]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/core/neighbour.c
[NETFILTER]: Nicer names for ipt_connbytes constants
[mirror_ubuntu-artful-kernel.git] / net / core / neighbour.c
CommitLineData
1da177e4
LT
1/*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18#include <linux/config.h>
19#include <linux/types.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/socket.h>
23#include <linux/sched.h>
24#include <linux/netdevice.h>
25#include <linux/proc_fs.h>
26#ifdef CONFIG_SYSCTL
27#include <linux/sysctl.h>
28#endif
29#include <linux/times.h>
30#include <net/neighbour.h>
31#include <net/dst.h>
32#include <net/sock.h>
33#include <linux/rtnetlink.h>
34#include <linux/random.h>
543537bd 35#include <linux/string.h>
1da177e4
LT
36
37#define NEIGH_DEBUG 1
38
39#define NEIGH_PRINTK(x...) printk(x)
40#define NEIGH_NOPRINTK(x...) do { ; } while(0)
41#define NEIGH_PRINTK0 NEIGH_PRINTK
42#define NEIGH_PRINTK1 NEIGH_NOPRINTK
43#define NEIGH_PRINTK2 NEIGH_NOPRINTK
44
45#if NEIGH_DEBUG >= 1
46#undef NEIGH_PRINTK1
47#define NEIGH_PRINTK1 NEIGH_PRINTK
48#endif
49#if NEIGH_DEBUG >= 2
50#undef NEIGH_PRINTK2
51#define NEIGH_PRINTK2 NEIGH_PRINTK
52#endif
53
54#define PNEIGH_HASHMASK 0xF
55
56static void neigh_timer_handler(unsigned long arg);
57#ifdef CONFIG_ARPD
58static void neigh_app_notify(struct neighbour *n);
59#endif
60static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
61void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev);
62
63static struct neigh_table *neigh_tables;
64static struct file_operations neigh_stat_seq_fops;
65
66/*
67 Neighbour hash table buckets are protected with rwlock tbl->lock.
68
69 - All the scans/updates to hash buckets MUST be made under this lock.
70 - NOTHING clever should be made under this lock: no callbacks
71 to protocol backends, no attempts to send something to network.
72 It will result in deadlocks, if backend/driver wants to use neighbour
73 cache.
74 - If the entry requires some non-trivial actions, increase
75 its reference count and release table lock.
76
77 Neighbour entries are protected:
78 - with reference count.
79 - with rwlock neigh->lock
80
81 Reference count prevents destruction.
82
83 neigh->lock mainly serializes ll address data and its validity state.
84 However, the same lock is used to protect another entry fields:
85 - timer
86 - resolution queue
87
88 Again, nothing clever shall be made under neigh->lock,
89 the most complicated procedure, which we allow is dev->hard_header.
90 It is supposed, that dev->hard_header is simplistic and does
91 not make callbacks to neighbour tables.
92
93 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
94 list of neighbour tables. This list is used only in process context,
95 */
96
97static DEFINE_RWLOCK(neigh_tbl_lock);
98
99static int neigh_blackhole(struct sk_buff *skb)
100{
101 kfree_skb(skb);
102 return -ENETDOWN;
103}
104
105/*
106 * It is random distribution in the interval (1/2)*base...(3/2)*base.
107 * It corresponds to default IPv6 settings and is not overridable,
108 * because it is really reasonable choice.
109 */
110
111unsigned long neigh_rand_reach_time(unsigned long base)
112{
113 return (base ? (net_random() % base) + (base >> 1) : 0);
114}
115
116
117static int neigh_forced_gc(struct neigh_table *tbl)
118{
119 int shrunk = 0;
120 int i;
121
122 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
123
124 write_lock_bh(&tbl->lock);
125 for (i = 0; i <= tbl->hash_mask; i++) {
126 struct neighbour *n, **np;
127
128 np = &tbl->hash_buckets[i];
129 while ((n = *np) != NULL) {
130 /* Neighbour record may be discarded if:
131 * - nobody refers to it.
132 * - it is not permanent
133 */
134 write_lock(&n->lock);
135 if (atomic_read(&n->refcnt) == 1 &&
136 !(n->nud_state & NUD_PERMANENT)) {
137 *np = n->next;
138 n->dead = 1;
139 shrunk = 1;
140 write_unlock(&n->lock);
141 neigh_release(n);
142 continue;
143 }
144 write_unlock(&n->lock);
145 np = &n->next;
146 }
147 }
148
149 tbl->last_flush = jiffies;
150
151 write_unlock_bh(&tbl->lock);
152
153 return shrunk;
154}
155
156static int neigh_del_timer(struct neighbour *n)
157{
158 if ((n->nud_state & NUD_IN_TIMER) &&
159 del_timer(&n->timer)) {
160 neigh_release(n);
161 return 1;
162 }
163 return 0;
164}
165
166static void pneigh_queue_purge(struct sk_buff_head *list)
167{
168 struct sk_buff *skb;
169
170 while ((skb = skb_dequeue(list)) != NULL) {
171 dev_put(skb->dev);
172 kfree_skb(skb);
173 }
174}
175
176void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
177{
178 int i;
179
180 write_lock_bh(&tbl->lock);
181
182 for (i=0; i <= tbl->hash_mask; i++) {
183 struct neighbour *n, **np;
184
185 np = &tbl->hash_buckets[i];
186 while ((n = *np) != NULL) {
187 if (dev && n->dev != dev) {
188 np = &n->next;
189 continue;
190 }
191 *np = n->next;
192 write_lock_bh(&n->lock);
193 n->dead = 1;
194 neigh_del_timer(n);
195 write_unlock_bh(&n->lock);
196 neigh_release(n);
197 }
198 }
199
200 write_unlock_bh(&tbl->lock);
201}
202
203int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
204{
205 int i;
206
207 write_lock_bh(&tbl->lock);
208
209 for (i = 0; i <= tbl->hash_mask; i++) {
210 struct neighbour *n, **np = &tbl->hash_buckets[i];
211
212 while ((n = *np) != NULL) {
213 if (dev && n->dev != dev) {
214 np = &n->next;
215 continue;
216 }
217 *np = n->next;
218 write_lock(&n->lock);
219 neigh_del_timer(n);
220 n->dead = 1;
221
222 if (atomic_read(&n->refcnt) != 1) {
223 /* The most unpleasant situation.
224 We must destroy neighbour entry,
225 but someone still uses it.
226
227 The destroy will be delayed until
228 the last user releases us, but
229 we must kill timers etc. and move
230 it to safe state.
231 */
232 skb_queue_purge(&n->arp_queue);
233 n->output = neigh_blackhole;
234 if (n->nud_state & NUD_VALID)
235 n->nud_state = NUD_NOARP;
236 else
237 n->nud_state = NUD_NONE;
238 NEIGH_PRINTK2("neigh %p is stray.\n", n);
239 }
240 write_unlock(&n->lock);
241 neigh_release(n);
242 }
243 }
244
245 pneigh_ifdown(tbl, dev);
246 write_unlock_bh(&tbl->lock);
247
248 del_timer_sync(&tbl->proxy_timer);
249 pneigh_queue_purge(&tbl->proxy_queue);
250 return 0;
251}
252
253static struct neighbour *neigh_alloc(struct neigh_table *tbl)
254{
255 struct neighbour *n = NULL;
256 unsigned long now = jiffies;
257 int entries;
258
259 entries = atomic_inc_return(&tbl->entries) - 1;
260 if (entries >= tbl->gc_thresh3 ||
261 (entries >= tbl->gc_thresh2 &&
262 time_after(now, tbl->last_flush + 5 * HZ))) {
263 if (!neigh_forced_gc(tbl) &&
264 entries >= tbl->gc_thresh3)
265 goto out_entries;
266 }
267
268 n = kmem_cache_alloc(tbl->kmem_cachep, SLAB_ATOMIC);
269 if (!n)
270 goto out_entries;
271
272 memset(n, 0, tbl->entry_size);
273
274 skb_queue_head_init(&n->arp_queue);
275 rwlock_init(&n->lock);
276 n->updated = n->used = now;
277 n->nud_state = NUD_NONE;
278 n->output = neigh_blackhole;
279 n->parms = neigh_parms_clone(&tbl->parms);
280 init_timer(&n->timer);
281 n->timer.function = neigh_timer_handler;
282 n->timer.data = (unsigned long)n;
283
284 NEIGH_CACHE_STAT_INC(tbl, allocs);
285 n->tbl = tbl;
286 atomic_set(&n->refcnt, 1);
287 n->dead = 1;
288out:
289 return n;
290
291out_entries:
292 atomic_dec(&tbl->entries);
293 goto out;
294}
295
296static struct neighbour **neigh_hash_alloc(unsigned int entries)
297{
298 unsigned long size = entries * sizeof(struct neighbour *);
299 struct neighbour **ret;
300
301 if (size <= PAGE_SIZE) {
302 ret = kmalloc(size, GFP_ATOMIC);
303 } else {
304 ret = (struct neighbour **)
305 __get_free_pages(GFP_ATOMIC, get_order(size));
306 }
307 if (ret)
308 memset(ret, 0, size);
309
310 return ret;
311}
312
313static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
314{
315 unsigned long size = entries * sizeof(struct neighbour *);
316
317 if (size <= PAGE_SIZE)
318 kfree(hash);
319 else
320 free_pages((unsigned long)hash, get_order(size));
321}
322
323static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
324{
325 struct neighbour **new_hash, **old_hash;
326 unsigned int i, new_hash_mask, old_entries;
327
328 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
329
330 BUG_ON(new_entries & (new_entries - 1));
331 new_hash = neigh_hash_alloc(new_entries);
332 if (!new_hash)
333 return;
334
335 old_entries = tbl->hash_mask + 1;
336 new_hash_mask = new_entries - 1;
337 old_hash = tbl->hash_buckets;
338
339 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
340 for (i = 0; i < old_entries; i++) {
341 struct neighbour *n, *next;
342
343 for (n = old_hash[i]; n; n = next) {
344 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
345
346 hash_val &= new_hash_mask;
347 next = n->next;
348
349 n->next = new_hash[hash_val];
350 new_hash[hash_val] = n;
351 }
352 }
353 tbl->hash_buckets = new_hash;
354 tbl->hash_mask = new_hash_mask;
355
356 neigh_hash_free(old_hash, old_entries);
357}
358
359struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
360 struct net_device *dev)
361{
362 struct neighbour *n;
363 int key_len = tbl->key_len;
364 u32 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
365
366 NEIGH_CACHE_STAT_INC(tbl, lookups);
367
368 read_lock_bh(&tbl->lock);
369 for (n = tbl->hash_buckets[hash_val]; n; n = n->next) {
370 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
371 neigh_hold(n);
372 NEIGH_CACHE_STAT_INC(tbl, hits);
373 break;
374 }
375 }
376 read_unlock_bh(&tbl->lock);
377 return n;
378}
379
380struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey)
381{
382 struct neighbour *n;
383 int key_len = tbl->key_len;
384 u32 hash_val = tbl->hash(pkey, NULL) & tbl->hash_mask;
385
386 NEIGH_CACHE_STAT_INC(tbl, lookups);
387
388 read_lock_bh(&tbl->lock);
389 for (n = tbl->hash_buckets[hash_val]; n; n = n->next) {
390 if (!memcmp(n->primary_key, pkey, key_len)) {
391 neigh_hold(n);
392 NEIGH_CACHE_STAT_INC(tbl, hits);
393 break;
394 }
395 }
396 read_unlock_bh(&tbl->lock);
397 return n;
398}
399
400struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
401 struct net_device *dev)
402{
403 u32 hash_val;
404 int key_len = tbl->key_len;
405 int error;
406 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
407
408 if (!n) {
409 rc = ERR_PTR(-ENOBUFS);
410 goto out;
411 }
412
413 memcpy(n->primary_key, pkey, key_len);
414 n->dev = dev;
415 dev_hold(dev);
416
417 /* Protocol specific setup. */
418 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
419 rc = ERR_PTR(error);
420 goto out_neigh_release;
421 }
422
423 /* Device specific setup. */
424 if (n->parms->neigh_setup &&
425 (error = n->parms->neigh_setup(n)) < 0) {
426 rc = ERR_PTR(error);
427 goto out_neigh_release;
428 }
429
430 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
431
432 write_lock_bh(&tbl->lock);
433
434 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
435 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
436
437 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
438
439 if (n->parms->dead) {
440 rc = ERR_PTR(-EINVAL);
441 goto out_tbl_unlock;
442 }
443
444 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
445 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
446 neigh_hold(n1);
447 rc = n1;
448 goto out_tbl_unlock;
449 }
450 }
451
452 n->next = tbl->hash_buckets[hash_val];
453 tbl->hash_buckets[hash_val] = n;
454 n->dead = 0;
455 neigh_hold(n);
456 write_unlock_bh(&tbl->lock);
457 NEIGH_PRINTK2("neigh %p is created.\n", n);
458 rc = n;
459out:
460 return rc;
461out_tbl_unlock:
462 write_unlock_bh(&tbl->lock);
463out_neigh_release:
464 neigh_release(n);
465 goto out;
466}
467
468struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey,
469 struct net_device *dev, int creat)
470{
471 struct pneigh_entry *n;
472 int key_len = tbl->key_len;
473 u32 hash_val = *(u32 *)(pkey + key_len - 4);
474
475 hash_val ^= (hash_val >> 16);
476 hash_val ^= hash_val >> 8;
477 hash_val ^= hash_val >> 4;
478 hash_val &= PNEIGH_HASHMASK;
479
480 read_lock_bh(&tbl->lock);
481
482 for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
483 if (!memcmp(n->key, pkey, key_len) &&
484 (n->dev == dev || !n->dev)) {
485 read_unlock_bh(&tbl->lock);
486 goto out;
487 }
488 }
489 read_unlock_bh(&tbl->lock);
490 n = NULL;
491 if (!creat)
492 goto out;
493
494 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
495 if (!n)
496 goto out;
497
498 memcpy(n->key, pkey, key_len);
499 n->dev = dev;
500 if (dev)
501 dev_hold(dev);
502
503 if (tbl->pconstructor && tbl->pconstructor(n)) {
504 if (dev)
505 dev_put(dev);
506 kfree(n);
507 n = NULL;
508 goto out;
509 }
510
511 write_lock_bh(&tbl->lock);
512 n->next = tbl->phash_buckets[hash_val];
513 tbl->phash_buckets[hash_val] = n;
514 write_unlock_bh(&tbl->lock);
515out:
516 return n;
517}
518
519
520int pneigh_delete(struct neigh_table *tbl, const void *pkey,
521 struct net_device *dev)
522{
523 struct pneigh_entry *n, **np;
524 int key_len = tbl->key_len;
525 u32 hash_val = *(u32 *)(pkey + key_len - 4);
526
527 hash_val ^= (hash_val >> 16);
528 hash_val ^= hash_val >> 8;
529 hash_val ^= hash_val >> 4;
530 hash_val &= PNEIGH_HASHMASK;
531
532 write_lock_bh(&tbl->lock);
533 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
534 np = &n->next) {
535 if (!memcmp(n->key, pkey, key_len) && n->dev == dev) {
536 *np = n->next;
537 write_unlock_bh(&tbl->lock);
538 if (tbl->pdestructor)
539 tbl->pdestructor(n);
540 if (n->dev)
541 dev_put(n->dev);
542 kfree(n);
543 return 0;
544 }
545 }
546 write_unlock_bh(&tbl->lock);
547 return -ENOENT;
548}
549
550static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
551{
552 struct pneigh_entry *n, **np;
553 u32 h;
554
555 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
556 np = &tbl->phash_buckets[h];
557 while ((n = *np) != NULL) {
558 if (!dev || n->dev == dev) {
559 *np = n->next;
560 if (tbl->pdestructor)
561 tbl->pdestructor(n);
562 if (n->dev)
563 dev_put(n->dev);
564 kfree(n);
565 continue;
566 }
567 np = &n->next;
568 }
569 }
570 return -ENOENT;
571}
572
573
574/*
575 * neighbour must already be out of the table;
576 *
577 */
578void neigh_destroy(struct neighbour *neigh)
579{
580 struct hh_cache *hh;
581
582 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
583
584 if (!neigh->dead) {
585 printk(KERN_WARNING
586 "Destroying alive neighbour %p\n", neigh);
587 dump_stack();
588 return;
589 }
590
591 if (neigh_del_timer(neigh))
592 printk(KERN_WARNING "Impossible event.\n");
593
594 while ((hh = neigh->hh) != NULL) {
595 neigh->hh = hh->hh_next;
596 hh->hh_next = NULL;
597 write_lock_bh(&hh->hh_lock);
598 hh->hh_output = neigh_blackhole;
599 write_unlock_bh(&hh->hh_lock);
600 if (atomic_dec_and_test(&hh->hh_refcnt))
601 kfree(hh);
602 }
603
604 if (neigh->ops && neigh->ops->destructor)
605 (neigh->ops->destructor)(neigh);
606
607 skb_queue_purge(&neigh->arp_queue);
608
609 dev_put(neigh->dev);
610 neigh_parms_put(neigh->parms);
611
612 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
613
614 atomic_dec(&neigh->tbl->entries);
615 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
616}
617
618/* Neighbour state is suspicious;
619 disable fast path.
620
621 Called with write_locked neigh.
622 */
623static void neigh_suspect(struct neighbour *neigh)
624{
625 struct hh_cache *hh;
626
627 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
628
629 neigh->output = neigh->ops->output;
630
631 for (hh = neigh->hh; hh; hh = hh->hh_next)
632 hh->hh_output = neigh->ops->output;
633}
634
635/* Neighbour state is OK;
636 enable fast path.
637
638 Called with write_locked neigh.
639 */
640static void neigh_connect(struct neighbour *neigh)
641{
642 struct hh_cache *hh;
643
644 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
645
646 neigh->output = neigh->ops->connected_output;
647
648 for (hh = neigh->hh; hh; hh = hh->hh_next)
649 hh->hh_output = neigh->ops->hh_output;
650}
651
652static void neigh_periodic_timer(unsigned long arg)
653{
654 struct neigh_table *tbl = (struct neigh_table *)arg;
655 struct neighbour *n, **np;
656 unsigned long expire, now = jiffies;
657
658 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
659
660 write_lock(&tbl->lock);
661
662 /*
663 * periodically recompute ReachableTime from random function
664 */
665
666 if (time_after(now, tbl->last_rand + 300 * HZ)) {
667 struct neigh_parms *p;
668 tbl->last_rand = now;
669 for (p = &tbl->parms; p; p = p->next)
670 p->reachable_time =
671 neigh_rand_reach_time(p->base_reachable_time);
672 }
673
674 np = &tbl->hash_buckets[tbl->hash_chain_gc];
675 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
676
677 while ((n = *np) != NULL) {
678 unsigned int state;
679
680 write_lock(&n->lock);
681
682 state = n->nud_state;
683 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
684 write_unlock(&n->lock);
685 goto next_elt;
686 }
687
688 if (time_before(n->used, n->confirmed))
689 n->used = n->confirmed;
690
691 if (atomic_read(&n->refcnt) == 1 &&
692 (state == NUD_FAILED ||
693 time_after(now, n->used + n->parms->gc_staletime))) {
694 *np = n->next;
695 n->dead = 1;
696 write_unlock(&n->lock);
697 neigh_release(n);
698 continue;
699 }
700 write_unlock(&n->lock);
701
702next_elt:
703 np = &n->next;
704 }
705
706 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
707 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
708 * base_reachable_time.
709 */
710 expire = tbl->parms.base_reachable_time >> 1;
711 expire /= (tbl->hash_mask + 1);
712 if (!expire)
713 expire = 1;
714
715 mod_timer(&tbl->gc_timer, now + expire);
716
717 write_unlock(&tbl->lock);
718}
719
720static __inline__ int neigh_max_probes(struct neighbour *n)
721{
722 struct neigh_parms *p = n->parms;
723 return (n->nud_state & NUD_PROBE ?
724 p->ucast_probes :
725 p->ucast_probes + p->app_probes + p->mcast_probes);
726}
727
728
729/* Called when a timer expires for a neighbour entry. */
730
731static void neigh_timer_handler(unsigned long arg)
732{
733 unsigned long now, next;
734 struct neighbour *neigh = (struct neighbour *)arg;
735 unsigned state;
736 int notify = 0;
737
738 write_lock(&neigh->lock);
739
740 state = neigh->nud_state;
741 now = jiffies;
742 next = now + HZ;
743
744 if (!(state & NUD_IN_TIMER)) {
745#ifndef CONFIG_SMP
746 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
747#endif
748 goto out;
749 }
750
751 if (state & NUD_REACHABLE) {
752 if (time_before_eq(now,
753 neigh->confirmed + neigh->parms->reachable_time)) {
754 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
755 next = neigh->confirmed + neigh->parms->reachable_time;
756 } else if (time_before_eq(now,
757 neigh->used + neigh->parms->delay_probe_time)) {
758 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
759 neigh->nud_state = NUD_DELAY;
760 neigh_suspect(neigh);
761 next = now + neigh->parms->delay_probe_time;
762 } else {
763 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
764 neigh->nud_state = NUD_STALE;
765 neigh_suspect(neigh);
766 }
767 } else if (state & NUD_DELAY) {
768 if (time_before_eq(now,
769 neigh->confirmed + neigh->parms->delay_probe_time)) {
770 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
771 neigh->nud_state = NUD_REACHABLE;
772 neigh_connect(neigh);
773 next = neigh->confirmed + neigh->parms->reachable_time;
774 } else {
775 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
776 neigh->nud_state = NUD_PROBE;
777 atomic_set(&neigh->probes, 0);
778 next = now + neigh->parms->retrans_time;
779 }
780 } else {
781 /* NUD_PROBE|NUD_INCOMPLETE */
782 next = now + neigh->parms->retrans_time;
783 }
784
785 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
786 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
787 struct sk_buff *skb;
788
789 neigh->nud_state = NUD_FAILED;
790 notify = 1;
791 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
792 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
793
794 /* It is very thin place. report_unreachable is very complicated
795 routine. Particularly, it can hit the same neighbour entry!
796
797 So that, we try to be accurate and avoid dead loop. --ANK
798 */
799 while (neigh->nud_state == NUD_FAILED &&
800 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
801 write_unlock(&neigh->lock);
802 neigh->ops->error_report(neigh, skb);
803 write_lock(&neigh->lock);
804 }
805 skb_queue_purge(&neigh->arp_queue);
806 }
807
808 if (neigh->nud_state & NUD_IN_TIMER) {
809 neigh_hold(neigh);
810 if (time_before(next, jiffies + HZ/2))
811 next = jiffies + HZ/2;
812 neigh->timer.expires = next;
813 add_timer(&neigh->timer);
814 }
815 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
816 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
817 /* keep skb alive even if arp_queue overflows */
818 if (skb)
819 skb_get(skb);
820 write_unlock(&neigh->lock);
821 neigh->ops->solicit(neigh, skb);
822 atomic_inc(&neigh->probes);
823 if (skb)
824 kfree_skb(skb);
825 } else {
826out:
827 write_unlock(&neigh->lock);
828 }
829
830#ifdef CONFIG_ARPD
831 if (notify && neigh->parms->app_probes)
832 neigh_app_notify(neigh);
833#endif
834 neigh_release(neigh);
835}
836
837int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
838{
839 int rc;
840 unsigned long now;
841
842 write_lock_bh(&neigh->lock);
843
844 rc = 0;
845 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
846 goto out_unlock_bh;
847
848 now = jiffies;
849
850 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
851 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
852 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
853 neigh->nud_state = NUD_INCOMPLETE;
854 neigh_hold(neigh);
855 neigh->timer.expires = now + 1;
856 add_timer(&neigh->timer);
857 } else {
858 neigh->nud_state = NUD_FAILED;
859 write_unlock_bh(&neigh->lock);
860
861 if (skb)
862 kfree_skb(skb);
863 return 1;
864 }
865 } else if (neigh->nud_state & NUD_STALE) {
866 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
867 neigh_hold(neigh);
868 neigh->nud_state = NUD_DELAY;
869 neigh->timer.expires = jiffies + neigh->parms->delay_probe_time;
870 add_timer(&neigh->timer);
871 }
872
873 if (neigh->nud_state == NUD_INCOMPLETE) {
874 if (skb) {
875 if (skb_queue_len(&neigh->arp_queue) >=
876 neigh->parms->queue_len) {
877 struct sk_buff *buff;
878 buff = neigh->arp_queue.next;
879 __skb_unlink(buff, &neigh->arp_queue);
880 kfree_skb(buff);
881 }
882 __skb_queue_tail(&neigh->arp_queue, skb);
883 }
884 rc = 1;
885 }
886out_unlock_bh:
887 write_unlock_bh(&neigh->lock);
888 return rc;
889}
890
891static __inline__ void neigh_update_hhs(struct neighbour *neigh)
892{
893 struct hh_cache *hh;
894 void (*update)(struct hh_cache*, struct net_device*, unsigned char *) =
895 neigh->dev->header_cache_update;
896
897 if (update) {
898 for (hh = neigh->hh; hh; hh = hh->hh_next) {
899 write_lock_bh(&hh->hh_lock);
900 update(hh, neigh->dev, neigh->ha);
901 write_unlock_bh(&hh->hh_lock);
902 }
903 }
904}
905
906
907
908/* Generic update routine.
909 -- lladdr is new lladdr or NULL, if it is not supplied.
910 -- new is new state.
911 -- flags
912 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
913 if it is different.
914 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
915 lladdr instead of overriding it
916 if it is different.
917 It also allows to retain current state
918 if lladdr is unchanged.
919 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
920
921 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
922 NTF_ROUTER flag.
923 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
924 a router.
925
926 Caller MUST hold reference count on the entry.
927 */
928
929int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
930 u32 flags)
931{
932 u8 old;
933 int err;
934#ifdef CONFIG_ARPD
935 int notify = 0;
936#endif
937 struct net_device *dev;
938 int update_isrouter = 0;
939
940 write_lock_bh(&neigh->lock);
941
942 dev = neigh->dev;
943 old = neigh->nud_state;
944 err = -EPERM;
945
946 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
947 (old & (NUD_NOARP | NUD_PERMANENT)))
948 goto out;
949
950 if (!(new & NUD_VALID)) {
951 neigh_del_timer(neigh);
952 if (old & NUD_CONNECTED)
953 neigh_suspect(neigh);
954 neigh->nud_state = new;
955 err = 0;
956#ifdef CONFIG_ARPD
957 notify = old & NUD_VALID;
958#endif
959 goto out;
960 }
961
962 /* Compare new lladdr with cached one */
963 if (!dev->addr_len) {
964 /* First case: device needs no address. */
965 lladdr = neigh->ha;
966 } else if (lladdr) {
967 /* The second case: if something is already cached
968 and a new address is proposed:
969 - compare new & old
970 - if they are different, check override flag
971 */
972 if ((old & NUD_VALID) &&
973 !memcmp(lladdr, neigh->ha, dev->addr_len))
974 lladdr = neigh->ha;
975 } else {
976 /* No address is supplied; if we know something,
977 use it, otherwise discard the request.
978 */
979 err = -EINVAL;
980 if (!(old & NUD_VALID))
981 goto out;
982 lladdr = neigh->ha;
983 }
984
985 if (new & NUD_CONNECTED)
986 neigh->confirmed = jiffies;
987 neigh->updated = jiffies;
988
989 /* If entry was valid and address is not changed,
990 do not change entry state, if new one is STALE.
991 */
992 err = 0;
993 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
994 if (old & NUD_VALID) {
995 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
996 update_isrouter = 0;
997 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
998 (old & NUD_CONNECTED)) {
999 lladdr = neigh->ha;
1000 new = NUD_STALE;
1001 } else
1002 goto out;
1003 } else {
1004 if (lladdr == neigh->ha && new == NUD_STALE &&
1005 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1006 (old & NUD_CONNECTED))
1007 )
1008 new = old;
1009 }
1010 }
1011
1012 if (new != old) {
1013 neigh_del_timer(neigh);
1014 if (new & NUD_IN_TIMER) {
1015 neigh_hold(neigh);
1016 neigh->timer.expires = jiffies +
1017 ((new & NUD_REACHABLE) ?
1018 neigh->parms->reachable_time : 0);
1019 add_timer(&neigh->timer);
1020 }
1021 neigh->nud_state = new;
1022 }
1023
1024 if (lladdr != neigh->ha) {
1025 memcpy(&neigh->ha, lladdr, dev->addr_len);
1026 neigh_update_hhs(neigh);
1027 if (!(new & NUD_CONNECTED))
1028 neigh->confirmed = jiffies -
1029 (neigh->parms->base_reachable_time << 1);
1030#ifdef CONFIG_ARPD
1031 notify = 1;
1032#endif
1033 }
1034 if (new == old)
1035 goto out;
1036 if (new & NUD_CONNECTED)
1037 neigh_connect(neigh);
1038 else
1039 neigh_suspect(neigh);
1040 if (!(old & NUD_VALID)) {
1041 struct sk_buff *skb;
1042
1043 /* Again: avoid dead loop if something went wrong */
1044
1045 while (neigh->nud_state & NUD_VALID &&
1046 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1047 struct neighbour *n1 = neigh;
1048 write_unlock_bh(&neigh->lock);
1049 /* On shaper/eql skb->dst->neighbour != neigh :( */
1050 if (skb->dst && skb->dst->neighbour)
1051 n1 = skb->dst->neighbour;
1052 n1->output(skb);
1053 write_lock_bh(&neigh->lock);
1054 }
1055 skb_queue_purge(&neigh->arp_queue);
1056 }
1057out:
1058 if (update_isrouter) {
1059 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1060 (neigh->flags | NTF_ROUTER) :
1061 (neigh->flags & ~NTF_ROUTER);
1062 }
1063 write_unlock_bh(&neigh->lock);
1064#ifdef CONFIG_ARPD
1065 if (notify && neigh->parms->app_probes)
1066 neigh_app_notify(neigh);
1067#endif
1068 return err;
1069}
1070
1071struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1072 u8 *lladdr, void *saddr,
1073 struct net_device *dev)
1074{
1075 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1076 lladdr || !dev->addr_len);
1077 if (neigh)
1078 neigh_update(neigh, lladdr, NUD_STALE,
1079 NEIGH_UPDATE_F_OVERRIDE);
1080 return neigh;
1081}
1082
1083static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1084 u16 protocol)
1085{
1086 struct hh_cache *hh;
1087 struct net_device *dev = dst->dev;
1088
1089 for (hh = n->hh; hh; hh = hh->hh_next)
1090 if (hh->hh_type == protocol)
1091 break;
1092
1093 if (!hh && (hh = kmalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1094 memset(hh, 0, sizeof(struct hh_cache));
1095 rwlock_init(&hh->hh_lock);
1096 hh->hh_type = protocol;
1097 atomic_set(&hh->hh_refcnt, 0);
1098 hh->hh_next = NULL;
1099 if (dev->hard_header_cache(n, hh)) {
1100 kfree(hh);
1101 hh = NULL;
1102 } else {
1103 atomic_inc(&hh->hh_refcnt);
1104 hh->hh_next = n->hh;
1105 n->hh = hh;
1106 if (n->nud_state & NUD_CONNECTED)
1107 hh->hh_output = n->ops->hh_output;
1108 else
1109 hh->hh_output = n->ops->output;
1110 }
1111 }
1112 if (hh) {
1113 atomic_inc(&hh->hh_refcnt);
1114 dst->hh = hh;
1115 }
1116}
1117
1118/* This function can be used in contexts, where only old dev_queue_xmit
1119 worked, f.e. if you want to override normal output path (eql, shaper),
1120 but resolution is not made yet.
1121 */
1122
1123int neigh_compat_output(struct sk_buff *skb)
1124{
1125 struct net_device *dev = skb->dev;
1126
1127 __skb_pull(skb, skb->nh.raw - skb->data);
1128
1129 if (dev->hard_header &&
1130 dev->hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1131 skb->len) < 0 &&
1132 dev->rebuild_header(skb))
1133 return 0;
1134
1135 return dev_queue_xmit(skb);
1136}
1137
1138/* Slow and careful. */
1139
1140int neigh_resolve_output(struct sk_buff *skb)
1141{
1142 struct dst_entry *dst = skb->dst;
1143 struct neighbour *neigh;
1144 int rc = 0;
1145
1146 if (!dst || !(neigh = dst->neighbour))
1147 goto discard;
1148
1149 __skb_pull(skb, skb->nh.raw - skb->data);
1150
1151 if (!neigh_event_send(neigh, skb)) {
1152 int err;
1153 struct net_device *dev = neigh->dev;
1154 if (dev->hard_header_cache && !dst->hh) {
1155 write_lock_bh(&neigh->lock);
1156 if (!dst->hh)
1157 neigh_hh_init(neigh, dst, dst->ops->protocol);
1158 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1159 neigh->ha, NULL, skb->len);
1160 write_unlock_bh(&neigh->lock);
1161 } else {
1162 read_lock_bh(&neigh->lock);
1163 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1164 neigh->ha, NULL, skb->len);
1165 read_unlock_bh(&neigh->lock);
1166 }
1167 if (err >= 0)
1168 rc = neigh->ops->queue_xmit(skb);
1169 else
1170 goto out_kfree_skb;
1171 }
1172out:
1173 return rc;
1174discard:
1175 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1176 dst, dst ? dst->neighbour : NULL);
1177out_kfree_skb:
1178 rc = -EINVAL;
1179 kfree_skb(skb);
1180 goto out;
1181}
1182
1183/* As fast as possible without hh cache */
1184
1185int neigh_connected_output(struct sk_buff *skb)
1186{
1187 int err;
1188 struct dst_entry *dst = skb->dst;
1189 struct neighbour *neigh = dst->neighbour;
1190 struct net_device *dev = neigh->dev;
1191
1192 __skb_pull(skb, skb->nh.raw - skb->data);
1193
1194 read_lock_bh(&neigh->lock);
1195 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1196 neigh->ha, NULL, skb->len);
1197 read_unlock_bh(&neigh->lock);
1198 if (err >= 0)
1199 err = neigh->ops->queue_xmit(skb);
1200 else {
1201 err = -EINVAL;
1202 kfree_skb(skb);
1203 }
1204 return err;
1205}
1206
1207static void neigh_proxy_process(unsigned long arg)
1208{
1209 struct neigh_table *tbl = (struct neigh_table *)arg;
1210 long sched_next = 0;
1211 unsigned long now = jiffies;
1212 struct sk_buff *skb;
1213
1214 spin_lock(&tbl->proxy_queue.lock);
1215
1216 skb = tbl->proxy_queue.next;
1217
1218 while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1219 struct sk_buff *back = skb;
1220 long tdif = back->stamp.tv_usec - now;
1221
1222 skb = skb->next;
1223 if (tdif <= 0) {
1224 struct net_device *dev = back->dev;
1225 __skb_unlink(back, &tbl->proxy_queue);
1226 if (tbl->proxy_redo && netif_running(dev))
1227 tbl->proxy_redo(back);
1228 else
1229 kfree_skb(back);
1230
1231 dev_put(dev);
1232 } else if (!sched_next || tdif < sched_next)
1233 sched_next = tdif;
1234 }
1235 del_timer(&tbl->proxy_timer);
1236 if (sched_next)
1237 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1238 spin_unlock(&tbl->proxy_queue.lock);
1239}
1240
1241void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1242 struct sk_buff *skb)
1243{
1244 unsigned long now = jiffies;
1245 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1246
1247 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1248 kfree_skb(skb);
1249 return;
1250 }
1251 skb->stamp.tv_sec = LOCALLY_ENQUEUED;
1252 skb->stamp.tv_usec = sched_next;
1253
1254 spin_lock(&tbl->proxy_queue.lock);
1255 if (del_timer(&tbl->proxy_timer)) {
1256 if (time_before(tbl->proxy_timer.expires, sched_next))
1257 sched_next = tbl->proxy_timer.expires;
1258 }
1259 dst_release(skb->dst);
1260 skb->dst = NULL;
1261 dev_hold(skb->dev);
1262 __skb_queue_tail(&tbl->proxy_queue, skb);
1263 mod_timer(&tbl->proxy_timer, sched_next);
1264 spin_unlock(&tbl->proxy_queue.lock);
1265}
1266
1267
1268struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1269 struct neigh_table *tbl)
1270{
1271 struct neigh_parms *p = kmalloc(sizeof(*p), GFP_KERNEL);
1272
1273 if (p) {
1274 memcpy(p, &tbl->parms, sizeof(*p));
1275 p->tbl = tbl;
1276 atomic_set(&p->refcnt, 1);
1277 INIT_RCU_HEAD(&p->rcu_head);
1278 p->reachable_time =
1279 neigh_rand_reach_time(p->base_reachable_time);
c7fb64db
TG
1280 if (dev) {
1281 if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
1282 kfree(p);
1283 return NULL;
1284 }
1285
1286 dev_hold(dev);
1287 p->dev = dev;
1da177e4
LT
1288 }
1289 p->sysctl_table = NULL;
1290 write_lock_bh(&tbl->lock);
1291 p->next = tbl->parms.next;
1292 tbl->parms.next = p;
1293 write_unlock_bh(&tbl->lock);
1294 }
1295 return p;
1296}
1297
1298static void neigh_rcu_free_parms(struct rcu_head *head)
1299{
1300 struct neigh_parms *parms =
1301 container_of(head, struct neigh_parms, rcu_head);
1302
1303 neigh_parms_put(parms);
1304}
1305
1306void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1307{
1308 struct neigh_parms **p;
1309
1310 if (!parms || parms == &tbl->parms)
1311 return;
1312 write_lock_bh(&tbl->lock);
1313 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1314 if (*p == parms) {
1315 *p = parms->next;
1316 parms->dead = 1;
1317 write_unlock_bh(&tbl->lock);
c7fb64db
TG
1318 if (parms->dev)
1319 dev_put(parms->dev);
1da177e4
LT
1320 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1321 return;
1322 }
1323 }
1324 write_unlock_bh(&tbl->lock);
1325 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1326}
1327
1328void neigh_parms_destroy(struct neigh_parms *parms)
1329{
1330 kfree(parms);
1331}
1332
1333
1334void neigh_table_init(struct neigh_table *tbl)
1335{
1336 unsigned long now = jiffies;
1337 unsigned long phsize;
1338
1339 atomic_set(&tbl->parms.refcnt, 1);
1340 INIT_RCU_HEAD(&tbl->parms.rcu_head);
1341 tbl->parms.reachable_time =
1342 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1343
1344 if (!tbl->kmem_cachep)
1345 tbl->kmem_cachep = kmem_cache_create(tbl->id,
1346 tbl->entry_size,
1347 0, SLAB_HWCACHE_ALIGN,
1348 NULL, NULL);
1349
1350 if (!tbl->kmem_cachep)
1351 panic("cannot create neighbour cache");
1352
1353 tbl->stats = alloc_percpu(struct neigh_statistics);
1354 if (!tbl->stats)
1355 panic("cannot create neighbour cache statistics");
1356
1357#ifdef CONFIG_PROC_FS
1358 tbl->pde = create_proc_entry(tbl->id, 0, proc_net_stat);
1359 if (!tbl->pde)
1360 panic("cannot create neighbour proc dir entry");
1361 tbl->pde->proc_fops = &neigh_stat_seq_fops;
1362 tbl->pde->data = tbl;
1363#endif
1364
1365 tbl->hash_mask = 1;
1366 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1367
1368 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1369 tbl->phash_buckets = kmalloc(phsize, GFP_KERNEL);
1370
1371 if (!tbl->hash_buckets || !tbl->phash_buckets)
1372 panic("cannot allocate neighbour cache hashes");
1373
1374 memset(tbl->phash_buckets, 0, phsize);
1375
1376 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1377
1378 rwlock_init(&tbl->lock);
1379 init_timer(&tbl->gc_timer);
1380 tbl->gc_timer.data = (unsigned long)tbl;
1381 tbl->gc_timer.function = neigh_periodic_timer;
1382 tbl->gc_timer.expires = now + 1;
1383 add_timer(&tbl->gc_timer);
1384
1385 init_timer(&tbl->proxy_timer);
1386 tbl->proxy_timer.data = (unsigned long)tbl;
1387 tbl->proxy_timer.function = neigh_proxy_process;
1388 skb_queue_head_init(&tbl->proxy_queue);
1389
1390 tbl->last_flush = now;
1391 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1392 write_lock(&neigh_tbl_lock);
1393 tbl->next = neigh_tables;
1394 neigh_tables = tbl;
1395 write_unlock(&neigh_tbl_lock);
1396}
1397
1398int neigh_table_clear(struct neigh_table *tbl)
1399{
1400 struct neigh_table **tp;
1401
1402 /* It is not clean... Fix it to unload IPv6 module safely */
1403 del_timer_sync(&tbl->gc_timer);
1404 del_timer_sync(&tbl->proxy_timer);
1405 pneigh_queue_purge(&tbl->proxy_queue);
1406 neigh_ifdown(tbl, NULL);
1407 if (atomic_read(&tbl->entries))
1408 printk(KERN_CRIT "neighbour leakage\n");
1409 write_lock(&neigh_tbl_lock);
1410 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1411 if (*tp == tbl) {
1412 *tp = tbl->next;
1413 break;
1414 }
1415 }
1416 write_unlock(&neigh_tbl_lock);
1417
1418 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1419 tbl->hash_buckets = NULL;
1420
1421 kfree(tbl->phash_buckets);
1422 tbl->phash_buckets = NULL;
1423
1424 return 0;
1425}
1426
1427int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1428{
1429 struct ndmsg *ndm = NLMSG_DATA(nlh);
1430 struct rtattr **nda = arg;
1431 struct neigh_table *tbl;
1432 struct net_device *dev = NULL;
1433 int err = -ENODEV;
1434
1435 if (ndm->ndm_ifindex &&
1436 (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL)
1437 goto out;
1438
1439 read_lock(&neigh_tbl_lock);
1440 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1441 struct rtattr *dst_attr = nda[NDA_DST - 1];
1442 struct neighbour *n;
1443
1444 if (tbl->family != ndm->ndm_family)
1445 continue;
1446 read_unlock(&neigh_tbl_lock);
1447
1448 err = -EINVAL;
1449 if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len)
1450 goto out_dev_put;
1451
1452 if (ndm->ndm_flags & NTF_PROXY) {
1453 err = pneigh_delete(tbl, RTA_DATA(dst_attr), dev);
1454 goto out_dev_put;
1455 }
1456
1457 if (!dev)
1458 goto out;
1459
1460 n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev);
1461 if (n) {
1462 err = neigh_update(n, NULL, NUD_FAILED,
1463 NEIGH_UPDATE_F_OVERRIDE|
1464 NEIGH_UPDATE_F_ADMIN);
1465 neigh_release(n);
1466 }
1467 goto out_dev_put;
1468 }
1469 read_unlock(&neigh_tbl_lock);
1470 err = -EADDRNOTAVAIL;
1471out_dev_put:
1472 if (dev)
1473 dev_put(dev);
1474out:
1475 return err;
1476}
1477
1478int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1479{
1480 struct ndmsg *ndm = NLMSG_DATA(nlh);
1481 struct rtattr **nda = arg;
1482 struct neigh_table *tbl;
1483 struct net_device *dev = NULL;
1484 int err = -ENODEV;
1485
1486 if (ndm->ndm_ifindex &&
1487 (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL)
1488 goto out;
1489
1490 read_lock(&neigh_tbl_lock);
1491 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1492 struct rtattr *lladdr_attr = nda[NDA_LLADDR - 1];
1493 struct rtattr *dst_attr = nda[NDA_DST - 1];
1494 int override = 1;
1495 struct neighbour *n;
1496
1497 if (tbl->family != ndm->ndm_family)
1498 continue;
1499 read_unlock(&neigh_tbl_lock);
1500
1501 err = -EINVAL;
1502 if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len)
1503 goto out_dev_put;
1504
1505 if (ndm->ndm_flags & NTF_PROXY) {
1506 err = -ENOBUFS;
1507 if (pneigh_lookup(tbl, RTA_DATA(dst_attr), dev, 1))
1508 err = 0;
1509 goto out_dev_put;
1510 }
1511
1512 err = -EINVAL;
1513 if (!dev)
1514 goto out;
1515 if (lladdr_attr && RTA_PAYLOAD(lladdr_attr) < dev->addr_len)
1516 goto out_dev_put;
1517
1518 n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev);
1519 if (n) {
1520 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1521 err = -EEXIST;
1522 neigh_release(n);
1523 goto out_dev_put;
1524 }
1525
1526 override = nlh->nlmsg_flags & NLM_F_REPLACE;
1527 } else if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1528 err = -ENOENT;
1529 goto out_dev_put;
1530 } else {
1531 n = __neigh_lookup_errno(tbl, RTA_DATA(dst_attr), dev);
1532 if (IS_ERR(n)) {
1533 err = PTR_ERR(n);
1534 goto out_dev_put;
1535 }
1536 }
1537
1538 err = neigh_update(n,
1539 lladdr_attr ? RTA_DATA(lladdr_attr) : NULL,
1540 ndm->ndm_state,
1541 (override ? NEIGH_UPDATE_F_OVERRIDE : 0) |
1542 NEIGH_UPDATE_F_ADMIN);
1543
1544 neigh_release(n);
1545 goto out_dev_put;
1546 }
1547
1548 read_unlock(&neigh_tbl_lock);
1549 err = -EADDRNOTAVAIL;
1550out_dev_put:
1551 if (dev)
1552 dev_put(dev);
1553out:
1554 return err;
1555}
1556
c7fb64db
TG
1557static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1558{
e386c6eb
TG
1559 struct rtattr *nest = NULL;
1560
1561 nest = RTA_NEST(skb, NDTA_PARMS);
c7fb64db
TG
1562
1563 if (parms->dev)
1564 RTA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1565
1566 RTA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1567 RTA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1568 RTA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1569 RTA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1570 RTA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1571 RTA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1572 RTA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1573 RTA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1574 parms->base_reachable_time);
1575 RTA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1576 RTA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1577 RTA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1578 RTA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1579 RTA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1580 RTA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1581
1582 return RTA_NEST_END(skb, nest);
1583
1584rtattr_failure:
1585 return RTA_NEST_CANCEL(skb, nest);
1586}
1587
1588static int neightbl_fill_info(struct neigh_table *tbl, struct sk_buff *skb,
1589 struct netlink_callback *cb)
1590{
1591 struct nlmsghdr *nlh;
1592 struct ndtmsg *ndtmsg;
1593
1797754e
TG
1594 nlh = NLMSG_NEW_ANSWER(skb, cb, RTM_NEWNEIGHTBL, sizeof(struct ndtmsg),
1595 NLM_F_MULTI);
c7fb64db 1596
4b6ea82d 1597 ndtmsg = NLMSG_DATA(nlh);
c7fb64db
TG
1598
1599 read_lock_bh(&tbl->lock);
1600 ndtmsg->ndtm_family = tbl->family;
9ef1d4c7
PM
1601 ndtmsg->ndtm_pad1 = 0;
1602 ndtmsg->ndtm_pad2 = 0;
c7fb64db
TG
1603
1604 RTA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1605 RTA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1606 RTA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1607 RTA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1608 RTA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1609
1610 {
1611 unsigned long now = jiffies;
1612 unsigned int flush_delta = now - tbl->last_flush;
1613 unsigned int rand_delta = now - tbl->last_rand;
1614
1615 struct ndt_config ndc = {
1616 .ndtc_key_len = tbl->key_len,
1617 .ndtc_entry_size = tbl->entry_size,
1618 .ndtc_entries = atomic_read(&tbl->entries),
1619 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1620 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1621 .ndtc_hash_rnd = tbl->hash_rnd,
1622 .ndtc_hash_mask = tbl->hash_mask,
1623 .ndtc_hash_chain_gc = tbl->hash_chain_gc,
1624 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1625 };
1626
1627 RTA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1628 }
1629
1630 {
1631 int cpu;
1632 struct ndt_stats ndst;
1633
1634 memset(&ndst, 0, sizeof(ndst));
1635
1636 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1637 struct neigh_statistics *st;
1638
1639 if (!cpu_possible(cpu))
1640 continue;
1641
1642 st = per_cpu_ptr(tbl->stats, cpu);
1643 ndst.ndts_allocs += st->allocs;
1644 ndst.ndts_destroys += st->destroys;
1645 ndst.ndts_hash_grows += st->hash_grows;
1646 ndst.ndts_res_failed += st->res_failed;
1647 ndst.ndts_lookups += st->lookups;
1648 ndst.ndts_hits += st->hits;
1649 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1650 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1651 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1652 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1653 }
1654
1655 RTA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1656 }
1657
1658 BUG_ON(tbl->parms.dev);
1659 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1660 goto rtattr_failure;
1661
1662 read_unlock_bh(&tbl->lock);
1663 return NLMSG_END(skb, nlh);
1664
1665rtattr_failure:
1666 read_unlock_bh(&tbl->lock);
1667 return NLMSG_CANCEL(skb, nlh);
1668
1669nlmsg_failure:
1670 return -1;
1671}
1672
1673static int neightbl_fill_param_info(struct neigh_table *tbl,
1674 struct neigh_parms *parms,
1675 struct sk_buff *skb,
1676 struct netlink_callback *cb)
1677{
1678 struct ndtmsg *ndtmsg;
1679 struct nlmsghdr *nlh;
1680
1797754e
TG
1681 nlh = NLMSG_NEW_ANSWER(skb, cb, RTM_NEWNEIGHTBL, sizeof(struct ndtmsg),
1682 NLM_F_MULTI);
c7fb64db 1683
4b6ea82d 1684 ndtmsg = NLMSG_DATA(nlh);
c7fb64db
TG
1685
1686 read_lock_bh(&tbl->lock);
1687 ndtmsg->ndtm_family = tbl->family;
9ef1d4c7
PM
1688 ndtmsg->ndtm_pad1 = 0;
1689 ndtmsg->ndtm_pad2 = 0;
c7fb64db
TG
1690 RTA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1691
1692 if (neightbl_fill_parms(skb, parms) < 0)
1693 goto rtattr_failure;
1694
1695 read_unlock_bh(&tbl->lock);
1696 return NLMSG_END(skb, nlh);
1697
1698rtattr_failure:
1699 read_unlock_bh(&tbl->lock);
1700 return NLMSG_CANCEL(skb, nlh);
1701
1702nlmsg_failure:
1703 return -1;
1704}
1705
1706static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
1707 int ifindex)
1708{
1709 struct neigh_parms *p;
1710
1711 for (p = &tbl->parms; p; p = p->next)
1712 if ((p->dev && p->dev->ifindex == ifindex) ||
1713 (!p->dev && !ifindex))
1714 return p;
1715
1716 return NULL;
1717}
1718
1719int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1720{
1721 struct neigh_table *tbl;
1722 struct ndtmsg *ndtmsg = NLMSG_DATA(nlh);
1723 struct rtattr **tb = arg;
1724 int err = -EINVAL;
1725
1726 if (!tb[NDTA_NAME - 1] || !RTA_PAYLOAD(tb[NDTA_NAME - 1]))
1727 return -EINVAL;
1728
1729 read_lock(&neigh_tbl_lock);
1730 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1731 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1732 continue;
1733
1734 if (!rtattr_strcmp(tb[NDTA_NAME - 1], tbl->id))
1735 break;
1736 }
1737
1738 if (tbl == NULL) {
1739 err = -ENOENT;
1740 goto errout;
1741 }
1742
1743 /*
1744 * We acquire tbl->lock to be nice to the periodic timers and
1745 * make sure they always see a consistent set of values.
1746 */
1747 write_lock_bh(&tbl->lock);
1748
1749 if (tb[NDTA_THRESH1 - 1])
1750 tbl->gc_thresh1 = RTA_GET_U32(tb[NDTA_THRESH1 - 1]);
1751
1752 if (tb[NDTA_THRESH2 - 1])
1753 tbl->gc_thresh2 = RTA_GET_U32(tb[NDTA_THRESH2 - 1]);
1754
1755 if (tb[NDTA_THRESH3 - 1])
1756 tbl->gc_thresh3 = RTA_GET_U32(tb[NDTA_THRESH3 - 1]);
1757
1758 if (tb[NDTA_GC_INTERVAL - 1])
1759 tbl->gc_interval = RTA_GET_MSECS(tb[NDTA_GC_INTERVAL - 1]);
1760
1761 if (tb[NDTA_PARMS - 1]) {
1762 struct rtattr *tbp[NDTPA_MAX];
1763 struct neigh_parms *p;
1764 u32 ifindex = 0;
1765
1766 if (rtattr_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS - 1]) < 0)
1767 goto rtattr_failure;
1768
1769 if (tbp[NDTPA_IFINDEX - 1])
1770 ifindex = RTA_GET_U32(tbp[NDTPA_IFINDEX - 1]);
1771
1772 p = lookup_neigh_params(tbl, ifindex);
1773 if (p == NULL) {
1774 err = -ENOENT;
1775 goto rtattr_failure;
1776 }
1777
1778 if (tbp[NDTPA_QUEUE_LEN - 1])
1779 p->queue_len = RTA_GET_U32(tbp[NDTPA_QUEUE_LEN - 1]);
1780
1781 if (tbp[NDTPA_PROXY_QLEN - 1])
1782 p->proxy_qlen = RTA_GET_U32(tbp[NDTPA_PROXY_QLEN - 1]);
1783
1784 if (tbp[NDTPA_APP_PROBES - 1])
1785 p->app_probes = RTA_GET_U32(tbp[NDTPA_APP_PROBES - 1]);
1786
1787 if (tbp[NDTPA_UCAST_PROBES - 1])
1788 p->ucast_probes =
1789 RTA_GET_U32(tbp[NDTPA_UCAST_PROBES - 1]);
1790
1791 if (tbp[NDTPA_MCAST_PROBES - 1])
1792 p->mcast_probes =
1793 RTA_GET_U32(tbp[NDTPA_MCAST_PROBES - 1]);
1794
1795 if (tbp[NDTPA_BASE_REACHABLE_TIME - 1])
1796 p->base_reachable_time =
1797 RTA_GET_MSECS(tbp[NDTPA_BASE_REACHABLE_TIME - 1]);
1798
1799 if (tbp[NDTPA_GC_STALETIME - 1])
1800 p->gc_staletime =
1801 RTA_GET_MSECS(tbp[NDTPA_GC_STALETIME - 1]);
1802
1803 if (tbp[NDTPA_DELAY_PROBE_TIME - 1])
1804 p->delay_probe_time =
1805 RTA_GET_MSECS(tbp[NDTPA_DELAY_PROBE_TIME - 1]);
1806
1807 if (tbp[NDTPA_RETRANS_TIME - 1])
1808 p->retrans_time =
1809 RTA_GET_MSECS(tbp[NDTPA_RETRANS_TIME - 1]);
1810
1811 if (tbp[NDTPA_ANYCAST_DELAY - 1])
1812 p->anycast_delay =
1813 RTA_GET_MSECS(tbp[NDTPA_ANYCAST_DELAY - 1]);
1814
1815 if (tbp[NDTPA_PROXY_DELAY - 1])
1816 p->proxy_delay =
1817 RTA_GET_MSECS(tbp[NDTPA_PROXY_DELAY - 1]);
1818
1819 if (tbp[NDTPA_LOCKTIME - 1])
1820 p->locktime = RTA_GET_MSECS(tbp[NDTPA_LOCKTIME - 1]);
1821 }
1822
1823 err = 0;
1824
1825rtattr_failure:
1826 write_unlock_bh(&tbl->lock);
1827errout:
1828 read_unlock(&neigh_tbl_lock);
1829 return err;
1830}
1831
1832int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1833{
1834 int idx, family;
1835 int s_idx = cb->args[0];
1836 struct neigh_table *tbl;
1837
1838 family = ((struct rtgenmsg *)NLMSG_DATA(cb->nlh))->rtgen_family;
1839
1840 read_lock(&neigh_tbl_lock);
1841 for (tbl = neigh_tables, idx = 0; tbl; tbl = tbl->next) {
1842 struct neigh_parms *p;
1843
1844 if (idx < s_idx || (family && tbl->family != family))
1845 continue;
1846
1847 if (neightbl_fill_info(tbl, skb, cb) <= 0)
1848 break;
1849
1850 for (++idx, p = tbl->parms.next; p; p = p->next, idx++) {
1851 if (idx < s_idx)
1852 continue;
1853
1854 if (neightbl_fill_param_info(tbl, p, skb, cb) <= 0)
1855 goto out;
1856 }
1857
1858 }
1859out:
1860 read_unlock(&neigh_tbl_lock);
1861 cb->args[0] = idx;
1862
1863 return skb->len;
1864}
1da177e4
LT
1865
1866static int neigh_fill_info(struct sk_buff *skb, struct neighbour *n,
b6544c0b 1867 u32 pid, u32 seq, int event, unsigned int flags)
1da177e4
LT
1868{
1869 unsigned long now = jiffies;
1870 unsigned char *b = skb->tail;
1871 struct nda_cacheinfo ci;
1872 int locked = 0;
1873 u32 probes;
b6544c0b
JHS
1874 struct nlmsghdr *nlh = NLMSG_NEW(skb, pid, seq, event,
1875 sizeof(struct ndmsg), flags);
1da177e4
LT
1876 struct ndmsg *ndm = NLMSG_DATA(nlh);
1877
1da177e4 1878 ndm->ndm_family = n->ops->family;
9ef1d4c7
PM
1879 ndm->ndm_pad1 = 0;
1880 ndm->ndm_pad2 = 0;
1da177e4
LT
1881 ndm->ndm_flags = n->flags;
1882 ndm->ndm_type = n->type;
1883 ndm->ndm_ifindex = n->dev->ifindex;
1884 RTA_PUT(skb, NDA_DST, n->tbl->key_len, n->primary_key);
1885 read_lock_bh(&n->lock);
1886 locked = 1;
1887 ndm->ndm_state = n->nud_state;
1888 if (n->nud_state & NUD_VALID)
1889 RTA_PUT(skb, NDA_LLADDR, n->dev->addr_len, n->ha);
1890 ci.ndm_used = now - n->used;
1891 ci.ndm_confirmed = now - n->confirmed;
1892 ci.ndm_updated = now - n->updated;
1893 ci.ndm_refcnt = atomic_read(&n->refcnt) - 1;
1894 probes = atomic_read(&n->probes);
1895 read_unlock_bh(&n->lock);
1896 locked = 0;
1897 RTA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
1898 RTA_PUT(skb, NDA_PROBES, sizeof(probes), &probes);
1899 nlh->nlmsg_len = skb->tail - b;
1900 return skb->len;
1901
1902nlmsg_failure:
1903rtattr_failure:
1904 if (locked)
1905 read_unlock_bh(&n->lock);
1906 skb_trim(skb, b - skb->data);
1907 return -1;
1908}
1909
1910
1911static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
1912 struct netlink_callback *cb)
1913{
1914 struct neighbour *n;
1915 int rc, h, s_h = cb->args[1];
1916 int idx, s_idx = idx = cb->args[2];
1917
1918 for (h = 0; h <= tbl->hash_mask; h++) {
1919 if (h < s_h)
1920 continue;
1921 if (h > s_h)
1922 s_idx = 0;
1923 read_lock_bh(&tbl->lock);
1924 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) {
1925 if (idx < s_idx)
1926 continue;
1927 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
1928 cb->nlh->nlmsg_seq,
b6544c0b
JHS
1929 RTM_NEWNEIGH,
1930 NLM_F_MULTI) <= 0) {
1da177e4
LT
1931 read_unlock_bh(&tbl->lock);
1932 rc = -1;
1933 goto out;
1934 }
1935 }
1936 read_unlock_bh(&tbl->lock);
1937 }
1938 rc = skb->len;
1939out:
1940 cb->args[1] = h;
1941 cb->args[2] = idx;
1942 return rc;
1943}
1944
1945int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1946{
1947 struct neigh_table *tbl;
1948 int t, family, s_t;
1949
1950 read_lock(&neigh_tbl_lock);
1951 family = ((struct rtgenmsg *)NLMSG_DATA(cb->nlh))->rtgen_family;
1952 s_t = cb->args[0];
1953
1954 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
1955 if (t < s_t || (family && tbl->family != family))
1956 continue;
1957 if (t > s_t)
1958 memset(&cb->args[1], 0, sizeof(cb->args) -
1959 sizeof(cb->args[0]));
1960 if (neigh_dump_table(tbl, skb, cb) < 0)
1961 break;
1962 }
1963 read_unlock(&neigh_tbl_lock);
1964
1965 cb->args[0] = t;
1966 return skb->len;
1967}
1968
1969void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
1970{
1971 int chain;
1972
1973 read_lock_bh(&tbl->lock);
1974 for (chain = 0; chain <= tbl->hash_mask; chain++) {
1975 struct neighbour *n;
1976
1977 for (n = tbl->hash_buckets[chain]; n; n = n->next)
1978 cb(n, cookie);
1979 }
1980 read_unlock_bh(&tbl->lock);
1981}
1982EXPORT_SYMBOL(neigh_for_each);
1983
1984/* The tbl->lock must be held as a writer and BH disabled. */
1985void __neigh_for_each_release(struct neigh_table *tbl,
1986 int (*cb)(struct neighbour *))
1987{
1988 int chain;
1989
1990 for (chain = 0; chain <= tbl->hash_mask; chain++) {
1991 struct neighbour *n, **np;
1992
1993 np = &tbl->hash_buckets[chain];
1994 while ((n = *np) != NULL) {
1995 int release;
1996
1997 write_lock(&n->lock);
1998 release = cb(n);
1999 if (release) {
2000 *np = n->next;
2001 n->dead = 1;
2002 } else
2003 np = &n->next;
2004 write_unlock(&n->lock);
2005 if (release)
2006 neigh_release(n);
2007 }
2008 }
2009}
2010EXPORT_SYMBOL(__neigh_for_each_release);
2011
2012#ifdef CONFIG_PROC_FS
2013
2014static struct neighbour *neigh_get_first(struct seq_file *seq)
2015{
2016 struct neigh_seq_state *state = seq->private;
2017 struct neigh_table *tbl = state->tbl;
2018 struct neighbour *n = NULL;
2019 int bucket = state->bucket;
2020
2021 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2022 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2023 n = tbl->hash_buckets[bucket];
2024
2025 while (n) {
2026 if (state->neigh_sub_iter) {
2027 loff_t fakep = 0;
2028 void *v;
2029
2030 v = state->neigh_sub_iter(state, n, &fakep);
2031 if (!v)
2032 goto next;
2033 }
2034 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2035 break;
2036 if (n->nud_state & ~NUD_NOARP)
2037 break;
2038 next:
2039 n = n->next;
2040 }
2041
2042 if (n)
2043 break;
2044 }
2045 state->bucket = bucket;
2046
2047 return n;
2048}
2049
2050static struct neighbour *neigh_get_next(struct seq_file *seq,
2051 struct neighbour *n,
2052 loff_t *pos)
2053{
2054 struct neigh_seq_state *state = seq->private;
2055 struct neigh_table *tbl = state->tbl;
2056
2057 if (state->neigh_sub_iter) {
2058 void *v = state->neigh_sub_iter(state, n, pos);
2059 if (v)
2060 return n;
2061 }
2062 n = n->next;
2063
2064 while (1) {
2065 while (n) {
2066 if (state->neigh_sub_iter) {
2067 void *v = state->neigh_sub_iter(state, n, pos);
2068 if (v)
2069 return n;
2070 goto next;
2071 }
2072 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2073 break;
2074
2075 if (n->nud_state & ~NUD_NOARP)
2076 break;
2077 next:
2078 n = n->next;
2079 }
2080
2081 if (n)
2082 break;
2083
2084 if (++state->bucket > tbl->hash_mask)
2085 break;
2086
2087 n = tbl->hash_buckets[state->bucket];
2088 }
2089
2090 if (n && pos)
2091 --(*pos);
2092 return n;
2093}
2094
2095static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2096{
2097 struct neighbour *n = neigh_get_first(seq);
2098
2099 if (n) {
2100 while (*pos) {
2101 n = neigh_get_next(seq, n, pos);
2102 if (!n)
2103 break;
2104 }
2105 }
2106 return *pos ? NULL : n;
2107}
2108
2109static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2110{
2111 struct neigh_seq_state *state = seq->private;
2112 struct neigh_table *tbl = state->tbl;
2113 struct pneigh_entry *pn = NULL;
2114 int bucket = state->bucket;
2115
2116 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2117 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2118 pn = tbl->phash_buckets[bucket];
2119 if (pn)
2120 break;
2121 }
2122 state->bucket = bucket;
2123
2124 return pn;
2125}
2126
2127static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2128 struct pneigh_entry *pn,
2129 loff_t *pos)
2130{
2131 struct neigh_seq_state *state = seq->private;
2132 struct neigh_table *tbl = state->tbl;
2133
2134 pn = pn->next;
2135 while (!pn) {
2136 if (++state->bucket > PNEIGH_HASHMASK)
2137 break;
2138 pn = tbl->phash_buckets[state->bucket];
2139 if (pn)
2140 break;
2141 }
2142
2143 if (pn && pos)
2144 --(*pos);
2145
2146 return pn;
2147}
2148
2149static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2150{
2151 struct pneigh_entry *pn = pneigh_get_first(seq);
2152
2153 if (pn) {
2154 while (*pos) {
2155 pn = pneigh_get_next(seq, pn, pos);
2156 if (!pn)
2157 break;
2158 }
2159 }
2160 return *pos ? NULL : pn;
2161}
2162
2163static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2164{
2165 struct neigh_seq_state *state = seq->private;
2166 void *rc;
2167
2168 rc = neigh_get_idx(seq, pos);
2169 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2170 rc = pneigh_get_idx(seq, pos);
2171
2172 return rc;
2173}
2174
2175void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2176{
2177 struct neigh_seq_state *state = seq->private;
2178 loff_t pos_minus_one;
2179
2180 state->tbl = tbl;
2181 state->bucket = 0;
2182 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2183
2184 read_lock_bh(&tbl->lock);
2185
2186 pos_minus_one = *pos - 1;
2187 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
2188}
2189EXPORT_SYMBOL(neigh_seq_start);
2190
2191void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2192{
2193 struct neigh_seq_state *state;
2194 void *rc;
2195
2196 if (v == SEQ_START_TOKEN) {
2197 rc = neigh_get_idx(seq, pos);
2198 goto out;
2199 }
2200
2201 state = seq->private;
2202 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2203 rc = neigh_get_next(seq, v, NULL);
2204 if (rc)
2205 goto out;
2206 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2207 rc = pneigh_get_first(seq);
2208 } else {
2209 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2210 rc = pneigh_get_next(seq, v, NULL);
2211 }
2212out:
2213 ++(*pos);
2214 return rc;
2215}
2216EXPORT_SYMBOL(neigh_seq_next);
2217
2218void neigh_seq_stop(struct seq_file *seq, void *v)
2219{
2220 struct neigh_seq_state *state = seq->private;
2221 struct neigh_table *tbl = state->tbl;
2222
2223 read_unlock_bh(&tbl->lock);
2224}
2225EXPORT_SYMBOL(neigh_seq_stop);
2226
2227/* statistics via seq_file */
2228
2229static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2230{
2231 struct proc_dir_entry *pde = seq->private;
2232 struct neigh_table *tbl = pde->data;
2233 int cpu;
2234
2235 if (*pos == 0)
2236 return SEQ_START_TOKEN;
2237
2238 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
2239 if (!cpu_possible(cpu))
2240 continue;
2241 *pos = cpu+1;
2242 return per_cpu_ptr(tbl->stats, cpu);
2243 }
2244 return NULL;
2245}
2246
2247static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2248{
2249 struct proc_dir_entry *pde = seq->private;
2250 struct neigh_table *tbl = pde->data;
2251 int cpu;
2252
2253 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
2254 if (!cpu_possible(cpu))
2255 continue;
2256 *pos = cpu+1;
2257 return per_cpu_ptr(tbl->stats, cpu);
2258 }
2259 return NULL;
2260}
2261
2262static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2263{
2264
2265}
2266
2267static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2268{
2269 struct proc_dir_entry *pde = seq->private;
2270 struct neigh_table *tbl = pde->data;
2271 struct neigh_statistics *st = v;
2272
2273 if (v == SEQ_START_TOKEN) {
5bec0039 2274 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n");
1da177e4
LT
2275 return 0;
2276 }
2277
2278 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2279 "%08lx %08lx %08lx %08lx\n",
2280 atomic_read(&tbl->entries),
2281
2282 st->allocs,
2283 st->destroys,
2284 st->hash_grows,
2285
2286 st->lookups,
2287 st->hits,
2288
2289 st->res_failed,
2290
2291 st->rcv_probes_mcast,
2292 st->rcv_probes_ucast,
2293
2294 st->periodic_gc_runs,
2295 st->forced_gc_runs
2296 );
2297
2298 return 0;
2299}
2300
2301static struct seq_operations neigh_stat_seq_ops = {
2302 .start = neigh_stat_seq_start,
2303 .next = neigh_stat_seq_next,
2304 .stop = neigh_stat_seq_stop,
2305 .show = neigh_stat_seq_show,
2306};
2307
2308static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2309{
2310 int ret = seq_open(file, &neigh_stat_seq_ops);
2311
2312 if (!ret) {
2313 struct seq_file *sf = file->private_data;
2314 sf->private = PDE(inode);
2315 }
2316 return ret;
2317};
2318
2319static struct file_operations neigh_stat_seq_fops = {
2320 .owner = THIS_MODULE,
2321 .open = neigh_stat_seq_open,
2322 .read = seq_read,
2323 .llseek = seq_lseek,
2324 .release = seq_release,
2325};
2326
2327#endif /* CONFIG_PROC_FS */
2328
2329#ifdef CONFIG_ARPD
2330void neigh_app_ns(struct neighbour *n)
2331{
2332 struct nlmsghdr *nlh;
2333 int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256);
2334 struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC);
2335
2336 if (!skb)
2337 return;
2338
b6544c0b 2339 if (neigh_fill_info(skb, n, 0, 0, RTM_GETNEIGH, 0) < 0) {
1da177e4
LT
2340 kfree_skb(skb);
2341 return;
2342 }
2343 nlh = (struct nlmsghdr *)skb->data;
2344 nlh->nlmsg_flags = NLM_F_REQUEST;
2345 NETLINK_CB(skb).dst_groups = RTMGRP_NEIGH;
2346 netlink_broadcast(rtnl, skb, 0, RTMGRP_NEIGH, GFP_ATOMIC);
2347}
2348
2349static void neigh_app_notify(struct neighbour *n)
2350{
2351 struct nlmsghdr *nlh;
2352 int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256);
2353 struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC);
2354
2355 if (!skb)
2356 return;
2357
b6544c0b 2358 if (neigh_fill_info(skb, n, 0, 0, RTM_NEWNEIGH, 0) < 0) {
1da177e4
LT
2359 kfree_skb(skb);
2360 return;
2361 }
2362 nlh = (struct nlmsghdr *)skb->data;
2363 NETLINK_CB(skb).dst_groups = RTMGRP_NEIGH;
2364 netlink_broadcast(rtnl, skb, 0, RTMGRP_NEIGH, GFP_ATOMIC);
2365}
2366
2367#endif /* CONFIG_ARPD */
2368
2369#ifdef CONFIG_SYSCTL
2370
2371static struct neigh_sysctl_table {
2372 struct ctl_table_header *sysctl_header;
2373 ctl_table neigh_vars[__NET_NEIGH_MAX];
2374 ctl_table neigh_dev[2];
2375 ctl_table neigh_neigh_dir[2];
2376 ctl_table neigh_proto_dir[2];
2377 ctl_table neigh_root_dir[2];
2378} neigh_sysctl_template = {
2379 .neigh_vars = {
2380 {
2381 .ctl_name = NET_NEIGH_MCAST_SOLICIT,
2382 .procname = "mcast_solicit",
2383 .maxlen = sizeof(int),
2384 .mode = 0644,
2385 .proc_handler = &proc_dointvec,
2386 },
2387 {
2388 .ctl_name = NET_NEIGH_UCAST_SOLICIT,
2389 .procname = "ucast_solicit",
2390 .maxlen = sizeof(int),
2391 .mode = 0644,
2392 .proc_handler = &proc_dointvec,
2393 },
2394 {
2395 .ctl_name = NET_NEIGH_APP_SOLICIT,
2396 .procname = "app_solicit",
2397 .maxlen = sizeof(int),
2398 .mode = 0644,
2399 .proc_handler = &proc_dointvec,
2400 },
2401 {
2402 .ctl_name = NET_NEIGH_RETRANS_TIME,
2403 .procname = "retrans_time",
2404 .maxlen = sizeof(int),
2405 .mode = 0644,
2406 .proc_handler = &proc_dointvec_userhz_jiffies,
2407 },
2408 {
2409 .ctl_name = NET_NEIGH_REACHABLE_TIME,
2410 .procname = "base_reachable_time",
2411 .maxlen = sizeof(int),
2412 .mode = 0644,
2413 .proc_handler = &proc_dointvec_jiffies,
2414 .strategy = &sysctl_jiffies,
2415 },
2416 {
2417 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME,
2418 .procname = "delay_first_probe_time",
2419 .maxlen = sizeof(int),
2420 .mode = 0644,
2421 .proc_handler = &proc_dointvec_jiffies,
2422 .strategy = &sysctl_jiffies,
2423 },
2424 {
2425 .ctl_name = NET_NEIGH_GC_STALE_TIME,
2426 .procname = "gc_stale_time",
2427 .maxlen = sizeof(int),
2428 .mode = 0644,
2429 .proc_handler = &proc_dointvec_jiffies,
2430 .strategy = &sysctl_jiffies,
2431 },
2432 {
2433 .ctl_name = NET_NEIGH_UNRES_QLEN,
2434 .procname = "unres_qlen",
2435 .maxlen = sizeof(int),
2436 .mode = 0644,
2437 .proc_handler = &proc_dointvec,
2438 },
2439 {
2440 .ctl_name = NET_NEIGH_PROXY_QLEN,
2441 .procname = "proxy_qlen",
2442 .maxlen = sizeof(int),
2443 .mode = 0644,
2444 .proc_handler = &proc_dointvec,
2445 },
2446 {
2447 .ctl_name = NET_NEIGH_ANYCAST_DELAY,
2448 .procname = "anycast_delay",
2449 .maxlen = sizeof(int),
2450 .mode = 0644,
2451 .proc_handler = &proc_dointvec_userhz_jiffies,
2452 },
2453 {
2454 .ctl_name = NET_NEIGH_PROXY_DELAY,
2455 .procname = "proxy_delay",
2456 .maxlen = sizeof(int),
2457 .mode = 0644,
2458 .proc_handler = &proc_dointvec_userhz_jiffies,
2459 },
2460 {
2461 .ctl_name = NET_NEIGH_LOCKTIME,
2462 .procname = "locktime",
2463 .maxlen = sizeof(int),
2464 .mode = 0644,
2465 .proc_handler = &proc_dointvec_userhz_jiffies,
2466 },
2467 {
2468 .ctl_name = NET_NEIGH_GC_INTERVAL,
2469 .procname = "gc_interval",
2470 .maxlen = sizeof(int),
2471 .mode = 0644,
2472 .proc_handler = &proc_dointvec_jiffies,
2473 .strategy = &sysctl_jiffies,
2474 },
2475 {
2476 .ctl_name = NET_NEIGH_GC_THRESH1,
2477 .procname = "gc_thresh1",
2478 .maxlen = sizeof(int),
2479 .mode = 0644,
2480 .proc_handler = &proc_dointvec,
2481 },
2482 {
2483 .ctl_name = NET_NEIGH_GC_THRESH2,
2484 .procname = "gc_thresh2",
2485 .maxlen = sizeof(int),
2486 .mode = 0644,
2487 .proc_handler = &proc_dointvec,
2488 },
2489 {
2490 .ctl_name = NET_NEIGH_GC_THRESH3,
2491 .procname = "gc_thresh3",
2492 .maxlen = sizeof(int),
2493 .mode = 0644,
2494 .proc_handler = &proc_dointvec,
2495 },
2496 {
2497 .ctl_name = NET_NEIGH_RETRANS_TIME_MS,
2498 .procname = "retrans_time_ms",
2499 .maxlen = sizeof(int),
2500 .mode = 0644,
2501 .proc_handler = &proc_dointvec_ms_jiffies,
2502 .strategy = &sysctl_ms_jiffies,
2503 },
2504 {
2505 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS,
2506 .procname = "base_reachable_time_ms",
2507 .maxlen = sizeof(int),
2508 .mode = 0644,
2509 .proc_handler = &proc_dointvec_ms_jiffies,
2510 .strategy = &sysctl_ms_jiffies,
2511 },
2512 },
2513 .neigh_dev = {
2514 {
2515 .ctl_name = NET_PROTO_CONF_DEFAULT,
2516 .procname = "default",
2517 .mode = 0555,
2518 },
2519 },
2520 .neigh_neigh_dir = {
2521 {
2522 .procname = "neigh",
2523 .mode = 0555,
2524 },
2525 },
2526 .neigh_proto_dir = {
2527 {
2528 .mode = 0555,
2529 },
2530 },
2531 .neigh_root_dir = {
2532 {
2533 .ctl_name = CTL_NET,
2534 .procname = "net",
2535 .mode = 0555,
2536 },
2537 },
2538};
2539
2540int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2541 int p_id, int pdev_id, char *p_name,
2542 proc_handler *handler, ctl_handler *strategy)
2543{
2544 struct neigh_sysctl_table *t = kmalloc(sizeof(*t), GFP_KERNEL);
2545 const char *dev_name_source = NULL;
2546 char *dev_name = NULL;
2547 int err = 0;
2548
2549 if (!t)
2550 return -ENOBUFS;
2551 memcpy(t, &neigh_sysctl_template, sizeof(*t));
2552 t->neigh_vars[0].data = &p->mcast_probes;
2553 t->neigh_vars[1].data = &p->ucast_probes;
2554 t->neigh_vars[2].data = &p->app_probes;
2555 t->neigh_vars[3].data = &p->retrans_time;
2556 t->neigh_vars[4].data = &p->base_reachable_time;
2557 t->neigh_vars[5].data = &p->delay_probe_time;
2558 t->neigh_vars[6].data = &p->gc_staletime;
2559 t->neigh_vars[7].data = &p->queue_len;
2560 t->neigh_vars[8].data = &p->proxy_qlen;
2561 t->neigh_vars[9].data = &p->anycast_delay;
2562 t->neigh_vars[10].data = &p->proxy_delay;
2563 t->neigh_vars[11].data = &p->locktime;
2564
2565 if (dev) {
2566 dev_name_source = dev->name;
2567 t->neigh_dev[0].ctl_name = dev->ifindex;
2568 t->neigh_vars[12].procname = NULL;
2569 t->neigh_vars[13].procname = NULL;
2570 t->neigh_vars[14].procname = NULL;
2571 t->neigh_vars[15].procname = NULL;
2572 } else {
2573 dev_name_source = t->neigh_dev[0].procname;
2574 t->neigh_vars[12].data = (int *)(p + 1);
2575 t->neigh_vars[13].data = (int *)(p + 1) + 1;
2576 t->neigh_vars[14].data = (int *)(p + 1) + 2;
2577 t->neigh_vars[15].data = (int *)(p + 1) + 3;
2578 }
2579
2580 t->neigh_vars[16].data = &p->retrans_time;
2581 t->neigh_vars[17].data = &p->base_reachable_time;
2582
2583 if (handler || strategy) {
2584 /* RetransTime */
2585 t->neigh_vars[3].proc_handler = handler;
2586 t->neigh_vars[3].strategy = strategy;
2587 t->neigh_vars[3].extra1 = dev;
2588 /* ReachableTime */
2589 t->neigh_vars[4].proc_handler = handler;
2590 t->neigh_vars[4].strategy = strategy;
2591 t->neigh_vars[4].extra1 = dev;
2592 /* RetransTime (in milliseconds)*/
2593 t->neigh_vars[16].proc_handler = handler;
2594 t->neigh_vars[16].strategy = strategy;
2595 t->neigh_vars[16].extra1 = dev;
2596 /* ReachableTime (in milliseconds) */
2597 t->neigh_vars[17].proc_handler = handler;
2598 t->neigh_vars[17].strategy = strategy;
2599 t->neigh_vars[17].extra1 = dev;
2600 }
2601
543537bd 2602 dev_name = kstrdup(dev_name_source, GFP_KERNEL);
1da177e4
LT
2603 if (!dev_name) {
2604 err = -ENOBUFS;
2605 goto free;
2606 }
2607
2608 t->neigh_dev[0].procname = dev_name;
2609
2610 t->neigh_neigh_dir[0].ctl_name = pdev_id;
2611
2612 t->neigh_proto_dir[0].procname = p_name;
2613 t->neigh_proto_dir[0].ctl_name = p_id;
2614
2615 t->neigh_dev[0].child = t->neigh_vars;
2616 t->neigh_neigh_dir[0].child = t->neigh_dev;
2617 t->neigh_proto_dir[0].child = t->neigh_neigh_dir;
2618 t->neigh_root_dir[0].child = t->neigh_proto_dir;
2619
2620 t->sysctl_header = register_sysctl_table(t->neigh_root_dir, 0);
2621 if (!t->sysctl_header) {
2622 err = -ENOBUFS;
2623 goto free_procname;
2624 }
2625 p->sysctl_table = t;
2626 return 0;
2627
2628 /* error path */
2629 free_procname:
2630 kfree(dev_name);
2631 free:
2632 kfree(t);
2633
2634 return err;
2635}
2636
2637void neigh_sysctl_unregister(struct neigh_parms *p)
2638{
2639 if (p->sysctl_table) {
2640 struct neigh_sysctl_table *t = p->sysctl_table;
2641 p->sysctl_table = NULL;
2642 unregister_sysctl_table(t->sysctl_header);
2643 kfree(t->neigh_dev[0].procname);
2644 kfree(t);
2645 }
2646}
2647
2648#endif /* CONFIG_SYSCTL */
2649
2650EXPORT_SYMBOL(__neigh_event_send);
2651EXPORT_SYMBOL(neigh_add);
2652EXPORT_SYMBOL(neigh_changeaddr);
2653EXPORT_SYMBOL(neigh_compat_output);
2654EXPORT_SYMBOL(neigh_connected_output);
2655EXPORT_SYMBOL(neigh_create);
2656EXPORT_SYMBOL(neigh_delete);
2657EXPORT_SYMBOL(neigh_destroy);
2658EXPORT_SYMBOL(neigh_dump_info);
2659EXPORT_SYMBOL(neigh_event_ns);
2660EXPORT_SYMBOL(neigh_ifdown);
2661EXPORT_SYMBOL(neigh_lookup);
2662EXPORT_SYMBOL(neigh_lookup_nodev);
2663EXPORT_SYMBOL(neigh_parms_alloc);
2664EXPORT_SYMBOL(neigh_parms_release);
2665EXPORT_SYMBOL(neigh_rand_reach_time);
2666EXPORT_SYMBOL(neigh_resolve_output);
2667EXPORT_SYMBOL(neigh_table_clear);
2668EXPORT_SYMBOL(neigh_table_init);
2669EXPORT_SYMBOL(neigh_update);
2670EXPORT_SYMBOL(neigh_update_hhs);
2671EXPORT_SYMBOL(pneigh_enqueue);
2672EXPORT_SYMBOL(pneigh_lookup);
c7fb64db
TG
2673EXPORT_SYMBOL(neightbl_dump_info);
2674EXPORT_SYMBOL(neightbl_set);
1da177e4
LT
2675
2676#ifdef CONFIG_ARPD
2677EXPORT_SYMBOL(neigh_app_ns);
2678#endif
2679#ifdef CONFIG_SYSCTL
2680EXPORT_SYMBOL(neigh_sysctl_register);
2681EXPORT_SYMBOL(neigh_sysctl_unregister);
2682#endif