]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - net/core/dev.c
openvswitch: Fix egress tunnel info.
[mirror_ubuntu-focal-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4 101#include <net/dst.h>
fc4099f1 102#include <net/dst_metadata.h>
1da177e4
LT
103#include <net/pkt_sched.h>
104#include <net/checksum.h>
44540960 105#include <net/xfrm.h>
1da177e4
LT
106#include <linux/highmem.h>
107#include <linux/init.h>
1da177e4 108#include <linux/module.h>
1da177e4
LT
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
1da177e4 112#include <net/iw_handler.h>
1da177e4 113#include <asm/current.h>
5bdb9886 114#include <linux/audit.h>
db217334 115#include <linux/dmaengine.h>
f6a78bfc 116#include <linux/err.h>
c7fa9d18 117#include <linux/ctype.h>
723e98b7 118#include <linux/if_arp.h>
6de329e2 119#include <linux/if_vlan.h>
8f0f2223 120#include <linux/ip.h>
ad55dcaf 121#include <net/ip.h>
25cd9ba0 122#include <net/mpls.h>
8f0f2223
DM
123#include <linux/ipv6.h>
124#include <linux/in.h>
b6b2fed1
DM
125#include <linux/jhash.h>
126#include <linux/random.h>
9cbc1cb8 127#include <trace/events/napi.h>
cf66ba58 128#include <trace/events/net.h>
07dc22e7 129#include <trace/events/skb.h>
5acbbd42 130#include <linux/pci.h>
caeda9b9 131#include <linux/inetdevice.h>
c445477d 132#include <linux/cpu_rmap.h>
c5905afb 133#include <linux/static_key.h>
af12fa6e 134#include <linux/hashtable.h>
60877a32 135#include <linux/vmalloc.h>
529d0489 136#include <linux/if_macvlan.h>
e7fd2885 137#include <linux/errqueue.h>
3b47d303 138#include <linux/hrtimer.h>
e687ad60 139#include <linux/netfilter_ingress.h>
1da177e4 140
342709ef
PE
141#include "net-sysfs.h"
142
d565b0a1
HX
143/* Instead of increasing this, you should create a hash table. */
144#define MAX_GRO_SKBS 8
145
5d38a079
HX
146/* This should be increased if a protocol with a bigger head is added. */
147#define GRO_MAX_HEAD (MAX_HEADER + 128)
148
1da177e4 149static DEFINE_SPINLOCK(ptype_lock);
62532da9 150static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
151struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152struct list_head ptype_all __read_mostly; /* Taps */
62532da9 153static struct list_head offload_base __read_mostly;
1da177e4 154
ae78dbfa 155static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
156static int call_netdevice_notifiers_info(unsigned long val,
157 struct net_device *dev,
158 struct netdev_notifier_info *info);
ae78dbfa 159
1da177e4 160/*
7562f876 161 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
162 * semaphore.
163 *
c6d14c84 164 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
165 *
166 * Writers must hold the rtnl semaphore while they loop through the
7562f876 167 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
168 * actual updates. This allows pure readers to access the list even
169 * while a writer is preparing to update it.
170 *
171 * To put it another way, dev_base_lock is held for writing only to
172 * protect against pure readers; the rtnl semaphore provides the
173 * protection against other writers.
174 *
175 * See, for example usages, register_netdevice() and
176 * unregister_netdevice(), which must be called with the rtnl
177 * semaphore held.
178 */
1da177e4 179DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
180EXPORT_SYMBOL(dev_base_lock);
181
af12fa6e
ET
182/* protects napi_hash addition/deletion and napi_gen_id */
183static DEFINE_SPINLOCK(napi_hash_lock);
184
185static unsigned int napi_gen_id;
186static DEFINE_HASHTABLE(napi_hash, 8);
187
18afa4b0 188static seqcount_t devnet_rename_seq;
c91f6df2 189
4e985ada
TG
190static inline void dev_base_seq_inc(struct net *net)
191{
192 while (++net->dev_base_seq == 0);
193}
194
881d966b 195static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 196{
95c96174
ED
197 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198
08e9897d 199 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
200}
201
881d966b 202static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 203{
7c28bd0b 204 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
205}
206
e36fa2f7 207static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
208{
209#ifdef CONFIG_RPS
e36fa2f7 210 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
211#endif
212}
213
e36fa2f7 214static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
215{
216#ifdef CONFIG_RPS
e36fa2f7 217 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
218#endif
219}
220
ce286d32 221/* Device list insertion */
53759be9 222static void list_netdevice(struct net_device *dev)
ce286d32 223{
c346dca1 224 struct net *net = dev_net(dev);
ce286d32
EB
225
226 ASSERT_RTNL();
227
228 write_lock_bh(&dev_base_lock);
c6d14c84 229 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 230 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
231 hlist_add_head_rcu(&dev->index_hlist,
232 dev_index_hash(net, dev->ifindex));
ce286d32 233 write_unlock_bh(&dev_base_lock);
4e985ada
TG
234
235 dev_base_seq_inc(net);
ce286d32
EB
236}
237
fb699dfd
ED
238/* Device list removal
239 * caller must respect a RCU grace period before freeing/reusing dev
240 */
ce286d32
EB
241static void unlist_netdevice(struct net_device *dev)
242{
243 ASSERT_RTNL();
244
245 /* Unlink dev from the device chain */
246 write_lock_bh(&dev_base_lock);
c6d14c84 247 list_del_rcu(&dev->dev_list);
72c9528b 248 hlist_del_rcu(&dev->name_hlist);
fb699dfd 249 hlist_del_rcu(&dev->index_hlist);
ce286d32 250 write_unlock_bh(&dev_base_lock);
4e985ada
TG
251
252 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
253}
254
1da177e4
LT
255/*
256 * Our notifier list
257 */
258
f07d5b94 259static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
260
261/*
262 * Device drivers call our routines to queue packets here. We empty the
263 * queue in the local softnet handler.
264 */
bea3348e 265
9958da05 266DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 267EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 268
cf508b12 269#ifdef CONFIG_LOCKDEP
723e98b7 270/*
c773e847 271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
272 * according to dev->type
273 */
274static const unsigned short netdev_lock_type[] =
275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
287 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 290
36cbd3dc 291static const char *const netdev_lock_name[] =
723e98b7
JP
292 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
304 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
307
308static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 309static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
310
311static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312{
313 int i;
314
315 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316 if (netdev_lock_type[i] == dev_type)
317 return i;
318 /* the last key is used by default */
319 return ARRAY_SIZE(netdev_lock_type) - 1;
320}
321
cf508b12
DM
322static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323 unsigned short dev_type)
723e98b7
JP
324{
325 int i;
326
327 i = netdev_lock_pos(dev_type);
328 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329 netdev_lock_name[i]);
330}
cf508b12
DM
331
332static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333{
334 int i;
335
336 i = netdev_lock_pos(dev->type);
337 lockdep_set_class_and_name(&dev->addr_list_lock,
338 &netdev_addr_lock_key[i],
339 netdev_lock_name[i]);
340}
723e98b7 341#else
cf508b12
DM
342static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343 unsigned short dev_type)
344{
345}
346static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
347{
348}
349#endif
1da177e4
LT
350
351/*******************************************************************************
352
353 Protocol management and registration routines
354
355*******************************************************************************/
356
1da177e4
LT
357/*
358 * Add a protocol ID to the list. Now that the input handler is
359 * smarter we can dispense with all the messy stuff that used to be
360 * here.
361 *
362 * BEWARE!!! Protocol handlers, mangling input packets,
363 * MUST BE last in hash buckets and checking protocol handlers
364 * MUST start from promiscuous ptype_all chain in net_bh.
365 * It is true now, do not change it.
366 * Explanation follows: if protocol handler, mangling packet, will
367 * be the first on list, it is not able to sense, that packet
368 * is cloned and should be copied-on-write, so that it will
369 * change it and subsequent readers will get broken packet.
370 * --ANK (980803)
371 */
372
c07b68e8
ED
373static inline struct list_head *ptype_head(const struct packet_type *pt)
374{
375 if (pt->type == htons(ETH_P_ALL))
7866a621 376 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 377 else
7866a621
SN
378 return pt->dev ? &pt->dev->ptype_specific :
379 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
380}
381
1da177e4
LT
382/**
383 * dev_add_pack - add packet handler
384 * @pt: packet type declaration
385 *
386 * Add a protocol handler to the networking stack. The passed &packet_type
387 * is linked into kernel lists and may not be freed until it has been
388 * removed from the kernel lists.
389 *
4ec93edb 390 * This call does not sleep therefore it can not
1da177e4
LT
391 * guarantee all CPU's that are in middle of receiving packets
392 * will see the new packet type (until the next received packet).
393 */
394
395void dev_add_pack(struct packet_type *pt)
396{
c07b68e8 397 struct list_head *head = ptype_head(pt);
1da177e4 398
c07b68e8
ED
399 spin_lock(&ptype_lock);
400 list_add_rcu(&pt->list, head);
401 spin_unlock(&ptype_lock);
1da177e4 402}
d1b19dff 403EXPORT_SYMBOL(dev_add_pack);
1da177e4 404
1da177e4
LT
405/**
406 * __dev_remove_pack - remove packet handler
407 * @pt: packet type declaration
408 *
409 * Remove a protocol handler that was previously added to the kernel
410 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
411 * from the kernel lists and can be freed or reused once this function
4ec93edb 412 * returns.
1da177e4
LT
413 *
414 * The packet type might still be in use by receivers
415 * and must not be freed until after all the CPU's have gone
416 * through a quiescent state.
417 */
418void __dev_remove_pack(struct packet_type *pt)
419{
c07b68e8 420 struct list_head *head = ptype_head(pt);
1da177e4
LT
421 struct packet_type *pt1;
422
c07b68e8 423 spin_lock(&ptype_lock);
1da177e4
LT
424
425 list_for_each_entry(pt1, head, list) {
426 if (pt == pt1) {
427 list_del_rcu(&pt->list);
428 goto out;
429 }
430 }
431
7b6cd1ce 432 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 433out:
c07b68e8 434 spin_unlock(&ptype_lock);
1da177e4 435}
d1b19dff
ED
436EXPORT_SYMBOL(__dev_remove_pack);
437
1da177e4
LT
438/**
439 * dev_remove_pack - remove packet handler
440 * @pt: packet type declaration
441 *
442 * Remove a protocol handler that was previously added to the kernel
443 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
444 * from the kernel lists and can be freed or reused once this function
445 * returns.
446 *
447 * This call sleeps to guarantee that no CPU is looking at the packet
448 * type after return.
449 */
450void dev_remove_pack(struct packet_type *pt)
451{
452 __dev_remove_pack(pt);
4ec93edb 453
1da177e4
LT
454 synchronize_net();
455}
d1b19dff 456EXPORT_SYMBOL(dev_remove_pack);
1da177e4 457
62532da9
VY
458
459/**
460 * dev_add_offload - register offload handlers
461 * @po: protocol offload declaration
462 *
463 * Add protocol offload handlers to the networking stack. The passed
464 * &proto_offload is linked into kernel lists and may not be freed until
465 * it has been removed from the kernel lists.
466 *
467 * This call does not sleep therefore it can not
468 * guarantee all CPU's that are in middle of receiving packets
469 * will see the new offload handlers (until the next received packet).
470 */
471void dev_add_offload(struct packet_offload *po)
472{
bdef7de4 473 struct packet_offload *elem;
62532da9
VY
474
475 spin_lock(&offload_lock);
bdef7de4
DM
476 list_for_each_entry(elem, &offload_base, list) {
477 if (po->priority < elem->priority)
478 break;
479 }
480 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
481 spin_unlock(&offload_lock);
482}
483EXPORT_SYMBOL(dev_add_offload);
484
485/**
486 * __dev_remove_offload - remove offload handler
487 * @po: packet offload declaration
488 *
489 * Remove a protocol offload handler that was previously added to the
490 * kernel offload handlers by dev_add_offload(). The passed &offload_type
491 * is removed from the kernel lists and can be freed or reused once this
492 * function returns.
493 *
494 * The packet type might still be in use by receivers
495 * and must not be freed until after all the CPU's have gone
496 * through a quiescent state.
497 */
1d143d9f 498static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
499{
500 struct list_head *head = &offload_base;
501 struct packet_offload *po1;
502
c53aa505 503 spin_lock(&offload_lock);
62532da9
VY
504
505 list_for_each_entry(po1, head, list) {
506 if (po == po1) {
507 list_del_rcu(&po->list);
508 goto out;
509 }
510 }
511
512 pr_warn("dev_remove_offload: %p not found\n", po);
513out:
c53aa505 514 spin_unlock(&offload_lock);
62532da9 515}
62532da9
VY
516
517/**
518 * dev_remove_offload - remove packet offload handler
519 * @po: packet offload declaration
520 *
521 * Remove a packet offload handler that was previously added to the kernel
522 * offload handlers by dev_add_offload(). The passed &offload_type is
523 * removed from the kernel lists and can be freed or reused once this
524 * function returns.
525 *
526 * This call sleeps to guarantee that no CPU is looking at the packet
527 * type after return.
528 */
529void dev_remove_offload(struct packet_offload *po)
530{
531 __dev_remove_offload(po);
532
533 synchronize_net();
534}
535EXPORT_SYMBOL(dev_remove_offload);
536
1da177e4
LT
537/******************************************************************************
538
539 Device Boot-time Settings Routines
540
541*******************************************************************************/
542
543/* Boot time configuration table */
544static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545
546/**
547 * netdev_boot_setup_add - add new setup entry
548 * @name: name of the device
549 * @map: configured settings for the device
550 *
551 * Adds new setup entry to the dev_boot_setup list. The function
552 * returns 0 on error and 1 on success. This is a generic routine to
553 * all netdevices.
554 */
555static int netdev_boot_setup_add(char *name, struct ifmap *map)
556{
557 struct netdev_boot_setup *s;
558 int i;
559
560 s = dev_boot_setup;
561 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 564 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
565 memcpy(&s[i].map, map, sizeof(s[i].map));
566 break;
567 }
568 }
569
570 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571}
572
573/**
574 * netdev_boot_setup_check - check boot time settings
575 * @dev: the netdevice
576 *
577 * Check boot time settings for the device.
578 * The found settings are set for the device to be used
579 * later in the device probing.
580 * Returns 0 if no settings found, 1 if they are.
581 */
582int netdev_boot_setup_check(struct net_device *dev)
583{
584 struct netdev_boot_setup *s = dev_boot_setup;
585 int i;
586
587 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 589 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
590 dev->irq = s[i].map.irq;
591 dev->base_addr = s[i].map.base_addr;
592 dev->mem_start = s[i].map.mem_start;
593 dev->mem_end = s[i].map.mem_end;
594 return 1;
595 }
596 }
597 return 0;
598}
d1b19dff 599EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
600
601
602/**
603 * netdev_boot_base - get address from boot time settings
604 * @prefix: prefix for network device
605 * @unit: id for network device
606 *
607 * Check boot time settings for the base address of device.
608 * The found settings are set for the device to be used
609 * later in the device probing.
610 * Returns 0 if no settings found.
611 */
612unsigned long netdev_boot_base(const char *prefix, int unit)
613{
614 const struct netdev_boot_setup *s = dev_boot_setup;
615 char name[IFNAMSIZ];
616 int i;
617
618 sprintf(name, "%s%d", prefix, unit);
619
620 /*
621 * If device already registered then return base of 1
622 * to indicate not to probe for this interface
623 */
881d966b 624 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
625 return 1;
626
627 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628 if (!strcmp(name, s[i].name))
629 return s[i].map.base_addr;
630 return 0;
631}
632
633/*
634 * Saves at boot time configured settings for any netdevice.
635 */
636int __init netdev_boot_setup(char *str)
637{
638 int ints[5];
639 struct ifmap map;
640
641 str = get_options(str, ARRAY_SIZE(ints), ints);
642 if (!str || !*str)
643 return 0;
644
645 /* Save settings */
646 memset(&map, 0, sizeof(map));
647 if (ints[0] > 0)
648 map.irq = ints[1];
649 if (ints[0] > 1)
650 map.base_addr = ints[2];
651 if (ints[0] > 2)
652 map.mem_start = ints[3];
653 if (ints[0] > 3)
654 map.mem_end = ints[4];
655
656 /* Add new entry to the list */
657 return netdev_boot_setup_add(str, &map);
658}
659
660__setup("netdev=", netdev_boot_setup);
661
662/*******************************************************************************
663
664 Device Interface Subroutines
665
666*******************************************************************************/
667
a54acb3a
ND
668/**
669 * dev_get_iflink - get 'iflink' value of a interface
670 * @dev: targeted interface
671 *
672 * Indicates the ifindex the interface is linked to.
673 * Physical interfaces have the same 'ifindex' and 'iflink' values.
674 */
675
676int dev_get_iflink(const struct net_device *dev)
677{
678 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679 return dev->netdev_ops->ndo_get_iflink(dev);
680
7a66bbc9 681 return dev->ifindex;
a54acb3a
ND
682}
683EXPORT_SYMBOL(dev_get_iflink);
684
fc4099f1
PS
685/**
686 * dev_fill_metadata_dst - Retrieve tunnel egress information.
687 * @dev: targeted interface
688 * @skb: The packet.
689 *
690 * For better visibility of tunnel traffic OVS needs to retrieve
691 * egress tunnel information for a packet. Following API allows
692 * user to get this info.
693 */
694int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695{
696 struct ip_tunnel_info *info;
697
698 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
699 return -EINVAL;
700
701 info = skb_tunnel_info_unclone(skb);
702 if (!info)
703 return -ENOMEM;
704 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705 return -EINVAL;
706
707 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708}
709EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710
1da177e4
LT
711/**
712 * __dev_get_by_name - find a device by its name
c4ea43c5 713 * @net: the applicable net namespace
1da177e4
LT
714 * @name: name to find
715 *
716 * Find an interface by name. Must be called under RTNL semaphore
717 * or @dev_base_lock. If the name is found a pointer to the device
718 * is returned. If the name is not found then %NULL is returned. The
719 * reference counters are not incremented so the caller must be
720 * careful with locks.
721 */
722
881d966b 723struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 724{
0bd8d536
ED
725 struct net_device *dev;
726 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 727
b67bfe0d 728 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
729 if (!strncmp(dev->name, name, IFNAMSIZ))
730 return dev;
0bd8d536 731
1da177e4
LT
732 return NULL;
733}
d1b19dff 734EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 735
72c9528b
ED
736/**
737 * dev_get_by_name_rcu - find a device by its name
738 * @net: the applicable net namespace
739 * @name: name to find
740 *
741 * Find an interface by name.
742 * If the name is found a pointer to the device is returned.
743 * If the name is not found then %NULL is returned.
744 * The reference counters are not incremented so the caller must be
745 * careful with locks. The caller must hold RCU lock.
746 */
747
748struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749{
72c9528b
ED
750 struct net_device *dev;
751 struct hlist_head *head = dev_name_hash(net, name);
752
b67bfe0d 753 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
754 if (!strncmp(dev->name, name, IFNAMSIZ))
755 return dev;
756
757 return NULL;
758}
759EXPORT_SYMBOL(dev_get_by_name_rcu);
760
1da177e4
LT
761/**
762 * dev_get_by_name - find a device by its name
c4ea43c5 763 * @net: the applicable net namespace
1da177e4
LT
764 * @name: name to find
765 *
766 * Find an interface by name. This can be called from any
767 * context and does its own locking. The returned handle has
768 * the usage count incremented and the caller must use dev_put() to
769 * release it when it is no longer needed. %NULL is returned if no
770 * matching device is found.
771 */
772
881d966b 773struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
774{
775 struct net_device *dev;
776
72c9528b
ED
777 rcu_read_lock();
778 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
779 if (dev)
780 dev_hold(dev);
72c9528b 781 rcu_read_unlock();
1da177e4
LT
782 return dev;
783}
d1b19dff 784EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
785
786/**
787 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 788 * @net: the applicable net namespace
1da177e4
LT
789 * @ifindex: index of device
790 *
791 * Search for an interface by index. Returns %NULL if the device
792 * is not found or a pointer to the device. The device has not
793 * had its reference counter increased so the caller must be careful
794 * about locking. The caller must hold either the RTNL semaphore
795 * or @dev_base_lock.
796 */
797
881d966b 798struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 799{
0bd8d536
ED
800 struct net_device *dev;
801 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 802
b67bfe0d 803 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
804 if (dev->ifindex == ifindex)
805 return dev;
0bd8d536 806
1da177e4
LT
807 return NULL;
808}
d1b19dff 809EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 810
fb699dfd
ED
811/**
812 * dev_get_by_index_rcu - find a device by its ifindex
813 * @net: the applicable net namespace
814 * @ifindex: index of device
815 *
816 * Search for an interface by index. Returns %NULL if the device
817 * is not found or a pointer to the device. The device has not
818 * had its reference counter increased so the caller must be careful
819 * about locking. The caller must hold RCU lock.
820 */
821
822struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823{
fb699dfd
ED
824 struct net_device *dev;
825 struct hlist_head *head = dev_index_hash(net, ifindex);
826
b67bfe0d 827 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
828 if (dev->ifindex == ifindex)
829 return dev;
830
831 return NULL;
832}
833EXPORT_SYMBOL(dev_get_by_index_rcu);
834
1da177e4
LT
835
836/**
837 * dev_get_by_index - find a device by its ifindex
c4ea43c5 838 * @net: the applicable net namespace
1da177e4
LT
839 * @ifindex: index of device
840 *
841 * Search for an interface by index. Returns NULL if the device
842 * is not found or a pointer to the device. The device returned has
843 * had a reference added and the pointer is safe until the user calls
844 * dev_put to indicate they have finished with it.
845 */
846
881d966b 847struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
848{
849 struct net_device *dev;
850
fb699dfd
ED
851 rcu_read_lock();
852 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
853 if (dev)
854 dev_hold(dev);
fb699dfd 855 rcu_read_unlock();
1da177e4
LT
856 return dev;
857}
d1b19dff 858EXPORT_SYMBOL(dev_get_by_index);
1da177e4 859
5dbe7c17
NS
860/**
861 * netdev_get_name - get a netdevice name, knowing its ifindex.
862 * @net: network namespace
863 * @name: a pointer to the buffer where the name will be stored.
864 * @ifindex: the ifindex of the interface to get the name from.
865 *
866 * The use of raw_seqcount_begin() and cond_resched() before
867 * retrying is required as we want to give the writers a chance
868 * to complete when CONFIG_PREEMPT is not set.
869 */
870int netdev_get_name(struct net *net, char *name, int ifindex)
871{
872 struct net_device *dev;
873 unsigned int seq;
874
875retry:
876 seq = raw_seqcount_begin(&devnet_rename_seq);
877 rcu_read_lock();
878 dev = dev_get_by_index_rcu(net, ifindex);
879 if (!dev) {
880 rcu_read_unlock();
881 return -ENODEV;
882 }
883
884 strcpy(name, dev->name);
885 rcu_read_unlock();
886 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887 cond_resched();
888 goto retry;
889 }
890
891 return 0;
892}
893
1da177e4 894/**
941666c2 895 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 896 * @net: the applicable net namespace
1da177e4
LT
897 * @type: media type of device
898 * @ha: hardware address
899 *
900 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
901 * is not found or a pointer to the device.
902 * The caller must hold RCU or RTNL.
941666c2 903 * The returned device has not had its ref count increased
1da177e4
LT
904 * and the caller must therefore be careful about locking
905 *
1da177e4
LT
906 */
907
941666c2
ED
908struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909 const char *ha)
1da177e4
LT
910{
911 struct net_device *dev;
912
941666c2 913 for_each_netdev_rcu(net, dev)
1da177e4
LT
914 if (dev->type == type &&
915 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
916 return dev;
917
918 return NULL;
1da177e4 919}
941666c2 920EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 921
881d966b 922struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
923{
924 struct net_device *dev;
925
4e9cac2b 926 ASSERT_RTNL();
881d966b 927 for_each_netdev(net, dev)
4e9cac2b 928 if (dev->type == type)
7562f876
PE
929 return dev;
930
931 return NULL;
4e9cac2b 932}
4e9cac2b
PM
933EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934
881d966b 935struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 936{
99fe3c39 937 struct net_device *dev, *ret = NULL;
4e9cac2b 938
99fe3c39
ED
939 rcu_read_lock();
940 for_each_netdev_rcu(net, dev)
941 if (dev->type == type) {
942 dev_hold(dev);
943 ret = dev;
944 break;
945 }
946 rcu_read_unlock();
947 return ret;
1da177e4 948}
1da177e4
LT
949EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951/**
6c555490 952 * __dev_get_by_flags - find any device with given flags
c4ea43c5 953 * @net: the applicable net namespace
1da177e4
LT
954 * @if_flags: IFF_* values
955 * @mask: bitmask of bits in if_flags to check
956 *
957 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 958 * is not found or a pointer to the device. Must be called inside
6c555490 959 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
960 */
961
6c555490
WC
962struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963 unsigned short mask)
1da177e4 964{
7562f876 965 struct net_device *dev, *ret;
1da177e4 966
6c555490
WC
967 ASSERT_RTNL();
968
7562f876 969 ret = NULL;
6c555490 970 for_each_netdev(net, dev) {
1da177e4 971 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 972 ret = dev;
1da177e4
LT
973 break;
974 }
975 }
7562f876 976 return ret;
1da177e4 977}
6c555490 978EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
979
980/**
981 * dev_valid_name - check if name is okay for network device
982 * @name: name string
983 *
984 * Network device names need to be valid file names to
c7fa9d18
DM
985 * to allow sysfs to work. We also disallow any kind of
986 * whitespace.
1da177e4 987 */
95f050bf 988bool dev_valid_name(const char *name)
1da177e4 989{
c7fa9d18 990 if (*name == '\0')
95f050bf 991 return false;
b6fe17d6 992 if (strlen(name) >= IFNAMSIZ)
95f050bf 993 return false;
c7fa9d18 994 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 995 return false;
c7fa9d18
DM
996
997 while (*name) {
a4176a93 998 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 999 return false;
c7fa9d18
DM
1000 name++;
1001 }
95f050bf 1002 return true;
1da177e4 1003}
d1b19dff 1004EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1005
1006/**
b267b179
EB
1007 * __dev_alloc_name - allocate a name for a device
1008 * @net: network namespace to allocate the device name in
1da177e4 1009 * @name: name format string
b267b179 1010 * @buf: scratch buffer and result name string
1da177e4
LT
1011 *
1012 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1013 * id. It scans list of devices to build up a free map, then chooses
1014 * the first empty slot. The caller must hold the dev_base or rtnl lock
1015 * while allocating the name and adding the device in order to avoid
1016 * duplicates.
1017 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1019 */
1020
b267b179 1021static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1022{
1023 int i = 0;
1da177e4
LT
1024 const char *p;
1025 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1026 unsigned long *inuse;
1da177e4
LT
1027 struct net_device *d;
1028
1029 p = strnchr(name, IFNAMSIZ-1, '%');
1030 if (p) {
1031 /*
1032 * Verify the string as this thing may have come from
1033 * the user. There must be either one "%d" and no other "%"
1034 * characters.
1035 */
1036 if (p[1] != 'd' || strchr(p + 2, '%'))
1037 return -EINVAL;
1038
1039 /* Use one page as a bit array of possible slots */
cfcabdcc 1040 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1041 if (!inuse)
1042 return -ENOMEM;
1043
881d966b 1044 for_each_netdev(net, d) {
1da177e4
LT
1045 if (!sscanf(d->name, name, &i))
1046 continue;
1047 if (i < 0 || i >= max_netdevices)
1048 continue;
1049
1050 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1051 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1052 if (!strncmp(buf, d->name, IFNAMSIZ))
1053 set_bit(i, inuse);
1054 }
1055
1056 i = find_first_zero_bit(inuse, max_netdevices);
1057 free_page((unsigned long) inuse);
1058 }
1059
d9031024
OP
1060 if (buf != name)
1061 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1062 if (!__dev_get_by_name(net, buf))
1da177e4 1063 return i;
1da177e4
LT
1064
1065 /* It is possible to run out of possible slots
1066 * when the name is long and there isn't enough space left
1067 * for the digits, or if all bits are used.
1068 */
1069 return -ENFILE;
1070}
1071
b267b179
EB
1072/**
1073 * dev_alloc_name - allocate a name for a device
1074 * @dev: device
1075 * @name: name format string
1076 *
1077 * Passed a format string - eg "lt%d" it will try and find a suitable
1078 * id. It scans list of devices to build up a free map, then chooses
1079 * the first empty slot. The caller must hold the dev_base or rtnl lock
1080 * while allocating the name and adding the device in order to avoid
1081 * duplicates.
1082 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083 * Returns the number of the unit assigned or a negative errno code.
1084 */
1085
1086int dev_alloc_name(struct net_device *dev, const char *name)
1087{
1088 char buf[IFNAMSIZ];
1089 struct net *net;
1090 int ret;
1091
c346dca1
YH
1092 BUG_ON(!dev_net(dev));
1093 net = dev_net(dev);
b267b179
EB
1094 ret = __dev_alloc_name(net, name, buf);
1095 if (ret >= 0)
1096 strlcpy(dev->name, buf, IFNAMSIZ);
1097 return ret;
1098}
d1b19dff 1099EXPORT_SYMBOL(dev_alloc_name);
b267b179 1100
828de4f6
G
1101static int dev_alloc_name_ns(struct net *net,
1102 struct net_device *dev,
1103 const char *name)
d9031024 1104{
828de4f6
G
1105 char buf[IFNAMSIZ];
1106 int ret;
8ce6cebc 1107
828de4f6
G
1108 ret = __dev_alloc_name(net, name, buf);
1109 if (ret >= 0)
1110 strlcpy(dev->name, buf, IFNAMSIZ);
1111 return ret;
1112}
1113
1114static int dev_get_valid_name(struct net *net,
1115 struct net_device *dev,
1116 const char *name)
1117{
1118 BUG_ON(!net);
8ce6cebc 1119
d9031024
OP
1120 if (!dev_valid_name(name))
1121 return -EINVAL;
1122
1c5cae81 1123 if (strchr(name, '%'))
828de4f6 1124 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1125 else if (__dev_get_by_name(net, name))
1126 return -EEXIST;
8ce6cebc
DL
1127 else if (dev->name != name)
1128 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1129
1130 return 0;
1131}
1da177e4
LT
1132
1133/**
1134 * dev_change_name - change name of a device
1135 * @dev: device
1136 * @newname: name (or format string) must be at least IFNAMSIZ
1137 *
1138 * Change name of a device, can pass format strings "eth%d".
1139 * for wildcarding.
1140 */
cf04a4c7 1141int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1142{
238fa362 1143 unsigned char old_assign_type;
fcc5a03a 1144 char oldname[IFNAMSIZ];
1da177e4 1145 int err = 0;
fcc5a03a 1146 int ret;
881d966b 1147 struct net *net;
1da177e4
LT
1148
1149 ASSERT_RTNL();
c346dca1 1150 BUG_ON(!dev_net(dev));
1da177e4 1151
c346dca1 1152 net = dev_net(dev);
1da177e4
LT
1153 if (dev->flags & IFF_UP)
1154 return -EBUSY;
1155
30e6c9fa 1156 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1157
1158 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1159 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1160 return 0;
c91f6df2 1161 }
c8d90dca 1162
fcc5a03a
HX
1163 memcpy(oldname, dev->name, IFNAMSIZ);
1164
828de4f6 1165 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1166 if (err < 0) {
30e6c9fa 1167 write_seqcount_end(&devnet_rename_seq);
d9031024 1168 return err;
c91f6df2 1169 }
1da177e4 1170
6fe82a39
VF
1171 if (oldname[0] && !strchr(oldname, '%'))
1172 netdev_info(dev, "renamed from %s\n", oldname);
1173
238fa362
TG
1174 old_assign_type = dev->name_assign_type;
1175 dev->name_assign_type = NET_NAME_RENAMED;
1176
fcc5a03a 1177rollback:
a1b3f594
EB
1178 ret = device_rename(&dev->dev, dev->name);
1179 if (ret) {
1180 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1181 dev->name_assign_type = old_assign_type;
30e6c9fa 1182 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1183 return ret;
dcc99773 1184 }
7f988eab 1185
30e6c9fa 1186 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1187
5bb025fa
VF
1188 netdev_adjacent_rename_links(dev, oldname);
1189
7f988eab 1190 write_lock_bh(&dev_base_lock);
372b2312 1191 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1192 write_unlock_bh(&dev_base_lock);
1193
1194 synchronize_rcu();
1195
1196 write_lock_bh(&dev_base_lock);
1197 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1198 write_unlock_bh(&dev_base_lock);
1199
056925ab 1200 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1201 ret = notifier_to_errno(ret);
1202
1203 if (ret) {
91e9c07b
ED
1204 /* err >= 0 after dev_alloc_name() or stores the first errno */
1205 if (err >= 0) {
fcc5a03a 1206 err = ret;
30e6c9fa 1207 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1208 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1209 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1210 dev->name_assign_type = old_assign_type;
1211 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1212 goto rollback;
91e9c07b 1213 } else {
7b6cd1ce 1214 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1215 dev->name, ret);
fcc5a03a
HX
1216 }
1217 }
1da177e4
LT
1218
1219 return err;
1220}
1221
0b815a1a
SH
1222/**
1223 * dev_set_alias - change ifalias of a device
1224 * @dev: device
1225 * @alias: name up to IFALIASZ
f0db275a 1226 * @len: limit of bytes to copy from info
0b815a1a
SH
1227 *
1228 * Set ifalias for a device,
1229 */
1230int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231{
7364e445
AK
1232 char *new_ifalias;
1233
0b815a1a
SH
1234 ASSERT_RTNL();
1235
1236 if (len >= IFALIASZ)
1237 return -EINVAL;
1238
96ca4a2c 1239 if (!len) {
388dfc2d
SK
1240 kfree(dev->ifalias);
1241 dev->ifalias = NULL;
96ca4a2c
OH
1242 return 0;
1243 }
1244
7364e445
AK
1245 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246 if (!new_ifalias)
0b815a1a 1247 return -ENOMEM;
7364e445 1248 dev->ifalias = new_ifalias;
0b815a1a
SH
1249
1250 strlcpy(dev->ifalias, alias, len+1);
1251 return len;
1252}
1253
1254
d8a33ac4 1255/**
3041a069 1256 * netdev_features_change - device changes features
d8a33ac4
SH
1257 * @dev: device to cause notification
1258 *
1259 * Called to indicate a device has changed features.
1260 */
1261void netdev_features_change(struct net_device *dev)
1262{
056925ab 1263 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1264}
1265EXPORT_SYMBOL(netdev_features_change);
1266
1da177e4
LT
1267/**
1268 * netdev_state_change - device changes state
1269 * @dev: device to cause notification
1270 *
1271 * Called to indicate a device has changed state. This function calls
1272 * the notifier chains for netdev_chain and sends a NEWLINK message
1273 * to the routing socket.
1274 */
1275void netdev_state_change(struct net_device *dev)
1276{
1277 if (dev->flags & IFF_UP) {
54951194
LP
1278 struct netdev_notifier_change_info change_info;
1279
1280 change_info.flags_changed = 0;
1281 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282 &change_info.info);
7f294054 1283 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1284 }
1285}
d1b19dff 1286EXPORT_SYMBOL(netdev_state_change);
1da177e4 1287
ee89bab1
AW
1288/**
1289 * netdev_notify_peers - notify network peers about existence of @dev
1290 * @dev: network device
1291 *
1292 * Generate traffic such that interested network peers are aware of
1293 * @dev, such as by generating a gratuitous ARP. This may be used when
1294 * a device wants to inform the rest of the network about some sort of
1295 * reconfiguration such as a failover event or virtual machine
1296 * migration.
1297 */
1298void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1299{
ee89bab1
AW
1300 rtnl_lock();
1301 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302 rtnl_unlock();
c1da4ac7 1303}
ee89bab1 1304EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1305
bd380811 1306static int __dev_open(struct net_device *dev)
1da177e4 1307{
d314774c 1308 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1309 int ret;
1da177e4 1310
e46b66bc
BH
1311 ASSERT_RTNL();
1312
1da177e4
LT
1313 if (!netif_device_present(dev))
1314 return -ENODEV;
1315
ca99ca14
NH
1316 /* Block netpoll from trying to do any rx path servicing.
1317 * If we don't do this there is a chance ndo_poll_controller
1318 * or ndo_poll may be running while we open the device
1319 */
66b5552f 1320 netpoll_poll_disable(dev);
ca99ca14 1321
3b8bcfd5
JB
1322 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323 ret = notifier_to_errno(ret);
1324 if (ret)
1325 return ret;
1326
1da177e4 1327 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1328
d314774c
SH
1329 if (ops->ndo_validate_addr)
1330 ret = ops->ndo_validate_addr(dev);
bada339b 1331
d314774c
SH
1332 if (!ret && ops->ndo_open)
1333 ret = ops->ndo_open(dev);
1da177e4 1334
66b5552f 1335 netpoll_poll_enable(dev);
ca99ca14 1336
bada339b
JG
1337 if (ret)
1338 clear_bit(__LINK_STATE_START, &dev->state);
1339 else {
1da177e4 1340 dev->flags |= IFF_UP;
4417da66 1341 dev_set_rx_mode(dev);
1da177e4 1342 dev_activate(dev);
7bf23575 1343 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1344 }
bada339b 1345
1da177e4
LT
1346 return ret;
1347}
1348
1349/**
bd380811
PM
1350 * dev_open - prepare an interface for use.
1351 * @dev: device to open
1da177e4 1352 *
bd380811
PM
1353 * Takes a device from down to up state. The device's private open
1354 * function is invoked and then the multicast lists are loaded. Finally
1355 * the device is moved into the up state and a %NETDEV_UP message is
1356 * sent to the netdev notifier chain.
1357 *
1358 * Calling this function on an active interface is a nop. On a failure
1359 * a negative errno code is returned.
1da177e4 1360 */
bd380811
PM
1361int dev_open(struct net_device *dev)
1362{
1363 int ret;
1364
bd380811
PM
1365 if (dev->flags & IFF_UP)
1366 return 0;
1367
bd380811
PM
1368 ret = __dev_open(dev);
1369 if (ret < 0)
1370 return ret;
1371
7f294054 1372 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1373 call_netdevice_notifiers(NETDEV_UP, dev);
1374
1375 return ret;
1376}
1377EXPORT_SYMBOL(dev_open);
1378
44345724 1379static int __dev_close_many(struct list_head *head)
1da177e4 1380{
44345724 1381 struct net_device *dev;
e46b66bc 1382
bd380811 1383 ASSERT_RTNL();
9d5010db
DM
1384 might_sleep();
1385
5cde2829 1386 list_for_each_entry(dev, head, close_list) {
3f4df206 1387 /* Temporarily disable netpoll until the interface is down */
66b5552f 1388 netpoll_poll_disable(dev);
3f4df206 1389
44345724 1390 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1391
44345724 1392 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1393
44345724
OP
1394 /* Synchronize to scheduled poll. We cannot touch poll list, it
1395 * can be even on different cpu. So just clear netif_running().
1396 *
1397 * dev->stop() will invoke napi_disable() on all of it's
1398 * napi_struct instances on this device.
1399 */
4e857c58 1400 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1401 }
1da177e4 1402
44345724 1403 dev_deactivate_many(head);
d8b2a4d2 1404
5cde2829 1405 list_for_each_entry(dev, head, close_list) {
44345724 1406 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1407
44345724
OP
1408 /*
1409 * Call the device specific close. This cannot fail.
1410 * Only if device is UP
1411 *
1412 * We allow it to be called even after a DETACH hot-plug
1413 * event.
1414 */
1415 if (ops->ndo_stop)
1416 ops->ndo_stop(dev);
1417
44345724 1418 dev->flags &= ~IFF_UP;
66b5552f 1419 netpoll_poll_enable(dev);
44345724
OP
1420 }
1421
1422 return 0;
1423}
1424
1425static int __dev_close(struct net_device *dev)
1426{
f87e6f47 1427 int retval;
44345724
OP
1428 LIST_HEAD(single);
1429
5cde2829 1430 list_add(&dev->close_list, &single);
f87e6f47
LT
1431 retval = __dev_close_many(&single);
1432 list_del(&single);
ca99ca14 1433
f87e6f47 1434 return retval;
44345724
OP
1435}
1436
99c4a26a 1437int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1438{
1439 struct net_device *dev, *tmp;
1da177e4 1440
5cde2829
EB
1441 /* Remove the devices that don't need to be closed */
1442 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1443 if (!(dev->flags & IFF_UP))
5cde2829 1444 list_del_init(&dev->close_list);
44345724
OP
1445
1446 __dev_close_many(head);
1da177e4 1447
5cde2829 1448 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1449 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1450 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1451 if (unlink)
1452 list_del_init(&dev->close_list);
44345724 1453 }
bd380811
PM
1454
1455 return 0;
1456}
99c4a26a 1457EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1458
1459/**
1460 * dev_close - shutdown an interface.
1461 * @dev: device to shutdown
1462 *
1463 * This function moves an active device into down state. A
1464 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466 * chain.
1467 */
1468int dev_close(struct net_device *dev)
1469{
e14a5993
ED
1470 if (dev->flags & IFF_UP) {
1471 LIST_HEAD(single);
1da177e4 1472
5cde2829 1473 list_add(&dev->close_list, &single);
99c4a26a 1474 dev_close_many(&single, true);
e14a5993
ED
1475 list_del(&single);
1476 }
da6e378b 1477 return 0;
1da177e4 1478}
d1b19dff 1479EXPORT_SYMBOL(dev_close);
1da177e4
LT
1480
1481
0187bdfb
BH
1482/**
1483 * dev_disable_lro - disable Large Receive Offload on a device
1484 * @dev: device
1485 *
1486 * Disable Large Receive Offload (LRO) on a net device. Must be
1487 * called under RTNL. This is needed if received packets may be
1488 * forwarded to another interface.
1489 */
1490void dev_disable_lro(struct net_device *dev)
1491{
fbe168ba
MK
1492 struct net_device *lower_dev;
1493 struct list_head *iter;
529d0489 1494
bc5787c6
MM
1495 dev->wanted_features &= ~NETIF_F_LRO;
1496 netdev_update_features(dev);
27660515 1497
22d5969f
MM
1498 if (unlikely(dev->features & NETIF_F_LRO))
1499 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1500
1501 netdev_for_each_lower_dev(dev, lower_dev, iter)
1502 dev_disable_lro(lower_dev);
0187bdfb
BH
1503}
1504EXPORT_SYMBOL(dev_disable_lro);
1505
351638e7
JP
1506static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507 struct net_device *dev)
1508{
1509 struct netdev_notifier_info info;
1510
1511 netdev_notifier_info_init(&info, dev);
1512 return nb->notifier_call(nb, val, &info);
1513}
0187bdfb 1514
881d966b
EB
1515static int dev_boot_phase = 1;
1516
1da177e4
LT
1517/**
1518 * register_netdevice_notifier - register a network notifier block
1519 * @nb: notifier
1520 *
1521 * Register a notifier to be called when network device events occur.
1522 * The notifier passed is linked into the kernel structures and must
1523 * not be reused until it has been unregistered. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * When registered all registration and up events are replayed
4ec93edb 1527 * to the new notifier to allow device to have a race free
1da177e4
LT
1528 * view of the network device list.
1529 */
1530
1531int register_netdevice_notifier(struct notifier_block *nb)
1532{
1533 struct net_device *dev;
fcc5a03a 1534 struct net_device *last;
881d966b 1535 struct net *net;
1da177e4
LT
1536 int err;
1537
1538 rtnl_lock();
f07d5b94 1539 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1540 if (err)
1541 goto unlock;
881d966b
EB
1542 if (dev_boot_phase)
1543 goto unlock;
1544 for_each_net(net) {
1545 for_each_netdev(net, dev) {
351638e7 1546 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1547 err = notifier_to_errno(err);
1548 if (err)
1549 goto rollback;
1550
1551 if (!(dev->flags & IFF_UP))
1552 continue;
1da177e4 1553
351638e7 1554 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1555 }
1da177e4 1556 }
fcc5a03a
HX
1557
1558unlock:
1da177e4
LT
1559 rtnl_unlock();
1560 return err;
fcc5a03a
HX
1561
1562rollback:
1563 last = dev;
881d966b
EB
1564 for_each_net(net) {
1565 for_each_netdev(net, dev) {
1566 if (dev == last)
8f891489 1567 goto outroll;
fcc5a03a 1568
881d966b 1569 if (dev->flags & IFF_UP) {
351638e7
JP
1570 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571 dev);
1572 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1573 }
351638e7 1574 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1575 }
fcc5a03a 1576 }
c67625a1 1577
8f891489 1578outroll:
c67625a1 1579 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1580 goto unlock;
1da177e4 1581}
d1b19dff 1582EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1583
1584/**
1585 * unregister_netdevice_notifier - unregister a network notifier block
1586 * @nb: notifier
1587 *
1588 * Unregister a notifier previously registered by
1589 * register_netdevice_notifier(). The notifier is unlinked into the
1590 * kernel structures and may then be reused. A negative errno code
1591 * is returned on a failure.
7d3d43da
EB
1592 *
1593 * After unregistering unregister and down device events are synthesized
1594 * for all devices on the device list to the removed notifier to remove
1595 * the need for special case cleanup code.
1da177e4
LT
1596 */
1597
1598int unregister_netdevice_notifier(struct notifier_block *nb)
1599{
7d3d43da
EB
1600 struct net_device *dev;
1601 struct net *net;
9f514950
HX
1602 int err;
1603
1604 rtnl_lock();
f07d5b94 1605 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1606 if (err)
1607 goto unlock;
1608
1609 for_each_net(net) {
1610 for_each_netdev(net, dev) {
1611 if (dev->flags & IFF_UP) {
351638e7
JP
1612 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613 dev);
1614 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1615 }
351638e7 1616 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1617 }
1618 }
1619unlock:
9f514950
HX
1620 rtnl_unlock();
1621 return err;
1da177e4 1622}
d1b19dff 1623EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1624
351638e7
JP
1625/**
1626 * call_netdevice_notifiers_info - call all network notifier blocks
1627 * @val: value passed unmodified to notifier function
1628 * @dev: net_device pointer passed unmodified to notifier function
1629 * @info: notifier information data
1630 *
1631 * Call all network notifier blocks. Parameters and return value
1632 * are as for raw_notifier_call_chain().
1633 */
1634
1d143d9f 1635static int call_netdevice_notifiers_info(unsigned long val,
1636 struct net_device *dev,
1637 struct netdev_notifier_info *info)
351638e7
JP
1638{
1639 ASSERT_RTNL();
1640 netdev_notifier_info_init(info, dev);
1641 return raw_notifier_call_chain(&netdev_chain, val, info);
1642}
351638e7 1643
1da177e4
LT
1644/**
1645 * call_netdevice_notifiers - call all network notifier blocks
1646 * @val: value passed unmodified to notifier function
c4ea43c5 1647 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1648 *
1649 * Call all network notifier blocks. Parameters and return value
f07d5b94 1650 * are as for raw_notifier_call_chain().
1da177e4
LT
1651 */
1652
ad7379d4 1653int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1654{
351638e7
JP
1655 struct netdev_notifier_info info;
1656
1657 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1658}
edf947f1 1659EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1660
1cf51900 1661#ifdef CONFIG_NET_INGRESS
4577139b
DB
1662static struct static_key ingress_needed __read_mostly;
1663
1664void net_inc_ingress_queue(void)
1665{
1666 static_key_slow_inc(&ingress_needed);
1667}
1668EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669
1670void net_dec_ingress_queue(void)
1671{
1672 static_key_slow_dec(&ingress_needed);
1673}
1674EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675#endif
1676
c5905afb 1677static struct static_key netstamp_needed __read_mostly;
b90e5794 1678#ifdef HAVE_JUMP_LABEL
c5905afb 1679/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1680 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1681 * static_key_slow_dec() calls.
b90e5794
ED
1682 */
1683static atomic_t netstamp_needed_deferred;
1684#endif
1da177e4
LT
1685
1686void net_enable_timestamp(void)
1687{
b90e5794
ED
1688#ifdef HAVE_JUMP_LABEL
1689 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690
1691 if (deferred) {
1692 while (--deferred)
c5905afb 1693 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1694 return;
1695 }
1696#endif
c5905afb 1697 static_key_slow_inc(&netstamp_needed);
1da177e4 1698}
d1b19dff 1699EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1700
1701void net_disable_timestamp(void)
1702{
b90e5794
ED
1703#ifdef HAVE_JUMP_LABEL
1704 if (in_interrupt()) {
1705 atomic_inc(&netstamp_needed_deferred);
1706 return;
1707 }
1708#endif
c5905afb 1709 static_key_slow_dec(&netstamp_needed);
1da177e4 1710}
d1b19dff 1711EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1712
3b098e2d 1713static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1714{
588f0330 1715 skb->tstamp.tv64 = 0;
c5905afb 1716 if (static_key_false(&netstamp_needed))
a61bbcf2 1717 __net_timestamp(skb);
1da177e4
LT
1718}
1719
588f0330 1720#define net_timestamp_check(COND, SKB) \
c5905afb 1721 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1722 if ((COND) && !(SKB)->tstamp.tv64) \
1723 __net_timestamp(SKB); \
1724 } \
3b098e2d 1725
1ee481fb 1726bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1727{
1728 unsigned int len;
1729
1730 if (!(dev->flags & IFF_UP))
1731 return false;
1732
1733 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734 if (skb->len <= len)
1735 return true;
1736
1737 /* if TSO is enabled, we don't care about the length as the packet
1738 * could be forwarded without being segmented before
1739 */
1740 if (skb_is_gso(skb))
1741 return true;
1742
1743 return false;
1744}
1ee481fb 1745EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1746
a0265d28
HX
1747int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748{
bbbf2df0
WB
1749 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1751 atomic_long_inc(&dev->rx_dropped);
1752 kfree_skb(skb);
1753 return NET_RX_DROP;
1754 }
1755
1756 skb_scrub_packet(skb, true);
08b4b8ea 1757 skb->priority = 0;
a0265d28 1758 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1759 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1760
1761 return 0;
1762}
1763EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764
44540960
AB
1765/**
1766 * dev_forward_skb - loopback an skb to another netif
1767 *
1768 * @dev: destination network device
1769 * @skb: buffer to forward
1770 *
1771 * return values:
1772 * NET_RX_SUCCESS (no congestion)
6ec82562 1773 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1774 *
1775 * dev_forward_skb can be used for injecting an skb from the
1776 * start_xmit function of one device into the receive queue
1777 * of another device.
1778 *
1779 * The receiving device may be in another namespace, so
1780 * we have to clear all information in the skb that could
1781 * impact namespace isolation.
1782 */
1783int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784{
a0265d28 1785 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1786}
1787EXPORT_SYMBOL_GPL(dev_forward_skb);
1788
71d9dec2
CG
1789static inline int deliver_skb(struct sk_buff *skb,
1790 struct packet_type *pt_prev,
1791 struct net_device *orig_dev)
1792{
1080e512
MT
1793 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794 return -ENOMEM;
71d9dec2
CG
1795 atomic_inc(&skb->users);
1796 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797}
1798
7866a621
SN
1799static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800 struct packet_type **pt,
fbcb2170
JP
1801 struct net_device *orig_dev,
1802 __be16 type,
7866a621
SN
1803 struct list_head *ptype_list)
1804{
1805 struct packet_type *ptype, *pt_prev = *pt;
1806
1807 list_for_each_entry_rcu(ptype, ptype_list, list) {
1808 if (ptype->type != type)
1809 continue;
1810 if (pt_prev)
fbcb2170 1811 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1812 pt_prev = ptype;
1813 }
1814 *pt = pt_prev;
1815}
1816
c0de08d0
EL
1817static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818{
a3d744e9 1819 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1820 return false;
1821
1822 if (ptype->id_match)
1823 return ptype->id_match(ptype, skb->sk);
1824 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825 return true;
1826
1827 return false;
1828}
1829
1da177e4
LT
1830/*
1831 * Support routine. Sends outgoing frames to any network
1832 * taps currently in use.
1833 */
1834
f6a78bfc 1835static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1836{
1837 struct packet_type *ptype;
71d9dec2
CG
1838 struct sk_buff *skb2 = NULL;
1839 struct packet_type *pt_prev = NULL;
7866a621 1840 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1841
1da177e4 1842 rcu_read_lock();
7866a621
SN
1843again:
1844 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1845 /* Never send packets back to the socket
1846 * they originated from - MvS (miquels@drinkel.ow.org)
1847 */
7866a621
SN
1848 if (skb_loop_sk(ptype, skb))
1849 continue;
71d9dec2 1850
7866a621
SN
1851 if (pt_prev) {
1852 deliver_skb(skb2, pt_prev, skb->dev);
1853 pt_prev = ptype;
1854 continue;
1855 }
1da177e4 1856
7866a621
SN
1857 /* need to clone skb, done only once */
1858 skb2 = skb_clone(skb, GFP_ATOMIC);
1859 if (!skb2)
1860 goto out_unlock;
70978182 1861
7866a621 1862 net_timestamp_set(skb2);
1da177e4 1863
7866a621
SN
1864 /* skb->nh should be correctly
1865 * set by sender, so that the second statement is
1866 * just protection against buggy protocols.
1867 */
1868 skb_reset_mac_header(skb2);
1869
1870 if (skb_network_header(skb2) < skb2->data ||
1871 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873 ntohs(skb2->protocol),
1874 dev->name);
1875 skb_reset_network_header(skb2);
1da177e4 1876 }
7866a621
SN
1877
1878 skb2->transport_header = skb2->network_header;
1879 skb2->pkt_type = PACKET_OUTGOING;
1880 pt_prev = ptype;
1881 }
1882
1883 if (ptype_list == &ptype_all) {
1884 ptype_list = &dev->ptype_all;
1885 goto again;
1da177e4 1886 }
7866a621 1887out_unlock:
71d9dec2
CG
1888 if (pt_prev)
1889 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1890 rcu_read_unlock();
1891}
1892
2c53040f
BH
1893/**
1894 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1895 * @dev: Network device
1896 * @txq: number of queues available
1897 *
1898 * If real_num_tx_queues is changed the tc mappings may no longer be
1899 * valid. To resolve this verify the tc mapping remains valid and if
1900 * not NULL the mapping. With no priorities mapping to this
1901 * offset/count pair it will no longer be used. In the worst case TC0
1902 * is invalid nothing can be done so disable priority mappings. If is
1903 * expected that drivers will fix this mapping if they can before
1904 * calling netif_set_real_num_tx_queues.
1905 */
bb134d22 1906static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1907{
1908 int i;
1909 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910
1911 /* If TC0 is invalidated disable TC mapping */
1912 if (tc->offset + tc->count > txq) {
7b6cd1ce 1913 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1914 dev->num_tc = 0;
1915 return;
1916 }
1917
1918 /* Invalidated prio to tc mappings set to TC0 */
1919 for (i = 1; i < TC_BITMASK + 1; i++) {
1920 int q = netdev_get_prio_tc_map(dev, i);
1921
1922 tc = &dev->tc_to_txq[q];
1923 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1924 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925 i, q);
4f57c087
JF
1926 netdev_set_prio_tc_map(dev, i, 0);
1927 }
1928 }
1929}
1930
537c00de
AD
1931#ifdef CONFIG_XPS
1932static DEFINE_MUTEX(xps_map_mutex);
1933#define xmap_dereference(P) \
1934 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935
10cdc3f3
AD
1936static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937 int cpu, u16 index)
537c00de 1938{
10cdc3f3
AD
1939 struct xps_map *map = NULL;
1940 int pos;
537c00de 1941
10cdc3f3
AD
1942 if (dev_maps)
1943 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1944
10cdc3f3
AD
1945 for (pos = 0; map && pos < map->len; pos++) {
1946 if (map->queues[pos] == index) {
537c00de
AD
1947 if (map->len > 1) {
1948 map->queues[pos] = map->queues[--map->len];
1949 } else {
10cdc3f3 1950 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1951 kfree_rcu(map, rcu);
1952 map = NULL;
1953 }
10cdc3f3 1954 break;
537c00de 1955 }
537c00de
AD
1956 }
1957
10cdc3f3
AD
1958 return map;
1959}
1960
024e9679 1961static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1962{
1963 struct xps_dev_maps *dev_maps;
024e9679 1964 int cpu, i;
10cdc3f3
AD
1965 bool active = false;
1966
1967 mutex_lock(&xps_map_mutex);
1968 dev_maps = xmap_dereference(dev->xps_maps);
1969
1970 if (!dev_maps)
1971 goto out_no_maps;
1972
1973 for_each_possible_cpu(cpu) {
024e9679
AD
1974 for (i = index; i < dev->num_tx_queues; i++) {
1975 if (!remove_xps_queue(dev_maps, cpu, i))
1976 break;
1977 }
1978 if (i == dev->num_tx_queues)
10cdc3f3
AD
1979 active = true;
1980 }
1981
1982 if (!active) {
537c00de
AD
1983 RCU_INIT_POINTER(dev->xps_maps, NULL);
1984 kfree_rcu(dev_maps, rcu);
1985 }
1986
024e9679
AD
1987 for (i = index; i < dev->num_tx_queues; i++)
1988 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989 NUMA_NO_NODE);
1990
537c00de
AD
1991out_no_maps:
1992 mutex_unlock(&xps_map_mutex);
1993}
1994
01c5f864
AD
1995static struct xps_map *expand_xps_map(struct xps_map *map,
1996 int cpu, u16 index)
1997{
1998 struct xps_map *new_map;
1999 int alloc_len = XPS_MIN_MAP_ALLOC;
2000 int i, pos;
2001
2002 for (pos = 0; map && pos < map->len; pos++) {
2003 if (map->queues[pos] != index)
2004 continue;
2005 return map;
2006 }
2007
2008 /* Need to add queue to this CPU's existing map */
2009 if (map) {
2010 if (pos < map->alloc_len)
2011 return map;
2012
2013 alloc_len = map->alloc_len * 2;
2014 }
2015
2016 /* Need to allocate new map to store queue on this CPU's map */
2017 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018 cpu_to_node(cpu));
2019 if (!new_map)
2020 return NULL;
2021
2022 for (i = 0; i < pos; i++)
2023 new_map->queues[i] = map->queues[i];
2024 new_map->alloc_len = alloc_len;
2025 new_map->len = pos;
2026
2027 return new_map;
2028}
2029
3573540c
MT
2030int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031 u16 index)
537c00de 2032{
01c5f864 2033 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2034 struct xps_map *map, *new_map;
537c00de 2035 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2036 int cpu, numa_node_id = -2;
2037 bool active = false;
537c00de
AD
2038
2039 mutex_lock(&xps_map_mutex);
2040
2041 dev_maps = xmap_dereference(dev->xps_maps);
2042
01c5f864
AD
2043 /* allocate memory for queue storage */
2044 for_each_online_cpu(cpu) {
2045 if (!cpumask_test_cpu(cpu, mask))
2046 continue;
2047
2048 if (!new_dev_maps)
2049 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2050 if (!new_dev_maps) {
2051 mutex_unlock(&xps_map_mutex);
01c5f864 2052 return -ENOMEM;
2bb60cb9 2053 }
01c5f864
AD
2054
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057
2058 map = expand_xps_map(map, cpu, index);
2059 if (!map)
2060 goto error;
2061
2062 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063 }
2064
2065 if (!new_dev_maps)
2066 goto out_no_new_maps;
2067
537c00de 2068 for_each_possible_cpu(cpu) {
01c5f864
AD
2069 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070 /* add queue to CPU maps */
2071 int pos = 0;
2072
2073 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074 while ((pos < map->len) && (map->queues[pos] != index))
2075 pos++;
2076
2077 if (pos == map->len)
2078 map->queues[map->len++] = index;
537c00de 2079#ifdef CONFIG_NUMA
537c00de
AD
2080 if (numa_node_id == -2)
2081 numa_node_id = cpu_to_node(cpu);
2082 else if (numa_node_id != cpu_to_node(cpu))
2083 numa_node_id = -1;
537c00de 2084#endif
01c5f864
AD
2085 } else if (dev_maps) {
2086 /* fill in the new device map from the old device map */
2087 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2089 }
01c5f864 2090
537c00de
AD
2091 }
2092
01c5f864
AD
2093 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094
537c00de 2095 /* Cleanup old maps */
01c5f864
AD
2096 if (dev_maps) {
2097 for_each_possible_cpu(cpu) {
2098 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100 if (map && map != new_map)
2101 kfree_rcu(map, rcu);
2102 }
537c00de 2103
01c5f864 2104 kfree_rcu(dev_maps, rcu);
537c00de
AD
2105 }
2106
01c5f864
AD
2107 dev_maps = new_dev_maps;
2108 active = true;
537c00de 2109
01c5f864
AD
2110out_no_new_maps:
2111 /* update Tx queue numa node */
537c00de
AD
2112 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113 (numa_node_id >= 0) ? numa_node_id :
2114 NUMA_NO_NODE);
2115
01c5f864
AD
2116 if (!dev_maps)
2117 goto out_no_maps;
2118
2119 /* removes queue from unused CPUs */
2120 for_each_possible_cpu(cpu) {
2121 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122 continue;
2123
2124 if (remove_xps_queue(dev_maps, cpu, index))
2125 active = true;
2126 }
2127
2128 /* free map if not active */
2129 if (!active) {
2130 RCU_INIT_POINTER(dev->xps_maps, NULL);
2131 kfree_rcu(dev_maps, rcu);
2132 }
2133
2134out_no_maps:
537c00de
AD
2135 mutex_unlock(&xps_map_mutex);
2136
2137 return 0;
2138error:
01c5f864
AD
2139 /* remove any maps that we added */
2140 for_each_possible_cpu(cpu) {
2141 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143 NULL;
2144 if (new_map && new_map != map)
2145 kfree(new_map);
2146 }
2147
537c00de
AD
2148 mutex_unlock(&xps_map_mutex);
2149
537c00de
AD
2150 kfree(new_dev_maps);
2151 return -ENOMEM;
2152}
2153EXPORT_SYMBOL(netif_set_xps_queue);
2154
2155#endif
f0796d5c
JF
2156/*
2157 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159 */
e6484930 2160int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2161{
1d24eb48
TH
2162 int rc;
2163
e6484930
TH
2164 if (txq < 1 || txq > dev->num_tx_queues)
2165 return -EINVAL;
f0796d5c 2166
5c56580b
BH
2167 if (dev->reg_state == NETREG_REGISTERED ||
2168 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2169 ASSERT_RTNL();
2170
1d24eb48
TH
2171 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172 txq);
bf264145
TH
2173 if (rc)
2174 return rc;
2175
4f57c087
JF
2176 if (dev->num_tc)
2177 netif_setup_tc(dev, txq);
2178
024e9679 2179 if (txq < dev->real_num_tx_queues) {
e6484930 2180 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2181#ifdef CONFIG_XPS
2182 netif_reset_xps_queues_gt(dev, txq);
2183#endif
2184 }
f0796d5c 2185 }
e6484930
TH
2186
2187 dev->real_num_tx_queues = txq;
2188 return 0;
f0796d5c
JF
2189}
2190EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2191
a953be53 2192#ifdef CONFIG_SYSFS
62fe0b40
BH
2193/**
2194 * netif_set_real_num_rx_queues - set actual number of RX queues used
2195 * @dev: Network device
2196 * @rxq: Actual number of RX queues
2197 *
2198 * This must be called either with the rtnl_lock held or before
2199 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2200 * negative error code. If called before registration, it always
2201 * succeeds.
62fe0b40
BH
2202 */
2203int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204{
2205 int rc;
2206
bd25fa7b
TH
2207 if (rxq < 1 || rxq > dev->num_rx_queues)
2208 return -EINVAL;
2209
62fe0b40
BH
2210 if (dev->reg_state == NETREG_REGISTERED) {
2211 ASSERT_RTNL();
2212
62fe0b40
BH
2213 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214 rxq);
2215 if (rc)
2216 return rc;
62fe0b40
BH
2217 }
2218
2219 dev->real_num_rx_queues = rxq;
2220 return 0;
2221}
2222EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223#endif
2224
2c53040f
BH
2225/**
2226 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2227 *
2228 * This routine should set an upper limit on the number of RSS queues
2229 * used by default by multiqueue devices.
2230 */
a55b138b 2231int netif_get_num_default_rss_queues(void)
16917b87
YM
2232{
2233 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234}
2235EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236
def82a1d 2237static inline void __netif_reschedule(struct Qdisc *q)
56079431 2238{
def82a1d
JP
2239 struct softnet_data *sd;
2240 unsigned long flags;
56079431 2241
def82a1d 2242 local_irq_save(flags);
903ceff7 2243 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2244 q->next_sched = NULL;
2245 *sd->output_queue_tailp = q;
2246 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2247 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248 local_irq_restore(flags);
2249}
2250
2251void __netif_schedule(struct Qdisc *q)
2252{
2253 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254 __netif_reschedule(q);
56079431
DV
2255}
2256EXPORT_SYMBOL(__netif_schedule);
2257
e6247027
ED
2258struct dev_kfree_skb_cb {
2259 enum skb_free_reason reason;
2260};
2261
2262static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2263{
e6247027
ED
2264 return (struct dev_kfree_skb_cb *)skb->cb;
2265}
2266
46e5da40
JF
2267void netif_schedule_queue(struct netdev_queue *txq)
2268{
2269 rcu_read_lock();
2270 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271 struct Qdisc *q = rcu_dereference(txq->qdisc);
2272
2273 __netif_schedule(q);
2274 }
2275 rcu_read_unlock();
2276}
2277EXPORT_SYMBOL(netif_schedule_queue);
2278
2279/**
2280 * netif_wake_subqueue - allow sending packets on subqueue
2281 * @dev: network device
2282 * @queue_index: sub queue index
2283 *
2284 * Resume individual transmit queue of a device with multiple transmit queues.
2285 */
2286void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287{
2288 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289
2290 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291 struct Qdisc *q;
2292
2293 rcu_read_lock();
2294 q = rcu_dereference(txq->qdisc);
2295 __netif_schedule(q);
2296 rcu_read_unlock();
2297 }
2298}
2299EXPORT_SYMBOL(netif_wake_subqueue);
2300
2301void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302{
2303 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304 struct Qdisc *q;
2305
2306 rcu_read_lock();
2307 q = rcu_dereference(dev_queue->qdisc);
2308 __netif_schedule(q);
2309 rcu_read_unlock();
2310 }
2311}
2312EXPORT_SYMBOL(netif_tx_wake_queue);
2313
e6247027 2314void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2315{
e6247027 2316 unsigned long flags;
56079431 2317
e6247027
ED
2318 if (likely(atomic_read(&skb->users) == 1)) {
2319 smp_rmb();
2320 atomic_set(&skb->users, 0);
2321 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2322 return;
bea3348e 2323 }
e6247027
ED
2324 get_kfree_skb_cb(skb)->reason = reason;
2325 local_irq_save(flags);
2326 skb->next = __this_cpu_read(softnet_data.completion_queue);
2327 __this_cpu_write(softnet_data.completion_queue, skb);
2328 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329 local_irq_restore(flags);
56079431 2330}
e6247027 2331EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2332
e6247027 2333void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2334{
2335 if (in_irq() || irqs_disabled())
e6247027 2336 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2337 else
2338 dev_kfree_skb(skb);
2339}
e6247027 2340EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2341
2342
bea3348e
SH
2343/**
2344 * netif_device_detach - mark device as removed
2345 * @dev: network device
2346 *
2347 * Mark device as removed from system and therefore no longer available.
2348 */
56079431
DV
2349void netif_device_detach(struct net_device *dev)
2350{
2351 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352 netif_running(dev)) {
d543103a 2353 netif_tx_stop_all_queues(dev);
56079431
DV
2354 }
2355}
2356EXPORT_SYMBOL(netif_device_detach);
2357
bea3348e
SH
2358/**
2359 * netif_device_attach - mark device as attached
2360 * @dev: network device
2361 *
2362 * Mark device as attached from system and restart if needed.
2363 */
56079431
DV
2364void netif_device_attach(struct net_device *dev)
2365{
2366 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367 netif_running(dev)) {
d543103a 2368 netif_tx_wake_all_queues(dev);
4ec93edb 2369 __netdev_watchdog_up(dev);
56079431
DV
2370 }
2371}
2372EXPORT_SYMBOL(netif_device_attach);
2373
5605c762
JP
2374/*
2375 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376 * to be used as a distribution range.
2377 */
2378u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379 unsigned int num_tx_queues)
2380{
2381 u32 hash;
2382 u16 qoffset = 0;
2383 u16 qcount = num_tx_queues;
2384
2385 if (skb_rx_queue_recorded(skb)) {
2386 hash = skb_get_rx_queue(skb);
2387 while (unlikely(hash >= num_tx_queues))
2388 hash -= num_tx_queues;
2389 return hash;
2390 }
2391
2392 if (dev->num_tc) {
2393 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394 qoffset = dev->tc_to_txq[tc].offset;
2395 qcount = dev->tc_to_txq[tc].count;
2396 }
2397
2398 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399}
2400EXPORT_SYMBOL(__skb_tx_hash);
2401
36c92474
BH
2402static void skb_warn_bad_offload(const struct sk_buff *skb)
2403{
65e9d2fa 2404 static const netdev_features_t null_features = 0;
36c92474
BH
2405 struct net_device *dev = skb->dev;
2406 const char *driver = "";
2407
c846ad9b
BG
2408 if (!net_ratelimit())
2409 return;
2410
36c92474
BH
2411 if (dev && dev->dev.parent)
2412 driver = dev_driver_string(dev->dev.parent);
2413
2414 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2415 "gso_type=%d ip_summed=%d\n",
65e9d2fa
MM
2416 driver, dev ? &dev->features : &null_features,
2417 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2418 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2419 skb_shinfo(skb)->gso_type, skb->ip_summed);
2420}
2421
1da177e4
LT
2422/*
2423 * Invalidate hardware checksum when packet is to be mangled, and
2424 * complete checksum manually on outgoing path.
2425 */
84fa7933 2426int skb_checksum_help(struct sk_buff *skb)
1da177e4 2427{
d3bc23e7 2428 __wsum csum;
663ead3b 2429 int ret = 0, offset;
1da177e4 2430
84fa7933 2431 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2432 goto out_set_summed;
2433
2434 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2435 skb_warn_bad_offload(skb);
2436 return -EINVAL;
1da177e4
LT
2437 }
2438
cef401de
ED
2439 /* Before computing a checksum, we should make sure no frag could
2440 * be modified by an external entity : checksum could be wrong.
2441 */
2442 if (skb_has_shared_frag(skb)) {
2443 ret = __skb_linearize(skb);
2444 if (ret)
2445 goto out;
2446 }
2447
55508d60 2448 offset = skb_checksum_start_offset(skb);
a030847e
HX
2449 BUG_ON(offset >= skb_headlen(skb));
2450 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2451
2452 offset += skb->csum_offset;
2453 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2454
2455 if (skb_cloned(skb) &&
2456 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2457 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2458 if (ret)
2459 goto out;
2460 }
2461
a030847e 2462 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2463out_set_summed:
1da177e4 2464 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2465out:
1da177e4
LT
2466 return ret;
2467}
d1b19dff 2468EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2469
53d6471c 2470__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2471{
252e3346 2472 __be16 type = skb->protocol;
f6a78bfc 2473
19acc327
PS
2474 /* Tunnel gso handlers can set protocol to ethernet. */
2475 if (type == htons(ETH_P_TEB)) {
2476 struct ethhdr *eth;
2477
2478 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2479 return 0;
2480
2481 eth = (struct ethhdr *)skb_mac_header(skb);
2482 type = eth->h_proto;
2483 }
2484
d4bcef3f 2485 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2486}
2487
2488/**
2489 * skb_mac_gso_segment - mac layer segmentation handler.
2490 * @skb: buffer to segment
2491 * @features: features for the output path (see dev->features)
2492 */
2493struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2494 netdev_features_t features)
2495{
2496 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2497 struct packet_offload *ptype;
53d6471c
VY
2498 int vlan_depth = skb->mac_len;
2499 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2500
2501 if (unlikely(!type))
2502 return ERR_PTR(-EINVAL);
2503
53d6471c 2504 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2505
2506 rcu_read_lock();
22061d80 2507 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2508 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2509 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2510 break;
2511 }
2512 }
2513 rcu_read_unlock();
2514
98e399f8 2515 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2516
f6a78bfc
HX
2517 return segs;
2518}
05e8ef4a
PS
2519EXPORT_SYMBOL(skb_mac_gso_segment);
2520
2521
2522/* openvswitch calls this on rx path, so we need a different check.
2523 */
2524static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2525{
2526 if (tx_path)
2527 return skb->ip_summed != CHECKSUM_PARTIAL;
2528 else
2529 return skb->ip_summed == CHECKSUM_NONE;
2530}
2531
2532/**
2533 * __skb_gso_segment - Perform segmentation on skb.
2534 * @skb: buffer to segment
2535 * @features: features for the output path (see dev->features)
2536 * @tx_path: whether it is called in TX path
2537 *
2538 * This function segments the given skb and returns a list of segments.
2539 *
2540 * It may return NULL if the skb requires no segmentation. This is
2541 * only possible when GSO is used for verifying header integrity.
2542 */
2543struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2544 netdev_features_t features, bool tx_path)
2545{
2546 if (unlikely(skb_needs_check(skb, tx_path))) {
2547 int err;
2548
2549 skb_warn_bad_offload(skb);
2550
a40e0a66 2551 err = skb_cow_head(skb, 0);
2552 if (err < 0)
05e8ef4a
PS
2553 return ERR_PTR(err);
2554 }
2555
68c33163 2556 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2557 SKB_GSO_CB(skb)->encap_level = 0;
2558
05e8ef4a
PS
2559 skb_reset_mac_header(skb);
2560 skb_reset_mac_len(skb);
2561
2562 return skb_mac_gso_segment(skb, features);
2563}
12b0004d 2564EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2565
fb286bb2
HX
2566/* Take action when hardware reception checksum errors are detected. */
2567#ifdef CONFIG_BUG
2568void netdev_rx_csum_fault(struct net_device *dev)
2569{
2570 if (net_ratelimit()) {
7b6cd1ce 2571 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2572 dump_stack();
2573 }
2574}
2575EXPORT_SYMBOL(netdev_rx_csum_fault);
2576#endif
2577
1da177e4
LT
2578/* Actually, we should eliminate this check as soon as we know, that:
2579 * 1. IOMMU is present and allows to map all the memory.
2580 * 2. No high memory really exists on this machine.
2581 */
2582
c1e756bf 2583static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2584{
3d3a8533 2585#ifdef CONFIG_HIGHMEM
1da177e4 2586 int i;
5acbbd42 2587 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2588 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2589 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2590 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2591 return 1;
ea2ab693 2592 }
5acbbd42 2593 }
1da177e4 2594
5acbbd42
FT
2595 if (PCI_DMA_BUS_IS_PHYS) {
2596 struct device *pdev = dev->dev.parent;
1da177e4 2597
9092c658
ED
2598 if (!pdev)
2599 return 0;
5acbbd42 2600 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2601 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2602 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2603 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2604 return 1;
2605 }
2606 }
3d3a8533 2607#endif
1da177e4
LT
2608 return 0;
2609}
1da177e4 2610
3b392ddb
SH
2611/* If MPLS offload request, verify we are testing hardware MPLS features
2612 * instead of standard features for the netdev.
2613 */
d0edc7bf 2614#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2615static netdev_features_t net_mpls_features(struct sk_buff *skb,
2616 netdev_features_t features,
2617 __be16 type)
2618{
25cd9ba0 2619 if (eth_p_mpls(type))
3b392ddb
SH
2620 features &= skb->dev->mpls_features;
2621
2622 return features;
2623}
2624#else
2625static netdev_features_t net_mpls_features(struct sk_buff *skb,
2626 netdev_features_t features,
2627 __be16 type)
2628{
2629 return features;
2630}
2631#endif
2632
c8f44aff 2633static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2634 netdev_features_t features)
f01a5236 2635{
53d6471c 2636 int tmp;
3b392ddb
SH
2637 __be16 type;
2638
2639 type = skb_network_protocol(skb, &tmp);
2640 features = net_mpls_features(skb, features, type);
53d6471c 2641
c0d680e5 2642 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2643 !can_checksum_protocol(features, type)) {
f01a5236 2644 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2645 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2646 features &= ~NETIF_F_SG;
2647 }
2648
2649 return features;
2650}
2651
e38f3025
TM
2652netdev_features_t passthru_features_check(struct sk_buff *skb,
2653 struct net_device *dev,
2654 netdev_features_t features)
2655{
2656 return features;
2657}
2658EXPORT_SYMBOL(passthru_features_check);
2659
8cb65d00
TM
2660static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2661 struct net_device *dev,
2662 netdev_features_t features)
2663{
2664 return vlan_features_check(skb, features);
2665}
2666
c1e756bf 2667netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2668{
5f35227e 2669 struct net_device *dev = skb->dev;
fcbeb976
ED
2670 netdev_features_t features = dev->features;
2671 u16 gso_segs = skb_shinfo(skb)->gso_segs;
58e998c6 2672
fcbeb976 2673 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
30b678d8
BH
2674 features &= ~NETIF_F_GSO_MASK;
2675
5f35227e
JG
2676 /* If encapsulation offload request, verify we are testing
2677 * hardware encapsulation features instead of standard
2678 * features for the netdev
2679 */
2680 if (skb->encapsulation)
2681 features &= dev->hw_enc_features;
2682
f5a7fb88
TM
2683 if (skb_vlan_tagged(skb))
2684 features = netdev_intersect_features(features,
2685 dev->vlan_features |
2686 NETIF_F_HW_VLAN_CTAG_TX |
2687 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2688
5f35227e
JG
2689 if (dev->netdev_ops->ndo_features_check)
2690 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2691 features);
8cb65d00
TM
2692 else
2693 features &= dflt_features_check(skb, dev, features);
5f35227e 2694
c1e756bf 2695 return harmonize_features(skb, features);
58e998c6 2696}
c1e756bf 2697EXPORT_SYMBOL(netif_skb_features);
58e998c6 2698
2ea25513 2699static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2700 struct netdev_queue *txq, bool more)
f6a78bfc 2701{
2ea25513
DM
2702 unsigned int len;
2703 int rc;
00829823 2704
7866a621 2705 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2706 dev_queue_xmit_nit(skb, dev);
fc741216 2707
2ea25513
DM
2708 len = skb->len;
2709 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2710 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2711 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2712
2ea25513
DM
2713 return rc;
2714}
7b9c6090 2715
8dcda22a
DM
2716struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2717 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2718{
2719 struct sk_buff *skb = first;
2720 int rc = NETDEV_TX_OK;
7b9c6090 2721
7f2e870f
DM
2722 while (skb) {
2723 struct sk_buff *next = skb->next;
fc70fb64 2724
7f2e870f 2725 skb->next = NULL;
95f6b3dd 2726 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2727 if (unlikely(!dev_xmit_complete(rc))) {
2728 skb->next = next;
2729 goto out;
2730 }
6afff0ca 2731
7f2e870f
DM
2732 skb = next;
2733 if (netif_xmit_stopped(txq) && skb) {
2734 rc = NETDEV_TX_BUSY;
2735 break;
9ccb8975 2736 }
7f2e870f 2737 }
9ccb8975 2738
7f2e870f
DM
2739out:
2740 *ret = rc;
2741 return skb;
2742}
b40863c6 2743
1ff0dc94
ED
2744static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2745 netdev_features_t features)
f6a78bfc 2746{
df8a39de 2747 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2748 !vlan_hw_offload_capable(features, skb->vlan_proto))
2749 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2750 return skb;
2751}
f6a78bfc 2752
55a93b3e 2753static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2754{
2755 netdev_features_t features;
f6a78bfc 2756
eae3f88e
DM
2757 if (skb->next)
2758 return skb;
068a2de5 2759
eae3f88e
DM
2760 features = netif_skb_features(skb);
2761 skb = validate_xmit_vlan(skb, features);
2762 if (unlikely(!skb))
2763 goto out_null;
7b9c6090 2764
8b86a61d 2765 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2766 struct sk_buff *segs;
2767
2768 segs = skb_gso_segment(skb, features);
cecda693 2769 if (IS_ERR(segs)) {
af6dabc9 2770 goto out_kfree_skb;
cecda693
JW
2771 } else if (segs) {
2772 consume_skb(skb);
2773 skb = segs;
f6a78bfc 2774 }
eae3f88e
DM
2775 } else {
2776 if (skb_needs_linearize(skb, features) &&
2777 __skb_linearize(skb))
2778 goto out_kfree_skb;
4ec93edb 2779
eae3f88e
DM
2780 /* If packet is not checksummed and device does not
2781 * support checksumming for this protocol, complete
2782 * checksumming here.
2783 */
2784 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2785 if (skb->encapsulation)
2786 skb_set_inner_transport_header(skb,
2787 skb_checksum_start_offset(skb));
2788 else
2789 skb_set_transport_header(skb,
2790 skb_checksum_start_offset(skb));
2791 if (!(features & NETIF_F_ALL_CSUM) &&
2792 skb_checksum_help(skb))
2793 goto out_kfree_skb;
7b9c6090 2794 }
0c772159 2795 }
7b9c6090 2796
eae3f88e 2797 return skb;
fc70fb64 2798
f6a78bfc
HX
2799out_kfree_skb:
2800 kfree_skb(skb);
eae3f88e
DM
2801out_null:
2802 return NULL;
2803}
6afff0ca 2804
55a93b3e
ED
2805struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2806{
2807 struct sk_buff *next, *head = NULL, *tail;
2808
bec3cfdc 2809 for (; skb != NULL; skb = next) {
55a93b3e
ED
2810 next = skb->next;
2811 skb->next = NULL;
bec3cfdc
ED
2812
2813 /* in case skb wont be segmented, point to itself */
2814 skb->prev = skb;
2815
55a93b3e 2816 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2817 if (!skb)
2818 continue;
55a93b3e 2819
bec3cfdc
ED
2820 if (!head)
2821 head = skb;
2822 else
2823 tail->next = skb;
2824 /* If skb was segmented, skb->prev points to
2825 * the last segment. If not, it still contains skb.
2826 */
2827 tail = skb->prev;
55a93b3e
ED
2828 }
2829 return head;
f6a78bfc
HX
2830}
2831
1def9238
ED
2832static void qdisc_pkt_len_init(struct sk_buff *skb)
2833{
2834 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2835
2836 qdisc_skb_cb(skb)->pkt_len = skb->len;
2837
2838 /* To get more precise estimation of bytes sent on wire,
2839 * we add to pkt_len the headers size of all segments
2840 */
2841 if (shinfo->gso_size) {
757b8b1d 2842 unsigned int hdr_len;
15e5a030 2843 u16 gso_segs = shinfo->gso_segs;
1def9238 2844
757b8b1d
ED
2845 /* mac layer + network layer */
2846 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2847
2848 /* + transport layer */
1def9238
ED
2849 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2850 hdr_len += tcp_hdrlen(skb);
2851 else
2852 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2853
2854 if (shinfo->gso_type & SKB_GSO_DODGY)
2855 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2856 shinfo->gso_size);
2857
2858 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2859 }
2860}
2861
bbd8a0d3
KK
2862static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2863 struct net_device *dev,
2864 struct netdev_queue *txq)
2865{
2866 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2867 bool contended;
bbd8a0d3
KK
2868 int rc;
2869
1def9238 2870 qdisc_pkt_len_init(skb);
a2da570d 2871 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2872 /*
2873 * Heuristic to force contended enqueues to serialize on a
2874 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2875 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2876 * often and dequeue packets faster.
79640a4c 2877 */
a2da570d 2878 contended = qdisc_is_running(q);
79640a4c
ED
2879 if (unlikely(contended))
2880 spin_lock(&q->busylock);
2881
bbd8a0d3
KK
2882 spin_lock(root_lock);
2883 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2884 kfree_skb(skb);
2885 rc = NET_XMIT_DROP;
2886 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2887 qdisc_run_begin(q)) {
bbd8a0d3
KK
2888 /*
2889 * This is a work-conserving queue; there are no old skbs
2890 * waiting to be sent out; and the qdisc is not running -
2891 * xmit the skb directly.
2892 */
bfe0d029 2893
bfe0d029
ED
2894 qdisc_bstats_update(q, skb);
2895
55a93b3e 2896 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
2897 if (unlikely(contended)) {
2898 spin_unlock(&q->busylock);
2899 contended = false;
2900 }
bbd8a0d3 2901 __qdisc_run(q);
79640a4c 2902 } else
bc135b23 2903 qdisc_run_end(q);
bbd8a0d3
KK
2904
2905 rc = NET_XMIT_SUCCESS;
2906 } else {
a2da570d 2907 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2908 if (qdisc_run_begin(q)) {
2909 if (unlikely(contended)) {
2910 spin_unlock(&q->busylock);
2911 contended = false;
2912 }
2913 __qdisc_run(q);
2914 }
bbd8a0d3
KK
2915 }
2916 spin_unlock(root_lock);
79640a4c
ED
2917 if (unlikely(contended))
2918 spin_unlock(&q->busylock);
bbd8a0d3
KK
2919 return rc;
2920}
2921
86f8515f 2922#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2923static void skb_update_prio(struct sk_buff *skb)
2924{
6977a79d 2925 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2926
91c68ce2
ED
2927 if (!skb->priority && skb->sk && map) {
2928 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2929
2930 if (prioidx < map->priomap_len)
2931 skb->priority = map->priomap[prioidx];
2932 }
5bc1421e
NH
2933}
2934#else
2935#define skb_update_prio(skb)
2936#endif
2937
f60e5990 2938DEFINE_PER_CPU(int, xmit_recursion);
2939EXPORT_SYMBOL(xmit_recursion);
2940
11a766ce 2941#define RECURSION_LIMIT 10
745e20f1 2942
95603e22
MM
2943/**
2944 * dev_loopback_xmit - loop back @skb
2945 * @skb: buffer to transmit
2946 */
7026b1dd 2947int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
95603e22
MM
2948{
2949 skb_reset_mac_header(skb);
2950 __skb_pull(skb, skb_network_offset(skb));
2951 skb->pkt_type = PACKET_LOOPBACK;
2952 skb->ip_summed = CHECKSUM_UNNECESSARY;
2953 WARN_ON(!skb_dst(skb));
2954 skb_dst_force(skb);
2955 netif_rx_ni(skb);
2956 return 0;
2957}
2958EXPORT_SYMBOL(dev_loopback_xmit);
2959
638b2a69
JP
2960static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2961{
2962#ifdef CONFIG_XPS
2963 struct xps_dev_maps *dev_maps;
2964 struct xps_map *map;
2965 int queue_index = -1;
2966
2967 rcu_read_lock();
2968 dev_maps = rcu_dereference(dev->xps_maps);
2969 if (dev_maps) {
2970 map = rcu_dereference(
2971 dev_maps->cpu_map[skb->sender_cpu - 1]);
2972 if (map) {
2973 if (map->len == 1)
2974 queue_index = map->queues[0];
2975 else
2976 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2977 map->len)];
2978 if (unlikely(queue_index >= dev->real_num_tx_queues))
2979 queue_index = -1;
2980 }
2981 }
2982 rcu_read_unlock();
2983
2984 return queue_index;
2985#else
2986 return -1;
2987#endif
2988}
2989
2990static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2991{
2992 struct sock *sk = skb->sk;
2993 int queue_index = sk_tx_queue_get(sk);
2994
2995 if (queue_index < 0 || skb->ooo_okay ||
2996 queue_index >= dev->real_num_tx_queues) {
2997 int new_index = get_xps_queue(dev, skb);
2998 if (new_index < 0)
2999 new_index = skb_tx_hash(dev, skb);
3000
3001 if (queue_index != new_index && sk &&
3002 rcu_access_pointer(sk->sk_dst_cache))
3003 sk_tx_queue_set(sk, new_index);
3004
3005 queue_index = new_index;
3006 }
3007
3008 return queue_index;
3009}
3010
3011struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3012 struct sk_buff *skb,
3013 void *accel_priv)
3014{
3015 int queue_index = 0;
3016
3017#ifdef CONFIG_XPS
3018 if (skb->sender_cpu == 0)
3019 skb->sender_cpu = raw_smp_processor_id() + 1;
3020#endif
3021
3022 if (dev->real_num_tx_queues != 1) {
3023 const struct net_device_ops *ops = dev->netdev_ops;
3024 if (ops->ndo_select_queue)
3025 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3026 __netdev_pick_tx);
3027 else
3028 queue_index = __netdev_pick_tx(dev, skb);
3029
3030 if (!accel_priv)
3031 queue_index = netdev_cap_txqueue(dev, queue_index);
3032 }
3033
3034 skb_set_queue_mapping(skb, queue_index);
3035 return netdev_get_tx_queue(dev, queue_index);
3036}
3037
d29f749e 3038/**
9d08dd3d 3039 * __dev_queue_xmit - transmit a buffer
d29f749e 3040 * @skb: buffer to transmit
9d08dd3d 3041 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3042 *
3043 * Queue a buffer for transmission to a network device. The caller must
3044 * have set the device and priority and built the buffer before calling
3045 * this function. The function can be called from an interrupt.
3046 *
3047 * A negative errno code is returned on a failure. A success does not
3048 * guarantee the frame will be transmitted as it may be dropped due
3049 * to congestion or traffic shaping.
3050 *
3051 * -----------------------------------------------------------------------------------
3052 * I notice this method can also return errors from the queue disciplines,
3053 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3054 * be positive.
3055 *
3056 * Regardless of the return value, the skb is consumed, so it is currently
3057 * difficult to retry a send to this method. (You can bump the ref count
3058 * before sending to hold a reference for retry if you are careful.)
3059 *
3060 * When calling this method, interrupts MUST be enabled. This is because
3061 * the BH enable code must have IRQs enabled so that it will not deadlock.
3062 * --BLG
3063 */
0a59f3a9 3064static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3065{
3066 struct net_device *dev = skb->dev;
dc2b4847 3067 struct netdev_queue *txq;
1da177e4
LT
3068 struct Qdisc *q;
3069 int rc = -ENOMEM;
3070
6d1ccff6
ED
3071 skb_reset_mac_header(skb);
3072
e7fd2885
WB
3073 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3074 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3075
4ec93edb
YH
3076 /* Disable soft irqs for various locks below. Also
3077 * stops preemption for RCU.
1da177e4 3078 */
4ec93edb 3079 rcu_read_lock_bh();
1da177e4 3080
5bc1421e
NH
3081 skb_update_prio(skb);
3082
02875878
ED
3083 /* If device/qdisc don't need skb->dst, release it right now while
3084 * its hot in this cpu cache.
3085 */
3086 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3087 skb_dst_drop(skb);
3088 else
3089 skb_dst_force(skb);
3090
0c4f691f
SF
3091#ifdef CONFIG_NET_SWITCHDEV
3092 /* Don't forward if offload device already forwarded */
3093 if (skb->offload_fwd_mark &&
3094 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3095 consume_skb(skb);
3096 rc = NET_XMIT_SUCCESS;
3097 goto out;
3098 }
3099#endif
3100
f663dd9a 3101 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3102 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3103
1da177e4 3104#ifdef CONFIG_NET_CLS_ACT
d1b19dff 3105 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 3106#endif
cf66ba58 3107 trace_net_dev_queue(skb);
1da177e4 3108 if (q->enqueue) {
bbd8a0d3 3109 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3110 goto out;
1da177e4
LT
3111 }
3112
3113 /* The device has no queue. Common case for software devices:
3114 loopback, all the sorts of tunnels...
3115
932ff279
HX
3116 Really, it is unlikely that netif_tx_lock protection is necessary
3117 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3118 counters.)
3119 However, it is possible, that they rely on protection
3120 made by us here.
3121
3122 Check this and shot the lock. It is not prone from deadlocks.
3123 Either shot noqueue qdisc, it is even simpler 8)
3124 */
3125 if (dev->flags & IFF_UP) {
3126 int cpu = smp_processor_id(); /* ok because BHs are off */
3127
c773e847 3128 if (txq->xmit_lock_owner != cpu) {
1da177e4 3129
745e20f1
ED
3130 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3131 goto recursion_alert;
3132
1f59533f
JDB
3133 skb = validate_xmit_skb(skb, dev);
3134 if (!skb)
3135 goto drop;
3136
c773e847 3137 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3138
73466498 3139 if (!netif_xmit_stopped(txq)) {
745e20f1 3140 __this_cpu_inc(xmit_recursion);
ce93718f 3141 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3142 __this_cpu_dec(xmit_recursion);
572a9d7b 3143 if (dev_xmit_complete(rc)) {
c773e847 3144 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3145 goto out;
3146 }
3147 }
c773e847 3148 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3149 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3150 dev->name);
1da177e4
LT
3151 } else {
3152 /* Recursion is detected! It is possible,
745e20f1
ED
3153 * unfortunately
3154 */
3155recursion_alert:
e87cc472
JP
3156 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3157 dev->name);
1da177e4
LT
3158 }
3159 }
3160
3161 rc = -ENETDOWN;
1f59533f 3162drop:
d4828d85 3163 rcu_read_unlock_bh();
1da177e4 3164
015f0688 3165 atomic_long_inc(&dev->tx_dropped);
1f59533f 3166 kfree_skb_list(skb);
1da177e4
LT
3167 return rc;
3168out:
d4828d85 3169 rcu_read_unlock_bh();
1da177e4
LT
3170 return rc;
3171}
f663dd9a 3172
7026b1dd 3173int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
f663dd9a
JW
3174{
3175 return __dev_queue_xmit(skb, NULL);
3176}
7026b1dd 3177EXPORT_SYMBOL(dev_queue_xmit_sk);
1da177e4 3178
f663dd9a
JW
3179int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3180{
3181 return __dev_queue_xmit(skb, accel_priv);
3182}
3183EXPORT_SYMBOL(dev_queue_xmit_accel);
3184
1da177e4
LT
3185
3186/*=======================================================================
3187 Receiver routines
3188 =======================================================================*/
3189
6b2bedc3 3190int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3191EXPORT_SYMBOL(netdev_max_backlog);
3192
3b098e2d 3193int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3194int netdev_budget __read_mostly = 300;
3195int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3196
eecfd7c4
ED
3197/* Called with irq disabled */
3198static inline void ____napi_schedule(struct softnet_data *sd,
3199 struct napi_struct *napi)
3200{
3201 list_add_tail(&napi->poll_list, &sd->poll_list);
3202 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3203}
3204
bfb564e7
KK
3205#ifdef CONFIG_RPS
3206
3207/* One global table that all flow-based protocols share. */
6e3f7faf 3208struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3209EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3210u32 rps_cpu_mask __read_mostly;
3211EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3212
c5905afb 3213struct static_key rps_needed __read_mostly;
adc9300e 3214
c445477d
BH
3215static struct rps_dev_flow *
3216set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3217 struct rps_dev_flow *rflow, u16 next_cpu)
3218{
a31196b0 3219 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3220#ifdef CONFIG_RFS_ACCEL
3221 struct netdev_rx_queue *rxqueue;
3222 struct rps_dev_flow_table *flow_table;
3223 struct rps_dev_flow *old_rflow;
3224 u32 flow_id;
3225 u16 rxq_index;
3226 int rc;
3227
3228 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3229 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3230 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3231 goto out;
3232 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3233 if (rxq_index == skb_get_rx_queue(skb))
3234 goto out;
3235
3236 rxqueue = dev->_rx + rxq_index;
3237 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3238 if (!flow_table)
3239 goto out;
61b905da 3240 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3241 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3242 rxq_index, flow_id);
3243 if (rc < 0)
3244 goto out;
3245 old_rflow = rflow;
3246 rflow = &flow_table->flows[flow_id];
c445477d
BH
3247 rflow->filter = rc;
3248 if (old_rflow->filter == rflow->filter)
3249 old_rflow->filter = RPS_NO_FILTER;
3250 out:
3251#endif
3252 rflow->last_qtail =
09994d1b 3253 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3254 }
3255
09994d1b 3256 rflow->cpu = next_cpu;
c445477d
BH
3257 return rflow;
3258}
3259
bfb564e7
KK
3260/*
3261 * get_rps_cpu is called from netif_receive_skb and returns the target
3262 * CPU from the RPS map of the receiving queue for a given skb.
3263 * rcu_read_lock must be held on entry.
3264 */
3265static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3266 struct rps_dev_flow **rflowp)
3267{
567e4b79
ED
3268 const struct rps_sock_flow_table *sock_flow_table;
3269 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3270 struct rps_dev_flow_table *flow_table;
567e4b79 3271 struct rps_map *map;
bfb564e7 3272 int cpu = -1;
567e4b79 3273 u32 tcpu;
61b905da 3274 u32 hash;
bfb564e7
KK
3275
3276 if (skb_rx_queue_recorded(skb)) {
3277 u16 index = skb_get_rx_queue(skb);
567e4b79 3278
62fe0b40
BH
3279 if (unlikely(index >= dev->real_num_rx_queues)) {
3280 WARN_ONCE(dev->real_num_rx_queues > 1,
3281 "%s received packet on queue %u, but number "
3282 "of RX queues is %u\n",
3283 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3284 goto done;
3285 }
567e4b79
ED
3286 rxqueue += index;
3287 }
bfb564e7 3288
567e4b79
ED
3289 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3290
3291 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3292 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3293 if (!flow_table && !map)
bfb564e7
KK
3294 goto done;
3295
2d47b459 3296 skb_reset_network_header(skb);
61b905da
TH
3297 hash = skb_get_hash(skb);
3298 if (!hash)
bfb564e7
KK
3299 goto done;
3300
fec5e652
TH
3301 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3302 if (flow_table && sock_flow_table) {
fec5e652 3303 struct rps_dev_flow *rflow;
567e4b79
ED
3304 u32 next_cpu;
3305 u32 ident;
3306
3307 /* First check into global flow table if there is a match */
3308 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3309 if ((ident ^ hash) & ~rps_cpu_mask)
3310 goto try_rps;
fec5e652 3311
567e4b79
ED
3312 next_cpu = ident & rps_cpu_mask;
3313
3314 /* OK, now we know there is a match,
3315 * we can look at the local (per receive queue) flow table
3316 */
61b905da 3317 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3318 tcpu = rflow->cpu;
3319
fec5e652
TH
3320 /*
3321 * If the desired CPU (where last recvmsg was done) is
3322 * different from current CPU (one in the rx-queue flow
3323 * table entry), switch if one of the following holds:
a31196b0 3324 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3325 * - Current CPU is offline.
3326 * - The current CPU's queue tail has advanced beyond the
3327 * last packet that was enqueued using this table entry.
3328 * This guarantees that all previous packets for the flow
3329 * have been dequeued, thus preserving in order delivery.
3330 */
3331 if (unlikely(tcpu != next_cpu) &&
a31196b0 3332 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3333 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3334 rflow->last_qtail)) >= 0)) {
3335 tcpu = next_cpu;
c445477d 3336 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3337 }
c445477d 3338
a31196b0 3339 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3340 *rflowp = rflow;
3341 cpu = tcpu;
3342 goto done;
3343 }
3344 }
3345
567e4b79
ED
3346try_rps:
3347
0a9627f2 3348 if (map) {
8fc54f68 3349 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3350 if (cpu_online(tcpu)) {
3351 cpu = tcpu;
3352 goto done;
3353 }
3354 }
3355
3356done:
0a9627f2
TH
3357 return cpu;
3358}
3359
c445477d
BH
3360#ifdef CONFIG_RFS_ACCEL
3361
3362/**
3363 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3364 * @dev: Device on which the filter was set
3365 * @rxq_index: RX queue index
3366 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3367 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3368 *
3369 * Drivers that implement ndo_rx_flow_steer() should periodically call
3370 * this function for each installed filter and remove the filters for
3371 * which it returns %true.
3372 */
3373bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3374 u32 flow_id, u16 filter_id)
3375{
3376 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3377 struct rps_dev_flow_table *flow_table;
3378 struct rps_dev_flow *rflow;
3379 bool expire = true;
a31196b0 3380 unsigned int cpu;
c445477d
BH
3381
3382 rcu_read_lock();
3383 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3384 if (flow_table && flow_id <= flow_table->mask) {
3385 rflow = &flow_table->flows[flow_id];
3386 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3387 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3388 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3389 rflow->last_qtail) <
3390 (int)(10 * flow_table->mask)))
3391 expire = false;
3392 }
3393 rcu_read_unlock();
3394 return expire;
3395}
3396EXPORT_SYMBOL(rps_may_expire_flow);
3397
3398#endif /* CONFIG_RFS_ACCEL */
3399
0a9627f2 3400/* Called from hardirq (IPI) context */
e36fa2f7 3401static void rps_trigger_softirq(void *data)
0a9627f2 3402{
e36fa2f7
ED
3403 struct softnet_data *sd = data;
3404
eecfd7c4 3405 ____napi_schedule(sd, &sd->backlog);
dee42870 3406 sd->received_rps++;
0a9627f2 3407}
e36fa2f7 3408
fec5e652 3409#endif /* CONFIG_RPS */
0a9627f2 3410
e36fa2f7
ED
3411/*
3412 * Check if this softnet_data structure is another cpu one
3413 * If yes, queue it to our IPI list and return 1
3414 * If no, return 0
3415 */
3416static int rps_ipi_queued(struct softnet_data *sd)
3417{
3418#ifdef CONFIG_RPS
903ceff7 3419 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3420
3421 if (sd != mysd) {
3422 sd->rps_ipi_next = mysd->rps_ipi_list;
3423 mysd->rps_ipi_list = sd;
3424
3425 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3426 return 1;
3427 }
3428#endif /* CONFIG_RPS */
3429 return 0;
3430}
3431
99bbc707
WB
3432#ifdef CONFIG_NET_FLOW_LIMIT
3433int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3434#endif
3435
3436static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3437{
3438#ifdef CONFIG_NET_FLOW_LIMIT
3439 struct sd_flow_limit *fl;
3440 struct softnet_data *sd;
3441 unsigned int old_flow, new_flow;
3442
3443 if (qlen < (netdev_max_backlog >> 1))
3444 return false;
3445
903ceff7 3446 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3447
3448 rcu_read_lock();
3449 fl = rcu_dereference(sd->flow_limit);
3450 if (fl) {
3958afa1 3451 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3452 old_flow = fl->history[fl->history_head];
3453 fl->history[fl->history_head] = new_flow;
3454
3455 fl->history_head++;
3456 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3457
3458 if (likely(fl->buckets[old_flow]))
3459 fl->buckets[old_flow]--;
3460
3461 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3462 fl->count++;
3463 rcu_read_unlock();
3464 return true;
3465 }
3466 }
3467 rcu_read_unlock();
3468#endif
3469 return false;
3470}
3471
0a9627f2
TH
3472/*
3473 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3474 * queue (may be a remote CPU queue).
3475 */
fec5e652
TH
3476static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3477 unsigned int *qtail)
0a9627f2 3478{
e36fa2f7 3479 struct softnet_data *sd;
0a9627f2 3480 unsigned long flags;
99bbc707 3481 unsigned int qlen;
0a9627f2 3482
e36fa2f7 3483 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3484
3485 local_irq_save(flags);
0a9627f2 3486
e36fa2f7 3487 rps_lock(sd);
e9e4dd32
JA
3488 if (!netif_running(skb->dev))
3489 goto drop;
99bbc707
WB
3490 qlen = skb_queue_len(&sd->input_pkt_queue);
3491 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3492 if (qlen) {
0a9627f2 3493enqueue:
e36fa2f7 3494 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3495 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3496 rps_unlock(sd);
152102c7 3497 local_irq_restore(flags);
0a9627f2
TH
3498 return NET_RX_SUCCESS;
3499 }
3500
ebda37c2
ED
3501 /* Schedule NAPI for backlog device
3502 * We can use non atomic operation since we own the queue lock
3503 */
3504 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3505 if (!rps_ipi_queued(sd))
eecfd7c4 3506 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3507 }
3508 goto enqueue;
3509 }
3510
e9e4dd32 3511drop:
dee42870 3512 sd->dropped++;
e36fa2f7 3513 rps_unlock(sd);
0a9627f2 3514
0a9627f2
TH
3515 local_irq_restore(flags);
3516
caf586e5 3517 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3518 kfree_skb(skb);
3519 return NET_RX_DROP;
3520}
1da177e4 3521
ae78dbfa 3522static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3523{
b0e28f1e 3524 int ret;
1da177e4 3525
588f0330 3526 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3527
cf66ba58 3528 trace_netif_rx(skb);
df334545 3529#ifdef CONFIG_RPS
c5905afb 3530 if (static_key_false(&rps_needed)) {
fec5e652 3531 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3532 int cpu;
3533
cece1945 3534 preempt_disable();
b0e28f1e 3535 rcu_read_lock();
fec5e652
TH
3536
3537 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3538 if (cpu < 0)
3539 cpu = smp_processor_id();
fec5e652
TH
3540
3541 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3542
b0e28f1e 3543 rcu_read_unlock();
cece1945 3544 preempt_enable();
adc9300e
ED
3545 } else
3546#endif
fec5e652
TH
3547 {
3548 unsigned int qtail;
3549 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3550 put_cpu();
3551 }
b0e28f1e 3552 return ret;
1da177e4 3553}
ae78dbfa
BH
3554
3555/**
3556 * netif_rx - post buffer to the network code
3557 * @skb: buffer to post
3558 *
3559 * This function receives a packet from a device driver and queues it for
3560 * the upper (protocol) levels to process. It always succeeds. The buffer
3561 * may be dropped during processing for congestion control or by the
3562 * protocol layers.
3563 *
3564 * return values:
3565 * NET_RX_SUCCESS (no congestion)
3566 * NET_RX_DROP (packet was dropped)
3567 *
3568 */
3569
3570int netif_rx(struct sk_buff *skb)
3571{
3572 trace_netif_rx_entry(skb);
3573
3574 return netif_rx_internal(skb);
3575}
d1b19dff 3576EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3577
3578int netif_rx_ni(struct sk_buff *skb)
3579{
3580 int err;
3581
ae78dbfa
BH
3582 trace_netif_rx_ni_entry(skb);
3583
1da177e4 3584 preempt_disable();
ae78dbfa 3585 err = netif_rx_internal(skb);
1da177e4
LT
3586 if (local_softirq_pending())
3587 do_softirq();
3588 preempt_enable();
3589
3590 return err;
3591}
1da177e4
LT
3592EXPORT_SYMBOL(netif_rx_ni);
3593
1da177e4
LT
3594static void net_tx_action(struct softirq_action *h)
3595{
903ceff7 3596 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3597
3598 if (sd->completion_queue) {
3599 struct sk_buff *clist;
3600
3601 local_irq_disable();
3602 clist = sd->completion_queue;
3603 sd->completion_queue = NULL;
3604 local_irq_enable();
3605
3606 while (clist) {
3607 struct sk_buff *skb = clist;
3608 clist = clist->next;
3609
547b792c 3610 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3611 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3612 trace_consume_skb(skb);
3613 else
3614 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3615 __kfree_skb(skb);
3616 }
3617 }
3618
3619 if (sd->output_queue) {
37437bb2 3620 struct Qdisc *head;
1da177e4
LT
3621
3622 local_irq_disable();
3623 head = sd->output_queue;
3624 sd->output_queue = NULL;
a9cbd588 3625 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3626 local_irq_enable();
3627
3628 while (head) {
37437bb2
DM
3629 struct Qdisc *q = head;
3630 spinlock_t *root_lock;
3631
1da177e4
LT
3632 head = head->next_sched;
3633
5fb66229 3634 root_lock = qdisc_lock(q);
37437bb2 3635 if (spin_trylock(root_lock)) {
4e857c58 3636 smp_mb__before_atomic();
def82a1d
JP
3637 clear_bit(__QDISC_STATE_SCHED,
3638 &q->state);
37437bb2
DM
3639 qdisc_run(q);
3640 spin_unlock(root_lock);
1da177e4 3641 } else {
195648bb 3642 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3643 &q->state)) {
195648bb 3644 __netif_reschedule(q);
e8a83e10 3645 } else {
4e857c58 3646 smp_mb__before_atomic();
e8a83e10
JP
3647 clear_bit(__QDISC_STATE_SCHED,
3648 &q->state);
3649 }
1da177e4
LT
3650 }
3651 }
3652 }
3653}
3654
ab95bfe0
JP
3655#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3656 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3657/* This hook is defined here for ATM LANE */
3658int (*br_fdb_test_addr_hook)(struct net_device *dev,
3659 unsigned char *addr) __read_mostly;
4fb019a0 3660EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3661#endif
1da177e4 3662
f697c3e8
HX
3663static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3664 struct packet_type **pt_prev,
3665 int *ret, struct net_device *orig_dev)
3666{
e7582bab 3667#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3668 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3669 struct tcf_result cl_res;
24824a09 3670
c9e99fd0
DB
3671 /* If there's at least one ingress present somewhere (so
3672 * we get here via enabled static key), remaining devices
3673 * that are not configured with an ingress qdisc will bail
d2788d34 3674 * out here.
c9e99fd0 3675 */
d2788d34 3676 if (!cl)
4577139b 3677 return skb;
f697c3e8
HX
3678 if (*pt_prev) {
3679 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3680 *pt_prev = NULL;
1da177e4
LT
3681 }
3682
3365495c 3683 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3684 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3685 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3686
3b3ae880 3687 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3688 case TC_ACT_OK:
3689 case TC_ACT_RECLASSIFY:
3690 skb->tc_index = TC_H_MIN(cl_res.classid);
3691 break;
3692 case TC_ACT_SHOT:
24ea591d 3693 qdisc_qstats_cpu_drop(cl->q);
d2788d34
DB
3694 case TC_ACT_STOLEN:
3695 case TC_ACT_QUEUED:
3696 kfree_skb(skb);
3697 return NULL;
3698 default:
3699 break;
f697c3e8 3700 }
e7582bab 3701#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3702 return skb;
3703}
1da177e4 3704
ab95bfe0
JP
3705/**
3706 * netdev_rx_handler_register - register receive handler
3707 * @dev: device to register a handler for
3708 * @rx_handler: receive handler to register
93e2c32b 3709 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3710 *
e227867f 3711 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3712 * called from __netif_receive_skb. A negative errno code is returned
3713 * on a failure.
3714 *
3715 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3716 *
3717 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3718 */
3719int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3720 rx_handler_func_t *rx_handler,
3721 void *rx_handler_data)
ab95bfe0
JP
3722{
3723 ASSERT_RTNL();
3724
3725 if (dev->rx_handler)
3726 return -EBUSY;
3727
00cfec37 3728 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3729 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3730 rcu_assign_pointer(dev->rx_handler, rx_handler);
3731
3732 return 0;
3733}
3734EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3735
3736/**
3737 * netdev_rx_handler_unregister - unregister receive handler
3738 * @dev: device to unregister a handler from
3739 *
166ec369 3740 * Unregister a receive handler from a device.
ab95bfe0
JP
3741 *
3742 * The caller must hold the rtnl_mutex.
3743 */
3744void netdev_rx_handler_unregister(struct net_device *dev)
3745{
3746
3747 ASSERT_RTNL();
a9b3cd7f 3748 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3749 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3750 * section has a guarantee to see a non NULL rx_handler_data
3751 * as well.
3752 */
3753 synchronize_net();
a9b3cd7f 3754 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3755}
3756EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3757
b4b9e355
MG
3758/*
3759 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3760 * the special handling of PFMEMALLOC skbs.
3761 */
3762static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3763{
3764 switch (skb->protocol) {
2b8837ae
JP
3765 case htons(ETH_P_ARP):
3766 case htons(ETH_P_IP):
3767 case htons(ETH_P_IPV6):
3768 case htons(ETH_P_8021Q):
3769 case htons(ETH_P_8021AD):
b4b9e355
MG
3770 return true;
3771 default:
3772 return false;
3773 }
3774}
3775
e687ad60
PN
3776static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3777 int *ret, struct net_device *orig_dev)
3778{
e7582bab 3779#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
3780 if (nf_hook_ingress_active(skb)) {
3781 if (*pt_prev) {
3782 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3783 *pt_prev = NULL;
3784 }
3785
3786 return nf_hook_ingress(skb);
3787 }
e7582bab 3788#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
3789 return 0;
3790}
e687ad60 3791
9754e293 3792static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3793{
3794 struct packet_type *ptype, *pt_prev;
ab95bfe0 3795 rx_handler_func_t *rx_handler;
f2ccd8fa 3796 struct net_device *orig_dev;
8a4eb573 3797 bool deliver_exact = false;
1da177e4 3798 int ret = NET_RX_DROP;
252e3346 3799 __be16 type;
1da177e4 3800
588f0330 3801 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3802
cf66ba58 3803 trace_netif_receive_skb(skb);
9b22ea56 3804
cc9bd5ce 3805 orig_dev = skb->dev;
8f903c70 3806
c1d2bbe1 3807 skb_reset_network_header(skb);
fda55eca
ED
3808 if (!skb_transport_header_was_set(skb))
3809 skb_reset_transport_header(skb);
0b5c9db1 3810 skb_reset_mac_len(skb);
1da177e4
LT
3811
3812 pt_prev = NULL;
3813
63d8ea7f 3814another_round:
b6858177 3815 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3816
3817 __this_cpu_inc(softnet_data.processed);
3818
8ad227ff
PM
3819 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3820 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3821 skb = skb_vlan_untag(skb);
bcc6d479 3822 if (unlikely(!skb))
2c17d27c 3823 goto out;
bcc6d479
JP
3824 }
3825
1da177e4
LT
3826#ifdef CONFIG_NET_CLS_ACT
3827 if (skb->tc_verd & TC_NCLS) {
3828 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3829 goto ncls;
3830 }
3831#endif
3832
9754e293 3833 if (pfmemalloc)
b4b9e355
MG
3834 goto skip_taps;
3835
1da177e4 3836 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
3837 if (pt_prev)
3838 ret = deliver_skb(skb, pt_prev, orig_dev);
3839 pt_prev = ptype;
3840 }
3841
3842 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3843 if (pt_prev)
3844 ret = deliver_skb(skb, pt_prev, orig_dev);
3845 pt_prev = ptype;
1da177e4
LT
3846 }
3847
b4b9e355 3848skip_taps:
1cf51900 3849#ifdef CONFIG_NET_INGRESS
4577139b
DB
3850 if (static_key_false(&ingress_needed)) {
3851 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3852 if (!skb)
2c17d27c 3853 goto out;
e687ad60
PN
3854
3855 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 3856 goto out;
4577139b 3857 }
1cf51900
PN
3858#endif
3859#ifdef CONFIG_NET_CLS_ACT
4577139b 3860 skb->tc_verd = 0;
1da177e4
LT
3861ncls:
3862#endif
9754e293 3863 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3864 goto drop;
3865
df8a39de 3866 if (skb_vlan_tag_present(skb)) {
2425717b
JF
3867 if (pt_prev) {
3868 ret = deliver_skb(skb, pt_prev, orig_dev);
3869 pt_prev = NULL;
3870 }
48cc32d3 3871 if (vlan_do_receive(&skb))
2425717b
JF
3872 goto another_round;
3873 else if (unlikely(!skb))
2c17d27c 3874 goto out;
2425717b
JF
3875 }
3876
48cc32d3 3877 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3878 if (rx_handler) {
3879 if (pt_prev) {
3880 ret = deliver_skb(skb, pt_prev, orig_dev);
3881 pt_prev = NULL;
3882 }
8a4eb573
JP
3883 switch (rx_handler(&skb)) {
3884 case RX_HANDLER_CONSUMED:
3bc1b1ad 3885 ret = NET_RX_SUCCESS;
2c17d27c 3886 goto out;
8a4eb573 3887 case RX_HANDLER_ANOTHER:
63d8ea7f 3888 goto another_round;
8a4eb573
JP
3889 case RX_HANDLER_EXACT:
3890 deliver_exact = true;
3891 case RX_HANDLER_PASS:
3892 break;
3893 default:
3894 BUG();
3895 }
ab95bfe0 3896 }
1da177e4 3897
df8a39de
JP
3898 if (unlikely(skb_vlan_tag_present(skb))) {
3899 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
3900 skb->pkt_type = PACKET_OTHERHOST;
3901 /* Note: we might in the future use prio bits
3902 * and set skb->priority like in vlan_do_receive()
3903 * For the time being, just ignore Priority Code Point
3904 */
3905 skb->vlan_tci = 0;
3906 }
48cc32d3 3907
7866a621
SN
3908 type = skb->protocol;
3909
63d8ea7f 3910 /* deliver only exact match when indicated */
7866a621
SN
3911 if (likely(!deliver_exact)) {
3912 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3913 &ptype_base[ntohs(type) &
3914 PTYPE_HASH_MASK]);
3915 }
1f3c8804 3916
7866a621
SN
3917 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3918 &orig_dev->ptype_specific);
3919
3920 if (unlikely(skb->dev != orig_dev)) {
3921 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3922 &skb->dev->ptype_specific);
1da177e4
LT
3923 }
3924
3925 if (pt_prev) {
1080e512 3926 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3927 goto drop;
1080e512
MT
3928 else
3929 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3930 } else {
b4b9e355 3931drop:
caf586e5 3932 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3933 kfree_skb(skb);
3934 /* Jamal, now you will not able to escape explaining
3935 * me how you were going to use this. :-)
3936 */
3937 ret = NET_RX_DROP;
3938 }
3939
2c17d27c 3940out:
9754e293
DM
3941 return ret;
3942}
3943
3944static int __netif_receive_skb(struct sk_buff *skb)
3945{
3946 int ret;
3947
3948 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3949 unsigned long pflags = current->flags;
3950
3951 /*
3952 * PFMEMALLOC skbs are special, they should
3953 * - be delivered to SOCK_MEMALLOC sockets only
3954 * - stay away from userspace
3955 * - have bounded memory usage
3956 *
3957 * Use PF_MEMALLOC as this saves us from propagating the allocation
3958 * context down to all allocation sites.
3959 */
3960 current->flags |= PF_MEMALLOC;
3961 ret = __netif_receive_skb_core(skb, true);
3962 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3963 } else
3964 ret = __netif_receive_skb_core(skb, false);
3965
1da177e4
LT
3966 return ret;
3967}
0a9627f2 3968
ae78dbfa 3969static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3970{
2c17d27c
JA
3971 int ret;
3972
588f0330 3973 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3974
c1f19b51
RC
3975 if (skb_defer_rx_timestamp(skb))
3976 return NET_RX_SUCCESS;
3977
2c17d27c
JA
3978 rcu_read_lock();
3979
df334545 3980#ifdef CONFIG_RPS
c5905afb 3981 if (static_key_false(&rps_needed)) {
3b098e2d 3982 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 3983 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3984
3b098e2d
ED
3985 if (cpu >= 0) {
3986 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3987 rcu_read_unlock();
adc9300e 3988 return ret;
3b098e2d 3989 }
fec5e652 3990 }
1e94d72f 3991#endif
2c17d27c
JA
3992 ret = __netif_receive_skb(skb);
3993 rcu_read_unlock();
3994 return ret;
0a9627f2 3995}
ae78dbfa
BH
3996
3997/**
3998 * netif_receive_skb - process receive buffer from network
3999 * @skb: buffer to process
4000 *
4001 * netif_receive_skb() is the main receive data processing function.
4002 * It always succeeds. The buffer may be dropped during processing
4003 * for congestion control or by the protocol layers.
4004 *
4005 * This function may only be called from softirq context and interrupts
4006 * should be enabled.
4007 *
4008 * Return values (usually ignored):
4009 * NET_RX_SUCCESS: no congestion
4010 * NET_RX_DROP: packet was dropped
4011 */
7026b1dd 4012int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
ae78dbfa
BH
4013{
4014 trace_netif_receive_skb_entry(skb);
4015
4016 return netif_receive_skb_internal(skb);
4017}
7026b1dd 4018EXPORT_SYMBOL(netif_receive_skb_sk);
1da177e4 4019
88751275
ED
4020/* Network device is going away, flush any packets still pending
4021 * Called with irqs disabled.
4022 */
152102c7 4023static void flush_backlog(void *arg)
6e583ce5 4024{
152102c7 4025 struct net_device *dev = arg;
903ceff7 4026 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
4027 struct sk_buff *skb, *tmp;
4028
e36fa2f7 4029 rps_lock(sd);
6e7676c1 4030 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 4031 if (skb->dev == dev) {
e36fa2f7 4032 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4033 kfree_skb(skb);
76cc8b13 4034 input_queue_head_incr(sd);
6e583ce5 4035 }
6e7676c1 4036 }
e36fa2f7 4037 rps_unlock(sd);
6e7676c1
CG
4038
4039 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4040 if (skb->dev == dev) {
4041 __skb_unlink(skb, &sd->process_queue);
4042 kfree_skb(skb);
76cc8b13 4043 input_queue_head_incr(sd);
6e7676c1
CG
4044 }
4045 }
6e583ce5
SH
4046}
4047
d565b0a1
HX
4048static int napi_gro_complete(struct sk_buff *skb)
4049{
22061d80 4050 struct packet_offload *ptype;
d565b0a1 4051 __be16 type = skb->protocol;
22061d80 4052 struct list_head *head = &offload_base;
d565b0a1
HX
4053 int err = -ENOENT;
4054
c3c7c254
ED
4055 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4056
fc59f9a3
HX
4057 if (NAPI_GRO_CB(skb)->count == 1) {
4058 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4059 goto out;
fc59f9a3 4060 }
d565b0a1
HX
4061
4062 rcu_read_lock();
4063 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4064 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4065 continue;
4066
299603e8 4067 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4068 break;
4069 }
4070 rcu_read_unlock();
4071
4072 if (err) {
4073 WARN_ON(&ptype->list == head);
4074 kfree_skb(skb);
4075 return NET_RX_SUCCESS;
4076 }
4077
4078out:
ae78dbfa 4079 return netif_receive_skb_internal(skb);
d565b0a1
HX
4080}
4081
2e71a6f8
ED
4082/* napi->gro_list contains packets ordered by age.
4083 * youngest packets at the head of it.
4084 * Complete skbs in reverse order to reduce latencies.
4085 */
4086void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4087{
2e71a6f8 4088 struct sk_buff *skb, *prev = NULL;
d565b0a1 4089
2e71a6f8
ED
4090 /* scan list and build reverse chain */
4091 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4092 skb->prev = prev;
4093 prev = skb;
4094 }
4095
4096 for (skb = prev; skb; skb = prev) {
d565b0a1 4097 skb->next = NULL;
2e71a6f8
ED
4098
4099 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4100 return;
4101
4102 prev = skb->prev;
d565b0a1 4103 napi_gro_complete(skb);
2e71a6f8 4104 napi->gro_count--;
d565b0a1
HX
4105 }
4106
4107 napi->gro_list = NULL;
4108}
86cac58b 4109EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4110
89c5fa33
ED
4111static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4112{
4113 struct sk_buff *p;
4114 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4115 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4116
4117 for (p = napi->gro_list; p; p = p->next) {
4118 unsigned long diffs;
4119
0b4cec8c
TH
4120 NAPI_GRO_CB(p)->flush = 0;
4121
4122 if (hash != skb_get_hash_raw(p)) {
4123 NAPI_GRO_CB(p)->same_flow = 0;
4124 continue;
4125 }
4126
89c5fa33
ED
4127 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4128 diffs |= p->vlan_tci ^ skb->vlan_tci;
4129 if (maclen == ETH_HLEN)
4130 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4131 skb_mac_header(skb));
89c5fa33
ED
4132 else if (!diffs)
4133 diffs = memcmp(skb_mac_header(p),
a50e233c 4134 skb_mac_header(skb),
89c5fa33
ED
4135 maclen);
4136 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4137 }
4138}
4139
299603e8
JC
4140static void skb_gro_reset_offset(struct sk_buff *skb)
4141{
4142 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4143 const skb_frag_t *frag0 = &pinfo->frags[0];
4144
4145 NAPI_GRO_CB(skb)->data_offset = 0;
4146 NAPI_GRO_CB(skb)->frag0 = NULL;
4147 NAPI_GRO_CB(skb)->frag0_len = 0;
4148
4149 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4150 pinfo->nr_frags &&
4151 !PageHighMem(skb_frag_page(frag0))) {
4152 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4153 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4154 }
4155}
4156
a50e233c
ED
4157static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4158{
4159 struct skb_shared_info *pinfo = skb_shinfo(skb);
4160
4161 BUG_ON(skb->end - skb->tail < grow);
4162
4163 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4164
4165 skb->data_len -= grow;
4166 skb->tail += grow;
4167
4168 pinfo->frags[0].page_offset += grow;
4169 skb_frag_size_sub(&pinfo->frags[0], grow);
4170
4171 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4172 skb_frag_unref(skb, 0);
4173 memmove(pinfo->frags, pinfo->frags + 1,
4174 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4175 }
4176}
4177
bb728820 4178static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4179{
4180 struct sk_buff **pp = NULL;
22061d80 4181 struct packet_offload *ptype;
d565b0a1 4182 __be16 type = skb->protocol;
22061d80 4183 struct list_head *head = &offload_base;
0da2afd5 4184 int same_flow;
5b252f0c 4185 enum gro_result ret;
a50e233c 4186 int grow;
d565b0a1 4187
9c62a68d 4188 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4189 goto normal;
4190
5a212329 4191 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4192 goto normal;
4193
89c5fa33
ED
4194 gro_list_prepare(napi, skb);
4195
d565b0a1
HX
4196 rcu_read_lock();
4197 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4198 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4199 continue;
4200
86911732 4201 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4202 skb_reset_mac_len(skb);
d565b0a1
HX
4203 NAPI_GRO_CB(skb)->same_flow = 0;
4204 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4205 NAPI_GRO_CB(skb)->free = 0;
b582ef09 4206 NAPI_GRO_CB(skb)->udp_mark = 0;
15e2396d 4207 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4208
662880f4
TH
4209 /* Setup for GRO checksum validation */
4210 switch (skb->ip_summed) {
4211 case CHECKSUM_COMPLETE:
4212 NAPI_GRO_CB(skb)->csum = skb->csum;
4213 NAPI_GRO_CB(skb)->csum_valid = 1;
4214 NAPI_GRO_CB(skb)->csum_cnt = 0;
4215 break;
4216 case CHECKSUM_UNNECESSARY:
4217 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4218 NAPI_GRO_CB(skb)->csum_valid = 0;
4219 break;
4220 default:
4221 NAPI_GRO_CB(skb)->csum_cnt = 0;
4222 NAPI_GRO_CB(skb)->csum_valid = 0;
4223 }
d565b0a1 4224
f191a1d1 4225 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4226 break;
4227 }
4228 rcu_read_unlock();
4229
4230 if (&ptype->list == head)
4231 goto normal;
4232
0da2afd5 4233 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4234 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4235
d565b0a1
HX
4236 if (pp) {
4237 struct sk_buff *nskb = *pp;
4238
4239 *pp = nskb->next;
4240 nskb->next = NULL;
4241 napi_gro_complete(nskb);
4ae5544f 4242 napi->gro_count--;
d565b0a1
HX
4243 }
4244
0da2afd5 4245 if (same_flow)
d565b0a1
HX
4246 goto ok;
4247
600adc18 4248 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4249 goto normal;
d565b0a1 4250
600adc18
ED
4251 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4252 struct sk_buff *nskb = napi->gro_list;
4253
4254 /* locate the end of the list to select the 'oldest' flow */
4255 while (nskb->next) {
4256 pp = &nskb->next;
4257 nskb = *pp;
4258 }
4259 *pp = NULL;
4260 nskb->next = NULL;
4261 napi_gro_complete(nskb);
4262 } else {
4263 napi->gro_count++;
4264 }
d565b0a1 4265 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4266 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4267 NAPI_GRO_CB(skb)->last = skb;
86911732 4268 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4269 skb->next = napi->gro_list;
4270 napi->gro_list = skb;
5d0d9be8 4271 ret = GRO_HELD;
d565b0a1 4272
ad0f9904 4273pull:
a50e233c
ED
4274 grow = skb_gro_offset(skb) - skb_headlen(skb);
4275 if (grow > 0)
4276 gro_pull_from_frag0(skb, grow);
d565b0a1 4277ok:
5d0d9be8 4278 return ret;
d565b0a1
HX
4279
4280normal:
ad0f9904
HX
4281 ret = GRO_NORMAL;
4282 goto pull;
5d38a079 4283}
96e93eab 4284
bf5a755f
JC
4285struct packet_offload *gro_find_receive_by_type(__be16 type)
4286{
4287 struct list_head *offload_head = &offload_base;
4288 struct packet_offload *ptype;
4289
4290 list_for_each_entry_rcu(ptype, offload_head, list) {
4291 if (ptype->type != type || !ptype->callbacks.gro_receive)
4292 continue;
4293 return ptype;
4294 }
4295 return NULL;
4296}
e27a2f83 4297EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4298
4299struct packet_offload *gro_find_complete_by_type(__be16 type)
4300{
4301 struct list_head *offload_head = &offload_base;
4302 struct packet_offload *ptype;
4303
4304 list_for_each_entry_rcu(ptype, offload_head, list) {
4305 if (ptype->type != type || !ptype->callbacks.gro_complete)
4306 continue;
4307 return ptype;
4308 }
4309 return NULL;
4310}
e27a2f83 4311EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4312
bb728820 4313static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4314{
5d0d9be8
HX
4315 switch (ret) {
4316 case GRO_NORMAL:
ae78dbfa 4317 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4318 ret = GRO_DROP;
4319 break;
5d38a079 4320
5d0d9be8 4321 case GRO_DROP:
5d38a079
HX
4322 kfree_skb(skb);
4323 break;
5b252f0c 4324
daa86548 4325 case GRO_MERGED_FREE:
d7e8883c
ED
4326 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4327 kmem_cache_free(skbuff_head_cache, skb);
4328 else
4329 __kfree_skb(skb);
daa86548
ED
4330 break;
4331
5b252f0c
BH
4332 case GRO_HELD:
4333 case GRO_MERGED:
4334 break;
5d38a079
HX
4335 }
4336
c7c4b3b6 4337 return ret;
5d0d9be8 4338}
5d0d9be8 4339
c7c4b3b6 4340gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4341{
ae78dbfa 4342 trace_napi_gro_receive_entry(skb);
86911732 4343
a50e233c
ED
4344 skb_gro_reset_offset(skb);
4345
89c5fa33 4346 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4347}
4348EXPORT_SYMBOL(napi_gro_receive);
4349
d0c2b0d2 4350static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4351{
93a35f59
ED
4352 if (unlikely(skb->pfmemalloc)) {
4353 consume_skb(skb);
4354 return;
4355 }
96e93eab 4356 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4357 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4358 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4359 skb->vlan_tci = 0;
66c46d74 4360 skb->dev = napi->dev;
6d152e23 4361 skb->skb_iif = 0;
c3caf119
JC
4362 skb->encapsulation = 0;
4363 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4364 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4365
4366 napi->skb = skb;
4367}
96e93eab 4368
76620aaf 4369struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4370{
5d38a079 4371 struct sk_buff *skb = napi->skb;
5d38a079
HX
4372
4373 if (!skb) {
fd11a83d 4374 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
84b9cd63 4375 napi->skb = skb;
80595d59 4376 }
96e93eab
HX
4377 return skb;
4378}
76620aaf 4379EXPORT_SYMBOL(napi_get_frags);
96e93eab 4380
a50e233c
ED
4381static gro_result_t napi_frags_finish(struct napi_struct *napi,
4382 struct sk_buff *skb,
4383 gro_result_t ret)
96e93eab 4384{
5d0d9be8
HX
4385 switch (ret) {
4386 case GRO_NORMAL:
a50e233c
ED
4387 case GRO_HELD:
4388 __skb_push(skb, ETH_HLEN);
4389 skb->protocol = eth_type_trans(skb, skb->dev);
4390 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4391 ret = GRO_DROP;
86911732 4392 break;
5d38a079 4393
5d0d9be8 4394 case GRO_DROP:
5d0d9be8
HX
4395 case GRO_MERGED_FREE:
4396 napi_reuse_skb(napi, skb);
4397 break;
5b252f0c
BH
4398
4399 case GRO_MERGED:
4400 break;
5d0d9be8 4401 }
5d38a079 4402
c7c4b3b6 4403 return ret;
5d38a079 4404}
5d0d9be8 4405
a50e233c
ED
4406/* Upper GRO stack assumes network header starts at gro_offset=0
4407 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4408 * We copy ethernet header into skb->data to have a common layout.
4409 */
4adb9c4a 4410static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4411{
4412 struct sk_buff *skb = napi->skb;
a50e233c
ED
4413 const struct ethhdr *eth;
4414 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4415
4416 napi->skb = NULL;
4417
a50e233c
ED
4418 skb_reset_mac_header(skb);
4419 skb_gro_reset_offset(skb);
4420
4421 eth = skb_gro_header_fast(skb, 0);
4422 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4423 eth = skb_gro_header_slow(skb, hlen, 0);
4424 if (unlikely(!eth)) {
4425 napi_reuse_skb(napi, skb);
4426 return NULL;
4427 }
4428 } else {
4429 gro_pull_from_frag0(skb, hlen);
4430 NAPI_GRO_CB(skb)->frag0 += hlen;
4431 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4432 }
a50e233c
ED
4433 __skb_pull(skb, hlen);
4434
4435 /*
4436 * This works because the only protocols we care about don't require
4437 * special handling.
4438 * We'll fix it up properly in napi_frags_finish()
4439 */
4440 skb->protocol = eth->h_proto;
76620aaf 4441
76620aaf
HX
4442 return skb;
4443}
76620aaf 4444
c7c4b3b6 4445gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4446{
76620aaf 4447 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4448
4449 if (!skb)
c7c4b3b6 4450 return GRO_DROP;
5d0d9be8 4451
ae78dbfa
BH
4452 trace_napi_gro_frags_entry(skb);
4453
89c5fa33 4454 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4455}
5d38a079
HX
4456EXPORT_SYMBOL(napi_gro_frags);
4457
573e8fca
TH
4458/* Compute the checksum from gro_offset and return the folded value
4459 * after adding in any pseudo checksum.
4460 */
4461__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4462{
4463 __wsum wsum;
4464 __sum16 sum;
4465
4466 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4467
4468 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4469 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4470 if (likely(!sum)) {
4471 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4472 !skb->csum_complete_sw)
4473 netdev_rx_csum_fault(skb->dev);
4474 }
4475
4476 NAPI_GRO_CB(skb)->csum = wsum;
4477 NAPI_GRO_CB(skb)->csum_valid = 1;
4478
4479 return sum;
4480}
4481EXPORT_SYMBOL(__skb_gro_checksum_complete);
4482
e326bed2 4483/*
855abcf0 4484 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4485 * Note: called with local irq disabled, but exits with local irq enabled.
4486 */
4487static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4488{
4489#ifdef CONFIG_RPS
4490 struct softnet_data *remsd = sd->rps_ipi_list;
4491
4492 if (remsd) {
4493 sd->rps_ipi_list = NULL;
4494
4495 local_irq_enable();
4496
4497 /* Send pending IPI's to kick RPS processing on remote cpus. */
4498 while (remsd) {
4499 struct softnet_data *next = remsd->rps_ipi_next;
4500
4501 if (cpu_online(remsd->cpu))
c46fff2a 4502 smp_call_function_single_async(remsd->cpu,
fce8ad15 4503 &remsd->csd);
e326bed2
ED
4504 remsd = next;
4505 }
4506 } else
4507#endif
4508 local_irq_enable();
4509}
4510
d75b1ade
ED
4511static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4512{
4513#ifdef CONFIG_RPS
4514 return sd->rps_ipi_list != NULL;
4515#else
4516 return false;
4517#endif
4518}
4519
bea3348e 4520static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4521{
4522 int work = 0;
eecfd7c4 4523 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4524
e326bed2
ED
4525 /* Check if we have pending ipi, its better to send them now,
4526 * not waiting net_rx_action() end.
4527 */
d75b1ade 4528 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4529 local_irq_disable();
4530 net_rps_action_and_irq_enable(sd);
4531 }
d75b1ade 4532
bea3348e 4533 napi->weight = weight_p;
6e7676c1 4534 local_irq_disable();
11ef7a89 4535 while (1) {
1da177e4 4536 struct sk_buff *skb;
6e7676c1
CG
4537
4538 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4539 rcu_read_lock();
6e7676c1
CG
4540 local_irq_enable();
4541 __netif_receive_skb(skb);
2c17d27c 4542 rcu_read_unlock();
6e7676c1 4543 local_irq_disable();
76cc8b13
TH
4544 input_queue_head_incr(sd);
4545 if (++work >= quota) {
4546 local_irq_enable();
4547 return work;
4548 }
6e7676c1 4549 }
1da177e4 4550
e36fa2f7 4551 rps_lock(sd);
11ef7a89 4552 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4553 /*
4554 * Inline a custom version of __napi_complete().
4555 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4556 * and NAPI_STATE_SCHED is the only possible flag set
4557 * on backlog.
4558 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4559 * and we dont need an smp_mb() memory barrier.
4560 */
eecfd7c4 4561 napi->state = 0;
11ef7a89 4562 rps_unlock(sd);
eecfd7c4 4563
11ef7a89 4564 break;
bea3348e 4565 }
11ef7a89
TH
4566
4567 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4568 &sd->process_queue);
e36fa2f7 4569 rps_unlock(sd);
6e7676c1
CG
4570 }
4571 local_irq_enable();
1da177e4 4572
bea3348e
SH
4573 return work;
4574}
1da177e4 4575
bea3348e
SH
4576/**
4577 * __napi_schedule - schedule for receive
c4ea43c5 4578 * @n: entry to schedule
bea3348e 4579 *
bc9ad166
ED
4580 * The entry's receive function will be scheduled to run.
4581 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4582 */
b5606c2d 4583void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4584{
4585 unsigned long flags;
1da177e4 4586
bea3348e 4587 local_irq_save(flags);
903ceff7 4588 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4589 local_irq_restore(flags);
1da177e4 4590}
bea3348e
SH
4591EXPORT_SYMBOL(__napi_schedule);
4592
bc9ad166
ED
4593/**
4594 * __napi_schedule_irqoff - schedule for receive
4595 * @n: entry to schedule
4596 *
4597 * Variant of __napi_schedule() assuming hard irqs are masked
4598 */
4599void __napi_schedule_irqoff(struct napi_struct *n)
4600{
4601 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4602}
4603EXPORT_SYMBOL(__napi_schedule_irqoff);
4604
d565b0a1
HX
4605void __napi_complete(struct napi_struct *n)
4606{
4607 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4608
d75b1ade 4609 list_del_init(&n->poll_list);
4e857c58 4610 smp_mb__before_atomic();
d565b0a1
HX
4611 clear_bit(NAPI_STATE_SCHED, &n->state);
4612}
4613EXPORT_SYMBOL(__napi_complete);
4614
3b47d303 4615void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4616{
4617 unsigned long flags;
4618
4619 /*
4620 * don't let napi dequeue from the cpu poll list
4621 * just in case its running on a different cpu
4622 */
4623 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4624 return;
4625
3b47d303
ED
4626 if (n->gro_list) {
4627 unsigned long timeout = 0;
d75b1ade 4628
3b47d303
ED
4629 if (work_done)
4630 timeout = n->dev->gro_flush_timeout;
4631
4632 if (timeout)
4633 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4634 HRTIMER_MODE_REL_PINNED);
4635 else
4636 napi_gro_flush(n, false);
4637 }
d75b1ade
ED
4638 if (likely(list_empty(&n->poll_list))) {
4639 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4640 } else {
4641 /* If n->poll_list is not empty, we need to mask irqs */
4642 local_irq_save(flags);
4643 __napi_complete(n);
4644 local_irq_restore(flags);
4645 }
d565b0a1 4646}
3b47d303 4647EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4648
af12fa6e
ET
4649/* must be called under rcu_read_lock(), as we dont take a reference */
4650struct napi_struct *napi_by_id(unsigned int napi_id)
4651{
4652 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4653 struct napi_struct *napi;
4654
4655 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4656 if (napi->napi_id == napi_id)
4657 return napi;
4658
4659 return NULL;
4660}
4661EXPORT_SYMBOL_GPL(napi_by_id);
4662
4663void napi_hash_add(struct napi_struct *napi)
4664{
4665 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4666
4667 spin_lock(&napi_hash_lock);
4668
4669 /* 0 is not a valid id, we also skip an id that is taken
4670 * we expect both events to be extremely rare
4671 */
4672 napi->napi_id = 0;
4673 while (!napi->napi_id) {
4674 napi->napi_id = ++napi_gen_id;
4675 if (napi_by_id(napi->napi_id))
4676 napi->napi_id = 0;
4677 }
4678
4679 hlist_add_head_rcu(&napi->napi_hash_node,
4680 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4681
4682 spin_unlock(&napi_hash_lock);
4683 }
4684}
4685EXPORT_SYMBOL_GPL(napi_hash_add);
4686
4687/* Warning : caller is responsible to make sure rcu grace period
4688 * is respected before freeing memory containing @napi
4689 */
4690void napi_hash_del(struct napi_struct *napi)
4691{
4692 spin_lock(&napi_hash_lock);
4693
4694 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4695 hlist_del_rcu(&napi->napi_hash_node);
4696
4697 spin_unlock(&napi_hash_lock);
4698}
4699EXPORT_SYMBOL_GPL(napi_hash_del);
4700
3b47d303
ED
4701static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4702{
4703 struct napi_struct *napi;
4704
4705 napi = container_of(timer, struct napi_struct, timer);
4706 if (napi->gro_list)
4707 napi_schedule(napi);
4708
4709 return HRTIMER_NORESTART;
4710}
4711
d565b0a1
HX
4712void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4713 int (*poll)(struct napi_struct *, int), int weight)
4714{
4715 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
4716 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4717 napi->timer.function = napi_watchdog;
4ae5544f 4718 napi->gro_count = 0;
d565b0a1 4719 napi->gro_list = NULL;
5d38a079 4720 napi->skb = NULL;
d565b0a1 4721 napi->poll = poll;
82dc3c63
ED
4722 if (weight > NAPI_POLL_WEIGHT)
4723 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4724 weight, dev->name);
d565b0a1
HX
4725 napi->weight = weight;
4726 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4727 napi->dev = dev;
5d38a079 4728#ifdef CONFIG_NETPOLL
d565b0a1
HX
4729 spin_lock_init(&napi->poll_lock);
4730 napi->poll_owner = -1;
4731#endif
4732 set_bit(NAPI_STATE_SCHED, &napi->state);
4733}
4734EXPORT_SYMBOL(netif_napi_add);
4735
3b47d303
ED
4736void napi_disable(struct napi_struct *n)
4737{
4738 might_sleep();
4739 set_bit(NAPI_STATE_DISABLE, &n->state);
4740
4741 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4742 msleep(1);
2d8bff12
NH
4743 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4744 msleep(1);
3b47d303
ED
4745
4746 hrtimer_cancel(&n->timer);
4747
4748 clear_bit(NAPI_STATE_DISABLE, &n->state);
4749}
4750EXPORT_SYMBOL(napi_disable);
4751
d565b0a1
HX
4752void netif_napi_del(struct napi_struct *napi)
4753{
d7b06636 4754 list_del_init(&napi->dev_list);
76620aaf 4755 napi_free_frags(napi);
d565b0a1 4756
289dccbe 4757 kfree_skb_list(napi->gro_list);
d565b0a1 4758 napi->gro_list = NULL;
4ae5544f 4759 napi->gro_count = 0;
d565b0a1
HX
4760}
4761EXPORT_SYMBOL(netif_napi_del);
4762
726ce70e
HX
4763static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4764{
4765 void *have;
4766 int work, weight;
4767
4768 list_del_init(&n->poll_list);
4769
4770 have = netpoll_poll_lock(n);
4771
4772 weight = n->weight;
4773
4774 /* This NAPI_STATE_SCHED test is for avoiding a race
4775 * with netpoll's poll_napi(). Only the entity which
4776 * obtains the lock and sees NAPI_STATE_SCHED set will
4777 * actually make the ->poll() call. Therefore we avoid
4778 * accidentally calling ->poll() when NAPI is not scheduled.
4779 */
4780 work = 0;
4781 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4782 work = n->poll(n, weight);
4783 trace_napi_poll(n);
4784 }
4785
4786 WARN_ON_ONCE(work > weight);
4787
4788 if (likely(work < weight))
4789 goto out_unlock;
4790
4791 /* Drivers must not modify the NAPI state if they
4792 * consume the entire weight. In such cases this code
4793 * still "owns" the NAPI instance and therefore can
4794 * move the instance around on the list at-will.
4795 */
4796 if (unlikely(napi_disable_pending(n))) {
4797 napi_complete(n);
4798 goto out_unlock;
4799 }
4800
4801 if (n->gro_list) {
4802 /* flush too old packets
4803 * If HZ < 1000, flush all packets.
4804 */
4805 napi_gro_flush(n, HZ >= 1000);
4806 }
4807
001ce546
HX
4808 /* Some drivers may have called napi_schedule
4809 * prior to exhausting their budget.
4810 */
4811 if (unlikely(!list_empty(&n->poll_list))) {
4812 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4813 n->dev ? n->dev->name : "backlog");
4814 goto out_unlock;
4815 }
4816
726ce70e
HX
4817 list_add_tail(&n->poll_list, repoll);
4818
4819out_unlock:
4820 netpoll_poll_unlock(have);
4821
4822 return work;
4823}
4824
1da177e4
LT
4825static void net_rx_action(struct softirq_action *h)
4826{
903ceff7 4827 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 4828 unsigned long time_limit = jiffies + 2;
51b0bded 4829 int budget = netdev_budget;
d75b1ade
ED
4830 LIST_HEAD(list);
4831 LIST_HEAD(repoll);
53fb95d3 4832
1da177e4 4833 local_irq_disable();
d75b1ade
ED
4834 list_splice_init(&sd->poll_list, &list);
4835 local_irq_enable();
1da177e4 4836
ceb8d5bf 4837 for (;;) {
bea3348e 4838 struct napi_struct *n;
1da177e4 4839
ceb8d5bf
HX
4840 if (list_empty(&list)) {
4841 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4842 return;
4843 break;
4844 }
4845
6bd373eb
HX
4846 n = list_first_entry(&list, struct napi_struct, poll_list);
4847 budget -= napi_poll(n, &repoll);
4848
d75b1ade 4849 /* If softirq window is exhausted then punt.
24f8b238
SH
4850 * Allow this to run for 2 jiffies since which will allow
4851 * an average latency of 1.5/HZ.
bea3348e 4852 */
ceb8d5bf
HX
4853 if (unlikely(budget <= 0 ||
4854 time_after_eq(jiffies, time_limit))) {
4855 sd->time_squeeze++;
4856 break;
4857 }
1da177e4 4858 }
d75b1ade 4859
d75b1ade
ED
4860 local_irq_disable();
4861
4862 list_splice_tail_init(&sd->poll_list, &list);
4863 list_splice_tail(&repoll, &list);
4864 list_splice(&list, &sd->poll_list);
4865 if (!list_empty(&sd->poll_list))
4866 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4867
e326bed2 4868 net_rps_action_and_irq_enable(sd);
1da177e4
LT
4869}
4870
aa9d8560 4871struct netdev_adjacent {
9ff162a8 4872 struct net_device *dev;
5d261913
VF
4873
4874 /* upper master flag, there can only be one master device per list */
9ff162a8 4875 bool master;
5d261913 4876
5d261913
VF
4877 /* counter for the number of times this device was added to us */
4878 u16 ref_nr;
4879
402dae96
VF
4880 /* private field for the users */
4881 void *private;
4882
9ff162a8
JP
4883 struct list_head list;
4884 struct rcu_head rcu;
9ff162a8
JP
4885};
4886
5d261913
VF
4887static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4888 struct net_device *adj_dev,
2f268f12 4889 struct list_head *adj_list)
9ff162a8 4890{
5d261913 4891 struct netdev_adjacent *adj;
5d261913 4892
2f268f12 4893 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4894 if (adj->dev == adj_dev)
4895 return adj;
9ff162a8
JP
4896 }
4897 return NULL;
4898}
4899
4900/**
4901 * netdev_has_upper_dev - Check if device is linked to an upper device
4902 * @dev: device
4903 * @upper_dev: upper device to check
4904 *
4905 * Find out if a device is linked to specified upper device and return true
4906 * in case it is. Note that this checks only immediate upper device,
4907 * not through a complete stack of devices. The caller must hold the RTNL lock.
4908 */
4909bool netdev_has_upper_dev(struct net_device *dev,
4910 struct net_device *upper_dev)
4911{
4912 ASSERT_RTNL();
4913
2f268f12 4914 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4915}
4916EXPORT_SYMBOL(netdev_has_upper_dev);
4917
4918/**
4919 * netdev_has_any_upper_dev - Check if device is linked to some device
4920 * @dev: device
4921 *
4922 * Find out if a device is linked to an upper device and return true in case
4923 * it is. The caller must hold the RTNL lock.
4924 */
1d143d9f 4925static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4926{
4927 ASSERT_RTNL();
4928
2f268f12 4929 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4930}
9ff162a8
JP
4931
4932/**
4933 * netdev_master_upper_dev_get - Get master upper device
4934 * @dev: device
4935 *
4936 * Find a master upper device and return pointer to it or NULL in case
4937 * it's not there. The caller must hold the RTNL lock.
4938 */
4939struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4940{
aa9d8560 4941 struct netdev_adjacent *upper;
9ff162a8
JP
4942
4943 ASSERT_RTNL();
4944
2f268f12 4945 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4946 return NULL;
4947
2f268f12 4948 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4949 struct netdev_adjacent, list);
9ff162a8
JP
4950 if (likely(upper->master))
4951 return upper->dev;
4952 return NULL;
4953}
4954EXPORT_SYMBOL(netdev_master_upper_dev_get);
4955
b6ccba4c
VF
4956void *netdev_adjacent_get_private(struct list_head *adj_list)
4957{
4958 struct netdev_adjacent *adj;
4959
4960 adj = list_entry(adj_list, struct netdev_adjacent, list);
4961
4962 return adj->private;
4963}
4964EXPORT_SYMBOL(netdev_adjacent_get_private);
4965
44a40855
VY
4966/**
4967 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4968 * @dev: device
4969 * @iter: list_head ** of the current position
4970 *
4971 * Gets the next device from the dev's upper list, starting from iter
4972 * position. The caller must hold RCU read lock.
4973 */
4974struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4975 struct list_head **iter)
4976{
4977 struct netdev_adjacent *upper;
4978
4979 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4980
4981 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4982
4983 if (&upper->list == &dev->adj_list.upper)
4984 return NULL;
4985
4986 *iter = &upper->list;
4987
4988 return upper->dev;
4989}
4990EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4991
31088a11
VF
4992/**
4993 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
4994 * @dev: device
4995 * @iter: list_head ** of the current position
4996 *
4997 * Gets the next device from the dev's upper list, starting from iter
4998 * position. The caller must hold RCU read lock.
4999 */
2f268f12
VF
5000struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5001 struct list_head **iter)
48311f46
VF
5002{
5003 struct netdev_adjacent *upper;
5004
85328240 5005 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5006
5007 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5008
2f268f12 5009 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5010 return NULL;
5011
5012 *iter = &upper->list;
5013
5014 return upper->dev;
5015}
2f268f12 5016EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5017
31088a11
VF
5018/**
5019 * netdev_lower_get_next_private - Get the next ->private from the
5020 * lower neighbour list
5021 * @dev: device
5022 * @iter: list_head ** of the current position
5023 *
5024 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5025 * list, starting from iter position. The caller must hold either hold the
5026 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5027 * list will remain unchanged.
31088a11
VF
5028 */
5029void *netdev_lower_get_next_private(struct net_device *dev,
5030 struct list_head **iter)
5031{
5032 struct netdev_adjacent *lower;
5033
5034 lower = list_entry(*iter, struct netdev_adjacent, list);
5035
5036 if (&lower->list == &dev->adj_list.lower)
5037 return NULL;
5038
6859e7df 5039 *iter = lower->list.next;
31088a11
VF
5040
5041 return lower->private;
5042}
5043EXPORT_SYMBOL(netdev_lower_get_next_private);
5044
5045/**
5046 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5047 * lower neighbour list, RCU
5048 * variant
5049 * @dev: device
5050 * @iter: list_head ** of the current position
5051 *
5052 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5053 * list, starting from iter position. The caller must hold RCU read lock.
5054 */
5055void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5056 struct list_head **iter)
5057{
5058 struct netdev_adjacent *lower;
5059
5060 WARN_ON_ONCE(!rcu_read_lock_held());
5061
5062 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5063
5064 if (&lower->list == &dev->adj_list.lower)
5065 return NULL;
5066
6859e7df 5067 *iter = &lower->list;
31088a11
VF
5068
5069 return lower->private;
5070}
5071EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5072
4085ebe8
VY
5073/**
5074 * netdev_lower_get_next - Get the next device from the lower neighbour
5075 * list
5076 * @dev: device
5077 * @iter: list_head ** of the current position
5078 *
5079 * Gets the next netdev_adjacent from the dev's lower neighbour
5080 * list, starting from iter position. The caller must hold RTNL lock or
5081 * its own locking that guarantees that the neighbour lower
b469139e 5082 * list will remain unchanged.
4085ebe8
VY
5083 */
5084void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5085{
5086 struct netdev_adjacent *lower;
5087
5088 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5089
5090 if (&lower->list == &dev->adj_list.lower)
5091 return NULL;
5092
5093 *iter = &lower->list;
5094
5095 return lower->dev;
5096}
5097EXPORT_SYMBOL(netdev_lower_get_next);
5098
e001bfad 5099/**
5100 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5101 * lower neighbour list, RCU
5102 * variant
5103 * @dev: device
5104 *
5105 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5106 * list. The caller must hold RCU read lock.
5107 */
5108void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5109{
5110 struct netdev_adjacent *lower;
5111
5112 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5113 struct netdev_adjacent, list);
5114 if (lower)
5115 return lower->private;
5116 return NULL;
5117}
5118EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5119
9ff162a8
JP
5120/**
5121 * netdev_master_upper_dev_get_rcu - Get master upper device
5122 * @dev: device
5123 *
5124 * Find a master upper device and return pointer to it or NULL in case
5125 * it's not there. The caller must hold the RCU read lock.
5126 */
5127struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5128{
aa9d8560 5129 struct netdev_adjacent *upper;
9ff162a8 5130
2f268f12 5131 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5132 struct netdev_adjacent, list);
9ff162a8
JP
5133 if (upper && likely(upper->master))
5134 return upper->dev;
5135 return NULL;
5136}
5137EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5138
0a59f3a9 5139static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5140 struct net_device *adj_dev,
5141 struct list_head *dev_list)
5142{
5143 char linkname[IFNAMSIZ+7];
5144 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5145 "upper_%s" : "lower_%s", adj_dev->name);
5146 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5147 linkname);
5148}
0a59f3a9 5149static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5150 char *name,
5151 struct list_head *dev_list)
5152{
5153 char linkname[IFNAMSIZ+7];
5154 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5155 "upper_%s" : "lower_%s", name);
5156 sysfs_remove_link(&(dev->dev.kobj), linkname);
5157}
5158
7ce64c79
AF
5159static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5160 struct net_device *adj_dev,
5161 struct list_head *dev_list)
5162{
5163 return (dev_list == &dev->adj_list.upper ||
5164 dev_list == &dev->adj_list.lower) &&
5165 net_eq(dev_net(dev), dev_net(adj_dev));
5166}
3ee32707 5167
5d261913
VF
5168static int __netdev_adjacent_dev_insert(struct net_device *dev,
5169 struct net_device *adj_dev,
7863c054 5170 struct list_head *dev_list,
402dae96 5171 void *private, bool master)
5d261913
VF
5172{
5173 struct netdev_adjacent *adj;
842d67a7 5174 int ret;
5d261913 5175
7863c054 5176 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913
VF
5177
5178 if (adj) {
5d261913
VF
5179 adj->ref_nr++;
5180 return 0;
5181 }
5182
5183 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5184 if (!adj)
5185 return -ENOMEM;
5186
5187 adj->dev = adj_dev;
5188 adj->master = master;
5d261913 5189 adj->ref_nr = 1;
402dae96 5190 adj->private = private;
5d261913 5191 dev_hold(adj_dev);
2f268f12
VF
5192
5193 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5194 adj_dev->name, dev->name, adj_dev->name);
5d261913 5195
7ce64c79 5196 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5197 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5198 if (ret)
5199 goto free_adj;
5200 }
5201
7863c054 5202 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5203 if (master) {
5204 ret = sysfs_create_link(&(dev->dev.kobj),
5205 &(adj_dev->dev.kobj), "master");
5206 if (ret)
5831d66e 5207 goto remove_symlinks;
842d67a7 5208
7863c054 5209 list_add_rcu(&adj->list, dev_list);
842d67a7 5210 } else {
7863c054 5211 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5212 }
5d261913
VF
5213
5214 return 0;
842d67a7 5215
5831d66e 5216remove_symlinks:
7ce64c79 5217 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5218 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5219free_adj:
5220 kfree(adj);
974daef7 5221 dev_put(adj_dev);
842d67a7
VF
5222
5223 return ret;
5d261913
VF
5224}
5225
1d143d9f 5226static void __netdev_adjacent_dev_remove(struct net_device *dev,
5227 struct net_device *adj_dev,
5228 struct list_head *dev_list)
5d261913
VF
5229{
5230 struct netdev_adjacent *adj;
5231
7863c054 5232 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913 5233
2f268f12
VF
5234 if (!adj) {
5235 pr_err("tried to remove device %s from %s\n",
5236 dev->name, adj_dev->name);
5d261913 5237 BUG();
2f268f12 5238 }
5d261913
VF
5239
5240 if (adj->ref_nr > 1) {
2f268f12
VF
5241 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5242 adj->ref_nr-1);
5d261913
VF
5243 adj->ref_nr--;
5244 return;
5245 }
5246
842d67a7
VF
5247 if (adj->master)
5248 sysfs_remove_link(&(dev->dev.kobj), "master");
5249
7ce64c79 5250 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5251 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5252
5d261913 5253 list_del_rcu(&adj->list);
2f268f12
VF
5254 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5255 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5256 dev_put(adj_dev);
5257 kfree_rcu(adj, rcu);
5258}
5259
1d143d9f 5260static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5261 struct net_device *upper_dev,
5262 struct list_head *up_list,
5263 struct list_head *down_list,
5264 void *private, bool master)
5d261913
VF
5265{
5266 int ret;
5267
402dae96
VF
5268 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5269 master);
5d261913
VF
5270 if (ret)
5271 return ret;
5272
402dae96
VF
5273 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5274 false);
5d261913 5275 if (ret) {
2f268f12 5276 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5277 return ret;
5278 }
5279
5280 return 0;
5281}
5282
1d143d9f 5283static int __netdev_adjacent_dev_link(struct net_device *dev,
5284 struct net_device *upper_dev)
5d261913 5285{
2f268f12
VF
5286 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5287 &dev->all_adj_list.upper,
5288 &upper_dev->all_adj_list.lower,
402dae96 5289 NULL, false);
5d261913
VF
5290}
5291
1d143d9f 5292static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5293 struct net_device *upper_dev,
5294 struct list_head *up_list,
5295 struct list_head *down_list)
5d261913 5296{
2f268f12
VF
5297 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5298 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5299}
5300
1d143d9f 5301static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5302 struct net_device *upper_dev)
5d261913 5303{
2f268f12
VF
5304 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5305 &dev->all_adj_list.upper,
5306 &upper_dev->all_adj_list.lower);
5307}
5308
1d143d9f 5309static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5310 struct net_device *upper_dev,
5311 void *private, bool master)
2f268f12
VF
5312{
5313 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5314
5315 if (ret)
5316 return ret;
5317
5318 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5319 &dev->adj_list.upper,
5320 &upper_dev->adj_list.lower,
402dae96 5321 private, master);
2f268f12
VF
5322 if (ret) {
5323 __netdev_adjacent_dev_unlink(dev, upper_dev);
5324 return ret;
5325 }
5326
5327 return 0;
5d261913
VF
5328}
5329
1d143d9f 5330static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5331 struct net_device *upper_dev)
2f268f12
VF
5332{
5333 __netdev_adjacent_dev_unlink(dev, upper_dev);
5334 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5335 &dev->adj_list.upper,
5336 &upper_dev->adj_list.lower);
5337}
5d261913 5338
9ff162a8 5339static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
5340 struct net_device *upper_dev, bool master,
5341 void *private)
9ff162a8 5342{
0e4ead9d 5343 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5344 struct netdev_adjacent *i, *j, *to_i, *to_j;
5345 int ret = 0;
9ff162a8
JP
5346
5347 ASSERT_RTNL();
5348
5349 if (dev == upper_dev)
5350 return -EBUSY;
5351
5352 /* To prevent loops, check if dev is not upper device to upper_dev. */
2f268f12 5353 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5354 return -EBUSY;
5355
d66bf7dd 5356 if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5357 return -EEXIST;
5358
5359 if (master && netdev_master_upper_dev_get(dev))
5360 return -EBUSY;
5361
0e4ead9d
JP
5362 changeupper_info.upper_dev = upper_dev;
5363 changeupper_info.master = master;
5364 changeupper_info.linking = true;
5365
402dae96
VF
5366 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5367 master);
5d261913
VF
5368 if (ret)
5369 return ret;
9ff162a8 5370
5d261913 5371 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5372 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5373 * versa, and don't forget the devices itself. All of these
5374 * links are non-neighbours.
5375 */
2f268f12
VF
5376 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5377 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5378 pr_debug("Interlinking %s with %s, non-neighbour\n",
5379 i->dev->name, j->dev->name);
5d261913
VF
5380 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5381 if (ret)
5382 goto rollback_mesh;
5383 }
5384 }
5385
5386 /* add dev to every upper_dev's upper device */
2f268f12
VF
5387 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5388 pr_debug("linking %s's upper device %s with %s\n",
5389 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5390 ret = __netdev_adjacent_dev_link(dev, i->dev);
5391 if (ret)
5392 goto rollback_upper_mesh;
5393 }
5394
5395 /* add upper_dev to every dev's lower device */
2f268f12
VF
5396 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5397 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5398 i->dev->name, upper_dev->name);
5d261913
VF
5399 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5400 if (ret)
5401 goto rollback_lower_mesh;
5402 }
9ff162a8 5403
0e4ead9d
JP
5404 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5405 &changeupper_info.info);
9ff162a8 5406 return 0;
5d261913
VF
5407
5408rollback_lower_mesh:
5409 to_i = i;
2f268f12 5410 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5411 if (i == to_i)
5412 break;
5413 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5414 }
5415
5416 i = NULL;
5417
5418rollback_upper_mesh:
5419 to_i = i;
2f268f12 5420 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5421 if (i == to_i)
5422 break;
5423 __netdev_adjacent_dev_unlink(dev, i->dev);
5424 }
5425
5426 i = j = NULL;
5427
5428rollback_mesh:
5429 to_i = i;
5430 to_j = j;
2f268f12
VF
5431 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5432 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5433 if (i == to_i && j == to_j)
5434 break;
5435 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5436 }
5437 if (i == to_i)
5438 break;
5439 }
5440
2f268f12 5441 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5442
5443 return ret;
9ff162a8
JP
5444}
5445
5446/**
5447 * netdev_upper_dev_link - Add a link to the upper device
5448 * @dev: device
5449 * @upper_dev: new upper device
5450 *
5451 * Adds a link to device which is upper to this one. The caller must hold
5452 * the RTNL lock. On a failure a negative errno code is returned.
5453 * On success the reference counts are adjusted and the function
5454 * returns zero.
5455 */
5456int netdev_upper_dev_link(struct net_device *dev,
5457 struct net_device *upper_dev)
5458{
402dae96 5459 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5460}
5461EXPORT_SYMBOL(netdev_upper_dev_link);
5462
5463/**
5464 * netdev_master_upper_dev_link - Add a master link to the upper device
5465 * @dev: device
5466 * @upper_dev: new upper device
5467 *
5468 * Adds a link to device which is upper to this one. In this case, only
5469 * one master upper device can be linked, although other non-master devices
5470 * might be linked as well. The caller must hold the RTNL lock.
5471 * On a failure a negative errno code is returned. On success the reference
5472 * counts are adjusted and the function returns zero.
5473 */
5474int netdev_master_upper_dev_link(struct net_device *dev,
5475 struct net_device *upper_dev)
5476{
402dae96 5477 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5478}
5479EXPORT_SYMBOL(netdev_master_upper_dev_link);
5480
402dae96
VF
5481int netdev_master_upper_dev_link_private(struct net_device *dev,
5482 struct net_device *upper_dev,
5483 void *private)
5484{
5485 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5486}
5487EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5488
9ff162a8
JP
5489/**
5490 * netdev_upper_dev_unlink - Removes a link to upper device
5491 * @dev: device
5492 * @upper_dev: new upper device
5493 *
5494 * Removes a link to device which is upper to this one. The caller must hold
5495 * the RTNL lock.
5496 */
5497void netdev_upper_dev_unlink(struct net_device *dev,
5498 struct net_device *upper_dev)
5499{
0e4ead9d 5500 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5501 struct netdev_adjacent *i, *j;
9ff162a8
JP
5502 ASSERT_RTNL();
5503
0e4ead9d
JP
5504 changeupper_info.upper_dev = upper_dev;
5505 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5506 changeupper_info.linking = false;
5507
2f268f12 5508 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5509
5510 /* Here is the tricky part. We must remove all dev's lower
5511 * devices from all upper_dev's upper devices and vice
5512 * versa, to maintain the graph relationship.
5513 */
2f268f12
VF
5514 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5515 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5516 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5517
5518 /* remove also the devices itself from lower/upper device
5519 * list
5520 */
2f268f12 5521 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5522 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5523
2f268f12 5524 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5525 __netdev_adjacent_dev_unlink(dev, i->dev);
5526
0e4ead9d
JP
5527 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5528 &changeupper_info.info);
9ff162a8
JP
5529}
5530EXPORT_SYMBOL(netdev_upper_dev_unlink);
5531
61bd3857
MS
5532/**
5533 * netdev_bonding_info_change - Dispatch event about slave change
5534 * @dev: device
4a26e453 5535 * @bonding_info: info to dispatch
61bd3857
MS
5536 *
5537 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5538 * The caller must hold the RTNL lock.
5539 */
5540void netdev_bonding_info_change(struct net_device *dev,
5541 struct netdev_bonding_info *bonding_info)
5542{
5543 struct netdev_notifier_bonding_info info;
5544
5545 memcpy(&info.bonding_info, bonding_info,
5546 sizeof(struct netdev_bonding_info));
5547 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5548 &info.info);
5549}
5550EXPORT_SYMBOL(netdev_bonding_info_change);
5551
2ce1ee17 5552static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5553{
5554 struct netdev_adjacent *iter;
5555
5556 struct net *net = dev_net(dev);
5557
5558 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5559 if (!net_eq(net,dev_net(iter->dev)))
5560 continue;
5561 netdev_adjacent_sysfs_add(iter->dev, dev,
5562 &iter->dev->adj_list.lower);
5563 netdev_adjacent_sysfs_add(dev, iter->dev,
5564 &dev->adj_list.upper);
5565 }
5566
5567 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5568 if (!net_eq(net,dev_net(iter->dev)))
5569 continue;
5570 netdev_adjacent_sysfs_add(iter->dev, dev,
5571 &iter->dev->adj_list.upper);
5572 netdev_adjacent_sysfs_add(dev, iter->dev,
5573 &dev->adj_list.lower);
5574 }
5575}
5576
2ce1ee17 5577static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5578{
5579 struct netdev_adjacent *iter;
5580
5581 struct net *net = dev_net(dev);
5582
5583 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5584 if (!net_eq(net,dev_net(iter->dev)))
5585 continue;
5586 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5587 &iter->dev->adj_list.lower);
5588 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5589 &dev->adj_list.upper);
5590 }
5591
5592 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5593 if (!net_eq(net,dev_net(iter->dev)))
5594 continue;
5595 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5596 &iter->dev->adj_list.upper);
5597 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5598 &dev->adj_list.lower);
5599 }
5600}
5601
5bb025fa 5602void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5603{
5bb025fa 5604 struct netdev_adjacent *iter;
402dae96 5605
4c75431a
AF
5606 struct net *net = dev_net(dev);
5607
5bb025fa 5608 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5609 if (!net_eq(net,dev_net(iter->dev)))
5610 continue;
5bb025fa
VF
5611 netdev_adjacent_sysfs_del(iter->dev, oldname,
5612 &iter->dev->adj_list.lower);
5613 netdev_adjacent_sysfs_add(iter->dev, dev,
5614 &iter->dev->adj_list.lower);
5615 }
402dae96 5616
5bb025fa 5617 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5618 if (!net_eq(net,dev_net(iter->dev)))
5619 continue;
5bb025fa
VF
5620 netdev_adjacent_sysfs_del(iter->dev, oldname,
5621 &iter->dev->adj_list.upper);
5622 netdev_adjacent_sysfs_add(iter->dev, dev,
5623 &iter->dev->adj_list.upper);
5624 }
402dae96 5625}
402dae96
VF
5626
5627void *netdev_lower_dev_get_private(struct net_device *dev,
5628 struct net_device *lower_dev)
5629{
5630 struct netdev_adjacent *lower;
5631
5632 if (!lower_dev)
5633 return NULL;
5634 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5635 if (!lower)
5636 return NULL;
5637
5638 return lower->private;
5639}
5640EXPORT_SYMBOL(netdev_lower_dev_get_private);
5641
4085ebe8
VY
5642
5643int dev_get_nest_level(struct net_device *dev,
5644 bool (*type_check)(struct net_device *dev))
5645{
5646 struct net_device *lower = NULL;
5647 struct list_head *iter;
5648 int max_nest = -1;
5649 int nest;
5650
5651 ASSERT_RTNL();
5652
5653 netdev_for_each_lower_dev(dev, lower, iter) {
5654 nest = dev_get_nest_level(lower, type_check);
5655 if (max_nest < nest)
5656 max_nest = nest;
5657 }
5658
5659 if (type_check(dev))
5660 max_nest++;
5661
5662 return max_nest;
5663}
5664EXPORT_SYMBOL(dev_get_nest_level);
5665
b6c40d68
PM
5666static void dev_change_rx_flags(struct net_device *dev, int flags)
5667{
d314774c
SH
5668 const struct net_device_ops *ops = dev->netdev_ops;
5669
d2615bf4 5670 if (ops->ndo_change_rx_flags)
d314774c 5671 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5672}
5673
991fb3f7 5674static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5675{
b536db93 5676 unsigned int old_flags = dev->flags;
d04a48b0
EB
5677 kuid_t uid;
5678 kgid_t gid;
1da177e4 5679
24023451
PM
5680 ASSERT_RTNL();
5681
dad9b335
WC
5682 dev->flags |= IFF_PROMISC;
5683 dev->promiscuity += inc;
5684 if (dev->promiscuity == 0) {
5685 /*
5686 * Avoid overflow.
5687 * If inc causes overflow, untouch promisc and return error.
5688 */
5689 if (inc < 0)
5690 dev->flags &= ~IFF_PROMISC;
5691 else {
5692 dev->promiscuity -= inc;
7b6cd1ce
JP
5693 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5694 dev->name);
dad9b335
WC
5695 return -EOVERFLOW;
5696 }
5697 }
52609c0b 5698 if (dev->flags != old_flags) {
7b6cd1ce
JP
5699 pr_info("device %s %s promiscuous mode\n",
5700 dev->name,
5701 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5702 if (audit_enabled) {
5703 current_uid_gid(&uid, &gid);
7759db82
KHK
5704 audit_log(current->audit_context, GFP_ATOMIC,
5705 AUDIT_ANOM_PROMISCUOUS,
5706 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5707 dev->name, (dev->flags & IFF_PROMISC),
5708 (old_flags & IFF_PROMISC),
e1760bd5 5709 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5710 from_kuid(&init_user_ns, uid),
5711 from_kgid(&init_user_ns, gid),
7759db82 5712 audit_get_sessionid(current));
8192b0c4 5713 }
24023451 5714
b6c40d68 5715 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5716 }
991fb3f7
ND
5717 if (notify)
5718 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5719 return 0;
1da177e4
LT
5720}
5721
4417da66
PM
5722/**
5723 * dev_set_promiscuity - update promiscuity count on a device
5724 * @dev: device
5725 * @inc: modifier
5726 *
5727 * Add or remove promiscuity from a device. While the count in the device
5728 * remains above zero the interface remains promiscuous. Once it hits zero
5729 * the device reverts back to normal filtering operation. A negative inc
5730 * value is used to drop promiscuity on the device.
dad9b335 5731 * Return 0 if successful or a negative errno code on error.
4417da66 5732 */
dad9b335 5733int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5734{
b536db93 5735 unsigned int old_flags = dev->flags;
dad9b335 5736 int err;
4417da66 5737
991fb3f7 5738 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5739 if (err < 0)
dad9b335 5740 return err;
4417da66
PM
5741 if (dev->flags != old_flags)
5742 dev_set_rx_mode(dev);
dad9b335 5743 return err;
4417da66 5744}
d1b19dff 5745EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5746
991fb3f7 5747static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5748{
991fb3f7 5749 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5750
24023451
PM
5751 ASSERT_RTNL();
5752
1da177e4 5753 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5754 dev->allmulti += inc;
5755 if (dev->allmulti == 0) {
5756 /*
5757 * Avoid overflow.
5758 * If inc causes overflow, untouch allmulti and return error.
5759 */
5760 if (inc < 0)
5761 dev->flags &= ~IFF_ALLMULTI;
5762 else {
5763 dev->allmulti -= inc;
7b6cd1ce
JP
5764 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5765 dev->name);
dad9b335
WC
5766 return -EOVERFLOW;
5767 }
5768 }
24023451 5769 if (dev->flags ^ old_flags) {
b6c40d68 5770 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5771 dev_set_rx_mode(dev);
991fb3f7
ND
5772 if (notify)
5773 __dev_notify_flags(dev, old_flags,
5774 dev->gflags ^ old_gflags);
24023451 5775 }
dad9b335 5776 return 0;
4417da66 5777}
991fb3f7
ND
5778
5779/**
5780 * dev_set_allmulti - update allmulti count on a device
5781 * @dev: device
5782 * @inc: modifier
5783 *
5784 * Add or remove reception of all multicast frames to a device. While the
5785 * count in the device remains above zero the interface remains listening
5786 * to all interfaces. Once it hits zero the device reverts back to normal
5787 * filtering operation. A negative @inc value is used to drop the counter
5788 * when releasing a resource needing all multicasts.
5789 * Return 0 if successful or a negative errno code on error.
5790 */
5791
5792int dev_set_allmulti(struct net_device *dev, int inc)
5793{
5794 return __dev_set_allmulti(dev, inc, true);
5795}
d1b19dff 5796EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5797
5798/*
5799 * Upload unicast and multicast address lists to device and
5800 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5801 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5802 * are present.
5803 */
5804void __dev_set_rx_mode(struct net_device *dev)
5805{
d314774c
SH
5806 const struct net_device_ops *ops = dev->netdev_ops;
5807
4417da66
PM
5808 /* dev_open will call this function so the list will stay sane. */
5809 if (!(dev->flags&IFF_UP))
5810 return;
5811
5812 if (!netif_device_present(dev))
40b77c94 5813 return;
4417da66 5814
01789349 5815 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5816 /* Unicast addresses changes may only happen under the rtnl,
5817 * therefore calling __dev_set_promiscuity here is safe.
5818 */
32e7bfc4 5819 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5820 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5821 dev->uc_promisc = true;
32e7bfc4 5822 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5823 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5824 dev->uc_promisc = false;
4417da66 5825 }
4417da66 5826 }
01789349
JP
5827
5828 if (ops->ndo_set_rx_mode)
5829 ops->ndo_set_rx_mode(dev);
4417da66
PM
5830}
5831
5832void dev_set_rx_mode(struct net_device *dev)
5833{
b9e40857 5834 netif_addr_lock_bh(dev);
4417da66 5835 __dev_set_rx_mode(dev);
b9e40857 5836 netif_addr_unlock_bh(dev);
1da177e4
LT
5837}
5838
f0db275a
SH
5839/**
5840 * dev_get_flags - get flags reported to userspace
5841 * @dev: device
5842 *
5843 * Get the combination of flag bits exported through APIs to userspace.
5844 */
95c96174 5845unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5846{
95c96174 5847 unsigned int flags;
1da177e4
LT
5848
5849 flags = (dev->flags & ~(IFF_PROMISC |
5850 IFF_ALLMULTI |
b00055aa
SR
5851 IFF_RUNNING |
5852 IFF_LOWER_UP |
5853 IFF_DORMANT)) |
1da177e4
LT
5854 (dev->gflags & (IFF_PROMISC |
5855 IFF_ALLMULTI));
5856
b00055aa
SR
5857 if (netif_running(dev)) {
5858 if (netif_oper_up(dev))
5859 flags |= IFF_RUNNING;
5860 if (netif_carrier_ok(dev))
5861 flags |= IFF_LOWER_UP;
5862 if (netif_dormant(dev))
5863 flags |= IFF_DORMANT;
5864 }
1da177e4
LT
5865
5866 return flags;
5867}
d1b19dff 5868EXPORT_SYMBOL(dev_get_flags);
1da177e4 5869
bd380811 5870int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5871{
b536db93 5872 unsigned int old_flags = dev->flags;
bd380811 5873 int ret;
1da177e4 5874
24023451
PM
5875 ASSERT_RTNL();
5876
1da177e4
LT
5877 /*
5878 * Set the flags on our device.
5879 */
5880
5881 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5882 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5883 IFF_AUTOMEDIA)) |
5884 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5885 IFF_ALLMULTI));
5886
5887 /*
5888 * Load in the correct multicast list now the flags have changed.
5889 */
5890
b6c40d68
PM
5891 if ((old_flags ^ flags) & IFF_MULTICAST)
5892 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5893
4417da66 5894 dev_set_rx_mode(dev);
1da177e4
LT
5895
5896 /*
5897 * Have we downed the interface. We handle IFF_UP ourselves
5898 * according to user attempts to set it, rather than blindly
5899 * setting it.
5900 */
5901
5902 ret = 0;
d215d10f 5903 if ((old_flags ^ flags) & IFF_UP)
bd380811 5904 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5905
1da177e4 5906 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5907 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5908 unsigned int old_flags = dev->flags;
d1b19dff 5909
1da177e4 5910 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5911
5912 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5913 if (dev->flags != old_flags)
5914 dev_set_rx_mode(dev);
1da177e4
LT
5915 }
5916
5917 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5918 is important. Some (broken) drivers set IFF_PROMISC, when
5919 IFF_ALLMULTI is requested not asking us and not reporting.
5920 */
5921 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5922 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5923
1da177e4 5924 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5925 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5926 }
5927
bd380811
PM
5928 return ret;
5929}
5930
a528c219
ND
5931void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5932 unsigned int gchanges)
bd380811
PM
5933{
5934 unsigned int changes = dev->flags ^ old_flags;
5935
a528c219 5936 if (gchanges)
7f294054 5937 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5938
bd380811
PM
5939 if (changes & IFF_UP) {
5940 if (dev->flags & IFF_UP)
5941 call_netdevice_notifiers(NETDEV_UP, dev);
5942 else
5943 call_netdevice_notifiers(NETDEV_DOWN, dev);
5944 }
5945
5946 if (dev->flags & IFF_UP &&
be9efd36
JP
5947 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5948 struct netdev_notifier_change_info change_info;
5949
5950 change_info.flags_changed = changes;
5951 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5952 &change_info.info);
5953 }
bd380811
PM
5954}
5955
5956/**
5957 * dev_change_flags - change device settings
5958 * @dev: device
5959 * @flags: device state flags
5960 *
5961 * Change settings on device based state flags. The flags are
5962 * in the userspace exported format.
5963 */
b536db93 5964int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5965{
b536db93 5966 int ret;
991fb3f7 5967 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5968
5969 ret = __dev_change_flags(dev, flags);
5970 if (ret < 0)
5971 return ret;
5972
991fb3f7 5973 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5974 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5975 return ret;
5976}
d1b19dff 5977EXPORT_SYMBOL(dev_change_flags);
1da177e4 5978
2315dc91
VF
5979static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5980{
5981 const struct net_device_ops *ops = dev->netdev_ops;
5982
5983 if (ops->ndo_change_mtu)
5984 return ops->ndo_change_mtu(dev, new_mtu);
5985
5986 dev->mtu = new_mtu;
5987 return 0;
5988}
5989
f0db275a
SH
5990/**
5991 * dev_set_mtu - Change maximum transfer unit
5992 * @dev: device
5993 * @new_mtu: new transfer unit
5994 *
5995 * Change the maximum transfer size of the network device.
5996 */
1da177e4
LT
5997int dev_set_mtu(struct net_device *dev, int new_mtu)
5998{
2315dc91 5999 int err, orig_mtu;
1da177e4
LT
6000
6001 if (new_mtu == dev->mtu)
6002 return 0;
6003
6004 /* MTU must be positive. */
6005 if (new_mtu < 0)
6006 return -EINVAL;
6007
6008 if (!netif_device_present(dev))
6009 return -ENODEV;
6010
1d486bfb
VF
6011 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6012 err = notifier_to_errno(err);
6013 if (err)
6014 return err;
d314774c 6015
2315dc91
VF
6016 orig_mtu = dev->mtu;
6017 err = __dev_set_mtu(dev, new_mtu);
d314774c 6018
2315dc91
VF
6019 if (!err) {
6020 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6021 err = notifier_to_errno(err);
6022 if (err) {
6023 /* setting mtu back and notifying everyone again,
6024 * so that they have a chance to revert changes.
6025 */
6026 __dev_set_mtu(dev, orig_mtu);
6027 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6028 }
6029 }
1da177e4
LT
6030 return err;
6031}
d1b19dff 6032EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6033
cbda10fa
VD
6034/**
6035 * dev_set_group - Change group this device belongs to
6036 * @dev: device
6037 * @new_group: group this device should belong to
6038 */
6039void dev_set_group(struct net_device *dev, int new_group)
6040{
6041 dev->group = new_group;
6042}
6043EXPORT_SYMBOL(dev_set_group);
6044
f0db275a
SH
6045/**
6046 * dev_set_mac_address - Change Media Access Control Address
6047 * @dev: device
6048 * @sa: new address
6049 *
6050 * Change the hardware (MAC) address of the device
6051 */
1da177e4
LT
6052int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6053{
d314774c 6054 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6055 int err;
6056
d314774c 6057 if (!ops->ndo_set_mac_address)
1da177e4
LT
6058 return -EOPNOTSUPP;
6059 if (sa->sa_family != dev->type)
6060 return -EINVAL;
6061 if (!netif_device_present(dev))
6062 return -ENODEV;
d314774c 6063 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6064 if (err)
6065 return err;
fbdeca2d 6066 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6067 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6068 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6069 return 0;
1da177e4 6070}
d1b19dff 6071EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6072
4bf84c35
JP
6073/**
6074 * dev_change_carrier - Change device carrier
6075 * @dev: device
691b3b7e 6076 * @new_carrier: new value
4bf84c35
JP
6077 *
6078 * Change device carrier
6079 */
6080int dev_change_carrier(struct net_device *dev, bool new_carrier)
6081{
6082 const struct net_device_ops *ops = dev->netdev_ops;
6083
6084 if (!ops->ndo_change_carrier)
6085 return -EOPNOTSUPP;
6086 if (!netif_device_present(dev))
6087 return -ENODEV;
6088 return ops->ndo_change_carrier(dev, new_carrier);
6089}
6090EXPORT_SYMBOL(dev_change_carrier);
6091
66b52b0d
JP
6092/**
6093 * dev_get_phys_port_id - Get device physical port ID
6094 * @dev: device
6095 * @ppid: port ID
6096 *
6097 * Get device physical port ID
6098 */
6099int dev_get_phys_port_id(struct net_device *dev,
02637fce 6100 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6101{
6102 const struct net_device_ops *ops = dev->netdev_ops;
6103
6104 if (!ops->ndo_get_phys_port_id)
6105 return -EOPNOTSUPP;
6106 return ops->ndo_get_phys_port_id(dev, ppid);
6107}
6108EXPORT_SYMBOL(dev_get_phys_port_id);
6109
db24a904
DA
6110/**
6111 * dev_get_phys_port_name - Get device physical port name
6112 * @dev: device
6113 * @name: port name
6114 *
6115 * Get device physical port name
6116 */
6117int dev_get_phys_port_name(struct net_device *dev,
6118 char *name, size_t len)
6119{
6120 const struct net_device_ops *ops = dev->netdev_ops;
6121
6122 if (!ops->ndo_get_phys_port_name)
6123 return -EOPNOTSUPP;
6124 return ops->ndo_get_phys_port_name(dev, name, len);
6125}
6126EXPORT_SYMBOL(dev_get_phys_port_name);
6127
d746d707
AK
6128/**
6129 * dev_change_proto_down - update protocol port state information
6130 * @dev: device
6131 * @proto_down: new value
6132 *
6133 * This info can be used by switch drivers to set the phys state of the
6134 * port.
6135 */
6136int dev_change_proto_down(struct net_device *dev, bool proto_down)
6137{
6138 const struct net_device_ops *ops = dev->netdev_ops;
6139
6140 if (!ops->ndo_change_proto_down)
6141 return -EOPNOTSUPP;
6142 if (!netif_device_present(dev))
6143 return -ENODEV;
6144 return ops->ndo_change_proto_down(dev, proto_down);
6145}
6146EXPORT_SYMBOL(dev_change_proto_down);
6147
1da177e4
LT
6148/**
6149 * dev_new_index - allocate an ifindex
c4ea43c5 6150 * @net: the applicable net namespace
1da177e4
LT
6151 *
6152 * Returns a suitable unique value for a new device interface
6153 * number. The caller must hold the rtnl semaphore or the
6154 * dev_base_lock to be sure it remains unique.
6155 */
881d966b 6156static int dev_new_index(struct net *net)
1da177e4 6157{
aa79e66e 6158 int ifindex = net->ifindex;
1da177e4
LT
6159 for (;;) {
6160 if (++ifindex <= 0)
6161 ifindex = 1;
881d966b 6162 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6163 return net->ifindex = ifindex;
1da177e4
LT
6164 }
6165}
6166
1da177e4 6167/* Delayed registration/unregisteration */
3b5b34fd 6168static LIST_HEAD(net_todo_list);
200b916f 6169DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6170
6f05f629 6171static void net_set_todo(struct net_device *dev)
1da177e4 6172{
1da177e4 6173 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6174 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6175}
6176
9b5e383c 6177static void rollback_registered_many(struct list_head *head)
93ee31f1 6178{
e93737b0 6179 struct net_device *dev, *tmp;
5cde2829 6180 LIST_HEAD(close_head);
9b5e383c 6181
93ee31f1
DL
6182 BUG_ON(dev_boot_phase);
6183 ASSERT_RTNL();
6184
e93737b0 6185 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6186 /* Some devices call without registering
e93737b0
KK
6187 * for initialization unwind. Remove those
6188 * devices and proceed with the remaining.
9b5e383c
ED
6189 */
6190 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6191 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6192 dev->name, dev);
93ee31f1 6193
9b5e383c 6194 WARN_ON(1);
e93737b0
KK
6195 list_del(&dev->unreg_list);
6196 continue;
9b5e383c 6197 }
449f4544 6198 dev->dismantle = true;
9b5e383c 6199 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6200 }
93ee31f1 6201
44345724 6202 /* If device is running, close it first. */
5cde2829
EB
6203 list_for_each_entry(dev, head, unreg_list)
6204 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6205 dev_close_many(&close_head, true);
93ee31f1 6206
44345724 6207 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6208 /* And unlink it from device chain. */
6209 unlist_netdevice(dev);
93ee31f1 6210
9b5e383c 6211 dev->reg_state = NETREG_UNREGISTERING;
e9e4dd32 6212 on_each_cpu(flush_backlog, dev, 1);
9b5e383c 6213 }
93ee31f1
DL
6214
6215 synchronize_net();
6216
9b5e383c 6217 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6218 struct sk_buff *skb = NULL;
6219
9b5e383c
ED
6220 /* Shutdown queueing discipline. */
6221 dev_shutdown(dev);
93ee31f1
DL
6222
6223
9b5e383c
ED
6224 /* Notify protocols, that we are about to destroy
6225 this device. They should clean all the things.
6226 */
6227 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6228
395eea6c
MB
6229 if (!dev->rtnl_link_ops ||
6230 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6231 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6232 GFP_KERNEL);
6233
9b5e383c
ED
6234 /*
6235 * Flush the unicast and multicast chains
6236 */
a748ee24 6237 dev_uc_flush(dev);
22bedad3 6238 dev_mc_flush(dev);
93ee31f1 6239
9b5e383c
ED
6240 if (dev->netdev_ops->ndo_uninit)
6241 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6242
395eea6c
MB
6243 if (skb)
6244 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6245
9ff162a8
JP
6246 /* Notifier chain MUST detach us all upper devices. */
6247 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6248
9b5e383c
ED
6249 /* Remove entries from kobject tree */
6250 netdev_unregister_kobject(dev);
024e9679
AD
6251#ifdef CONFIG_XPS
6252 /* Remove XPS queueing entries */
6253 netif_reset_xps_queues_gt(dev, 0);
6254#endif
9b5e383c 6255 }
93ee31f1 6256
850a545b 6257 synchronize_net();
395264d5 6258
a5ee1551 6259 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6260 dev_put(dev);
6261}
6262
6263static void rollback_registered(struct net_device *dev)
6264{
6265 LIST_HEAD(single);
6266
6267 list_add(&dev->unreg_list, &single);
6268 rollback_registered_many(&single);
ceaaec98 6269 list_del(&single);
93ee31f1
DL
6270}
6271
c8f44aff
MM
6272static netdev_features_t netdev_fix_features(struct net_device *dev,
6273 netdev_features_t features)
b63365a2 6274{
57422dc5
MM
6275 /* Fix illegal checksum combinations */
6276 if ((features & NETIF_F_HW_CSUM) &&
6277 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6278 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6279 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6280 }
6281
b63365a2 6282 /* TSO requires that SG is present as well. */
ea2d3688 6283 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6284 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6285 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6286 }
6287
ec5f0615
PS
6288 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6289 !(features & NETIF_F_IP_CSUM)) {
6290 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6291 features &= ~NETIF_F_TSO;
6292 features &= ~NETIF_F_TSO_ECN;
6293 }
6294
6295 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6296 !(features & NETIF_F_IPV6_CSUM)) {
6297 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6298 features &= ~NETIF_F_TSO6;
6299 }
6300
31d8b9e0
BH
6301 /* TSO ECN requires that TSO is present as well. */
6302 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6303 features &= ~NETIF_F_TSO_ECN;
6304
212b573f
MM
6305 /* Software GSO depends on SG. */
6306 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6307 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6308 features &= ~NETIF_F_GSO;
6309 }
6310
acd1130e 6311 /* UFO needs SG and checksumming */
b63365a2 6312 if (features & NETIF_F_UFO) {
79032644
MM
6313 /* maybe split UFO into V4 and V6? */
6314 if (!((features & NETIF_F_GEN_CSUM) ||
6315 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6316 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6317 netdev_dbg(dev,
acd1130e 6318 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6319 features &= ~NETIF_F_UFO;
6320 }
6321
6322 if (!(features & NETIF_F_SG)) {
6f404e44 6323 netdev_dbg(dev,
acd1130e 6324 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6325 features &= ~NETIF_F_UFO;
6326 }
6327 }
6328
d0290214
JP
6329#ifdef CONFIG_NET_RX_BUSY_POLL
6330 if (dev->netdev_ops->ndo_busy_poll)
6331 features |= NETIF_F_BUSY_POLL;
6332 else
6333#endif
6334 features &= ~NETIF_F_BUSY_POLL;
6335
b63365a2
HX
6336 return features;
6337}
b63365a2 6338
6cb6a27c 6339int __netdev_update_features(struct net_device *dev)
5455c699 6340{
c8f44aff 6341 netdev_features_t features;
5455c699
MM
6342 int err = 0;
6343
87267485
MM
6344 ASSERT_RTNL();
6345
5455c699
MM
6346 features = netdev_get_wanted_features(dev);
6347
6348 if (dev->netdev_ops->ndo_fix_features)
6349 features = dev->netdev_ops->ndo_fix_features(dev, features);
6350
6351 /* driver might be less strict about feature dependencies */
6352 features = netdev_fix_features(dev, features);
6353
6354 if (dev->features == features)
6cb6a27c 6355 return 0;
5455c699 6356
c8f44aff
MM
6357 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6358 &dev->features, &features);
5455c699
MM
6359
6360 if (dev->netdev_ops->ndo_set_features)
6361 err = dev->netdev_ops->ndo_set_features(dev, features);
6362
6cb6a27c 6363 if (unlikely(err < 0)) {
5455c699 6364 netdev_err(dev,
c8f44aff
MM
6365 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6366 err, &features, &dev->features);
6cb6a27c
MM
6367 return -1;
6368 }
6369
6370 if (!err)
6371 dev->features = features;
6372
6373 return 1;
6374}
6375
afe12cc8
MM
6376/**
6377 * netdev_update_features - recalculate device features
6378 * @dev: the device to check
6379 *
6380 * Recalculate dev->features set and send notifications if it
6381 * has changed. Should be called after driver or hardware dependent
6382 * conditions might have changed that influence the features.
6383 */
6cb6a27c
MM
6384void netdev_update_features(struct net_device *dev)
6385{
6386 if (__netdev_update_features(dev))
6387 netdev_features_change(dev);
5455c699
MM
6388}
6389EXPORT_SYMBOL(netdev_update_features);
6390
afe12cc8
MM
6391/**
6392 * netdev_change_features - recalculate device features
6393 * @dev: the device to check
6394 *
6395 * Recalculate dev->features set and send notifications even
6396 * if they have not changed. Should be called instead of
6397 * netdev_update_features() if also dev->vlan_features might
6398 * have changed to allow the changes to be propagated to stacked
6399 * VLAN devices.
6400 */
6401void netdev_change_features(struct net_device *dev)
6402{
6403 __netdev_update_features(dev);
6404 netdev_features_change(dev);
6405}
6406EXPORT_SYMBOL(netdev_change_features);
6407
fc4a7489
PM
6408/**
6409 * netif_stacked_transfer_operstate - transfer operstate
6410 * @rootdev: the root or lower level device to transfer state from
6411 * @dev: the device to transfer operstate to
6412 *
6413 * Transfer operational state from root to device. This is normally
6414 * called when a stacking relationship exists between the root
6415 * device and the device(a leaf device).
6416 */
6417void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6418 struct net_device *dev)
6419{
6420 if (rootdev->operstate == IF_OPER_DORMANT)
6421 netif_dormant_on(dev);
6422 else
6423 netif_dormant_off(dev);
6424
6425 if (netif_carrier_ok(rootdev)) {
6426 if (!netif_carrier_ok(dev))
6427 netif_carrier_on(dev);
6428 } else {
6429 if (netif_carrier_ok(dev))
6430 netif_carrier_off(dev);
6431 }
6432}
6433EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6434
a953be53 6435#ifdef CONFIG_SYSFS
1b4bf461
ED
6436static int netif_alloc_rx_queues(struct net_device *dev)
6437{
1b4bf461 6438 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6439 struct netdev_rx_queue *rx;
10595902 6440 size_t sz = count * sizeof(*rx);
1b4bf461 6441
bd25fa7b 6442 BUG_ON(count < 1);
1b4bf461 6443
10595902
PG
6444 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6445 if (!rx) {
6446 rx = vzalloc(sz);
6447 if (!rx)
6448 return -ENOMEM;
6449 }
bd25fa7b
TH
6450 dev->_rx = rx;
6451
bd25fa7b 6452 for (i = 0; i < count; i++)
fe822240 6453 rx[i].dev = dev;
1b4bf461
ED
6454 return 0;
6455}
bf264145 6456#endif
1b4bf461 6457
aa942104
CG
6458static void netdev_init_one_queue(struct net_device *dev,
6459 struct netdev_queue *queue, void *_unused)
6460{
6461 /* Initialize queue lock */
6462 spin_lock_init(&queue->_xmit_lock);
6463 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6464 queue->xmit_lock_owner = -1;
b236da69 6465 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6466 queue->dev = dev;
114cf580
TH
6467#ifdef CONFIG_BQL
6468 dql_init(&queue->dql, HZ);
6469#endif
aa942104
CG
6470}
6471
60877a32
ED
6472static void netif_free_tx_queues(struct net_device *dev)
6473{
4cb28970 6474 kvfree(dev->_tx);
60877a32
ED
6475}
6476
e6484930
TH
6477static int netif_alloc_netdev_queues(struct net_device *dev)
6478{
6479 unsigned int count = dev->num_tx_queues;
6480 struct netdev_queue *tx;
60877a32 6481 size_t sz = count * sizeof(*tx);
e6484930 6482
d339727c
ED
6483 if (count < 1 || count > 0xffff)
6484 return -EINVAL;
62b5942a 6485
60877a32
ED
6486 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6487 if (!tx) {
6488 tx = vzalloc(sz);
6489 if (!tx)
6490 return -ENOMEM;
6491 }
e6484930 6492 dev->_tx = tx;
1d24eb48 6493
e6484930
TH
6494 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6495 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6496
6497 return 0;
e6484930
TH
6498}
6499
a2029240
DV
6500void netif_tx_stop_all_queues(struct net_device *dev)
6501{
6502 unsigned int i;
6503
6504 for (i = 0; i < dev->num_tx_queues; i++) {
6505 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6506 netif_tx_stop_queue(txq);
6507 }
6508}
6509EXPORT_SYMBOL(netif_tx_stop_all_queues);
6510
1da177e4
LT
6511/**
6512 * register_netdevice - register a network device
6513 * @dev: device to register
6514 *
6515 * Take a completed network device structure and add it to the kernel
6516 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6517 * chain. 0 is returned on success. A negative errno code is returned
6518 * on a failure to set up the device, or if the name is a duplicate.
6519 *
6520 * Callers must hold the rtnl semaphore. You may want
6521 * register_netdev() instead of this.
6522 *
6523 * BUGS:
6524 * The locking appears insufficient to guarantee two parallel registers
6525 * will not get the same name.
6526 */
6527
6528int register_netdevice(struct net_device *dev)
6529{
1da177e4 6530 int ret;
d314774c 6531 struct net *net = dev_net(dev);
1da177e4
LT
6532
6533 BUG_ON(dev_boot_phase);
6534 ASSERT_RTNL();
6535
b17a7c17
SH
6536 might_sleep();
6537
1da177e4
LT
6538 /* When net_device's are persistent, this will be fatal. */
6539 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6540 BUG_ON(!net);
1da177e4 6541
f1f28aa3 6542 spin_lock_init(&dev->addr_list_lock);
cf508b12 6543 netdev_set_addr_lockdep_class(dev);
1da177e4 6544
828de4f6 6545 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6546 if (ret < 0)
6547 goto out;
6548
1da177e4 6549 /* Init, if this function is available */
d314774c
SH
6550 if (dev->netdev_ops->ndo_init) {
6551 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6552 if (ret) {
6553 if (ret > 0)
6554 ret = -EIO;
90833aa4 6555 goto out;
1da177e4
LT
6556 }
6557 }
4ec93edb 6558
f646968f
PM
6559 if (((dev->hw_features | dev->features) &
6560 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6561 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6562 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6563 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6564 ret = -EINVAL;
6565 goto err_uninit;
6566 }
6567
9c7dafbf
PE
6568 ret = -EBUSY;
6569 if (!dev->ifindex)
6570 dev->ifindex = dev_new_index(net);
6571 else if (__dev_get_by_index(net, dev->ifindex))
6572 goto err_uninit;
6573
5455c699
MM
6574 /* Transfer changeable features to wanted_features and enable
6575 * software offloads (GSO and GRO).
6576 */
6577 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6578 dev->features |= NETIF_F_SOFT_FEATURES;
6579 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6580
34324dc2
MM
6581 if (!(dev->flags & IFF_LOOPBACK)) {
6582 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6583 }
6584
1180e7d6 6585 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6586 */
1180e7d6 6587 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6588
ee579677
PS
6589 /* Make NETIF_F_SG inheritable to tunnel devices.
6590 */
6591 dev->hw_enc_features |= NETIF_F_SG;
6592
0d89d203
SH
6593 /* Make NETIF_F_SG inheritable to MPLS.
6594 */
6595 dev->mpls_features |= NETIF_F_SG;
6596
7ffbe3fd
JB
6597 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6598 ret = notifier_to_errno(ret);
6599 if (ret)
6600 goto err_uninit;
6601
8b41d188 6602 ret = netdev_register_kobject(dev);
b17a7c17 6603 if (ret)
7ce1b0ed 6604 goto err_uninit;
b17a7c17
SH
6605 dev->reg_state = NETREG_REGISTERED;
6606
6cb6a27c 6607 __netdev_update_features(dev);
8e9b59b2 6608
1da177e4
LT
6609 /*
6610 * Default initial state at registry is that the
6611 * device is present.
6612 */
6613
6614 set_bit(__LINK_STATE_PRESENT, &dev->state);
6615
8f4cccbb
BH
6616 linkwatch_init_dev(dev);
6617
1da177e4 6618 dev_init_scheduler(dev);
1da177e4 6619 dev_hold(dev);
ce286d32 6620 list_netdevice(dev);
7bf23575 6621 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6622
948b337e
JP
6623 /* If the device has permanent device address, driver should
6624 * set dev_addr and also addr_assign_type should be set to
6625 * NET_ADDR_PERM (default value).
6626 */
6627 if (dev->addr_assign_type == NET_ADDR_PERM)
6628 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6629
1da177e4 6630 /* Notify protocols, that a new device appeared. */
056925ab 6631 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6632 ret = notifier_to_errno(ret);
93ee31f1
DL
6633 if (ret) {
6634 rollback_registered(dev);
6635 dev->reg_state = NETREG_UNREGISTERED;
6636 }
d90a909e
EB
6637 /*
6638 * Prevent userspace races by waiting until the network
6639 * device is fully setup before sending notifications.
6640 */
a2835763
PM
6641 if (!dev->rtnl_link_ops ||
6642 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6643 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6644
6645out:
6646 return ret;
7ce1b0ed
HX
6647
6648err_uninit:
d314774c
SH
6649 if (dev->netdev_ops->ndo_uninit)
6650 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6651 goto out;
1da177e4 6652}
d1b19dff 6653EXPORT_SYMBOL(register_netdevice);
1da177e4 6654
937f1ba5
BH
6655/**
6656 * init_dummy_netdev - init a dummy network device for NAPI
6657 * @dev: device to init
6658 *
6659 * This takes a network device structure and initialize the minimum
6660 * amount of fields so it can be used to schedule NAPI polls without
6661 * registering a full blown interface. This is to be used by drivers
6662 * that need to tie several hardware interfaces to a single NAPI
6663 * poll scheduler due to HW limitations.
6664 */
6665int init_dummy_netdev(struct net_device *dev)
6666{
6667 /* Clear everything. Note we don't initialize spinlocks
6668 * are they aren't supposed to be taken by any of the
6669 * NAPI code and this dummy netdev is supposed to be
6670 * only ever used for NAPI polls
6671 */
6672 memset(dev, 0, sizeof(struct net_device));
6673
6674 /* make sure we BUG if trying to hit standard
6675 * register/unregister code path
6676 */
6677 dev->reg_state = NETREG_DUMMY;
6678
937f1ba5
BH
6679 /* NAPI wants this */
6680 INIT_LIST_HEAD(&dev->napi_list);
6681
6682 /* a dummy interface is started by default */
6683 set_bit(__LINK_STATE_PRESENT, &dev->state);
6684 set_bit(__LINK_STATE_START, &dev->state);
6685
29b4433d
ED
6686 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6687 * because users of this 'device' dont need to change
6688 * its refcount.
6689 */
6690
937f1ba5
BH
6691 return 0;
6692}
6693EXPORT_SYMBOL_GPL(init_dummy_netdev);
6694
6695
1da177e4
LT
6696/**
6697 * register_netdev - register a network device
6698 * @dev: device to register
6699 *
6700 * Take a completed network device structure and add it to the kernel
6701 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6702 * chain. 0 is returned on success. A negative errno code is returned
6703 * on a failure to set up the device, or if the name is a duplicate.
6704 *
38b4da38 6705 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6706 * and expands the device name if you passed a format string to
6707 * alloc_netdev.
6708 */
6709int register_netdev(struct net_device *dev)
6710{
6711 int err;
6712
6713 rtnl_lock();
1da177e4 6714 err = register_netdevice(dev);
1da177e4
LT
6715 rtnl_unlock();
6716 return err;
6717}
6718EXPORT_SYMBOL(register_netdev);
6719
29b4433d
ED
6720int netdev_refcnt_read(const struct net_device *dev)
6721{
6722 int i, refcnt = 0;
6723
6724 for_each_possible_cpu(i)
6725 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6726 return refcnt;
6727}
6728EXPORT_SYMBOL(netdev_refcnt_read);
6729
2c53040f 6730/**
1da177e4 6731 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6732 * @dev: target net_device
1da177e4
LT
6733 *
6734 * This is called when unregistering network devices.
6735 *
6736 * Any protocol or device that holds a reference should register
6737 * for netdevice notification, and cleanup and put back the
6738 * reference if they receive an UNREGISTER event.
6739 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6740 * call dev_put.
1da177e4
LT
6741 */
6742static void netdev_wait_allrefs(struct net_device *dev)
6743{
6744 unsigned long rebroadcast_time, warning_time;
29b4433d 6745 int refcnt;
1da177e4 6746
e014debe
ED
6747 linkwatch_forget_dev(dev);
6748
1da177e4 6749 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6750 refcnt = netdev_refcnt_read(dev);
6751
6752 while (refcnt != 0) {
1da177e4 6753 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6754 rtnl_lock();
1da177e4
LT
6755
6756 /* Rebroadcast unregister notification */
056925ab 6757 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6758
748e2d93 6759 __rtnl_unlock();
0115e8e3 6760 rcu_barrier();
748e2d93
ED
6761 rtnl_lock();
6762
0115e8e3 6763 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6764 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6765 &dev->state)) {
6766 /* We must not have linkwatch events
6767 * pending on unregister. If this
6768 * happens, we simply run the queue
6769 * unscheduled, resulting in a noop
6770 * for this device.
6771 */
6772 linkwatch_run_queue();
6773 }
6774
6756ae4b 6775 __rtnl_unlock();
1da177e4
LT
6776
6777 rebroadcast_time = jiffies;
6778 }
6779
6780 msleep(250);
6781
29b4433d
ED
6782 refcnt = netdev_refcnt_read(dev);
6783
1da177e4 6784 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6785 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6786 dev->name, refcnt);
1da177e4
LT
6787 warning_time = jiffies;
6788 }
6789 }
6790}
6791
6792/* The sequence is:
6793 *
6794 * rtnl_lock();
6795 * ...
6796 * register_netdevice(x1);
6797 * register_netdevice(x2);
6798 * ...
6799 * unregister_netdevice(y1);
6800 * unregister_netdevice(y2);
6801 * ...
6802 * rtnl_unlock();
6803 * free_netdev(y1);
6804 * free_netdev(y2);
6805 *
58ec3b4d 6806 * We are invoked by rtnl_unlock().
1da177e4 6807 * This allows us to deal with problems:
b17a7c17 6808 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6809 * without deadlocking with linkwatch via keventd.
6810 * 2) Since we run with the RTNL semaphore not held, we can sleep
6811 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6812 *
6813 * We must not return until all unregister events added during
6814 * the interval the lock was held have been completed.
1da177e4 6815 */
1da177e4
LT
6816void netdev_run_todo(void)
6817{
626ab0e6 6818 struct list_head list;
1da177e4 6819
1da177e4 6820 /* Snapshot list, allow later requests */
626ab0e6 6821 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6822
6823 __rtnl_unlock();
626ab0e6 6824
0115e8e3
ED
6825
6826 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6827 if (!list_empty(&list))
6828 rcu_barrier();
6829
1da177e4
LT
6830 while (!list_empty(&list)) {
6831 struct net_device *dev
e5e26d75 6832 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6833 list_del(&dev->todo_list);
6834
748e2d93 6835 rtnl_lock();
0115e8e3 6836 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6837 __rtnl_unlock();
0115e8e3 6838
b17a7c17 6839 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6840 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6841 dev->name, dev->reg_state);
6842 dump_stack();
6843 continue;
6844 }
1da177e4 6845
b17a7c17 6846 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6847
b17a7c17 6848 netdev_wait_allrefs(dev);
1da177e4 6849
b17a7c17 6850 /* paranoia */
29b4433d 6851 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
6852 BUG_ON(!list_empty(&dev->ptype_all));
6853 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
6854 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6855 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6856 WARN_ON(dev->dn_ptr);
1da177e4 6857
b17a7c17
SH
6858 if (dev->destructor)
6859 dev->destructor(dev);
9093bbb2 6860
50624c93
EB
6861 /* Report a network device has been unregistered */
6862 rtnl_lock();
6863 dev_net(dev)->dev_unreg_count--;
6864 __rtnl_unlock();
6865 wake_up(&netdev_unregistering_wq);
6866
9093bbb2
SH
6867 /* Free network device */
6868 kobject_put(&dev->dev.kobj);
1da177e4 6869 }
1da177e4
LT
6870}
6871
3cfde79c
BH
6872/* Convert net_device_stats to rtnl_link_stats64. They have the same
6873 * fields in the same order, with only the type differing.
6874 */
77a1abf5
ED
6875void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6876 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6877{
6878#if BITS_PER_LONG == 64
77a1abf5
ED
6879 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6880 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6881#else
6882 size_t i, n = sizeof(*stats64) / sizeof(u64);
6883 const unsigned long *src = (const unsigned long *)netdev_stats;
6884 u64 *dst = (u64 *)stats64;
6885
6886 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6887 sizeof(*stats64) / sizeof(u64));
6888 for (i = 0; i < n; i++)
6889 dst[i] = src[i];
6890#endif
6891}
77a1abf5 6892EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6893
eeda3fd6
SH
6894/**
6895 * dev_get_stats - get network device statistics
6896 * @dev: device to get statistics from
28172739 6897 * @storage: place to store stats
eeda3fd6 6898 *
d7753516
BH
6899 * Get network statistics from device. Return @storage.
6900 * The device driver may provide its own method by setting
6901 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6902 * otherwise the internal statistics structure is used.
eeda3fd6 6903 */
d7753516
BH
6904struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6905 struct rtnl_link_stats64 *storage)
7004bf25 6906{
eeda3fd6
SH
6907 const struct net_device_ops *ops = dev->netdev_ops;
6908
28172739
ED
6909 if (ops->ndo_get_stats64) {
6910 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6911 ops->ndo_get_stats64(dev, storage);
6912 } else if (ops->ndo_get_stats) {
3cfde79c 6913 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6914 } else {
6915 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6916 }
caf586e5 6917 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6918 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 6919 return storage;
c45d286e 6920}
eeda3fd6 6921EXPORT_SYMBOL(dev_get_stats);
c45d286e 6922
24824a09 6923struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 6924{
24824a09 6925 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 6926
24824a09
ED
6927#ifdef CONFIG_NET_CLS_ACT
6928 if (queue)
6929 return queue;
6930 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6931 if (!queue)
6932 return NULL;
6933 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 6934 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
6935 queue->qdisc_sleeping = &noop_qdisc;
6936 rcu_assign_pointer(dev->ingress_queue, queue);
6937#endif
6938 return queue;
bb949fbd
DM
6939}
6940
2c60db03
ED
6941static const struct ethtool_ops default_ethtool_ops;
6942
d07d7507
SG
6943void netdev_set_default_ethtool_ops(struct net_device *dev,
6944 const struct ethtool_ops *ops)
6945{
6946 if (dev->ethtool_ops == &default_ethtool_ops)
6947 dev->ethtool_ops = ops;
6948}
6949EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6950
74d332c1
ED
6951void netdev_freemem(struct net_device *dev)
6952{
6953 char *addr = (char *)dev - dev->padded;
6954
4cb28970 6955 kvfree(addr);
74d332c1
ED
6956}
6957
1da177e4 6958/**
36909ea4 6959 * alloc_netdev_mqs - allocate network device
c835a677
TG
6960 * @sizeof_priv: size of private data to allocate space for
6961 * @name: device name format string
6962 * @name_assign_type: origin of device name
6963 * @setup: callback to initialize device
6964 * @txqs: the number of TX subqueues to allocate
6965 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
6966 *
6967 * Allocates a struct net_device with private data area for driver use
90e51adf 6968 * and performs basic initialization. Also allocates subqueue structs
36909ea4 6969 * for each queue on the device.
1da177e4 6970 */
36909ea4 6971struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 6972 unsigned char name_assign_type,
36909ea4
TH
6973 void (*setup)(struct net_device *),
6974 unsigned int txqs, unsigned int rxqs)
1da177e4 6975{
1da177e4 6976 struct net_device *dev;
7943986c 6977 size_t alloc_size;
1ce8e7b5 6978 struct net_device *p;
1da177e4 6979
b6fe17d6
SH
6980 BUG_ON(strlen(name) >= sizeof(dev->name));
6981
36909ea4 6982 if (txqs < 1) {
7b6cd1ce 6983 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
6984 return NULL;
6985 }
6986
a953be53 6987#ifdef CONFIG_SYSFS
36909ea4 6988 if (rxqs < 1) {
7b6cd1ce 6989 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
6990 return NULL;
6991 }
6992#endif
6993
fd2ea0a7 6994 alloc_size = sizeof(struct net_device);
d1643d24
AD
6995 if (sizeof_priv) {
6996 /* ensure 32-byte alignment of private area */
1ce8e7b5 6997 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
6998 alloc_size += sizeof_priv;
6999 }
7000 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7001 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7002
74d332c1
ED
7003 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7004 if (!p)
7005 p = vzalloc(alloc_size);
62b5942a 7006 if (!p)
1da177e4 7007 return NULL;
1da177e4 7008
1ce8e7b5 7009 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7010 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7011
29b4433d
ED
7012 dev->pcpu_refcnt = alloc_percpu(int);
7013 if (!dev->pcpu_refcnt)
74d332c1 7014 goto free_dev;
ab9c73cc 7015
ab9c73cc 7016 if (dev_addr_init(dev))
29b4433d 7017 goto free_pcpu;
ab9c73cc 7018
22bedad3 7019 dev_mc_init(dev);
a748ee24 7020 dev_uc_init(dev);
ccffad25 7021
c346dca1 7022 dev_net_set(dev, &init_net);
1da177e4 7023
8d3bdbd5 7024 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7025 dev->gso_max_segs = GSO_MAX_SEGS;
fcbeb976 7026 dev->gso_min_segs = 0;
8d3bdbd5 7027
8d3bdbd5
DM
7028 INIT_LIST_HEAD(&dev->napi_list);
7029 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7030 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7031 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7032 INIT_LIST_HEAD(&dev->adj_list.upper);
7033 INIT_LIST_HEAD(&dev->adj_list.lower);
7034 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7035 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7036 INIT_LIST_HEAD(&dev->ptype_all);
7037 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 7038 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7039 setup(dev);
7040
906470c1 7041 if (!dev->tx_queue_len)
f84bb1ea 7042 dev->priv_flags |= IFF_NO_QUEUE;
906470c1 7043
36909ea4
TH
7044 dev->num_tx_queues = txqs;
7045 dev->real_num_tx_queues = txqs;
ed9af2e8 7046 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7047 goto free_all;
e8a0464c 7048
a953be53 7049#ifdef CONFIG_SYSFS
36909ea4
TH
7050 dev->num_rx_queues = rxqs;
7051 dev->real_num_rx_queues = rxqs;
fe822240 7052 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7053 goto free_all;
df334545 7054#endif
0a9627f2 7055
1da177e4 7056 strcpy(dev->name, name);
c835a677 7057 dev->name_assign_type = name_assign_type;
cbda10fa 7058 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7059 if (!dev->ethtool_ops)
7060 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7061
7062 nf_hook_ingress_init(dev);
7063
1da177e4 7064 return dev;
ab9c73cc 7065
8d3bdbd5
DM
7066free_all:
7067 free_netdev(dev);
7068 return NULL;
7069
29b4433d
ED
7070free_pcpu:
7071 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7072free_dev:
7073 netdev_freemem(dev);
ab9c73cc 7074 return NULL;
1da177e4 7075}
36909ea4 7076EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7077
7078/**
7079 * free_netdev - free network device
7080 * @dev: device
7081 *
4ec93edb
YH
7082 * This function does the last stage of destroying an allocated device
7083 * interface. The reference to the device object is released.
1da177e4
LT
7084 * If this is the last reference then it will be freed.
7085 */
7086void free_netdev(struct net_device *dev)
7087{
d565b0a1
HX
7088 struct napi_struct *p, *n;
7089
60877a32 7090 netif_free_tx_queues(dev);
a953be53 7091#ifdef CONFIG_SYSFS
10595902 7092 kvfree(dev->_rx);
fe822240 7093#endif
e8a0464c 7094
33d480ce 7095 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7096
f001fde5
JP
7097 /* Flush device addresses */
7098 dev_addr_flush(dev);
7099
d565b0a1
HX
7100 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7101 netif_napi_del(p);
7102
29b4433d
ED
7103 free_percpu(dev->pcpu_refcnt);
7104 dev->pcpu_refcnt = NULL;
7105
3041a069 7106 /* Compatibility with error handling in drivers */
1da177e4 7107 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7108 netdev_freemem(dev);
1da177e4
LT
7109 return;
7110 }
7111
7112 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7113 dev->reg_state = NETREG_RELEASED;
7114
43cb76d9
GKH
7115 /* will free via device release */
7116 put_device(&dev->dev);
1da177e4 7117}
d1b19dff 7118EXPORT_SYMBOL(free_netdev);
4ec93edb 7119
f0db275a
SH
7120/**
7121 * synchronize_net - Synchronize with packet receive processing
7122 *
7123 * Wait for packets currently being received to be done.
7124 * Does not block later packets from starting.
7125 */
4ec93edb 7126void synchronize_net(void)
1da177e4
LT
7127{
7128 might_sleep();
be3fc413
ED
7129 if (rtnl_is_locked())
7130 synchronize_rcu_expedited();
7131 else
7132 synchronize_rcu();
1da177e4 7133}
d1b19dff 7134EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7135
7136/**
44a0873d 7137 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7138 * @dev: device
44a0873d 7139 * @head: list
6ebfbc06 7140 *
1da177e4 7141 * This function shuts down a device interface and removes it
d59b54b1 7142 * from the kernel tables.
44a0873d 7143 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7144 *
7145 * Callers must hold the rtnl semaphore. You may want
7146 * unregister_netdev() instead of this.
7147 */
7148
44a0873d 7149void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7150{
a6620712
HX
7151 ASSERT_RTNL();
7152
44a0873d 7153 if (head) {
9fdce099 7154 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7155 } else {
7156 rollback_registered(dev);
7157 /* Finish processing unregister after unlock */
7158 net_set_todo(dev);
7159 }
1da177e4 7160}
44a0873d 7161EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7162
9b5e383c
ED
7163/**
7164 * unregister_netdevice_many - unregister many devices
7165 * @head: list of devices
87757a91
ED
7166 *
7167 * Note: As most callers use a stack allocated list_head,
7168 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7169 */
7170void unregister_netdevice_many(struct list_head *head)
7171{
7172 struct net_device *dev;
7173
7174 if (!list_empty(head)) {
7175 rollback_registered_many(head);
7176 list_for_each_entry(dev, head, unreg_list)
7177 net_set_todo(dev);
87757a91 7178 list_del(head);
9b5e383c
ED
7179 }
7180}
63c8099d 7181EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7182
1da177e4
LT
7183/**
7184 * unregister_netdev - remove device from the kernel
7185 * @dev: device
7186 *
7187 * This function shuts down a device interface and removes it
d59b54b1 7188 * from the kernel tables.
1da177e4
LT
7189 *
7190 * This is just a wrapper for unregister_netdevice that takes
7191 * the rtnl semaphore. In general you want to use this and not
7192 * unregister_netdevice.
7193 */
7194void unregister_netdev(struct net_device *dev)
7195{
7196 rtnl_lock();
7197 unregister_netdevice(dev);
7198 rtnl_unlock();
7199}
1da177e4
LT
7200EXPORT_SYMBOL(unregister_netdev);
7201
ce286d32
EB
7202/**
7203 * dev_change_net_namespace - move device to different nethost namespace
7204 * @dev: device
7205 * @net: network namespace
7206 * @pat: If not NULL name pattern to try if the current device name
7207 * is already taken in the destination network namespace.
7208 *
7209 * This function shuts down a device interface and moves it
7210 * to a new network namespace. On success 0 is returned, on
7211 * a failure a netagive errno code is returned.
7212 *
7213 * Callers must hold the rtnl semaphore.
7214 */
7215
7216int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7217{
ce286d32
EB
7218 int err;
7219
7220 ASSERT_RTNL();
7221
7222 /* Don't allow namespace local devices to be moved. */
7223 err = -EINVAL;
7224 if (dev->features & NETIF_F_NETNS_LOCAL)
7225 goto out;
7226
7227 /* Ensure the device has been registrered */
ce286d32
EB
7228 if (dev->reg_state != NETREG_REGISTERED)
7229 goto out;
7230
7231 /* Get out if there is nothing todo */
7232 err = 0;
878628fb 7233 if (net_eq(dev_net(dev), net))
ce286d32
EB
7234 goto out;
7235
7236 /* Pick the destination device name, and ensure
7237 * we can use it in the destination network namespace.
7238 */
7239 err = -EEXIST;
d9031024 7240 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7241 /* We get here if we can't use the current device name */
7242 if (!pat)
7243 goto out;
828de4f6 7244 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7245 goto out;
7246 }
7247
7248 /*
7249 * And now a mini version of register_netdevice unregister_netdevice.
7250 */
7251
7252 /* If device is running close it first. */
9b772652 7253 dev_close(dev);
ce286d32
EB
7254
7255 /* And unlink it from device chain */
7256 err = -ENODEV;
7257 unlist_netdevice(dev);
7258
7259 synchronize_net();
7260
7261 /* Shutdown queueing discipline. */
7262 dev_shutdown(dev);
7263
7264 /* Notify protocols, that we are about to destroy
7265 this device. They should clean all the things.
3b27e105
DL
7266
7267 Note that dev->reg_state stays at NETREG_REGISTERED.
7268 This is wanted because this way 8021q and macvlan know
7269 the device is just moving and can keep their slaves up.
ce286d32
EB
7270 */
7271 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7272 rcu_barrier();
7273 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7274 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7275
7276 /*
7277 * Flush the unicast and multicast chains
7278 */
a748ee24 7279 dev_uc_flush(dev);
22bedad3 7280 dev_mc_flush(dev);
ce286d32 7281
4e66ae2e
SH
7282 /* Send a netdev-removed uevent to the old namespace */
7283 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7284 netdev_adjacent_del_links(dev);
4e66ae2e 7285
ce286d32 7286 /* Actually switch the network namespace */
c346dca1 7287 dev_net_set(dev, net);
ce286d32 7288
ce286d32 7289 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7290 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7291 dev->ifindex = dev_new_index(net);
ce286d32 7292
4e66ae2e
SH
7293 /* Send a netdev-add uevent to the new namespace */
7294 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7295 netdev_adjacent_add_links(dev);
4e66ae2e 7296
8b41d188 7297 /* Fixup kobjects */
a1b3f594 7298 err = device_rename(&dev->dev, dev->name);
8b41d188 7299 WARN_ON(err);
ce286d32
EB
7300
7301 /* Add the device back in the hashes */
7302 list_netdevice(dev);
7303
7304 /* Notify protocols, that a new device appeared. */
7305 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7306
d90a909e
EB
7307 /*
7308 * Prevent userspace races by waiting until the network
7309 * device is fully setup before sending notifications.
7310 */
7f294054 7311 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7312
ce286d32
EB
7313 synchronize_net();
7314 err = 0;
7315out:
7316 return err;
7317}
463d0183 7318EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7319
1da177e4
LT
7320static int dev_cpu_callback(struct notifier_block *nfb,
7321 unsigned long action,
7322 void *ocpu)
7323{
7324 struct sk_buff **list_skb;
1da177e4
LT
7325 struct sk_buff *skb;
7326 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7327 struct softnet_data *sd, *oldsd;
7328
8bb78442 7329 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7330 return NOTIFY_OK;
7331
7332 local_irq_disable();
7333 cpu = smp_processor_id();
7334 sd = &per_cpu(softnet_data, cpu);
7335 oldsd = &per_cpu(softnet_data, oldcpu);
7336
7337 /* Find end of our completion_queue. */
7338 list_skb = &sd->completion_queue;
7339 while (*list_skb)
7340 list_skb = &(*list_skb)->next;
7341 /* Append completion queue from offline CPU. */
7342 *list_skb = oldsd->completion_queue;
7343 oldsd->completion_queue = NULL;
7344
1da177e4 7345 /* Append output queue from offline CPU. */
a9cbd588
CG
7346 if (oldsd->output_queue) {
7347 *sd->output_queue_tailp = oldsd->output_queue;
7348 sd->output_queue_tailp = oldsd->output_queue_tailp;
7349 oldsd->output_queue = NULL;
7350 oldsd->output_queue_tailp = &oldsd->output_queue;
7351 }
ac64da0b
ED
7352 /* Append NAPI poll list from offline CPU, with one exception :
7353 * process_backlog() must be called by cpu owning percpu backlog.
7354 * We properly handle process_queue & input_pkt_queue later.
7355 */
7356 while (!list_empty(&oldsd->poll_list)) {
7357 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7358 struct napi_struct,
7359 poll_list);
7360
7361 list_del_init(&napi->poll_list);
7362 if (napi->poll == process_backlog)
7363 napi->state = 0;
7364 else
7365 ____napi_schedule(sd, napi);
264524d5 7366 }
1da177e4
LT
7367
7368 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7369 local_irq_enable();
7370
7371 /* Process offline CPU's input_pkt_queue */
76cc8b13 7372 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7373 netif_rx_ni(skb);
76cc8b13 7374 input_queue_head_incr(oldsd);
fec5e652 7375 }
ac64da0b 7376 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7377 netif_rx_ni(skb);
76cc8b13
TH
7378 input_queue_head_incr(oldsd);
7379 }
1da177e4
LT
7380
7381 return NOTIFY_OK;
7382}
1da177e4
LT
7383
7384
7f353bf2 7385/**
b63365a2
HX
7386 * netdev_increment_features - increment feature set by one
7387 * @all: current feature set
7388 * @one: new feature set
7389 * @mask: mask feature set
7f353bf2
HX
7390 *
7391 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7392 * @one to the master device with current feature set @all. Will not
7393 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7394 */
c8f44aff
MM
7395netdev_features_t netdev_increment_features(netdev_features_t all,
7396 netdev_features_t one, netdev_features_t mask)
b63365a2 7397{
1742f183
MM
7398 if (mask & NETIF_F_GEN_CSUM)
7399 mask |= NETIF_F_ALL_CSUM;
7400 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7401
1742f183
MM
7402 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7403 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7404
1742f183
MM
7405 /* If one device supports hw checksumming, set for all. */
7406 if (all & NETIF_F_GEN_CSUM)
7407 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
7408
7409 return all;
7410}
b63365a2 7411EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7412
430f03cd 7413static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7414{
7415 int i;
7416 struct hlist_head *hash;
7417
7418 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7419 if (hash != NULL)
7420 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7421 INIT_HLIST_HEAD(&hash[i]);
7422
7423 return hash;
7424}
7425
881d966b 7426/* Initialize per network namespace state */
4665079c 7427static int __net_init netdev_init(struct net *net)
881d966b 7428{
734b6541
RM
7429 if (net != &init_net)
7430 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7431
30d97d35
PE
7432 net->dev_name_head = netdev_create_hash();
7433 if (net->dev_name_head == NULL)
7434 goto err_name;
881d966b 7435
30d97d35
PE
7436 net->dev_index_head = netdev_create_hash();
7437 if (net->dev_index_head == NULL)
7438 goto err_idx;
881d966b
EB
7439
7440 return 0;
30d97d35
PE
7441
7442err_idx:
7443 kfree(net->dev_name_head);
7444err_name:
7445 return -ENOMEM;
881d966b
EB
7446}
7447
f0db275a
SH
7448/**
7449 * netdev_drivername - network driver for the device
7450 * @dev: network device
f0db275a
SH
7451 *
7452 * Determine network driver for device.
7453 */
3019de12 7454const char *netdev_drivername(const struct net_device *dev)
6579e57b 7455{
cf04a4c7
SH
7456 const struct device_driver *driver;
7457 const struct device *parent;
3019de12 7458 const char *empty = "";
6579e57b
AV
7459
7460 parent = dev->dev.parent;
6579e57b 7461 if (!parent)
3019de12 7462 return empty;
6579e57b
AV
7463
7464 driver = parent->driver;
7465 if (driver && driver->name)
3019de12
DM
7466 return driver->name;
7467 return empty;
6579e57b
AV
7468}
7469
6ea754eb
JP
7470static void __netdev_printk(const char *level, const struct net_device *dev,
7471 struct va_format *vaf)
256df2f3 7472{
b004ff49 7473 if (dev && dev->dev.parent) {
6ea754eb
JP
7474 dev_printk_emit(level[1] - '0',
7475 dev->dev.parent,
7476 "%s %s %s%s: %pV",
7477 dev_driver_string(dev->dev.parent),
7478 dev_name(dev->dev.parent),
7479 netdev_name(dev), netdev_reg_state(dev),
7480 vaf);
b004ff49 7481 } else if (dev) {
6ea754eb
JP
7482 printk("%s%s%s: %pV",
7483 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7484 } else {
6ea754eb 7485 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7486 }
256df2f3
JP
7487}
7488
6ea754eb
JP
7489void netdev_printk(const char *level, const struct net_device *dev,
7490 const char *format, ...)
256df2f3
JP
7491{
7492 struct va_format vaf;
7493 va_list args;
256df2f3
JP
7494
7495 va_start(args, format);
7496
7497 vaf.fmt = format;
7498 vaf.va = &args;
7499
6ea754eb 7500 __netdev_printk(level, dev, &vaf);
b004ff49 7501
256df2f3 7502 va_end(args);
256df2f3
JP
7503}
7504EXPORT_SYMBOL(netdev_printk);
7505
7506#define define_netdev_printk_level(func, level) \
6ea754eb 7507void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7508{ \
256df2f3
JP
7509 struct va_format vaf; \
7510 va_list args; \
7511 \
7512 va_start(args, fmt); \
7513 \
7514 vaf.fmt = fmt; \
7515 vaf.va = &args; \
7516 \
6ea754eb 7517 __netdev_printk(level, dev, &vaf); \
b004ff49 7518 \
256df2f3 7519 va_end(args); \
256df2f3
JP
7520} \
7521EXPORT_SYMBOL(func);
7522
7523define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7524define_netdev_printk_level(netdev_alert, KERN_ALERT);
7525define_netdev_printk_level(netdev_crit, KERN_CRIT);
7526define_netdev_printk_level(netdev_err, KERN_ERR);
7527define_netdev_printk_level(netdev_warn, KERN_WARNING);
7528define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7529define_netdev_printk_level(netdev_info, KERN_INFO);
7530
4665079c 7531static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7532{
7533 kfree(net->dev_name_head);
7534 kfree(net->dev_index_head);
7535}
7536
022cbae6 7537static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7538 .init = netdev_init,
7539 .exit = netdev_exit,
7540};
7541
4665079c 7542static void __net_exit default_device_exit(struct net *net)
ce286d32 7543{
e008b5fc 7544 struct net_device *dev, *aux;
ce286d32 7545 /*
e008b5fc 7546 * Push all migratable network devices back to the
ce286d32
EB
7547 * initial network namespace
7548 */
7549 rtnl_lock();
e008b5fc 7550 for_each_netdev_safe(net, dev, aux) {
ce286d32 7551 int err;
aca51397 7552 char fb_name[IFNAMSIZ];
ce286d32
EB
7553
7554 /* Ignore unmoveable devices (i.e. loopback) */
7555 if (dev->features & NETIF_F_NETNS_LOCAL)
7556 continue;
7557
e008b5fc
EB
7558 /* Leave virtual devices for the generic cleanup */
7559 if (dev->rtnl_link_ops)
7560 continue;
d0c082ce 7561
25985edc 7562 /* Push remaining network devices to init_net */
aca51397
PE
7563 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7564 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7565 if (err) {
7b6cd1ce
JP
7566 pr_emerg("%s: failed to move %s to init_net: %d\n",
7567 __func__, dev->name, err);
aca51397 7568 BUG();
ce286d32
EB
7569 }
7570 }
7571 rtnl_unlock();
7572}
7573
50624c93
EB
7574static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7575{
7576 /* Return with the rtnl_lock held when there are no network
7577 * devices unregistering in any network namespace in net_list.
7578 */
7579 struct net *net;
7580 bool unregistering;
ff960a73 7581 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 7582
ff960a73 7583 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 7584 for (;;) {
50624c93
EB
7585 unregistering = false;
7586 rtnl_lock();
7587 list_for_each_entry(net, net_list, exit_list) {
7588 if (net->dev_unreg_count > 0) {
7589 unregistering = true;
7590 break;
7591 }
7592 }
7593 if (!unregistering)
7594 break;
7595 __rtnl_unlock();
ff960a73
PZ
7596
7597 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 7598 }
ff960a73 7599 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
7600}
7601
04dc7f6b
EB
7602static void __net_exit default_device_exit_batch(struct list_head *net_list)
7603{
7604 /* At exit all network devices most be removed from a network
b595076a 7605 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7606 * Do this across as many network namespaces as possible to
7607 * improve batching efficiency.
7608 */
7609 struct net_device *dev;
7610 struct net *net;
7611 LIST_HEAD(dev_kill_list);
7612
50624c93
EB
7613 /* To prevent network device cleanup code from dereferencing
7614 * loopback devices or network devices that have been freed
7615 * wait here for all pending unregistrations to complete,
7616 * before unregistring the loopback device and allowing the
7617 * network namespace be freed.
7618 *
7619 * The netdev todo list containing all network devices
7620 * unregistrations that happen in default_device_exit_batch
7621 * will run in the rtnl_unlock() at the end of
7622 * default_device_exit_batch.
7623 */
7624 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7625 list_for_each_entry(net, net_list, exit_list) {
7626 for_each_netdev_reverse(net, dev) {
b0ab2fab 7627 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7628 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7629 else
7630 unregister_netdevice_queue(dev, &dev_kill_list);
7631 }
7632 }
7633 unregister_netdevice_many(&dev_kill_list);
7634 rtnl_unlock();
7635}
7636
022cbae6 7637static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7638 .exit = default_device_exit,
04dc7f6b 7639 .exit_batch = default_device_exit_batch,
ce286d32
EB
7640};
7641
1da177e4
LT
7642/*
7643 * Initialize the DEV module. At boot time this walks the device list and
7644 * unhooks any devices that fail to initialise (normally hardware not
7645 * present) and leaves us with a valid list of present and active devices.
7646 *
7647 */
7648
7649/*
7650 * This is called single threaded during boot, so no need
7651 * to take the rtnl semaphore.
7652 */
7653static int __init net_dev_init(void)
7654{
7655 int i, rc = -ENOMEM;
7656
7657 BUG_ON(!dev_boot_phase);
7658
1da177e4
LT
7659 if (dev_proc_init())
7660 goto out;
7661
8b41d188 7662 if (netdev_kobject_init())
1da177e4
LT
7663 goto out;
7664
7665 INIT_LIST_HEAD(&ptype_all);
82d8a867 7666 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7667 INIT_LIST_HEAD(&ptype_base[i]);
7668
62532da9
VY
7669 INIT_LIST_HEAD(&offload_base);
7670
881d966b
EB
7671 if (register_pernet_subsys(&netdev_net_ops))
7672 goto out;
1da177e4
LT
7673
7674 /*
7675 * Initialise the packet receive queues.
7676 */
7677
6f912042 7678 for_each_possible_cpu(i) {
e36fa2f7 7679 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7680
e36fa2f7 7681 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7682 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7683 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7684 sd->output_queue_tailp = &sd->output_queue;
df334545 7685#ifdef CONFIG_RPS
e36fa2f7
ED
7686 sd->csd.func = rps_trigger_softirq;
7687 sd->csd.info = sd;
e36fa2f7 7688 sd->cpu = i;
1e94d72f 7689#endif
0a9627f2 7690
e36fa2f7
ED
7691 sd->backlog.poll = process_backlog;
7692 sd->backlog.weight = weight_p;
1da177e4
LT
7693 }
7694
1da177e4
LT
7695 dev_boot_phase = 0;
7696
505d4f73
EB
7697 /* The loopback device is special if any other network devices
7698 * is present in a network namespace the loopback device must
7699 * be present. Since we now dynamically allocate and free the
7700 * loopback device ensure this invariant is maintained by
7701 * keeping the loopback device as the first device on the
7702 * list of network devices. Ensuring the loopback devices
7703 * is the first device that appears and the last network device
7704 * that disappears.
7705 */
7706 if (register_pernet_device(&loopback_net_ops))
7707 goto out;
7708
7709 if (register_pernet_device(&default_device_ops))
7710 goto out;
7711
962cf36c
CM
7712 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7713 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7714
7715 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 7716 dst_subsys_init();
1da177e4
LT
7717 rc = 0;
7718out:
7719 return rc;
7720}
7721
7722subsys_initcall(net_dev_init);