]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/core/filter.c
bpf: export helper function flags and reject invalid ones
[mirror_ubuntu-artful-kernel.git] / net / core / filter.c
CommitLineData
1da177e4
LT
1/*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
bd4cf0ed
AS
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
1da177e4 6 *
bd4cf0ed
AS
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
1da177e4
LT
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
4df95ff4 21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
1da177e4
LT
22 */
23
24#include <linux/module.h>
25#include <linux/types.h>
1da177e4
LT
26#include <linux/mm.h>
27#include <linux/fcntl.h>
28#include <linux/socket.h>
29#include <linux/in.h>
30#include <linux/inet.h>
31#include <linux/netdevice.h>
32#include <linux/if_packet.h>
5a0e3ad6 33#include <linux/gfp.h>
1da177e4
LT
34#include <net/ip.h>
35#include <net/protocol.h>
4738c1db 36#include <net/netlink.h>
1da177e4
LT
37#include <linux/skbuff.h>
38#include <net/sock.h>
10b89ee4 39#include <net/flow_dissector.h>
1da177e4
LT
40#include <linux/errno.h>
41#include <linux/timer.h>
1da177e4 42#include <asm/uaccess.h>
40daafc8 43#include <asm/unaligned.h>
1da177e4 44#include <linux/filter.h>
86e4ca66 45#include <linux/ratelimit.h>
46b325c7 46#include <linux/seccomp.h>
f3335031 47#include <linux/if_vlan.h>
89aa0758 48#include <linux/bpf.h>
d691f9e8 49#include <net/sch_generic.h>
8d20aabe 50#include <net/cls_cgroup.h>
d3aa45ce 51#include <net/dst_metadata.h>
c46646d0 52#include <net/dst.h>
538950a1 53#include <net/sock_reuseport.h>
1da177e4 54
43db6d65
SH
55/**
56 * sk_filter - run a packet through a socket filter
57 * @sk: sock associated with &sk_buff
58 * @skb: buffer to filter
43db6d65 59 *
ff936a04
AS
60 * Run the eBPF program and then cut skb->data to correct size returned by
61 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
43db6d65 62 * than pkt_len we keep whole skb->data. This is the socket level
ff936a04 63 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
43db6d65
SH
64 * be accepted or -EPERM if the packet should be tossed.
65 *
66 */
67int sk_filter(struct sock *sk, struct sk_buff *skb)
68{
69 int err;
70 struct sk_filter *filter;
71
c93bdd0e
MG
72 /*
73 * If the skb was allocated from pfmemalloc reserves, only
74 * allow SOCK_MEMALLOC sockets to use it as this socket is
75 * helping free memory
76 */
77 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
78 return -ENOMEM;
79
43db6d65
SH
80 err = security_sock_rcv_skb(sk, skb);
81 if (err)
82 return err;
83
80f8f102
ED
84 rcu_read_lock();
85 filter = rcu_dereference(sk->sk_filter);
43db6d65 86 if (filter) {
ff936a04 87 unsigned int pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
0d7da9dd 88
43db6d65
SH
89 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
90 }
80f8f102 91 rcu_read_unlock();
43db6d65
SH
92
93 return err;
94}
95EXPORT_SYMBOL(sk_filter);
96
30743837 97static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed 98{
56193d1b 99 return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
bd4cf0ed
AS
100}
101
30743837 102static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed 103{
eb9672f4 104 struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
bd4cf0ed
AS
105 struct nlattr *nla;
106
107 if (skb_is_nonlinear(skb))
108 return 0;
109
05ab8f26
MK
110 if (skb->len < sizeof(struct nlattr))
111 return 0;
112
30743837 113 if (a > skb->len - sizeof(struct nlattr))
bd4cf0ed
AS
114 return 0;
115
30743837 116 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
bd4cf0ed
AS
117 if (nla)
118 return (void *) nla - (void *) skb->data;
119
120 return 0;
121}
122
30743837 123static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed 124{
eb9672f4 125 struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
bd4cf0ed
AS
126 struct nlattr *nla;
127
128 if (skb_is_nonlinear(skb))
129 return 0;
130
05ab8f26
MK
131 if (skb->len < sizeof(struct nlattr))
132 return 0;
133
30743837 134 if (a > skb->len - sizeof(struct nlattr))
bd4cf0ed
AS
135 return 0;
136
30743837
DB
137 nla = (struct nlattr *) &skb->data[a];
138 if (nla->nla_len > skb->len - a)
bd4cf0ed
AS
139 return 0;
140
30743837 141 nla = nla_find_nested(nla, x);
bd4cf0ed
AS
142 if (nla)
143 return (void *) nla - (void *) skb->data;
144
145 return 0;
146}
147
30743837 148static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed
AS
149{
150 return raw_smp_processor_id();
151}
152
9bac3d6d
AS
153static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
154 struct bpf_insn *insn_buf)
155{
156 struct bpf_insn *insn = insn_buf;
157
158 switch (skb_field) {
159 case SKF_AD_MARK:
160 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
161
162 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
163 offsetof(struct sk_buff, mark));
164 break;
165
166 case SKF_AD_PKTTYPE:
167 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
168 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
169#ifdef __BIG_ENDIAN_BITFIELD
170 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
171#endif
172 break;
173
174 case SKF_AD_QUEUE:
175 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
176
177 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
178 offsetof(struct sk_buff, queue_mapping));
179 break;
c2497395 180
c2497395
AS
181 case SKF_AD_VLAN_TAG:
182 case SKF_AD_VLAN_TAG_PRESENT:
183 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
184 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
185
186 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
187 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
188 offsetof(struct sk_buff, vlan_tci));
189 if (skb_field == SKF_AD_VLAN_TAG) {
190 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
191 ~VLAN_TAG_PRESENT);
192 } else {
193 /* dst_reg >>= 12 */
194 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
195 /* dst_reg &= 1 */
196 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
197 }
198 break;
9bac3d6d
AS
199 }
200
201 return insn - insn_buf;
202}
203
bd4cf0ed 204static bool convert_bpf_extensions(struct sock_filter *fp,
2695fb55 205 struct bpf_insn **insnp)
bd4cf0ed 206{
2695fb55 207 struct bpf_insn *insn = *insnp;
9bac3d6d 208 u32 cnt;
bd4cf0ed
AS
209
210 switch (fp->k) {
211 case SKF_AD_OFF + SKF_AD_PROTOCOL:
0b8c707d
DB
212 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
213
214 /* A = *(u16 *) (CTX + offsetof(protocol)) */
215 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
216 offsetof(struct sk_buff, protocol));
217 /* A = ntohs(A) [emitting a nop or swap16] */
218 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
bd4cf0ed
AS
219 break;
220
221 case SKF_AD_OFF + SKF_AD_PKTTYPE:
9bac3d6d
AS
222 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
223 insn += cnt - 1;
bd4cf0ed
AS
224 break;
225
226 case SKF_AD_OFF + SKF_AD_IFINDEX:
227 case SKF_AD_OFF + SKF_AD_HATYPE:
bd4cf0ed
AS
228 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
229 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
f8f6d679
DB
230 BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);
231
232 *insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
233 BPF_REG_TMP, BPF_REG_CTX,
234 offsetof(struct sk_buff, dev));
235 /* if (tmp != 0) goto pc + 1 */
236 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
237 *insn++ = BPF_EXIT_INSN();
238 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
239 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
240 offsetof(struct net_device, ifindex));
241 else
242 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
243 offsetof(struct net_device, type));
bd4cf0ed
AS
244 break;
245
246 case SKF_AD_OFF + SKF_AD_MARK:
9bac3d6d
AS
247 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
248 insn += cnt - 1;
bd4cf0ed
AS
249 break;
250
251 case SKF_AD_OFF + SKF_AD_RXHASH:
252 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
253
9739eef1
AS
254 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
255 offsetof(struct sk_buff, hash));
bd4cf0ed
AS
256 break;
257
258 case SKF_AD_OFF + SKF_AD_QUEUE:
9bac3d6d
AS
259 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
260 insn += cnt - 1;
bd4cf0ed
AS
261 break;
262
263 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
c2497395
AS
264 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
265 BPF_REG_A, BPF_REG_CTX, insn);
266 insn += cnt - 1;
267 break;
bd4cf0ed 268
c2497395
AS
269 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
270 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
271 BPF_REG_A, BPF_REG_CTX, insn);
272 insn += cnt - 1;
bd4cf0ed
AS
273 break;
274
27cd5452
MS
275 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
276 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
277
278 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
279 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
280 offsetof(struct sk_buff, vlan_proto));
281 /* A = ntohs(A) [emitting a nop or swap16] */
282 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
283 break;
284
bd4cf0ed
AS
285 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
286 case SKF_AD_OFF + SKF_AD_NLATTR:
287 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
288 case SKF_AD_OFF + SKF_AD_CPU:
4cd3675e 289 case SKF_AD_OFF + SKF_AD_RANDOM:
e430f34e 290 /* arg1 = CTX */
f8f6d679 291 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
bd4cf0ed 292 /* arg2 = A */
f8f6d679 293 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
bd4cf0ed 294 /* arg3 = X */
f8f6d679 295 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
e430f34e 296 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
bd4cf0ed
AS
297 switch (fp->k) {
298 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
f8f6d679 299 *insn = BPF_EMIT_CALL(__skb_get_pay_offset);
bd4cf0ed
AS
300 break;
301 case SKF_AD_OFF + SKF_AD_NLATTR:
f8f6d679 302 *insn = BPF_EMIT_CALL(__skb_get_nlattr);
bd4cf0ed
AS
303 break;
304 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
f8f6d679 305 *insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
bd4cf0ed
AS
306 break;
307 case SKF_AD_OFF + SKF_AD_CPU:
f8f6d679 308 *insn = BPF_EMIT_CALL(__get_raw_cpu_id);
bd4cf0ed 309 break;
4cd3675e 310 case SKF_AD_OFF + SKF_AD_RANDOM:
3ad00405
DB
311 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
312 bpf_user_rnd_init_once();
4cd3675e 313 break;
bd4cf0ed
AS
314 }
315 break;
316
317 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
9739eef1
AS
318 /* A ^= X */
319 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
bd4cf0ed
AS
320 break;
321
322 default:
323 /* This is just a dummy call to avoid letting the compiler
324 * evict __bpf_call_base() as an optimization. Placed here
325 * where no-one bothers.
326 */
327 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
328 return false;
329 }
330
331 *insnp = insn;
332 return true;
333}
334
335/**
8fb575ca 336 * bpf_convert_filter - convert filter program
bd4cf0ed
AS
337 * @prog: the user passed filter program
338 * @len: the length of the user passed filter program
339 * @new_prog: buffer where converted program will be stored
340 * @new_len: pointer to store length of converted program
341 *
342 * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
343 * Conversion workflow:
344 *
345 * 1) First pass for calculating the new program length:
8fb575ca 346 * bpf_convert_filter(old_prog, old_len, NULL, &new_len)
bd4cf0ed
AS
347 *
348 * 2) 2nd pass to remap in two passes: 1st pass finds new
349 * jump offsets, 2nd pass remapping:
2695fb55 350 * new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
8fb575ca 351 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
bd4cf0ed 352 */
d9e12f42
NS
353static int bpf_convert_filter(struct sock_filter *prog, int len,
354 struct bpf_insn *new_prog, int *new_len)
bd4cf0ed
AS
355{
356 int new_flen = 0, pass = 0, target, i;
2695fb55 357 struct bpf_insn *new_insn;
bd4cf0ed
AS
358 struct sock_filter *fp;
359 int *addrs = NULL;
360 u8 bpf_src;
361
362 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
30743837 363 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
bd4cf0ed 364
6f9a093b 365 if (len <= 0 || len > BPF_MAXINSNS)
bd4cf0ed
AS
366 return -EINVAL;
367
368 if (new_prog) {
658da937
DB
369 addrs = kcalloc(len, sizeof(*addrs),
370 GFP_KERNEL | __GFP_NOWARN);
bd4cf0ed
AS
371 if (!addrs)
372 return -ENOMEM;
373 }
374
375do_pass:
376 new_insn = new_prog;
377 fp = prog;
378
8b614aeb
DB
379 /* Classic BPF related prologue emission. */
380 if (new_insn) {
381 /* Classic BPF expects A and X to be reset first. These need
382 * to be guaranteed to be the first two instructions.
383 */
384 *new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
385 *new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
386
387 /* All programs must keep CTX in callee saved BPF_REG_CTX.
388 * In eBPF case it's done by the compiler, here we need to
389 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
390 */
391 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
392 } else {
393 new_insn += 3;
394 }
bd4cf0ed
AS
395
396 for (i = 0; i < len; fp++, i++) {
2695fb55
AS
397 struct bpf_insn tmp_insns[6] = { };
398 struct bpf_insn *insn = tmp_insns;
bd4cf0ed
AS
399
400 if (addrs)
401 addrs[i] = new_insn - new_prog;
402
403 switch (fp->code) {
404 /* All arithmetic insns and skb loads map as-is. */
405 case BPF_ALU | BPF_ADD | BPF_X:
406 case BPF_ALU | BPF_ADD | BPF_K:
407 case BPF_ALU | BPF_SUB | BPF_X:
408 case BPF_ALU | BPF_SUB | BPF_K:
409 case BPF_ALU | BPF_AND | BPF_X:
410 case BPF_ALU | BPF_AND | BPF_K:
411 case BPF_ALU | BPF_OR | BPF_X:
412 case BPF_ALU | BPF_OR | BPF_K:
413 case BPF_ALU | BPF_LSH | BPF_X:
414 case BPF_ALU | BPF_LSH | BPF_K:
415 case BPF_ALU | BPF_RSH | BPF_X:
416 case BPF_ALU | BPF_RSH | BPF_K:
417 case BPF_ALU | BPF_XOR | BPF_X:
418 case BPF_ALU | BPF_XOR | BPF_K:
419 case BPF_ALU | BPF_MUL | BPF_X:
420 case BPF_ALU | BPF_MUL | BPF_K:
421 case BPF_ALU | BPF_DIV | BPF_X:
422 case BPF_ALU | BPF_DIV | BPF_K:
423 case BPF_ALU | BPF_MOD | BPF_X:
424 case BPF_ALU | BPF_MOD | BPF_K:
425 case BPF_ALU | BPF_NEG:
426 case BPF_LD | BPF_ABS | BPF_W:
427 case BPF_LD | BPF_ABS | BPF_H:
428 case BPF_LD | BPF_ABS | BPF_B:
429 case BPF_LD | BPF_IND | BPF_W:
430 case BPF_LD | BPF_IND | BPF_H:
431 case BPF_LD | BPF_IND | BPF_B:
432 /* Check for overloaded BPF extension and
433 * directly convert it if found, otherwise
434 * just move on with mapping.
435 */
436 if (BPF_CLASS(fp->code) == BPF_LD &&
437 BPF_MODE(fp->code) == BPF_ABS &&
438 convert_bpf_extensions(fp, &insn))
439 break;
440
f8f6d679 441 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
bd4cf0ed
AS
442 break;
443
f8f6d679
DB
444 /* Jump transformation cannot use BPF block macros
445 * everywhere as offset calculation and target updates
446 * require a bit more work than the rest, i.e. jump
447 * opcodes map as-is, but offsets need adjustment.
448 */
449
450#define BPF_EMIT_JMP \
bd4cf0ed
AS
451 do { \
452 if (target >= len || target < 0) \
453 goto err; \
454 insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
455 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
456 insn->off -= insn - tmp_insns; \
457 } while (0)
458
f8f6d679
DB
459 case BPF_JMP | BPF_JA:
460 target = i + fp->k + 1;
461 insn->code = fp->code;
462 BPF_EMIT_JMP;
bd4cf0ed
AS
463 break;
464
465 case BPF_JMP | BPF_JEQ | BPF_K:
466 case BPF_JMP | BPF_JEQ | BPF_X:
467 case BPF_JMP | BPF_JSET | BPF_K:
468 case BPF_JMP | BPF_JSET | BPF_X:
469 case BPF_JMP | BPF_JGT | BPF_K:
470 case BPF_JMP | BPF_JGT | BPF_X:
471 case BPF_JMP | BPF_JGE | BPF_K:
472 case BPF_JMP | BPF_JGE | BPF_X:
473 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
474 /* BPF immediates are signed, zero extend
475 * immediate into tmp register and use it
476 * in compare insn.
477 */
f8f6d679 478 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
bd4cf0ed 479
e430f34e
AS
480 insn->dst_reg = BPF_REG_A;
481 insn->src_reg = BPF_REG_TMP;
bd4cf0ed
AS
482 bpf_src = BPF_X;
483 } else {
e430f34e 484 insn->dst_reg = BPF_REG_A;
bd4cf0ed
AS
485 insn->imm = fp->k;
486 bpf_src = BPF_SRC(fp->code);
19539ce7 487 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
1da177e4 488 }
bd4cf0ed
AS
489
490 /* Common case where 'jump_false' is next insn. */
491 if (fp->jf == 0) {
492 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
493 target = i + fp->jt + 1;
f8f6d679 494 BPF_EMIT_JMP;
bd4cf0ed 495 break;
1da177e4 496 }
bd4cf0ed
AS
497
498 /* Convert JEQ into JNE when 'jump_true' is next insn. */
499 if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
500 insn->code = BPF_JMP | BPF_JNE | bpf_src;
501 target = i + fp->jf + 1;
f8f6d679 502 BPF_EMIT_JMP;
bd4cf0ed 503 break;
0b05b2a4 504 }
bd4cf0ed
AS
505
506 /* Other jumps are mapped into two insns: Jxx and JA. */
507 target = i + fp->jt + 1;
508 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
f8f6d679 509 BPF_EMIT_JMP;
bd4cf0ed
AS
510 insn++;
511
512 insn->code = BPF_JMP | BPF_JA;
513 target = i + fp->jf + 1;
f8f6d679 514 BPF_EMIT_JMP;
bd4cf0ed
AS
515 break;
516
517 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
518 case BPF_LDX | BPF_MSH | BPF_B:
9739eef1 519 /* tmp = A */
f8f6d679 520 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
1268e253 521 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
f8f6d679 522 *insn++ = BPF_LD_ABS(BPF_B, fp->k);
9739eef1 523 /* A &= 0xf */
f8f6d679 524 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
9739eef1 525 /* A <<= 2 */
f8f6d679 526 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
9739eef1 527 /* X = A */
f8f6d679 528 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
9739eef1 529 /* A = tmp */
f8f6d679 530 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
bd4cf0ed
AS
531 break;
532
533 /* RET_K, RET_A are remaped into 2 insns. */
534 case BPF_RET | BPF_A:
535 case BPF_RET | BPF_K:
f8f6d679
DB
536 *insn++ = BPF_MOV32_RAW(BPF_RVAL(fp->code) == BPF_K ?
537 BPF_K : BPF_X, BPF_REG_0,
538 BPF_REG_A, fp->k);
9739eef1 539 *insn = BPF_EXIT_INSN();
bd4cf0ed
AS
540 break;
541
542 /* Store to stack. */
543 case BPF_ST:
544 case BPF_STX:
f8f6d679
DB
545 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
546 BPF_ST ? BPF_REG_A : BPF_REG_X,
547 -(BPF_MEMWORDS - fp->k) * 4);
bd4cf0ed
AS
548 break;
549
550 /* Load from stack. */
551 case BPF_LD | BPF_MEM:
552 case BPF_LDX | BPF_MEM:
f8f6d679
DB
553 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
554 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
555 -(BPF_MEMWORDS - fp->k) * 4);
bd4cf0ed
AS
556 break;
557
558 /* A = K or X = K */
559 case BPF_LD | BPF_IMM:
560 case BPF_LDX | BPF_IMM:
f8f6d679
DB
561 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
562 BPF_REG_A : BPF_REG_X, fp->k);
bd4cf0ed
AS
563 break;
564
565 /* X = A */
566 case BPF_MISC | BPF_TAX:
f8f6d679 567 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
bd4cf0ed
AS
568 break;
569
570 /* A = X */
571 case BPF_MISC | BPF_TXA:
f8f6d679 572 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
bd4cf0ed
AS
573 break;
574
575 /* A = skb->len or X = skb->len */
576 case BPF_LD | BPF_W | BPF_LEN:
577 case BPF_LDX | BPF_W | BPF_LEN:
f8f6d679
DB
578 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
579 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
580 offsetof(struct sk_buff, len));
bd4cf0ed
AS
581 break;
582
f8f6d679 583 /* Access seccomp_data fields. */
bd4cf0ed 584 case BPF_LDX | BPF_ABS | BPF_W:
9739eef1
AS
585 /* A = *(u32 *) (ctx + K) */
586 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
bd4cf0ed
AS
587 break;
588
ca9f1fd2 589 /* Unknown instruction. */
1da177e4 590 default:
bd4cf0ed 591 goto err;
1da177e4 592 }
bd4cf0ed
AS
593
594 insn++;
595 if (new_prog)
596 memcpy(new_insn, tmp_insns,
597 sizeof(*insn) * (insn - tmp_insns));
bd4cf0ed 598 new_insn += insn - tmp_insns;
1da177e4
LT
599 }
600
bd4cf0ed
AS
601 if (!new_prog) {
602 /* Only calculating new length. */
603 *new_len = new_insn - new_prog;
604 return 0;
605 }
606
607 pass++;
608 if (new_flen != new_insn - new_prog) {
609 new_flen = new_insn - new_prog;
610 if (pass > 2)
611 goto err;
bd4cf0ed
AS
612 goto do_pass;
613 }
614
615 kfree(addrs);
616 BUG_ON(*new_len != new_flen);
1da177e4 617 return 0;
bd4cf0ed
AS
618err:
619 kfree(addrs);
620 return -EINVAL;
1da177e4
LT
621}
622
bd4cf0ed 623/* Security:
bd4cf0ed 624 *
2d5311e4 625 * As we dont want to clear mem[] array for each packet going through
8ea6e345 626 * __bpf_prog_run(), we check that filter loaded by user never try to read
2d5311e4 627 * a cell if not previously written, and we check all branches to be sure
25985edc 628 * a malicious user doesn't try to abuse us.
2d5311e4 629 */
ec31a05c 630static int check_load_and_stores(const struct sock_filter *filter, int flen)
2d5311e4 631{
34805931 632 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
2d5311e4
ED
633 int pc, ret = 0;
634
635 BUILD_BUG_ON(BPF_MEMWORDS > 16);
34805931 636
99e72a0f 637 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
2d5311e4
ED
638 if (!masks)
639 return -ENOMEM;
34805931 640
2d5311e4
ED
641 memset(masks, 0xff, flen * sizeof(*masks));
642
643 for (pc = 0; pc < flen; pc++) {
644 memvalid &= masks[pc];
645
646 switch (filter[pc].code) {
34805931
DB
647 case BPF_ST:
648 case BPF_STX:
2d5311e4
ED
649 memvalid |= (1 << filter[pc].k);
650 break;
34805931
DB
651 case BPF_LD | BPF_MEM:
652 case BPF_LDX | BPF_MEM:
2d5311e4
ED
653 if (!(memvalid & (1 << filter[pc].k))) {
654 ret = -EINVAL;
655 goto error;
656 }
657 break;
34805931
DB
658 case BPF_JMP | BPF_JA:
659 /* A jump must set masks on target */
2d5311e4
ED
660 masks[pc + 1 + filter[pc].k] &= memvalid;
661 memvalid = ~0;
662 break;
34805931
DB
663 case BPF_JMP | BPF_JEQ | BPF_K:
664 case BPF_JMP | BPF_JEQ | BPF_X:
665 case BPF_JMP | BPF_JGE | BPF_K:
666 case BPF_JMP | BPF_JGE | BPF_X:
667 case BPF_JMP | BPF_JGT | BPF_K:
668 case BPF_JMP | BPF_JGT | BPF_X:
669 case BPF_JMP | BPF_JSET | BPF_K:
670 case BPF_JMP | BPF_JSET | BPF_X:
671 /* A jump must set masks on targets */
2d5311e4
ED
672 masks[pc + 1 + filter[pc].jt] &= memvalid;
673 masks[pc + 1 + filter[pc].jf] &= memvalid;
674 memvalid = ~0;
675 break;
676 }
677 }
678error:
679 kfree(masks);
680 return ret;
681}
682
34805931
DB
683static bool chk_code_allowed(u16 code_to_probe)
684{
685 static const bool codes[] = {
686 /* 32 bit ALU operations */
687 [BPF_ALU | BPF_ADD | BPF_K] = true,
688 [BPF_ALU | BPF_ADD | BPF_X] = true,
689 [BPF_ALU | BPF_SUB | BPF_K] = true,
690 [BPF_ALU | BPF_SUB | BPF_X] = true,
691 [BPF_ALU | BPF_MUL | BPF_K] = true,
692 [BPF_ALU | BPF_MUL | BPF_X] = true,
693 [BPF_ALU | BPF_DIV | BPF_K] = true,
694 [BPF_ALU | BPF_DIV | BPF_X] = true,
695 [BPF_ALU | BPF_MOD | BPF_K] = true,
696 [BPF_ALU | BPF_MOD | BPF_X] = true,
697 [BPF_ALU | BPF_AND | BPF_K] = true,
698 [BPF_ALU | BPF_AND | BPF_X] = true,
699 [BPF_ALU | BPF_OR | BPF_K] = true,
700 [BPF_ALU | BPF_OR | BPF_X] = true,
701 [BPF_ALU | BPF_XOR | BPF_K] = true,
702 [BPF_ALU | BPF_XOR | BPF_X] = true,
703 [BPF_ALU | BPF_LSH | BPF_K] = true,
704 [BPF_ALU | BPF_LSH | BPF_X] = true,
705 [BPF_ALU | BPF_RSH | BPF_K] = true,
706 [BPF_ALU | BPF_RSH | BPF_X] = true,
707 [BPF_ALU | BPF_NEG] = true,
708 /* Load instructions */
709 [BPF_LD | BPF_W | BPF_ABS] = true,
710 [BPF_LD | BPF_H | BPF_ABS] = true,
711 [BPF_LD | BPF_B | BPF_ABS] = true,
712 [BPF_LD | BPF_W | BPF_LEN] = true,
713 [BPF_LD | BPF_W | BPF_IND] = true,
714 [BPF_LD | BPF_H | BPF_IND] = true,
715 [BPF_LD | BPF_B | BPF_IND] = true,
716 [BPF_LD | BPF_IMM] = true,
717 [BPF_LD | BPF_MEM] = true,
718 [BPF_LDX | BPF_W | BPF_LEN] = true,
719 [BPF_LDX | BPF_B | BPF_MSH] = true,
720 [BPF_LDX | BPF_IMM] = true,
721 [BPF_LDX | BPF_MEM] = true,
722 /* Store instructions */
723 [BPF_ST] = true,
724 [BPF_STX] = true,
725 /* Misc instructions */
726 [BPF_MISC | BPF_TAX] = true,
727 [BPF_MISC | BPF_TXA] = true,
728 /* Return instructions */
729 [BPF_RET | BPF_K] = true,
730 [BPF_RET | BPF_A] = true,
731 /* Jump instructions */
732 [BPF_JMP | BPF_JA] = true,
733 [BPF_JMP | BPF_JEQ | BPF_K] = true,
734 [BPF_JMP | BPF_JEQ | BPF_X] = true,
735 [BPF_JMP | BPF_JGE | BPF_K] = true,
736 [BPF_JMP | BPF_JGE | BPF_X] = true,
737 [BPF_JMP | BPF_JGT | BPF_K] = true,
738 [BPF_JMP | BPF_JGT | BPF_X] = true,
739 [BPF_JMP | BPF_JSET | BPF_K] = true,
740 [BPF_JMP | BPF_JSET | BPF_X] = true,
741 };
742
743 if (code_to_probe >= ARRAY_SIZE(codes))
744 return false;
745
746 return codes[code_to_probe];
747}
748
1da177e4 749/**
4df95ff4 750 * bpf_check_classic - verify socket filter code
1da177e4
LT
751 * @filter: filter to verify
752 * @flen: length of filter
753 *
754 * Check the user's filter code. If we let some ugly
755 * filter code slip through kaboom! The filter must contain
93699863
KK
756 * no references or jumps that are out of range, no illegal
757 * instructions, and must end with a RET instruction.
1da177e4 758 *
7b11f69f
KK
759 * All jumps are forward as they are not signed.
760 *
761 * Returns 0 if the rule set is legal or -EINVAL if not.
1da177e4 762 */
d9e12f42
NS
763static int bpf_check_classic(const struct sock_filter *filter,
764 unsigned int flen)
1da177e4 765{
aa1113d9 766 bool anc_found;
34805931 767 int pc;
1da177e4 768
1b93ae64 769 if (flen == 0 || flen > BPF_MAXINSNS)
1da177e4
LT
770 return -EINVAL;
771
34805931 772 /* Check the filter code now */
1da177e4 773 for (pc = 0; pc < flen; pc++) {
ec31a05c 774 const struct sock_filter *ftest = &filter[pc];
93699863 775
34805931
DB
776 /* May we actually operate on this code? */
777 if (!chk_code_allowed(ftest->code))
cba328fc 778 return -EINVAL;
34805931 779
93699863 780 /* Some instructions need special checks */
34805931
DB
781 switch (ftest->code) {
782 case BPF_ALU | BPF_DIV | BPF_K:
783 case BPF_ALU | BPF_MOD | BPF_K:
784 /* Check for division by zero */
b6069a95
ED
785 if (ftest->k == 0)
786 return -EINVAL;
787 break;
34805931
DB
788 case BPF_LD | BPF_MEM:
789 case BPF_LDX | BPF_MEM:
790 case BPF_ST:
791 case BPF_STX:
792 /* Check for invalid memory addresses */
93699863
KK
793 if (ftest->k >= BPF_MEMWORDS)
794 return -EINVAL;
795 break;
34805931
DB
796 case BPF_JMP | BPF_JA:
797 /* Note, the large ftest->k might cause loops.
93699863
KK
798 * Compare this with conditional jumps below,
799 * where offsets are limited. --ANK (981016)
800 */
34805931 801 if (ftest->k >= (unsigned int)(flen - pc - 1))
93699863 802 return -EINVAL;
01f2f3f6 803 break;
34805931
DB
804 case BPF_JMP | BPF_JEQ | BPF_K:
805 case BPF_JMP | BPF_JEQ | BPF_X:
806 case BPF_JMP | BPF_JGE | BPF_K:
807 case BPF_JMP | BPF_JGE | BPF_X:
808 case BPF_JMP | BPF_JGT | BPF_K:
809 case BPF_JMP | BPF_JGT | BPF_X:
810 case BPF_JMP | BPF_JSET | BPF_K:
811 case BPF_JMP | BPF_JSET | BPF_X:
812 /* Both conditionals must be safe */
e35bedf3 813 if (pc + ftest->jt + 1 >= flen ||
93699863
KK
814 pc + ftest->jf + 1 >= flen)
815 return -EINVAL;
cba328fc 816 break;
34805931
DB
817 case BPF_LD | BPF_W | BPF_ABS:
818 case BPF_LD | BPF_H | BPF_ABS:
819 case BPF_LD | BPF_B | BPF_ABS:
aa1113d9 820 anc_found = false;
34805931
DB
821 if (bpf_anc_helper(ftest) & BPF_ANC)
822 anc_found = true;
823 /* Ancillary operation unknown or unsupported */
aa1113d9
DB
824 if (anc_found == false && ftest->k >= SKF_AD_OFF)
825 return -EINVAL;
01f2f3f6
HPP
826 }
827 }
93699863 828
34805931 829 /* Last instruction must be a RET code */
01f2f3f6 830 switch (filter[flen - 1].code) {
34805931
DB
831 case BPF_RET | BPF_K:
832 case BPF_RET | BPF_A:
2d5311e4 833 return check_load_and_stores(filter, flen);
cba328fc 834 }
34805931 835
cba328fc 836 return -EINVAL;
1da177e4
LT
837}
838
7ae457c1
AS
839static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
840 const struct sock_fprog *fprog)
a3ea269b 841{
009937e7 842 unsigned int fsize = bpf_classic_proglen(fprog);
a3ea269b
DB
843 struct sock_fprog_kern *fkprog;
844
845 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
846 if (!fp->orig_prog)
847 return -ENOMEM;
848
849 fkprog = fp->orig_prog;
850 fkprog->len = fprog->len;
658da937
DB
851
852 fkprog->filter = kmemdup(fp->insns, fsize,
853 GFP_KERNEL | __GFP_NOWARN);
a3ea269b
DB
854 if (!fkprog->filter) {
855 kfree(fp->orig_prog);
856 return -ENOMEM;
857 }
858
859 return 0;
860}
861
7ae457c1 862static void bpf_release_orig_filter(struct bpf_prog *fp)
a3ea269b
DB
863{
864 struct sock_fprog_kern *fprog = fp->orig_prog;
865
866 if (fprog) {
867 kfree(fprog->filter);
868 kfree(fprog);
869 }
870}
871
7ae457c1
AS
872static void __bpf_prog_release(struct bpf_prog *prog)
873{
24701ece 874 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
89aa0758
AS
875 bpf_prog_put(prog);
876 } else {
877 bpf_release_orig_filter(prog);
878 bpf_prog_free(prog);
879 }
7ae457c1
AS
880}
881
34c5bd66
PN
882static void __sk_filter_release(struct sk_filter *fp)
883{
7ae457c1
AS
884 __bpf_prog_release(fp->prog);
885 kfree(fp);
34c5bd66
PN
886}
887
47e958ea 888/**
46bcf14f 889 * sk_filter_release_rcu - Release a socket filter by rcu_head
47e958ea
PE
890 * @rcu: rcu_head that contains the sk_filter to free
891 */
fbc907f0 892static void sk_filter_release_rcu(struct rcu_head *rcu)
47e958ea
PE
893{
894 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
895
34c5bd66 896 __sk_filter_release(fp);
47e958ea 897}
fbc907f0
DB
898
899/**
900 * sk_filter_release - release a socket filter
901 * @fp: filter to remove
902 *
903 * Remove a filter from a socket and release its resources.
904 */
905static void sk_filter_release(struct sk_filter *fp)
906{
907 if (atomic_dec_and_test(&fp->refcnt))
908 call_rcu(&fp->rcu, sk_filter_release_rcu);
909}
910
911void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
912{
7ae457c1 913 u32 filter_size = bpf_prog_size(fp->prog->len);
fbc907f0 914
278571ba
AS
915 atomic_sub(filter_size, &sk->sk_omem_alloc);
916 sk_filter_release(fp);
fbc907f0 917}
47e958ea 918
278571ba
AS
919/* try to charge the socket memory if there is space available
920 * return true on success
921 */
922bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
bd4cf0ed 923{
7ae457c1 924 u32 filter_size = bpf_prog_size(fp->prog->len);
278571ba
AS
925
926 /* same check as in sock_kmalloc() */
927 if (filter_size <= sysctl_optmem_max &&
928 atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
929 atomic_inc(&fp->refcnt);
930 atomic_add(filter_size, &sk->sk_omem_alloc);
931 return true;
bd4cf0ed 932 }
278571ba 933 return false;
bd4cf0ed
AS
934}
935
7ae457c1 936static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
bd4cf0ed
AS
937{
938 struct sock_filter *old_prog;
7ae457c1 939 struct bpf_prog *old_fp;
34805931 940 int err, new_len, old_len = fp->len;
bd4cf0ed
AS
941
942 /* We are free to overwrite insns et al right here as it
943 * won't be used at this point in time anymore internally
944 * after the migration to the internal BPF instruction
945 * representation.
946 */
947 BUILD_BUG_ON(sizeof(struct sock_filter) !=
2695fb55 948 sizeof(struct bpf_insn));
bd4cf0ed 949
bd4cf0ed
AS
950 /* Conversion cannot happen on overlapping memory areas,
951 * so we need to keep the user BPF around until the 2nd
952 * pass. At this time, the user BPF is stored in fp->insns.
953 */
954 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
658da937 955 GFP_KERNEL | __GFP_NOWARN);
bd4cf0ed
AS
956 if (!old_prog) {
957 err = -ENOMEM;
958 goto out_err;
959 }
960
961 /* 1st pass: calculate the new program length. */
8fb575ca 962 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
bd4cf0ed
AS
963 if (err)
964 goto out_err_free;
965
966 /* Expand fp for appending the new filter representation. */
967 old_fp = fp;
60a3b225 968 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
bd4cf0ed
AS
969 if (!fp) {
970 /* The old_fp is still around in case we couldn't
971 * allocate new memory, so uncharge on that one.
972 */
973 fp = old_fp;
974 err = -ENOMEM;
975 goto out_err_free;
976 }
977
bd4cf0ed
AS
978 fp->len = new_len;
979
2695fb55 980 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
8fb575ca 981 err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
bd4cf0ed 982 if (err)
8fb575ca 983 /* 2nd bpf_convert_filter() can fail only if it fails
bd4cf0ed
AS
984 * to allocate memory, remapping must succeed. Note,
985 * that at this time old_fp has already been released
278571ba 986 * by krealloc().
bd4cf0ed
AS
987 */
988 goto out_err_free;
989
7ae457c1 990 bpf_prog_select_runtime(fp);
5fe821a9 991
bd4cf0ed
AS
992 kfree(old_prog);
993 return fp;
994
995out_err_free:
996 kfree(old_prog);
997out_err:
7ae457c1 998 __bpf_prog_release(fp);
bd4cf0ed
AS
999 return ERR_PTR(err);
1000}
1001
ac67eb2c
DB
1002static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1003 bpf_aux_classic_check_t trans)
302d6637
JP
1004{
1005 int err;
1006
bd4cf0ed 1007 fp->bpf_func = NULL;
a91263d5 1008 fp->jited = 0;
302d6637 1009
4df95ff4 1010 err = bpf_check_classic(fp->insns, fp->len);
418c96ac 1011 if (err) {
7ae457c1 1012 __bpf_prog_release(fp);
bd4cf0ed 1013 return ERR_PTR(err);
418c96ac 1014 }
302d6637 1015
4ae92bc7
NS
1016 /* There might be additional checks and transformations
1017 * needed on classic filters, f.e. in case of seccomp.
1018 */
1019 if (trans) {
1020 err = trans(fp->insns, fp->len);
1021 if (err) {
1022 __bpf_prog_release(fp);
1023 return ERR_PTR(err);
1024 }
1025 }
1026
bd4cf0ed
AS
1027 /* Probe if we can JIT compile the filter and if so, do
1028 * the compilation of the filter.
1029 */
302d6637 1030 bpf_jit_compile(fp);
bd4cf0ed
AS
1031
1032 /* JIT compiler couldn't process this filter, so do the
1033 * internal BPF translation for the optimized interpreter.
1034 */
5fe821a9 1035 if (!fp->jited)
7ae457c1 1036 fp = bpf_migrate_filter(fp);
bd4cf0ed
AS
1037
1038 return fp;
302d6637
JP
1039}
1040
1041/**
7ae457c1 1042 * bpf_prog_create - create an unattached filter
c6c4b97c 1043 * @pfp: the unattached filter that is created
677a9fd3 1044 * @fprog: the filter program
302d6637 1045 *
c6c4b97c 1046 * Create a filter independent of any socket. We first run some
302d6637
JP
1047 * sanity checks on it to make sure it does not explode on us later.
1048 * If an error occurs or there is insufficient memory for the filter
1049 * a negative errno code is returned. On success the return is zero.
1050 */
7ae457c1 1051int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
302d6637 1052{
009937e7 1053 unsigned int fsize = bpf_classic_proglen(fprog);
7ae457c1 1054 struct bpf_prog *fp;
302d6637
JP
1055
1056 /* Make sure new filter is there and in the right amounts. */
1057 if (fprog->filter == NULL)
1058 return -EINVAL;
1059
60a3b225 1060 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
302d6637
JP
1061 if (!fp)
1062 return -ENOMEM;
a3ea269b 1063
302d6637
JP
1064 memcpy(fp->insns, fprog->filter, fsize);
1065
302d6637 1066 fp->len = fprog->len;
a3ea269b
DB
1067 /* Since unattached filters are not copied back to user
1068 * space through sk_get_filter(), we do not need to hold
1069 * a copy here, and can spare us the work.
1070 */
1071 fp->orig_prog = NULL;
302d6637 1072
7ae457c1 1073 /* bpf_prepare_filter() already takes care of freeing
bd4cf0ed
AS
1074 * memory in case something goes wrong.
1075 */
4ae92bc7 1076 fp = bpf_prepare_filter(fp, NULL);
bd4cf0ed
AS
1077 if (IS_ERR(fp))
1078 return PTR_ERR(fp);
302d6637
JP
1079
1080 *pfp = fp;
1081 return 0;
302d6637 1082}
7ae457c1 1083EXPORT_SYMBOL_GPL(bpf_prog_create);
302d6637 1084
ac67eb2c
DB
1085/**
1086 * bpf_prog_create_from_user - create an unattached filter from user buffer
1087 * @pfp: the unattached filter that is created
1088 * @fprog: the filter program
1089 * @trans: post-classic verifier transformation handler
bab18991 1090 * @save_orig: save classic BPF program
ac67eb2c
DB
1091 *
1092 * This function effectively does the same as bpf_prog_create(), only
1093 * that it builds up its insns buffer from user space provided buffer.
1094 * It also allows for passing a bpf_aux_classic_check_t handler.
1095 */
1096int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
bab18991 1097 bpf_aux_classic_check_t trans, bool save_orig)
ac67eb2c
DB
1098{
1099 unsigned int fsize = bpf_classic_proglen(fprog);
1100 struct bpf_prog *fp;
bab18991 1101 int err;
ac67eb2c
DB
1102
1103 /* Make sure new filter is there and in the right amounts. */
1104 if (fprog->filter == NULL)
1105 return -EINVAL;
1106
1107 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1108 if (!fp)
1109 return -ENOMEM;
1110
1111 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1112 __bpf_prog_free(fp);
1113 return -EFAULT;
1114 }
1115
1116 fp->len = fprog->len;
ac67eb2c
DB
1117 fp->orig_prog = NULL;
1118
bab18991
DB
1119 if (save_orig) {
1120 err = bpf_prog_store_orig_filter(fp, fprog);
1121 if (err) {
1122 __bpf_prog_free(fp);
1123 return -ENOMEM;
1124 }
1125 }
1126
ac67eb2c
DB
1127 /* bpf_prepare_filter() already takes care of freeing
1128 * memory in case something goes wrong.
1129 */
1130 fp = bpf_prepare_filter(fp, trans);
1131 if (IS_ERR(fp))
1132 return PTR_ERR(fp);
1133
1134 *pfp = fp;
1135 return 0;
1136}
2ea273d7 1137EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
ac67eb2c 1138
7ae457c1 1139void bpf_prog_destroy(struct bpf_prog *fp)
302d6637 1140{
7ae457c1 1141 __bpf_prog_release(fp);
302d6637 1142}
7ae457c1 1143EXPORT_SYMBOL_GPL(bpf_prog_destroy);
302d6637 1144
49b31e57
DB
1145static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1146{
1147 struct sk_filter *fp, *old_fp;
1148
1149 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1150 if (!fp)
1151 return -ENOMEM;
1152
1153 fp->prog = prog;
1154 atomic_set(&fp->refcnt, 0);
1155
1156 if (!sk_filter_charge(sk, fp)) {
1157 kfree(fp);
1158 return -ENOMEM;
1159 }
1160
1161 old_fp = rcu_dereference_protected(sk->sk_filter,
1162 sock_owned_by_user(sk));
1163 rcu_assign_pointer(sk->sk_filter, fp);
1164
1165 if (old_fp)
1166 sk_filter_uncharge(sk, old_fp);
1167
1168 return 0;
1169}
1170
538950a1
CG
1171static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1172{
1173 struct bpf_prog *old_prog;
1174 int err;
1175
1176 if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1177 return -ENOMEM;
1178
1179 if (sk_unhashed(sk)) {
1180 err = reuseport_alloc(sk);
1181 if (err)
1182 return err;
1183 } else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1184 /* The socket wasn't bound with SO_REUSEPORT */
1185 return -EINVAL;
1186 }
1187
1188 old_prog = reuseport_attach_prog(sk, prog);
1189 if (old_prog)
1190 bpf_prog_destroy(old_prog);
1191
1192 return 0;
1193}
1194
1195static
1196struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1da177e4 1197{
009937e7 1198 unsigned int fsize = bpf_classic_proglen(fprog);
7ae457c1
AS
1199 unsigned int bpf_fsize = bpf_prog_size(fprog->len);
1200 struct bpf_prog *prog;
1da177e4
LT
1201 int err;
1202
d59577b6 1203 if (sock_flag(sk, SOCK_FILTER_LOCKED))
538950a1 1204 return ERR_PTR(-EPERM);
d59577b6 1205
1da177e4 1206 /* Make sure new filter is there and in the right amounts. */
e35bedf3 1207 if (fprog->filter == NULL)
538950a1 1208 return ERR_PTR(-EINVAL);
1da177e4 1209
60a3b225 1210 prog = bpf_prog_alloc(bpf_fsize, 0);
7ae457c1 1211 if (!prog)
538950a1 1212 return ERR_PTR(-ENOMEM);
a3ea269b 1213
7ae457c1 1214 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
c0d1379a 1215 __bpf_prog_free(prog);
538950a1 1216 return ERR_PTR(-EFAULT);
1da177e4
LT
1217 }
1218
7ae457c1 1219 prog->len = fprog->len;
1da177e4 1220
7ae457c1 1221 err = bpf_prog_store_orig_filter(prog, fprog);
a3ea269b 1222 if (err) {
c0d1379a 1223 __bpf_prog_free(prog);
538950a1 1224 return ERR_PTR(-ENOMEM);
a3ea269b
DB
1225 }
1226
7ae457c1 1227 /* bpf_prepare_filter() already takes care of freeing
bd4cf0ed
AS
1228 * memory in case something goes wrong.
1229 */
538950a1
CG
1230 return bpf_prepare_filter(prog, NULL);
1231}
1232
1233/**
1234 * sk_attach_filter - attach a socket filter
1235 * @fprog: the filter program
1236 * @sk: the socket to use
1237 *
1238 * Attach the user's filter code. We first run some sanity checks on
1239 * it to make sure it does not explode on us later. If an error
1240 * occurs or there is insufficient memory for the filter a negative
1241 * errno code is returned. On success the return is zero.
1242 */
1243int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1244{
1245 struct bpf_prog *prog = __get_filter(fprog, sk);
1246 int err;
1247
7ae457c1
AS
1248 if (IS_ERR(prog))
1249 return PTR_ERR(prog);
1250
49b31e57
DB
1251 err = __sk_attach_prog(prog, sk);
1252 if (err < 0) {
7ae457c1 1253 __bpf_prog_release(prog);
49b31e57 1254 return err;
278571ba
AS
1255 }
1256
d3904b73 1257 return 0;
1da177e4 1258}
5ff3f073 1259EXPORT_SYMBOL_GPL(sk_attach_filter);
1da177e4 1260
538950a1 1261int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
89aa0758 1262{
538950a1 1263 struct bpf_prog *prog = __get_filter(fprog, sk);
49b31e57 1264 int err;
89aa0758 1265
538950a1
CG
1266 if (IS_ERR(prog))
1267 return PTR_ERR(prog);
1268
1269 err = __reuseport_attach_prog(prog, sk);
1270 if (err < 0) {
1271 __bpf_prog_release(prog);
1272 return err;
1273 }
1274
1275 return 0;
1276}
1277
1278static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1279{
1280 struct bpf_prog *prog;
1281
89aa0758 1282 if (sock_flag(sk, SOCK_FILTER_LOCKED))
538950a1 1283 return ERR_PTR(-EPERM);
89aa0758
AS
1284
1285 prog = bpf_prog_get(ufd);
198bf1b0 1286 if (IS_ERR(prog))
538950a1 1287 return prog;
89aa0758 1288
24701ece 1289 if (prog->type != BPF_PROG_TYPE_SOCKET_FILTER) {
89aa0758 1290 bpf_prog_put(prog);
538950a1 1291 return ERR_PTR(-EINVAL);
89aa0758
AS
1292 }
1293
538950a1
CG
1294 return prog;
1295}
1296
1297int sk_attach_bpf(u32 ufd, struct sock *sk)
1298{
1299 struct bpf_prog *prog = __get_bpf(ufd, sk);
1300 int err;
1301
1302 if (IS_ERR(prog))
1303 return PTR_ERR(prog);
1304
49b31e57
DB
1305 err = __sk_attach_prog(prog, sk);
1306 if (err < 0) {
89aa0758 1307 bpf_prog_put(prog);
49b31e57 1308 return err;
89aa0758
AS
1309 }
1310
89aa0758
AS
1311 return 0;
1312}
1313
538950a1
CG
1314int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1315{
1316 struct bpf_prog *prog = __get_bpf(ufd, sk);
1317 int err;
1318
1319 if (IS_ERR(prog))
1320 return PTR_ERR(prog);
1321
1322 err = __reuseport_attach_prog(prog, sk);
1323 if (err < 0) {
1324 bpf_prog_put(prog);
1325 return err;
1326 }
1327
1328 return 0;
1329}
1330
781c53bc 1331#define BPF_LDST_LEN 16U
91bc4822
AS
1332
1333static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
608cd71a
AS
1334{
1335 struct sk_buff *skb = (struct sk_buff *) (long) r1;
a166151c 1336 int offset = (int) r2;
608cd71a
AS
1337 void *from = (void *) (long) r3;
1338 unsigned int len = (unsigned int) r4;
05c74e5e 1339 char buf[BPF_LDST_LEN];
608cd71a
AS
1340 void *ptr;
1341
781c53bc
DB
1342 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM)))
1343 return -EINVAL;
1344
608cd71a
AS
1345 /* bpf verifier guarantees that:
1346 * 'from' pointer points to bpf program stack
1347 * 'len' bytes of it were initialized
1348 * 'len' > 0
1349 * 'skb' is a valid pointer to 'struct sk_buff'
1350 *
1351 * so check for invalid 'offset' and too large 'len'
1352 */
a166151c 1353 if (unlikely((u32) offset > 0xffff || len > sizeof(buf)))
608cd71a
AS
1354 return -EFAULT;
1355
a166151c 1356 if (unlikely(skb_cloned(skb) &&
3431205e 1357 !skb_clone_writable(skb, offset + len)))
608cd71a
AS
1358 return -EFAULT;
1359
1360 ptr = skb_header_pointer(skb, offset, len, buf);
1361 if (unlikely(!ptr))
1362 return -EFAULT;
1363
781c53bc 1364 if (flags & BPF_F_RECOMPUTE_CSUM)
91bc4822 1365 skb_postpull_rcsum(skb, ptr, len);
608cd71a
AS
1366
1367 memcpy(ptr, from, len);
1368
1369 if (ptr == buf)
1370 /* skb_store_bits cannot return -EFAULT here */
1371 skb_store_bits(skb, offset, ptr, len);
1372
781c53bc 1373 if (flags & BPF_F_RECOMPUTE_CSUM)
f8ffad69
DB
1374 skb_postpush_rcsum(skb, ptr, len);
1375
608cd71a
AS
1376 return 0;
1377}
1378
1379const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1380 .func = bpf_skb_store_bytes,
1381 .gpl_only = false,
1382 .ret_type = RET_INTEGER,
1383 .arg1_type = ARG_PTR_TO_CTX,
1384 .arg2_type = ARG_ANYTHING,
1385 .arg3_type = ARG_PTR_TO_STACK,
1386 .arg4_type = ARG_CONST_STACK_SIZE,
91bc4822
AS
1387 .arg5_type = ARG_ANYTHING,
1388};
1389
05c74e5e
DB
1390static u64 bpf_skb_load_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1391{
1392 const struct sk_buff *skb = (const struct sk_buff *)(unsigned long) r1;
1393 int offset = (int) r2;
1394 void *to = (void *)(unsigned long) r3;
1395 unsigned int len = (unsigned int) r4;
1396 void *ptr;
1397
1398 if (unlikely((u32) offset > 0xffff || len > BPF_LDST_LEN))
1399 return -EFAULT;
1400
1401 ptr = skb_header_pointer(skb, offset, len, to);
1402 if (unlikely(!ptr))
1403 return -EFAULT;
1404 if (ptr != to)
1405 memcpy(to, ptr, len);
1406
1407 return 0;
1408}
1409
1410const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1411 .func = bpf_skb_load_bytes,
1412 .gpl_only = false,
1413 .ret_type = RET_INTEGER,
1414 .arg1_type = ARG_PTR_TO_CTX,
1415 .arg2_type = ARG_ANYTHING,
1416 .arg3_type = ARG_PTR_TO_STACK,
1417 .arg4_type = ARG_CONST_STACK_SIZE,
1418};
1419
a166151c 1420static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
91bc4822
AS
1421{
1422 struct sk_buff *skb = (struct sk_buff *) (long) r1;
a166151c 1423 int offset = (int) r2;
91bc4822
AS
1424 __sum16 sum, *ptr;
1425
781c53bc
DB
1426 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1427 return -EINVAL;
a166151c 1428 if (unlikely((u32) offset > 0xffff))
91bc4822
AS
1429 return -EFAULT;
1430
a166151c 1431 if (unlikely(skb_cloned(skb) &&
3431205e 1432 !skb_clone_writable(skb, offset + sizeof(sum))))
91bc4822
AS
1433 return -EFAULT;
1434
1435 ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1436 if (unlikely(!ptr))
1437 return -EFAULT;
1438
781c53bc 1439 switch (flags & BPF_F_HDR_FIELD_MASK) {
91bc4822
AS
1440 case 2:
1441 csum_replace2(ptr, from, to);
1442 break;
1443 case 4:
1444 csum_replace4(ptr, from, to);
1445 break;
1446 default:
1447 return -EINVAL;
1448 }
1449
1450 if (ptr == &sum)
1451 /* skb_store_bits guaranteed to not return -EFAULT here */
1452 skb_store_bits(skb, offset, ptr, sizeof(sum));
1453
1454 return 0;
1455}
1456
1457const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1458 .func = bpf_l3_csum_replace,
1459 .gpl_only = false,
1460 .ret_type = RET_INTEGER,
1461 .arg1_type = ARG_PTR_TO_CTX,
1462 .arg2_type = ARG_ANYTHING,
1463 .arg3_type = ARG_ANYTHING,
1464 .arg4_type = ARG_ANYTHING,
1465 .arg5_type = ARG_ANYTHING,
1466};
1467
a166151c 1468static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
91bc4822
AS
1469{
1470 struct sk_buff *skb = (struct sk_buff *) (long) r1;
781c53bc 1471 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
a166151c 1472 int offset = (int) r2;
91bc4822
AS
1473 __sum16 sum, *ptr;
1474
781c53bc
DB
1475 if (unlikely(flags & ~(BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1476 return -EINVAL;
a166151c 1477 if (unlikely((u32) offset > 0xffff))
91bc4822
AS
1478 return -EFAULT;
1479
a166151c 1480 if (unlikely(skb_cloned(skb) &&
3431205e 1481 !skb_clone_writable(skb, offset + sizeof(sum))))
91bc4822
AS
1482 return -EFAULT;
1483
1484 ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1485 if (unlikely(!ptr))
1486 return -EFAULT;
1487
781c53bc 1488 switch (flags & BPF_F_HDR_FIELD_MASK) {
91bc4822
AS
1489 case 2:
1490 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1491 break;
1492 case 4:
1493 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1494 break;
1495 default:
1496 return -EINVAL;
1497 }
1498
1499 if (ptr == &sum)
1500 /* skb_store_bits guaranteed to not return -EFAULT here */
1501 skb_store_bits(skb, offset, ptr, sizeof(sum));
1502
1503 return 0;
1504}
1505
1506const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1507 .func = bpf_l4_csum_replace,
1508 .gpl_only = false,
1509 .ret_type = RET_INTEGER,
1510 .arg1_type = ARG_PTR_TO_CTX,
1511 .arg2_type = ARG_ANYTHING,
1512 .arg3_type = ARG_ANYTHING,
1513 .arg4_type = ARG_ANYTHING,
1514 .arg5_type = ARG_ANYTHING,
608cd71a
AS
1515};
1516
3896d655
AS
1517static u64 bpf_clone_redirect(u64 r1, u64 ifindex, u64 flags, u64 r4, u64 r5)
1518{
1519 struct sk_buff *skb = (struct sk_buff *) (long) r1, *skb2;
1520 struct net_device *dev;
1521
781c53bc
DB
1522 if (unlikely(flags & ~(BPF_F_INGRESS)))
1523 return -EINVAL;
1524
3896d655
AS
1525 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1526 if (unlikely(!dev))
1527 return -EINVAL;
1528
3896d655
AS
1529 skb2 = skb_clone(skb, GFP_ATOMIC);
1530 if (unlikely(!skb2))
1531 return -ENOMEM;
1532
781c53bc 1533 if (flags & BPF_F_INGRESS) {
f8ffad69
DB
1534 if (skb_at_tc_ingress(skb2))
1535 skb_postpush_rcsum(skb2, skb_mac_header(skb2),
1536 skb2->mac_len);
3896d655 1537 return dev_forward_skb(dev, skb2);
f8ffad69 1538 }
3896d655
AS
1539
1540 skb2->dev = dev;
6bf05773 1541 skb_sender_cpu_clear(skb2);
3896d655
AS
1542 return dev_queue_xmit(skb2);
1543}
1544
1545const struct bpf_func_proto bpf_clone_redirect_proto = {
1546 .func = bpf_clone_redirect,
1547 .gpl_only = false,
1548 .ret_type = RET_INTEGER,
1549 .arg1_type = ARG_PTR_TO_CTX,
1550 .arg2_type = ARG_ANYTHING,
1551 .arg3_type = ARG_ANYTHING,
1552};
1553
27b29f63
AS
1554struct redirect_info {
1555 u32 ifindex;
1556 u32 flags;
1557};
1558
1559static DEFINE_PER_CPU(struct redirect_info, redirect_info);
781c53bc 1560
27b29f63
AS
1561static u64 bpf_redirect(u64 ifindex, u64 flags, u64 r3, u64 r4, u64 r5)
1562{
1563 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1564
781c53bc
DB
1565 if (unlikely(flags & ~(BPF_F_INGRESS)))
1566 return TC_ACT_SHOT;
1567
27b29f63
AS
1568 ri->ifindex = ifindex;
1569 ri->flags = flags;
781c53bc 1570
27b29f63
AS
1571 return TC_ACT_REDIRECT;
1572}
1573
1574int skb_do_redirect(struct sk_buff *skb)
1575{
1576 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1577 struct net_device *dev;
1578
1579 dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1580 ri->ifindex = 0;
1581 if (unlikely(!dev)) {
1582 kfree_skb(skb);
1583 return -EINVAL;
1584 }
1585
781c53bc 1586 if (ri->flags & BPF_F_INGRESS) {
f8ffad69
DB
1587 if (skb_at_tc_ingress(skb))
1588 skb_postpush_rcsum(skb, skb_mac_header(skb),
1589 skb->mac_len);
27b29f63 1590 return dev_forward_skb(dev, skb);
f8ffad69 1591 }
27b29f63
AS
1592
1593 skb->dev = dev;
cfc81b50 1594 skb_sender_cpu_clear(skb);
27b29f63
AS
1595 return dev_queue_xmit(skb);
1596}
1597
1598const struct bpf_func_proto bpf_redirect_proto = {
1599 .func = bpf_redirect,
1600 .gpl_only = false,
1601 .ret_type = RET_INTEGER,
1602 .arg1_type = ARG_ANYTHING,
1603 .arg2_type = ARG_ANYTHING,
1604};
1605
8d20aabe
DB
1606static u64 bpf_get_cgroup_classid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1607{
1608 return task_get_classid((struct sk_buff *) (unsigned long) r1);
1609}
1610
1611static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1612 .func = bpf_get_cgroup_classid,
1613 .gpl_only = false,
1614 .ret_type = RET_INTEGER,
1615 .arg1_type = ARG_PTR_TO_CTX,
1616};
1617
c46646d0
DB
1618static u64 bpf_get_route_realm(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1619{
1620#ifdef CONFIG_IP_ROUTE_CLASSID
1621 const struct dst_entry *dst;
1622
1623 dst = skb_dst((struct sk_buff *) (unsigned long) r1);
1624 if (dst)
1625 return dst->tclassid;
1626#endif
1627 return 0;
1628}
1629
1630static const struct bpf_func_proto bpf_get_route_realm_proto = {
1631 .func = bpf_get_route_realm,
1632 .gpl_only = false,
1633 .ret_type = RET_INTEGER,
1634 .arg1_type = ARG_PTR_TO_CTX,
1635};
1636
4e10df9a
AS
1637static u64 bpf_skb_vlan_push(u64 r1, u64 r2, u64 vlan_tci, u64 r4, u64 r5)
1638{
1639 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1640 __be16 vlan_proto = (__force __be16) r2;
1641
1642 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1643 vlan_proto != htons(ETH_P_8021AD)))
1644 vlan_proto = htons(ETH_P_8021Q);
1645
1646 return skb_vlan_push(skb, vlan_proto, vlan_tci);
1647}
1648
1649const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1650 .func = bpf_skb_vlan_push,
1651 .gpl_only = false,
1652 .ret_type = RET_INTEGER,
1653 .arg1_type = ARG_PTR_TO_CTX,
1654 .arg2_type = ARG_ANYTHING,
1655 .arg3_type = ARG_ANYTHING,
1656};
4d9c5c53 1657EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
4e10df9a
AS
1658
1659static u64 bpf_skb_vlan_pop(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1660{
1661 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1662
1663 return skb_vlan_pop(skb);
1664}
1665
1666const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
1667 .func = bpf_skb_vlan_pop,
1668 .gpl_only = false,
1669 .ret_type = RET_INTEGER,
1670 .arg1_type = ARG_PTR_TO_CTX,
1671};
4d9c5c53 1672EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
4e10df9a
AS
1673
1674bool bpf_helper_changes_skb_data(void *func)
1675{
1676 if (func == bpf_skb_vlan_push)
1677 return true;
1678 if (func == bpf_skb_vlan_pop)
1679 return true;
1680 return false;
1681}
1682
d3aa45ce
AS
1683static u64 bpf_skb_get_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1684{
1685 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1686 struct bpf_tunnel_key *to = (struct bpf_tunnel_key *) (long) r2;
61adedf3 1687 struct ip_tunnel_info *info = skb_tunnel_info(skb);
d3aa45ce
AS
1688
1689 if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags || !info))
1690 return -EINVAL;
7f9562a1
JB
1691 if (ip_tunnel_info_af(info) != AF_INET)
1692 return -EINVAL;
d3aa45ce
AS
1693
1694 to->tunnel_id = be64_to_cpu(info->key.tun_id);
c1ea5d67 1695 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
d3aa45ce
AS
1696
1697 return 0;
1698}
1699
1700const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
1701 .func = bpf_skb_get_tunnel_key,
1702 .gpl_only = false,
1703 .ret_type = RET_INTEGER,
1704 .arg1_type = ARG_PTR_TO_CTX,
1705 .arg2_type = ARG_PTR_TO_STACK,
1706 .arg3_type = ARG_CONST_STACK_SIZE,
1707 .arg4_type = ARG_ANYTHING,
1708};
1709
1710static struct metadata_dst __percpu *md_dst;
1711
1712static u64 bpf_skb_set_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1713{
1714 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1715 struct bpf_tunnel_key *from = (struct bpf_tunnel_key *) (long) r2;
1716 struct metadata_dst *md = this_cpu_ptr(md_dst);
1717 struct ip_tunnel_info *info;
1718
1719 if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags))
1720 return -EINVAL;
1721
1722 skb_dst_drop(skb);
1723 dst_hold((struct dst_entry *) md);
1724 skb_dst_set(skb, (struct dst_entry *) md);
1725
1726 info = &md->u.tun_info;
1727 info->mode = IP_TUNNEL_INFO_TX;
1dd34b5a 1728 info->key.tun_flags = TUNNEL_KEY;
d3aa45ce 1729 info->key.tun_id = cpu_to_be64(from->tunnel_id);
c1ea5d67 1730 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
d3aa45ce
AS
1731
1732 return 0;
1733}
1734
1735const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
1736 .func = bpf_skb_set_tunnel_key,
1737 .gpl_only = false,
1738 .ret_type = RET_INTEGER,
1739 .arg1_type = ARG_PTR_TO_CTX,
1740 .arg2_type = ARG_PTR_TO_STACK,
1741 .arg3_type = ARG_CONST_STACK_SIZE,
1742 .arg4_type = ARG_ANYTHING,
1743};
1744
1745static const struct bpf_func_proto *bpf_get_skb_set_tunnel_key_proto(void)
1746{
1747 if (!md_dst) {
1748 /* race is not possible, since it's called from
1749 * verifier that is holding verifier mutex
1750 */
1751 md_dst = metadata_dst_alloc_percpu(0, GFP_KERNEL);
1752 if (!md_dst)
1753 return NULL;
1754 }
1755 return &bpf_skb_set_tunnel_key_proto;
1756}
1757
d4052c4a
DB
1758static const struct bpf_func_proto *
1759sk_filter_func_proto(enum bpf_func_id func_id)
89aa0758
AS
1760{
1761 switch (func_id) {
1762 case BPF_FUNC_map_lookup_elem:
1763 return &bpf_map_lookup_elem_proto;
1764 case BPF_FUNC_map_update_elem:
1765 return &bpf_map_update_elem_proto;
1766 case BPF_FUNC_map_delete_elem:
1767 return &bpf_map_delete_elem_proto;
03e69b50
DB
1768 case BPF_FUNC_get_prandom_u32:
1769 return &bpf_get_prandom_u32_proto;
c04167ce
DB
1770 case BPF_FUNC_get_smp_processor_id:
1771 return &bpf_get_smp_processor_id_proto;
04fd61ab
AS
1772 case BPF_FUNC_tail_call:
1773 return &bpf_tail_call_proto;
17ca8cbf
DB
1774 case BPF_FUNC_ktime_get_ns:
1775 return &bpf_ktime_get_ns_proto;
0756ea3e 1776 case BPF_FUNC_trace_printk:
1be7f75d
AS
1777 if (capable(CAP_SYS_ADMIN))
1778 return bpf_get_trace_printk_proto();
89aa0758
AS
1779 default:
1780 return NULL;
1781 }
1782}
1783
608cd71a
AS
1784static const struct bpf_func_proto *
1785tc_cls_act_func_proto(enum bpf_func_id func_id)
1786{
1787 switch (func_id) {
1788 case BPF_FUNC_skb_store_bytes:
1789 return &bpf_skb_store_bytes_proto;
05c74e5e
DB
1790 case BPF_FUNC_skb_load_bytes:
1791 return &bpf_skb_load_bytes_proto;
91bc4822
AS
1792 case BPF_FUNC_l3_csum_replace:
1793 return &bpf_l3_csum_replace_proto;
1794 case BPF_FUNC_l4_csum_replace:
1795 return &bpf_l4_csum_replace_proto;
3896d655
AS
1796 case BPF_FUNC_clone_redirect:
1797 return &bpf_clone_redirect_proto;
8d20aabe
DB
1798 case BPF_FUNC_get_cgroup_classid:
1799 return &bpf_get_cgroup_classid_proto;
4e10df9a
AS
1800 case BPF_FUNC_skb_vlan_push:
1801 return &bpf_skb_vlan_push_proto;
1802 case BPF_FUNC_skb_vlan_pop:
1803 return &bpf_skb_vlan_pop_proto;
d3aa45ce
AS
1804 case BPF_FUNC_skb_get_tunnel_key:
1805 return &bpf_skb_get_tunnel_key_proto;
1806 case BPF_FUNC_skb_set_tunnel_key:
1807 return bpf_get_skb_set_tunnel_key_proto();
27b29f63
AS
1808 case BPF_FUNC_redirect:
1809 return &bpf_redirect_proto;
c46646d0
DB
1810 case BPF_FUNC_get_route_realm:
1811 return &bpf_get_route_realm_proto;
608cd71a
AS
1812 default:
1813 return sk_filter_func_proto(func_id);
1814 }
1815}
1816
d691f9e8 1817static bool __is_valid_access(int off, int size, enum bpf_access_type type)
89aa0758 1818{
9bac3d6d
AS
1819 /* check bounds */
1820 if (off < 0 || off >= sizeof(struct __sk_buff))
1821 return false;
1822
1823 /* disallow misaligned access */
1824 if (off % size != 0)
1825 return false;
1826
1827 /* all __sk_buff fields are __u32 */
1828 if (size != 4)
1829 return false;
1830
1831 return true;
1832}
1833
d691f9e8
AS
1834static bool sk_filter_is_valid_access(int off, int size,
1835 enum bpf_access_type type)
1836{
045efa82
DB
1837 if (off == offsetof(struct __sk_buff, tc_classid))
1838 return false;
1839
d691f9e8
AS
1840 if (type == BPF_WRITE) {
1841 switch (off) {
1842 case offsetof(struct __sk_buff, cb[0]) ...
1843 offsetof(struct __sk_buff, cb[4]):
1844 break;
1845 default:
1846 return false;
1847 }
1848 }
1849
1850 return __is_valid_access(off, size, type);
1851}
1852
1853static bool tc_cls_act_is_valid_access(int off, int size,
1854 enum bpf_access_type type)
1855{
045efa82
DB
1856 if (off == offsetof(struct __sk_buff, tc_classid))
1857 return type == BPF_WRITE ? true : false;
1858
d691f9e8
AS
1859 if (type == BPF_WRITE) {
1860 switch (off) {
1861 case offsetof(struct __sk_buff, mark):
1862 case offsetof(struct __sk_buff, tc_index):
754f1e6a 1863 case offsetof(struct __sk_buff, priority):
d691f9e8
AS
1864 case offsetof(struct __sk_buff, cb[0]) ...
1865 offsetof(struct __sk_buff, cb[4]):
1866 break;
1867 default:
1868 return false;
1869 }
1870 }
1871 return __is_valid_access(off, size, type);
1872}
1873
1874static u32 bpf_net_convert_ctx_access(enum bpf_access_type type, int dst_reg,
1875 int src_reg, int ctx_off,
ff936a04
AS
1876 struct bpf_insn *insn_buf,
1877 struct bpf_prog *prog)
9bac3d6d
AS
1878{
1879 struct bpf_insn *insn = insn_buf;
1880
1881 switch (ctx_off) {
1882 case offsetof(struct __sk_buff, len):
1883 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
1884
1885 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1886 offsetof(struct sk_buff, len));
1887 break;
1888
0b8c707d
DB
1889 case offsetof(struct __sk_buff, protocol):
1890 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
1891
1892 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1893 offsetof(struct sk_buff, protocol));
1894 break;
1895
27cd5452
MS
1896 case offsetof(struct __sk_buff, vlan_proto):
1897 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
1898
1899 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1900 offsetof(struct sk_buff, vlan_proto));
1901 break;
1902
bcad5718
DB
1903 case offsetof(struct __sk_buff, priority):
1904 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);
1905
754f1e6a
DB
1906 if (type == BPF_WRITE)
1907 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
1908 offsetof(struct sk_buff, priority));
1909 else
1910 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1911 offsetof(struct sk_buff, priority));
bcad5718
DB
1912 break;
1913
37e82c2f
AS
1914 case offsetof(struct __sk_buff, ingress_ifindex):
1915 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);
1916
1917 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1918 offsetof(struct sk_buff, skb_iif));
1919 break;
1920
1921 case offsetof(struct __sk_buff, ifindex):
1922 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
1923
1924 *insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
1925 dst_reg, src_reg,
1926 offsetof(struct sk_buff, dev));
1927 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
1928 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
1929 offsetof(struct net_device, ifindex));
1930 break;
1931
ba7591d8
DB
1932 case offsetof(struct __sk_buff, hash):
1933 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
1934
1935 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1936 offsetof(struct sk_buff, hash));
1937 break;
1938
9bac3d6d 1939 case offsetof(struct __sk_buff, mark):
d691f9e8
AS
1940 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
1941
1942 if (type == BPF_WRITE)
1943 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
1944 offsetof(struct sk_buff, mark));
1945 else
1946 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1947 offsetof(struct sk_buff, mark));
1948 break;
9bac3d6d
AS
1949
1950 case offsetof(struct __sk_buff, pkt_type):
1951 return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);
1952
1953 case offsetof(struct __sk_buff, queue_mapping):
1954 return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
c2497395 1955
c2497395
AS
1956 case offsetof(struct __sk_buff, vlan_present):
1957 return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
1958 dst_reg, src_reg, insn);
1959
1960 case offsetof(struct __sk_buff, vlan_tci):
1961 return convert_skb_access(SKF_AD_VLAN_TAG,
1962 dst_reg, src_reg, insn);
d691f9e8
AS
1963
1964 case offsetof(struct __sk_buff, cb[0]) ...
1965 offsetof(struct __sk_buff, cb[4]):
1966 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
1967
ff936a04 1968 prog->cb_access = 1;
d691f9e8
AS
1969 ctx_off -= offsetof(struct __sk_buff, cb[0]);
1970 ctx_off += offsetof(struct sk_buff, cb);
1971 ctx_off += offsetof(struct qdisc_skb_cb, data);
1972 if (type == BPF_WRITE)
1973 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
1974 else
1975 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
1976 break;
1977
045efa82
DB
1978 case offsetof(struct __sk_buff, tc_classid):
1979 ctx_off -= offsetof(struct __sk_buff, tc_classid);
1980 ctx_off += offsetof(struct sk_buff, cb);
1981 ctx_off += offsetof(struct qdisc_skb_cb, tc_classid);
1982 WARN_ON(type != BPF_WRITE);
1983 *insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
1984 break;
1985
d691f9e8
AS
1986 case offsetof(struct __sk_buff, tc_index):
1987#ifdef CONFIG_NET_SCHED
1988 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);
1989
1990 if (type == BPF_WRITE)
1991 *insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
1992 offsetof(struct sk_buff, tc_index));
1993 else
1994 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1995 offsetof(struct sk_buff, tc_index));
1996 break;
1997#else
1998 if (type == BPF_WRITE)
1999 *insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
2000 else
2001 *insn++ = BPF_MOV64_IMM(dst_reg, 0);
2002 break;
2003#endif
9bac3d6d
AS
2004 }
2005
2006 return insn - insn_buf;
89aa0758
AS
2007}
2008
d4052c4a
DB
2009static const struct bpf_verifier_ops sk_filter_ops = {
2010 .get_func_proto = sk_filter_func_proto,
2011 .is_valid_access = sk_filter_is_valid_access,
d691f9e8 2012 .convert_ctx_access = bpf_net_convert_ctx_access,
89aa0758
AS
2013};
2014
608cd71a
AS
2015static const struct bpf_verifier_ops tc_cls_act_ops = {
2016 .get_func_proto = tc_cls_act_func_proto,
d691f9e8
AS
2017 .is_valid_access = tc_cls_act_is_valid_access,
2018 .convert_ctx_access = bpf_net_convert_ctx_access,
608cd71a
AS
2019};
2020
d4052c4a
DB
2021static struct bpf_prog_type_list sk_filter_type __read_mostly = {
2022 .ops = &sk_filter_ops,
89aa0758
AS
2023 .type = BPF_PROG_TYPE_SOCKET_FILTER,
2024};
2025
96be4325 2026static struct bpf_prog_type_list sched_cls_type __read_mostly = {
608cd71a 2027 .ops = &tc_cls_act_ops,
96be4325
DB
2028 .type = BPF_PROG_TYPE_SCHED_CLS,
2029};
2030
94caee8c 2031static struct bpf_prog_type_list sched_act_type __read_mostly = {
608cd71a 2032 .ops = &tc_cls_act_ops,
94caee8c
DB
2033 .type = BPF_PROG_TYPE_SCHED_ACT,
2034};
2035
d4052c4a 2036static int __init register_sk_filter_ops(void)
89aa0758 2037{
d4052c4a 2038 bpf_register_prog_type(&sk_filter_type);
96be4325 2039 bpf_register_prog_type(&sched_cls_type);
94caee8c 2040 bpf_register_prog_type(&sched_act_type);
96be4325 2041
89aa0758
AS
2042 return 0;
2043}
d4052c4a
DB
2044late_initcall(register_sk_filter_ops);
2045
55b33325
PE
2046int sk_detach_filter(struct sock *sk)
2047{
2048 int ret = -ENOENT;
2049 struct sk_filter *filter;
2050
d59577b6
VB
2051 if (sock_flag(sk, SOCK_FILTER_LOCKED))
2052 return -EPERM;
2053
f91ff5b9
ED
2054 filter = rcu_dereference_protected(sk->sk_filter,
2055 sock_owned_by_user(sk));
55b33325 2056 if (filter) {
a9b3cd7f 2057 RCU_INIT_POINTER(sk->sk_filter, NULL);
46bcf14f 2058 sk_filter_uncharge(sk, filter);
55b33325
PE
2059 ret = 0;
2060 }
a3ea269b 2061
55b33325
PE
2062 return ret;
2063}
5ff3f073 2064EXPORT_SYMBOL_GPL(sk_detach_filter);
a8fc9277 2065
a3ea269b
DB
2066int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
2067 unsigned int len)
a8fc9277 2068{
a3ea269b 2069 struct sock_fprog_kern *fprog;
a8fc9277 2070 struct sk_filter *filter;
a3ea269b 2071 int ret = 0;
a8fc9277
PE
2072
2073 lock_sock(sk);
2074 filter = rcu_dereference_protected(sk->sk_filter,
a3ea269b 2075 sock_owned_by_user(sk));
a8fc9277
PE
2076 if (!filter)
2077 goto out;
a3ea269b
DB
2078
2079 /* We're copying the filter that has been originally attached,
93d08b69
DB
2080 * so no conversion/decode needed anymore. eBPF programs that
2081 * have no original program cannot be dumped through this.
a3ea269b 2082 */
93d08b69 2083 ret = -EACCES;
7ae457c1 2084 fprog = filter->prog->orig_prog;
93d08b69
DB
2085 if (!fprog)
2086 goto out;
a3ea269b
DB
2087
2088 ret = fprog->len;
a8fc9277 2089 if (!len)
a3ea269b 2090 /* User space only enquires number of filter blocks. */
a8fc9277 2091 goto out;
a3ea269b 2092
a8fc9277 2093 ret = -EINVAL;
a3ea269b 2094 if (len < fprog->len)
a8fc9277
PE
2095 goto out;
2096
2097 ret = -EFAULT;
009937e7 2098 if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
a3ea269b 2099 goto out;
a8fc9277 2100
a3ea269b
DB
2101 /* Instead of bytes, the API requests to return the number
2102 * of filter blocks.
2103 */
2104 ret = fprog->len;
a8fc9277
PE
2105out:
2106 release_sock(sk);
2107 return ret;
2108}