive queues.
8148 */
8149
6f912042 8150 for_each_possible_cpu(i) {
e36fa2f7 8151 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8152
e36fa2f7 8153 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8154 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8155 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8156 sd->output_queue_tailp = &sd->output_queue;
df334545 8157#ifdef CONFIG_RPS
e36fa2f7
ED
8158 sd->csd.func = rps_trigger_softirq;
8159 sd->csd.info = sd;
e36fa2f7 8160 sd->cpu = i;
1e94d72f 8161#endif
0a9627f2 8162
e36fa2f7
ED
8163 sd->backlog.poll = process_backlog;
8164 sd->backlog.weight = weight_p;
1da177e4
LT
8165 }
8166
1da177e4
LT
8167 dev_boot_phase = 0;
8168
505d4f73
EB
8169 /* The loopback device is special if any other network devices
8170 * is present in a network namespace the loopback device must
8171 * be present. Since we now dynamically allocate and free the
8172 * loopback device ensure this invariant is maintained by
8173 * keeping the loopback device as the first device on the
8174 * list of network devices. Ensuring the loopback devices
8175 * is the first device that appears and the last network device
8176 * that disappears.
8177 */
8178 if (register_pernet_device(&loopback_net_ops))
8179 goto out;
8180
8181 if (register_pernet_device(&default_device_ops))
8182 goto out;
8183
962cf36c
CM
8184 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8185 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8186
8187 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8188 dst_subsys_init();
1da177e4
LT
8189 rc = 0;
8190out:
8191 return rc;
8192}
8193
8194subsys_initcall(net_dev_init);