]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - net/core/dev.c
net: introduce name_node struct to be used in hashlist
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
1da177e4
LT
82#include <linux/string.h>
83#include <linux/mm.h>
84#include <linux/socket.h>
85#include <linux/sockios.h>
86#include <linux/errno.h>
87#include <linux/interrupt.h>
88#include <linux/if_ether.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
0187bdfb 91#include <linux/ethtool.h>
1da177e4 92#include <linux/skbuff.h>
a7862b45 93#include <linux/bpf.h>
b5cdae32 94#include <linux/bpf_trace.h>
457c4cbc 95#include <net/net_namespace.h>
1da177e4 96#include <net/sock.h>
02d62e86 97#include <net/busy_poll.h>
1da177e4 98#include <linux/rtnetlink.h>
1da177e4 99#include <linux/stat.h>
1da177e4 100#include <net/dst.h>
fc4099f1 101#include <net/dst_metadata.h>
1da177e4 102#include <net/pkt_sched.h>
87d83093 103#include <net/pkt_cls.h>
1da177e4 104#include <net/checksum.h>
44540960 105#include <net/xfrm.h>
1da177e4
LT
106#include <linux/highmem.h>
107#include <linux/init.h>
1da177e4 108#include <linux/module.h>
1da177e4
LT
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
1da177e4 112#include <net/iw_handler.h>
1da177e4 113#include <asm/current.h>
5bdb9886 114#include <linux/audit.h>
db217334 115#include <linux/dmaengine.h>
f6a78bfc 116#include <linux/err.h>
c7fa9d18 117#include <linux/ctype.h>
723e98b7 118#include <linux/if_arp.h>
6de329e2 119#include <linux/if_vlan.h>
8f0f2223 120#include <linux/ip.h>
ad55dcaf 121#include <net/ip.h>
25cd9ba0 122#include <net/mpls.h>
8f0f2223
DM
123#include <linux/ipv6.h>
124#include <linux/in.h>
b6b2fed1
DM
125#include <linux/jhash.h>
126#include <linux/random.h>
9cbc1cb8 127#include <trace/events/napi.h>
cf66ba58 128#include <trace/events/net.h>
07dc22e7 129#include <trace/events/skb.h>
caeda9b9 130#include <linux/inetdevice.h>
c445477d 131#include <linux/cpu_rmap.h>
c5905afb 132#include <linux/static_key.h>
af12fa6e 133#include <linux/hashtable.h>
60877a32 134#include <linux/vmalloc.h>
529d0489 135#include <linux/if_macvlan.h>
e7fd2885 136#include <linux/errqueue.h>
3b47d303 137#include <linux/hrtimer.h>
e687ad60 138#include <linux/netfilter_ingress.h>
40e4e713 139#include <linux/crash_dump.h>
b72b5bf6 140#include <linux/sctp.h>
ae847f40 141#include <net/udp_tunnel.h>
6621dd29 142#include <linux/net_namespace.h>
aaa5d90b 143#include <linux/indirect_call_wrapper.h>
af3836df 144#include <net/devlink.h>
1da177e4 145
342709ef
PE
146#include "net-sysfs.h"
147
d565b0a1
HX
148#define MAX_GRO_SKBS 8
149
5d38a079
HX
150/* This should be increased if a protocol with a bigger head is added. */
151#define GRO_MAX_HEAD (MAX_HEADER + 128)
152
1da177e4 153static DEFINE_SPINLOCK(ptype_lock);
62532da9 154static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156struct list_head ptype_all __read_mostly; /* Taps */
62532da9 157static struct list_head offload_base __read_mostly;
1da177e4 158
ae78dbfa 159static int netif_rx_internal(struct sk_buff *skb);
54951194 160static int call_netdevice_notifiers_info(unsigned long val,
54951194 161 struct netdev_notifier_info *info);
26372605
PM
162static int call_netdevice_notifiers_extack(unsigned long val,
163 struct net_device *dev,
164 struct netlink_ext_ack *extack);
90b602f8 165static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 166
1da177e4 167/*
7562f876 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
169 * semaphore.
170 *
c6d14c84 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
172 *
173 * Writers must hold the rtnl semaphore while they loop through the
7562f876 174 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
177 *
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
181 *
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
184 * semaphore held.
185 */
1da177e4 186DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
187EXPORT_SYMBOL(dev_base_lock);
188
6c557001
FW
189static DEFINE_MUTEX(ifalias_mutex);
190
af12fa6e
ET
191/* protects napi_hash addition/deletion and napi_gen_id */
192static DEFINE_SPINLOCK(napi_hash_lock);
193
52bd2d62 194static unsigned int napi_gen_id = NR_CPUS;
6180d9de 195static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 196
18afa4b0 197static seqcount_t devnet_rename_seq;
c91f6df2 198
4e985ada
TG
199static inline void dev_base_seq_inc(struct net *net)
200{
643aa9cb 201 while (++net->dev_base_seq == 0)
202 ;
4e985ada
TG
203}
204
881d966b 205static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 206{
8387ff25 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 208
08e9897d 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
210}
211
881d966b 212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 213{
7c28bd0b 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
215}
216
e36fa2f7 217static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
e36fa2f7 224static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
225{
226#ifdef CONFIG_RPS
e36fa2f7 227 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
228#endif
229}
230
ff927412
JP
231static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232 const char *name)
233{
234 struct netdev_name_node *name_node;
235
236 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237 if (!name_node)
238 return NULL;
239 INIT_HLIST_NODE(&name_node->hlist);
240 name_node->dev = dev;
241 name_node->name = name;
242 return name_node;
243}
244
245static struct netdev_name_node *
246netdev_name_node_head_alloc(struct net_device *dev)
247{
248 return netdev_name_node_alloc(dev, dev->name);
249}
250
251static void netdev_name_node_free(struct netdev_name_node *name_node)
252{
253 kfree(name_node);
254}
255
256static void netdev_name_node_add(struct net *net,
257 struct netdev_name_node *name_node)
258{
259 hlist_add_head_rcu(&name_node->hlist,
260 dev_name_hash(net, name_node->name));
261}
262
263static void netdev_name_node_del(struct netdev_name_node *name_node)
264{
265 hlist_del_rcu(&name_node->hlist);
266}
267
268static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
269 const char *name)
270{
271 struct hlist_head *head = dev_name_hash(net, name);
272 struct netdev_name_node *name_node;
273
274 hlist_for_each_entry(name_node, head, hlist)
275 if (!strcmp(name_node->name, name))
276 return name_node;
277 return NULL;
278}
279
280static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
281 const char *name)
282{
283 struct hlist_head *head = dev_name_hash(net, name);
284 struct netdev_name_node *name_node;
285
286 hlist_for_each_entry_rcu(name_node, head, hlist)
287 if (!strcmp(name_node->name, name))
288 return name_node;
289 return NULL;
290}
291
ce286d32 292/* Device list insertion */
53759be9 293static void list_netdevice(struct net_device *dev)
ce286d32 294{
c346dca1 295 struct net *net = dev_net(dev);
ce286d32
EB
296
297 ASSERT_RTNL();
298
299 write_lock_bh(&dev_base_lock);
c6d14c84 300 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 301 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
302 hlist_add_head_rcu(&dev->index_hlist,
303 dev_index_hash(net, dev->ifindex));
ce286d32 304 write_unlock_bh(&dev_base_lock);
4e985ada
TG
305
306 dev_base_seq_inc(net);
ce286d32
EB
307}
308
fb699dfd
ED
309/* Device list removal
310 * caller must respect a RCU grace period before freeing/reusing dev
311 */
ce286d32
EB
312static void unlist_netdevice(struct net_device *dev)
313{
314 ASSERT_RTNL();
315
316 /* Unlink dev from the device chain */
317 write_lock_bh(&dev_base_lock);
c6d14c84 318 list_del_rcu(&dev->dev_list);
ff927412 319 netdev_name_node_del(dev->name_node);
fb699dfd 320 hlist_del_rcu(&dev->index_hlist);
ce286d32 321 write_unlock_bh(&dev_base_lock);
4e985ada
TG
322
323 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
324}
325
1da177e4
LT
326/*
327 * Our notifier list
328 */
329
f07d5b94 330static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
331
332/*
333 * Device drivers call our routines to queue packets here. We empty the
334 * queue in the local softnet handler.
335 */
bea3348e 336
9958da05 337DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 338EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 339
cf508b12 340#ifdef CONFIG_LOCKDEP
723e98b7 341/*
c773e847 342 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
343 * according to dev->type
344 */
643aa9cb 345static const unsigned short netdev_lock_type[] = {
346 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
347 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
348 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
349 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
350 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
351 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
352 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
353 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
354 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
355 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
356 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
357 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
358 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
359 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
360 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 361
643aa9cb 362static const char *const netdev_lock_name[] = {
363 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
364 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
365 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
366 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
367 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
368 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
369 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
370 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
371 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
372 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
373 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
374 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
375 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
376 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
377 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
378
379static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 380static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
381
382static inline unsigned short netdev_lock_pos(unsigned short dev_type)
383{
384 int i;
385
386 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
387 if (netdev_lock_type[i] == dev_type)
388 return i;
389 /* the last key is used by default */
390 return ARRAY_SIZE(netdev_lock_type) - 1;
391}
392
cf508b12
DM
393static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
394 unsigned short dev_type)
723e98b7
JP
395{
396 int i;
397
398 i = netdev_lock_pos(dev_type);
399 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
400 netdev_lock_name[i]);
401}
cf508b12
DM
402
403static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
404{
405 int i;
406
407 i = netdev_lock_pos(dev->type);
408 lockdep_set_class_and_name(&dev->addr_list_lock,
409 &netdev_addr_lock_key[i],
410 netdev_lock_name[i]);
411}
723e98b7 412#else
cf508b12
DM
413static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
414 unsigned short dev_type)
415{
416}
417static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
418{
419}
420#endif
1da177e4
LT
421
422/*******************************************************************************
eb13da1a 423 *
424 * Protocol management and registration routines
425 *
426 *******************************************************************************/
1da177e4 427
1da177e4 428
1da177e4
LT
429/*
430 * Add a protocol ID to the list. Now that the input handler is
431 * smarter we can dispense with all the messy stuff that used to be
432 * here.
433 *
434 * BEWARE!!! Protocol handlers, mangling input packets,
435 * MUST BE last in hash buckets and checking protocol handlers
436 * MUST start from promiscuous ptype_all chain in net_bh.
437 * It is true now, do not change it.
438 * Explanation follows: if protocol handler, mangling packet, will
439 * be the first on list, it is not able to sense, that packet
440 * is cloned and should be copied-on-write, so that it will
441 * change it and subsequent readers will get broken packet.
442 * --ANK (980803)
443 */
444
c07b68e8
ED
445static inline struct list_head *ptype_head(const struct packet_type *pt)
446{
447 if (pt->type == htons(ETH_P_ALL))
7866a621 448 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 449 else
7866a621
SN
450 return pt->dev ? &pt->dev->ptype_specific :
451 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
452}
453
1da177e4
LT
454/**
455 * dev_add_pack - add packet handler
456 * @pt: packet type declaration
457 *
458 * Add a protocol handler to the networking stack. The passed &packet_type
459 * is linked into kernel lists and may not be freed until it has been
460 * removed from the kernel lists.
461 *
4ec93edb 462 * This call does not sleep therefore it can not
1da177e4
LT
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new packet type (until the next received packet).
465 */
466
467void dev_add_pack(struct packet_type *pt)
468{
c07b68e8 469 struct list_head *head = ptype_head(pt);
1da177e4 470
c07b68e8
ED
471 spin_lock(&ptype_lock);
472 list_add_rcu(&pt->list, head);
473 spin_unlock(&ptype_lock);
1da177e4 474}
d1b19dff 475EXPORT_SYMBOL(dev_add_pack);
1da177e4 476
1da177e4
LT
477/**
478 * __dev_remove_pack - remove packet handler
479 * @pt: packet type declaration
480 *
481 * Remove a protocol handler that was previously added to the kernel
482 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
483 * from the kernel lists and can be freed or reused once this function
4ec93edb 484 * returns.
1da177e4
LT
485 *
486 * The packet type might still be in use by receivers
487 * and must not be freed until after all the CPU's have gone
488 * through a quiescent state.
489 */
490void __dev_remove_pack(struct packet_type *pt)
491{
c07b68e8 492 struct list_head *head = ptype_head(pt);
1da177e4
LT
493 struct packet_type *pt1;
494
c07b68e8 495 spin_lock(&ptype_lock);
1da177e4
LT
496
497 list_for_each_entry(pt1, head, list) {
498 if (pt == pt1) {
499 list_del_rcu(&pt->list);
500 goto out;
501 }
502 }
503
7b6cd1ce 504 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 505out:
c07b68e8 506 spin_unlock(&ptype_lock);
1da177e4 507}
d1b19dff
ED
508EXPORT_SYMBOL(__dev_remove_pack);
509
1da177e4
LT
510/**
511 * dev_remove_pack - remove packet handler
512 * @pt: packet type declaration
513 *
514 * Remove a protocol handler that was previously added to the kernel
515 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
516 * from the kernel lists and can be freed or reused once this function
517 * returns.
518 *
519 * This call sleeps to guarantee that no CPU is looking at the packet
520 * type after return.
521 */
522void dev_remove_pack(struct packet_type *pt)
523{
524 __dev_remove_pack(pt);
4ec93edb 525
1da177e4
LT
526 synchronize_net();
527}
d1b19dff 528EXPORT_SYMBOL(dev_remove_pack);
1da177e4 529
62532da9
VY
530
531/**
532 * dev_add_offload - register offload handlers
533 * @po: protocol offload declaration
534 *
535 * Add protocol offload handlers to the networking stack. The passed
536 * &proto_offload is linked into kernel lists and may not be freed until
537 * it has been removed from the kernel lists.
538 *
539 * This call does not sleep therefore it can not
540 * guarantee all CPU's that are in middle of receiving packets
541 * will see the new offload handlers (until the next received packet).
542 */
543void dev_add_offload(struct packet_offload *po)
544{
bdef7de4 545 struct packet_offload *elem;
62532da9
VY
546
547 spin_lock(&offload_lock);
bdef7de4
DM
548 list_for_each_entry(elem, &offload_base, list) {
549 if (po->priority < elem->priority)
550 break;
551 }
552 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
553 spin_unlock(&offload_lock);
554}
555EXPORT_SYMBOL(dev_add_offload);
556
557/**
558 * __dev_remove_offload - remove offload handler
559 * @po: packet offload declaration
560 *
561 * Remove a protocol offload handler that was previously added to the
562 * kernel offload handlers by dev_add_offload(). The passed &offload_type
563 * is removed from the kernel lists and can be freed or reused once this
564 * function returns.
565 *
566 * The packet type might still be in use by receivers
567 * and must not be freed until after all the CPU's have gone
568 * through a quiescent state.
569 */
1d143d9f 570static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
571{
572 struct list_head *head = &offload_base;
573 struct packet_offload *po1;
574
c53aa505 575 spin_lock(&offload_lock);
62532da9
VY
576
577 list_for_each_entry(po1, head, list) {
578 if (po == po1) {
579 list_del_rcu(&po->list);
580 goto out;
581 }
582 }
583
584 pr_warn("dev_remove_offload: %p not found\n", po);
585out:
c53aa505 586 spin_unlock(&offload_lock);
62532da9 587}
62532da9
VY
588
589/**
590 * dev_remove_offload - remove packet offload handler
591 * @po: packet offload declaration
592 *
593 * Remove a packet offload handler that was previously added to the kernel
594 * offload handlers by dev_add_offload(). The passed &offload_type is
595 * removed from the kernel lists and can be freed or reused once this
596 * function returns.
597 *
598 * This call sleeps to guarantee that no CPU is looking at the packet
599 * type after return.
600 */
601void dev_remove_offload(struct packet_offload *po)
602{
603 __dev_remove_offload(po);
604
605 synchronize_net();
606}
607EXPORT_SYMBOL(dev_remove_offload);
608
1da177e4 609/******************************************************************************
eb13da1a 610 *
611 * Device Boot-time Settings Routines
612 *
613 ******************************************************************************/
1da177e4
LT
614
615/* Boot time configuration table */
616static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
617
618/**
619 * netdev_boot_setup_add - add new setup entry
620 * @name: name of the device
621 * @map: configured settings for the device
622 *
623 * Adds new setup entry to the dev_boot_setup list. The function
624 * returns 0 on error and 1 on success. This is a generic routine to
625 * all netdevices.
626 */
627static int netdev_boot_setup_add(char *name, struct ifmap *map)
628{
629 struct netdev_boot_setup *s;
630 int i;
631
632 s = dev_boot_setup;
633 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
634 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
635 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 636 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
637 memcpy(&s[i].map, map, sizeof(s[i].map));
638 break;
639 }
640 }
641
642 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
643}
644
645/**
722c9a0c 646 * netdev_boot_setup_check - check boot time settings
647 * @dev: the netdevice
1da177e4 648 *
722c9a0c 649 * Check boot time settings for the device.
650 * The found settings are set for the device to be used
651 * later in the device probing.
652 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
653 */
654int netdev_boot_setup_check(struct net_device *dev)
655{
656 struct netdev_boot_setup *s = dev_boot_setup;
657 int i;
658
659 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
660 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 661 !strcmp(dev->name, s[i].name)) {
722c9a0c 662 dev->irq = s[i].map.irq;
663 dev->base_addr = s[i].map.base_addr;
664 dev->mem_start = s[i].map.mem_start;
665 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
666 return 1;
667 }
668 }
669 return 0;
670}
d1b19dff 671EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
672
673
674/**
722c9a0c 675 * netdev_boot_base - get address from boot time settings
676 * @prefix: prefix for network device
677 * @unit: id for network device
678 *
679 * Check boot time settings for the base address of device.
680 * The found settings are set for the device to be used
681 * later in the device probing.
682 * Returns 0 if no settings found.
1da177e4
LT
683 */
684unsigned long netdev_boot_base(const char *prefix, int unit)
685{
686 const struct netdev_boot_setup *s = dev_boot_setup;
687 char name[IFNAMSIZ];
688 int i;
689
690 sprintf(name, "%s%d", prefix, unit);
691
692 /*
693 * If device already registered then return base of 1
694 * to indicate not to probe for this interface
695 */
881d966b 696 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
697 return 1;
698
699 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
700 if (!strcmp(name, s[i].name))
701 return s[i].map.base_addr;
702 return 0;
703}
704
705/*
706 * Saves at boot time configured settings for any netdevice.
707 */
708int __init netdev_boot_setup(char *str)
709{
710 int ints[5];
711 struct ifmap map;
712
713 str = get_options(str, ARRAY_SIZE(ints), ints);
714 if (!str || !*str)
715 return 0;
716
717 /* Save settings */
718 memset(&map, 0, sizeof(map));
719 if (ints[0] > 0)
720 map.irq = ints[1];
721 if (ints[0] > 1)
722 map.base_addr = ints[2];
723 if (ints[0] > 2)
724 map.mem_start = ints[3];
725 if (ints[0] > 3)
726 map.mem_end = ints[4];
727
728 /* Add new entry to the list */
729 return netdev_boot_setup_add(str, &map);
730}
731
732__setup("netdev=", netdev_boot_setup);
733
734/*******************************************************************************
eb13da1a 735 *
736 * Device Interface Subroutines
737 *
738 *******************************************************************************/
1da177e4 739
a54acb3a
ND
740/**
741 * dev_get_iflink - get 'iflink' value of a interface
742 * @dev: targeted interface
743 *
744 * Indicates the ifindex the interface is linked to.
745 * Physical interfaces have the same 'ifindex' and 'iflink' values.
746 */
747
748int dev_get_iflink(const struct net_device *dev)
749{
750 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
751 return dev->netdev_ops->ndo_get_iflink(dev);
752
7a66bbc9 753 return dev->ifindex;
a54acb3a
ND
754}
755EXPORT_SYMBOL(dev_get_iflink);
756
fc4099f1
PS
757/**
758 * dev_fill_metadata_dst - Retrieve tunnel egress information.
759 * @dev: targeted interface
760 * @skb: The packet.
761 *
762 * For better visibility of tunnel traffic OVS needs to retrieve
763 * egress tunnel information for a packet. Following API allows
764 * user to get this info.
765 */
766int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
767{
768 struct ip_tunnel_info *info;
769
770 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
771 return -EINVAL;
772
773 info = skb_tunnel_info_unclone(skb);
774 if (!info)
775 return -ENOMEM;
776 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
777 return -EINVAL;
778
779 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
780}
781EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
782
1da177e4
LT
783/**
784 * __dev_get_by_name - find a device by its name
c4ea43c5 785 * @net: the applicable net namespace
1da177e4
LT
786 * @name: name to find
787 *
788 * Find an interface by name. Must be called under RTNL semaphore
789 * or @dev_base_lock. If the name is found a pointer to the device
790 * is returned. If the name is not found then %NULL is returned. The
791 * reference counters are not incremented so the caller must be
792 * careful with locks.
793 */
794
881d966b 795struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 796{
ff927412 797 struct netdev_name_node *node_name;
1da177e4 798
ff927412
JP
799 node_name = netdev_name_node_lookup(net, name);
800 return node_name ? node_name->dev : NULL;
1da177e4 801}
d1b19dff 802EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 803
72c9528b 804/**
722c9a0c 805 * dev_get_by_name_rcu - find a device by its name
806 * @net: the applicable net namespace
807 * @name: name to find
808 *
809 * Find an interface by name.
810 * If the name is found a pointer to the device is returned.
811 * If the name is not found then %NULL is returned.
812 * The reference counters are not incremented so the caller must be
813 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
814 */
815
816struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
817{
ff927412 818 struct netdev_name_node *node_name;
72c9528b 819
ff927412
JP
820 node_name = netdev_name_node_lookup_rcu(net, name);
821 return node_name ? node_name->dev : NULL;
72c9528b
ED
822}
823EXPORT_SYMBOL(dev_get_by_name_rcu);
824
1da177e4
LT
825/**
826 * dev_get_by_name - find a device by its name
c4ea43c5 827 * @net: the applicable net namespace
1da177e4
LT
828 * @name: name to find
829 *
830 * Find an interface by name. This can be called from any
831 * context and does its own locking. The returned handle has
832 * the usage count incremented and the caller must use dev_put() to
833 * release it when it is no longer needed. %NULL is returned if no
834 * matching device is found.
835 */
836
881d966b 837struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
838{
839 struct net_device *dev;
840
72c9528b
ED
841 rcu_read_lock();
842 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
843 if (dev)
844 dev_hold(dev);
72c9528b 845 rcu_read_unlock();
1da177e4
LT
846 return dev;
847}
d1b19dff 848EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
849
850/**
851 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 852 * @net: the applicable net namespace
1da177e4
LT
853 * @ifindex: index of device
854 *
855 * Search for an interface by index. Returns %NULL if the device
856 * is not found or a pointer to the device. The device has not
857 * had its reference counter increased so the caller must be careful
858 * about locking. The caller must hold either the RTNL semaphore
859 * or @dev_base_lock.
860 */
861
881d966b 862struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 863{
0bd8d536
ED
864 struct net_device *dev;
865 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 866
b67bfe0d 867 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
868 if (dev->ifindex == ifindex)
869 return dev;
0bd8d536 870
1da177e4
LT
871 return NULL;
872}
d1b19dff 873EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 874
fb699dfd
ED
875/**
876 * dev_get_by_index_rcu - find a device by its ifindex
877 * @net: the applicable net namespace
878 * @ifindex: index of device
879 *
880 * Search for an interface by index. Returns %NULL if the device
881 * is not found or a pointer to the device. The device has not
882 * had its reference counter increased so the caller must be careful
883 * about locking. The caller must hold RCU lock.
884 */
885
886struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
887{
fb699dfd
ED
888 struct net_device *dev;
889 struct hlist_head *head = dev_index_hash(net, ifindex);
890
b67bfe0d 891 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
892 if (dev->ifindex == ifindex)
893 return dev;
894
895 return NULL;
896}
897EXPORT_SYMBOL(dev_get_by_index_rcu);
898
1da177e4
LT
899
900/**
901 * dev_get_by_index - find a device by its ifindex
c4ea43c5 902 * @net: the applicable net namespace
1da177e4
LT
903 * @ifindex: index of device
904 *
905 * Search for an interface by index. Returns NULL if the device
906 * is not found or a pointer to the device. The device returned has
907 * had a reference added and the pointer is safe until the user calls
908 * dev_put to indicate they have finished with it.
909 */
910
881d966b 911struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
912{
913 struct net_device *dev;
914
fb699dfd
ED
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
917 if (dev)
918 dev_hold(dev);
fb699dfd 919 rcu_read_unlock();
1da177e4
LT
920 return dev;
921}
d1b19dff 922EXPORT_SYMBOL(dev_get_by_index);
1da177e4 923
90b602f8
ML
924/**
925 * dev_get_by_napi_id - find a device by napi_id
926 * @napi_id: ID of the NAPI struct
927 *
928 * Search for an interface by NAPI ID. Returns %NULL if the device
929 * is not found or a pointer to the device. The device has not had
930 * its reference counter increased so the caller must be careful
931 * about locking. The caller must hold RCU lock.
932 */
933
934struct net_device *dev_get_by_napi_id(unsigned int napi_id)
935{
936 struct napi_struct *napi;
937
938 WARN_ON_ONCE(!rcu_read_lock_held());
939
940 if (napi_id < MIN_NAPI_ID)
941 return NULL;
942
943 napi = napi_by_id(napi_id);
944
945 return napi ? napi->dev : NULL;
946}
947EXPORT_SYMBOL(dev_get_by_napi_id);
948
5dbe7c17
NS
949/**
950 * netdev_get_name - get a netdevice name, knowing its ifindex.
951 * @net: network namespace
952 * @name: a pointer to the buffer where the name will be stored.
953 * @ifindex: the ifindex of the interface to get the name from.
954 *
955 * The use of raw_seqcount_begin() and cond_resched() before
956 * retrying is required as we want to give the writers a chance
957 * to complete when CONFIG_PREEMPT is not set.
958 */
959int netdev_get_name(struct net *net, char *name, int ifindex)
960{
961 struct net_device *dev;
962 unsigned int seq;
963
964retry:
965 seq = raw_seqcount_begin(&devnet_rename_seq);
966 rcu_read_lock();
967 dev = dev_get_by_index_rcu(net, ifindex);
968 if (!dev) {
969 rcu_read_unlock();
970 return -ENODEV;
971 }
972
973 strcpy(name, dev->name);
974 rcu_read_unlock();
975 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
976 cond_resched();
977 goto retry;
978 }
979
980 return 0;
981}
982
1da177e4 983/**
941666c2 984 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 985 * @net: the applicable net namespace
1da177e4
LT
986 * @type: media type of device
987 * @ha: hardware address
988 *
989 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
990 * is not found or a pointer to the device.
991 * The caller must hold RCU or RTNL.
941666c2 992 * The returned device has not had its ref count increased
1da177e4
LT
993 * and the caller must therefore be careful about locking
994 *
1da177e4
LT
995 */
996
941666c2
ED
997struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
998 const char *ha)
1da177e4
LT
999{
1000 struct net_device *dev;
1001
941666c2 1002 for_each_netdev_rcu(net, dev)
1da177e4
LT
1003 if (dev->type == type &&
1004 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
1005 return dev;
1006
1007 return NULL;
1da177e4 1008}
941666c2 1009EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 1010
881d966b 1011struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
1012{
1013 struct net_device *dev;
1014
4e9cac2b 1015 ASSERT_RTNL();
881d966b 1016 for_each_netdev(net, dev)
4e9cac2b 1017 if (dev->type == type)
7562f876
PE
1018 return dev;
1019
1020 return NULL;
4e9cac2b 1021}
4e9cac2b
PM
1022EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1023
881d966b 1024struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 1025{
99fe3c39 1026 struct net_device *dev, *ret = NULL;
4e9cac2b 1027
99fe3c39
ED
1028 rcu_read_lock();
1029 for_each_netdev_rcu(net, dev)
1030 if (dev->type == type) {
1031 dev_hold(dev);
1032 ret = dev;
1033 break;
1034 }
1035 rcu_read_unlock();
1036 return ret;
1da177e4 1037}
1da177e4
LT
1038EXPORT_SYMBOL(dev_getfirstbyhwtype);
1039
1040/**
6c555490 1041 * __dev_get_by_flags - find any device with given flags
c4ea43c5 1042 * @net: the applicable net namespace
1da177e4
LT
1043 * @if_flags: IFF_* values
1044 * @mask: bitmask of bits in if_flags to check
1045 *
1046 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 1047 * is not found or a pointer to the device. Must be called inside
6c555490 1048 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1049 */
1050
6c555490
WC
1051struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1052 unsigned short mask)
1da177e4 1053{
7562f876 1054 struct net_device *dev, *ret;
1da177e4 1055
6c555490
WC
1056 ASSERT_RTNL();
1057
7562f876 1058 ret = NULL;
6c555490 1059 for_each_netdev(net, dev) {
1da177e4 1060 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1061 ret = dev;
1da177e4
LT
1062 break;
1063 }
1064 }
7562f876 1065 return ret;
1da177e4 1066}
6c555490 1067EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1068
1069/**
1070 * dev_valid_name - check if name is okay for network device
1071 * @name: name string
1072 *
1073 * Network device names need to be valid file names to
c7fa9d18
DM
1074 * to allow sysfs to work. We also disallow any kind of
1075 * whitespace.
1da177e4 1076 */
95f050bf 1077bool dev_valid_name(const char *name)
1da177e4 1078{
c7fa9d18 1079 if (*name == '\0')
95f050bf 1080 return false;
a9d48205 1081 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1082 return false;
c7fa9d18 1083 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1084 return false;
c7fa9d18
DM
1085
1086 while (*name) {
a4176a93 1087 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1088 return false;
c7fa9d18
DM
1089 name++;
1090 }
95f050bf 1091 return true;
1da177e4 1092}
d1b19dff 1093EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1094
1095/**
b267b179
EB
1096 * __dev_alloc_name - allocate a name for a device
1097 * @net: network namespace to allocate the device name in
1da177e4 1098 * @name: name format string
b267b179 1099 * @buf: scratch buffer and result name string
1da177e4
LT
1100 *
1101 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1102 * id. It scans list of devices to build up a free map, then chooses
1103 * the first empty slot. The caller must hold the dev_base or rtnl lock
1104 * while allocating the name and adding the device in order to avoid
1105 * duplicates.
1106 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1107 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1108 */
1109
b267b179 1110static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1111{
1112 int i = 0;
1da177e4
LT
1113 const char *p;
1114 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1115 unsigned long *inuse;
1da177e4
LT
1116 struct net_device *d;
1117
93809105
RV
1118 if (!dev_valid_name(name))
1119 return -EINVAL;
1120
51f299dd 1121 p = strchr(name, '%');
1da177e4
LT
1122 if (p) {
1123 /*
1124 * Verify the string as this thing may have come from
1125 * the user. There must be either one "%d" and no other "%"
1126 * characters.
1127 */
1128 if (p[1] != 'd' || strchr(p + 2, '%'))
1129 return -EINVAL;
1130
1131 /* Use one page as a bit array of possible slots */
cfcabdcc 1132 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1133 if (!inuse)
1134 return -ENOMEM;
1135
881d966b 1136 for_each_netdev(net, d) {
1da177e4
LT
1137 if (!sscanf(d->name, name, &i))
1138 continue;
1139 if (i < 0 || i >= max_netdevices)
1140 continue;
1141
1142 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1143 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1144 if (!strncmp(buf, d->name, IFNAMSIZ))
1145 set_bit(i, inuse);
1146 }
1147
1148 i = find_first_zero_bit(inuse, max_netdevices);
1149 free_page((unsigned long) inuse);
1150 }
1151
6224abda 1152 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1153 if (!__dev_get_by_name(net, buf))
1da177e4 1154 return i;
1da177e4
LT
1155
1156 /* It is possible to run out of possible slots
1157 * when the name is long and there isn't enough space left
1158 * for the digits, or if all bits are used.
1159 */
029b6d14 1160 return -ENFILE;
1da177e4
LT
1161}
1162
2c88b855
RV
1163static int dev_alloc_name_ns(struct net *net,
1164 struct net_device *dev,
1165 const char *name)
1166{
1167 char buf[IFNAMSIZ];
1168 int ret;
1169
c46d7642 1170 BUG_ON(!net);
2c88b855
RV
1171 ret = __dev_alloc_name(net, name, buf);
1172 if (ret >= 0)
1173 strlcpy(dev->name, buf, IFNAMSIZ);
1174 return ret;
1da177e4
LT
1175}
1176
b267b179
EB
1177/**
1178 * dev_alloc_name - allocate a name for a device
1179 * @dev: device
1180 * @name: name format string
1181 *
1182 * Passed a format string - eg "lt%d" it will try and find a suitable
1183 * id. It scans list of devices to build up a free map, then chooses
1184 * the first empty slot. The caller must hold the dev_base or rtnl lock
1185 * while allocating the name and adding the device in order to avoid
1186 * duplicates.
1187 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1188 * Returns the number of the unit assigned or a negative errno code.
1189 */
1190
1191int dev_alloc_name(struct net_device *dev, const char *name)
1192{
c46d7642 1193 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1194}
d1b19dff 1195EXPORT_SYMBOL(dev_alloc_name);
b267b179 1196
0ad646c8
CW
1197int dev_get_valid_name(struct net *net, struct net_device *dev,
1198 const char *name)
828de4f6 1199{
55a5ec9b
DM
1200 BUG_ON(!net);
1201
1202 if (!dev_valid_name(name))
1203 return -EINVAL;
1204
1205 if (strchr(name, '%'))
1206 return dev_alloc_name_ns(net, dev, name);
1207 else if (__dev_get_by_name(net, name))
1208 return -EEXIST;
1209 else if (dev->name != name)
1210 strlcpy(dev->name, name, IFNAMSIZ);
1211
1212 return 0;
d9031024 1213}
0ad646c8 1214EXPORT_SYMBOL(dev_get_valid_name);
1da177e4
LT
1215
1216/**
1217 * dev_change_name - change name of a device
1218 * @dev: device
1219 * @newname: name (or format string) must be at least IFNAMSIZ
1220 *
1221 * Change name of a device, can pass format strings "eth%d".
1222 * for wildcarding.
1223 */
cf04a4c7 1224int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1225{
238fa362 1226 unsigned char old_assign_type;
fcc5a03a 1227 char oldname[IFNAMSIZ];
1da177e4 1228 int err = 0;
fcc5a03a 1229 int ret;
881d966b 1230 struct net *net;
1da177e4
LT
1231
1232 ASSERT_RTNL();
c346dca1 1233 BUG_ON(!dev_net(dev));
1da177e4 1234
c346dca1 1235 net = dev_net(dev);
8065a779
SWL
1236
1237 /* Some auto-enslaved devices e.g. failover slaves are
1238 * special, as userspace might rename the device after
1239 * the interface had been brought up and running since
1240 * the point kernel initiated auto-enslavement. Allow
1241 * live name change even when these slave devices are
1242 * up and running.
1243 *
1244 * Typically, users of these auto-enslaving devices
1245 * don't actually care about slave name change, as
1246 * they are supposed to operate on master interface
1247 * directly.
1248 */
1249 if (dev->flags & IFF_UP &&
1250 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1251 return -EBUSY;
1252
30e6c9fa 1253 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1254
1255 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1256 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1257 return 0;
c91f6df2 1258 }
c8d90dca 1259
fcc5a03a
HX
1260 memcpy(oldname, dev->name, IFNAMSIZ);
1261
828de4f6 1262 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1263 if (err < 0) {
30e6c9fa 1264 write_seqcount_end(&devnet_rename_seq);
d9031024 1265 return err;
c91f6df2 1266 }
1da177e4 1267
6fe82a39
VF
1268 if (oldname[0] && !strchr(oldname, '%'))
1269 netdev_info(dev, "renamed from %s\n", oldname);
1270
238fa362
TG
1271 old_assign_type = dev->name_assign_type;
1272 dev->name_assign_type = NET_NAME_RENAMED;
1273
fcc5a03a 1274rollback:
a1b3f594
EB
1275 ret = device_rename(&dev->dev, dev->name);
1276 if (ret) {
1277 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1278 dev->name_assign_type = old_assign_type;
30e6c9fa 1279 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1280 return ret;
dcc99773 1281 }
7f988eab 1282
30e6c9fa 1283 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1284
5bb025fa
VF
1285 netdev_adjacent_rename_links(dev, oldname);
1286
7f988eab 1287 write_lock_bh(&dev_base_lock);
ff927412 1288 netdev_name_node_del(dev->name_node);
72c9528b
ED
1289 write_unlock_bh(&dev_base_lock);
1290
1291 synchronize_rcu();
1292
1293 write_lock_bh(&dev_base_lock);
ff927412 1294 netdev_name_node_add(net, dev->name_node);
7f988eab
HX
1295 write_unlock_bh(&dev_base_lock);
1296
056925ab 1297 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1298 ret = notifier_to_errno(ret);
1299
1300 if (ret) {
91e9c07b
ED
1301 /* err >= 0 after dev_alloc_name() or stores the first errno */
1302 if (err >= 0) {
fcc5a03a 1303 err = ret;
30e6c9fa 1304 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1305 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1306 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1307 dev->name_assign_type = old_assign_type;
1308 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1309 goto rollback;
91e9c07b 1310 } else {
7b6cd1ce 1311 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1312 dev->name, ret);
fcc5a03a
HX
1313 }
1314 }
1da177e4
LT
1315
1316 return err;
1317}
1318
0b815a1a
SH
1319/**
1320 * dev_set_alias - change ifalias of a device
1321 * @dev: device
1322 * @alias: name up to IFALIASZ
f0db275a 1323 * @len: limit of bytes to copy from info
0b815a1a
SH
1324 *
1325 * Set ifalias for a device,
1326 */
1327int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1328{
6c557001 1329 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1330
1331 if (len >= IFALIASZ)
1332 return -EINVAL;
1333
6c557001
FW
1334 if (len) {
1335 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1336 if (!new_alias)
1337 return -ENOMEM;
1338
1339 memcpy(new_alias->ifalias, alias, len);
1340 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1341 }
1342
6c557001
FW
1343 mutex_lock(&ifalias_mutex);
1344 rcu_swap_protected(dev->ifalias, new_alias,
1345 mutex_is_locked(&ifalias_mutex));
1346 mutex_unlock(&ifalias_mutex);
1347
1348 if (new_alias)
1349 kfree_rcu(new_alias, rcuhead);
0b815a1a 1350
0b815a1a
SH
1351 return len;
1352}
0fe554a4 1353EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1354
6c557001
FW
1355/**
1356 * dev_get_alias - get ifalias of a device
1357 * @dev: device
20e88320 1358 * @name: buffer to store name of ifalias
6c557001
FW
1359 * @len: size of buffer
1360 *
1361 * get ifalias for a device. Caller must make sure dev cannot go
1362 * away, e.g. rcu read lock or own a reference count to device.
1363 */
1364int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1365{
1366 const struct dev_ifalias *alias;
1367 int ret = 0;
1368
1369 rcu_read_lock();
1370 alias = rcu_dereference(dev->ifalias);
1371 if (alias)
1372 ret = snprintf(name, len, "%s", alias->ifalias);
1373 rcu_read_unlock();
1374
1375 return ret;
1376}
0b815a1a 1377
d8a33ac4 1378/**
3041a069 1379 * netdev_features_change - device changes features
d8a33ac4
SH
1380 * @dev: device to cause notification
1381 *
1382 * Called to indicate a device has changed features.
1383 */
1384void netdev_features_change(struct net_device *dev)
1385{
056925ab 1386 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1387}
1388EXPORT_SYMBOL(netdev_features_change);
1389
1da177e4
LT
1390/**
1391 * netdev_state_change - device changes state
1392 * @dev: device to cause notification
1393 *
1394 * Called to indicate a device has changed state. This function calls
1395 * the notifier chains for netdev_chain and sends a NEWLINK message
1396 * to the routing socket.
1397 */
1398void netdev_state_change(struct net_device *dev)
1399{
1400 if (dev->flags & IFF_UP) {
51d0c047
DA
1401 struct netdev_notifier_change_info change_info = {
1402 .info.dev = dev,
1403 };
54951194 1404
51d0c047 1405 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1406 &change_info.info);
7f294054 1407 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1408 }
1409}
d1b19dff 1410EXPORT_SYMBOL(netdev_state_change);
1da177e4 1411
ee89bab1 1412/**
722c9a0c 1413 * netdev_notify_peers - notify network peers about existence of @dev
1414 * @dev: network device
ee89bab1
AW
1415 *
1416 * Generate traffic such that interested network peers are aware of
1417 * @dev, such as by generating a gratuitous ARP. This may be used when
1418 * a device wants to inform the rest of the network about some sort of
1419 * reconfiguration such as a failover event or virtual machine
1420 * migration.
1421 */
1422void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1423{
ee89bab1
AW
1424 rtnl_lock();
1425 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1426 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1427 rtnl_unlock();
c1da4ac7 1428}
ee89bab1 1429EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1430
40c900aa 1431static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1432{
d314774c 1433 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1434 int ret;
1da177e4 1435
e46b66bc
BH
1436 ASSERT_RTNL();
1437
1da177e4
LT
1438 if (!netif_device_present(dev))
1439 return -ENODEV;
1440
ca99ca14
NH
1441 /* Block netpoll from trying to do any rx path servicing.
1442 * If we don't do this there is a chance ndo_poll_controller
1443 * or ndo_poll may be running while we open the device
1444 */
66b5552f 1445 netpoll_poll_disable(dev);
ca99ca14 1446
40c900aa 1447 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1448 ret = notifier_to_errno(ret);
1449 if (ret)
1450 return ret;
1451
1da177e4 1452 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1453
d314774c
SH
1454 if (ops->ndo_validate_addr)
1455 ret = ops->ndo_validate_addr(dev);
bada339b 1456
d314774c
SH
1457 if (!ret && ops->ndo_open)
1458 ret = ops->ndo_open(dev);
1da177e4 1459
66b5552f 1460 netpoll_poll_enable(dev);
ca99ca14 1461
bada339b
JG
1462 if (ret)
1463 clear_bit(__LINK_STATE_START, &dev->state);
1464 else {
1da177e4 1465 dev->flags |= IFF_UP;
4417da66 1466 dev_set_rx_mode(dev);
1da177e4 1467 dev_activate(dev);
7bf23575 1468 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1469 }
bada339b 1470
1da177e4
LT
1471 return ret;
1472}
1473
1474/**
bd380811 1475 * dev_open - prepare an interface for use.
00f54e68
PM
1476 * @dev: device to open
1477 * @extack: netlink extended ack
1da177e4 1478 *
bd380811
PM
1479 * Takes a device from down to up state. The device's private open
1480 * function is invoked and then the multicast lists are loaded. Finally
1481 * the device is moved into the up state and a %NETDEV_UP message is
1482 * sent to the netdev notifier chain.
1483 *
1484 * Calling this function on an active interface is a nop. On a failure
1485 * a negative errno code is returned.
1da177e4 1486 */
00f54e68 1487int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1488{
1489 int ret;
1490
bd380811
PM
1491 if (dev->flags & IFF_UP)
1492 return 0;
1493
40c900aa 1494 ret = __dev_open(dev, extack);
bd380811
PM
1495 if (ret < 0)
1496 return ret;
1497
7f294054 1498 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1499 call_netdevice_notifiers(NETDEV_UP, dev);
1500
1501 return ret;
1502}
1503EXPORT_SYMBOL(dev_open);
1504
7051b88a 1505static void __dev_close_many(struct list_head *head)
1da177e4 1506{
44345724 1507 struct net_device *dev;
e46b66bc 1508
bd380811 1509 ASSERT_RTNL();
9d5010db
DM
1510 might_sleep();
1511
5cde2829 1512 list_for_each_entry(dev, head, close_list) {
3f4df206 1513 /* Temporarily disable netpoll until the interface is down */
66b5552f 1514 netpoll_poll_disable(dev);
3f4df206 1515
44345724 1516 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1517
44345724 1518 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1519
44345724
OP
1520 /* Synchronize to scheduled poll. We cannot touch poll list, it
1521 * can be even on different cpu. So just clear netif_running().
1522 *
1523 * dev->stop() will invoke napi_disable() on all of it's
1524 * napi_struct instances on this device.
1525 */
4e857c58 1526 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1527 }
1da177e4 1528
44345724 1529 dev_deactivate_many(head);
d8b2a4d2 1530
5cde2829 1531 list_for_each_entry(dev, head, close_list) {
44345724 1532 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1533
44345724
OP
1534 /*
1535 * Call the device specific close. This cannot fail.
1536 * Only if device is UP
1537 *
1538 * We allow it to be called even after a DETACH hot-plug
1539 * event.
1540 */
1541 if (ops->ndo_stop)
1542 ops->ndo_stop(dev);
1543
44345724 1544 dev->flags &= ~IFF_UP;
66b5552f 1545 netpoll_poll_enable(dev);
44345724 1546 }
44345724
OP
1547}
1548
7051b88a 1549static void __dev_close(struct net_device *dev)
44345724
OP
1550{
1551 LIST_HEAD(single);
1552
5cde2829 1553 list_add(&dev->close_list, &single);
7051b88a 1554 __dev_close_many(&single);
f87e6f47 1555 list_del(&single);
44345724
OP
1556}
1557
7051b88a 1558void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1559{
1560 struct net_device *dev, *tmp;
1da177e4 1561
5cde2829
EB
1562 /* Remove the devices that don't need to be closed */
1563 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1564 if (!(dev->flags & IFF_UP))
5cde2829 1565 list_del_init(&dev->close_list);
44345724
OP
1566
1567 __dev_close_many(head);
1da177e4 1568
5cde2829 1569 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1570 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1571 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1572 if (unlink)
1573 list_del_init(&dev->close_list);
44345724 1574 }
bd380811 1575}
99c4a26a 1576EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1577
1578/**
1579 * dev_close - shutdown an interface.
1580 * @dev: device to shutdown
1581 *
1582 * This function moves an active device into down state. A
1583 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1584 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1585 * chain.
1586 */
7051b88a 1587void dev_close(struct net_device *dev)
bd380811 1588{
e14a5993
ED
1589 if (dev->flags & IFF_UP) {
1590 LIST_HEAD(single);
1da177e4 1591
5cde2829 1592 list_add(&dev->close_list, &single);
99c4a26a 1593 dev_close_many(&single, true);
e14a5993
ED
1594 list_del(&single);
1595 }
1da177e4 1596}
d1b19dff 1597EXPORT_SYMBOL(dev_close);
1da177e4
LT
1598
1599
0187bdfb
BH
1600/**
1601 * dev_disable_lro - disable Large Receive Offload on a device
1602 * @dev: device
1603 *
1604 * Disable Large Receive Offload (LRO) on a net device. Must be
1605 * called under RTNL. This is needed if received packets may be
1606 * forwarded to another interface.
1607 */
1608void dev_disable_lro(struct net_device *dev)
1609{
fbe168ba
MK
1610 struct net_device *lower_dev;
1611 struct list_head *iter;
529d0489 1612
bc5787c6
MM
1613 dev->wanted_features &= ~NETIF_F_LRO;
1614 netdev_update_features(dev);
27660515 1615
22d5969f
MM
1616 if (unlikely(dev->features & NETIF_F_LRO))
1617 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1618
1619 netdev_for_each_lower_dev(dev, lower_dev, iter)
1620 dev_disable_lro(lower_dev);
0187bdfb
BH
1621}
1622EXPORT_SYMBOL(dev_disable_lro);
1623
56f5aa77
MC
1624/**
1625 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1626 * @dev: device
1627 *
1628 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1629 * called under RTNL. This is needed if Generic XDP is installed on
1630 * the device.
1631 */
1632static void dev_disable_gro_hw(struct net_device *dev)
1633{
1634 dev->wanted_features &= ~NETIF_F_GRO_HW;
1635 netdev_update_features(dev);
1636
1637 if (unlikely(dev->features & NETIF_F_GRO_HW))
1638 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1639}
1640
ede2762d
KT
1641const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1642{
1643#define N(val) \
1644 case NETDEV_##val: \
1645 return "NETDEV_" __stringify(val);
1646 switch (cmd) {
1647 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1648 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1649 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1650 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1651 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1652 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1653 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1654 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1655 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1656 N(PRE_CHANGEADDR)
3f5ecd8a 1657 }
ede2762d
KT
1658#undef N
1659 return "UNKNOWN_NETDEV_EVENT";
1660}
1661EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1662
351638e7
JP
1663static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1664 struct net_device *dev)
1665{
51d0c047
DA
1666 struct netdev_notifier_info info = {
1667 .dev = dev,
1668 };
351638e7 1669
351638e7
JP
1670 return nb->notifier_call(nb, val, &info);
1671}
0187bdfb 1672
881d966b
EB
1673static int dev_boot_phase = 1;
1674
1da177e4 1675/**
722c9a0c 1676 * register_netdevice_notifier - register a network notifier block
1677 * @nb: notifier
1da177e4 1678 *
722c9a0c 1679 * Register a notifier to be called when network device events occur.
1680 * The notifier passed is linked into the kernel structures and must
1681 * not be reused until it has been unregistered. A negative errno code
1682 * is returned on a failure.
1da177e4 1683 *
722c9a0c 1684 * When registered all registration and up events are replayed
1685 * to the new notifier to allow device to have a race free
1686 * view of the network device list.
1da177e4
LT
1687 */
1688
1689int register_netdevice_notifier(struct notifier_block *nb)
1690{
1691 struct net_device *dev;
fcc5a03a 1692 struct net_device *last;
881d966b 1693 struct net *net;
1da177e4
LT
1694 int err;
1695
328fbe74
KT
1696 /* Close race with setup_net() and cleanup_net() */
1697 down_write(&pernet_ops_rwsem);
1da177e4 1698 rtnl_lock();
f07d5b94 1699 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1700 if (err)
1701 goto unlock;
881d966b
EB
1702 if (dev_boot_phase)
1703 goto unlock;
1704 for_each_net(net) {
1705 for_each_netdev(net, dev) {
351638e7 1706 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1707 err = notifier_to_errno(err);
1708 if (err)
1709 goto rollback;
1710
1711 if (!(dev->flags & IFF_UP))
1712 continue;
1da177e4 1713
351638e7 1714 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1715 }
1da177e4 1716 }
fcc5a03a
HX
1717
1718unlock:
1da177e4 1719 rtnl_unlock();
328fbe74 1720 up_write(&pernet_ops_rwsem);
1da177e4 1721 return err;
fcc5a03a
HX
1722
1723rollback:
1724 last = dev;
881d966b
EB
1725 for_each_net(net) {
1726 for_each_netdev(net, dev) {
1727 if (dev == last)
8f891489 1728 goto outroll;
fcc5a03a 1729
881d966b 1730 if (dev->flags & IFF_UP) {
351638e7
JP
1731 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1732 dev);
1733 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1734 }
351638e7 1735 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1736 }
fcc5a03a 1737 }
c67625a1 1738
8f891489 1739outroll:
c67625a1 1740 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1741 goto unlock;
1da177e4 1742}
d1b19dff 1743EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1744
1745/**
722c9a0c 1746 * unregister_netdevice_notifier - unregister a network notifier block
1747 * @nb: notifier
1da177e4 1748 *
722c9a0c 1749 * Unregister a notifier previously registered by
1750 * register_netdevice_notifier(). The notifier is unlinked into the
1751 * kernel structures and may then be reused. A negative errno code
1752 * is returned on a failure.
7d3d43da 1753 *
722c9a0c 1754 * After unregistering unregister and down device events are synthesized
1755 * for all devices on the device list to the removed notifier to remove
1756 * the need for special case cleanup code.
1da177e4
LT
1757 */
1758
1759int unregister_netdevice_notifier(struct notifier_block *nb)
1760{
7d3d43da
EB
1761 struct net_device *dev;
1762 struct net *net;
9f514950
HX
1763 int err;
1764
328fbe74
KT
1765 /* Close race with setup_net() and cleanup_net() */
1766 down_write(&pernet_ops_rwsem);
9f514950 1767 rtnl_lock();
f07d5b94 1768 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1769 if (err)
1770 goto unlock;
1771
1772 for_each_net(net) {
1773 for_each_netdev(net, dev) {
1774 if (dev->flags & IFF_UP) {
351638e7
JP
1775 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1776 dev);
1777 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1778 }
351638e7 1779 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1780 }
1781 }
1782unlock:
9f514950 1783 rtnl_unlock();
328fbe74 1784 up_write(&pernet_ops_rwsem);
9f514950 1785 return err;
1da177e4 1786}
d1b19dff 1787EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1788
351638e7
JP
1789/**
1790 * call_netdevice_notifiers_info - call all network notifier blocks
1791 * @val: value passed unmodified to notifier function
351638e7
JP
1792 * @info: notifier information data
1793 *
1794 * Call all network notifier blocks. Parameters and return value
1795 * are as for raw_notifier_call_chain().
1796 */
1797
1d143d9f 1798static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1799 struct netdev_notifier_info *info)
351638e7
JP
1800{
1801 ASSERT_RTNL();
351638e7
JP
1802 return raw_notifier_call_chain(&netdev_chain, val, info);
1803}
351638e7 1804
26372605
PM
1805static int call_netdevice_notifiers_extack(unsigned long val,
1806 struct net_device *dev,
1807 struct netlink_ext_ack *extack)
1808{
1809 struct netdev_notifier_info info = {
1810 .dev = dev,
1811 .extack = extack,
1812 };
1813
1814 return call_netdevice_notifiers_info(val, &info);
1815}
1816
1da177e4
LT
1817/**
1818 * call_netdevice_notifiers - call all network notifier blocks
1819 * @val: value passed unmodified to notifier function
c4ea43c5 1820 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1821 *
1822 * Call all network notifier blocks. Parameters and return value
f07d5b94 1823 * are as for raw_notifier_call_chain().
1da177e4
LT
1824 */
1825
ad7379d4 1826int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1827{
26372605 1828 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 1829}
edf947f1 1830EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1831
af7d6cce
SD
1832/**
1833 * call_netdevice_notifiers_mtu - call all network notifier blocks
1834 * @val: value passed unmodified to notifier function
1835 * @dev: net_device pointer passed unmodified to notifier function
1836 * @arg: additional u32 argument passed to the notifier function
1837 *
1838 * Call all network notifier blocks. Parameters and return value
1839 * are as for raw_notifier_call_chain().
1840 */
1841static int call_netdevice_notifiers_mtu(unsigned long val,
1842 struct net_device *dev, u32 arg)
1843{
1844 struct netdev_notifier_info_ext info = {
1845 .info.dev = dev,
1846 .ext.mtu = arg,
1847 };
1848
1849 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1850
1851 return call_netdevice_notifiers_info(val, &info.info);
1852}
1853
1cf51900 1854#ifdef CONFIG_NET_INGRESS
aabf6772 1855static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
1856
1857void net_inc_ingress_queue(void)
1858{
aabf6772 1859 static_branch_inc(&ingress_needed_key);
4577139b
DB
1860}
1861EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1862
1863void net_dec_ingress_queue(void)
1864{
aabf6772 1865 static_branch_dec(&ingress_needed_key);
4577139b
DB
1866}
1867EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1868#endif
1869
1f211a1b 1870#ifdef CONFIG_NET_EGRESS
aabf6772 1871static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
1872
1873void net_inc_egress_queue(void)
1874{
aabf6772 1875 static_branch_inc(&egress_needed_key);
1f211a1b
DB
1876}
1877EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1878
1879void net_dec_egress_queue(void)
1880{
aabf6772 1881 static_branch_dec(&egress_needed_key);
1f211a1b
DB
1882}
1883EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1884#endif
1885
39e83922 1886static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 1887#ifdef CONFIG_JUMP_LABEL
b90e5794 1888static atomic_t netstamp_needed_deferred;
13baa00a 1889static atomic_t netstamp_wanted;
5fa8bbda 1890static void netstamp_clear(struct work_struct *work)
1da177e4 1891{
b90e5794 1892 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1893 int wanted;
b90e5794 1894
13baa00a
ED
1895 wanted = atomic_add_return(deferred, &netstamp_wanted);
1896 if (wanted > 0)
39e83922 1897 static_branch_enable(&netstamp_needed_key);
13baa00a 1898 else
39e83922 1899 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
1900}
1901static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1902#endif
5fa8bbda
ED
1903
1904void net_enable_timestamp(void)
1905{
e9666d10 1906#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
1907 int wanted;
1908
1909 while (1) {
1910 wanted = atomic_read(&netstamp_wanted);
1911 if (wanted <= 0)
1912 break;
1913 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1914 return;
1915 }
1916 atomic_inc(&netstamp_needed_deferred);
1917 schedule_work(&netstamp_work);
1918#else
39e83922 1919 static_branch_inc(&netstamp_needed_key);
13baa00a 1920#endif
1da177e4 1921}
d1b19dff 1922EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1923
1924void net_disable_timestamp(void)
1925{
e9666d10 1926#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
1927 int wanted;
1928
1929 while (1) {
1930 wanted = atomic_read(&netstamp_wanted);
1931 if (wanted <= 1)
1932 break;
1933 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1934 return;
1935 }
1936 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1937 schedule_work(&netstamp_work);
1938#else
39e83922 1939 static_branch_dec(&netstamp_needed_key);
5fa8bbda 1940#endif
1da177e4 1941}
d1b19dff 1942EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1943
3b098e2d 1944static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1945{
2456e855 1946 skb->tstamp = 0;
39e83922 1947 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 1948 __net_timestamp(skb);
1da177e4
LT
1949}
1950
39e83922
DB
1951#define net_timestamp_check(COND, SKB) \
1952 if (static_branch_unlikely(&netstamp_needed_key)) { \
1953 if ((COND) && !(SKB)->tstamp) \
1954 __net_timestamp(SKB); \
1955 } \
3b098e2d 1956
f4b05d27 1957bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1958{
1959 unsigned int len;
1960
1961 if (!(dev->flags & IFF_UP))
1962 return false;
1963
1964 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1965 if (skb->len <= len)
1966 return true;
1967
1968 /* if TSO is enabled, we don't care about the length as the packet
1969 * could be forwarded without being segmented before
1970 */
1971 if (skb_is_gso(skb))
1972 return true;
1973
1974 return false;
1975}
1ee481fb 1976EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1977
a0265d28
HX
1978int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1979{
4e3264d2 1980 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1981
4e3264d2
MKL
1982 if (likely(!ret)) {
1983 skb->protocol = eth_type_trans(skb, dev);
1984 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1985 }
a0265d28 1986
4e3264d2 1987 return ret;
a0265d28
HX
1988}
1989EXPORT_SYMBOL_GPL(__dev_forward_skb);
1990
44540960
AB
1991/**
1992 * dev_forward_skb - loopback an skb to another netif
1993 *
1994 * @dev: destination network device
1995 * @skb: buffer to forward
1996 *
1997 * return values:
1998 * NET_RX_SUCCESS (no congestion)
6ec82562 1999 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2000 *
2001 * dev_forward_skb can be used for injecting an skb from the
2002 * start_xmit function of one device into the receive queue
2003 * of another device.
2004 *
2005 * The receiving device may be in another namespace, so
2006 * we have to clear all information in the skb that could
2007 * impact namespace isolation.
2008 */
2009int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2010{
a0265d28 2011 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2012}
2013EXPORT_SYMBOL_GPL(dev_forward_skb);
2014
71d9dec2
CG
2015static inline int deliver_skb(struct sk_buff *skb,
2016 struct packet_type *pt_prev,
2017 struct net_device *orig_dev)
2018{
1f8b977a 2019 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2020 return -ENOMEM;
63354797 2021 refcount_inc(&skb->users);
71d9dec2
CG
2022 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2023}
2024
7866a621
SN
2025static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2026 struct packet_type **pt,
fbcb2170
JP
2027 struct net_device *orig_dev,
2028 __be16 type,
7866a621
SN
2029 struct list_head *ptype_list)
2030{
2031 struct packet_type *ptype, *pt_prev = *pt;
2032
2033 list_for_each_entry_rcu(ptype, ptype_list, list) {
2034 if (ptype->type != type)
2035 continue;
2036 if (pt_prev)
fbcb2170 2037 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2038 pt_prev = ptype;
2039 }
2040 *pt = pt_prev;
2041}
2042
c0de08d0
EL
2043static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2044{
a3d744e9 2045 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2046 return false;
2047
2048 if (ptype->id_match)
2049 return ptype->id_match(ptype, skb->sk);
2050 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2051 return true;
2052
2053 return false;
2054}
2055
9f9a742d
MR
2056/**
2057 * dev_nit_active - return true if any network interface taps are in use
2058 *
2059 * @dev: network device to check for the presence of taps
2060 */
2061bool dev_nit_active(struct net_device *dev)
2062{
2063 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2064}
2065EXPORT_SYMBOL_GPL(dev_nit_active);
2066
1da177e4
LT
2067/*
2068 * Support routine. Sends outgoing frames to any network
2069 * taps currently in use.
2070 */
2071
74b20582 2072void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2073{
2074 struct packet_type *ptype;
71d9dec2
CG
2075 struct sk_buff *skb2 = NULL;
2076 struct packet_type *pt_prev = NULL;
7866a621 2077 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2078
1da177e4 2079 rcu_read_lock();
7866a621
SN
2080again:
2081 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2082 if (ptype->ignore_outgoing)
2083 continue;
2084
1da177e4
LT
2085 /* Never send packets back to the socket
2086 * they originated from - MvS (miquels@drinkel.ow.org)
2087 */
7866a621
SN
2088 if (skb_loop_sk(ptype, skb))
2089 continue;
71d9dec2 2090
7866a621
SN
2091 if (pt_prev) {
2092 deliver_skb(skb2, pt_prev, skb->dev);
2093 pt_prev = ptype;
2094 continue;
2095 }
1da177e4 2096
7866a621
SN
2097 /* need to clone skb, done only once */
2098 skb2 = skb_clone(skb, GFP_ATOMIC);
2099 if (!skb2)
2100 goto out_unlock;
70978182 2101
7866a621 2102 net_timestamp_set(skb2);
1da177e4 2103
7866a621
SN
2104 /* skb->nh should be correctly
2105 * set by sender, so that the second statement is
2106 * just protection against buggy protocols.
2107 */
2108 skb_reset_mac_header(skb2);
2109
2110 if (skb_network_header(skb2) < skb2->data ||
2111 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2112 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2113 ntohs(skb2->protocol),
2114 dev->name);
2115 skb_reset_network_header(skb2);
1da177e4 2116 }
7866a621
SN
2117
2118 skb2->transport_header = skb2->network_header;
2119 skb2->pkt_type = PACKET_OUTGOING;
2120 pt_prev = ptype;
2121 }
2122
2123 if (ptype_list == &ptype_all) {
2124 ptype_list = &dev->ptype_all;
2125 goto again;
1da177e4 2126 }
7866a621 2127out_unlock:
581fe0ea
WB
2128 if (pt_prev) {
2129 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2130 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2131 else
2132 kfree_skb(skb2);
2133 }
1da177e4
LT
2134 rcu_read_unlock();
2135}
74b20582 2136EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2137
2c53040f
BH
2138/**
2139 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2140 * @dev: Network device
2141 * @txq: number of queues available
2142 *
2143 * If real_num_tx_queues is changed the tc mappings may no longer be
2144 * valid. To resolve this verify the tc mapping remains valid and if
2145 * not NULL the mapping. With no priorities mapping to this
2146 * offset/count pair it will no longer be used. In the worst case TC0
2147 * is invalid nothing can be done so disable priority mappings. If is
2148 * expected that drivers will fix this mapping if they can before
2149 * calling netif_set_real_num_tx_queues.
2150 */
bb134d22 2151static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2152{
2153 int i;
2154 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2155
2156 /* If TC0 is invalidated disable TC mapping */
2157 if (tc->offset + tc->count > txq) {
7b6cd1ce 2158 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2159 dev->num_tc = 0;
2160 return;
2161 }
2162
2163 /* Invalidated prio to tc mappings set to TC0 */
2164 for (i = 1; i < TC_BITMASK + 1; i++) {
2165 int q = netdev_get_prio_tc_map(dev, i);
2166
2167 tc = &dev->tc_to_txq[q];
2168 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2169 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2170 i, q);
4f57c087
JF
2171 netdev_set_prio_tc_map(dev, i, 0);
2172 }
2173 }
2174}
2175
8d059b0f
AD
2176int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2177{
2178 if (dev->num_tc) {
2179 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2180 int i;
2181
ffcfe25b 2182 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2183 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2184 if ((txq - tc->offset) < tc->count)
2185 return i;
2186 }
2187
ffcfe25b 2188 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2189 return -1;
2190 }
2191
2192 return 0;
2193}
8a5f2166 2194EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2195
537c00de 2196#ifdef CONFIG_XPS
04157469
AN
2197struct static_key xps_needed __read_mostly;
2198EXPORT_SYMBOL(xps_needed);
2199struct static_key xps_rxqs_needed __read_mostly;
2200EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2201static DEFINE_MUTEX(xps_map_mutex);
2202#define xmap_dereference(P) \
2203 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2204
6234f874
AD
2205static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2206 int tci, u16 index)
537c00de 2207{
10cdc3f3
AD
2208 struct xps_map *map = NULL;
2209 int pos;
537c00de 2210
10cdc3f3 2211 if (dev_maps)
80d19669 2212 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2213 if (!map)
2214 return false;
537c00de 2215
6234f874
AD
2216 for (pos = map->len; pos--;) {
2217 if (map->queues[pos] != index)
2218 continue;
2219
2220 if (map->len > 1) {
2221 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2222 break;
537c00de 2223 }
6234f874 2224
80d19669 2225 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2226 kfree_rcu(map, rcu);
2227 return false;
537c00de
AD
2228 }
2229
6234f874 2230 return true;
10cdc3f3
AD
2231}
2232
6234f874
AD
2233static bool remove_xps_queue_cpu(struct net_device *dev,
2234 struct xps_dev_maps *dev_maps,
2235 int cpu, u16 offset, u16 count)
2236{
184c449f
AD
2237 int num_tc = dev->num_tc ? : 1;
2238 bool active = false;
2239 int tci;
6234f874 2240
184c449f
AD
2241 for (tci = cpu * num_tc; num_tc--; tci++) {
2242 int i, j;
2243
2244 for (i = count, j = offset; i--; j++) {
6358d49a 2245 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2246 break;
2247 }
2248
2249 active |= i < 0;
6234f874
AD
2250 }
2251
184c449f 2252 return active;
6234f874
AD
2253}
2254
867d0ad4
SD
2255static void reset_xps_maps(struct net_device *dev,
2256 struct xps_dev_maps *dev_maps,
2257 bool is_rxqs_map)
2258{
2259 if (is_rxqs_map) {
2260 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2261 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2262 } else {
2263 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2264 }
2265 static_key_slow_dec_cpuslocked(&xps_needed);
2266 kfree_rcu(dev_maps, rcu);
2267}
2268
80d19669
AN
2269static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2270 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2271 u16 offset, u16 count, bool is_rxqs_map)
2272{
2273 bool active = false;
2274 int i, j;
2275
2276 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2277 j < nr_ids;)
2278 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2279 count);
867d0ad4
SD
2280 if (!active)
2281 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2282
f28c020f
SD
2283 if (!is_rxqs_map) {
2284 for (i = offset + (count - 1); count--; i--) {
2285 netdev_queue_numa_node_write(
2286 netdev_get_tx_queue(dev, i),
2287 NUMA_NO_NODE);
80d19669 2288 }
80d19669
AN
2289 }
2290}
2291
6234f874
AD
2292static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2293 u16 count)
10cdc3f3 2294{
80d19669 2295 const unsigned long *possible_mask = NULL;
10cdc3f3 2296 struct xps_dev_maps *dev_maps;
80d19669 2297 unsigned int nr_ids;
10cdc3f3 2298
04157469
AN
2299 if (!static_key_false(&xps_needed))
2300 return;
10cdc3f3 2301
4d99f660 2302 cpus_read_lock();
04157469 2303 mutex_lock(&xps_map_mutex);
10cdc3f3 2304
04157469
AN
2305 if (static_key_false(&xps_rxqs_needed)) {
2306 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2307 if (dev_maps) {
2308 nr_ids = dev->num_rx_queues;
2309 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2310 offset, count, true);
2311 }
537c00de
AD
2312 }
2313
80d19669
AN
2314 dev_maps = xmap_dereference(dev->xps_cpus_map);
2315 if (!dev_maps)
2316 goto out_no_maps;
2317
2318 if (num_possible_cpus() > 1)
2319 possible_mask = cpumask_bits(cpu_possible_mask);
2320 nr_ids = nr_cpu_ids;
2321 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2322 false);
024e9679 2323
537c00de
AD
2324out_no_maps:
2325 mutex_unlock(&xps_map_mutex);
4d99f660 2326 cpus_read_unlock();
537c00de
AD
2327}
2328
6234f874
AD
2329static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2330{
2331 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2332}
2333
80d19669
AN
2334static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2335 u16 index, bool is_rxqs_map)
01c5f864
AD
2336{
2337 struct xps_map *new_map;
2338 int alloc_len = XPS_MIN_MAP_ALLOC;
2339 int i, pos;
2340
2341 for (pos = 0; map && pos < map->len; pos++) {
2342 if (map->queues[pos] != index)
2343 continue;
2344 return map;
2345 }
2346
80d19669 2347 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2348 if (map) {
2349 if (pos < map->alloc_len)
2350 return map;
2351
2352 alloc_len = map->alloc_len * 2;
2353 }
2354
80d19669
AN
2355 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2356 * map
2357 */
2358 if (is_rxqs_map)
2359 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2360 else
2361 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2362 cpu_to_node(attr_index));
01c5f864
AD
2363 if (!new_map)
2364 return NULL;
2365
2366 for (i = 0; i < pos; i++)
2367 new_map->queues[i] = map->queues[i];
2368 new_map->alloc_len = alloc_len;
2369 new_map->len = pos;
2370
2371 return new_map;
2372}
2373
4d99f660 2374/* Must be called under cpus_read_lock */
80d19669
AN
2375int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2376 u16 index, bool is_rxqs_map)
537c00de 2377{
80d19669 2378 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2379 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2380 int i, j, tci, numa_node_id = -2;
184c449f 2381 int maps_sz, num_tc = 1, tc = 0;
537c00de 2382 struct xps_map *map, *new_map;
01c5f864 2383 bool active = false;
80d19669 2384 unsigned int nr_ids;
537c00de 2385
184c449f 2386 if (dev->num_tc) {
ffcfe25b 2387 /* Do not allow XPS on subordinate device directly */
184c449f 2388 num_tc = dev->num_tc;
ffcfe25b
AD
2389 if (num_tc < 0)
2390 return -EINVAL;
2391
2392 /* If queue belongs to subordinate dev use its map */
2393 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2394
184c449f
AD
2395 tc = netdev_txq_to_tc(dev, index);
2396 if (tc < 0)
2397 return -EINVAL;
2398 }
2399
537c00de 2400 mutex_lock(&xps_map_mutex);
80d19669
AN
2401 if (is_rxqs_map) {
2402 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2403 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2404 nr_ids = dev->num_rx_queues;
2405 } else {
2406 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2407 if (num_possible_cpus() > 1) {
2408 online_mask = cpumask_bits(cpu_online_mask);
2409 possible_mask = cpumask_bits(cpu_possible_mask);
2410 }
2411 dev_maps = xmap_dereference(dev->xps_cpus_map);
2412 nr_ids = nr_cpu_ids;
2413 }
537c00de 2414
80d19669
AN
2415 if (maps_sz < L1_CACHE_BYTES)
2416 maps_sz = L1_CACHE_BYTES;
537c00de 2417
01c5f864 2418 /* allocate memory for queue storage */
80d19669
AN
2419 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2420 j < nr_ids;) {
01c5f864
AD
2421 if (!new_dev_maps)
2422 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2423 if (!new_dev_maps) {
2424 mutex_unlock(&xps_map_mutex);
01c5f864 2425 return -ENOMEM;
2bb60cb9 2426 }
01c5f864 2427
80d19669
AN
2428 tci = j * num_tc + tc;
2429 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2430 NULL;
2431
80d19669 2432 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2433 if (!map)
2434 goto error;
2435
80d19669 2436 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2437 }
2438
2439 if (!new_dev_maps)
2440 goto out_no_new_maps;
2441
867d0ad4
SD
2442 if (!dev_maps) {
2443 /* Increment static keys at most once per type */
2444 static_key_slow_inc_cpuslocked(&xps_needed);
2445 if (is_rxqs_map)
2446 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2447 }
04157469 2448
80d19669
AN
2449 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2450 j < nr_ids;) {
184c449f 2451 /* copy maps belonging to foreign traffic classes */
80d19669 2452 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2453 /* fill in the new device map from the old device map */
80d19669
AN
2454 map = xmap_dereference(dev_maps->attr_map[tci]);
2455 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2456 }
2457
2458 /* We need to explicitly update tci as prevous loop
2459 * could break out early if dev_maps is NULL.
2460 */
80d19669 2461 tci = j * num_tc + tc;
184c449f 2462
80d19669
AN
2463 if (netif_attr_test_mask(j, mask, nr_ids) &&
2464 netif_attr_test_online(j, online_mask, nr_ids)) {
2465 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2466 int pos = 0;
2467
80d19669 2468 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2469 while ((pos < map->len) && (map->queues[pos] != index))
2470 pos++;
2471
2472 if (pos == map->len)
2473 map->queues[map->len++] = index;
537c00de 2474#ifdef CONFIG_NUMA
80d19669
AN
2475 if (!is_rxqs_map) {
2476 if (numa_node_id == -2)
2477 numa_node_id = cpu_to_node(j);
2478 else if (numa_node_id != cpu_to_node(j))
2479 numa_node_id = -1;
2480 }
537c00de 2481#endif
01c5f864
AD
2482 } else if (dev_maps) {
2483 /* fill in the new device map from the old device map */
80d19669
AN
2484 map = xmap_dereference(dev_maps->attr_map[tci]);
2485 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2486 }
01c5f864 2487
184c449f
AD
2488 /* copy maps belonging to foreign traffic classes */
2489 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2490 /* fill in the new device map from the old device map */
80d19669
AN
2491 map = xmap_dereference(dev_maps->attr_map[tci]);
2492 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2493 }
537c00de
AD
2494 }
2495
80d19669
AN
2496 if (is_rxqs_map)
2497 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2498 else
2499 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2500
537c00de 2501 /* Cleanup old maps */
184c449f
AD
2502 if (!dev_maps)
2503 goto out_no_old_maps;
2504
80d19669
AN
2505 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2506 j < nr_ids;) {
2507 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2508 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2509 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2510 if (map && map != new_map)
2511 kfree_rcu(map, rcu);
2512 }
537c00de
AD
2513 }
2514
184c449f
AD
2515 kfree_rcu(dev_maps, rcu);
2516
2517out_no_old_maps:
01c5f864
AD
2518 dev_maps = new_dev_maps;
2519 active = true;
537c00de 2520
01c5f864 2521out_no_new_maps:
80d19669
AN
2522 if (!is_rxqs_map) {
2523 /* update Tx queue numa node */
2524 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2525 (numa_node_id >= 0) ?
2526 numa_node_id : NUMA_NO_NODE);
2527 }
537c00de 2528
01c5f864
AD
2529 if (!dev_maps)
2530 goto out_no_maps;
2531
80d19669
AN
2532 /* removes tx-queue from unused CPUs/rx-queues */
2533 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2534 j < nr_ids;) {
2535 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2536 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2537 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2538 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2539 active |= remove_xps_queue(dev_maps, tci, index);
2540 for (i = num_tc - tc, tci++; --i; tci++)
2541 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2542 }
2543
2544 /* free map if not active */
867d0ad4
SD
2545 if (!active)
2546 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2547
2548out_no_maps:
537c00de
AD
2549 mutex_unlock(&xps_map_mutex);
2550
2551 return 0;
2552error:
01c5f864 2553 /* remove any maps that we added */
80d19669
AN
2554 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2555 j < nr_ids;) {
2556 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2557 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2558 map = dev_maps ?
80d19669 2559 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2560 NULL;
2561 if (new_map && new_map != map)
2562 kfree(new_map);
2563 }
01c5f864
AD
2564 }
2565
537c00de
AD
2566 mutex_unlock(&xps_map_mutex);
2567
537c00de
AD
2568 kfree(new_dev_maps);
2569 return -ENOMEM;
2570}
4d99f660 2571EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2572
2573int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2574 u16 index)
2575{
4d99f660
AV
2576 int ret;
2577
2578 cpus_read_lock();
2579 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2580 cpus_read_unlock();
2581
2582 return ret;
80d19669 2583}
537c00de
AD
2584EXPORT_SYMBOL(netif_set_xps_queue);
2585
2586#endif
ffcfe25b
AD
2587static void netdev_unbind_all_sb_channels(struct net_device *dev)
2588{
2589 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2590
2591 /* Unbind any subordinate channels */
2592 while (txq-- != &dev->_tx[0]) {
2593 if (txq->sb_dev)
2594 netdev_unbind_sb_channel(dev, txq->sb_dev);
2595 }
2596}
2597
9cf1f6a8
AD
2598void netdev_reset_tc(struct net_device *dev)
2599{
6234f874
AD
2600#ifdef CONFIG_XPS
2601 netif_reset_xps_queues_gt(dev, 0);
2602#endif
ffcfe25b
AD
2603 netdev_unbind_all_sb_channels(dev);
2604
2605 /* Reset TC configuration of device */
9cf1f6a8
AD
2606 dev->num_tc = 0;
2607 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2608 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2609}
2610EXPORT_SYMBOL(netdev_reset_tc);
2611
2612int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2613{
2614 if (tc >= dev->num_tc)
2615 return -EINVAL;
2616
6234f874
AD
2617#ifdef CONFIG_XPS
2618 netif_reset_xps_queues(dev, offset, count);
2619#endif
9cf1f6a8
AD
2620 dev->tc_to_txq[tc].count = count;
2621 dev->tc_to_txq[tc].offset = offset;
2622 return 0;
2623}
2624EXPORT_SYMBOL(netdev_set_tc_queue);
2625
2626int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2627{
2628 if (num_tc > TC_MAX_QUEUE)
2629 return -EINVAL;
2630
6234f874
AD
2631#ifdef CONFIG_XPS
2632 netif_reset_xps_queues_gt(dev, 0);
2633#endif
ffcfe25b
AD
2634 netdev_unbind_all_sb_channels(dev);
2635
9cf1f6a8
AD
2636 dev->num_tc = num_tc;
2637 return 0;
2638}
2639EXPORT_SYMBOL(netdev_set_num_tc);
2640
ffcfe25b
AD
2641void netdev_unbind_sb_channel(struct net_device *dev,
2642 struct net_device *sb_dev)
2643{
2644 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2645
2646#ifdef CONFIG_XPS
2647 netif_reset_xps_queues_gt(sb_dev, 0);
2648#endif
2649 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2650 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2651
2652 while (txq-- != &dev->_tx[0]) {
2653 if (txq->sb_dev == sb_dev)
2654 txq->sb_dev = NULL;
2655 }
2656}
2657EXPORT_SYMBOL(netdev_unbind_sb_channel);
2658
2659int netdev_bind_sb_channel_queue(struct net_device *dev,
2660 struct net_device *sb_dev,
2661 u8 tc, u16 count, u16 offset)
2662{
2663 /* Make certain the sb_dev and dev are already configured */
2664 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2665 return -EINVAL;
2666
2667 /* We cannot hand out queues we don't have */
2668 if ((offset + count) > dev->real_num_tx_queues)
2669 return -EINVAL;
2670
2671 /* Record the mapping */
2672 sb_dev->tc_to_txq[tc].count = count;
2673 sb_dev->tc_to_txq[tc].offset = offset;
2674
2675 /* Provide a way for Tx queue to find the tc_to_txq map or
2676 * XPS map for itself.
2677 */
2678 while (count--)
2679 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2680
2681 return 0;
2682}
2683EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2684
2685int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2686{
2687 /* Do not use a multiqueue device to represent a subordinate channel */
2688 if (netif_is_multiqueue(dev))
2689 return -ENODEV;
2690
2691 /* We allow channels 1 - 32767 to be used for subordinate channels.
2692 * Channel 0 is meant to be "native" mode and used only to represent
2693 * the main root device. We allow writing 0 to reset the device back
2694 * to normal mode after being used as a subordinate channel.
2695 */
2696 if (channel > S16_MAX)
2697 return -EINVAL;
2698
2699 dev->num_tc = -channel;
2700
2701 return 0;
2702}
2703EXPORT_SYMBOL(netdev_set_sb_channel);
2704
f0796d5c
JF
2705/*
2706 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2707 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2708 */
e6484930 2709int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2710{
ac5b7019 2711 bool disabling;
1d24eb48
TH
2712 int rc;
2713
ac5b7019
JK
2714 disabling = txq < dev->real_num_tx_queues;
2715
e6484930
TH
2716 if (txq < 1 || txq > dev->num_tx_queues)
2717 return -EINVAL;
f0796d5c 2718
5c56580b
BH
2719 if (dev->reg_state == NETREG_REGISTERED ||
2720 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2721 ASSERT_RTNL();
2722
1d24eb48
TH
2723 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2724 txq);
bf264145
TH
2725 if (rc)
2726 return rc;
2727
4f57c087
JF
2728 if (dev->num_tc)
2729 netif_setup_tc(dev, txq);
2730
ac5b7019
JK
2731 dev->real_num_tx_queues = txq;
2732
2733 if (disabling) {
2734 synchronize_net();
e6484930 2735 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2736#ifdef CONFIG_XPS
2737 netif_reset_xps_queues_gt(dev, txq);
2738#endif
2739 }
ac5b7019
JK
2740 } else {
2741 dev->real_num_tx_queues = txq;
f0796d5c 2742 }
e6484930 2743
e6484930 2744 return 0;
f0796d5c
JF
2745}
2746EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2747
a953be53 2748#ifdef CONFIG_SYSFS
62fe0b40
BH
2749/**
2750 * netif_set_real_num_rx_queues - set actual number of RX queues used
2751 * @dev: Network device
2752 * @rxq: Actual number of RX queues
2753 *
2754 * This must be called either with the rtnl_lock held or before
2755 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2756 * negative error code. If called before registration, it always
2757 * succeeds.
62fe0b40
BH
2758 */
2759int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2760{
2761 int rc;
2762
bd25fa7b
TH
2763 if (rxq < 1 || rxq > dev->num_rx_queues)
2764 return -EINVAL;
2765
62fe0b40
BH
2766 if (dev->reg_state == NETREG_REGISTERED) {
2767 ASSERT_RTNL();
2768
62fe0b40
BH
2769 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2770 rxq);
2771 if (rc)
2772 return rc;
62fe0b40
BH
2773 }
2774
2775 dev->real_num_rx_queues = rxq;
2776 return 0;
2777}
2778EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2779#endif
2780
2c53040f
BH
2781/**
2782 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2783 *
2784 * This routine should set an upper limit on the number of RSS queues
2785 * used by default by multiqueue devices.
2786 */
a55b138b 2787int netif_get_num_default_rss_queues(void)
16917b87 2788{
40e4e713
HS
2789 return is_kdump_kernel() ?
2790 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2791}
2792EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2793
3bcb846c 2794static void __netif_reschedule(struct Qdisc *q)
56079431 2795{
def82a1d
JP
2796 struct softnet_data *sd;
2797 unsigned long flags;
56079431 2798
def82a1d 2799 local_irq_save(flags);
903ceff7 2800 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2801 q->next_sched = NULL;
2802 *sd->output_queue_tailp = q;
2803 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2804 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2805 local_irq_restore(flags);
2806}
2807
2808void __netif_schedule(struct Qdisc *q)
2809{
2810 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2811 __netif_reschedule(q);
56079431
DV
2812}
2813EXPORT_SYMBOL(__netif_schedule);
2814
e6247027
ED
2815struct dev_kfree_skb_cb {
2816 enum skb_free_reason reason;
2817};
2818
2819static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2820{
e6247027
ED
2821 return (struct dev_kfree_skb_cb *)skb->cb;
2822}
2823
46e5da40
JF
2824void netif_schedule_queue(struct netdev_queue *txq)
2825{
2826 rcu_read_lock();
5be5515a 2827 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
2828 struct Qdisc *q = rcu_dereference(txq->qdisc);
2829
2830 __netif_schedule(q);
2831 }
2832 rcu_read_unlock();
2833}
2834EXPORT_SYMBOL(netif_schedule_queue);
2835
46e5da40
JF
2836void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2837{
2838 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2839 struct Qdisc *q;
2840
2841 rcu_read_lock();
2842 q = rcu_dereference(dev_queue->qdisc);
2843 __netif_schedule(q);
2844 rcu_read_unlock();
2845 }
2846}
2847EXPORT_SYMBOL(netif_tx_wake_queue);
2848
e6247027 2849void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2850{
e6247027 2851 unsigned long flags;
56079431 2852
9899886d
MJ
2853 if (unlikely(!skb))
2854 return;
2855
63354797 2856 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2857 smp_rmb();
63354797
RE
2858 refcount_set(&skb->users, 0);
2859 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2860 return;
bea3348e 2861 }
e6247027
ED
2862 get_kfree_skb_cb(skb)->reason = reason;
2863 local_irq_save(flags);
2864 skb->next = __this_cpu_read(softnet_data.completion_queue);
2865 __this_cpu_write(softnet_data.completion_queue, skb);
2866 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2867 local_irq_restore(flags);
56079431 2868}
e6247027 2869EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2870
e6247027 2871void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2872{
2873 if (in_irq() || irqs_disabled())
e6247027 2874 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2875 else
2876 dev_kfree_skb(skb);
2877}
e6247027 2878EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2879
2880
bea3348e
SH
2881/**
2882 * netif_device_detach - mark device as removed
2883 * @dev: network device
2884 *
2885 * Mark device as removed from system and therefore no longer available.
2886 */
56079431
DV
2887void netif_device_detach(struct net_device *dev)
2888{
2889 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2890 netif_running(dev)) {
d543103a 2891 netif_tx_stop_all_queues(dev);
56079431
DV
2892 }
2893}
2894EXPORT_SYMBOL(netif_device_detach);
2895
bea3348e
SH
2896/**
2897 * netif_device_attach - mark device as attached
2898 * @dev: network device
2899 *
2900 * Mark device as attached from system and restart if needed.
2901 */
56079431
DV
2902void netif_device_attach(struct net_device *dev)
2903{
2904 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2905 netif_running(dev)) {
d543103a 2906 netif_tx_wake_all_queues(dev);
4ec93edb 2907 __netdev_watchdog_up(dev);
56079431
DV
2908 }
2909}
2910EXPORT_SYMBOL(netif_device_attach);
2911
5605c762
JP
2912/*
2913 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2914 * to be used as a distribution range.
2915 */
eadec877
AD
2916static u16 skb_tx_hash(const struct net_device *dev,
2917 const struct net_device *sb_dev,
2918 struct sk_buff *skb)
5605c762
JP
2919{
2920 u32 hash;
2921 u16 qoffset = 0;
1b837d48 2922 u16 qcount = dev->real_num_tx_queues;
5605c762 2923
eadec877
AD
2924 if (dev->num_tc) {
2925 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2926
2927 qoffset = sb_dev->tc_to_txq[tc].offset;
2928 qcount = sb_dev->tc_to_txq[tc].count;
2929 }
2930
5605c762
JP
2931 if (skb_rx_queue_recorded(skb)) {
2932 hash = skb_get_rx_queue(skb);
1b837d48
AD
2933 while (unlikely(hash >= qcount))
2934 hash -= qcount;
eadec877 2935 return hash + qoffset;
5605c762
JP
2936 }
2937
2938 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2939}
5605c762 2940
36c92474
BH
2941static void skb_warn_bad_offload(const struct sk_buff *skb)
2942{
84d15ae5 2943 static const netdev_features_t null_features;
36c92474 2944 struct net_device *dev = skb->dev;
88ad4175 2945 const char *name = "";
36c92474 2946
c846ad9b
BG
2947 if (!net_ratelimit())
2948 return;
2949
88ad4175
BM
2950 if (dev) {
2951 if (dev->dev.parent)
2952 name = dev_driver_string(dev->dev.parent);
2953 else
2954 name = netdev_name(dev);
2955 }
6413139d
WB
2956 skb_dump(KERN_WARNING, skb, false);
2957 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 2958 name, dev ? &dev->features : &null_features,
6413139d 2959 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
2960}
2961
1da177e4
LT
2962/*
2963 * Invalidate hardware checksum when packet is to be mangled, and
2964 * complete checksum manually on outgoing path.
2965 */
84fa7933 2966int skb_checksum_help(struct sk_buff *skb)
1da177e4 2967{
d3bc23e7 2968 __wsum csum;
663ead3b 2969 int ret = 0, offset;
1da177e4 2970
84fa7933 2971 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2972 goto out_set_summed;
2973
2974 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2975 skb_warn_bad_offload(skb);
2976 return -EINVAL;
1da177e4
LT
2977 }
2978
cef401de
ED
2979 /* Before computing a checksum, we should make sure no frag could
2980 * be modified by an external entity : checksum could be wrong.
2981 */
2982 if (skb_has_shared_frag(skb)) {
2983 ret = __skb_linearize(skb);
2984 if (ret)
2985 goto out;
2986 }
2987
55508d60 2988 offset = skb_checksum_start_offset(skb);
a030847e
HX
2989 BUG_ON(offset >= skb_headlen(skb));
2990 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2991
2992 offset += skb->csum_offset;
2993 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2994
2995 if (skb_cloned(skb) &&
2996 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2997 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2998 if (ret)
2999 goto out;
3000 }
3001
4f2e4ad5 3002 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3003out_set_summed:
1da177e4 3004 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3005out:
1da177e4
LT
3006 return ret;
3007}
d1b19dff 3008EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3009
b72b5bf6
DC
3010int skb_crc32c_csum_help(struct sk_buff *skb)
3011{
3012 __le32 crc32c_csum;
3013 int ret = 0, offset, start;
3014
3015 if (skb->ip_summed != CHECKSUM_PARTIAL)
3016 goto out;
3017
3018 if (unlikely(skb_is_gso(skb)))
3019 goto out;
3020
3021 /* Before computing a checksum, we should make sure no frag could
3022 * be modified by an external entity : checksum could be wrong.
3023 */
3024 if (unlikely(skb_has_shared_frag(skb))) {
3025 ret = __skb_linearize(skb);
3026 if (ret)
3027 goto out;
3028 }
3029 start = skb_checksum_start_offset(skb);
3030 offset = start + offsetof(struct sctphdr, checksum);
3031 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3032 ret = -EINVAL;
3033 goto out;
3034 }
3035 if (skb_cloned(skb) &&
3036 !skb_clone_writable(skb, offset + sizeof(__le32))) {
3037 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3038 if (ret)
3039 goto out;
3040 }
3041 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3042 skb->len - start, ~(__u32)0,
3043 crc32c_csum_stub));
3044 *(__le32 *)(skb->data + offset) = crc32c_csum;
3045 skb->ip_summed = CHECKSUM_NONE;
dba00306 3046 skb->csum_not_inet = 0;
b72b5bf6
DC
3047out:
3048 return ret;
3049}
3050
53d6471c 3051__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3052{
252e3346 3053 __be16 type = skb->protocol;
f6a78bfc 3054
19acc327
PS
3055 /* Tunnel gso handlers can set protocol to ethernet. */
3056 if (type == htons(ETH_P_TEB)) {
3057 struct ethhdr *eth;
3058
3059 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3060 return 0;
3061
1dfe82eb 3062 eth = (struct ethhdr *)skb->data;
19acc327
PS
3063 type = eth->h_proto;
3064 }
3065
d4bcef3f 3066 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3067}
3068
3069/**
3070 * skb_mac_gso_segment - mac layer segmentation handler.
3071 * @skb: buffer to segment
3072 * @features: features for the output path (see dev->features)
3073 */
3074struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3075 netdev_features_t features)
3076{
3077 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3078 struct packet_offload *ptype;
53d6471c
VY
3079 int vlan_depth = skb->mac_len;
3080 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3081
3082 if (unlikely(!type))
3083 return ERR_PTR(-EINVAL);
3084
53d6471c 3085 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3086
3087 rcu_read_lock();
22061d80 3088 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3089 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3090 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3091 break;
3092 }
3093 }
3094 rcu_read_unlock();
3095
98e399f8 3096 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3097
f6a78bfc
HX
3098 return segs;
3099}
05e8ef4a
PS
3100EXPORT_SYMBOL(skb_mac_gso_segment);
3101
3102
3103/* openvswitch calls this on rx path, so we need a different check.
3104 */
3105static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3106{
3107 if (tx_path)
0c19f846
WB
3108 return skb->ip_summed != CHECKSUM_PARTIAL &&
3109 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3110
3111 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3112}
3113
3114/**
3115 * __skb_gso_segment - Perform segmentation on skb.
3116 * @skb: buffer to segment
3117 * @features: features for the output path (see dev->features)
3118 * @tx_path: whether it is called in TX path
3119 *
3120 * This function segments the given skb and returns a list of segments.
3121 *
3122 * It may return NULL if the skb requires no segmentation. This is
3123 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
3124 *
3125 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3126 */
3127struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3128 netdev_features_t features, bool tx_path)
3129{
b2504a5d
ED
3130 struct sk_buff *segs;
3131
05e8ef4a
PS
3132 if (unlikely(skb_needs_check(skb, tx_path))) {
3133 int err;
3134
b2504a5d 3135 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3136 err = skb_cow_head(skb, 0);
3137 if (err < 0)
05e8ef4a
PS
3138 return ERR_PTR(err);
3139 }
3140
802ab55a
AD
3141 /* Only report GSO partial support if it will enable us to
3142 * support segmentation on this frame without needing additional
3143 * work.
3144 */
3145 if (features & NETIF_F_GSO_PARTIAL) {
3146 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3147 struct net_device *dev = skb->dev;
3148
3149 partial_features |= dev->features & dev->gso_partial_features;
3150 if (!skb_gso_ok(skb, features | partial_features))
3151 features &= ~NETIF_F_GSO_PARTIAL;
3152 }
3153
9207f9d4
KK
3154 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3155 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3156
68c33163 3157 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3158 SKB_GSO_CB(skb)->encap_level = 0;
3159
05e8ef4a
PS
3160 skb_reset_mac_header(skb);
3161 skb_reset_mac_len(skb);
3162
b2504a5d
ED
3163 segs = skb_mac_gso_segment(skb, features);
3164
8d74e9f8 3165 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3166 skb_warn_bad_offload(skb);
3167
3168 return segs;
05e8ef4a 3169}
12b0004d 3170EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3171
fb286bb2
HX
3172/* Take action when hardware reception checksum errors are detected. */
3173#ifdef CONFIG_BUG
7fe50ac8 3174void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3175{
3176 if (net_ratelimit()) {
7b6cd1ce 3177 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
6413139d 3178 skb_dump(KERN_ERR, skb, true);
fb286bb2
HX
3179 dump_stack();
3180 }
3181}
3182EXPORT_SYMBOL(netdev_rx_csum_fault);
3183#endif
3184
ab74cfeb 3185/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3186static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3187{
3d3a8533 3188#ifdef CONFIG_HIGHMEM
1da177e4 3189 int i;
f4563a75 3190
5acbbd42 3191 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3192 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3193 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3194
ea2ab693 3195 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3196 return 1;
ea2ab693 3197 }
5acbbd42 3198 }
3d3a8533 3199#endif
1da177e4
LT
3200 return 0;
3201}
1da177e4 3202
3b392ddb
SH
3203/* If MPLS offload request, verify we are testing hardware MPLS features
3204 * instead of standard features for the netdev.
3205 */
d0edc7bf 3206#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3207static netdev_features_t net_mpls_features(struct sk_buff *skb,
3208 netdev_features_t features,
3209 __be16 type)
3210{
25cd9ba0 3211 if (eth_p_mpls(type))
3b392ddb
SH
3212 features &= skb->dev->mpls_features;
3213
3214 return features;
3215}
3216#else
3217static netdev_features_t net_mpls_features(struct sk_buff *skb,
3218 netdev_features_t features,
3219 __be16 type)
3220{
3221 return features;
3222}
3223#endif
3224
c8f44aff 3225static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3226 netdev_features_t features)
f01a5236 3227{
53d6471c 3228 int tmp;
3b392ddb
SH
3229 __be16 type;
3230
3231 type = skb_network_protocol(skb, &tmp);
3232 features = net_mpls_features(skb, features, type);
53d6471c 3233
c0d680e5 3234 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3235 !can_checksum_protocol(features, type)) {
996e8021 3236 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3237 }
7be2c82c
ED
3238 if (illegal_highdma(skb->dev, skb))
3239 features &= ~NETIF_F_SG;
f01a5236
JG
3240
3241 return features;
3242}
3243
e38f3025
TM
3244netdev_features_t passthru_features_check(struct sk_buff *skb,
3245 struct net_device *dev,
3246 netdev_features_t features)
3247{
3248 return features;
3249}
3250EXPORT_SYMBOL(passthru_features_check);
3251
7ce23672 3252static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3253 struct net_device *dev,
3254 netdev_features_t features)
3255{
3256 return vlan_features_check(skb, features);
3257}
3258
cbc53e08
AD
3259static netdev_features_t gso_features_check(const struct sk_buff *skb,
3260 struct net_device *dev,
3261 netdev_features_t features)
3262{
3263 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3264
3265 if (gso_segs > dev->gso_max_segs)
3266 return features & ~NETIF_F_GSO_MASK;
3267
802ab55a
AD
3268 /* Support for GSO partial features requires software
3269 * intervention before we can actually process the packets
3270 * so we need to strip support for any partial features now
3271 * and we can pull them back in after we have partially
3272 * segmented the frame.
3273 */
3274 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3275 features &= ~dev->gso_partial_features;
3276
3277 /* Make sure to clear the IPv4 ID mangling feature if the
3278 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3279 */
3280 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3281 struct iphdr *iph = skb->encapsulation ?
3282 inner_ip_hdr(skb) : ip_hdr(skb);
3283
3284 if (!(iph->frag_off & htons(IP_DF)))
3285 features &= ~NETIF_F_TSO_MANGLEID;
3286 }
3287
3288 return features;
3289}
3290
c1e756bf 3291netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3292{
5f35227e 3293 struct net_device *dev = skb->dev;
fcbeb976 3294 netdev_features_t features = dev->features;
58e998c6 3295
cbc53e08
AD
3296 if (skb_is_gso(skb))
3297 features = gso_features_check(skb, dev, features);
30b678d8 3298
5f35227e
JG
3299 /* If encapsulation offload request, verify we are testing
3300 * hardware encapsulation features instead of standard
3301 * features for the netdev
3302 */
3303 if (skb->encapsulation)
3304 features &= dev->hw_enc_features;
3305
f5a7fb88
TM
3306 if (skb_vlan_tagged(skb))
3307 features = netdev_intersect_features(features,
3308 dev->vlan_features |
3309 NETIF_F_HW_VLAN_CTAG_TX |
3310 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3311
5f35227e
JG
3312 if (dev->netdev_ops->ndo_features_check)
3313 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3314 features);
8cb65d00
TM
3315 else
3316 features &= dflt_features_check(skb, dev, features);
5f35227e 3317
c1e756bf 3318 return harmonize_features(skb, features);
58e998c6 3319}
c1e756bf 3320EXPORT_SYMBOL(netif_skb_features);
58e998c6 3321
2ea25513 3322static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3323 struct netdev_queue *txq, bool more)
f6a78bfc 3324{
2ea25513
DM
3325 unsigned int len;
3326 int rc;
00829823 3327
9f9a742d 3328 if (dev_nit_active(dev))
2ea25513 3329 dev_queue_xmit_nit(skb, dev);
fc741216 3330
2ea25513
DM
3331 len = skb->len;
3332 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3333 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3334 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3335
2ea25513
DM
3336 return rc;
3337}
7b9c6090 3338
8dcda22a
DM
3339struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3340 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3341{
3342 struct sk_buff *skb = first;
3343 int rc = NETDEV_TX_OK;
7b9c6090 3344
7f2e870f
DM
3345 while (skb) {
3346 struct sk_buff *next = skb->next;
fc70fb64 3347
a8305bff 3348 skb_mark_not_on_list(skb);
95f6b3dd 3349 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3350 if (unlikely(!dev_xmit_complete(rc))) {
3351 skb->next = next;
3352 goto out;
3353 }
6afff0ca 3354
7f2e870f 3355 skb = next;
fe60faa5 3356 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3357 rc = NETDEV_TX_BUSY;
3358 break;
9ccb8975 3359 }
7f2e870f 3360 }
9ccb8975 3361
7f2e870f
DM
3362out:
3363 *ret = rc;
3364 return skb;
3365}
b40863c6 3366
1ff0dc94
ED
3367static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3368 netdev_features_t features)
f6a78bfc 3369{
df8a39de 3370 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3371 !vlan_hw_offload_capable(features, skb->vlan_proto))
3372 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3373 return skb;
3374}
f6a78bfc 3375
43c26a1a
DC
3376int skb_csum_hwoffload_help(struct sk_buff *skb,
3377 const netdev_features_t features)
3378{
3379 if (unlikely(skb->csum_not_inet))
3380 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3381 skb_crc32c_csum_help(skb);
3382
3383 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3384}
3385EXPORT_SYMBOL(skb_csum_hwoffload_help);
3386
f53c7239 3387static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3388{
3389 netdev_features_t features;
f6a78bfc 3390
eae3f88e
DM
3391 features = netif_skb_features(skb);
3392 skb = validate_xmit_vlan(skb, features);
3393 if (unlikely(!skb))
3394 goto out_null;
7b9c6090 3395
ebf4e808
IL
3396 skb = sk_validate_xmit_skb(skb, dev);
3397 if (unlikely(!skb))
3398 goto out_null;
3399
8b86a61d 3400 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3401 struct sk_buff *segs;
3402
3403 segs = skb_gso_segment(skb, features);
cecda693 3404 if (IS_ERR(segs)) {
af6dabc9 3405 goto out_kfree_skb;
cecda693
JW
3406 } else if (segs) {
3407 consume_skb(skb);
3408 skb = segs;
f6a78bfc 3409 }
eae3f88e
DM
3410 } else {
3411 if (skb_needs_linearize(skb, features) &&
3412 __skb_linearize(skb))
3413 goto out_kfree_skb;
4ec93edb 3414
eae3f88e
DM
3415 /* If packet is not checksummed and device does not
3416 * support checksumming for this protocol, complete
3417 * checksumming here.
3418 */
3419 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3420 if (skb->encapsulation)
3421 skb_set_inner_transport_header(skb,
3422 skb_checksum_start_offset(skb));
3423 else
3424 skb_set_transport_header(skb,
3425 skb_checksum_start_offset(skb));
43c26a1a 3426 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3427 goto out_kfree_skb;
7b9c6090 3428 }
0c772159 3429 }
7b9c6090 3430
f53c7239 3431 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3432
eae3f88e 3433 return skb;
fc70fb64 3434
f6a78bfc
HX
3435out_kfree_skb:
3436 kfree_skb(skb);
eae3f88e 3437out_null:
d21fd63e 3438 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3439 return NULL;
3440}
6afff0ca 3441
f53c7239 3442struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3443{
3444 struct sk_buff *next, *head = NULL, *tail;
3445
bec3cfdc 3446 for (; skb != NULL; skb = next) {
55a93b3e 3447 next = skb->next;
a8305bff 3448 skb_mark_not_on_list(skb);
bec3cfdc
ED
3449
3450 /* in case skb wont be segmented, point to itself */
3451 skb->prev = skb;
3452
f53c7239 3453 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3454 if (!skb)
3455 continue;
55a93b3e 3456
bec3cfdc
ED
3457 if (!head)
3458 head = skb;
3459 else
3460 tail->next = skb;
3461 /* If skb was segmented, skb->prev points to
3462 * the last segment. If not, it still contains skb.
3463 */
3464 tail = skb->prev;
55a93b3e
ED
3465 }
3466 return head;
f6a78bfc 3467}
104ba78c 3468EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3469
1def9238
ED
3470static void qdisc_pkt_len_init(struct sk_buff *skb)
3471{
3472 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3473
3474 qdisc_skb_cb(skb)->pkt_len = skb->len;
3475
3476 /* To get more precise estimation of bytes sent on wire,
3477 * we add to pkt_len the headers size of all segments
3478 */
a0dce875 3479 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3480 unsigned int hdr_len;
15e5a030 3481 u16 gso_segs = shinfo->gso_segs;
1def9238 3482
757b8b1d
ED
3483 /* mac layer + network layer */
3484 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3485
3486 /* + transport layer */
7c68d1a6
ED
3487 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3488 const struct tcphdr *th;
3489 struct tcphdr _tcphdr;
3490
3491 th = skb_header_pointer(skb, skb_transport_offset(skb),
3492 sizeof(_tcphdr), &_tcphdr);
3493 if (likely(th))
3494 hdr_len += __tcp_hdrlen(th);
3495 } else {
3496 struct udphdr _udphdr;
3497
3498 if (skb_header_pointer(skb, skb_transport_offset(skb),
3499 sizeof(_udphdr), &_udphdr))
3500 hdr_len += sizeof(struct udphdr);
3501 }
15e5a030
JW
3502
3503 if (shinfo->gso_type & SKB_GSO_DODGY)
3504 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3505 shinfo->gso_size);
3506
3507 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3508 }
3509}
3510
bbd8a0d3
KK
3511static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3512 struct net_device *dev,
3513 struct netdev_queue *txq)
3514{
3515 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3516 struct sk_buff *to_free = NULL;
a2da570d 3517 bool contended;
bbd8a0d3
KK
3518 int rc;
3519
a2da570d 3520 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3521
3522 if (q->flags & TCQ_F_NOLOCK) {
d518d2ed
PA
3523 if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3524 qdisc_run_begin(q)) {
3525 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3526 &q->state))) {
3527 __qdisc_drop(skb, &to_free);
3528 rc = NET_XMIT_DROP;
3529 goto end_run;
3530 }
ba27b4cd
PA
3531 qdisc_bstats_cpu_update(q, skb);
3532
d518d2ed 3533 rc = NET_XMIT_SUCCESS;
ba27b4cd
PA
3534 if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3535 __qdisc_run(q);
3536
d518d2ed 3537end_run:
ba27b4cd 3538 qdisc_run_end(q);
6b3ba914
JF
3539 } else {
3540 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
32f7b44d 3541 qdisc_run(q);
6b3ba914
JF
3542 }
3543
3544 if (unlikely(to_free))
3545 kfree_skb_list(to_free);
3546 return rc;
3547 }
3548
79640a4c
ED
3549 /*
3550 * Heuristic to force contended enqueues to serialize on a
3551 * separate lock before trying to get qdisc main lock.
f9eb8aea 3552 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3553 * often and dequeue packets faster.
79640a4c 3554 */
a2da570d 3555 contended = qdisc_is_running(q);
79640a4c
ED
3556 if (unlikely(contended))
3557 spin_lock(&q->busylock);
3558
bbd8a0d3
KK
3559 spin_lock(root_lock);
3560 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3561 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3562 rc = NET_XMIT_DROP;
3563 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3564 qdisc_run_begin(q)) {
bbd8a0d3
KK
3565 /*
3566 * This is a work-conserving queue; there are no old skbs
3567 * waiting to be sent out; and the qdisc is not running -
3568 * xmit the skb directly.
3569 */
bfe0d029 3570
bfe0d029
ED
3571 qdisc_bstats_update(q, skb);
3572
55a93b3e 3573 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3574 if (unlikely(contended)) {
3575 spin_unlock(&q->busylock);
3576 contended = false;
3577 }
bbd8a0d3 3578 __qdisc_run(q);
6c148184 3579 }
bbd8a0d3 3580
6c148184 3581 qdisc_run_end(q);
bbd8a0d3
KK
3582 rc = NET_XMIT_SUCCESS;
3583 } else {
520ac30f 3584 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3585 if (qdisc_run_begin(q)) {
3586 if (unlikely(contended)) {
3587 spin_unlock(&q->busylock);
3588 contended = false;
3589 }
3590 __qdisc_run(q);
6c148184 3591 qdisc_run_end(q);
79640a4c 3592 }
bbd8a0d3
KK
3593 }
3594 spin_unlock(root_lock);
520ac30f
ED
3595 if (unlikely(to_free))
3596 kfree_skb_list(to_free);
79640a4c
ED
3597 if (unlikely(contended))
3598 spin_unlock(&q->busylock);
bbd8a0d3
KK
3599 return rc;
3600}
3601
86f8515f 3602#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3603static void skb_update_prio(struct sk_buff *skb)
3604{
4dcb31d4
ED
3605 const struct netprio_map *map;
3606 const struct sock *sk;
3607 unsigned int prioidx;
5bc1421e 3608
4dcb31d4
ED
3609 if (skb->priority)
3610 return;
3611 map = rcu_dereference_bh(skb->dev->priomap);
3612 if (!map)
3613 return;
3614 sk = skb_to_full_sk(skb);
3615 if (!sk)
3616 return;
91c68ce2 3617
4dcb31d4
ED
3618 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3619
3620 if (prioidx < map->priomap_len)
3621 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3622}
3623#else
3624#define skb_update_prio(skb)
3625#endif
3626
95603e22
MM
3627/**
3628 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3629 * @net: network namespace this loopback is happening in
3630 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3631 * @skb: buffer to transmit
3632 */
0c4b51f0 3633int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3634{
3635 skb_reset_mac_header(skb);
3636 __skb_pull(skb, skb_network_offset(skb));
3637 skb->pkt_type = PACKET_LOOPBACK;
3638 skb->ip_summed = CHECKSUM_UNNECESSARY;
3639 WARN_ON(!skb_dst(skb));
3640 skb_dst_force(skb);
3641 netif_rx_ni(skb);
3642 return 0;
3643}
3644EXPORT_SYMBOL(dev_loopback_xmit);
3645
1f211a1b
DB
3646#ifdef CONFIG_NET_EGRESS
3647static struct sk_buff *
3648sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3649{
46209401 3650 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3651 struct tcf_result cl_res;
3652
46209401 3653 if (!miniq)
1f211a1b
DB
3654 return skb;
3655
8dc07fdb 3656 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3657 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3658
46209401 3659 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3660 case TC_ACT_OK:
3661 case TC_ACT_RECLASSIFY:
3662 skb->tc_index = TC_H_MIN(cl_res.classid);
3663 break;
3664 case TC_ACT_SHOT:
46209401 3665 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3666 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3667 kfree_skb(skb);
3668 return NULL;
1f211a1b
DB
3669 case TC_ACT_STOLEN:
3670 case TC_ACT_QUEUED:
e25ea21f 3671 case TC_ACT_TRAP:
1f211a1b 3672 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3673 consume_skb(skb);
1f211a1b
DB
3674 return NULL;
3675 case TC_ACT_REDIRECT:
3676 /* No need to push/pop skb's mac_header here on egress! */
3677 skb_do_redirect(skb);
3678 *ret = NET_XMIT_SUCCESS;
3679 return NULL;
3680 default:
3681 break;
3682 }
3683
3684 return skb;
3685}
3686#endif /* CONFIG_NET_EGRESS */
3687
fc9bab24
AN
3688#ifdef CONFIG_XPS
3689static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3690 struct xps_dev_maps *dev_maps, unsigned int tci)
3691{
3692 struct xps_map *map;
3693 int queue_index = -1;
3694
3695 if (dev->num_tc) {
3696 tci *= dev->num_tc;
3697 tci += netdev_get_prio_tc_map(dev, skb->priority);
3698 }
3699
3700 map = rcu_dereference(dev_maps->attr_map[tci]);
3701 if (map) {
3702 if (map->len == 1)
3703 queue_index = map->queues[0];
3704 else
3705 queue_index = map->queues[reciprocal_scale(
3706 skb_get_hash(skb), map->len)];
3707 if (unlikely(queue_index >= dev->real_num_tx_queues))
3708 queue_index = -1;
3709 }
3710 return queue_index;
3711}
3712#endif
3713
eadec877
AD
3714static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3715 struct sk_buff *skb)
638b2a69
JP
3716{
3717#ifdef CONFIG_XPS
3718 struct xps_dev_maps *dev_maps;
fc9bab24 3719 struct sock *sk = skb->sk;
638b2a69
JP
3720 int queue_index = -1;
3721
04157469
AN
3722 if (!static_key_false(&xps_needed))
3723 return -1;
3724
638b2a69 3725 rcu_read_lock();
fc9bab24
AN
3726 if (!static_key_false(&xps_rxqs_needed))
3727 goto get_cpus_map;
3728
eadec877 3729 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3730 if (dev_maps) {
fc9bab24 3731 int tci = sk_rx_queue_get(sk);
184c449f 3732
fc9bab24
AN
3733 if (tci >= 0 && tci < dev->num_rx_queues)
3734 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3735 tci);
3736 }
184c449f 3737
fc9bab24
AN
3738get_cpus_map:
3739 if (queue_index < 0) {
eadec877 3740 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3741 if (dev_maps) {
3742 unsigned int tci = skb->sender_cpu - 1;
3743
3744 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3745 tci);
638b2a69
JP
3746 }
3747 }
3748 rcu_read_unlock();
3749
3750 return queue_index;
3751#else
3752 return -1;
3753#endif
3754}
3755
a4ea8a3d 3756u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3757 struct net_device *sb_dev)
a4ea8a3d
AD
3758{
3759 return 0;
3760}
3761EXPORT_SYMBOL(dev_pick_tx_zero);
3762
3763u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 3764 struct net_device *sb_dev)
a4ea8a3d
AD
3765{
3766 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3767}
3768EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3769
b71b5837
PA
3770u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3771 struct net_device *sb_dev)
638b2a69
JP
3772{
3773 struct sock *sk = skb->sk;
3774 int queue_index = sk_tx_queue_get(sk);
3775
eadec877
AD
3776 sb_dev = sb_dev ? : dev;
3777
638b2a69
JP
3778 if (queue_index < 0 || skb->ooo_okay ||
3779 queue_index >= dev->real_num_tx_queues) {
eadec877 3780 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 3781
638b2a69 3782 if (new_index < 0)
eadec877 3783 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
3784
3785 if (queue_index != new_index && sk &&
004a5d01 3786 sk_fullsock(sk) &&
638b2a69
JP
3787 rcu_access_pointer(sk->sk_dst_cache))
3788 sk_tx_queue_set(sk, new_index);
3789
3790 queue_index = new_index;
3791 }
3792
3793 return queue_index;
3794}
b71b5837 3795EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 3796
4bd97d51
PA
3797struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3798 struct sk_buff *skb,
3799 struct net_device *sb_dev)
638b2a69
JP
3800{
3801 int queue_index = 0;
3802
3803#ifdef CONFIG_XPS
52bd2d62
ED
3804 u32 sender_cpu = skb->sender_cpu - 1;
3805
3806 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3807 skb->sender_cpu = raw_smp_processor_id() + 1;
3808#endif
3809
3810 if (dev->real_num_tx_queues != 1) {
3811 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3812
638b2a69 3813 if (ops->ndo_select_queue)
a350ecce 3814 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 3815 else
4bd97d51 3816 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 3817
d584527c 3818 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
3819 }
3820
3821 skb_set_queue_mapping(skb, queue_index);
3822 return netdev_get_tx_queue(dev, queue_index);
3823}
3824
d29f749e 3825/**
9d08dd3d 3826 * __dev_queue_xmit - transmit a buffer
d29f749e 3827 * @skb: buffer to transmit
eadec877 3828 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
3829 *
3830 * Queue a buffer for transmission to a network device. The caller must
3831 * have set the device and priority and built the buffer before calling
3832 * this function. The function can be called from an interrupt.
3833 *
3834 * A negative errno code is returned on a failure. A success does not
3835 * guarantee the frame will be transmitted as it may be dropped due
3836 * to congestion or traffic shaping.
3837 *
3838 * -----------------------------------------------------------------------------------
3839 * I notice this method can also return errors from the queue disciplines,
3840 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3841 * be positive.
3842 *
3843 * Regardless of the return value, the skb is consumed, so it is currently
3844 * difficult to retry a send to this method. (You can bump the ref count
3845 * before sending to hold a reference for retry if you are careful.)
3846 *
3847 * When calling this method, interrupts MUST be enabled. This is because
3848 * the BH enable code must have IRQs enabled so that it will not deadlock.
3849 * --BLG
3850 */
eadec877 3851static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
3852{
3853 struct net_device *dev = skb->dev;
dc2b4847 3854 struct netdev_queue *txq;
1da177e4
LT
3855 struct Qdisc *q;
3856 int rc = -ENOMEM;
f53c7239 3857 bool again = false;
1da177e4 3858
6d1ccff6
ED
3859 skb_reset_mac_header(skb);
3860
e7fd2885
WB
3861 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3862 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3863
4ec93edb
YH
3864 /* Disable soft irqs for various locks below. Also
3865 * stops preemption for RCU.
1da177e4 3866 */
4ec93edb 3867 rcu_read_lock_bh();
1da177e4 3868
5bc1421e
NH
3869 skb_update_prio(skb);
3870
1f211a1b
DB
3871 qdisc_pkt_len_init(skb);
3872#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3873 skb->tc_at_ingress = 0;
1f211a1b 3874# ifdef CONFIG_NET_EGRESS
aabf6772 3875 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
3876 skb = sch_handle_egress(skb, &rc, dev);
3877 if (!skb)
3878 goto out;
3879 }
3880# endif
3881#endif
02875878
ED
3882 /* If device/qdisc don't need skb->dst, release it right now while
3883 * its hot in this cpu cache.
3884 */
3885 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3886 skb_dst_drop(skb);
3887 else
3888 skb_dst_force(skb);
3889
4bd97d51 3890 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 3891 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3892
cf66ba58 3893 trace_net_dev_queue(skb);
1da177e4 3894 if (q->enqueue) {
bbd8a0d3 3895 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3896 goto out;
1da177e4
LT
3897 }
3898
3899 /* The device has no queue. Common case for software devices:
eb13da1a 3900 * loopback, all the sorts of tunnels...
1da177e4 3901
eb13da1a 3902 * Really, it is unlikely that netif_tx_lock protection is necessary
3903 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3904 * counters.)
3905 * However, it is possible, that they rely on protection
3906 * made by us here.
1da177e4 3907
eb13da1a 3908 * Check this and shot the lock. It is not prone from deadlocks.
3909 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3910 */
3911 if (dev->flags & IFF_UP) {
3912 int cpu = smp_processor_id(); /* ok because BHs are off */
3913
c773e847 3914 if (txq->xmit_lock_owner != cpu) {
97cdcf37 3915 if (dev_xmit_recursion())
745e20f1
ED
3916 goto recursion_alert;
3917
f53c7239 3918 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 3919 if (!skb)
d21fd63e 3920 goto out;
1f59533f 3921
c773e847 3922 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3923
73466498 3924 if (!netif_xmit_stopped(txq)) {
97cdcf37 3925 dev_xmit_recursion_inc();
ce93718f 3926 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 3927 dev_xmit_recursion_dec();
572a9d7b 3928 if (dev_xmit_complete(rc)) {
c773e847 3929 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3930 goto out;
3931 }
3932 }
c773e847 3933 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3934 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3935 dev->name);
1da177e4
LT
3936 } else {
3937 /* Recursion is detected! It is possible,
745e20f1
ED
3938 * unfortunately
3939 */
3940recursion_alert:
e87cc472
JP
3941 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3942 dev->name);
1da177e4
LT
3943 }
3944 }
3945
3946 rc = -ENETDOWN;
d4828d85 3947 rcu_read_unlock_bh();
1da177e4 3948
015f0688 3949 atomic_long_inc(&dev->tx_dropped);
1f59533f 3950 kfree_skb_list(skb);
1da177e4
LT
3951 return rc;
3952out:
d4828d85 3953 rcu_read_unlock_bh();
1da177e4
LT
3954 return rc;
3955}
f663dd9a 3956
2b4aa3ce 3957int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3958{
3959 return __dev_queue_xmit(skb, NULL);
3960}
2b4aa3ce 3961EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3962
eadec877 3963int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 3964{
eadec877 3965 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
3966}
3967EXPORT_SYMBOL(dev_queue_xmit_accel);
3968
865b03f2
MK
3969int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3970{
3971 struct net_device *dev = skb->dev;
3972 struct sk_buff *orig_skb = skb;
3973 struct netdev_queue *txq;
3974 int ret = NETDEV_TX_BUSY;
3975 bool again = false;
3976
3977 if (unlikely(!netif_running(dev) ||
3978 !netif_carrier_ok(dev)))
3979 goto drop;
3980
3981 skb = validate_xmit_skb_list(skb, dev, &again);
3982 if (skb != orig_skb)
3983 goto drop;
3984
3985 skb_set_queue_mapping(skb, queue_id);
3986 txq = skb_get_tx_queue(dev, skb);
3987
3988 local_bh_disable();
3989
3990 HARD_TX_LOCK(dev, txq, smp_processor_id());
3991 if (!netif_xmit_frozen_or_drv_stopped(txq))
3992 ret = netdev_start_xmit(skb, dev, txq, false);
3993 HARD_TX_UNLOCK(dev, txq);
3994
3995 local_bh_enable();
3996
3997 if (!dev_xmit_complete(ret))
3998 kfree_skb(skb);
3999
4000 return ret;
4001drop:
4002 atomic_long_inc(&dev->tx_dropped);
4003 kfree_skb_list(skb);
4004 return NET_XMIT_DROP;
4005}
4006EXPORT_SYMBOL(dev_direct_xmit);
1da177e4 4007
eb13da1a 4008/*************************************************************************
4009 * Receiver routines
4010 *************************************************************************/
1da177e4 4011
6b2bedc3 4012int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4013EXPORT_SYMBOL(netdev_max_backlog);
4014
3b098e2d 4015int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4016int netdev_budget __read_mostly = 300;
7acf8a1e 4017unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
4018int weight_p __read_mostly = 64; /* old backlog weight */
4019int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4020int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4021int dev_rx_weight __read_mostly = 64;
4022int dev_tx_weight __read_mostly = 64;
323ebb61
EC
4023/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4024int gro_normal_batch __read_mostly = 8;
1da177e4 4025
eecfd7c4
ED
4026/* Called with irq disabled */
4027static inline void ____napi_schedule(struct softnet_data *sd,
4028 struct napi_struct *napi)
4029{
4030 list_add_tail(&napi->poll_list, &sd->poll_list);
4031 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4032}
4033
bfb564e7
KK
4034#ifdef CONFIG_RPS
4035
4036/* One global table that all flow-based protocols share. */
6e3f7faf 4037struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4038EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4039u32 rps_cpu_mask __read_mostly;
4040EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4041
dc05360f 4042struct static_key_false rps_needed __read_mostly;
3df97ba8 4043EXPORT_SYMBOL(rps_needed);
dc05360f 4044struct static_key_false rfs_needed __read_mostly;
13bfff25 4045EXPORT_SYMBOL(rfs_needed);
adc9300e 4046
c445477d
BH
4047static struct rps_dev_flow *
4048set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4049 struct rps_dev_flow *rflow, u16 next_cpu)
4050{
a31196b0 4051 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4052#ifdef CONFIG_RFS_ACCEL
4053 struct netdev_rx_queue *rxqueue;
4054 struct rps_dev_flow_table *flow_table;
4055 struct rps_dev_flow *old_rflow;
4056 u32 flow_id;
4057 u16 rxq_index;
4058 int rc;
4059
4060 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4061 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4062 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4063 goto out;
4064 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4065 if (rxq_index == skb_get_rx_queue(skb))
4066 goto out;
4067
4068 rxqueue = dev->_rx + rxq_index;
4069 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4070 if (!flow_table)
4071 goto out;
61b905da 4072 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4073 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4074 rxq_index, flow_id);
4075 if (rc < 0)
4076 goto out;
4077 old_rflow = rflow;
4078 rflow = &flow_table->flows[flow_id];
c445477d
BH
4079 rflow->filter = rc;
4080 if (old_rflow->filter == rflow->filter)
4081 old_rflow->filter = RPS_NO_FILTER;
4082 out:
4083#endif
4084 rflow->last_qtail =
09994d1b 4085 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4086 }
4087
09994d1b 4088 rflow->cpu = next_cpu;
c445477d
BH
4089 return rflow;
4090}
4091
bfb564e7
KK
4092/*
4093 * get_rps_cpu is called from netif_receive_skb and returns the target
4094 * CPU from the RPS map of the receiving queue for a given skb.
4095 * rcu_read_lock must be held on entry.
4096 */
4097static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4098 struct rps_dev_flow **rflowp)
4099{
567e4b79
ED
4100 const struct rps_sock_flow_table *sock_flow_table;
4101 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4102 struct rps_dev_flow_table *flow_table;
567e4b79 4103 struct rps_map *map;
bfb564e7 4104 int cpu = -1;
567e4b79 4105 u32 tcpu;
61b905da 4106 u32 hash;
bfb564e7
KK
4107
4108 if (skb_rx_queue_recorded(skb)) {
4109 u16 index = skb_get_rx_queue(skb);
567e4b79 4110
62fe0b40
BH
4111 if (unlikely(index >= dev->real_num_rx_queues)) {
4112 WARN_ONCE(dev->real_num_rx_queues > 1,
4113 "%s received packet on queue %u, but number "
4114 "of RX queues is %u\n",
4115 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4116 goto done;
4117 }
567e4b79
ED
4118 rxqueue += index;
4119 }
bfb564e7 4120
567e4b79
ED
4121 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4122
4123 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4124 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4125 if (!flow_table && !map)
bfb564e7
KK
4126 goto done;
4127
2d47b459 4128 skb_reset_network_header(skb);
61b905da
TH
4129 hash = skb_get_hash(skb);
4130 if (!hash)
bfb564e7
KK
4131 goto done;
4132
fec5e652
TH
4133 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4134 if (flow_table && sock_flow_table) {
fec5e652 4135 struct rps_dev_flow *rflow;
567e4b79
ED
4136 u32 next_cpu;
4137 u32 ident;
4138
4139 /* First check into global flow table if there is a match */
4140 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4141 if ((ident ^ hash) & ~rps_cpu_mask)
4142 goto try_rps;
fec5e652 4143
567e4b79
ED
4144 next_cpu = ident & rps_cpu_mask;
4145
4146 /* OK, now we know there is a match,
4147 * we can look at the local (per receive queue) flow table
4148 */
61b905da 4149 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4150 tcpu = rflow->cpu;
4151
fec5e652
TH
4152 /*
4153 * If the desired CPU (where last recvmsg was done) is
4154 * different from current CPU (one in the rx-queue flow
4155 * table entry), switch if one of the following holds:
a31196b0 4156 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4157 * - Current CPU is offline.
4158 * - The current CPU's queue tail has advanced beyond the
4159 * last packet that was enqueued using this table entry.
4160 * This guarantees that all previous packets for the flow
4161 * have been dequeued, thus preserving in order delivery.
4162 */
4163 if (unlikely(tcpu != next_cpu) &&
a31196b0 4164 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4165 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4166 rflow->last_qtail)) >= 0)) {
4167 tcpu = next_cpu;
c445477d 4168 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4169 }
c445477d 4170
a31196b0 4171 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4172 *rflowp = rflow;
4173 cpu = tcpu;
4174 goto done;
4175 }
4176 }
4177
567e4b79
ED
4178try_rps:
4179
0a9627f2 4180 if (map) {
8fc54f68 4181 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4182 if (cpu_online(tcpu)) {
4183 cpu = tcpu;
4184 goto done;
4185 }
4186 }
4187
4188done:
0a9627f2
TH
4189 return cpu;
4190}
4191
c445477d
BH
4192#ifdef CONFIG_RFS_ACCEL
4193
4194/**
4195 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4196 * @dev: Device on which the filter was set
4197 * @rxq_index: RX queue index
4198 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4199 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4200 *
4201 * Drivers that implement ndo_rx_flow_steer() should periodically call
4202 * this function for each installed filter and remove the filters for
4203 * which it returns %true.
4204 */
4205bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4206 u32 flow_id, u16 filter_id)
4207{
4208 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4209 struct rps_dev_flow_table *flow_table;
4210 struct rps_dev_flow *rflow;
4211 bool expire = true;
a31196b0 4212 unsigned int cpu;
c445477d
BH
4213
4214 rcu_read_lock();
4215 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4216 if (flow_table && flow_id <= flow_table->mask) {
4217 rflow = &flow_table->flows[flow_id];
6aa7de05 4218 cpu = READ_ONCE(rflow->cpu);
a31196b0 4219 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4220 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4221 rflow->last_qtail) <
4222 (int)(10 * flow_table->mask)))
4223 expire = false;
4224 }
4225 rcu_read_unlock();
4226 return expire;
4227}
4228EXPORT_SYMBOL(rps_may_expire_flow);
4229
4230#endif /* CONFIG_RFS_ACCEL */
4231
0a9627f2 4232/* Called from hardirq (IPI) context */
e36fa2f7 4233static void rps_trigger_softirq(void *data)
0a9627f2 4234{
e36fa2f7
ED
4235 struct softnet_data *sd = data;
4236
eecfd7c4 4237 ____napi_schedule(sd, &sd->backlog);
dee42870 4238 sd->received_rps++;
0a9627f2 4239}
e36fa2f7 4240
fec5e652 4241#endif /* CONFIG_RPS */
0a9627f2 4242
e36fa2f7
ED
4243/*
4244 * Check if this softnet_data structure is another cpu one
4245 * If yes, queue it to our IPI list and return 1
4246 * If no, return 0
4247 */
4248static int rps_ipi_queued(struct softnet_data *sd)
4249{
4250#ifdef CONFIG_RPS
903ceff7 4251 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4252
4253 if (sd != mysd) {
4254 sd->rps_ipi_next = mysd->rps_ipi_list;
4255 mysd->rps_ipi_list = sd;
4256
4257 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4258 return 1;
4259 }
4260#endif /* CONFIG_RPS */
4261 return 0;
4262}
4263
99bbc707
WB
4264#ifdef CONFIG_NET_FLOW_LIMIT
4265int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4266#endif
4267
4268static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4269{
4270#ifdef CONFIG_NET_FLOW_LIMIT
4271 struct sd_flow_limit *fl;
4272 struct softnet_data *sd;
4273 unsigned int old_flow, new_flow;
4274
4275 if (qlen < (netdev_max_backlog >> 1))
4276 return false;
4277
903ceff7 4278 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4279
4280 rcu_read_lock();
4281 fl = rcu_dereference(sd->flow_limit);
4282 if (fl) {
3958afa1 4283 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4284 old_flow = fl->history[fl->history_head];
4285 fl->history[fl->history_head] = new_flow;
4286
4287 fl->history_head++;
4288 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4289
4290 if (likely(fl->buckets[old_flow]))
4291 fl->buckets[old_flow]--;
4292
4293 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4294 fl->count++;
4295 rcu_read_unlock();
4296 return true;
4297 }
4298 }
4299 rcu_read_unlock();
4300#endif
4301 return false;
4302}
4303
0a9627f2
TH
4304/*
4305 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4306 * queue (may be a remote CPU queue).
4307 */
fec5e652
TH
4308static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4309 unsigned int *qtail)
0a9627f2 4310{
e36fa2f7 4311 struct softnet_data *sd;
0a9627f2 4312 unsigned long flags;
99bbc707 4313 unsigned int qlen;
0a9627f2 4314
e36fa2f7 4315 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4316
4317 local_irq_save(flags);
0a9627f2 4318
e36fa2f7 4319 rps_lock(sd);
e9e4dd32
JA
4320 if (!netif_running(skb->dev))
4321 goto drop;
99bbc707
WB
4322 qlen = skb_queue_len(&sd->input_pkt_queue);
4323 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4324 if (qlen) {
0a9627f2 4325enqueue:
e36fa2f7 4326 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4327 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4328 rps_unlock(sd);
152102c7 4329 local_irq_restore(flags);
0a9627f2
TH
4330 return NET_RX_SUCCESS;
4331 }
4332
ebda37c2
ED
4333 /* Schedule NAPI for backlog device
4334 * We can use non atomic operation since we own the queue lock
4335 */
4336 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4337 if (!rps_ipi_queued(sd))
eecfd7c4 4338 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4339 }
4340 goto enqueue;
4341 }
4342
e9e4dd32 4343drop:
dee42870 4344 sd->dropped++;
e36fa2f7 4345 rps_unlock(sd);
0a9627f2 4346
0a9627f2
TH
4347 local_irq_restore(flags);
4348
caf586e5 4349 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4350 kfree_skb(skb);
4351 return NET_RX_DROP;
4352}
1da177e4 4353
e817f856
JDB
4354static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4355{
4356 struct net_device *dev = skb->dev;
4357 struct netdev_rx_queue *rxqueue;
4358
4359 rxqueue = dev->_rx;
4360
4361 if (skb_rx_queue_recorded(skb)) {
4362 u16 index = skb_get_rx_queue(skb);
4363
4364 if (unlikely(index >= dev->real_num_rx_queues)) {
4365 WARN_ONCE(dev->real_num_rx_queues > 1,
4366 "%s received packet on queue %u, but number "
4367 "of RX queues is %u\n",
4368 dev->name, index, dev->real_num_rx_queues);
4369
4370 return rxqueue; /* Return first rxqueue */
4371 }
4372 rxqueue += index;
4373 }
4374 return rxqueue;
4375}
4376
d4455169 4377static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4378 struct xdp_buff *xdp,
d4455169
JF
4379 struct bpf_prog *xdp_prog)
4380{
e817f856 4381 struct netdev_rx_queue *rxqueue;
198d83bb 4382 void *orig_data, *orig_data_end;
de8f3a83 4383 u32 metalen, act = XDP_DROP;
29724956
JDB
4384 __be16 orig_eth_type;
4385 struct ethhdr *eth;
4386 bool orig_bcast;
d4455169
JF
4387 int hlen, off;
4388 u32 mac_len;
4389
4390 /* Reinjected packets coming from act_mirred or similar should
4391 * not get XDP generic processing.
4392 */
cd11b164 4393 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
d4455169
JF
4394 return XDP_PASS;
4395
de8f3a83
DB
4396 /* XDP packets must be linear and must have sufficient headroom
4397 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4398 * native XDP provides, thus we need to do it here as well.
4399 */
4400 if (skb_is_nonlinear(skb) ||
4401 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4402 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4403 int troom = skb->tail + skb->data_len - skb->end;
4404
4405 /* In case we have to go down the path and also linearize,
4406 * then lets do the pskb_expand_head() work just once here.
4407 */
4408 if (pskb_expand_head(skb,
4409 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4410 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4411 goto do_drop;
2d17d8d7 4412 if (skb_linearize(skb))
de8f3a83
DB
4413 goto do_drop;
4414 }
d4455169
JF
4415
4416 /* The XDP program wants to see the packet starting at the MAC
4417 * header.
4418 */
4419 mac_len = skb->data - skb_mac_header(skb);
4420 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4421 xdp->data = skb->data - mac_len;
4422 xdp->data_meta = xdp->data;
4423 xdp->data_end = xdp->data + hlen;
4424 xdp->data_hard_start = skb->data - skb_headroom(skb);
4425 orig_data_end = xdp->data_end;
4426 orig_data = xdp->data;
29724956
JDB
4427 eth = (struct ethhdr *)xdp->data;
4428 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4429 orig_eth_type = eth->h_proto;
d4455169 4430
e817f856 4431 rxqueue = netif_get_rxqueue(skb);
02671e23 4432 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4433
02671e23 4434 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4435
065af355 4436 /* check if bpf_xdp_adjust_head was used */
02671e23 4437 off = xdp->data - orig_data;
065af355
JDB
4438 if (off) {
4439 if (off > 0)
4440 __skb_pull(skb, off);
4441 else if (off < 0)
4442 __skb_push(skb, -off);
4443
4444 skb->mac_header += off;
4445 skb_reset_network_header(skb);
4446 }
d4455169 4447
198d83bb
NS
4448 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4449 * pckt.
4450 */
02671e23 4451 off = orig_data_end - xdp->data_end;
f7613120 4452 if (off != 0) {
02671e23 4453 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
f7613120 4454 skb->len -= off;
02671e23 4455
f7613120 4456 }
198d83bb 4457
29724956
JDB
4458 /* check if XDP changed eth hdr such SKB needs update */
4459 eth = (struct ethhdr *)xdp->data;
4460 if ((orig_eth_type != eth->h_proto) ||
4461 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4462 __skb_push(skb, ETH_HLEN);
4463 skb->protocol = eth_type_trans(skb, skb->dev);
4464 }
4465
d4455169 4466 switch (act) {
6103aa96 4467 case XDP_REDIRECT:
d4455169
JF
4468 case XDP_TX:
4469 __skb_push(skb, mac_len);
de8f3a83 4470 break;
d4455169 4471 case XDP_PASS:
02671e23 4472 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4473 if (metalen)
4474 skb_metadata_set(skb, metalen);
d4455169 4475 break;
d4455169
JF
4476 default:
4477 bpf_warn_invalid_xdp_action(act);
4478 /* fall through */
4479 case XDP_ABORTED:
4480 trace_xdp_exception(skb->dev, xdp_prog, act);
4481 /* fall through */
4482 case XDP_DROP:
4483 do_drop:
4484 kfree_skb(skb);
4485 break;
4486 }
4487
4488 return act;
4489}
4490
4491/* When doing generic XDP we have to bypass the qdisc layer and the
4492 * network taps in order to match in-driver-XDP behavior.
4493 */
7c497478 4494void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4495{
4496 struct net_device *dev = skb->dev;
4497 struct netdev_queue *txq;
4498 bool free_skb = true;
4499 int cpu, rc;
4500
4bd97d51 4501 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4502 cpu = smp_processor_id();
4503 HARD_TX_LOCK(dev, txq, cpu);
4504 if (!netif_xmit_stopped(txq)) {
4505 rc = netdev_start_xmit(skb, dev, txq, 0);
4506 if (dev_xmit_complete(rc))
4507 free_skb = false;
4508 }
4509 HARD_TX_UNLOCK(dev, txq);
4510 if (free_skb) {
4511 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4512 kfree_skb(skb);
4513 }
4514}
7c497478 4515EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169 4516
02786475 4517static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4518
7c497478 4519int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4520{
d4455169 4521 if (xdp_prog) {
02671e23
BT
4522 struct xdp_buff xdp;
4523 u32 act;
6103aa96 4524 int err;
d4455169 4525
02671e23 4526 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4527 if (act != XDP_PASS) {
6103aa96
JF
4528 switch (act) {
4529 case XDP_REDIRECT:
2facaad6 4530 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4531 &xdp, xdp_prog);
6103aa96
JF
4532 if (err)
4533 goto out_redir;
02671e23 4534 break;
6103aa96 4535 case XDP_TX:
d4455169 4536 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4537 break;
4538 }
d4455169
JF
4539 return XDP_DROP;
4540 }
4541 }
4542 return XDP_PASS;
6103aa96 4543out_redir:
6103aa96
JF
4544 kfree_skb(skb);
4545 return XDP_DROP;
d4455169 4546}
7c497478 4547EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4548
ae78dbfa 4549static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4550{
b0e28f1e 4551 int ret;
1da177e4 4552
588f0330 4553 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4554
cf66ba58 4555 trace_netif_rx(skb);
d4455169 4556
df334545 4557#ifdef CONFIG_RPS
dc05360f 4558 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4559 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4560 int cpu;
4561
cece1945 4562 preempt_disable();
b0e28f1e 4563 rcu_read_lock();
fec5e652
TH
4564
4565 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4566 if (cpu < 0)
4567 cpu = smp_processor_id();
fec5e652
TH
4568
4569 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4570
b0e28f1e 4571 rcu_read_unlock();
cece1945 4572 preempt_enable();
adc9300e
ED
4573 } else
4574#endif
fec5e652
TH
4575 {
4576 unsigned int qtail;
f4563a75 4577
fec5e652
TH
4578 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4579 put_cpu();
4580 }
b0e28f1e 4581 return ret;
1da177e4 4582}
ae78dbfa
BH
4583
4584/**
4585 * netif_rx - post buffer to the network code
4586 * @skb: buffer to post
4587 *
4588 * This function receives a packet from a device driver and queues it for
4589 * the upper (protocol) levels to process. It always succeeds. The buffer
4590 * may be dropped during processing for congestion control or by the
4591 * protocol layers.
4592 *
4593 * return values:
4594 * NET_RX_SUCCESS (no congestion)
4595 * NET_RX_DROP (packet was dropped)
4596 *
4597 */
4598
4599int netif_rx(struct sk_buff *skb)
4600{
b0e3f1bd
GB
4601 int ret;
4602
ae78dbfa
BH
4603 trace_netif_rx_entry(skb);
4604
b0e3f1bd
GB
4605 ret = netif_rx_internal(skb);
4606 trace_netif_rx_exit(ret);
4607
4608 return ret;
ae78dbfa 4609}
d1b19dff 4610EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4611
4612int netif_rx_ni(struct sk_buff *skb)
4613{
4614 int err;
4615
ae78dbfa
BH
4616 trace_netif_rx_ni_entry(skb);
4617
1da177e4 4618 preempt_disable();
ae78dbfa 4619 err = netif_rx_internal(skb);
1da177e4
LT
4620 if (local_softirq_pending())
4621 do_softirq();
4622 preempt_enable();
b0e3f1bd 4623 trace_netif_rx_ni_exit(err);
1da177e4
LT
4624
4625 return err;
4626}
1da177e4
LT
4627EXPORT_SYMBOL(netif_rx_ni);
4628
0766f788 4629static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4630{
903ceff7 4631 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4632
4633 if (sd->completion_queue) {
4634 struct sk_buff *clist;
4635
4636 local_irq_disable();
4637 clist = sd->completion_queue;
4638 sd->completion_queue = NULL;
4639 local_irq_enable();
4640
4641 while (clist) {
4642 struct sk_buff *skb = clist;
f4563a75 4643
1da177e4
LT
4644 clist = clist->next;
4645
63354797 4646 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4647 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4648 trace_consume_skb(skb);
4649 else
4650 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4651
4652 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4653 __kfree_skb(skb);
4654 else
4655 __kfree_skb_defer(skb);
1da177e4 4656 }
15fad714
JDB
4657
4658 __kfree_skb_flush();
1da177e4
LT
4659 }
4660
4661 if (sd->output_queue) {
37437bb2 4662 struct Qdisc *head;
1da177e4
LT
4663
4664 local_irq_disable();
4665 head = sd->output_queue;
4666 sd->output_queue = NULL;
a9cbd588 4667 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4668 local_irq_enable();
4669
4670 while (head) {
37437bb2 4671 struct Qdisc *q = head;
6b3ba914 4672 spinlock_t *root_lock = NULL;
37437bb2 4673
1da177e4
LT
4674 head = head->next_sched;
4675
6b3ba914
JF
4676 if (!(q->flags & TCQ_F_NOLOCK)) {
4677 root_lock = qdisc_lock(q);
4678 spin_lock(root_lock);
4679 }
3bcb846c
ED
4680 /* We need to make sure head->next_sched is read
4681 * before clearing __QDISC_STATE_SCHED
4682 */
4683 smp_mb__before_atomic();
4684 clear_bit(__QDISC_STATE_SCHED, &q->state);
4685 qdisc_run(q);
6b3ba914
JF
4686 if (root_lock)
4687 spin_unlock(root_lock);
1da177e4
LT
4688 }
4689 }
f53c7239
SK
4690
4691 xfrm_dev_backlog(sd);
1da177e4
LT
4692}
4693
181402a5 4694#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4695/* This hook is defined here for ATM LANE */
4696int (*br_fdb_test_addr_hook)(struct net_device *dev,
4697 unsigned char *addr) __read_mostly;
4fb019a0 4698EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4699#endif
1da177e4 4700
1f211a1b
DB
4701static inline struct sk_buff *
4702sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4703 struct net_device *orig_dev)
f697c3e8 4704{
e7582bab 4705#ifdef CONFIG_NET_CLS_ACT
46209401 4706 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4707 struct tcf_result cl_res;
24824a09 4708
c9e99fd0
DB
4709 /* If there's at least one ingress present somewhere (so
4710 * we get here via enabled static key), remaining devices
4711 * that are not configured with an ingress qdisc will bail
d2788d34 4712 * out here.
c9e99fd0 4713 */
46209401 4714 if (!miniq)
4577139b 4715 return skb;
46209401 4716
f697c3e8
HX
4717 if (*pt_prev) {
4718 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4719 *pt_prev = NULL;
1da177e4
LT
4720 }
4721
3365495c 4722 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4723 skb->tc_at_ingress = 1;
46209401 4724 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4725
46209401 4726 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
4727 case TC_ACT_OK:
4728 case TC_ACT_RECLASSIFY:
4729 skb->tc_index = TC_H_MIN(cl_res.classid);
4730 break;
4731 case TC_ACT_SHOT:
46209401 4732 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4733 kfree_skb(skb);
4734 return NULL;
d2788d34
DB
4735 case TC_ACT_STOLEN:
4736 case TC_ACT_QUEUED:
e25ea21f 4737 case TC_ACT_TRAP:
8a3a4c6e 4738 consume_skb(skb);
d2788d34 4739 return NULL;
27b29f63
AS
4740 case TC_ACT_REDIRECT:
4741 /* skb_mac_header check was done by cls/act_bpf, so
4742 * we can safely push the L2 header back before
4743 * redirecting to another netdev
4744 */
4745 __skb_push(skb, skb->mac_len);
4746 skb_do_redirect(skb);
4747 return NULL;
720f22fe 4748 case TC_ACT_CONSUMED:
cd11b164 4749 return NULL;
d2788d34
DB
4750 default:
4751 break;
f697c3e8 4752 }
e7582bab 4753#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4754 return skb;
4755}
1da177e4 4756
24b27fc4
MB
4757/**
4758 * netdev_is_rx_handler_busy - check if receive handler is registered
4759 * @dev: device to check
4760 *
4761 * Check if a receive handler is already registered for a given device.
4762 * Return true if there one.
4763 *
4764 * The caller must hold the rtnl_mutex.
4765 */
4766bool netdev_is_rx_handler_busy(struct net_device *dev)
4767{
4768 ASSERT_RTNL();
4769 return dev && rtnl_dereference(dev->rx_handler);
4770}
4771EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4772
ab95bfe0
JP
4773/**
4774 * netdev_rx_handler_register - register receive handler
4775 * @dev: device to register a handler for
4776 * @rx_handler: receive handler to register
93e2c32b 4777 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4778 *
e227867f 4779 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4780 * called from __netif_receive_skb. A negative errno code is returned
4781 * on a failure.
4782 *
4783 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4784 *
4785 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4786 */
4787int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4788 rx_handler_func_t *rx_handler,
4789 void *rx_handler_data)
ab95bfe0 4790{
1b7cd004 4791 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4792 return -EBUSY;
4793
f5426250
PA
4794 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4795 return -EINVAL;
4796
00cfec37 4797 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4798 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4799 rcu_assign_pointer(dev->rx_handler, rx_handler);
4800
4801 return 0;
4802}
4803EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4804
4805/**
4806 * netdev_rx_handler_unregister - unregister receive handler
4807 * @dev: device to unregister a handler from
4808 *
166ec369 4809 * Unregister a receive handler from a device.
ab95bfe0
JP
4810 *
4811 * The caller must hold the rtnl_mutex.
4812 */
4813void netdev_rx_handler_unregister(struct net_device *dev)
4814{
4815
4816 ASSERT_RTNL();
a9b3cd7f 4817 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4818 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4819 * section has a guarantee to see a non NULL rx_handler_data
4820 * as well.
4821 */
4822 synchronize_net();
a9b3cd7f 4823 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4824}
4825EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4826
b4b9e355
MG
4827/*
4828 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4829 * the special handling of PFMEMALLOC skbs.
4830 */
4831static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4832{
4833 switch (skb->protocol) {
2b8837ae
JP
4834 case htons(ETH_P_ARP):
4835 case htons(ETH_P_IP):
4836 case htons(ETH_P_IPV6):
4837 case htons(ETH_P_8021Q):
4838 case htons(ETH_P_8021AD):
b4b9e355
MG
4839 return true;
4840 default:
4841 return false;
4842 }
4843}
4844
e687ad60
PN
4845static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4846 int *ret, struct net_device *orig_dev)
4847{
e7582bab 4848#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4849 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4850 int ingress_retval;
4851
e687ad60
PN
4852 if (*pt_prev) {
4853 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4854 *pt_prev = NULL;
4855 }
4856
2c1e2703
AC
4857 rcu_read_lock();
4858 ingress_retval = nf_hook_ingress(skb);
4859 rcu_read_unlock();
4860 return ingress_retval;
e687ad60 4861 }
e7582bab 4862#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4863 return 0;
4864}
e687ad60 4865
88eb1944
EC
4866static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4867 struct packet_type **ppt_prev)
1da177e4
LT
4868{
4869 struct packet_type *ptype, *pt_prev;
ab95bfe0 4870 rx_handler_func_t *rx_handler;
f2ccd8fa 4871 struct net_device *orig_dev;
8a4eb573 4872 bool deliver_exact = false;
1da177e4 4873 int ret = NET_RX_DROP;
252e3346 4874 __be16 type;
1da177e4 4875
588f0330 4876 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4877
cf66ba58 4878 trace_netif_receive_skb(skb);
9b22ea56 4879
cc9bd5ce 4880 orig_dev = skb->dev;
8f903c70 4881
c1d2bbe1 4882 skb_reset_network_header(skb);
fda55eca
ED
4883 if (!skb_transport_header_was_set(skb))
4884 skb_reset_transport_header(skb);
0b5c9db1 4885 skb_reset_mac_len(skb);
1da177e4
LT
4886
4887 pt_prev = NULL;
4888
63d8ea7f 4889another_round:
b6858177 4890 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4891
4892 __this_cpu_inc(softnet_data.processed);
4893
458bf2f2
SH
4894 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4895 int ret2;
4896
4897 preempt_disable();
4898 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4899 preempt_enable();
4900
4901 if (ret2 != XDP_PASS)
4902 return NET_RX_DROP;
4903 skb_reset_mac_len(skb);
4904 }
4905
8ad227ff
PM
4906 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4907 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4908 skb = skb_vlan_untag(skb);
bcc6d479 4909 if (unlikely(!skb))
2c17d27c 4910 goto out;
bcc6d479
JP
4911 }
4912
e7246e12
WB
4913 if (skb_skip_tc_classify(skb))
4914 goto skip_classify;
1da177e4 4915
9754e293 4916 if (pfmemalloc)
b4b9e355
MG
4917 goto skip_taps;
4918
1da177e4 4919 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4920 if (pt_prev)
4921 ret = deliver_skb(skb, pt_prev, orig_dev);
4922 pt_prev = ptype;
4923 }
4924
4925 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4926 if (pt_prev)
4927 ret = deliver_skb(skb, pt_prev, orig_dev);
4928 pt_prev = ptype;
1da177e4
LT
4929 }
4930
b4b9e355 4931skip_taps:
1cf51900 4932#ifdef CONFIG_NET_INGRESS
aabf6772 4933 if (static_branch_unlikely(&ingress_needed_key)) {
1f211a1b 4934 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4935 if (!skb)
2c17d27c 4936 goto out;
e687ad60
PN
4937
4938 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4939 goto out;
4577139b 4940 }
1cf51900 4941#endif
a5135bcf 4942 skb_reset_tc(skb);
e7246e12 4943skip_classify:
9754e293 4944 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4945 goto drop;
4946
df8a39de 4947 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4948 if (pt_prev) {
4949 ret = deliver_skb(skb, pt_prev, orig_dev);
4950 pt_prev = NULL;
4951 }
48cc32d3 4952 if (vlan_do_receive(&skb))
2425717b
JF
4953 goto another_round;
4954 else if (unlikely(!skb))
2c17d27c 4955 goto out;
2425717b
JF
4956 }
4957
48cc32d3 4958 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4959 if (rx_handler) {
4960 if (pt_prev) {
4961 ret = deliver_skb(skb, pt_prev, orig_dev);
4962 pt_prev = NULL;
4963 }
8a4eb573
JP
4964 switch (rx_handler(&skb)) {
4965 case RX_HANDLER_CONSUMED:
3bc1b1ad 4966 ret = NET_RX_SUCCESS;
2c17d27c 4967 goto out;
8a4eb573 4968 case RX_HANDLER_ANOTHER:
63d8ea7f 4969 goto another_round;
8a4eb573
JP
4970 case RX_HANDLER_EXACT:
4971 deliver_exact = true;
4972 case RX_HANDLER_PASS:
4973 break;
4974 default:
4975 BUG();
4976 }
ab95bfe0 4977 }
1da177e4 4978
df8a39de 4979 if (unlikely(skb_vlan_tag_present(skb))) {
36b2f61a
GV
4980check_vlan_id:
4981 if (skb_vlan_tag_get_id(skb)) {
4982 /* Vlan id is non 0 and vlan_do_receive() above couldn't
4983 * find vlan device.
4984 */
d4b812de 4985 skb->pkt_type = PACKET_OTHERHOST;
36b2f61a
GV
4986 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4987 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4988 /* Outer header is 802.1P with vlan 0, inner header is
4989 * 802.1Q or 802.1AD and vlan_do_receive() above could
4990 * not find vlan dev for vlan id 0.
4991 */
4992 __vlan_hwaccel_clear_tag(skb);
4993 skb = skb_vlan_untag(skb);
4994 if (unlikely(!skb))
4995 goto out;
4996 if (vlan_do_receive(&skb))
4997 /* After stripping off 802.1P header with vlan 0
4998 * vlan dev is found for inner header.
4999 */
5000 goto another_round;
5001 else if (unlikely(!skb))
5002 goto out;
5003 else
5004 /* We have stripped outer 802.1P vlan 0 header.
5005 * But could not find vlan dev.
5006 * check again for vlan id to set OTHERHOST.
5007 */
5008 goto check_vlan_id;
5009 }
d4b812de
ED
5010 /* Note: we might in the future use prio bits
5011 * and set skb->priority like in vlan_do_receive()
5012 * For the time being, just ignore Priority Code Point
5013 */
b1817524 5014 __vlan_hwaccel_clear_tag(skb);
d4b812de 5015 }
48cc32d3 5016
7866a621
SN
5017 type = skb->protocol;
5018
63d8ea7f 5019 /* deliver only exact match when indicated */
7866a621
SN
5020 if (likely(!deliver_exact)) {
5021 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5022 &ptype_base[ntohs(type) &
5023 PTYPE_HASH_MASK]);
5024 }
1f3c8804 5025
7866a621
SN
5026 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5027 &orig_dev->ptype_specific);
5028
5029 if (unlikely(skb->dev != orig_dev)) {
5030 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5031 &skb->dev->ptype_specific);
1da177e4
LT
5032 }
5033
5034 if (pt_prev) {
1f8b977a 5035 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5036 goto drop;
88eb1944 5037 *ppt_prev = pt_prev;
1da177e4 5038 } else {
b4b9e355 5039drop:
6e7333d3
JW
5040 if (!deliver_exact)
5041 atomic_long_inc(&skb->dev->rx_dropped);
5042 else
5043 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
5044 kfree_skb(skb);
5045 /* Jamal, now you will not able to escape explaining
5046 * me how you were going to use this. :-)
5047 */
5048 ret = NET_RX_DROP;
5049 }
5050
2c17d27c 5051out:
9754e293
DM
5052 return ret;
5053}
5054
88eb1944
EC
5055static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5056{
5057 struct net_device *orig_dev = skb->dev;
5058 struct packet_type *pt_prev = NULL;
5059 int ret;
5060
5061 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5062 if (pt_prev)
f5737cba
PA
5063 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5064 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5065 return ret;
5066}
5067
1c601d82
JDB
5068/**
5069 * netif_receive_skb_core - special purpose version of netif_receive_skb
5070 * @skb: buffer to process
5071 *
5072 * More direct receive version of netif_receive_skb(). It should
5073 * only be used by callers that have a need to skip RPS and Generic XDP.
5074 * Caller must also take care of handling if (page_is_)pfmemalloc.
5075 *
5076 * This function may only be called from softirq context and interrupts
5077 * should be enabled.
5078 *
5079 * Return values (usually ignored):
5080 * NET_RX_SUCCESS: no congestion
5081 * NET_RX_DROP: packet was dropped
5082 */
5083int netif_receive_skb_core(struct sk_buff *skb)
5084{
5085 int ret;
5086
5087 rcu_read_lock();
88eb1944 5088 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5089 rcu_read_unlock();
5090
5091 return ret;
5092}
5093EXPORT_SYMBOL(netif_receive_skb_core);
5094
88eb1944
EC
5095static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5096 struct packet_type *pt_prev,
5097 struct net_device *orig_dev)
4ce0017a
EC
5098{
5099 struct sk_buff *skb, *next;
5100
88eb1944
EC
5101 if (!pt_prev)
5102 return;
5103 if (list_empty(head))
5104 return;
17266ee9 5105 if (pt_prev->list_func != NULL)
fdf71426
PA
5106 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5107 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5108 else
9a5a90d1
AL
5109 list_for_each_entry_safe(skb, next, head, list) {
5110 skb_list_del_init(skb);
fdf71426 5111 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5112 }
88eb1944
EC
5113}
5114
5115static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5116{
5117 /* Fast-path assumptions:
5118 * - There is no RX handler.
5119 * - Only one packet_type matches.
5120 * If either of these fails, we will end up doing some per-packet
5121 * processing in-line, then handling the 'last ptype' for the whole
5122 * sublist. This can't cause out-of-order delivery to any single ptype,
5123 * because the 'last ptype' must be constant across the sublist, and all
5124 * other ptypes are handled per-packet.
5125 */
5126 /* Current (common) ptype of sublist */
5127 struct packet_type *pt_curr = NULL;
5128 /* Current (common) orig_dev of sublist */
5129 struct net_device *od_curr = NULL;
5130 struct list_head sublist;
5131 struct sk_buff *skb, *next;
5132
9af86f93 5133 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5134 list_for_each_entry_safe(skb, next, head, list) {
5135 struct net_device *orig_dev = skb->dev;
5136 struct packet_type *pt_prev = NULL;
5137
22f6bbb7 5138 skb_list_del_init(skb);
88eb1944 5139 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
9af86f93
EC
5140 if (!pt_prev)
5141 continue;
88eb1944
EC
5142 if (pt_curr != pt_prev || od_curr != orig_dev) {
5143 /* dispatch old sublist */
88eb1944
EC
5144 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5145 /* start new sublist */
9af86f93 5146 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5147 pt_curr = pt_prev;
5148 od_curr = orig_dev;
5149 }
9af86f93 5150 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5151 }
5152
5153 /* dispatch final sublist */
9af86f93 5154 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5155}
5156
9754e293
DM
5157static int __netif_receive_skb(struct sk_buff *skb)
5158{
5159 int ret;
5160
5161 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5162 unsigned int noreclaim_flag;
9754e293
DM
5163
5164 /*
5165 * PFMEMALLOC skbs are special, they should
5166 * - be delivered to SOCK_MEMALLOC sockets only
5167 * - stay away from userspace
5168 * - have bounded memory usage
5169 *
5170 * Use PF_MEMALLOC as this saves us from propagating the allocation
5171 * context down to all allocation sites.
5172 */
f1083048 5173 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5174 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5175 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5176 } else
88eb1944 5177 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5178
1da177e4
LT
5179 return ret;
5180}
0a9627f2 5181
4ce0017a
EC
5182static void __netif_receive_skb_list(struct list_head *head)
5183{
5184 unsigned long noreclaim_flag = 0;
5185 struct sk_buff *skb, *next;
5186 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5187
5188 list_for_each_entry_safe(skb, next, head, list) {
5189 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5190 struct list_head sublist;
5191
5192 /* Handle the previous sublist */
5193 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5194 if (!list_empty(&sublist))
5195 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5196 pfmemalloc = !pfmemalloc;
5197 /* See comments in __netif_receive_skb */
5198 if (pfmemalloc)
5199 noreclaim_flag = memalloc_noreclaim_save();
5200 else
5201 memalloc_noreclaim_restore(noreclaim_flag);
5202 }
5203 }
5204 /* Handle the remaining sublist */
b9f463d6
EC
5205 if (!list_empty(head))
5206 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5207 /* Restore pflags */
5208 if (pfmemalloc)
5209 memalloc_noreclaim_restore(noreclaim_flag);
5210}
5211
f4e63525 5212static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5213{
58038695 5214 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5215 struct bpf_prog *new = xdp->prog;
5216 int ret = 0;
5217
5218 switch (xdp->command) {
58038695 5219 case XDP_SETUP_PROG:
b5cdae32
DM
5220 rcu_assign_pointer(dev->xdp_prog, new);
5221 if (old)
5222 bpf_prog_put(old);
5223
5224 if (old && !new) {
02786475 5225 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5226 } else if (new && !old) {
02786475 5227 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5228 dev_disable_lro(dev);
56f5aa77 5229 dev_disable_gro_hw(dev);
b5cdae32
DM
5230 }
5231 break;
b5cdae32
DM
5232
5233 case XDP_QUERY_PROG:
58038695 5234 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
5235 break;
5236
5237 default:
5238 ret = -EINVAL;
5239 break;
5240 }
5241
5242 return ret;
5243}
5244
ae78dbfa 5245static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5246{
2c17d27c
JA
5247 int ret;
5248
588f0330 5249 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5250
c1f19b51
RC
5251 if (skb_defer_rx_timestamp(skb))
5252 return NET_RX_SUCCESS;
5253
bbbe211c 5254 rcu_read_lock();
df334545 5255#ifdef CONFIG_RPS
dc05360f 5256 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5257 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5258 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5259
3b098e2d
ED
5260 if (cpu >= 0) {
5261 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5262 rcu_read_unlock();
adc9300e 5263 return ret;
3b098e2d 5264 }
fec5e652 5265 }
1e94d72f 5266#endif
2c17d27c
JA
5267 ret = __netif_receive_skb(skb);
5268 rcu_read_unlock();
5269 return ret;
0a9627f2 5270}
ae78dbfa 5271
7da517a3
EC
5272static void netif_receive_skb_list_internal(struct list_head *head)
5273{
7da517a3 5274 struct sk_buff *skb, *next;
8c057efa 5275 struct list_head sublist;
7da517a3 5276
8c057efa 5277 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5278 list_for_each_entry_safe(skb, next, head, list) {
5279 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5280 skb_list_del_init(skb);
8c057efa
EC
5281 if (!skb_defer_rx_timestamp(skb))
5282 list_add_tail(&skb->list, &sublist);
7da517a3 5283 }
8c057efa 5284 list_splice_init(&sublist, head);
7da517a3 5285
7da517a3
EC
5286 rcu_read_lock();
5287#ifdef CONFIG_RPS
dc05360f 5288 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5289 list_for_each_entry_safe(skb, next, head, list) {
5290 struct rps_dev_flow voidflow, *rflow = &voidflow;
5291 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5292
5293 if (cpu >= 0) {
8c057efa 5294 /* Will be handled, remove from list */
22f6bbb7 5295 skb_list_del_init(skb);
8c057efa 5296 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5297 }
5298 }
5299 }
5300#endif
5301 __netif_receive_skb_list(head);
5302 rcu_read_unlock();
5303}
5304
ae78dbfa
BH
5305/**
5306 * netif_receive_skb - process receive buffer from network
5307 * @skb: buffer to process
5308 *
5309 * netif_receive_skb() is the main receive data processing function.
5310 * It always succeeds. The buffer may be dropped during processing
5311 * for congestion control or by the protocol layers.
5312 *
5313 * This function may only be called from softirq context and interrupts
5314 * should be enabled.
5315 *
5316 * Return values (usually ignored):
5317 * NET_RX_SUCCESS: no congestion
5318 * NET_RX_DROP: packet was dropped
5319 */
04eb4489 5320int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5321{
b0e3f1bd
GB
5322 int ret;
5323
ae78dbfa
BH
5324 trace_netif_receive_skb_entry(skb);
5325
b0e3f1bd
GB
5326 ret = netif_receive_skb_internal(skb);
5327 trace_netif_receive_skb_exit(ret);
5328
5329 return ret;
ae78dbfa 5330}
04eb4489 5331EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5332
f6ad8c1b
EC
5333/**
5334 * netif_receive_skb_list - process many receive buffers from network
5335 * @head: list of skbs to process.
5336 *
7da517a3
EC
5337 * Since return value of netif_receive_skb() is normally ignored, and
5338 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5339 *
5340 * This function may only be called from softirq context and interrupts
5341 * should be enabled.
5342 */
5343void netif_receive_skb_list(struct list_head *head)
5344{
7da517a3 5345 struct sk_buff *skb;
f6ad8c1b 5346
b9f463d6
EC
5347 if (list_empty(head))
5348 return;
b0e3f1bd
GB
5349 if (trace_netif_receive_skb_list_entry_enabled()) {
5350 list_for_each_entry(skb, head, list)
5351 trace_netif_receive_skb_list_entry(skb);
5352 }
7da517a3 5353 netif_receive_skb_list_internal(head);
b0e3f1bd 5354 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5355}
5356EXPORT_SYMBOL(netif_receive_skb_list);
5357
41852497 5358DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5359
5360/* Network device is going away, flush any packets still pending */
5361static void flush_backlog(struct work_struct *work)
6e583ce5 5362{
6e583ce5 5363 struct sk_buff *skb, *tmp;
145dd5f9
PA
5364 struct softnet_data *sd;
5365
5366 local_bh_disable();
5367 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5368
145dd5f9 5369 local_irq_disable();
e36fa2f7 5370 rps_lock(sd);
6e7676c1 5371 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5372 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5373 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 5374 kfree_skb(skb);
76cc8b13 5375 input_queue_head_incr(sd);
6e583ce5 5376 }
6e7676c1 5377 }
e36fa2f7 5378 rps_unlock(sd);
145dd5f9 5379 local_irq_enable();
6e7676c1
CG
5380
5381 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5382 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5383 __skb_unlink(skb, &sd->process_queue);
5384 kfree_skb(skb);
76cc8b13 5385 input_queue_head_incr(sd);
6e7676c1
CG
5386 }
5387 }
145dd5f9
PA
5388 local_bh_enable();
5389}
5390
41852497 5391static void flush_all_backlogs(void)
145dd5f9
PA
5392{
5393 unsigned int cpu;
5394
5395 get_online_cpus();
5396
41852497
ED
5397 for_each_online_cpu(cpu)
5398 queue_work_on(cpu, system_highpri_wq,
5399 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5400
5401 for_each_online_cpu(cpu)
41852497 5402 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5403
5404 put_online_cpus();
6e583ce5
SH
5405}
5406
aaa5d90b
PA
5407INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5408INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
d565b0a1
HX
5409static int napi_gro_complete(struct sk_buff *skb)
5410{
22061d80 5411 struct packet_offload *ptype;
d565b0a1 5412 __be16 type = skb->protocol;
22061d80 5413 struct list_head *head = &offload_base;
d565b0a1
HX
5414 int err = -ENOENT;
5415
c3c7c254
ED
5416 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5417
fc59f9a3
HX
5418 if (NAPI_GRO_CB(skb)->count == 1) {
5419 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5420 goto out;
fc59f9a3 5421 }
d565b0a1
HX
5422
5423 rcu_read_lock();
5424 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5425 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5426 continue;
5427
aaa5d90b
PA
5428 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5429 ipv6_gro_complete, inet_gro_complete,
5430 skb, 0);
d565b0a1
HX
5431 break;
5432 }
5433 rcu_read_unlock();
5434
5435 if (err) {
5436 WARN_ON(&ptype->list == head);
5437 kfree_skb(skb);
5438 return NET_RX_SUCCESS;
5439 }
5440
5441out:
ae78dbfa 5442 return netif_receive_skb_internal(skb);
d565b0a1
HX
5443}
5444
6312fe77 5445static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5446 bool flush_old)
d565b0a1 5447{
6312fe77 5448 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5449 struct sk_buff *skb, *p;
2e71a6f8 5450
07d78363 5451 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5452 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5453 return;
992cba7e 5454 skb_list_del_init(skb);
d565b0a1 5455 napi_gro_complete(skb);
6312fe77 5456 napi->gro_hash[index].count--;
d565b0a1 5457 }
d9f37d01
LR
5458
5459 if (!napi->gro_hash[index].count)
5460 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5461}
07d78363 5462
6312fe77 5463/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5464 * youngest packets at the head of it.
5465 * Complete skbs in reverse order to reduce latencies.
5466 */
5467void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5468{
42519ede
ED
5469 unsigned long bitmask = napi->gro_bitmask;
5470 unsigned int i, base = ~0U;
07d78363 5471
42519ede
ED
5472 while ((i = ffs(bitmask)) != 0) {
5473 bitmask >>= i;
5474 base += i;
5475 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5476 }
07d78363 5477}
86cac58b 5478EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5479
07d78363
DM
5480static struct list_head *gro_list_prepare(struct napi_struct *napi,
5481 struct sk_buff *skb)
89c5fa33 5482{
89c5fa33 5483 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5484 u32 hash = skb_get_hash_raw(skb);
07d78363 5485 struct list_head *head;
d4546c25 5486 struct sk_buff *p;
89c5fa33 5487
6312fe77 5488 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5489 list_for_each_entry(p, head, list) {
89c5fa33
ED
5490 unsigned long diffs;
5491
0b4cec8c
TH
5492 NAPI_GRO_CB(p)->flush = 0;
5493
5494 if (hash != skb_get_hash_raw(p)) {
5495 NAPI_GRO_CB(p)->same_flow = 0;
5496 continue;
5497 }
5498
89c5fa33 5499 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5500 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5501 if (skb_vlan_tag_present(p))
5502 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 5503 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5504 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5505 if (maclen == ETH_HLEN)
5506 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5507 skb_mac_header(skb));
89c5fa33
ED
5508 else if (!diffs)
5509 diffs = memcmp(skb_mac_header(p),
a50e233c 5510 skb_mac_header(skb),
89c5fa33
ED
5511 maclen);
5512 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5513 }
07d78363
DM
5514
5515 return head;
89c5fa33
ED
5516}
5517
299603e8
JC
5518static void skb_gro_reset_offset(struct sk_buff *skb)
5519{
5520 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5521 const skb_frag_t *frag0 = &pinfo->frags[0];
5522
5523 NAPI_GRO_CB(skb)->data_offset = 0;
5524 NAPI_GRO_CB(skb)->frag0 = NULL;
5525 NAPI_GRO_CB(skb)->frag0_len = 0;
5526
5527 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5528 pinfo->nr_frags &&
5529 !PageHighMem(skb_frag_page(frag0))) {
5530 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5531 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5532 skb_frag_size(frag0),
5533 skb->end - skb->tail);
89c5fa33
ED
5534 }
5535}
5536
a50e233c
ED
5537static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5538{
5539 struct skb_shared_info *pinfo = skb_shinfo(skb);
5540
5541 BUG_ON(skb->end - skb->tail < grow);
5542
5543 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5544
5545 skb->data_len -= grow;
5546 skb->tail += grow;
5547
b54c9d5b 5548 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
5549 skb_frag_size_sub(&pinfo->frags[0], grow);
5550
5551 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5552 skb_frag_unref(skb, 0);
5553 memmove(pinfo->frags, pinfo->frags + 1,
5554 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5555 }
5556}
5557
6312fe77 5558static void gro_flush_oldest(struct list_head *head)
07d78363 5559{
6312fe77 5560 struct sk_buff *oldest;
07d78363 5561
6312fe77 5562 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5563
6312fe77 5564 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5565 * impossible.
5566 */
5567 if (WARN_ON_ONCE(!oldest))
5568 return;
5569
d9f37d01
LR
5570 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5571 * SKB to the chain.
07d78363 5572 */
ece23711 5573 skb_list_del_init(oldest);
07d78363
DM
5574 napi_gro_complete(oldest);
5575}
5576
aaa5d90b
PA
5577INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5578 struct sk_buff *));
5579INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5580 struct sk_buff *));
bb728820 5581static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5582{
6312fe77 5583 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5584 struct list_head *head = &offload_base;
22061d80 5585 struct packet_offload *ptype;
d565b0a1 5586 __be16 type = skb->protocol;
07d78363 5587 struct list_head *gro_head;
d4546c25 5588 struct sk_buff *pp = NULL;
5b252f0c 5589 enum gro_result ret;
d4546c25 5590 int same_flow;
a50e233c 5591 int grow;
d565b0a1 5592
b5cdae32 5593 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5594 goto normal;
5595
07d78363 5596 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5597
d565b0a1
HX
5598 rcu_read_lock();
5599 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5600 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5601 continue;
5602
86911732 5603 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5604 skb_reset_mac_len(skb);
d565b0a1 5605 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5606 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5607 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5608 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5609 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5610 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5611 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5612 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5613
662880f4
TH
5614 /* Setup for GRO checksum validation */
5615 switch (skb->ip_summed) {
5616 case CHECKSUM_COMPLETE:
5617 NAPI_GRO_CB(skb)->csum = skb->csum;
5618 NAPI_GRO_CB(skb)->csum_valid = 1;
5619 NAPI_GRO_CB(skb)->csum_cnt = 0;
5620 break;
5621 case CHECKSUM_UNNECESSARY:
5622 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5623 NAPI_GRO_CB(skb)->csum_valid = 0;
5624 break;
5625 default:
5626 NAPI_GRO_CB(skb)->csum_cnt = 0;
5627 NAPI_GRO_CB(skb)->csum_valid = 0;
5628 }
d565b0a1 5629
aaa5d90b
PA
5630 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5631 ipv6_gro_receive, inet_gro_receive,
5632 gro_head, skb);
d565b0a1
HX
5633 break;
5634 }
5635 rcu_read_unlock();
5636
5637 if (&ptype->list == head)
5638 goto normal;
5639
25393d3f
SK
5640 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5641 ret = GRO_CONSUMED;
5642 goto ok;
5643 }
5644
0da2afd5 5645 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5646 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5647
d565b0a1 5648 if (pp) {
992cba7e 5649 skb_list_del_init(pp);
d4546c25 5650 napi_gro_complete(pp);
6312fe77 5651 napi->gro_hash[hash].count--;
d565b0a1
HX
5652 }
5653
0da2afd5 5654 if (same_flow)
d565b0a1
HX
5655 goto ok;
5656
600adc18 5657 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5658 goto normal;
d565b0a1 5659
6312fe77
LR
5660 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5661 gro_flush_oldest(gro_head);
600adc18 5662 } else {
6312fe77 5663 napi->gro_hash[hash].count++;
600adc18 5664 }
d565b0a1 5665 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 5666 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 5667 NAPI_GRO_CB(skb)->last = skb;
86911732 5668 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 5669 list_add(&skb->list, gro_head);
5d0d9be8 5670 ret = GRO_HELD;
d565b0a1 5671
ad0f9904 5672pull:
a50e233c
ED
5673 grow = skb_gro_offset(skb) - skb_headlen(skb);
5674 if (grow > 0)
5675 gro_pull_from_frag0(skb, grow);
d565b0a1 5676ok:
d9f37d01
LR
5677 if (napi->gro_hash[hash].count) {
5678 if (!test_bit(hash, &napi->gro_bitmask))
5679 __set_bit(hash, &napi->gro_bitmask);
5680 } else if (test_bit(hash, &napi->gro_bitmask)) {
5681 __clear_bit(hash, &napi->gro_bitmask);
5682 }
5683
5d0d9be8 5684 return ret;
d565b0a1
HX
5685
5686normal:
ad0f9904
HX
5687 ret = GRO_NORMAL;
5688 goto pull;
5d38a079 5689}
96e93eab 5690
bf5a755f
JC
5691struct packet_offload *gro_find_receive_by_type(__be16 type)
5692{
5693 struct list_head *offload_head = &offload_base;
5694 struct packet_offload *ptype;
5695
5696 list_for_each_entry_rcu(ptype, offload_head, list) {
5697 if (ptype->type != type || !ptype->callbacks.gro_receive)
5698 continue;
5699 return ptype;
5700 }
5701 return NULL;
5702}
e27a2f83 5703EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
5704
5705struct packet_offload *gro_find_complete_by_type(__be16 type)
5706{
5707 struct list_head *offload_head = &offload_base;
5708 struct packet_offload *ptype;
5709
5710 list_for_each_entry_rcu(ptype, offload_head, list) {
5711 if (ptype->type != type || !ptype->callbacks.gro_complete)
5712 continue;
5713 return ptype;
5714 }
5715 return NULL;
5716}
e27a2f83 5717EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 5718
e44699d2
MK
5719static void napi_skb_free_stolen_head(struct sk_buff *skb)
5720{
5721 skb_dst_drop(skb);
174e2381 5722 skb_ext_put(skb);
e44699d2
MK
5723 kmem_cache_free(skbuff_head_cache, skb);
5724}
5725
bb728820 5726static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 5727{
5d0d9be8
HX
5728 switch (ret) {
5729 case GRO_NORMAL:
ae78dbfa 5730 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
5731 ret = GRO_DROP;
5732 break;
5d38a079 5733
5d0d9be8 5734 case GRO_DROP:
5d38a079
HX
5735 kfree_skb(skb);
5736 break;
5b252f0c 5737
daa86548 5738 case GRO_MERGED_FREE:
e44699d2
MK
5739 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5740 napi_skb_free_stolen_head(skb);
5741 else
d7e8883c 5742 __kfree_skb(skb);
daa86548
ED
5743 break;
5744
5b252f0c
BH
5745 case GRO_HELD:
5746 case GRO_MERGED:
25393d3f 5747 case GRO_CONSUMED:
5b252f0c 5748 break;
5d38a079
HX
5749 }
5750
c7c4b3b6 5751 return ret;
5d0d9be8 5752}
5d0d9be8 5753
c7c4b3b6 5754gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 5755{
b0e3f1bd
GB
5756 gro_result_t ret;
5757
93f93a44 5758 skb_mark_napi_id(skb, napi);
ae78dbfa 5759 trace_napi_gro_receive_entry(skb);
86911732 5760
a50e233c
ED
5761 skb_gro_reset_offset(skb);
5762
b0e3f1bd
GB
5763 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5764 trace_napi_gro_receive_exit(ret);
5765
5766 return ret;
d565b0a1
HX
5767}
5768EXPORT_SYMBOL(napi_gro_receive);
5769
d0c2b0d2 5770static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 5771{
93a35f59
ED
5772 if (unlikely(skb->pfmemalloc)) {
5773 consume_skb(skb);
5774 return;
5775 }
96e93eab 5776 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
5777 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5778 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 5779 __vlan_hwaccel_clear_tag(skb);
66c46d74 5780 skb->dev = napi->dev;
6d152e23 5781 skb->skb_iif = 0;
33d9a2c7
ED
5782
5783 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5784 skb->pkt_type = PACKET_HOST;
5785
c3caf119
JC
5786 skb->encapsulation = 0;
5787 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 5788 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
174e2381 5789 skb_ext_reset(skb);
96e93eab
HX
5790
5791 napi->skb = skb;
5792}
96e93eab 5793
76620aaf 5794struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5795{
5d38a079 5796 struct sk_buff *skb = napi->skb;
5d38a079
HX
5797
5798 if (!skb) {
fd11a83d 5799 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5800 if (skb) {
5801 napi->skb = skb;
5802 skb_mark_napi_id(skb, napi);
5803 }
80595d59 5804 }
96e93eab
HX
5805 return skb;
5806}
76620aaf 5807EXPORT_SYMBOL(napi_get_frags);
96e93eab 5808
323ebb61
EC
5809/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5810static void gro_normal_list(struct napi_struct *napi)
5811{
5812 if (!napi->rx_count)
5813 return;
5814 netif_receive_skb_list_internal(&napi->rx_list);
5815 INIT_LIST_HEAD(&napi->rx_list);
5816 napi->rx_count = 0;
5817}
5818
5819/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5820 * pass the whole batch up to the stack.
5821 */
5822static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5823{
5824 list_add_tail(&skb->list, &napi->rx_list);
5825 if (++napi->rx_count >= gro_normal_batch)
5826 gro_normal_list(napi);
5827}
5828
a50e233c
ED
5829static gro_result_t napi_frags_finish(struct napi_struct *napi,
5830 struct sk_buff *skb,
5831 gro_result_t ret)
96e93eab 5832{
5d0d9be8
HX
5833 switch (ret) {
5834 case GRO_NORMAL:
a50e233c
ED
5835 case GRO_HELD:
5836 __skb_push(skb, ETH_HLEN);
5837 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61
EC
5838 if (ret == GRO_NORMAL)
5839 gro_normal_one(napi, skb);
86911732 5840 break;
5d38a079 5841
5d0d9be8 5842 case GRO_DROP:
5d0d9be8
HX
5843 napi_reuse_skb(napi, skb);
5844 break;
5b252f0c 5845
e44699d2
MK
5846 case GRO_MERGED_FREE:
5847 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5848 napi_skb_free_stolen_head(skb);
5849 else
5850 napi_reuse_skb(napi, skb);
5851 break;
5852
5b252f0c 5853 case GRO_MERGED:
25393d3f 5854 case GRO_CONSUMED:
5b252f0c 5855 break;
5d0d9be8 5856 }
5d38a079 5857
c7c4b3b6 5858 return ret;
5d38a079 5859}
5d0d9be8 5860
a50e233c
ED
5861/* Upper GRO stack assumes network header starts at gro_offset=0
5862 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5863 * We copy ethernet header into skb->data to have a common layout.
5864 */
4adb9c4a 5865static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5866{
5867 struct sk_buff *skb = napi->skb;
a50e233c
ED
5868 const struct ethhdr *eth;
5869 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5870
5871 napi->skb = NULL;
5872
a50e233c
ED
5873 skb_reset_mac_header(skb);
5874 skb_gro_reset_offset(skb);
5875
a50e233c
ED
5876 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5877 eth = skb_gro_header_slow(skb, hlen, 0);
5878 if (unlikely(!eth)) {
4da46ceb
AC
5879 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5880 __func__, napi->dev->name);
a50e233c
ED
5881 napi_reuse_skb(napi, skb);
5882 return NULL;
5883 }
5884 } else {
a4270d67 5885 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
5886 gro_pull_from_frag0(skb, hlen);
5887 NAPI_GRO_CB(skb)->frag0 += hlen;
5888 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5889 }
a50e233c
ED
5890 __skb_pull(skb, hlen);
5891
5892 /*
5893 * This works because the only protocols we care about don't require
5894 * special handling.
5895 * We'll fix it up properly in napi_frags_finish()
5896 */
5897 skb->protocol = eth->h_proto;
76620aaf 5898
76620aaf
HX
5899 return skb;
5900}
76620aaf 5901
c7c4b3b6 5902gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5903{
b0e3f1bd 5904 gro_result_t ret;
76620aaf 5905 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5906
5907 if (!skb)
c7c4b3b6 5908 return GRO_DROP;
5d0d9be8 5909
ae78dbfa
BH
5910 trace_napi_gro_frags_entry(skb);
5911
b0e3f1bd
GB
5912 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5913 trace_napi_gro_frags_exit(ret);
5914
5915 return ret;
5d0d9be8 5916}
5d38a079
HX
5917EXPORT_SYMBOL(napi_gro_frags);
5918
573e8fca
TH
5919/* Compute the checksum from gro_offset and return the folded value
5920 * after adding in any pseudo checksum.
5921 */
5922__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5923{
5924 __wsum wsum;
5925 __sum16 sum;
5926
5927 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5928
5929 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5930 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 5931 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
5932 if (likely(!sum)) {
5933 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5934 !skb->csum_complete_sw)
7fe50ac8 5935 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
5936 }
5937
5938 NAPI_GRO_CB(skb)->csum = wsum;
5939 NAPI_GRO_CB(skb)->csum_valid = 1;
5940
5941 return sum;
5942}
5943EXPORT_SYMBOL(__skb_gro_checksum_complete);
5944
773fc8f6 5945static void net_rps_send_ipi(struct softnet_data *remsd)
5946{
5947#ifdef CONFIG_RPS
5948 while (remsd) {
5949 struct softnet_data *next = remsd->rps_ipi_next;
5950
5951 if (cpu_online(remsd->cpu))
5952 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5953 remsd = next;
5954 }
5955#endif
5956}
5957
e326bed2 5958/*
855abcf0 5959 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5960 * Note: called with local irq disabled, but exits with local irq enabled.
5961 */
5962static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5963{
5964#ifdef CONFIG_RPS
5965 struct softnet_data *remsd = sd->rps_ipi_list;
5966
5967 if (remsd) {
5968 sd->rps_ipi_list = NULL;
5969
5970 local_irq_enable();
5971
5972 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5973 net_rps_send_ipi(remsd);
e326bed2
ED
5974 } else
5975#endif
5976 local_irq_enable();
5977}
5978
d75b1ade
ED
5979static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5980{
5981#ifdef CONFIG_RPS
5982 return sd->rps_ipi_list != NULL;
5983#else
5984 return false;
5985#endif
5986}
5987
bea3348e 5988static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5989{
eecfd7c4 5990 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5991 bool again = true;
5992 int work = 0;
1da177e4 5993
e326bed2
ED
5994 /* Check if we have pending ipi, its better to send them now,
5995 * not waiting net_rx_action() end.
5996 */
d75b1ade 5997 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5998 local_irq_disable();
5999 net_rps_action_and_irq_enable(sd);
6000 }
d75b1ade 6001
3d48b53f 6002 napi->weight = dev_rx_weight;
145dd5f9 6003 while (again) {
1da177e4 6004 struct sk_buff *skb;
6e7676c1
CG
6005
6006 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 6007 rcu_read_lock();
6e7676c1 6008 __netif_receive_skb(skb);
2c17d27c 6009 rcu_read_unlock();
76cc8b13 6010 input_queue_head_incr(sd);
145dd5f9 6011 if (++work >= quota)
76cc8b13 6012 return work;
145dd5f9 6013
6e7676c1 6014 }
1da177e4 6015
145dd5f9 6016 local_irq_disable();
e36fa2f7 6017 rps_lock(sd);
11ef7a89 6018 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
6019 /*
6020 * Inline a custom version of __napi_complete().
6021 * only current cpu owns and manipulates this napi,
11ef7a89
TH
6022 * and NAPI_STATE_SCHED is the only possible flag set
6023 * on backlog.
6024 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
6025 * and we dont need an smp_mb() memory barrier.
6026 */
eecfd7c4 6027 napi->state = 0;
145dd5f9
PA
6028 again = false;
6029 } else {
6030 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6031 &sd->process_queue);
bea3348e 6032 }
e36fa2f7 6033 rps_unlock(sd);
145dd5f9 6034 local_irq_enable();
6e7676c1 6035 }
1da177e4 6036
bea3348e
SH
6037 return work;
6038}
1da177e4 6039
bea3348e
SH
6040/**
6041 * __napi_schedule - schedule for receive
c4ea43c5 6042 * @n: entry to schedule
bea3348e 6043 *
bc9ad166
ED
6044 * The entry's receive function will be scheduled to run.
6045 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 6046 */
b5606c2d 6047void __napi_schedule(struct napi_struct *n)
bea3348e
SH
6048{
6049 unsigned long flags;
1da177e4 6050
bea3348e 6051 local_irq_save(flags);
903ceff7 6052 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 6053 local_irq_restore(flags);
1da177e4 6054}
bea3348e
SH
6055EXPORT_SYMBOL(__napi_schedule);
6056
39e6c820
ED
6057/**
6058 * napi_schedule_prep - check if napi can be scheduled
6059 * @n: napi context
6060 *
6061 * Test if NAPI routine is already running, and if not mark
6062 * it as running. This is used as a condition variable
6063 * insure only one NAPI poll instance runs. We also make
6064 * sure there is no pending NAPI disable.
6065 */
6066bool napi_schedule_prep(struct napi_struct *n)
6067{
6068 unsigned long val, new;
6069
6070 do {
6071 val = READ_ONCE(n->state);
6072 if (unlikely(val & NAPIF_STATE_DISABLE))
6073 return false;
6074 new = val | NAPIF_STATE_SCHED;
6075
6076 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6077 * This was suggested by Alexander Duyck, as compiler
6078 * emits better code than :
6079 * if (val & NAPIF_STATE_SCHED)
6080 * new |= NAPIF_STATE_MISSED;
6081 */
6082 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6083 NAPIF_STATE_MISSED;
6084 } while (cmpxchg(&n->state, val, new) != val);
6085
6086 return !(val & NAPIF_STATE_SCHED);
6087}
6088EXPORT_SYMBOL(napi_schedule_prep);
6089
bc9ad166
ED
6090/**
6091 * __napi_schedule_irqoff - schedule for receive
6092 * @n: entry to schedule
6093 *
6094 * Variant of __napi_schedule() assuming hard irqs are masked
6095 */
6096void __napi_schedule_irqoff(struct napi_struct *n)
6097{
6098 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6099}
6100EXPORT_SYMBOL(__napi_schedule_irqoff);
6101
364b6055 6102bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6103{
39e6c820 6104 unsigned long flags, val, new;
d565b0a1
HX
6105
6106 /*
217f6974
ED
6107 * 1) Don't let napi dequeue from the cpu poll list
6108 * just in case its running on a different cpu.
6109 * 2) If we are busy polling, do nothing here, we have
6110 * the guarantee we will be called later.
d565b0a1 6111 */
217f6974
ED
6112 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6113 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6114 return false;
d565b0a1 6115
323ebb61
EC
6116 gro_normal_list(n);
6117
d9f37d01 6118 if (n->gro_bitmask) {
3b47d303 6119 unsigned long timeout = 0;
d75b1ade 6120
3b47d303
ED
6121 if (work_done)
6122 timeout = n->dev->gro_flush_timeout;
6123
605108ac
PA
6124 /* When the NAPI instance uses a timeout and keeps postponing
6125 * it, we need to bound somehow the time packets are kept in
6126 * the GRO layer
6127 */
6128 napi_gro_flush(n, !!timeout);
3b47d303
ED
6129 if (timeout)
6130 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6131 HRTIMER_MODE_REL_PINNED);
3b47d303 6132 }
02c1602e 6133 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6134 /* If n->poll_list is not empty, we need to mask irqs */
6135 local_irq_save(flags);
02c1602e 6136 list_del_init(&n->poll_list);
d75b1ade
ED
6137 local_irq_restore(flags);
6138 }
39e6c820
ED
6139
6140 do {
6141 val = READ_ONCE(n->state);
6142
6143 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6144
6145 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6146
6147 /* If STATE_MISSED was set, leave STATE_SCHED set,
6148 * because we will call napi->poll() one more time.
6149 * This C code was suggested by Alexander Duyck to help gcc.
6150 */
6151 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6152 NAPIF_STATE_SCHED;
6153 } while (cmpxchg(&n->state, val, new) != val);
6154
6155 if (unlikely(val & NAPIF_STATE_MISSED)) {
6156 __napi_schedule(n);
6157 return false;
6158 }
6159
364b6055 6160 return true;
d565b0a1 6161}
3b47d303 6162EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6163
af12fa6e 6164/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6165static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6166{
6167 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6168 struct napi_struct *napi;
6169
6170 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6171 if (napi->napi_id == napi_id)
6172 return napi;
6173
6174 return NULL;
6175}
02d62e86
ED
6176
6177#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6178
ce6aea93 6179#define BUSY_POLL_BUDGET 8
217f6974
ED
6180
6181static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6182{
6183 int rc;
6184
39e6c820
ED
6185 /* Busy polling means there is a high chance device driver hard irq
6186 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6187 * set in napi_schedule_prep().
6188 * Since we are about to call napi->poll() once more, we can safely
6189 * clear NAPI_STATE_MISSED.
6190 *
6191 * Note: x86 could use a single "lock and ..." instruction
6192 * to perform these two clear_bit()
6193 */
6194 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6195 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6196
6197 local_bh_disable();
6198
6199 /* All we really want here is to re-enable device interrupts.
6200 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6201 */
6202 rc = napi->poll(napi, BUSY_POLL_BUDGET);
323ebb61
EC
6203 /* We can't gro_normal_list() here, because napi->poll() might have
6204 * rearmed the napi (napi_complete_done()) in which case it could
6205 * already be running on another CPU.
6206 */
1e22391e 6207 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974 6208 netpoll_poll_unlock(have_poll_lock);
323ebb61
EC
6209 if (rc == BUSY_POLL_BUDGET) {
6210 /* As the whole budget was spent, we still own the napi so can
6211 * safely handle the rx_list.
6212 */
6213 gro_normal_list(napi);
217f6974 6214 __napi_schedule(napi);
323ebb61 6215 }
217f6974 6216 local_bh_enable();
217f6974
ED
6217}
6218
7db6b048
SS
6219void napi_busy_loop(unsigned int napi_id,
6220 bool (*loop_end)(void *, unsigned long),
6221 void *loop_end_arg)
02d62e86 6222{
7db6b048 6223 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6224 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6225 void *have_poll_lock = NULL;
02d62e86 6226 struct napi_struct *napi;
217f6974
ED
6227
6228restart:
217f6974 6229 napi_poll = NULL;
02d62e86 6230
2a028ecb 6231 rcu_read_lock();
02d62e86 6232
545cd5e5 6233 napi = napi_by_id(napi_id);
02d62e86
ED
6234 if (!napi)
6235 goto out;
6236
217f6974
ED
6237 preempt_disable();
6238 for (;;) {
2b5cd0df
AD
6239 int work = 0;
6240
2a028ecb 6241 local_bh_disable();
217f6974
ED
6242 if (!napi_poll) {
6243 unsigned long val = READ_ONCE(napi->state);
6244
6245 /* If multiple threads are competing for this napi,
6246 * we avoid dirtying napi->state as much as we can.
6247 */
6248 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6249 NAPIF_STATE_IN_BUSY_POLL))
6250 goto count;
6251 if (cmpxchg(&napi->state, val,
6252 val | NAPIF_STATE_IN_BUSY_POLL |
6253 NAPIF_STATE_SCHED) != val)
6254 goto count;
6255 have_poll_lock = netpoll_poll_lock(napi);
6256 napi_poll = napi->poll;
6257 }
2b5cd0df
AD
6258 work = napi_poll(napi, BUSY_POLL_BUDGET);
6259 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
323ebb61 6260 gro_normal_list(napi);
217f6974 6261count:
2b5cd0df 6262 if (work > 0)
7db6b048 6263 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6264 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6265 local_bh_enable();
02d62e86 6266
7db6b048 6267 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6268 break;
02d62e86 6269
217f6974
ED
6270 if (unlikely(need_resched())) {
6271 if (napi_poll)
6272 busy_poll_stop(napi, have_poll_lock);
6273 preempt_enable();
6274 rcu_read_unlock();
6275 cond_resched();
7db6b048 6276 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6277 return;
217f6974
ED
6278 goto restart;
6279 }
6cdf89b1 6280 cpu_relax();
217f6974
ED
6281 }
6282 if (napi_poll)
6283 busy_poll_stop(napi, have_poll_lock);
6284 preempt_enable();
02d62e86 6285out:
2a028ecb 6286 rcu_read_unlock();
02d62e86 6287}
7db6b048 6288EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6289
6290#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6291
149d6ad8 6292static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6293{
d64b5e85
ED
6294 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6295 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 6296 return;
af12fa6e 6297
52bd2d62 6298 spin_lock(&napi_hash_lock);
af12fa6e 6299
545cd5e5 6300 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6301 do {
545cd5e5
AD
6302 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6303 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6304 } while (napi_by_id(napi_gen_id));
6305 napi->napi_id = napi_gen_id;
af12fa6e 6306
52bd2d62
ED
6307 hlist_add_head_rcu(&napi->napi_hash_node,
6308 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6309
52bd2d62 6310 spin_unlock(&napi_hash_lock);
af12fa6e 6311}
af12fa6e
ET
6312
6313/* Warning : caller is responsible to make sure rcu grace period
6314 * is respected before freeing memory containing @napi
6315 */
34cbe27e 6316bool napi_hash_del(struct napi_struct *napi)
af12fa6e 6317{
34cbe27e
ED
6318 bool rcu_sync_needed = false;
6319
af12fa6e
ET
6320 spin_lock(&napi_hash_lock);
6321
34cbe27e
ED
6322 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6323 rcu_sync_needed = true;
af12fa6e 6324 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 6325 }
af12fa6e 6326 spin_unlock(&napi_hash_lock);
34cbe27e 6327 return rcu_sync_needed;
af12fa6e
ET
6328}
6329EXPORT_SYMBOL_GPL(napi_hash_del);
6330
3b47d303
ED
6331static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6332{
6333 struct napi_struct *napi;
6334
6335 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6336
6337 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6338 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6339 */
d9f37d01 6340 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
39e6c820
ED
6341 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6342 __napi_schedule_irqoff(napi);
3b47d303
ED
6343
6344 return HRTIMER_NORESTART;
6345}
6346
7c4ec749 6347static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6348{
07d78363
DM
6349 int i;
6350
6312fe77
LR
6351 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6352 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6353 napi->gro_hash[i].count = 0;
6354 }
7c4ec749
DM
6355 napi->gro_bitmask = 0;
6356}
6357
6358void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6359 int (*poll)(struct napi_struct *, int), int weight)
6360{
6361 INIT_LIST_HEAD(&napi->poll_list);
6362 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6363 napi->timer.function = napi_watchdog;
6364 init_gro_hash(napi);
5d38a079 6365 napi->skb = NULL;
323ebb61
EC
6366 INIT_LIST_HEAD(&napi->rx_list);
6367 napi->rx_count = 0;
d565b0a1 6368 napi->poll = poll;
82dc3c63 6369 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6370 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6371 weight);
d565b0a1
HX
6372 napi->weight = weight;
6373 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 6374 napi->dev = dev;
5d38a079 6375#ifdef CONFIG_NETPOLL
d565b0a1
HX
6376 napi->poll_owner = -1;
6377#endif
6378 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 6379 napi_hash_add(napi);
d565b0a1
HX
6380}
6381EXPORT_SYMBOL(netif_napi_add);
6382
3b47d303
ED
6383void napi_disable(struct napi_struct *n)
6384{
6385 might_sleep();
6386 set_bit(NAPI_STATE_DISABLE, &n->state);
6387
6388 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6389 msleep(1);
2d8bff12
NH
6390 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6391 msleep(1);
3b47d303
ED
6392
6393 hrtimer_cancel(&n->timer);
6394
6395 clear_bit(NAPI_STATE_DISABLE, &n->state);
6396}
6397EXPORT_SYMBOL(napi_disable);
6398
07d78363 6399static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6400{
07d78363 6401 int i;
d4546c25 6402
07d78363
DM
6403 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6404 struct sk_buff *skb, *n;
6405
6312fe77 6406 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6407 kfree_skb(skb);
6312fe77 6408 napi->gro_hash[i].count = 0;
07d78363 6409 }
d4546c25
DM
6410}
6411
93d05d4a 6412/* Must be called in process context */
d565b0a1
HX
6413void netif_napi_del(struct napi_struct *napi)
6414{
93d05d4a
ED
6415 might_sleep();
6416 if (napi_hash_del(napi))
6417 synchronize_net();
d7b06636 6418 list_del_init(&napi->dev_list);
76620aaf 6419 napi_free_frags(napi);
d565b0a1 6420
07d78363 6421 flush_gro_hash(napi);
d9f37d01 6422 napi->gro_bitmask = 0;
d565b0a1
HX
6423}
6424EXPORT_SYMBOL(netif_napi_del);
6425
726ce70e
HX
6426static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6427{
6428 void *have;
6429 int work, weight;
6430
6431 list_del_init(&n->poll_list);
6432
6433 have = netpoll_poll_lock(n);
6434
6435 weight = n->weight;
6436
6437 /* This NAPI_STATE_SCHED test is for avoiding a race
6438 * with netpoll's poll_napi(). Only the entity which
6439 * obtains the lock and sees NAPI_STATE_SCHED set will
6440 * actually make the ->poll() call. Therefore we avoid
6441 * accidentally calling ->poll() when NAPI is not scheduled.
6442 */
6443 work = 0;
6444 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6445 work = n->poll(n, weight);
1db19db7 6446 trace_napi_poll(n, work, weight);
726ce70e
HX
6447 }
6448
6449 WARN_ON_ONCE(work > weight);
6450
6451 if (likely(work < weight))
6452 goto out_unlock;
6453
6454 /* Drivers must not modify the NAPI state if they
6455 * consume the entire weight. In such cases this code
6456 * still "owns" the NAPI instance and therefore can
6457 * move the instance around on the list at-will.
6458 */
6459 if (unlikely(napi_disable_pending(n))) {
6460 napi_complete(n);
6461 goto out_unlock;
6462 }
6463
323ebb61
EC
6464 gro_normal_list(n);
6465
d9f37d01 6466 if (n->gro_bitmask) {
726ce70e
HX
6467 /* flush too old packets
6468 * If HZ < 1000, flush all packets.
6469 */
6470 napi_gro_flush(n, HZ >= 1000);
6471 }
6472
001ce546
HX
6473 /* Some drivers may have called napi_schedule
6474 * prior to exhausting their budget.
6475 */
6476 if (unlikely(!list_empty(&n->poll_list))) {
6477 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6478 n->dev ? n->dev->name : "backlog");
6479 goto out_unlock;
6480 }
6481
726ce70e
HX
6482 list_add_tail(&n->poll_list, repoll);
6483
6484out_unlock:
6485 netpoll_poll_unlock(have);
6486
6487 return work;
6488}
6489
0766f788 6490static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6491{
903ceff7 6492 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6493 unsigned long time_limit = jiffies +
6494 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6495 int budget = netdev_budget;
d75b1ade
ED
6496 LIST_HEAD(list);
6497 LIST_HEAD(repoll);
53fb95d3 6498
1da177e4 6499 local_irq_disable();
d75b1ade
ED
6500 list_splice_init(&sd->poll_list, &list);
6501 local_irq_enable();
1da177e4 6502
ceb8d5bf 6503 for (;;) {
bea3348e 6504 struct napi_struct *n;
1da177e4 6505
ceb8d5bf
HX
6506 if (list_empty(&list)) {
6507 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6508 goto out;
ceb8d5bf
HX
6509 break;
6510 }
6511
6bd373eb
HX
6512 n = list_first_entry(&list, struct napi_struct, poll_list);
6513 budget -= napi_poll(n, &repoll);
6514
d75b1ade 6515 /* If softirq window is exhausted then punt.
24f8b238
SH
6516 * Allow this to run for 2 jiffies since which will allow
6517 * an average latency of 1.5/HZ.
bea3348e 6518 */
ceb8d5bf
HX
6519 if (unlikely(budget <= 0 ||
6520 time_after_eq(jiffies, time_limit))) {
6521 sd->time_squeeze++;
6522 break;
6523 }
1da177e4 6524 }
d75b1ade 6525
d75b1ade
ED
6526 local_irq_disable();
6527
6528 list_splice_tail_init(&sd->poll_list, &list);
6529 list_splice_tail(&repoll, &list);
6530 list_splice(&list, &sd->poll_list);
6531 if (!list_empty(&sd->poll_list))
6532 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6533
e326bed2 6534 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6535out:
6536 __kfree_skb_flush();
1da177e4
LT
6537}
6538
aa9d8560 6539struct netdev_adjacent {
9ff162a8 6540 struct net_device *dev;
5d261913
VF
6541
6542 /* upper master flag, there can only be one master device per list */
9ff162a8 6543 bool master;
5d261913 6544
5d261913
VF
6545 /* counter for the number of times this device was added to us */
6546 u16 ref_nr;
6547
402dae96
VF
6548 /* private field for the users */
6549 void *private;
6550
9ff162a8
JP
6551 struct list_head list;
6552 struct rcu_head rcu;
9ff162a8
JP
6553};
6554
6ea29da1 6555static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6556 struct list_head *adj_list)
9ff162a8 6557{
5d261913 6558 struct netdev_adjacent *adj;
5d261913 6559
2f268f12 6560 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6561 if (adj->dev == adj_dev)
6562 return adj;
9ff162a8
JP
6563 }
6564 return NULL;
6565}
6566
f1170fd4
DA
6567static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6568{
6569 struct net_device *dev = data;
6570
6571 return upper_dev == dev;
6572}
6573
9ff162a8
JP
6574/**
6575 * netdev_has_upper_dev - Check if device is linked to an upper device
6576 * @dev: device
6577 * @upper_dev: upper device to check
6578 *
6579 * Find out if a device is linked to specified upper device and return true
6580 * in case it is. Note that this checks only immediate upper device,
6581 * not through a complete stack of devices. The caller must hold the RTNL lock.
6582 */
6583bool netdev_has_upper_dev(struct net_device *dev,
6584 struct net_device *upper_dev)
6585{
6586 ASSERT_RTNL();
6587
f1170fd4
DA
6588 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6589 upper_dev);
9ff162a8
JP
6590}
6591EXPORT_SYMBOL(netdev_has_upper_dev);
6592
1a3f060c
DA
6593/**
6594 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6595 * @dev: device
6596 * @upper_dev: upper device to check
6597 *
6598 * Find out if a device is linked to specified upper device and return true
6599 * in case it is. Note that this checks the entire upper device chain.
6600 * The caller must hold rcu lock.
6601 */
6602
1a3f060c
DA
6603bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6604 struct net_device *upper_dev)
6605{
6606 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6607 upper_dev);
6608}
6609EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6610
9ff162a8
JP
6611/**
6612 * netdev_has_any_upper_dev - Check if device is linked to some device
6613 * @dev: device
6614 *
6615 * Find out if a device is linked to an upper device and return true in case
6616 * it is. The caller must hold the RTNL lock.
6617 */
25cc72a3 6618bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6619{
6620 ASSERT_RTNL();
6621
f1170fd4 6622 return !list_empty(&dev->adj_list.upper);
9ff162a8 6623}
25cc72a3 6624EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6625
6626/**
6627 * netdev_master_upper_dev_get - Get master upper device
6628 * @dev: device
6629 *
6630 * Find a master upper device and return pointer to it or NULL in case
6631 * it's not there. The caller must hold the RTNL lock.
6632 */
6633struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6634{
aa9d8560 6635 struct netdev_adjacent *upper;
9ff162a8
JP
6636
6637 ASSERT_RTNL();
6638
2f268f12 6639 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6640 return NULL;
6641
2f268f12 6642 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6643 struct netdev_adjacent, list);
9ff162a8
JP
6644 if (likely(upper->master))
6645 return upper->dev;
6646 return NULL;
6647}
6648EXPORT_SYMBOL(netdev_master_upper_dev_get);
6649
0f524a80
DA
6650/**
6651 * netdev_has_any_lower_dev - Check if device is linked to some device
6652 * @dev: device
6653 *
6654 * Find out if a device is linked to a lower device and return true in case
6655 * it is. The caller must hold the RTNL lock.
6656 */
6657static bool netdev_has_any_lower_dev(struct net_device *dev)
6658{
6659 ASSERT_RTNL();
6660
6661 return !list_empty(&dev->adj_list.lower);
6662}
6663
b6ccba4c
VF
6664void *netdev_adjacent_get_private(struct list_head *adj_list)
6665{
6666 struct netdev_adjacent *adj;
6667
6668 adj = list_entry(adj_list, struct netdev_adjacent, list);
6669
6670 return adj->private;
6671}
6672EXPORT_SYMBOL(netdev_adjacent_get_private);
6673
44a40855
VY
6674/**
6675 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6676 * @dev: device
6677 * @iter: list_head ** of the current position
6678 *
6679 * Gets the next device from the dev's upper list, starting from iter
6680 * position. The caller must hold RCU read lock.
6681 */
6682struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6683 struct list_head **iter)
6684{
6685 struct netdev_adjacent *upper;
6686
6687 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6688
6689 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6690
6691 if (&upper->list == &dev->adj_list.upper)
6692 return NULL;
6693
6694 *iter = &upper->list;
6695
6696 return upper->dev;
6697}
6698EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6699
1a3f060c
DA
6700static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6701 struct list_head **iter)
6702{
6703 struct netdev_adjacent *upper;
6704
6705 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6706
6707 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6708
6709 if (&upper->list == &dev->adj_list.upper)
6710 return NULL;
6711
6712 *iter = &upper->list;
6713
6714 return upper->dev;
6715}
6716
6717int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6718 int (*fn)(struct net_device *dev,
6719 void *data),
6720 void *data)
6721{
6722 struct net_device *udev;
6723 struct list_head *iter;
6724 int ret;
6725
6726 for (iter = &dev->adj_list.upper,
6727 udev = netdev_next_upper_dev_rcu(dev, &iter);
6728 udev;
6729 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6730 /* first is the upper device itself */
6731 ret = fn(udev, data);
6732 if (ret)
6733 return ret;
6734
6735 /* then look at all of its upper devices */
6736 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6737 if (ret)
6738 return ret;
6739 }
6740
6741 return 0;
6742}
6743EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6744
31088a11
VF
6745/**
6746 * netdev_lower_get_next_private - Get the next ->private from the
6747 * lower neighbour list
6748 * @dev: device
6749 * @iter: list_head ** of the current position
6750 *
6751 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6752 * list, starting from iter position. The caller must hold either hold the
6753 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 6754 * list will remain unchanged.
31088a11
VF
6755 */
6756void *netdev_lower_get_next_private(struct net_device *dev,
6757 struct list_head **iter)
6758{
6759 struct netdev_adjacent *lower;
6760
6761 lower = list_entry(*iter, struct netdev_adjacent, list);
6762
6763 if (&lower->list == &dev->adj_list.lower)
6764 return NULL;
6765
6859e7df 6766 *iter = lower->list.next;
31088a11
VF
6767
6768 return lower->private;
6769}
6770EXPORT_SYMBOL(netdev_lower_get_next_private);
6771
6772/**
6773 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6774 * lower neighbour list, RCU
6775 * variant
6776 * @dev: device
6777 * @iter: list_head ** of the current position
6778 *
6779 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6780 * list, starting from iter position. The caller must hold RCU read lock.
6781 */
6782void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6783 struct list_head **iter)
6784{
6785 struct netdev_adjacent *lower;
6786
6787 WARN_ON_ONCE(!rcu_read_lock_held());
6788
6789 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6790
6791 if (&lower->list == &dev->adj_list.lower)
6792 return NULL;
6793
6859e7df 6794 *iter = &lower->list;
31088a11
VF
6795
6796 return lower->private;
6797}
6798EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6799
4085ebe8
VY
6800/**
6801 * netdev_lower_get_next - Get the next device from the lower neighbour
6802 * list
6803 * @dev: device
6804 * @iter: list_head ** of the current position
6805 *
6806 * Gets the next netdev_adjacent from the dev's lower neighbour
6807 * list, starting from iter position. The caller must hold RTNL lock or
6808 * its own locking that guarantees that the neighbour lower
b469139e 6809 * list will remain unchanged.
4085ebe8
VY
6810 */
6811void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6812{
6813 struct netdev_adjacent *lower;
6814
cfdd28be 6815 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
6816
6817 if (&lower->list == &dev->adj_list.lower)
6818 return NULL;
6819
cfdd28be 6820 *iter = lower->list.next;
4085ebe8
VY
6821
6822 return lower->dev;
6823}
6824EXPORT_SYMBOL(netdev_lower_get_next);
6825
1a3f060c
DA
6826static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6827 struct list_head **iter)
6828{
6829 struct netdev_adjacent *lower;
6830
46b5ab1a 6831 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
6832
6833 if (&lower->list == &dev->adj_list.lower)
6834 return NULL;
6835
46b5ab1a 6836 *iter = &lower->list;
1a3f060c
DA
6837
6838 return lower->dev;
6839}
6840
6841int netdev_walk_all_lower_dev(struct net_device *dev,
6842 int (*fn)(struct net_device *dev,
6843 void *data),
6844 void *data)
6845{
6846 struct net_device *ldev;
6847 struct list_head *iter;
6848 int ret;
6849
6850 for (iter = &dev->adj_list.lower,
6851 ldev = netdev_next_lower_dev(dev, &iter);
6852 ldev;
6853 ldev = netdev_next_lower_dev(dev, &iter)) {
6854 /* first is the lower device itself */
6855 ret = fn(ldev, data);
6856 if (ret)
6857 return ret;
6858
6859 /* then look at all of its lower devices */
6860 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6861 if (ret)
6862 return ret;
6863 }
6864
6865 return 0;
6866}
6867EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6868
1a3f060c
DA
6869static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6870 struct list_head **iter)
6871{
6872 struct netdev_adjacent *lower;
6873
6874 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6875 if (&lower->list == &dev->adj_list.lower)
6876 return NULL;
6877
6878 *iter = &lower->list;
6879
6880 return lower->dev;
6881}
6882
6883int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6884 int (*fn)(struct net_device *dev,
6885 void *data),
6886 void *data)
6887{
6888 struct net_device *ldev;
6889 struct list_head *iter;
6890 int ret;
6891
6892 for (iter = &dev->adj_list.lower,
6893 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6894 ldev;
6895 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6896 /* first is the lower device itself */
6897 ret = fn(ldev, data);
6898 if (ret)
6899 return ret;
6900
6901 /* then look at all of its lower devices */
6902 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6903 if (ret)
6904 return ret;
6905 }
6906
6907 return 0;
6908}
6909EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6910
e001bfad 6911/**
6912 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6913 * lower neighbour list, RCU
6914 * variant
6915 * @dev: device
6916 *
6917 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6918 * list. The caller must hold RCU read lock.
6919 */
6920void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6921{
6922 struct netdev_adjacent *lower;
6923
6924 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6925 struct netdev_adjacent, list);
6926 if (lower)
6927 return lower->private;
6928 return NULL;
6929}
6930EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6931
9ff162a8
JP
6932/**
6933 * netdev_master_upper_dev_get_rcu - Get master upper device
6934 * @dev: device
6935 *
6936 * Find a master upper device and return pointer to it or NULL in case
6937 * it's not there. The caller must hold the RCU read lock.
6938 */
6939struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6940{
aa9d8560 6941 struct netdev_adjacent *upper;
9ff162a8 6942
2f268f12 6943 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 6944 struct netdev_adjacent, list);
9ff162a8
JP
6945 if (upper && likely(upper->master))
6946 return upper->dev;
6947 return NULL;
6948}
6949EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6950
0a59f3a9 6951static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
6952 struct net_device *adj_dev,
6953 struct list_head *dev_list)
6954{
6955 char linkname[IFNAMSIZ+7];
f4563a75 6956
3ee32707
VF
6957 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6958 "upper_%s" : "lower_%s", adj_dev->name);
6959 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6960 linkname);
6961}
0a59f3a9 6962static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
6963 char *name,
6964 struct list_head *dev_list)
6965{
6966 char linkname[IFNAMSIZ+7];
f4563a75 6967
3ee32707
VF
6968 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6969 "upper_%s" : "lower_%s", name);
6970 sysfs_remove_link(&(dev->dev.kobj), linkname);
6971}
6972
7ce64c79
AF
6973static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6974 struct net_device *adj_dev,
6975 struct list_head *dev_list)
6976{
6977 return (dev_list == &dev->adj_list.upper ||
6978 dev_list == &dev->adj_list.lower) &&
6979 net_eq(dev_net(dev), dev_net(adj_dev));
6980}
3ee32707 6981
5d261913
VF
6982static int __netdev_adjacent_dev_insert(struct net_device *dev,
6983 struct net_device *adj_dev,
7863c054 6984 struct list_head *dev_list,
402dae96 6985 void *private, bool master)
5d261913
VF
6986{
6987 struct netdev_adjacent *adj;
842d67a7 6988 int ret;
5d261913 6989
6ea29da1 6990 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6991
6992 if (adj) {
790510d9 6993 adj->ref_nr += 1;
67b62f98
DA
6994 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6995 dev->name, adj_dev->name, adj->ref_nr);
6996
5d261913
VF
6997 return 0;
6998 }
6999
7000 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7001 if (!adj)
7002 return -ENOMEM;
7003
7004 adj->dev = adj_dev;
7005 adj->master = master;
790510d9 7006 adj->ref_nr = 1;
402dae96 7007 adj->private = private;
5d261913 7008 dev_hold(adj_dev);
2f268f12 7009
67b62f98
DA
7010 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7011 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7012
7ce64c79 7013 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7014 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7015 if (ret)
7016 goto free_adj;
7017 }
7018
7863c054 7019 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7020 if (master) {
7021 ret = sysfs_create_link(&(dev->dev.kobj),
7022 &(adj_dev->dev.kobj), "master");
7023 if (ret)
5831d66e 7024 goto remove_symlinks;
842d67a7 7025
7863c054 7026 list_add_rcu(&adj->list, dev_list);
842d67a7 7027 } else {
7863c054 7028 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7029 }
5d261913
VF
7030
7031 return 0;
842d67a7 7032
5831d66e 7033remove_symlinks:
7ce64c79 7034 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7035 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
7036free_adj:
7037 kfree(adj);
974daef7 7038 dev_put(adj_dev);
842d67a7
VF
7039
7040 return ret;
5d261913
VF
7041}
7042
1d143d9f 7043static void __netdev_adjacent_dev_remove(struct net_device *dev,
7044 struct net_device *adj_dev,
93409033 7045 u16 ref_nr,
1d143d9f 7046 struct list_head *dev_list)
5d261913
VF
7047{
7048 struct netdev_adjacent *adj;
7049
67b62f98
DA
7050 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7051 dev->name, adj_dev->name, ref_nr);
7052
6ea29da1 7053 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7054
2f268f12 7055 if (!adj) {
67b62f98 7056 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7057 dev->name, adj_dev->name);
67b62f98
DA
7058 WARN_ON(1);
7059 return;
2f268f12 7060 }
5d261913 7061
93409033 7062 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7063 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7064 dev->name, adj_dev->name, ref_nr,
7065 adj->ref_nr - ref_nr);
93409033 7066 adj->ref_nr -= ref_nr;
5d261913
VF
7067 return;
7068 }
7069
842d67a7
VF
7070 if (adj->master)
7071 sysfs_remove_link(&(dev->dev.kobj), "master");
7072
7ce64c79 7073 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7074 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7075
5d261913 7076 list_del_rcu(&adj->list);
67b62f98 7077 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7078 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
7079 dev_put(adj_dev);
7080 kfree_rcu(adj, rcu);
7081}
7082
1d143d9f 7083static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7084 struct net_device *upper_dev,
7085 struct list_head *up_list,
7086 struct list_head *down_list,
7087 void *private, bool master)
5d261913
VF
7088{
7089 int ret;
7090
790510d9 7091 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7092 private, master);
5d261913
VF
7093 if (ret)
7094 return ret;
7095
790510d9 7096 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7097 private, false);
5d261913 7098 if (ret) {
790510d9 7099 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7100 return ret;
7101 }
7102
7103 return 0;
7104}
7105
1d143d9f 7106static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7107 struct net_device *upper_dev,
93409033 7108 u16 ref_nr,
1d143d9f 7109 struct list_head *up_list,
7110 struct list_head *down_list)
5d261913 7111{
93409033
AC
7112 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7113 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7114}
7115
1d143d9f 7116static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7117 struct net_device *upper_dev,
7118 void *private, bool master)
2f268f12 7119{
f1170fd4
DA
7120 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7121 &dev->adj_list.upper,
7122 &upper_dev->adj_list.lower,
7123 private, master);
5d261913
VF
7124}
7125
1d143d9f 7126static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7127 struct net_device *upper_dev)
2f268f12 7128{
93409033 7129 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7130 &dev->adj_list.upper,
7131 &upper_dev->adj_list.lower);
7132}
5d261913 7133
9ff162a8 7134static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7135 struct net_device *upper_dev, bool master,
42ab19ee
DA
7136 void *upper_priv, void *upper_info,
7137 struct netlink_ext_ack *extack)
9ff162a8 7138{
51d0c047
DA
7139 struct netdev_notifier_changeupper_info changeupper_info = {
7140 .info = {
7141 .dev = dev,
42ab19ee 7142 .extack = extack,
51d0c047
DA
7143 },
7144 .upper_dev = upper_dev,
7145 .master = master,
7146 .linking = true,
7147 .upper_info = upper_info,
7148 };
50d629e7 7149 struct net_device *master_dev;
5d261913 7150 int ret = 0;
9ff162a8
JP
7151
7152 ASSERT_RTNL();
7153
7154 if (dev == upper_dev)
7155 return -EBUSY;
7156
7157 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 7158 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7159 return -EBUSY;
7160
50d629e7
MM
7161 if (!master) {
7162 if (netdev_has_upper_dev(dev, upper_dev))
7163 return -EEXIST;
7164 } else {
7165 master_dev = netdev_master_upper_dev_get(dev);
7166 if (master_dev)
7167 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7168 }
9ff162a8 7169
51d0c047 7170 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7171 &changeupper_info.info);
7172 ret = notifier_to_errno(ret);
7173 if (ret)
7174 return ret;
7175
6dffb044 7176 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7177 master);
5d261913
VF
7178 if (ret)
7179 return ret;
9ff162a8 7180
51d0c047 7181 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7182 &changeupper_info.info);
7183 ret = notifier_to_errno(ret);
7184 if (ret)
f1170fd4 7185 goto rollback;
b03804e7 7186
9ff162a8 7187 return 0;
5d261913 7188
f1170fd4 7189rollback:
2f268f12 7190 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7191
7192 return ret;
9ff162a8
JP
7193}
7194
7195/**
7196 * netdev_upper_dev_link - Add a link to the upper device
7197 * @dev: device
7198 * @upper_dev: new upper device
7a006d59 7199 * @extack: netlink extended ack
9ff162a8
JP
7200 *
7201 * Adds a link to device which is upper to this one. The caller must hold
7202 * the RTNL lock. On a failure a negative errno code is returned.
7203 * On success the reference counts are adjusted and the function
7204 * returns zero.
7205 */
7206int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7207 struct net_device *upper_dev,
7208 struct netlink_ext_ack *extack)
9ff162a8 7209{
42ab19ee
DA
7210 return __netdev_upper_dev_link(dev, upper_dev, false,
7211 NULL, NULL, extack);
9ff162a8
JP
7212}
7213EXPORT_SYMBOL(netdev_upper_dev_link);
7214
7215/**
7216 * netdev_master_upper_dev_link - Add a master link to the upper device
7217 * @dev: device
7218 * @upper_dev: new upper device
6dffb044 7219 * @upper_priv: upper device private
29bf24af 7220 * @upper_info: upper info to be passed down via notifier
7a006d59 7221 * @extack: netlink extended ack
9ff162a8
JP
7222 *
7223 * Adds a link to device which is upper to this one. In this case, only
7224 * one master upper device can be linked, although other non-master devices
7225 * might be linked as well. The caller must hold the RTNL lock.
7226 * On a failure a negative errno code is returned. On success the reference
7227 * counts are adjusted and the function returns zero.
7228 */
7229int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7230 struct net_device *upper_dev,
42ab19ee
DA
7231 void *upper_priv, void *upper_info,
7232 struct netlink_ext_ack *extack)
9ff162a8 7233{
29bf24af 7234 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 7235 upper_priv, upper_info, extack);
9ff162a8
JP
7236}
7237EXPORT_SYMBOL(netdev_master_upper_dev_link);
7238
7239/**
7240 * netdev_upper_dev_unlink - Removes a link to upper device
7241 * @dev: device
7242 * @upper_dev: new upper device
7243 *
7244 * Removes a link to device which is upper to this one. The caller must hold
7245 * the RTNL lock.
7246 */
7247void netdev_upper_dev_unlink(struct net_device *dev,
7248 struct net_device *upper_dev)
7249{
51d0c047
DA
7250 struct netdev_notifier_changeupper_info changeupper_info = {
7251 .info = {
7252 .dev = dev,
7253 },
7254 .upper_dev = upper_dev,
7255 .linking = false,
7256 };
f4563a75 7257
9ff162a8
JP
7258 ASSERT_RTNL();
7259
0e4ead9d 7260 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7261
51d0c047 7262 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7263 &changeupper_info.info);
7264
2f268f12 7265 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7266
51d0c047 7267 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7268 &changeupper_info.info);
9ff162a8
JP
7269}
7270EXPORT_SYMBOL(netdev_upper_dev_unlink);
7271
61bd3857
MS
7272/**
7273 * netdev_bonding_info_change - Dispatch event about slave change
7274 * @dev: device
4a26e453 7275 * @bonding_info: info to dispatch
61bd3857
MS
7276 *
7277 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7278 * The caller must hold the RTNL lock.
7279 */
7280void netdev_bonding_info_change(struct net_device *dev,
7281 struct netdev_bonding_info *bonding_info)
7282{
51d0c047
DA
7283 struct netdev_notifier_bonding_info info = {
7284 .info.dev = dev,
7285 };
61bd3857
MS
7286
7287 memcpy(&info.bonding_info, bonding_info,
7288 sizeof(struct netdev_bonding_info));
51d0c047 7289 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7290 &info.info);
7291}
7292EXPORT_SYMBOL(netdev_bonding_info_change);
7293
2ce1ee17 7294static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
7295{
7296 struct netdev_adjacent *iter;
7297
7298 struct net *net = dev_net(dev);
7299
7300 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7301 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7302 continue;
7303 netdev_adjacent_sysfs_add(iter->dev, dev,
7304 &iter->dev->adj_list.lower);
7305 netdev_adjacent_sysfs_add(dev, iter->dev,
7306 &dev->adj_list.upper);
7307 }
7308
7309 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7310 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7311 continue;
7312 netdev_adjacent_sysfs_add(iter->dev, dev,
7313 &iter->dev->adj_list.upper);
7314 netdev_adjacent_sysfs_add(dev, iter->dev,
7315 &dev->adj_list.lower);
7316 }
7317}
7318
2ce1ee17 7319static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
7320{
7321 struct netdev_adjacent *iter;
7322
7323 struct net *net = dev_net(dev);
7324
7325 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7326 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7327 continue;
7328 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7329 &iter->dev->adj_list.lower);
7330 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7331 &dev->adj_list.upper);
7332 }
7333
7334 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7335 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7336 continue;
7337 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7338 &iter->dev->adj_list.upper);
7339 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7340 &dev->adj_list.lower);
7341 }
7342}
7343
5bb025fa 7344void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 7345{
5bb025fa 7346 struct netdev_adjacent *iter;
402dae96 7347
4c75431a
AF
7348 struct net *net = dev_net(dev);
7349
5bb025fa 7350 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7351 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7352 continue;
5bb025fa
VF
7353 netdev_adjacent_sysfs_del(iter->dev, oldname,
7354 &iter->dev->adj_list.lower);
7355 netdev_adjacent_sysfs_add(iter->dev, dev,
7356 &iter->dev->adj_list.lower);
7357 }
402dae96 7358
5bb025fa 7359 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7360 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7361 continue;
5bb025fa
VF
7362 netdev_adjacent_sysfs_del(iter->dev, oldname,
7363 &iter->dev->adj_list.upper);
7364 netdev_adjacent_sysfs_add(iter->dev, dev,
7365 &iter->dev->adj_list.upper);
7366 }
402dae96 7367}
402dae96
VF
7368
7369void *netdev_lower_dev_get_private(struct net_device *dev,
7370 struct net_device *lower_dev)
7371{
7372 struct netdev_adjacent *lower;
7373
7374 if (!lower_dev)
7375 return NULL;
6ea29da1 7376 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
7377 if (!lower)
7378 return NULL;
7379
7380 return lower->private;
7381}
7382EXPORT_SYMBOL(netdev_lower_dev_get_private);
7383
4085ebe8 7384
952fcfd0 7385int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
7386{
7387 struct net_device *lower = NULL;
7388 struct list_head *iter;
7389 int max_nest = -1;
7390 int nest;
7391
7392 ASSERT_RTNL();
7393
7394 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 7395 nest = dev_get_nest_level(lower);
4085ebe8
VY
7396 if (max_nest < nest)
7397 max_nest = nest;
7398 }
7399
952fcfd0 7400 return max_nest + 1;
4085ebe8
VY
7401}
7402EXPORT_SYMBOL(dev_get_nest_level);
7403
04d48266
JP
7404/**
7405 * netdev_lower_change - Dispatch event about lower device state change
7406 * @lower_dev: device
7407 * @lower_state_info: state to dispatch
7408 *
7409 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7410 * The caller must hold the RTNL lock.
7411 */
7412void netdev_lower_state_changed(struct net_device *lower_dev,
7413 void *lower_state_info)
7414{
51d0c047
DA
7415 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7416 .info.dev = lower_dev,
7417 };
04d48266
JP
7418
7419 ASSERT_RTNL();
7420 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 7421 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
7422 &changelowerstate_info.info);
7423}
7424EXPORT_SYMBOL(netdev_lower_state_changed);
7425
b6c40d68
PM
7426static void dev_change_rx_flags(struct net_device *dev, int flags)
7427{
d314774c
SH
7428 const struct net_device_ops *ops = dev->netdev_ops;
7429
d2615bf4 7430 if (ops->ndo_change_rx_flags)
d314774c 7431 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
7432}
7433
991fb3f7 7434static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 7435{
b536db93 7436 unsigned int old_flags = dev->flags;
d04a48b0
EB
7437 kuid_t uid;
7438 kgid_t gid;
1da177e4 7439
24023451
PM
7440 ASSERT_RTNL();
7441
dad9b335
WC
7442 dev->flags |= IFF_PROMISC;
7443 dev->promiscuity += inc;
7444 if (dev->promiscuity == 0) {
7445 /*
7446 * Avoid overflow.
7447 * If inc causes overflow, untouch promisc and return error.
7448 */
7449 if (inc < 0)
7450 dev->flags &= ~IFF_PROMISC;
7451 else {
7452 dev->promiscuity -= inc;
7b6cd1ce
JP
7453 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7454 dev->name);
dad9b335
WC
7455 return -EOVERFLOW;
7456 }
7457 }
52609c0b 7458 if (dev->flags != old_flags) {
7b6cd1ce
JP
7459 pr_info("device %s %s promiscuous mode\n",
7460 dev->name,
7461 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
7462 if (audit_enabled) {
7463 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
7464 audit_log(audit_context(), GFP_ATOMIC,
7465 AUDIT_ANOM_PROMISCUOUS,
7466 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7467 dev->name, (dev->flags & IFF_PROMISC),
7468 (old_flags & IFF_PROMISC),
7469 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7470 from_kuid(&init_user_ns, uid),
7471 from_kgid(&init_user_ns, gid),
7472 audit_get_sessionid(current));
8192b0c4 7473 }
24023451 7474
b6c40d68 7475 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 7476 }
991fb3f7
ND
7477 if (notify)
7478 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 7479 return 0;
1da177e4
LT
7480}
7481
4417da66
PM
7482/**
7483 * dev_set_promiscuity - update promiscuity count on a device
7484 * @dev: device
7485 * @inc: modifier
7486 *
7487 * Add or remove promiscuity from a device. While the count in the device
7488 * remains above zero the interface remains promiscuous. Once it hits zero
7489 * the device reverts back to normal filtering operation. A negative inc
7490 * value is used to drop promiscuity on the device.
dad9b335 7491 * Return 0 if successful or a negative errno code on error.
4417da66 7492 */
dad9b335 7493int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 7494{
b536db93 7495 unsigned int old_flags = dev->flags;
dad9b335 7496 int err;
4417da66 7497
991fb3f7 7498 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 7499 if (err < 0)
dad9b335 7500 return err;
4417da66
PM
7501 if (dev->flags != old_flags)
7502 dev_set_rx_mode(dev);
dad9b335 7503 return err;
4417da66 7504}
d1b19dff 7505EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 7506
991fb3f7 7507static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 7508{
991fb3f7 7509 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 7510
24023451
PM
7511 ASSERT_RTNL();
7512
1da177e4 7513 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
7514 dev->allmulti += inc;
7515 if (dev->allmulti == 0) {
7516 /*
7517 * Avoid overflow.
7518 * If inc causes overflow, untouch allmulti and return error.
7519 */
7520 if (inc < 0)
7521 dev->flags &= ~IFF_ALLMULTI;
7522 else {
7523 dev->allmulti -= inc;
7b6cd1ce
JP
7524 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7525 dev->name);
dad9b335
WC
7526 return -EOVERFLOW;
7527 }
7528 }
24023451 7529 if (dev->flags ^ old_flags) {
b6c40d68 7530 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 7531 dev_set_rx_mode(dev);
991fb3f7
ND
7532 if (notify)
7533 __dev_notify_flags(dev, old_flags,
7534 dev->gflags ^ old_gflags);
24023451 7535 }
dad9b335 7536 return 0;
4417da66 7537}
991fb3f7
ND
7538
7539/**
7540 * dev_set_allmulti - update allmulti count on a device
7541 * @dev: device
7542 * @inc: modifier
7543 *
7544 * Add or remove reception of all multicast frames to a device. While the
7545 * count in the device remains above zero the interface remains listening
7546 * to all interfaces. Once it hits zero the device reverts back to normal
7547 * filtering operation. A negative @inc value is used to drop the counter
7548 * when releasing a resource needing all multicasts.
7549 * Return 0 if successful or a negative errno code on error.
7550 */
7551
7552int dev_set_allmulti(struct net_device *dev, int inc)
7553{
7554 return __dev_set_allmulti(dev, inc, true);
7555}
d1b19dff 7556EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
7557
7558/*
7559 * Upload unicast and multicast address lists to device and
7560 * configure RX filtering. When the device doesn't support unicast
53ccaae1 7561 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
7562 * are present.
7563 */
7564void __dev_set_rx_mode(struct net_device *dev)
7565{
d314774c
SH
7566 const struct net_device_ops *ops = dev->netdev_ops;
7567
4417da66
PM
7568 /* dev_open will call this function so the list will stay sane. */
7569 if (!(dev->flags&IFF_UP))
7570 return;
7571
7572 if (!netif_device_present(dev))
40b77c94 7573 return;
4417da66 7574
01789349 7575 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
7576 /* Unicast addresses changes may only happen under the rtnl,
7577 * therefore calling __dev_set_promiscuity here is safe.
7578 */
32e7bfc4 7579 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 7580 __dev_set_promiscuity(dev, 1, false);
2d348d1f 7581 dev->uc_promisc = true;
32e7bfc4 7582 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 7583 __dev_set_promiscuity(dev, -1, false);
2d348d1f 7584 dev->uc_promisc = false;
4417da66 7585 }
4417da66 7586 }
01789349
JP
7587
7588 if (ops->ndo_set_rx_mode)
7589 ops->ndo_set_rx_mode(dev);
4417da66
PM
7590}
7591
7592void dev_set_rx_mode(struct net_device *dev)
7593{
b9e40857 7594 netif_addr_lock_bh(dev);
4417da66 7595 __dev_set_rx_mode(dev);
b9e40857 7596 netif_addr_unlock_bh(dev);
1da177e4
LT
7597}
7598
f0db275a
SH
7599/**
7600 * dev_get_flags - get flags reported to userspace
7601 * @dev: device
7602 *
7603 * Get the combination of flag bits exported through APIs to userspace.
7604 */
95c96174 7605unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 7606{
95c96174 7607 unsigned int flags;
1da177e4
LT
7608
7609 flags = (dev->flags & ~(IFF_PROMISC |
7610 IFF_ALLMULTI |
b00055aa
SR
7611 IFF_RUNNING |
7612 IFF_LOWER_UP |
7613 IFF_DORMANT)) |
1da177e4
LT
7614 (dev->gflags & (IFF_PROMISC |
7615 IFF_ALLMULTI));
7616
b00055aa
SR
7617 if (netif_running(dev)) {
7618 if (netif_oper_up(dev))
7619 flags |= IFF_RUNNING;
7620 if (netif_carrier_ok(dev))
7621 flags |= IFF_LOWER_UP;
7622 if (netif_dormant(dev))
7623 flags |= IFF_DORMANT;
7624 }
1da177e4
LT
7625
7626 return flags;
7627}
d1b19dff 7628EXPORT_SYMBOL(dev_get_flags);
1da177e4 7629
6d040321
PM
7630int __dev_change_flags(struct net_device *dev, unsigned int flags,
7631 struct netlink_ext_ack *extack)
1da177e4 7632{
b536db93 7633 unsigned int old_flags = dev->flags;
bd380811 7634 int ret;
1da177e4 7635
24023451
PM
7636 ASSERT_RTNL();
7637
1da177e4
LT
7638 /*
7639 * Set the flags on our device.
7640 */
7641
7642 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7643 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7644 IFF_AUTOMEDIA)) |
7645 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7646 IFF_ALLMULTI));
7647
7648 /*
7649 * Load in the correct multicast list now the flags have changed.
7650 */
7651
b6c40d68
PM
7652 if ((old_flags ^ flags) & IFF_MULTICAST)
7653 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 7654
4417da66 7655 dev_set_rx_mode(dev);
1da177e4
LT
7656
7657 /*
7658 * Have we downed the interface. We handle IFF_UP ourselves
7659 * according to user attempts to set it, rather than blindly
7660 * setting it.
7661 */
7662
7663 ret = 0;
7051b88a 7664 if ((old_flags ^ flags) & IFF_UP) {
7665 if (old_flags & IFF_UP)
7666 __dev_close(dev);
7667 else
40c900aa 7668 ret = __dev_open(dev, extack);
7051b88a 7669 }
1da177e4 7670
1da177e4 7671 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 7672 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 7673 unsigned int old_flags = dev->flags;
d1b19dff 7674
1da177e4 7675 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
7676
7677 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7678 if (dev->flags != old_flags)
7679 dev_set_rx_mode(dev);
1da177e4
LT
7680 }
7681
7682 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 7683 * is important. Some (broken) drivers set IFF_PROMISC, when
7684 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
7685 */
7686 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
7687 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7688
1da177e4 7689 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 7690 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
7691 }
7692
bd380811
PM
7693 return ret;
7694}
7695
a528c219
ND
7696void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7697 unsigned int gchanges)
bd380811
PM
7698{
7699 unsigned int changes = dev->flags ^ old_flags;
7700
a528c219 7701 if (gchanges)
7f294054 7702 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 7703
bd380811
PM
7704 if (changes & IFF_UP) {
7705 if (dev->flags & IFF_UP)
7706 call_netdevice_notifiers(NETDEV_UP, dev);
7707 else
7708 call_netdevice_notifiers(NETDEV_DOWN, dev);
7709 }
7710
7711 if (dev->flags & IFF_UP &&
be9efd36 7712 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
7713 struct netdev_notifier_change_info change_info = {
7714 .info = {
7715 .dev = dev,
7716 },
7717 .flags_changed = changes,
7718 };
be9efd36 7719
51d0c047 7720 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 7721 }
bd380811
PM
7722}
7723
7724/**
7725 * dev_change_flags - change device settings
7726 * @dev: device
7727 * @flags: device state flags
567c5e13 7728 * @extack: netlink extended ack
bd380811
PM
7729 *
7730 * Change settings on device based state flags. The flags are
7731 * in the userspace exported format.
7732 */
567c5e13
PM
7733int dev_change_flags(struct net_device *dev, unsigned int flags,
7734 struct netlink_ext_ack *extack)
bd380811 7735{
b536db93 7736 int ret;
991fb3f7 7737 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 7738
6d040321 7739 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
7740 if (ret < 0)
7741 return ret;
7742
991fb3f7 7743 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 7744 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
7745 return ret;
7746}
d1b19dff 7747EXPORT_SYMBOL(dev_change_flags);
1da177e4 7748
f51048c3 7749int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
7750{
7751 const struct net_device_ops *ops = dev->netdev_ops;
7752
7753 if (ops->ndo_change_mtu)
7754 return ops->ndo_change_mtu(dev, new_mtu);
7755
7756 dev->mtu = new_mtu;
7757 return 0;
7758}
f51048c3 7759EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 7760
f0db275a 7761/**
7a4c53be 7762 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
7763 * @dev: device
7764 * @new_mtu: new transfer unit
7a4c53be 7765 * @extack: netlink extended ack
f0db275a
SH
7766 *
7767 * Change the maximum transfer size of the network device.
7768 */
7a4c53be
SH
7769int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7770 struct netlink_ext_ack *extack)
1da177e4 7771{
2315dc91 7772 int err, orig_mtu;
1da177e4
LT
7773
7774 if (new_mtu == dev->mtu)
7775 return 0;
7776
61e84623
JW
7777 /* MTU must be positive, and in range */
7778 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7a4c53be 7779 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
1da177e4 7780 return -EINVAL;
61e84623
JW
7781 }
7782
7783 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7a4c53be 7784 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
61e84623
JW
7785 return -EINVAL;
7786 }
1da177e4
LT
7787
7788 if (!netif_device_present(dev))
7789 return -ENODEV;
7790
1d486bfb
VF
7791 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7792 err = notifier_to_errno(err);
7793 if (err)
7794 return err;
d314774c 7795
2315dc91
VF
7796 orig_mtu = dev->mtu;
7797 err = __dev_set_mtu(dev, new_mtu);
d314774c 7798
2315dc91 7799 if (!err) {
af7d6cce
SD
7800 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7801 orig_mtu);
2315dc91
VF
7802 err = notifier_to_errno(err);
7803 if (err) {
7804 /* setting mtu back and notifying everyone again,
7805 * so that they have a chance to revert changes.
7806 */
7807 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
7808 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7809 new_mtu);
2315dc91
VF
7810 }
7811 }
1da177e4
LT
7812 return err;
7813}
7a4c53be
SH
7814
7815int dev_set_mtu(struct net_device *dev, int new_mtu)
7816{
7817 struct netlink_ext_ack extack;
7818 int err;
7819
a6bcfc89 7820 memset(&extack, 0, sizeof(extack));
7a4c53be 7821 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 7822 if (err && extack._msg)
7a4c53be
SH
7823 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7824 return err;
7825}
d1b19dff 7826EXPORT_SYMBOL(dev_set_mtu);
1da177e4 7827
6a643ddb
CW
7828/**
7829 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7830 * @dev: device
7831 * @new_len: new tx queue length
7832 */
7833int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7834{
7835 unsigned int orig_len = dev->tx_queue_len;
7836 int res;
7837
7838 if (new_len != (unsigned int)new_len)
7839 return -ERANGE;
7840
7841 if (new_len != orig_len) {
7842 dev->tx_queue_len = new_len;
7843 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7844 res = notifier_to_errno(res);
7effaf06
TT
7845 if (res)
7846 goto err_rollback;
7847 res = dev_qdisc_change_tx_queue_len(dev);
7848 if (res)
7849 goto err_rollback;
6a643ddb
CW
7850 }
7851
7852 return 0;
7effaf06
TT
7853
7854err_rollback:
7855 netdev_err(dev, "refused to change device tx_queue_len\n");
7856 dev->tx_queue_len = orig_len;
7857 return res;
6a643ddb
CW
7858}
7859
cbda10fa
VD
7860/**
7861 * dev_set_group - Change group this device belongs to
7862 * @dev: device
7863 * @new_group: group this device should belong to
7864 */
7865void dev_set_group(struct net_device *dev, int new_group)
7866{
7867 dev->group = new_group;
7868}
7869EXPORT_SYMBOL(dev_set_group);
7870
d59cdf94
PM
7871/**
7872 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7873 * @dev: device
7874 * @addr: new address
7875 * @extack: netlink extended ack
7876 */
7877int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7878 struct netlink_ext_ack *extack)
7879{
7880 struct netdev_notifier_pre_changeaddr_info info = {
7881 .info.dev = dev,
7882 .info.extack = extack,
7883 .dev_addr = addr,
7884 };
7885 int rc;
7886
7887 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7888 return notifier_to_errno(rc);
7889}
7890EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7891
f0db275a
SH
7892/**
7893 * dev_set_mac_address - Change Media Access Control Address
7894 * @dev: device
7895 * @sa: new address
3a37a963 7896 * @extack: netlink extended ack
f0db275a
SH
7897 *
7898 * Change the hardware (MAC) address of the device
7899 */
3a37a963
PM
7900int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7901 struct netlink_ext_ack *extack)
1da177e4 7902{
d314774c 7903 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
7904 int err;
7905
d314774c 7906 if (!ops->ndo_set_mac_address)
1da177e4
LT
7907 return -EOPNOTSUPP;
7908 if (sa->sa_family != dev->type)
7909 return -EINVAL;
7910 if (!netif_device_present(dev))
7911 return -ENODEV;
d59cdf94
PM
7912 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7913 if (err)
7914 return err;
d314774c 7915 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
7916 if (err)
7917 return err;
fbdeca2d 7918 dev->addr_assign_type = NET_ADDR_SET;
f6521516 7919 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 7920 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 7921 return 0;
1da177e4 7922}
d1b19dff 7923EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 7924
4bf84c35
JP
7925/**
7926 * dev_change_carrier - Change device carrier
7927 * @dev: device
691b3b7e 7928 * @new_carrier: new value
4bf84c35
JP
7929 *
7930 * Change device carrier
7931 */
7932int dev_change_carrier(struct net_device *dev, bool new_carrier)
7933{
7934 const struct net_device_ops *ops = dev->netdev_ops;
7935
7936 if (!ops->ndo_change_carrier)
7937 return -EOPNOTSUPP;
7938 if (!netif_device_present(dev))
7939 return -ENODEV;
7940 return ops->ndo_change_carrier(dev, new_carrier);
7941}
7942EXPORT_SYMBOL(dev_change_carrier);
7943
66b52b0d
JP
7944/**
7945 * dev_get_phys_port_id - Get device physical port ID
7946 * @dev: device
7947 * @ppid: port ID
7948 *
7949 * Get device physical port ID
7950 */
7951int dev_get_phys_port_id(struct net_device *dev,
02637fce 7952 struct netdev_phys_item_id *ppid)
66b52b0d
JP
7953{
7954 const struct net_device_ops *ops = dev->netdev_ops;
7955
7956 if (!ops->ndo_get_phys_port_id)
7957 return -EOPNOTSUPP;
7958 return ops->ndo_get_phys_port_id(dev, ppid);
7959}
7960EXPORT_SYMBOL(dev_get_phys_port_id);
7961
db24a904
DA
7962/**
7963 * dev_get_phys_port_name - Get device physical port name
7964 * @dev: device
7965 * @name: port name
ed49e650 7966 * @len: limit of bytes to copy to name
db24a904
DA
7967 *
7968 * Get device physical port name
7969 */
7970int dev_get_phys_port_name(struct net_device *dev,
7971 char *name, size_t len)
7972{
7973 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 7974 int err;
db24a904 7975
af3836df
JP
7976 if (ops->ndo_get_phys_port_name) {
7977 err = ops->ndo_get_phys_port_name(dev, name, len);
7978 if (err != -EOPNOTSUPP)
7979 return err;
7980 }
7981 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
7982}
7983EXPORT_SYMBOL(dev_get_phys_port_name);
7984
d6abc596
FF
7985/**
7986 * dev_get_port_parent_id - Get the device's port parent identifier
7987 * @dev: network device
7988 * @ppid: pointer to a storage for the port's parent identifier
7989 * @recurse: allow/disallow recursion to lower devices
7990 *
7991 * Get the devices's port parent identifier
7992 */
7993int dev_get_port_parent_id(struct net_device *dev,
7994 struct netdev_phys_item_id *ppid,
7995 bool recurse)
7996{
7997 const struct net_device_ops *ops = dev->netdev_ops;
7998 struct netdev_phys_item_id first = { };
7999 struct net_device *lower_dev;
8000 struct list_head *iter;
7e1146e8
JP
8001 int err;
8002
8003 if (ops->ndo_get_port_parent_id) {
8004 err = ops->ndo_get_port_parent_id(dev, ppid);
8005 if (err != -EOPNOTSUPP)
8006 return err;
8007 }
d6abc596 8008
7e1146e8
JP
8009 err = devlink_compat_switch_id_get(dev, ppid);
8010 if (!err || err != -EOPNOTSUPP)
8011 return err;
d6abc596
FF
8012
8013 if (!recurse)
7e1146e8 8014 return -EOPNOTSUPP;
d6abc596
FF
8015
8016 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8017 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8018 if (err)
8019 break;
8020 if (!first.id_len)
8021 first = *ppid;
8022 else if (memcmp(&first, ppid, sizeof(*ppid)))
8023 return -ENODATA;
8024 }
8025
8026 return err;
8027}
8028EXPORT_SYMBOL(dev_get_port_parent_id);
8029
8030/**
8031 * netdev_port_same_parent_id - Indicate if two network devices have
8032 * the same port parent identifier
8033 * @a: first network device
8034 * @b: second network device
8035 */
8036bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8037{
8038 struct netdev_phys_item_id a_id = { };
8039 struct netdev_phys_item_id b_id = { };
8040
8041 if (dev_get_port_parent_id(a, &a_id, true) ||
8042 dev_get_port_parent_id(b, &b_id, true))
8043 return false;
8044
8045 return netdev_phys_item_id_same(&a_id, &b_id);
8046}
8047EXPORT_SYMBOL(netdev_port_same_parent_id);
8048
d746d707
AK
8049/**
8050 * dev_change_proto_down - update protocol port state information
8051 * @dev: device
8052 * @proto_down: new value
8053 *
8054 * This info can be used by switch drivers to set the phys state of the
8055 * port.
8056 */
8057int dev_change_proto_down(struct net_device *dev, bool proto_down)
8058{
8059 const struct net_device_ops *ops = dev->netdev_ops;
8060
8061 if (!ops->ndo_change_proto_down)
8062 return -EOPNOTSUPP;
8063 if (!netif_device_present(dev))
8064 return -ENODEV;
8065 return ops->ndo_change_proto_down(dev, proto_down);
8066}
8067EXPORT_SYMBOL(dev_change_proto_down);
8068
b5899679
AR
8069/**
8070 * dev_change_proto_down_generic - generic implementation for
8071 * ndo_change_proto_down that sets carrier according to
8072 * proto_down.
8073 *
8074 * @dev: device
8075 * @proto_down: new value
8076 */
8077int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8078{
8079 if (proto_down)
8080 netif_carrier_off(dev);
8081 else
8082 netif_carrier_on(dev);
8083 dev->proto_down = proto_down;
8084 return 0;
8085}
8086EXPORT_SYMBOL(dev_change_proto_down_generic);
8087
a25717d2
JK
8088u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8089 enum bpf_netdev_command cmd)
d67b9cd2 8090{
a25717d2 8091 struct netdev_bpf xdp;
d67b9cd2 8092
a25717d2
JK
8093 if (!bpf_op)
8094 return 0;
118b4aa2 8095
a25717d2
JK
8096 memset(&xdp, 0, sizeof(xdp));
8097 xdp.command = cmd;
118b4aa2 8098
a25717d2
JK
8099 /* Query must always succeed. */
8100 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
58038695 8101
6b867589 8102 return xdp.prog_id;
d67b9cd2
DB
8103}
8104
f4e63525 8105static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
32d60277 8106 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
8107 struct bpf_prog *prog)
8108{
f4e63525 8109 struct netdev_bpf xdp;
d67b9cd2
DB
8110
8111 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
8112 if (flags & XDP_FLAGS_HW_MODE)
8113 xdp.command = XDP_SETUP_PROG_HW;
8114 else
8115 xdp.command = XDP_SETUP_PROG;
d67b9cd2 8116 xdp.extack = extack;
32d60277 8117 xdp.flags = flags;
d67b9cd2
DB
8118 xdp.prog = prog;
8119
f4e63525 8120 return bpf_op(dev, &xdp);
d67b9cd2
DB
8121}
8122
bd0b2e7f
JK
8123static void dev_xdp_uninstall(struct net_device *dev)
8124{
8125 struct netdev_bpf xdp;
8126 bpf_op_t ndo_bpf;
8127
8128 /* Remove generic XDP */
8129 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8130
8131 /* Remove from the driver */
8132 ndo_bpf = dev->netdev_ops->ndo_bpf;
8133 if (!ndo_bpf)
8134 return;
8135
a25717d2
JK
8136 memset(&xdp, 0, sizeof(xdp));
8137 xdp.command = XDP_QUERY_PROG;
8138 WARN_ON(ndo_bpf(dev, &xdp));
8139 if (xdp.prog_id)
8140 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8141 NULL));
bd0b2e7f 8142
a25717d2
JK
8143 /* Remove HW offload */
8144 memset(&xdp, 0, sizeof(xdp));
8145 xdp.command = XDP_QUERY_PROG_HW;
8146 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8147 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8148 NULL));
bd0b2e7f
JK
8149}
8150
a7862b45
BB
8151/**
8152 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8153 * @dev: device
b5d60989 8154 * @extack: netlink extended ack
a7862b45 8155 * @fd: new program fd or negative value to clear
85de8576 8156 * @flags: xdp-related flags
a7862b45
BB
8157 *
8158 * Set or clear a bpf program for a device
8159 */
ddf9f970
JK
8160int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8161 int fd, u32 flags)
a7862b45
BB
8162{
8163 const struct net_device_ops *ops = dev->netdev_ops;
a25717d2 8164 enum bpf_netdev_command query;
a7862b45 8165 struct bpf_prog *prog = NULL;
f4e63525 8166 bpf_op_t bpf_op, bpf_chk;
9ee963d6 8167 bool offload;
a7862b45
BB
8168 int err;
8169
85de8576
DB
8170 ASSERT_RTNL();
8171
9ee963d6
JK
8172 offload = flags & XDP_FLAGS_HW_MODE;
8173 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
a25717d2 8174
f4e63525 8175 bpf_op = bpf_chk = ops->ndo_bpf;
01dde20c
MF
8176 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8177 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
0489df9a 8178 return -EOPNOTSUPP;
01dde20c 8179 }
f4e63525
JK
8180 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8181 bpf_op = generic_xdp_install;
8182 if (bpf_op == bpf_chk)
8183 bpf_chk = generic_xdp_install;
b5cdae32 8184
a7862b45 8185 if (fd >= 0) {
c14a9f63
MM
8186 u32 prog_id;
8187
9ee963d6 8188 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
01dde20c 8189 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
d67b9cd2 8190 return -EEXIST;
01dde20c 8191 }
c14a9f63
MM
8192
8193 prog_id = __dev_xdp_query(dev, bpf_op, query);
8194 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
01dde20c 8195 NL_SET_ERR_MSG(extack, "XDP program already attached");
d67b9cd2 8196 return -EBUSY;
01dde20c 8197 }
85de8576 8198
288b3de5
JK
8199 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8200 bpf_op == ops->ndo_bpf);
a7862b45
BB
8201 if (IS_ERR(prog))
8202 return PTR_ERR(prog);
441a3303 8203
9ee963d6 8204 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
441a3303
JK
8205 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8206 bpf_prog_put(prog);
8207 return -EINVAL;
8208 }
c14a9f63
MM
8209
8210 if (prog->aux->id == prog_id) {
8211 bpf_prog_put(prog);
8212 return 0;
8213 }
8214 } else {
8215 if (!__dev_xdp_query(dev, bpf_op, query))
8216 return 0;
a7862b45
BB
8217 }
8218
f4e63525 8219 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
a7862b45
BB
8220 if (err < 0 && prog)
8221 bpf_prog_put(prog);
8222
8223 return err;
8224}
a7862b45 8225
1da177e4
LT
8226/**
8227 * dev_new_index - allocate an ifindex
c4ea43c5 8228 * @net: the applicable net namespace
1da177e4
LT
8229 *
8230 * Returns a suitable unique value for a new device interface
8231 * number. The caller must hold the rtnl semaphore or the
8232 * dev_base_lock to be sure it remains unique.
8233 */
881d966b 8234static int dev_new_index(struct net *net)
1da177e4 8235{
aa79e66e 8236 int ifindex = net->ifindex;
f4563a75 8237
1da177e4
LT
8238 for (;;) {
8239 if (++ifindex <= 0)
8240 ifindex = 1;
881d966b 8241 if (!__dev_get_by_index(net, ifindex))
aa79e66e 8242 return net->ifindex = ifindex;
1da177e4
LT
8243 }
8244}
8245
1da177e4 8246/* Delayed registration/unregisteration */
3b5b34fd 8247static LIST_HEAD(net_todo_list);
200b916f 8248DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 8249
6f05f629 8250static void net_set_todo(struct net_device *dev)
1da177e4 8251{
1da177e4 8252 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 8253 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
8254}
8255
9b5e383c 8256static void rollback_registered_many(struct list_head *head)
93ee31f1 8257{
e93737b0 8258 struct net_device *dev, *tmp;
5cde2829 8259 LIST_HEAD(close_head);
9b5e383c 8260
93ee31f1
DL
8261 BUG_ON(dev_boot_phase);
8262 ASSERT_RTNL();
8263
e93737b0 8264 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 8265 /* Some devices call without registering
e93737b0
KK
8266 * for initialization unwind. Remove those
8267 * devices and proceed with the remaining.
9b5e383c
ED
8268 */
8269 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
8270 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8271 dev->name, dev);
93ee31f1 8272
9b5e383c 8273 WARN_ON(1);
e93737b0
KK
8274 list_del(&dev->unreg_list);
8275 continue;
9b5e383c 8276 }
449f4544 8277 dev->dismantle = true;
9b5e383c 8278 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 8279 }
93ee31f1 8280
44345724 8281 /* If device is running, close it first. */
5cde2829
EB
8282 list_for_each_entry(dev, head, unreg_list)
8283 list_add_tail(&dev->close_list, &close_head);
99c4a26a 8284 dev_close_many(&close_head, true);
93ee31f1 8285
44345724 8286 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
8287 /* And unlink it from device chain. */
8288 unlist_netdevice(dev);
93ee31f1 8289
9b5e383c
ED
8290 dev->reg_state = NETREG_UNREGISTERING;
8291 }
41852497 8292 flush_all_backlogs();
93ee31f1
DL
8293
8294 synchronize_net();
8295
9b5e383c 8296 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
8297 struct sk_buff *skb = NULL;
8298
9b5e383c
ED
8299 /* Shutdown queueing discipline. */
8300 dev_shutdown(dev);
93ee31f1 8301
bd0b2e7f 8302 dev_xdp_uninstall(dev);
93ee31f1 8303
9b5e383c 8304 /* Notify protocols, that we are about to destroy
eb13da1a 8305 * this device. They should clean all the things.
8306 */
9b5e383c 8307 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 8308
395eea6c
MB
8309 if (!dev->rtnl_link_ops ||
8310 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 8311 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 8312 GFP_KERNEL, NULL, 0);
395eea6c 8313
9b5e383c
ED
8314 /*
8315 * Flush the unicast and multicast chains
8316 */
a748ee24 8317 dev_uc_flush(dev);
22bedad3 8318 dev_mc_flush(dev);
93ee31f1 8319
ff927412
JP
8320 netdev_name_node_free(dev->name_node);
8321
9b5e383c
ED
8322 if (dev->netdev_ops->ndo_uninit)
8323 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 8324
395eea6c
MB
8325 if (skb)
8326 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 8327
9ff162a8
JP
8328 /* Notifier chain MUST detach us all upper devices. */
8329 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 8330 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 8331
9b5e383c
ED
8332 /* Remove entries from kobject tree */
8333 netdev_unregister_kobject(dev);
024e9679
AD
8334#ifdef CONFIG_XPS
8335 /* Remove XPS queueing entries */
8336 netif_reset_xps_queues_gt(dev, 0);
8337#endif
9b5e383c 8338 }
93ee31f1 8339
850a545b 8340 synchronize_net();
395264d5 8341
a5ee1551 8342 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
8343 dev_put(dev);
8344}
8345
8346static void rollback_registered(struct net_device *dev)
8347{
8348 LIST_HEAD(single);
8349
8350 list_add(&dev->unreg_list, &single);
8351 rollback_registered_many(&single);
ceaaec98 8352 list_del(&single);
93ee31f1
DL
8353}
8354
fd867d51
JW
8355static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8356 struct net_device *upper, netdev_features_t features)
8357{
8358 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8359 netdev_features_t feature;
5ba3f7d6 8360 int feature_bit;
fd867d51 8361
3b89ea9c 8362 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8363 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8364 if (!(upper->wanted_features & feature)
8365 && (features & feature)) {
8366 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8367 &feature, upper->name);
8368 features &= ~feature;
8369 }
8370 }
8371
8372 return features;
8373}
8374
8375static void netdev_sync_lower_features(struct net_device *upper,
8376 struct net_device *lower, netdev_features_t features)
8377{
8378 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8379 netdev_features_t feature;
5ba3f7d6 8380 int feature_bit;
fd867d51 8381
3b89ea9c 8382 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8383 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8384 if (!(features & feature) && (lower->features & feature)) {
8385 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8386 &feature, lower->name);
8387 lower->wanted_features &= ~feature;
8388 netdev_update_features(lower);
8389
8390 if (unlikely(lower->features & feature))
8391 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8392 &feature, lower->name);
8393 }
8394 }
8395}
8396
c8f44aff
MM
8397static netdev_features_t netdev_fix_features(struct net_device *dev,
8398 netdev_features_t features)
b63365a2 8399{
57422dc5
MM
8400 /* Fix illegal checksum combinations */
8401 if ((features & NETIF_F_HW_CSUM) &&
8402 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 8403 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
8404 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8405 }
8406
b63365a2 8407 /* TSO requires that SG is present as well. */
ea2d3688 8408 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 8409 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 8410 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
8411 }
8412
ec5f0615
PS
8413 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8414 !(features & NETIF_F_IP_CSUM)) {
8415 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8416 features &= ~NETIF_F_TSO;
8417 features &= ~NETIF_F_TSO_ECN;
8418 }
8419
8420 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8421 !(features & NETIF_F_IPV6_CSUM)) {
8422 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8423 features &= ~NETIF_F_TSO6;
8424 }
8425
b1dc497b
AD
8426 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8427 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8428 features &= ~NETIF_F_TSO_MANGLEID;
8429
31d8b9e0
BH
8430 /* TSO ECN requires that TSO is present as well. */
8431 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8432 features &= ~NETIF_F_TSO_ECN;
8433
212b573f
MM
8434 /* Software GSO depends on SG. */
8435 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 8436 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
8437 features &= ~NETIF_F_GSO;
8438 }
8439
802ab55a
AD
8440 /* GSO partial features require GSO partial be set */
8441 if ((features & dev->gso_partial_features) &&
8442 !(features & NETIF_F_GSO_PARTIAL)) {
8443 netdev_dbg(dev,
8444 "Dropping partially supported GSO features since no GSO partial.\n");
8445 features &= ~dev->gso_partial_features;
8446 }
8447
fb1f5f79
MC
8448 if (!(features & NETIF_F_RXCSUM)) {
8449 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8450 * successfully merged by hardware must also have the
8451 * checksum verified by hardware. If the user does not
8452 * want to enable RXCSUM, logically, we should disable GRO_HW.
8453 */
8454 if (features & NETIF_F_GRO_HW) {
8455 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8456 features &= ~NETIF_F_GRO_HW;
8457 }
8458 }
8459
de8d5ab2
GP
8460 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8461 if (features & NETIF_F_RXFCS) {
8462 if (features & NETIF_F_LRO) {
8463 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8464 features &= ~NETIF_F_LRO;
8465 }
8466
8467 if (features & NETIF_F_GRO_HW) {
8468 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8469 features &= ~NETIF_F_GRO_HW;
8470 }
e6c6a929
GP
8471 }
8472
b63365a2
HX
8473 return features;
8474}
b63365a2 8475
6cb6a27c 8476int __netdev_update_features(struct net_device *dev)
5455c699 8477{
fd867d51 8478 struct net_device *upper, *lower;
c8f44aff 8479 netdev_features_t features;
fd867d51 8480 struct list_head *iter;
e7868a85 8481 int err = -1;
5455c699 8482
87267485
MM
8483 ASSERT_RTNL();
8484
5455c699
MM
8485 features = netdev_get_wanted_features(dev);
8486
8487 if (dev->netdev_ops->ndo_fix_features)
8488 features = dev->netdev_ops->ndo_fix_features(dev, features);
8489
8490 /* driver might be less strict about feature dependencies */
8491 features = netdev_fix_features(dev, features);
8492
fd867d51
JW
8493 /* some features can't be enabled if they're off an an upper device */
8494 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8495 features = netdev_sync_upper_features(dev, upper, features);
8496
5455c699 8497 if (dev->features == features)
e7868a85 8498 goto sync_lower;
5455c699 8499
c8f44aff
MM
8500 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8501 &dev->features, &features);
5455c699
MM
8502
8503 if (dev->netdev_ops->ndo_set_features)
8504 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
8505 else
8506 err = 0;
5455c699 8507
6cb6a27c 8508 if (unlikely(err < 0)) {
5455c699 8509 netdev_err(dev,
c8f44aff
MM
8510 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8511 err, &features, &dev->features);
17b85d29
NA
8512 /* return non-0 since some features might have changed and
8513 * it's better to fire a spurious notification than miss it
8514 */
8515 return -1;
6cb6a27c
MM
8516 }
8517
e7868a85 8518sync_lower:
fd867d51
JW
8519 /* some features must be disabled on lower devices when disabled
8520 * on an upper device (think: bonding master or bridge)
8521 */
8522 netdev_for_each_lower_dev(dev, lower, iter)
8523 netdev_sync_lower_features(dev, lower, features);
8524
ae847f40
SD
8525 if (!err) {
8526 netdev_features_t diff = features ^ dev->features;
8527
8528 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8529 /* udp_tunnel_{get,drop}_rx_info both need
8530 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8531 * device, or they won't do anything.
8532 * Thus we need to update dev->features
8533 * *before* calling udp_tunnel_get_rx_info,
8534 * but *after* calling udp_tunnel_drop_rx_info.
8535 */
8536 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8537 dev->features = features;
8538 udp_tunnel_get_rx_info(dev);
8539 } else {
8540 udp_tunnel_drop_rx_info(dev);
8541 }
8542 }
8543
9daae9bd
GP
8544 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8545 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8546 dev->features = features;
8547 err |= vlan_get_rx_ctag_filter_info(dev);
8548 } else {
8549 vlan_drop_rx_ctag_filter_info(dev);
8550 }
8551 }
8552
8553 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8554 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8555 dev->features = features;
8556 err |= vlan_get_rx_stag_filter_info(dev);
8557 } else {
8558 vlan_drop_rx_stag_filter_info(dev);
8559 }
8560 }
8561
6cb6a27c 8562 dev->features = features;
ae847f40 8563 }
6cb6a27c 8564
e7868a85 8565 return err < 0 ? 0 : 1;
6cb6a27c
MM
8566}
8567
afe12cc8
MM
8568/**
8569 * netdev_update_features - recalculate device features
8570 * @dev: the device to check
8571 *
8572 * Recalculate dev->features set and send notifications if it
8573 * has changed. Should be called after driver or hardware dependent
8574 * conditions might have changed that influence the features.
8575 */
6cb6a27c
MM
8576void netdev_update_features(struct net_device *dev)
8577{
8578 if (__netdev_update_features(dev))
8579 netdev_features_change(dev);
5455c699
MM
8580}
8581EXPORT_SYMBOL(netdev_update_features);
8582
afe12cc8
MM
8583/**
8584 * netdev_change_features - recalculate device features
8585 * @dev: the device to check
8586 *
8587 * Recalculate dev->features set and send notifications even
8588 * if they have not changed. Should be called instead of
8589 * netdev_update_features() if also dev->vlan_features might
8590 * have changed to allow the changes to be propagated to stacked
8591 * VLAN devices.
8592 */
8593void netdev_change_features(struct net_device *dev)
8594{
8595 __netdev_update_features(dev);
8596 netdev_features_change(dev);
8597}
8598EXPORT_SYMBOL(netdev_change_features);
8599
fc4a7489
PM
8600/**
8601 * netif_stacked_transfer_operstate - transfer operstate
8602 * @rootdev: the root or lower level device to transfer state from
8603 * @dev: the device to transfer operstate to
8604 *
8605 * Transfer operational state from root to device. This is normally
8606 * called when a stacking relationship exists between the root
8607 * device and the device(a leaf device).
8608 */
8609void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8610 struct net_device *dev)
8611{
8612 if (rootdev->operstate == IF_OPER_DORMANT)
8613 netif_dormant_on(dev);
8614 else
8615 netif_dormant_off(dev);
8616
0575c86b
ZS
8617 if (netif_carrier_ok(rootdev))
8618 netif_carrier_on(dev);
8619 else
8620 netif_carrier_off(dev);
fc4a7489
PM
8621}
8622EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8623
1b4bf461
ED
8624static int netif_alloc_rx_queues(struct net_device *dev)
8625{
1b4bf461 8626 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 8627 struct netdev_rx_queue *rx;
10595902 8628 size_t sz = count * sizeof(*rx);
e817f856 8629 int err = 0;
1b4bf461 8630
bd25fa7b 8631 BUG_ON(count < 1);
1b4bf461 8632
dcda9b04 8633 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
8634 if (!rx)
8635 return -ENOMEM;
8636
bd25fa7b
TH
8637 dev->_rx = rx;
8638
e817f856 8639 for (i = 0; i < count; i++) {
fe822240 8640 rx[i].dev = dev;
e817f856
JDB
8641
8642 /* XDP RX-queue setup */
8643 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8644 if (err < 0)
8645 goto err_rxq_info;
8646 }
1b4bf461 8647 return 0;
e817f856
JDB
8648
8649err_rxq_info:
8650 /* Rollback successful reg's and free other resources */
8651 while (i--)
8652 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 8653 kvfree(dev->_rx);
e817f856
JDB
8654 dev->_rx = NULL;
8655 return err;
8656}
8657
8658static void netif_free_rx_queues(struct net_device *dev)
8659{
8660 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
8661
8662 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8663 if (!dev->_rx)
8664 return;
8665
e817f856 8666 for (i = 0; i < count; i++)
82aaff2f
JK
8667 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8668
8669 kvfree(dev->_rx);
1b4bf461
ED
8670}
8671
aa942104
CG
8672static void netdev_init_one_queue(struct net_device *dev,
8673 struct netdev_queue *queue, void *_unused)
8674{
8675 /* Initialize queue lock */
8676 spin_lock_init(&queue->_xmit_lock);
8677 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8678 queue->xmit_lock_owner = -1;
b236da69 8679 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 8680 queue->dev = dev;
114cf580
TH
8681#ifdef CONFIG_BQL
8682 dql_init(&queue->dql, HZ);
8683#endif
aa942104
CG
8684}
8685
60877a32
ED
8686static void netif_free_tx_queues(struct net_device *dev)
8687{
4cb28970 8688 kvfree(dev->_tx);
60877a32
ED
8689}
8690
e6484930
TH
8691static int netif_alloc_netdev_queues(struct net_device *dev)
8692{
8693 unsigned int count = dev->num_tx_queues;
8694 struct netdev_queue *tx;
60877a32 8695 size_t sz = count * sizeof(*tx);
e6484930 8696
d339727c
ED
8697 if (count < 1 || count > 0xffff)
8698 return -EINVAL;
62b5942a 8699
dcda9b04 8700 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
8701 if (!tx)
8702 return -ENOMEM;
8703
e6484930 8704 dev->_tx = tx;
1d24eb48 8705
e6484930
TH
8706 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8707 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
8708
8709 return 0;
e6484930
TH
8710}
8711
a2029240
DV
8712void netif_tx_stop_all_queues(struct net_device *dev)
8713{
8714 unsigned int i;
8715
8716 for (i = 0; i < dev->num_tx_queues; i++) {
8717 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 8718
a2029240
DV
8719 netif_tx_stop_queue(txq);
8720 }
8721}
8722EXPORT_SYMBOL(netif_tx_stop_all_queues);
8723
1da177e4
LT
8724/**
8725 * register_netdevice - register a network device
8726 * @dev: device to register
8727 *
8728 * Take a completed network device structure and add it to the kernel
8729 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8730 * chain. 0 is returned on success. A negative errno code is returned
8731 * on a failure to set up the device, or if the name is a duplicate.
8732 *
8733 * Callers must hold the rtnl semaphore. You may want
8734 * register_netdev() instead of this.
8735 *
8736 * BUGS:
8737 * The locking appears insufficient to guarantee two parallel registers
8738 * will not get the same name.
8739 */
8740
8741int register_netdevice(struct net_device *dev)
8742{
1da177e4 8743 int ret;
d314774c 8744 struct net *net = dev_net(dev);
1da177e4 8745
e283de3a
FF
8746 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8747 NETDEV_FEATURE_COUNT);
1da177e4
LT
8748 BUG_ON(dev_boot_phase);
8749 ASSERT_RTNL();
8750
b17a7c17
SH
8751 might_sleep();
8752
1da177e4
LT
8753 /* When net_device's are persistent, this will be fatal. */
8754 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 8755 BUG_ON(!net);
1da177e4 8756
f1f28aa3 8757 spin_lock_init(&dev->addr_list_lock);
cf508b12 8758 netdev_set_addr_lockdep_class(dev);
1da177e4 8759
828de4f6 8760 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
8761 if (ret < 0)
8762 goto out;
8763
ff927412
JP
8764 dev->name_node = netdev_name_node_head_alloc(dev);
8765 if (!dev->name_node)
8766 goto out;
8767
1da177e4 8768 /* Init, if this function is available */
d314774c
SH
8769 if (dev->netdev_ops->ndo_init) {
8770 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
8771 if (ret) {
8772 if (ret > 0)
8773 ret = -EIO;
90833aa4 8774 goto out;
1da177e4
LT
8775 }
8776 }
4ec93edb 8777
f646968f
PM
8778 if (((dev->hw_features | dev->features) &
8779 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
8780 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8781 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8782 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8783 ret = -EINVAL;
8784 goto err_uninit;
8785 }
8786
9c7dafbf
PE
8787 ret = -EBUSY;
8788 if (!dev->ifindex)
8789 dev->ifindex = dev_new_index(net);
8790 else if (__dev_get_by_index(net, dev->ifindex))
8791 goto err_uninit;
8792
5455c699
MM
8793 /* Transfer changeable features to wanted_features and enable
8794 * software offloads (GSO and GRO).
8795 */
8796 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f 8797 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
8798
8799 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8800 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8801 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8802 }
8803
14d1232f 8804 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 8805
cbc53e08 8806 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 8807 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 8808
7f348a60
AD
8809 /* If IPv4 TCP segmentation offload is supported we should also
8810 * allow the device to enable segmenting the frame with the option
8811 * of ignoring a static IP ID value. This doesn't enable the
8812 * feature itself but allows the user to enable it later.
8813 */
cbc53e08
AD
8814 if (dev->hw_features & NETIF_F_TSO)
8815 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
8816 if (dev->vlan_features & NETIF_F_TSO)
8817 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8818 if (dev->mpls_features & NETIF_F_TSO)
8819 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8820 if (dev->hw_enc_features & NETIF_F_TSO)
8821 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 8822
1180e7d6 8823 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 8824 */
1180e7d6 8825 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 8826
ee579677
PS
8827 /* Make NETIF_F_SG inheritable to tunnel devices.
8828 */
802ab55a 8829 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 8830
0d89d203
SH
8831 /* Make NETIF_F_SG inheritable to MPLS.
8832 */
8833 dev->mpls_features |= NETIF_F_SG;
8834
7ffbe3fd
JB
8835 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8836 ret = notifier_to_errno(ret);
8837 if (ret)
8838 goto err_uninit;
8839
8b41d188 8840 ret = netdev_register_kobject(dev);
b17a7c17 8841 if (ret)
7ce1b0ed 8842 goto err_uninit;
b17a7c17
SH
8843 dev->reg_state = NETREG_REGISTERED;
8844
6cb6a27c 8845 __netdev_update_features(dev);
8e9b59b2 8846
1da177e4
LT
8847 /*
8848 * Default initial state at registry is that the
8849 * device is present.
8850 */
8851
8852 set_bit(__LINK_STATE_PRESENT, &dev->state);
8853
8f4cccbb
BH
8854 linkwatch_init_dev(dev);
8855
1da177e4 8856 dev_init_scheduler(dev);
1da177e4 8857 dev_hold(dev);
ce286d32 8858 list_netdevice(dev);
7bf23575 8859 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 8860
948b337e
JP
8861 /* If the device has permanent device address, driver should
8862 * set dev_addr and also addr_assign_type should be set to
8863 * NET_ADDR_PERM (default value).
8864 */
8865 if (dev->addr_assign_type == NET_ADDR_PERM)
8866 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8867
1da177e4 8868 /* Notify protocols, that a new device appeared. */
056925ab 8869 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 8870 ret = notifier_to_errno(ret);
93ee31f1
DL
8871 if (ret) {
8872 rollback_registered(dev);
10cc514f
SAK
8873 rcu_barrier();
8874
93ee31f1
DL
8875 dev->reg_state = NETREG_UNREGISTERED;
8876 }
d90a909e
EB
8877 /*
8878 * Prevent userspace races by waiting until the network
8879 * device is fully setup before sending notifications.
8880 */
a2835763
PM
8881 if (!dev->rtnl_link_ops ||
8882 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 8883 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
8884
8885out:
8886 return ret;
7ce1b0ed
HX
8887
8888err_uninit:
ff927412
JP
8889 if (dev->name_node)
8890 netdev_name_node_free(dev->name_node);
d314774c
SH
8891 if (dev->netdev_ops->ndo_uninit)
8892 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
8893 if (dev->priv_destructor)
8894 dev->priv_destructor(dev);
7ce1b0ed 8895 goto out;
1da177e4 8896}
d1b19dff 8897EXPORT_SYMBOL(register_netdevice);
1da177e4 8898
937f1ba5
BH
8899/**
8900 * init_dummy_netdev - init a dummy network device for NAPI
8901 * @dev: device to init
8902 *
8903 * This takes a network device structure and initialize the minimum
8904 * amount of fields so it can be used to schedule NAPI polls without
8905 * registering a full blown interface. This is to be used by drivers
8906 * that need to tie several hardware interfaces to a single NAPI
8907 * poll scheduler due to HW limitations.
8908 */
8909int init_dummy_netdev(struct net_device *dev)
8910{
8911 /* Clear everything. Note we don't initialize spinlocks
8912 * are they aren't supposed to be taken by any of the
8913 * NAPI code and this dummy netdev is supposed to be
8914 * only ever used for NAPI polls
8915 */
8916 memset(dev, 0, sizeof(struct net_device));
8917
8918 /* make sure we BUG if trying to hit standard
8919 * register/unregister code path
8920 */
8921 dev->reg_state = NETREG_DUMMY;
8922
937f1ba5
BH
8923 /* NAPI wants this */
8924 INIT_LIST_HEAD(&dev->napi_list);
8925
8926 /* a dummy interface is started by default */
8927 set_bit(__LINK_STATE_PRESENT, &dev->state);
8928 set_bit(__LINK_STATE_START, &dev->state);
8929
35edfdc7
JE
8930 /* napi_busy_loop stats accounting wants this */
8931 dev_net_set(dev, &init_net);
8932
29b4433d
ED
8933 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8934 * because users of this 'device' dont need to change
8935 * its refcount.
8936 */
8937
937f1ba5
BH
8938 return 0;
8939}
8940EXPORT_SYMBOL_GPL(init_dummy_netdev);
8941
8942
1da177e4
LT
8943/**
8944 * register_netdev - register a network device
8945 * @dev: device to register
8946 *
8947 * Take a completed network device structure and add it to the kernel
8948 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8949 * chain. 0 is returned on success. A negative errno code is returned
8950 * on a failure to set up the device, or if the name is a duplicate.
8951 *
38b4da38 8952 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
8953 * and expands the device name if you passed a format string to
8954 * alloc_netdev.
8955 */
8956int register_netdev(struct net_device *dev)
8957{
8958 int err;
8959
b0f3debc
KT
8960 if (rtnl_lock_killable())
8961 return -EINTR;
1da177e4 8962 err = register_netdevice(dev);
1da177e4
LT
8963 rtnl_unlock();
8964 return err;
8965}
8966EXPORT_SYMBOL(register_netdev);
8967
29b4433d
ED
8968int netdev_refcnt_read(const struct net_device *dev)
8969{
8970 int i, refcnt = 0;
8971
8972 for_each_possible_cpu(i)
8973 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8974 return refcnt;
8975}
8976EXPORT_SYMBOL(netdev_refcnt_read);
8977
2c53040f 8978/**
1da177e4 8979 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 8980 * @dev: target net_device
1da177e4
LT
8981 *
8982 * This is called when unregistering network devices.
8983 *
8984 * Any protocol or device that holds a reference should register
8985 * for netdevice notification, and cleanup and put back the
8986 * reference if they receive an UNREGISTER event.
8987 * We can get stuck here if buggy protocols don't correctly
4ec93edb 8988 * call dev_put.
1da177e4
LT
8989 */
8990static void netdev_wait_allrefs(struct net_device *dev)
8991{
8992 unsigned long rebroadcast_time, warning_time;
29b4433d 8993 int refcnt;
1da177e4 8994
e014debe
ED
8995 linkwatch_forget_dev(dev);
8996
1da177e4 8997 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
8998 refcnt = netdev_refcnt_read(dev);
8999
9000 while (refcnt != 0) {
1da177e4 9001 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 9002 rtnl_lock();
1da177e4
LT
9003
9004 /* Rebroadcast unregister notification */
056925ab 9005 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 9006
748e2d93 9007 __rtnl_unlock();
0115e8e3 9008 rcu_barrier();
748e2d93
ED
9009 rtnl_lock();
9010
1da177e4
LT
9011 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9012 &dev->state)) {
9013 /* We must not have linkwatch events
9014 * pending on unregister. If this
9015 * happens, we simply run the queue
9016 * unscheduled, resulting in a noop
9017 * for this device.
9018 */
9019 linkwatch_run_queue();
9020 }
9021
6756ae4b 9022 __rtnl_unlock();
1da177e4
LT
9023
9024 rebroadcast_time = jiffies;
9025 }
9026
9027 msleep(250);
9028
29b4433d
ED
9029 refcnt = netdev_refcnt_read(dev);
9030
d7c04b05 9031 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
9032 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9033 dev->name, refcnt);
1da177e4
LT
9034 warning_time = jiffies;
9035 }
9036 }
9037}
9038
9039/* The sequence is:
9040 *
9041 * rtnl_lock();
9042 * ...
9043 * register_netdevice(x1);
9044 * register_netdevice(x2);
9045 * ...
9046 * unregister_netdevice(y1);
9047 * unregister_netdevice(y2);
9048 * ...
9049 * rtnl_unlock();
9050 * free_netdev(y1);
9051 * free_netdev(y2);
9052 *
58ec3b4d 9053 * We are invoked by rtnl_unlock().
1da177e4 9054 * This allows us to deal with problems:
b17a7c17 9055 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
9056 * without deadlocking with linkwatch via keventd.
9057 * 2) Since we run with the RTNL semaphore not held, we can sleep
9058 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
9059 *
9060 * We must not return until all unregister events added during
9061 * the interval the lock was held have been completed.
1da177e4 9062 */
1da177e4
LT
9063void netdev_run_todo(void)
9064{
626ab0e6 9065 struct list_head list;
1da177e4 9066
1da177e4 9067 /* Snapshot list, allow later requests */
626ab0e6 9068 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
9069
9070 __rtnl_unlock();
626ab0e6 9071
0115e8e3
ED
9072
9073 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
9074 if (!list_empty(&list))
9075 rcu_barrier();
9076
1da177e4
LT
9077 while (!list_empty(&list)) {
9078 struct net_device *dev
e5e26d75 9079 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
9080 list_del(&dev->todo_list);
9081
b17a7c17 9082 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 9083 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
9084 dev->name, dev->reg_state);
9085 dump_stack();
9086 continue;
9087 }
1da177e4 9088
b17a7c17 9089 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 9090
b17a7c17 9091 netdev_wait_allrefs(dev);
1da177e4 9092
b17a7c17 9093 /* paranoia */
29b4433d 9094 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
9095 BUG_ON(!list_empty(&dev->ptype_all));
9096 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
9097 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9098 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 9099#if IS_ENABLED(CONFIG_DECNET)
547b792c 9100 WARN_ON(dev->dn_ptr);
330c7272 9101#endif
cf124db5
DM
9102 if (dev->priv_destructor)
9103 dev->priv_destructor(dev);
9104 if (dev->needs_free_netdev)
9105 free_netdev(dev);
9093bbb2 9106
50624c93
EB
9107 /* Report a network device has been unregistered */
9108 rtnl_lock();
9109 dev_net(dev)->dev_unreg_count--;
9110 __rtnl_unlock();
9111 wake_up(&netdev_unregistering_wq);
9112
9093bbb2
SH
9113 /* Free network device */
9114 kobject_put(&dev->dev.kobj);
1da177e4 9115 }
1da177e4
LT
9116}
9117
9256645a
JW
9118/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9119 * all the same fields in the same order as net_device_stats, with only
9120 * the type differing, but rtnl_link_stats64 may have additional fields
9121 * at the end for newer counters.
3cfde79c 9122 */
77a1abf5
ED
9123void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9124 const struct net_device_stats *netdev_stats)
3cfde79c
BH
9125{
9126#if BITS_PER_LONG == 64
9256645a 9127 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 9128 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
9129 /* zero out counters that only exist in rtnl_link_stats64 */
9130 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9131 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 9132#else
9256645a 9133 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
9134 const unsigned long *src = (const unsigned long *)netdev_stats;
9135 u64 *dst = (u64 *)stats64;
9136
9256645a 9137 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
9138 for (i = 0; i < n; i++)
9139 dst[i] = src[i];
9256645a
JW
9140 /* zero out counters that only exist in rtnl_link_stats64 */
9141 memset((char *)stats64 + n * sizeof(u64), 0,
9142 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
9143#endif
9144}
77a1abf5 9145EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 9146
eeda3fd6
SH
9147/**
9148 * dev_get_stats - get network device statistics
9149 * @dev: device to get statistics from
28172739 9150 * @storage: place to store stats
eeda3fd6 9151 *
d7753516
BH
9152 * Get network statistics from device. Return @storage.
9153 * The device driver may provide its own method by setting
9154 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9155 * otherwise the internal statistics structure is used.
eeda3fd6 9156 */
d7753516
BH
9157struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9158 struct rtnl_link_stats64 *storage)
7004bf25 9159{
eeda3fd6
SH
9160 const struct net_device_ops *ops = dev->netdev_ops;
9161
28172739
ED
9162 if (ops->ndo_get_stats64) {
9163 memset(storage, 0, sizeof(*storage));
caf586e5
ED
9164 ops->ndo_get_stats64(dev, storage);
9165 } else if (ops->ndo_get_stats) {
3cfde79c 9166 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
9167 } else {
9168 netdev_stats_to_stats64(storage, &dev->stats);
28172739 9169 }
6f64ec74
ED
9170 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9171 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9172 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 9173 return storage;
c45d286e 9174}
eeda3fd6 9175EXPORT_SYMBOL(dev_get_stats);
c45d286e 9176
24824a09 9177struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 9178{
24824a09 9179 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 9180
24824a09
ED
9181#ifdef CONFIG_NET_CLS_ACT
9182 if (queue)
9183 return queue;
9184 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9185 if (!queue)
9186 return NULL;
9187 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 9188 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
9189 queue->qdisc_sleeping = &noop_qdisc;
9190 rcu_assign_pointer(dev->ingress_queue, queue);
9191#endif
9192 return queue;
bb949fbd
DM
9193}
9194
2c60db03
ED
9195static const struct ethtool_ops default_ethtool_ops;
9196
d07d7507
SG
9197void netdev_set_default_ethtool_ops(struct net_device *dev,
9198 const struct ethtool_ops *ops)
9199{
9200 if (dev->ethtool_ops == &default_ethtool_ops)
9201 dev->ethtool_ops = ops;
9202}
9203EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9204
74d332c1
ED
9205void netdev_freemem(struct net_device *dev)
9206{
9207 char *addr = (char *)dev - dev->padded;
9208
4cb28970 9209 kvfree(addr);
74d332c1
ED
9210}
9211
1da177e4 9212/**
722c9a0c 9213 * alloc_netdev_mqs - allocate network device
9214 * @sizeof_priv: size of private data to allocate space for
9215 * @name: device name format string
9216 * @name_assign_type: origin of device name
9217 * @setup: callback to initialize device
9218 * @txqs: the number of TX subqueues to allocate
9219 * @rxqs: the number of RX subqueues to allocate
9220 *
9221 * Allocates a struct net_device with private data area for driver use
9222 * and performs basic initialization. Also allocates subqueue structs
9223 * for each queue on the device.
1da177e4 9224 */
36909ea4 9225struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 9226 unsigned char name_assign_type,
36909ea4
TH
9227 void (*setup)(struct net_device *),
9228 unsigned int txqs, unsigned int rxqs)
1da177e4 9229{
1da177e4 9230 struct net_device *dev;
52a59bd5 9231 unsigned int alloc_size;
1ce8e7b5 9232 struct net_device *p;
1da177e4 9233
b6fe17d6
SH
9234 BUG_ON(strlen(name) >= sizeof(dev->name));
9235
36909ea4 9236 if (txqs < 1) {
7b6cd1ce 9237 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
9238 return NULL;
9239 }
9240
36909ea4 9241 if (rxqs < 1) {
7b6cd1ce 9242 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
9243 return NULL;
9244 }
36909ea4 9245
fd2ea0a7 9246 alloc_size = sizeof(struct net_device);
d1643d24
AD
9247 if (sizeof_priv) {
9248 /* ensure 32-byte alignment of private area */
1ce8e7b5 9249 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
9250 alloc_size += sizeof_priv;
9251 }
9252 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 9253 alloc_size += NETDEV_ALIGN - 1;
1da177e4 9254
dcda9b04 9255 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 9256 if (!p)
1da177e4 9257 return NULL;
1da177e4 9258
1ce8e7b5 9259 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 9260 dev->padded = (char *)dev - (char *)p;
ab9c73cc 9261
29b4433d
ED
9262 dev->pcpu_refcnt = alloc_percpu(int);
9263 if (!dev->pcpu_refcnt)
74d332c1 9264 goto free_dev;
ab9c73cc 9265
ab9c73cc 9266 if (dev_addr_init(dev))
29b4433d 9267 goto free_pcpu;
ab9c73cc 9268
22bedad3 9269 dev_mc_init(dev);
a748ee24 9270 dev_uc_init(dev);
ccffad25 9271
c346dca1 9272 dev_net_set(dev, &init_net);
1da177e4 9273
8d3bdbd5 9274 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 9275 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 9276
8d3bdbd5
DM
9277 INIT_LIST_HEAD(&dev->napi_list);
9278 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 9279 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 9280 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
9281 INIT_LIST_HEAD(&dev->adj_list.upper);
9282 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
9283 INIT_LIST_HEAD(&dev->ptype_all);
9284 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
9285#ifdef CONFIG_NET_SCHED
9286 hash_init(dev->qdisc_hash);
9287#endif
02875878 9288 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
9289 setup(dev);
9290
a813104d 9291 if (!dev->tx_queue_len) {
f84bb1ea 9292 dev->priv_flags |= IFF_NO_QUEUE;
11597084 9293 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 9294 }
906470c1 9295
36909ea4
TH
9296 dev->num_tx_queues = txqs;
9297 dev->real_num_tx_queues = txqs;
ed9af2e8 9298 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 9299 goto free_all;
e8a0464c 9300
36909ea4
TH
9301 dev->num_rx_queues = rxqs;
9302 dev->real_num_rx_queues = rxqs;
fe822240 9303 if (netif_alloc_rx_queues(dev))
8d3bdbd5 9304 goto free_all;
0a9627f2 9305
1da177e4 9306 strcpy(dev->name, name);
c835a677 9307 dev->name_assign_type = name_assign_type;
cbda10fa 9308 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
9309 if (!dev->ethtool_ops)
9310 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
9311
9312 nf_hook_ingress_init(dev);
9313
1da177e4 9314 return dev;
ab9c73cc 9315
8d3bdbd5
DM
9316free_all:
9317 free_netdev(dev);
9318 return NULL;
9319
29b4433d
ED
9320free_pcpu:
9321 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
9322free_dev:
9323 netdev_freemem(dev);
ab9c73cc 9324 return NULL;
1da177e4 9325}
36909ea4 9326EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
9327
9328/**
722c9a0c 9329 * free_netdev - free network device
9330 * @dev: device
1da177e4 9331 *
722c9a0c 9332 * This function does the last stage of destroying an allocated device
9333 * interface. The reference to the device object is released. If this
9334 * is the last reference then it will be freed.Must be called in process
9335 * context.
1da177e4
LT
9336 */
9337void free_netdev(struct net_device *dev)
9338{
d565b0a1
HX
9339 struct napi_struct *p, *n;
9340
93d05d4a 9341 might_sleep();
60877a32 9342 netif_free_tx_queues(dev);
e817f856 9343 netif_free_rx_queues(dev);
e8a0464c 9344
33d480ce 9345 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 9346
f001fde5
JP
9347 /* Flush device addresses */
9348 dev_addr_flush(dev);
9349
d565b0a1
HX
9350 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9351 netif_napi_del(p);
9352
29b4433d
ED
9353 free_percpu(dev->pcpu_refcnt);
9354 dev->pcpu_refcnt = NULL;
9355
3041a069 9356 /* Compatibility with error handling in drivers */
1da177e4 9357 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 9358 netdev_freemem(dev);
1da177e4
LT
9359 return;
9360 }
9361
9362 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9363 dev->reg_state = NETREG_RELEASED;
9364
43cb76d9
GKH
9365 /* will free via device release */
9366 put_device(&dev->dev);
1da177e4 9367}
d1b19dff 9368EXPORT_SYMBOL(free_netdev);
4ec93edb 9369
f0db275a
SH
9370/**
9371 * synchronize_net - Synchronize with packet receive processing
9372 *
9373 * Wait for packets currently being received to be done.
9374 * Does not block later packets from starting.
9375 */
4ec93edb 9376void synchronize_net(void)
1da177e4
LT
9377{
9378 might_sleep();
be3fc413
ED
9379 if (rtnl_is_locked())
9380 synchronize_rcu_expedited();
9381 else
9382 synchronize_rcu();
1da177e4 9383}
d1b19dff 9384EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
9385
9386/**
44a0873d 9387 * unregister_netdevice_queue - remove device from the kernel
1da177e4 9388 * @dev: device
44a0873d 9389 * @head: list
6ebfbc06 9390 *
1da177e4 9391 * This function shuts down a device interface and removes it
d59b54b1 9392 * from the kernel tables.
44a0873d 9393 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
9394 *
9395 * Callers must hold the rtnl semaphore. You may want
9396 * unregister_netdev() instead of this.
9397 */
9398
44a0873d 9399void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 9400{
a6620712
HX
9401 ASSERT_RTNL();
9402
44a0873d 9403 if (head) {
9fdce099 9404 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
9405 } else {
9406 rollback_registered(dev);
9407 /* Finish processing unregister after unlock */
9408 net_set_todo(dev);
9409 }
1da177e4 9410}
44a0873d 9411EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 9412
9b5e383c
ED
9413/**
9414 * unregister_netdevice_many - unregister many devices
9415 * @head: list of devices
87757a91
ED
9416 *
9417 * Note: As most callers use a stack allocated list_head,
9418 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
9419 */
9420void unregister_netdevice_many(struct list_head *head)
9421{
9422 struct net_device *dev;
9423
9424 if (!list_empty(head)) {
9425 rollback_registered_many(head);
9426 list_for_each_entry(dev, head, unreg_list)
9427 net_set_todo(dev);
87757a91 9428 list_del(head);
9b5e383c
ED
9429 }
9430}
63c8099d 9431EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 9432
1da177e4
LT
9433/**
9434 * unregister_netdev - remove device from the kernel
9435 * @dev: device
9436 *
9437 * This function shuts down a device interface and removes it
d59b54b1 9438 * from the kernel tables.
1da177e4
LT
9439 *
9440 * This is just a wrapper for unregister_netdevice that takes
9441 * the rtnl semaphore. In general you want to use this and not
9442 * unregister_netdevice.
9443 */
9444void unregister_netdev(struct net_device *dev)
9445{
9446 rtnl_lock();
9447 unregister_netdevice(dev);
9448 rtnl_unlock();
9449}
1da177e4
LT
9450EXPORT_SYMBOL(unregister_netdev);
9451
ce286d32
EB
9452/**
9453 * dev_change_net_namespace - move device to different nethost namespace
9454 * @dev: device
9455 * @net: network namespace
9456 * @pat: If not NULL name pattern to try if the current device name
9457 * is already taken in the destination network namespace.
9458 *
9459 * This function shuts down a device interface and moves it
9460 * to a new network namespace. On success 0 is returned, on
9461 * a failure a netagive errno code is returned.
9462 *
9463 * Callers must hold the rtnl semaphore.
9464 */
9465
9466int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9467{
38e01b30 9468 int err, new_nsid, new_ifindex;
ce286d32
EB
9469
9470 ASSERT_RTNL();
9471
9472 /* Don't allow namespace local devices to be moved. */
9473 err = -EINVAL;
9474 if (dev->features & NETIF_F_NETNS_LOCAL)
9475 goto out;
9476
9477 /* Ensure the device has been registrered */
ce286d32
EB
9478 if (dev->reg_state != NETREG_REGISTERED)
9479 goto out;
9480
9481 /* Get out if there is nothing todo */
9482 err = 0;
878628fb 9483 if (net_eq(dev_net(dev), net))
ce286d32
EB
9484 goto out;
9485
9486 /* Pick the destination device name, and ensure
9487 * we can use it in the destination network namespace.
9488 */
9489 err = -EEXIST;
d9031024 9490 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
9491 /* We get here if we can't use the current device name */
9492 if (!pat)
9493 goto out;
7892bd08
LR
9494 err = dev_get_valid_name(net, dev, pat);
9495 if (err < 0)
ce286d32
EB
9496 goto out;
9497 }
9498
9499 /*
9500 * And now a mini version of register_netdevice unregister_netdevice.
9501 */
9502
9503 /* If device is running close it first. */
9b772652 9504 dev_close(dev);
ce286d32
EB
9505
9506 /* And unlink it from device chain */
ce286d32
EB
9507 unlist_netdevice(dev);
9508
9509 synchronize_net();
9510
9511 /* Shutdown queueing discipline. */
9512 dev_shutdown(dev);
9513
9514 /* Notify protocols, that we are about to destroy
eb13da1a 9515 * this device. They should clean all the things.
9516 *
9517 * Note that dev->reg_state stays at NETREG_REGISTERED.
9518 * This is wanted because this way 8021q and macvlan know
9519 * the device is just moving and can keep their slaves up.
9520 */
ce286d32 9521 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 9522 rcu_barrier();
38e01b30 9523
c36ac8e2 9524 new_nsid = peernet2id_alloc(dev_net(dev), net);
38e01b30
ND
9525 /* If there is an ifindex conflict assign a new one */
9526 if (__dev_get_by_index(net, dev->ifindex))
9527 new_ifindex = dev_new_index(net);
9528 else
9529 new_ifindex = dev->ifindex;
9530
9531 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9532 new_ifindex);
ce286d32
EB
9533
9534 /*
9535 * Flush the unicast and multicast chains
9536 */
a748ee24 9537 dev_uc_flush(dev);
22bedad3 9538 dev_mc_flush(dev);
ce286d32 9539
4e66ae2e
SH
9540 /* Send a netdev-removed uevent to the old namespace */
9541 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 9542 netdev_adjacent_del_links(dev);
4e66ae2e 9543
ce286d32 9544 /* Actually switch the network namespace */
c346dca1 9545 dev_net_set(dev, net);
38e01b30 9546 dev->ifindex = new_ifindex;
ce286d32 9547
4e66ae2e
SH
9548 /* Send a netdev-add uevent to the new namespace */
9549 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 9550 netdev_adjacent_add_links(dev);
4e66ae2e 9551
8b41d188 9552 /* Fixup kobjects */
a1b3f594 9553 err = device_rename(&dev->dev, dev->name);
8b41d188 9554 WARN_ON(err);
ce286d32
EB
9555
9556 /* Add the device back in the hashes */
9557 list_netdevice(dev);
9558
9559 /* Notify protocols, that a new device appeared. */
9560 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9561
d90a909e
EB
9562 /*
9563 * Prevent userspace races by waiting until the network
9564 * device is fully setup before sending notifications.
9565 */
7f294054 9566 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 9567
ce286d32
EB
9568 synchronize_net();
9569 err = 0;
9570out:
9571 return err;
9572}
463d0183 9573EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 9574
f0bf90de 9575static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
9576{
9577 struct sk_buff **list_skb;
1da177e4 9578 struct sk_buff *skb;
f0bf90de 9579 unsigned int cpu;
97d8b6e3 9580 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 9581
1da177e4
LT
9582 local_irq_disable();
9583 cpu = smp_processor_id();
9584 sd = &per_cpu(softnet_data, cpu);
9585 oldsd = &per_cpu(softnet_data, oldcpu);
9586
9587 /* Find end of our completion_queue. */
9588 list_skb = &sd->completion_queue;
9589 while (*list_skb)
9590 list_skb = &(*list_skb)->next;
9591 /* Append completion queue from offline CPU. */
9592 *list_skb = oldsd->completion_queue;
9593 oldsd->completion_queue = NULL;
9594
1da177e4 9595 /* Append output queue from offline CPU. */
a9cbd588
CG
9596 if (oldsd->output_queue) {
9597 *sd->output_queue_tailp = oldsd->output_queue;
9598 sd->output_queue_tailp = oldsd->output_queue_tailp;
9599 oldsd->output_queue = NULL;
9600 oldsd->output_queue_tailp = &oldsd->output_queue;
9601 }
ac64da0b
ED
9602 /* Append NAPI poll list from offline CPU, with one exception :
9603 * process_backlog() must be called by cpu owning percpu backlog.
9604 * We properly handle process_queue & input_pkt_queue later.
9605 */
9606 while (!list_empty(&oldsd->poll_list)) {
9607 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9608 struct napi_struct,
9609 poll_list);
9610
9611 list_del_init(&napi->poll_list);
9612 if (napi->poll == process_backlog)
9613 napi->state = 0;
9614 else
9615 ____napi_schedule(sd, napi);
264524d5 9616 }
1da177e4
LT
9617
9618 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9619 local_irq_enable();
9620
773fc8f6 9621#ifdef CONFIG_RPS
9622 remsd = oldsd->rps_ipi_list;
9623 oldsd->rps_ipi_list = NULL;
9624#endif
9625 /* send out pending IPI's on offline CPU */
9626 net_rps_send_ipi(remsd);
9627
1da177e4 9628 /* Process offline CPU's input_pkt_queue */
76cc8b13 9629 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 9630 netif_rx_ni(skb);
76cc8b13 9631 input_queue_head_incr(oldsd);
fec5e652 9632 }
ac64da0b 9633 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 9634 netif_rx_ni(skb);
76cc8b13
TH
9635 input_queue_head_incr(oldsd);
9636 }
1da177e4 9637
f0bf90de 9638 return 0;
1da177e4 9639}
1da177e4 9640
7f353bf2 9641/**
b63365a2
HX
9642 * netdev_increment_features - increment feature set by one
9643 * @all: current feature set
9644 * @one: new feature set
9645 * @mask: mask feature set
7f353bf2
HX
9646 *
9647 * Computes a new feature set after adding a device with feature set
b63365a2
HX
9648 * @one to the master device with current feature set @all. Will not
9649 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 9650 */
c8f44aff
MM
9651netdev_features_t netdev_increment_features(netdev_features_t all,
9652 netdev_features_t one, netdev_features_t mask)
b63365a2 9653{
c8cd0989 9654 if (mask & NETIF_F_HW_CSUM)
a188222b 9655 mask |= NETIF_F_CSUM_MASK;
1742f183 9656 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 9657
a188222b 9658 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 9659 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 9660
1742f183 9661 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
9662 if (all & NETIF_F_HW_CSUM)
9663 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
9664
9665 return all;
9666}
b63365a2 9667EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 9668
430f03cd 9669static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
9670{
9671 int i;
9672 struct hlist_head *hash;
9673
6da2ec56 9674 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
9675 if (hash != NULL)
9676 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9677 INIT_HLIST_HEAD(&hash[i]);
9678
9679 return hash;
9680}
9681
881d966b 9682/* Initialize per network namespace state */
4665079c 9683static int __net_init netdev_init(struct net *net)
881d966b 9684{
d9f37d01 9685 BUILD_BUG_ON(GRO_HASH_BUCKETS >
ccdb5171 9686 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
d9f37d01 9687
734b6541
RM
9688 if (net != &init_net)
9689 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 9690
30d97d35
PE
9691 net->dev_name_head = netdev_create_hash();
9692 if (net->dev_name_head == NULL)
9693 goto err_name;
881d966b 9694
30d97d35
PE
9695 net->dev_index_head = netdev_create_hash();
9696 if (net->dev_index_head == NULL)
9697 goto err_idx;
881d966b
EB
9698
9699 return 0;
30d97d35
PE
9700
9701err_idx:
9702 kfree(net->dev_name_head);
9703err_name:
9704 return -ENOMEM;
881d966b
EB
9705}
9706
f0db275a
SH
9707/**
9708 * netdev_drivername - network driver for the device
9709 * @dev: network device
f0db275a
SH
9710 *
9711 * Determine network driver for device.
9712 */
3019de12 9713const char *netdev_drivername(const struct net_device *dev)
6579e57b 9714{
cf04a4c7
SH
9715 const struct device_driver *driver;
9716 const struct device *parent;
3019de12 9717 const char *empty = "";
6579e57b
AV
9718
9719 parent = dev->dev.parent;
6579e57b 9720 if (!parent)
3019de12 9721 return empty;
6579e57b
AV
9722
9723 driver = parent->driver;
9724 if (driver && driver->name)
3019de12
DM
9725 return driver->name;
9726 return empty;
6579e57b
AV
9727}
9728
6ea754eb
JP
9729static void __netdev_printk(const char *level, const struct net_device *dev,
9730 struct va_format *vaf)
256df2f3 9731{
b004ff49 9732 if (dev && dev->dev.parent) {
6ea754eb
JP
9733 dev_printk_emit(level[1] - '0',
9734 dev->dev.parent,
9735 "%s %s %s%s: %pV",
9736 dev_driver_string(dev->dev.parent),
9737 dev_name(dev->dev.parent),
9738 netdev_name(dev), netdev_reg_state(dev),
9739 vaf);
b004ff49 9740 } else if (dev) {
6ea754eb
JP
9741 printk("%s%s%s: %pV",
9742 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 9743 } else {
6ea754eb 9744 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 9745 }
256df2f3
JP
9746}
9747
6ea754eb
JP
9748void netdev_printk(const char *level, const struct net_device *dev,
9749 const char *format, ...)
256df2f3
JP
9750{
9751 struct va_format vaf;
9752 va_list args;
256df2f3
JP
9753
9754 va_start(args, format);
9755
9756 vaf.fmt = format;
9757 vaf.va = &args;
9758
6ea754eb 9759 __netdev_printk(level, dev, &vaf);
b004ff49 9760
256df2f3 9761 va_end(args);
256df2f3
JP
9762}
9763EXPORT_SYMBOL(netdev_printk);
9764
9765#define define_netdev_printk_level(func, level) \
6ea754eb 9766void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 9767{ \
256df2f3
JP
9768 struct va_format vaf; \
9769 va_list args; \
9770 \
9771 va_start(args, fmt); \
9772 \
9773 vaf.fmt = fmt; \
9774 vaf.va = &args; \
9775 \
6ea754eb 9776 __netdev_printk(level, dev, &vaf); \
b004ff49 9777 \
256df2f3 9778 va_end(args); \
256df2f3
JP
9779} \
9780EXPORT_SYMBOL(func);
9781
9782define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9783define_netdev_printk_level(netdev_alert, KERN_ALERT);
9784define_netdev_printk_level(netdev_crit, KERN_CRIT);
9785define_netdev_printk_level(netdev_err, KERN_ERR);
9786define_netdev_printk_level(netdev_warn, KERN_WARNING);
9787define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9788define_netdev_printk_level(netdev_info, KERN_INFO);
9789
4665079c 9790static void __net_exit netdev_exit(struct net *net)
881d966b
EB
9791{
9792 kfree(net->dev_name_head);
9793 kfree(net->dev_index_head);
ee21b18b
VA
9794 if (net != &init_net)
9795 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
9796}
9797
022cbae6 9798static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
9799 .init = netdev_init,
9800 .exit = netdev_exit,
9801};
9802
4665079c 9803static void __net_exit default_device_exit(struct net *net)
ce286d32 9804{
e008b5fc 9805 struct net_device *dev, *aux;
ce286d32 9806 /*
e008b5fc 9807 * Push all migratable network devices back to the
ce286d32
EB
9808 * initial network namespace
9809 */
9810 rtnl_lock();
e008b5fc 9811 for_each_netdev_safe(net, dev, aux) {
ce286d32 9812 int err;
aca51397 9813 char fb_name[IFNAMSIZ];
ce286d32
EB
9814
9815 /* Ignore unmoveable devices (i.e. loopback) */
9816 if (dev->features & NETIF_F_NETNS_LOCAL)
9817 continue;
9818
e008b5fc
EB
9819 /* Leave virtual devices for the generic cleanup */
9820 if (dev->rtnl_link_ops)
9821 continue;
d0c082ce 9822
25985edc 9823 /* Push remaining network devices to init_net */
aca51397 9824 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
9825 if (__dev_get_by_name(&init_net, fb_name))
9826 snprintf(fb_name, IFNAMSIZ, "dev%%d");
aca51397 9827 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 9828 if (err) {
7b6cd1ce
JP
9829 pr_emerg("%s: failed to move %s to init_net: %d\n",
9830 __func__, dev->name, err);
aca51397 9831 BUG();
ce286d32
EB
9832 }
9833 }
9834 rtnl_unlock();
9835}
9836
50624c93
EB
9837static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9838{
9839 /* Return with the rtnl_lock held when there are no network
9840 * devices unregistering in any network namespace in net_list.
9841 */
9842 struct net *net;
9843 bool unregistering;
ff960a73 9844 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 9845
ff960a73 9846 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 9847 for (;;) {
50624c93
EB
9848 unregistering = false;
9849 rtnl_lock();
9850 list_for_each_entry(net, net_list, exit_list) {
9851 if (net->dev_unreg_count > 0) {
9852 unregistering = true;
9853 break;
9854 }
9855 }
9856 if (!unregistering)
9857 break;
9858 __rtnl_unlock();
ff960a73
PZ
9859
9860 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 9861 }
ff960a73 9862 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
9863}
9864
04dc7f6b
EB
9865static void __net_exit default_device_exit_batch(struct list_head *net_list)
9866{
9867 /* At exit all network devices most be removed from a network
b595076a 9868 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
9869 * Do this across as many network namespaces as possible to
9870 * improve batching efficiency.
9871 */
9872 struct net_device *dev;
9873 struct net *net;
9874 LIST_HEAD(dev_kill_list);
9875
50624c93
EB
9876 /* To prevent network device cleanup code from dereferencing
9877 * loopback devices or network devices that have been freed
9878 * wait here for all pending unregistrations to complete,
9879 * before unregistring the loopback device and allowing the
9880 * network namespace be freed.
9881 *
9882 * The netdev todo list containing all network devices
9883 * unregistrations that happen in default_device_exit_batch
9884 * will run in the rtnl_unlock() at the end of
9885 * default_device_exit_batch.
9886 */
9887 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
9888 list_for_each_entry(net, net_list, exit_list) {
9889 for_each_netdev_reverse(net, dev) {
b0ab2fab 9890 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
9891 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9892 else
9893 unregister_netdevice_queue(dev, &dev_kill_list);
9894 }
9895 }
9896 unregister_netdevice_many(&dev_kill_list);
9897 rtnl_unlock();
9898}
9899
022cbae6 9900static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 9901 .exit = default_device_exit,
04dc7f6b 9902 .exit_batch = default_device_exit_batch,
ce286d32
EB
9903};
9904
1da177e4
LT
9905/*
9906 * Initialize the DEV module. At boot time this walks the device list and
9907 * unhooks any devices that fail to initialise (normally hardware not
9908 * present) and leaves us with a valid list of present and active devices.
9909 *
9910 */
9911
9912/*
9913 * This is called single threaded during boot, so no need
9914 * to take the rtnl semaphore.
9915 */
9916static int __init net_dev_init(void)
9917{
9918 int i, rc = -ENOMEM;
9919
9920 BUG_ON(!dev_boot_phase);
9921
1da177e4
LT
9922 if (dev_proc_init())
9923 goto out;
9924
8b41d188 9925 if (netdev_kobject_init())
1da177e4
LT
9926 goto out;
9927
9928 INIT_LIST_HEAD(&ptype_all);
82d8a867 9929 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
9930 INIT_LIST_HEAD(&ptype_base[i]);
9931
62532da9
VY
9932 INIT_LIST_HEAD(&offload_base);
9933
881d966b
EB
9934 if (register_pernet_subsys(&netdev_net_ops))
9935 goto out;
1da177e4
LT
9936
9937 /*
9938 * Initialise the packet receive queues.
9939 */
9940
6f912042 9941 for_each_possible_cpu(i) {
41852497 9942 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 9943 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 9944
41852497
ED
9945 INIT_WORK(flush, flush_backlog);
9946
e36fa2f7 9947 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 9948 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
9949#ifdef CONFIG_XFRM_OFFLOAD
9950 skb_queue_head_init(&sd->xfrm_backlog);
9951#endif
e36fa2f7 9952 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 9953 sd->output_queue_tailp = &sd->output_queue;
df334545 9954#ifdef CONFIG_RPS
e36fa2f7
ED
9955 sd->csd.func = rps_trigger_softirq;
9956 sd->csd.info = sd;
e36fa2f7 9957 sd->cpu = i;
1e94d72f 9958#endif
0a9627f2 9959
7c4ec749 9960 init_gro_hash(&sd->backlog);
e36fa2f7
ED
9961 sd->backlog.poll = process_backlog;
9962 sd->backlog.weight = weight_p;
1da177e4
LT
9963 }
9964
1da177e4
LT
9965 dev_boot_phase = 0;
9966
505d4f73
EB
9967 /* The loopback device is special if any other network devices
9968 * is present in a network namespace the loopback device must
9969 * be present. Since we now dynamically allocate and free the
9970 * loopback device ensure this invariant is maintained by
9971 * keeping the loopback device as the first device on the
9972 * list of network devices. Ensuring the loopback devices
9973 * is the first device that appears and the last network device
9974 * that disappears.
9975 */
9976 if (register_pernet_device(&loopback_net_ops))
9977 goto out;
9978
9979 if (register_pernet_device(&default_device_ops))
9980 goto out;
9981
962cf36c
CM
9982 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9983 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 9984
f0bf90de
SAS
9985 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9986 NULL, dev_cpu_dead);
9987 WARN_ON(rc < 0);
1da177e4
LT
9988 rc = 0;
9989out:
9990 return rc;
9991}
9992
9993subsys_initcall(net_dev_init);