]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/ipv4/fib_trie.c
Merge tag 'mac80211-for-davem-2015-05-28' of git://git.kernel.org/pub/scm/linux/kerne...
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
8e05fd71 82#include <net/switchdev.h>
19baf839
RO
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
95f60ea3
AD
87#define KEYLENGTH (8*sizeof(t_key))
88#define KEY_MAX ((t_key)~0)
19baf839 89
19baf839
RO
90typedef unsigned int t_key;
91
88bae714
AD
92#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
93#define IS_TNODE(n) ((n)->bits)
94#define IS_LEAF(n) (!(n)->bits)
2373ce1c 95
35c6edac 96struct key_vector {
64c9b6fb 97 t_key key;
64c9b6fb 98 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 99 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 100 unsigned char slen;
adaf9816 101 union {
41b489fd 102 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 103 struct hlist_head leaf;
41b489fd 104 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 105 struct key_vector __rcu *tnode[0];
adaf9816 106 };
19baf839
RO
107};
108
dc35dbed 109struct tnode {
56ca2adf 110 struct rcu_head rcu;
6e22d174
AD
111 t_key empty_children; /* KEYLENGTH bits needed */
112 t_key full_children; /* KEYLENGTH bits needed */
f23e59fb 113 struct key_vector __rcu *parent;
dc35dbed 114 struct key_vector kv[1];
56ca2adf 115#define tn_bits kv[0].bits
dc35dbed
AD
116};
117
118#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
119#define LEAF_SIZE TNODE_SIZE(1)
120
19baf839
RO
121#ifdef CONFIG_IP_FIB_TRIE_STATS
122struct trie_use_stats {
123 unsigned int gets;
124 unsigned int backtrack;
125 unsigned int semantic_match_passed;
126 unsigned int semantic_match_miss;
127 unsigned int null_node_hit;
2f36895a 128 unsigned int resize_node_skipped;
19baf839
RO
129};
130#endif
131
132struct trie_stat {
133 unsigned int totdepth;
134 unsigned int maxdepth;
135 unsigned int tnodes;
136 unsigned int leaves;
137 unsigned int nullpointers;
93672292 138 unsigned int prefixes;
06ef921d 139 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 140};
19baf839
RO
141
142struct trie {
88bae714 143 struct key_vector kv[1];
19baf839 144#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 145 struct trie_use_stats __percpu *stats;
19baf839 146#endif
19baf839
RO
147};
148
88bae714 149static struct key_vector *resize(struct trie *t, struct key_vector *tn);
c3059477
JP
150static size_t tnode_free_size;
151
152/*
153 * synchronize_rcu after call_rcu for that many pages; it should be especially
154 * useful before resizing the root node with PREEMPT_NONE configs; the value was
155 * obtained experimentally, aiming to avoid visible slowdown.
156 */
157static const int sync_pages = 128;
19baf839 158
e18b890b 159static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 160static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 161
56ca2adf
AD
162static inline struct tnode *tn_info(struct key_vector *kv)
163{
164 return container_of(kv, struct tnode, kv[0]);
165}
166
64c9b6fb 167/* caller must hold RTNL */
f23e59fb 168#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
754baf8d 169#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 170
64c9b6fb 171/* caller must hold RCU read lock or RTNL */
f23e59fb 172#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
754baf8d 173#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 174
64c9b6fb 175/* wrapper for rcu_assign_pointer */
35c6edac 176static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 177{
adaf9816 178 if (n)
f23e59fb 179 rcu_assign_pointer(tn_info(n)->parent, tp);
06801916
SH
180}
181
f23e59fb 182#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
64c9b6fb
AD
183
184/* This provides us with the number of children in this node, in the case of a
185 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 186 */
2e1ac88a 187static inline unsigned long child_length(const struct key_vector *tn)
06801916 188{
64c9b6fb 189 return (1ul << tn->bits) & ~(1ul);
06801916 190}
2373ce1c 191
88bae714
AD
192#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
193
2e1ac88a
AD
194static inline unsigned long get_index(t_key key, struct key_vector *kv)
195{
196 unsigned long index = key ^ kv->key;
197
88bae714
AD
198 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
199 return 0;
200
2e1ac88a
AD
201 return index >> kv->pos;
202}
203
e9b44019
AD
204/* To understand this stuff, an understanding of keys and all their bits is
205 * necessary. Every node in the trie has a key associated with it, but not
206 * all of the bits in that key are significant.
207 *
208 * Consider a node 'n' and its parent 'tp'.
209 *
210 * If n is a leaf, every bit in its key is significant. Its presence is
211 * necessitated by path compression, since during a tree traversal (when
212 * searching for a leaf - unless we are doing an insertion) we will completely
213 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
214 * a potentially successful search, that we have indeed been walking the
215 * correct key path.
216 *
217 * Note that we can never "miss" the correct key in the tree if present by
218 * following the wrong path. Path compression ensures that segments of the key
219 * that are the same for all keys with a given prefix are skipped, but the
220 * skipped part *is* identical for each node in the subtrie below the skipped
221 * bit! trie_insert() in this implementation takes care of that.
222 *
223 * if n is an internal node - a 'tnode' here, the various parts of its key
224 * have many different meanings.
225 *
226 * Example:
227 * _________________________________________________________________
228 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
229 * -----------------------------------------------------------------
230 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
231 *
232 * _________________________________________________________________
233 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
234 * -----------------------------------------------------------------
235 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
236 *
237 * tp->pos = 22
238 * tp->bits = 3
239 * n->pos = 13
240 * n->bits = 4
241 *
242 * First, let's just ignore the bits that come before the parent tp, that is
243 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
244 * point we do not use them for anything.
245 *
246 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
247 * index into the parent's child array. That is, they will be used to find
248 * 'n' among tp's children.
249 *
250 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
251 * for the node n.
252 *
253 * All the bits we have seen so far are significant to the node n. The rest
254 * of the bits are really not needed or indeed known in n->key.
255 *
256 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
257 * n's child array, and will of course be different for each child.
258 *
259 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
260 * at this point.
261 */
19baf839 262
f5026fab
DL
263static const int halve_threshold = 25;
264static const int inflate_threshold = 50;
345aa031 265static const int halve_threshold_root = 15;
80b71b80 266static const int inflate_threshold_root = 30;
2373ce1c
RO
267
268static void __alias_free_mem(struct rcu_head *head)
19baf839 269{
2373ce1c
RO
270 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
271 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
272}
273
2373ce1c 274static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 275{
2373ce1c
RO
276 call_rcu(&fa->rcu, __alias_free_mem);
277}
91b9a277 278
37fd30f2 279#define TNODE_KMALLOC_MAX \
35c6edac 280 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 281#define TNODE_VMALLOC_MAX \
35c6edac 282 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 283
37fd30f2 284static void __node_free_rcu(struct rcu_head *head)
387a5487 285{
56ca2adf 286 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 287
56ca2adf 288 if (!n->tn_bits)
37fd30f2 289 kmem_cache_free(trie_leaf_kmem, n);
56ca2adf 290 else if (n->tn_bits <= TNODE_KMALLOC_MAX)
37fd30f2
AD
291 kfree(n);
292 else
293 vfree(n);
387a5487
SH
294}
295
56ca2adf 296#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 297
dc35dbed 298static struct tnode *tnode_alloc(int bits)
f0e36f8c 299{
1de3d87b
AD
300 size_t size;
301
302 /* verify bits is within bounds */
303 if (bits > TNODE_VMALLOC_MAX)
304 return NULL;
305
306 /* determine size and verify it is non-zero and didn't overflow */
307 size = TNODE_SIZE(1ul << bits);
308
2373ce1c 309 if (size <= PAGE_SIZE)
8d965444 310 return kzalloc(size, GFP_KERNEL);
15be75cd 311 else
7a1c8e5a 312 return vzalloc(size);
15be75cd 313}
2373ce1c 314
35c6edac 315static inline void empty_child_inc(struct key_vector *n)
95f60ea3 316{
6e22d174 317 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
95f60ea3
AD
318}
319
35c6edac 320static inline void empty_child_dec(struct key_vector *n)
95f60ea3 321{
6e22d174 322 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
95f60ea3
AD
323}
324
35c6edac 325static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 326{
dc35dbed
AD
327 struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
328 struct key_vector *l = kv->kv;
329
330 if (!kv)
331 return NULL;
332
333 /* initialize key vector */
334 l->key = key;
335 l->pos = 0;
336 l->bits = 0;
337 l->slen = fa->fa_slen;
338
339 /* link leaf to fib alias */
340 INIT_HLIST_HEAD(&l->leaf);
341 hlist_add_head(&fa->fa_list, &l->leaf);
342
2373ce1c
RO
343 return l;
344}
345
35c6edac 346static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 347{
dc35dbed 348 struct tnode *tnode = tnode_alloc(bits);
64c9b6fb 349 unsigned int shift = pos + bits;
dc35dbed 350 struct key_vector *tn = tnode->kv;
64c9b6fb
AD
351
352 /* verify bits and pos their msb bits clear and values are valid */
353 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 354
dc35dbed 355 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
35c6edac 356 sizeof(struct key_vector *) << bits);
dc35dbed
AD
357
358 if (!tnode)
359 return NULL;
360
361 if (bits == KEYLENGTH)
6e22d174 362 tnode->full_children = 1;
dc35dbed 363 else
6e22d174 364 tnode->empty_children = 1ul << bits;
dc35dbed
AD
365
366 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
367 tn->pos = pos;
368 tn->bits = bits;
369 tn->slen = pos;
370
19baf839
RO
371 return tn;
372}
373
e9b44019 374/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
375 * and no bits are skipped. See discussion in dyntree paper p. 6
376 */
35c6edac 377static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 378{
e9b44019 379 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
380}
381
ff181ed8
AD
382/* Add a child at position i overwriting the old value.
383 * Update the value of full_children and empty_children.
384 */
35c6edac
AD
385static void put_child(struct key_vector *tn, unsigned long i,
386 struct key_vector *n)
19baf839 387{
754baf8d 388 struct key_vector *chi = get_child(tn, i);
ff181ed8 389 int isfull, wasfull;
19baf839 390
2e1ac88a 391 BUG_ON(i >= child_length(tn));
0c7770c7 392
95f60ea3 393 /* update emptyChildren, overflow into fullChildren */
00db4124 394 if (!n && chi)
95f60ea3 395 empty_child_inc(tn);
00db4124 396 if (n && !chi)
95f60ea3 397 empty_child_dec(tn);
c877efb2 398
19baf839 399 /* update fullChildren */
ff181ed8 400 wasfull = tnode_full(tn, chi);
19baf839 401 isfull = tnode_full(tn, n);
ff181ed8 402
c877efb2 403 if (wasfull && !isfull)
6e22d174 404 tn_info(tn)->full_children--;
c877efb2 405 else if (!wasfull && isfull)
6e22d174 406 tn_info(tn)->full_children++;
91b9a277 407
5405afd1
AD
408 if (n && (tn->slen < n->slen))
409 tn->slen = n->slen;
410
41b489fd 411 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
412}
413
35c6edac 414static void update_children(struct key_vector *tn)
69fa57b1
AD
415{
416 unsigned long i;
417
418 /* update all of the child parent pointers */
2e1ac88a 419 for (i = child_length(tn); i;) {
754baf8d 420 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
421
422 if (!inode)
423 continue;
424
425 /* Either update the children of a tnode that
426 * already belongs to us or update the child
427 * to point to ourselves.
428 */
429 if (node_parent(inode) == tn)
430 update_children(inode);
431 else
432 node_set_parent(inode, tn);
433 }
434}
435
88bae714
AD
436static inline void put_child_root(struct key_vector *tp, t_key key,
437 struct key_vector *n)
836a0123 438{
88bae714
AD
439 if (IS_TRIE(tp))
440 rcu_assign_pointer(tp->tnode[0], n);
836a0123 441 else
88bae714 442 put_child(tp, get_index(key, tp), n);
836a0123
AD
443}
444
35c6edac 445static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 446{
56ca2adf 447 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
448}
449
35c6edac
AD
450static inline void tnode_free_append(struct key_vector *tn,
451 struct key_vector *n)
fc86a93b 452{
56ca2adf
AD
453 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
454 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 455}
0a5c0475 456
35c6edac 457static void tnode_free(struct key_vector *tn)
fc86a93b 458{
56ca2adf 459 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
460
461 while (head) {
462 head = head->next;
41b489fd 463 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
464 node_free(tn);
465
56ca2adf 466 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
467 }
468
469 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
470 tnode_free_size = 0;
471 synchronize_rcu();
0a5c0475 472 }
0a5c0475
ED
473}
474
88bae714
AD
475static struct key_vector *replace(struct trie *t,
476 struct key_vector *oldtnode,
477 struct key_vector *tn)
69fa57b1 478{
35c6edac 479 struct key_vector *tp = node_parent(oldtnode);
69fa57b1
AD
480 unsigned long i;
481
482 /* setup the parent pointer out of and back into this node */
483 NODE_INIT_PARENT(tn, tp);
88bae714 484 put_child_root(tp, tn->key, tn);
69fa57b1
AD
485
486 /* update all of the child parent pointers */
487 update_children(tn);
488
489 /* all pointers should be clean so we are done */
490 tnode_free(oldtnode);
491
492 /* resize children now that oldtnode is freed */
2e1ac88a 493 for (i = child_length(tn); i;) {
754baf8d 494 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
495
496 /* resize child node */
497 if (tnode_full(tn, inode))
88bae714 498 tn = resize(t, inode);
69fa57b1 499 }
8d8e810c 500
88bae714 501 return tp;
69fa57b1
AD
502}
503
88bae714
AD
504static struct key_vector *inflate(struct trie *t,
505 struct key_vector *oldtnode)
19baf839 506{
35c6edac 507 struct key_vector *tn;
69fa57b1 508 unsigned long i;
e9b44019 509 t_key m;
19baf839 510
0c7770c7 511 pr_debug("In inflate\n");
19baf839 512
e9b44019 513 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 514 if (!tn)
8d8e810c 515 goto notnode;
2f36895a 516
69fa57b1
AD
517 /* prepare oldtnode to be freed */
518 tnode_free_init(oldtnode);
519
12c081a5
AD
520 /* Assemble all of the pointers in our cluster, in this case that
521 * represents all of the pointers out of our allocated nodes that
522 * point to existing tnodes and the links between our allocated
523 * nodes.
2f36895a 524 */
2e1ac88a 525 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 526 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 527 struct key_vector *node0, *node1;
69fa57b1 528 unsigned long j, k;
c877efb2 529
19baf839 530 /* An empty child */
51456b29 531 if (!inode)
19baf839
RO
532 continue;
533
534 /* A leaf or an internal node with skipped bits */
adaf9816 535 if (!tnode_full(oldtnode, inode)) {
e9b44019 536 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
537 continue;
538 }
539
69fa57b1
AD
540 /* drop the node in the old tnode free list */
541 tnode_free_append(oldtnode, inode);
542
19baf839 543 /* An internal node with two children */
19baf839 544 if (inode->bits == 1) {
754baf8d
AD
545 put_child(tn, 2 * i + 1, get_child(inode, 1));
546 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 547 continue;
19baf839
RO
548 }
549
91b9a277 550 /* We will replace this node 'inode' with two new
12c081a5 551 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
552 * original children. The two new nodes will have
553 * a position one bit further down the key and this
554 * means that the "significant" part of their keys
555 * (see the discussion near the top of this file)
556 * will differ by one bit, which will be "0" in
12c081a5 557 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
558 * moving the key position by one step, the bit that
559 * we are moving away from - the bit at position
12c081a5
AD
560 * (tn->pos) - is the one that will differ between
561 * node0 and node1. So... we synthesize that bit in the
562 * two new keys.
91b9a277 563 */
12c081a5
AD
564 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
565 if (!node1)
566 goto nomem;
69fa57b1 567 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 568
69fa57b1 569 tnode_free_append(tn, node1);
12c081a5
AD
570 if (!node0)
571 goto nomem;
572 tnode_free_append(tn, node0);
573
574 /* populate child pointers in new nodes */
2e1ac88a 575 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
576 put_child(node1, --j, get_child(inode, --k));
577 put_child(node0, j, get_child(inode, j));
578 put_child(node1, --j, get_child(inode, --k));
579 put_child(node0, j, get_child(inode, j));
12c081a5 580 }
19baf839 581
12c081a5
AD
582 /* link new nodes to parent */
583 NODE_INIT_PARENT(node1, tn);
584 NODE_INIT_PARENT(node0, tn);
2f36895a 585
12c081a5
AD
586 /* link parent to nodes */
587 put_child(tn, 2 * i + 1, node1);
588 put_child(tn, 2 * i, node0);
589 }
2f36895a 590
69fa57b1 591 /* setup the parent pointers into and out of this node */
8d8e810c 592 return replace(t, oldtnode, tn);
2f80b3c8 593nomem:
fc86a93b
AD
594 /* all pointers should be clean so we are done */
595 tnode_free(tn);
8d8e810c
AD
596notnode:
597 return NULL;
19baf839
RO
598}
599
88bae714
AD
600static struct key_vector *halve(struct trie *t,
601 struct key_vector *oldtnode)
19baf839 602{
35c6edac 603 struct key_vector *tn;
12c081a5 604 unsigned long i;
19baf839 605
0c7770c7 606 pr_debug("In halve\n");
c877efb2 607
e9b44019 608 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 609 if (!tn)
8d8e810c 610 goto notnode;
2f36895a 611
69fa57b1
AD
612 /* prepare oldtnode to be freed */
613 tnode_free_init(oldtnode);
614
12c081a5
AD
615 /* Assemble all of the pointers in our cluster, in this case that
616 * represents all of the pointers out of our allocated nodes that
617 * point to existing tnodes and the links between our allocated
618 * nodes.
2f36895a 619 */
2e1ac88a 620 for (i = child_length(oldtnode); i;) {
754baf8d
AD
621 struct key_vector *node1 = get_child(oldtnode, --i);
622 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 623 struct key_vector *inode;
2f36895a 624
12c081a5
AD
625 /* At least one of the children is empty */
626 if (!node1 || !node0) {
627 put_child(tn, i / 2, node1 ? : node0);
628 continue;
629 }
c877efb2 630
2f36895a 631 /* Two nonempty children */
12c081a5 632 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
633 if (!inode)
634 goto nomem;
12c081a5 635 tnode_free_append(tn, inode);
2f36895a 636
12c081a5
AD
637 /* initialize pointers out of node */
638 put_child(inode, 1, node1);
639 put_child(inode, 0, node0);
640 NODE_INIT_PARENT(inode, tn);
641
642 /* link parent to node */
643 put_child(tn, i / 2, inode);
2f36895a 644 }
19baf839 645
69fa57b1 646 /* setup the parent pointers into and out of this node */
8d8e810c
AD
647 return replace(t, oldtnode, tn);
648nomem:
649 /* all pointers should be clean so we are done */
650 tnode_free(tn);
651notnode:
652 return NULL;
19baf839
RO
653}
654
88bae714
AD
655static struct key_vector *collapse(struct trie *t,
656 struct key_vector *oldtnode)
95f60ea3 657{
35c6edac 658 struct key_vector *n, *tp;
95f60ea3
AD
659 unsigned long i;
660
661 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 662 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 663 n = get_child(oldtnode, --i);
95f60ea3
AD
664
665 /* compress one level */
666 tp = node_parent(oldtnode);
88bae714 667 put_child_root(tp, oldtnode->key, n);
95f60ea3
AD
668 node_set_parent(n, tp);
669
670 /* drop dead node */
671 node_free(oldtnode);
88bae714
AD
672
673 return tp;
95f60ea3
AD
674}
675
35c6edac 676static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
677{
678 unsigned char slen = tn->pos;
679 unsigned long stride, i;
680
681 /* search though the list of children looking for nodes that might
682 * have a suffix greater than the one we currently have. This is
683 * why we start with a stride of 2 since a stride of 1 would
684 * represent the nodes with suffix length equal to tn->pos
685 */
2e1ac88a 686 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 687 struct key_vector *n = get_child(tn, i);
5405afd1
AD
688
689 if (!n || (n->slen <= slen))
690 continue;
691
692 /* update stride and slen based on new value */
693 stride <<= (n->slen - slen);
694 slen = n->slen;
695 i &= ~(stride - 1);
696
697 /* if slen covers all but the last bit we can stop here
698 * there will be nothing longer than that since only node
699 * 0 and 1 << (bits - 1) could have that as their suffix
700 * length.
701 */
702 if ((slen + 1) >= (tn->pos + tn->bits))
703 break;
704 }
705
706 tn->slen = slen;
707
708 return slen;
709}
710
f05a4819
AD
711/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
712 * the Helsinki University of Technology and Matti Tikkanen of Nokia
713 * Telecommunications, page 6:
714 * "A node is doubled if the ratio of non-empty children to all
715 * children in the *doubled* node is at least 'high'."
716 *
717 * 'high' in this instance is the variable 'inflate_threshold'. It
718 * is expressed as a percentage, so we multiply it with
2e1ac88a 719 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
720 * child array will be doubled by inflate()) and multiplying
721 * the left-hand side by 100 (to handle the percentage thing) we
722 * multiply the left-hand side by 50.
723 *
2e1ac88a 724 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
725 * - tn->empty_children is of course the number of non-null children
726 * in the current node. tn->full_children is the number of "full"
727 * children, that is non-null tnodes with a skip value of 0.
728 * All of those will be doubled in the resulting inflated tnode, so
729 * we just count them one extra time here.
730 *
731 * A clearer way to write this would be:
732 *
733 * to_be_doubled = tn->full_children;
2e1ac88a 734 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
735 * tn->full_children;
736 *
2e1ac88a 737 * new_child_length = child_length(tn) * 2;
f05a4819
AD
738 *
739 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
740 * new_child_length;
741 * if (new_fill_factor >= inflate_threshold)
742 *
743 * ...and so on, tho it would mess up the while () loop.
744 *
745 * anyway,
746 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
747 * inflate_threshold
748 *
749 * avoid a division:
750 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
751 * inflate_threshold * new_child_length
752 *
753 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 754 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
755 * tn->full_children) >= inflate_threshold * new_child_length
756 *
757 * expand new_child_length:
2e1ac88a 758 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 759 * tn->full_children) >=
2e1ac88a 760 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
761 *
762 * shorten again:
2e1ac88a 763 * 50 * (tn->full_children + child_length(tn) -
f05a4819 764 * tn->empty_children) >= inflate_threshold *
2e1ac88a 765 * child_length(tn)
f05a4819
AD
766 *
767 */
35c6edac 768static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 769{
2e1ac88a 770 unsigned long used = child_length(tn);
f05a4819
AD
771 unsigned long threshold = used;
772
773 /* Keep root node larger */
88bae714 774 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
6e22d174
AD
775 used -= tn_info(tn)->empty_children;
776 used += tn_info(tn)->full_children;
f05a4819 777
95f60ea3
AD
778 /* if bits == KEYLENGTH then pos = 0, and will fail below */
779
780 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
781}
782
35c6edac 783static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 784{
2e1ac88a 785 unsigned long used = child_length(tn);
f05a4819
AD
786 unsigned long threshold = used;
787
788 /* Keep root node larger */
88bae714 789 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
6e22d174 790 used -= tn_info(tn)->empty_children;
f05a4819 791
95f60ea3
AD
792 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
793
794 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
795}
796
35c6edac 797static inline bool should_collapse(struct key_vector *tn)
95f60ea3 798{
2e1ac88a 799 unsigned long used = child_length(tn);
95f60ea3 800
6e22d174 801 used -= tn_info(tn)->empty_children;
95f60ea3
AD
802
803 /* account for bits == KEYLENGTH case */
6e22d174 804 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
95f60ea3
AD
805 used -= KEY_MAX;
806
807 /* One child or none, time to drop us from the trie */
808 return used < 2;
f05a4819
AD
809}
810
cf3637bb 811#define MAX_WORK 10
88bae714 812static struct key_vector *resize(struct trie *t, struct key_vector *tn)
cf3637bb 813{
8d8e810c
AD
814#ifdef CONFIG_IP_FIB_TRIE_STATS
815 struct trie_use_stats __percpu *stats = t->stats;
816#endif
35c6edac 817 struct key_vector *tp = node_parent(tn);
88bae714 818 unsigned long cindex = get_index(tn->key, tp);
a80e89d4 819 int max_work = MAX_WORK;
cf3637bb 820
cf3637bb
AD
821 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
822 tn, inflate_threshold, halve_threshold);
823
ff181ed8
AD
824 /* track the tnode via the pointer from the parent instead of
825 * doing it ourselves. This way we can let RCU fully do its
826 * thing without us interfering
827 */
88bae714 828 BUG_ON(tn != get_child(tp, cindex));
ff181ed8 829
f05a4819
AD
830 /* Double as long as the resulting node has a number of
831 * nonempty nodes that are above the threshold.
cf3637bb 832 */
b6f15f82 833 while (should_inflate(tp, tn) && max_work) {
88bae714
AD
834 tp = inflate(t, tn);
835 if (!tp) {
cf3637bb 836#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 837 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
838#endif
839 break;
840 }
ff181ed8 841
b6f15f82 842 max_work--;
88bae714 843 tn = get_child(tp, cindex);
cf3637bb
AD
844 }
845
b6f15f82
AD
846 /* update parent in case inflate failed */
847 tp = node_parent(tn);
848
cf3637bb
AD
849 /* Return if at least one inflate is run */
850 if (max_work != MAX_WORK)
b6f15f82 851 return tp;
cf3637bb 852
f05a4819 853 /* Halve as long as the number of empty children in this
cf3637bb
AD
854 * node is above threshold.
855 */
b6f15f82 856 while (should_halve(tp, tn) && max_work) {
88bae714
AD
857 tp = halve(t, tn);
858 if (!tp) {
cf3637bb 859#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 860 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
861#endif
862 break;
863 }
cf3637bb 864
b6f15f82 865 max_work--;
88bae714 866 tn = get_child(tp, cindex);
ff181ed8 867 }
cf3637bb
AD
868
869 /* Only one child remains */
88bae714
AD
870 if (should_collapse(tn))
871 return collapse(t, tn);
872
b6f15f82 873 /* update parent in case halve failed */
88bae714 874 tp = node_parent(tn);
5405afd1
AD
875
876 /* Return if at least one deflate was run */
877 if (max_work != MAX_WORK)
88bae714 878 return tp;
5405afd1
AD
879
880 /* push the suffix length to the parent node */
881 if (tn->slen > tn->pos) {
882 unsigned char slen = update_suffix(tn);
883
88bae714 884 if (slen > tp->slen)
5405afd1 885 tp->slen = slen;
cf3637bb 886 }
8d8e810c 887
88bae714 888 return tp;
cf3637bb
AD
889}
890
35c6edac 891static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
5405afd1 892{
88bae714 893 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
5405afd1
AD
894 if (update_suffix(tp) > l->slen)
895 break;
896 tp = node_parent(tp);
897 }
898}
899
35c6edac 900static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
19baf839 901{
5405afd1
AD
902 /* if this is a new leaf then tn will be NULL and we can sort
903 * out parent suffix lengths as a part of trie_rebalance
904 */
88bae714 905 while (tn->slen < l->slen) {
5405afd1
AD
906 tn->slen = l->slen;
907 tn = node_parent(tn);
908 }
909}
910
2373ce1c 911/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
912static struct key_vector *fib_find_node(struct trie *t,
913 struct key_vector **tp, u32 key)
19baf839 914{
88bae714
AD
915 struct key_vector *pn, *n = t->kv;
916 unsigned long index = 0;
917
918 do {
919 pn = n;
920 n = get_child_rcu(n, index);
921
922 if (!n)
923 break;
939afb06 924
88bae714 925 index = get_cindex(key, n);
939afb06
AD
926
927 /* This bit of code is a bit tricky but it combines multiple
928 * checks into a single check. The prefix consists of the
929 * prefix plus zeros for the bits in the cindex. The index
930 * is the difference between the key and this value. From
931 * this we can actually derive several pieces of data.
d4a975e8 932 * if (index >= (1ul << bits))
939afb06 933 * we have a mismatch in skip bits and failed
b3832117
AD
934 * else
935 * we know the value is cindex
d4a975e8
AD
936 *
937 * This check is safe even if bits == KEYLENGTH due to the
938 * fact that we can only allocate a node with 32 bits if a
939 * long is greater than 32 bits.
939afb06 940 */
d4a975e8
AD
941 if (index >= (1ul << n->bits)) {
942 n = NULL;
943 break;
944 }
939afb06 945
88bae714
AD
946 /* keep searching until we find a perfect match leaf or NULL */
947 } while (IS_TNODE(n));
91b9a277 948
35c6edac 949 *tp = pn;
d4a975e8 950
939afb06 951 return n;
19baf839
RO
952}
953
02525368
AD
954/* Return the first fib alias matching TOS with
955 * priority less than or equal to PRIO.
956 */
79e5ad2c 957static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
0b65bd97 958 u8 tos, u32 prio, u32 tb_id)
02525368
AD
959{
960 struct fib_alias *fa;
961
962 if (!fah)
963 return NULL;
964
56315f9e 965 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
966 if (fa->fa_slen < slen)
967 continue;
968 if (fa->fa_slen != slen)
969 break;
0b65bd97
AD
970 if (fa->tb_id > tb_id)
971 continue;
972 if (fa->tb_id != tb_id)
973 break;
02525368
AD
974 if (fa->fa_tos > tos)
975 continue;
976 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
977 return fa;
978 }
979
980 return NULL;
981}
982
35c6edac 983static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 984{
88bae714
AD
985 while (!IS_TRIE(tn))
986 tn = resize(t, tn);
19baf839
RO
987}
988
35c6edac 989static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 990 struct fib_alias *new, t_key key)
19baf839 991{
35c6edac 992 struct key_vector *n, *l;
19baf839 993
d5d6487c 994 l = leaf_new(key, new);
79e5ad2c 995 if (!l)
8d8e810c 996 goto noleaf;
d5d6487c
AD
997
998 /* retrieve child from parent node */
88bae714 999 n = get_child(tp, get_index(key, tp));
19baf839 1000
836a0123
AD
1001 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1002 *
1003 * Add a new tnode here
1004 * first tnode need some special handling
1005 * leaves us in position for handling as case 3
1006 */
1007 if (n) {
35c6edac 1008 struct key_vector *tn;
19baf839 1009
e9b44019 1010 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1011 if (!tn)
1012 goto notnode;
91b9a277 1013
836a0123
AD
1014 /* initialize routes out of node */
1015 NODE_INIT_PARENT(tn, tp);
1016 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1017
836a0123 1018 /* start adding routes into the node */
88bae714 1019 put_child_root(tp, key, tn);
836a0123 1020 node_set_parent(n, tn);
e962f302 1021
836a0123 1022 /* parent now has a NULL spot where the leaf can go */
e962f302 1023 tp = tn;
19baf839 1024 }
91b9a277 1025
836a0123 1026 /* Case 3: n is NULL, and will just insert a new leaf */
d5d6487c 1027 NODE_INIT_PARENT(l, tp);
88bae714 1028 put_child_root(tp, key, l);
d5d6487c
AD
1029 trie_rebalance(t, tp);
1030
1031 return 0;
8d8e810c
AD
1032notnode:
1033 node_free(l);
1034noleaf:
1035 return -ENOMEM;
d5d6487c
AD
1036}
1037
35c6edac
AD
1038static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1039 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1040 struct fib_alias *fa, t_key key)
1041{
1042 if (!l)
1043 return fib_insert_node(t, tp, new, key);
1044
1045 if (fa) {
1046 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1047 } else {
d5d6487c
AD
1048 struct fib_alias *last;
1049
1050 hlist_for_each_entry(last, &l->leaf, fa_list) {
1051 if (new->fa_slen < last->fa_slen)
1052 break;
0b65bd97
AD
1053 if ((new->fa_slen == last->fa_slen) &&
1054 (new->tb_id > last->tb_id))
1055 break;
d5d6487c
AD
1056 fa = last;
1057 }
1058
1059 if (fa)
1060 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1061 else
1062 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1063 }
2373ce1c 1064
d5d6487c
AD
1065 /* if we added to the tail node then we need to update slen */
1066 if (l->slen < new->fa_slen) {
1067 l->slen = new->fa_slen;
1068 leaf_push_suffix(tp, l);
1069 }
1070
1071 return 0;
19baf839
RO
1072}
1073
d5d6487c 1074/* Caller must hold RTNL. */
16c6cf8b 1075int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839 1076{
d4a975e8 1077 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1078 struct fib_alias *fa, *new_fa;
35c6edac 1079 struct key_vector *l, *tp;
19baf839 1080 struct fib_info *fi;
79e5ad2c
AD
1081 u8 plen = cfg->fc_dst_len;
1082 u8 slen = KEYLENGTH - plen;
4e902c57 1083 u8 tos = cfg->fc_tos;
d4a975e8 1084 u32 key;
19baf839 1085 int err;
19baf839 1086
5786ec60 1087 if (plen > KEYLENGTH)
19baf839
RO
1088 return -EINVAL;
1089
4e902c57 1090 key = ntohl(cfg->fc_dst);
19baf839 1091
2dfe55b4 1092 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1093
d4a975e8 1094 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1095 return -EINVAL;
1096
4e902c57
TG
1097 fi = fib_create_info(cfg);
1098 if (IS_ERR(fi)) {
1099 err = PTR_ERR(fi);
19baf839 1100 goto err;
4e902c57 1101 }
19baf839 1102
d4a975e8 1103 l = fib_find_node(t, &tp, key);
0b65bd97
AD
1104 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1105 tb->tb_id) : NULL;
19baf839
RO
1106
1107 /* Now fa, if non-NULL, points to the first fib alias
1108 * with the same keys [prefix,tos,priority], if such key already
1109 * exists or to the node before which we will insert new one.
1110 *
1111 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1112 * insert to the tail of the section matching the suffix length
1113 * of the new alias.
19baf839
RO
1114 */
1115
936f6f8e
JA
1116 if (fa && fa->fa_tos == tos &&
1117 fa->fa_info->fib_priority == fi->fib_priority) {
1118 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1119
1120 err = -EEXIST;
4e902c57 1121 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1122 goto out;
1123
936f6f8e
JA
1124 /* We have 2 goals:
1125 * 1. Find exact match for type, scope, fib_info to avoid
1126 * duplicate routes
1127 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1128 */
1129 fa_match = NULL;
1130 fa_first = fa;
56315f9e 1131 hlist_for_each_entry_from(fa, fa_list) {
0b65bd97
AD
1132 if ((fa->fa_slen != slen) ||
1133 (fa->tb_id != tb->tb_id) ||
1134 (fa->fa_tos != tos))
936f6f8e
JA
1135 break;
1136 if (fa->fa_info->fib_priority != fi->fib_priority)
1137 break;
1138 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1139 fa->fa_info == fi) {
1140 fa_match = fa;
1141 break;
1142 }
1143 }
1144
4e902c57 1145 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1146 struct fib_info *fi_drop;
1147 u8 state;
1148
936f6f8e
JA
1149 fa = fa_first;
1150 if (fa_match) {
1151 if (fa == fa_match)
1152 err = 0;
6725033f 1153 goto out;
936f6f8e 1154 }
2373ce1c 1155 err = -ENOBUFS;
e94b1766 1156 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1157 if (!new_fa)
2373ce1c 1158 goto out;
19baf839
RO
1159
1160 fi_drop = fa->fa_info;
2373ce1c
RO
1161 new_fa->fa_tos = fa->fa_tos;
1162 new_fa->fa_info = fi;
4e902c57 1163 new_fa->fa_type = cfg->fc_type;
19baf839 1164 state = fa->fa_state;
936f6f8e 1165 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1166 new_fa->fa_slen = fa->fa_slen;
d4e64c29 1167 new_fa->tb_id = tb->tb_id;
19baf839 1168
8e05fd71
SF
1169 err = netdev_switch_fib_ipv4_add(key, plen, fi,
1170 new_fa->fa_tos,
1171 cfg->fc_type,
f8f21471 1172 cfg->fc_nlflags,
8e05fd71
SF
1173 tb->tb_id);
1174 if (err) {
1175 netdev_switch_fib_ipv4_abort(fi);
1176 kmem_cache_free(fn_alias_kmem, new_fa);
1177 goto out;
1178 }
1179
56315f9e 1180 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1181
2373ce1c 1182 alias_free_mem_rcu(fa);
19baf839
RO
1183
1184 fib_release_info(fi_drop);
1185 if (state & FA_S_ACCESSED)
4ccfe6d4 1186 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1187 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1188 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1189
91b9a277 1190 goto succeeded;
19baf839
RO
1191 }
1192 /* Error if we find a perfect match which
1193 * uses the same scope, type, and nexthop
1194 * information.
1195 */
936f6f8e
JA
1196 if (fa_match)
1197 goto out;
a07f5f50 1198
4e902c57 1199 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1200 fa = fa_first;
19baf839
RO
1201 }
1202 err = -ENOENT;
4e902c57 1203 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1204 goto out;
1205
1206 err = -ENOBUFS;
e94b1766 1207 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1208 if (!new_fa)
19baf839
RO
1209 goto out;
1210
1211 new_fa->fa_info = fi;
1212 new_fa->fa_tos = tos;
4e902c57 1213 new_fa->fa_type = cfg->fc_type;
19baf839 1214 new_fa->fa_state = 0;
79e5ad2c 1215 new_fa->fa_slen = slen;
0ddcf43d 1216 new_fa->tb_id = tb->tb_id;
19baf839 1217
8e05fd71
SF
1218 /* (Optionally) offload fib entry to switch hardware. */
1219 err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
f8f21471
SF
1220 cfg->fc_type,
1221 cfg->fc_nlflags,
1222 tb->tb_id);
8e05fd71
SF
1223 if (err) {
1224 netdev_switch_fib_ipv4_abort(fi);
1225 goto out_free_new_fa;
1226 }
1227
9b6ebad5 1228 /* Insert new entry to the list. */
d5d6487c
AD
1229 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1230 if (err)
8e05fd71 1231 goto out_sw_fib_del;
19baf839 1232
21d8c49e
DM
1233 if (!plen)
1234 tb->tb_num_default++;
1235
4ccfe6d4 1236 rt_cache_flush(cfg->fc_nlinfo.nl_net);
0ddcf43d 1237 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
b8f55831 1238 &cfg->fc_nlinfo, 0);
19baf839
RO
1239succeeded:
1240 return 0;
f835e471 1241
8e05fd71
SF
1242out_sw_fib_del:
1243 netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
f835e471
RO
1244out_free_new_fa:
1245 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1246out:
1247 fib_release_info(fi);
91b9a277 1248err:
19baf839
RO
1249 return err;
1250}
1251
35c6edac 1252static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1253{
1254 t_key prefix = n->key;
1255
1256 return (key ^ prefix) & (prefix | -prefix);
1257}
1258
345e9b54 1259/* should be called with rcu_read_lock */
22bd5b9b 1260int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1261 struct fib_result *res, int fib_flags)
19baf839 1262{
0ddcf43d 1263 struct trie *t = (struct trie *) tb->tb_data;
8274a97a
AD
1264#ifdef CONFIG_IP_FIB_TRIE_STATS
1265 struct trie_use_stats __percpu *stats = t->stats;
1266#endif
9f9e636d 1267 const t_key key = ntohl(flp->daddr);
35c6edac 1268 struct key_vector *n, *pn;
79e5ad2c 1269 struct fib_alias *fa;
71e8b67d 1270 unsigned long index;
9f9e636d 1271 t_key cindex;
91b9a277 1272
88bae714
AD
1273 pn = t->kv;
1274 cindex = 0;
1275
1276 n = get_child_rcu(pn, cindex);
c877efb2 1277 if (!n)
345e9b54 1278 return -EAGAIN;
19baf839
RO
1279
1280#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1281 this_cpu_inc(stats->gets);
19baf839
RO
1282#endif
1283
9f9e636d
AD
1284 /* Step 1: Travel to the longest prefix match in the trie */
1285 for (;;) {
88bae714 1286 index = get_cindex(key, n);
9f9e636d
AD
1287
1288 /* This bit of code is a bit tricky but it combines multiple
1289 * checks into a single check. The prefix consists of the
1290 * prefix plus zeros for the "bits" in the prefix. The index
1291 * is the difference between the key and this value. From
1292 * this we can actually derive several pieces of data.
71e8b67d 1293 * if (index >= (1ul << bits))
9f9e636d 1294 * we have a mismatch in skip bits and failed
b3832117
AD
1295 * else
1296 * we know the value is cindex
71e8b67d
AD
1297 *
1298 * This check is safe even if bits == KEYLENGTH due to the
1299 * fact that we can only allocate a node with 32 bits if a
1300 * long is greater than 32 bits.
9f9e636d 1301 */
71e8b67d 1302 if (index >= (1ul << n->bits))
9f9e636d 1303 break;
19baf839 1304
9f9e636d
AD
1305 /* we have found a leaf. Prefixes have already been compared */
1306 if (IS_LEAF(n))
a07f5f50 1307 goto found;
19baf839 1308
9f9e636d
AD
1309 /* only record pn and cindex if we are going to be chopping
1310 * bits later. Otherwise we are just wasting cycles.
91b9a277 1311 */
5405afd1 1312 if (n->slen > n->pos) {
9f9e636d
AD
1313 pn = n;
1314 cindex = index;
91b9a277 1315 }
19baf839 1316
754baf8d 1317 n = get_child_rcu(n, index);
9f9e636d
AD
1318 if (unlikely(!n))
1319 goto backtrace;
1320 }
19baf839 1321
9f9e636d
AD
1322 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1323 for (;;) {
1324 /* record the pointer where our next node pointer is stored */
35c6edac 1325 struct key_vector __rcu **cptr = n->tnode;
19baf839 1326
9f9e636d
AD
1327 /* This test verifies that none of the bits that differ
1328 * between the key and the prefix exist in the region of
1329 * the lsb and higher in the prefix.
91b9a277 1330 */
5405afd1 1331 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1332 goto backtrace;
91b9a277 1333
9f9e636d
AD
1334 /* exit out and process leaf */
1335 if (unlikely(IS_LEAF(n)))
1336 break;
91b9a277 1337
9f9e636d
AD
1338 /* Don't bother recording parent info. Since we are in
1339 * prefix match mode we will have to come back to wherever
1340 * we started this traversal anyway
91b9a277 1341 */
91b9a277 1342
9f9e636d 1343 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1344backtrace:
19baf839 1345#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1346 if (!n)
1347 this_cpu_inc(stats->null_node_hit);
19baf839 1348#endif
9f9e636d
AD
1349 /* If we are at cindex 0 there are no more bits for
1350 * us to strip at this level so we must ascend back
1351 * up one level to see if there are any more bits to
1352 * be stripped there.
1353 */
1354 while (!cindex) {
1355 t_key pkey = pn->key;
1356
88bae714
AD
1357 /* If we don't have a parent then there is
1358 * nothing for us to do as we do not have any
1359 * further nodes to parse.
1360 */
1361 if (IS_TRIE(pn))
345e9b54 1362 return -EAGAIN;
9f9e636d
AD
1363#ifdef CONFIG_IP_FIB_TRIE_STATS
1364 this_cpu_inc(stats->backtrack);
1365#endif
1366 /* Get Child's index */
88bae714 1367 pn = node_parent_rcu(pn);
9f9e636d
AD
1368 cindex = get_index(pkey, pn);
1369 }
1370
1371 /* strip the least significant bit from the cindex */
1372 cindex &= cindex - 1;
1373
1374 /* grab pointer for next child node */
41b489fd 1375 cptr = &pn->tnode[cindex];
c877efb2 1376 }
19baf839 1377 }
9f9e636d 1378
19baf839 1379found:
71e8b67d
AD
1380 /* this line carries forward the xor from earlier in the function */
1381 index = key ^ n->key;
1382
9f9e636d 1383 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1384 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1385 struct fib_info *fi = fa->fa_info;
1386 int nhsel, err;
345e9b54 1387
71e8b67d 1388 if ((index >= (1ul << fa->fa_slen)) &&
79e5ad2c 1389 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
71e8b67d 1390 continue;
79e5ad2c
AD
1391 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1392 continue;
1393 if (fi->fib_dead)
1394 continue;
1395 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1396 continue;
1397 fib_alias_accessed(fa);
1398 err = fib_props[fa->fa_type].error;
1399 if (unlikely(err < 0)) {
345e9b54 1400#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1401 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1402#endif
79e5ad2c
AD
1403 return err;
1404 }
1405 if (fi->fib_flags & RTNH_F_DEAD)
1406 continue;
1407 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1408 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1409
1410 if (nh->nh_flags & RTNH_F_DEAD)
1411 continue;
1412 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
345e9b54 1413 continue;
79e5ad2c
AD
1414
1415 if (!(fib_flags & FIB_LOOKUP_NOREF))
1416 atomic_inc(&fi->fib_clntref);
1417
1418 res->prefixlen = KEYLENGTH - fa->fa_slen;
1419 res->nh_sel = nhsel;
1420 res->type = fa->fa_type;
1421 res->scope = fi->fib_scope;
1422 res->fi = fi;
1423 res->table = tb;
1424 res->fa_head = &n->leaf;
345e9b54 1425#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1426 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1427#endif
79e5ad2c 1428 return err;
345e9b54 1429 }
9b6ebad5 1430 }
345e9b54 1431#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1432 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1433#endif
345e9b54 1434 goto backtrace;
19baf839 1435}
6fc01438 1436EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1437
35c6edac
AD
1438static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1439 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1440{
1441 /* record the location of the previous list_info entry */
1442 struct hlist_node **pprev = old->fa_list.pprev;
1443 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1444
1445 /* remove the fib_alias from the list */
1446 hlist_del_rcu(&old->fa_list);
1447
1448 /* if we emptied the list this leaf will be freed and we can sort
1449 * out parent suffix lengths as a part of trie_rebalance
1450 */
1451 if (hlist_empty(&l->leaf)) {
88bae714 1452 put_child_root(tp, l->key, NULL);
d5d6487c
AD
1453 node_free(l);
1454 trie_rebalance(t, tp);
1455 return;
1456 }
1457
1458 /* only access fa if it is pointing at the last valid hlist_node */
1459 if (*pprev)
1460 return;
1461
1462 /* update the trie with the latest suffix length */
1463 l->slen = fa->fa_slen;
1464 leaf_pull_suffix(tp, l);
1465}
1466
1467/* Caller must hold RTNL. */
16c6cf8b 1468int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1469{
1470 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1471 struct fib_alias *fa, *fa_to_delete;
35c6edac 1472 struct key_vector *l, *tp;
79e5ad2c 1473 u8 plen = cfg->fc_dst_len;
79e5ad2c 1474 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1475 u8 tos = cfg->fc_tos;
1476 u32 key;
91b9a277 1477
79e5ad2c 1478 if (plen > KEYLENGTH)
19baf839
RO
1479 return -EINVAL;
1480
4e902c57 1481 key = ntohl(cfg->fc_dst);
19baf839 1482
d4a975e8 1483 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1484 return -EINVAL;
1485
d4a975e8 1486 l = fib_find_node(t, &tp, key);
c877efb2 1487 if (!l)
19baf839
RO
1488 return -ESRCH;
1489
0b65bd97 1490 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
19baf839
RO
1491 if (!fa)
1492 return -ESRCH;
1493
0c7770c7 1494 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1495
1496 fa_to_delete = NULL;
56315f9e 1497 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1498 struct fib_info *fi = fa->fa_info;
1499
0b65bd97
AD
1500 if ((fa->fa_slen != slen) ||
1501 (fa->tb_id != tb->tb_id) ||
1502 (fa->fa_tos != tos))
19baf839
RO
1503 break;
1504
4e902c57
TG
1505 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1506 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1507 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1508 (!cfg->fc_prefsrc ||
1509 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1510 (!cfg->fc_protocol ||
1511 fi->fib_protocol == cfg->fc_protocol) &&
1512 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1513 fa_to_delete = fa;
1514 break;
1515 }
1516 }
1517
91b9a277
OJ
1518 if (!fa_to_delete)
1519 return -ESRCH;
19baf839 1520
8e05fd71
SF
1521 netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1522 cfg->fc_type, tb->tb_id);
1523
d5d6487c 1524 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1525 &cfg->fc_nlinfo, 0);
91b9a277 1526
21d8c49e
DM
1527 if (!plen)
1528 tb->tb_num_default--;
1529
d5d6487c 1530 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1531
d5d6487c 1532 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1533 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1534
d5d6487c
AD
1535 fib_release_info(fa_to_delete->fa_info);
1536 alias_free_mem_rcu(fa_to_delete);
91b9a277 1537 return 0;
19baf839
RO
1538}
1539
8be33e95 1540/* Scan for the next leaf starting at the provided key value */
35c6edac 1541static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1542{
35c6edac 1543 struct key_vector *pn, *n = *tn;
8be33e95 1544 unsigned long cindex;
82cfbb00 1545
8be33e95 1546 /* this loop is meant to try and find the key in the trie */
88bae714 1547 do {
8be33e95
AD
1548 /* record parent and next child index */
1549 pn = n;
3ec320dd 1550 cindex = key ? get_index(key, pn) : 0;
88bae714
AD
1551
1552 if (cindex >> pn->bits)
1553 break;
82cfbb00 1554
8be33e95 1555 /* descend into the next child */
754baf8d 1556 n = get_child_rcu(pn, cindex++);
88bae714
AD
1557 if (!n)
1558 break;
1559
1560 /* guarantee forward progress on the keys */
1561 if (IS_LEAF(n) && (n->key >= key))
1562 goto found;
1563 } while (IS_TNODE(n));
82cfbb00 1564
8be33e95 1565 /* this loop will search for the next leaf with a greater key */
88bae714 1566 while (!IS_TRIE(pn)) {
8be33e95
AD
1567 /* if we exhausted the parent node we will need to climb */
1568 if (cindex >= (1ul << pn->bits)) {
1569 t_key pkey = pn->key;
82cfbb00 1570
8be33e95 1571 pn = node_parent_rcu(pn);
8be33e95
AD
1572 cindex = get_index(pkey, pn) + 1;
1573 continue;
1574 }
82cfbb00 1575
8be33e95 1576 /* grab the next available node */
754baf8d 1577 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1578 if (!n)
1579 continue;
19baf839 1580
8be33e95
AD
1581 /* no need to compare keys since we bumped the index */
1582 if (IS_LEAF(n))
1583 goto found;
71d67e66 1584
8be33e95
AD
1585 /* Rescan start scanning in new node */
1586 pn = n;
1587 cindex = 0;
1588 }
ec28cf73 1589
8be33e95
AD
1590 *tn = pn;
1591 return NULL; /* Root of trie */
1592found:
1593 /* if we are at the limit for keys just return NULL for the tnode */
88bae714 1594 *tn = pn;
8be33e95 1595 return n;
71d67e66
SH
1596}
1597
0ddcf43d
AD
1598static void fib_trie_free(struct fib_table *tb)
1599{
1600 struct trie *t = (struct trie *)tb->tb_data;
1601 struct key_vector *pn = t->kv;
1602 unsigned long cindex = 1;
1603 struct hlist_node *tmp;
1604 struct fib_alias *fa;
1605
1606 /* walk trie in reverse order and free everything */
1607 for (;;) {
1608 struct key_vector *n;
1609
1610 if (!(cindex--)) {
1611 t_key pkey = pn->key;
1612
1613 if (IS_TRIE(pn))
1614 break;
1615
1616 n = pn;
1617 pn = node_parent(pn);
1618
1619 /* drop emptied tnode */
1620 put_child_root(pn, n->key, NULL);
1621 node_free(n);
1622
1623 cindex = get_index(pkey, pn);
1624
1625 continue;
1626 }
1627
1628 /* grab the next available node */
1629 n = get_child(pn, cindex);
1630 if (!n)
1631 continue;
1632
1633 if (IS_TNODE(n)) {
1634 /* record pn and cindex for leaf walking */
1635 pn = n;
1636 cindex = 1ul << n->bits;
1637
1638 continue;
1639 }
1640
1641 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1642 hlist_del_rcu(&fa->fa_list);
1643 alias_free_mem_rcu(fa);
1644 }
1645
1646 put_child_root(pn, n->key, NULL);
1647 node_free(n);
1648 }
1649
1650#ifdef CONFIG_IP_FIB_TRIE_STATS
1651 free_percpu(t->stats);
1652#endif
1653 kfree(tb);
1654}
1655
1656struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1657{
1658 struct trie *ot = (struct trie *)oldtb->tb_data;
1659 struct key_vector *l, *tp = ot->kv;
1660 struct fib_table *local_tb;
1661 struct fib_alias *fa;
1662 struct trie *lt;
1663 t_key key = 0;
1664
1665 if (oldtb->tb_data == oldtb->__data)
1666 return oldtb;
1667
1668 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1669 if (!local_tb)
1670 return NULL;
1671
1672 lt = (struct trie *)local_tb->tb_data;
1673
1674 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1675 struct key_vector *local_l = NULL, *local_tp;
1676
1677 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1678 struct fib_alias *new_fa;
1679
1680 if (local_tb->tb_id != fa->tb_id)
1681 continue;
1682
1683 /* clone fa for new local table */
1684 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1685 if (!new_fa)
1686 goto out;
1687
1688 memcpy(new_fa, fa, sizeof(*fa));
1689
1690 /* insert clone into table */
1691 if (!local_l)
1692 local_l = fib_find_node(lt, &local_tp, l->key);
1693
1694 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1695 NULL, l->key))
1696 goto out;
1697 }
1698
1699 /* stop loop if key wrapped back to 0 */
1700 key = l->key + 1;
1701 if (key < l->key)
1702 break;
1703 }
1704
1705 return local_tb;
1706out:
1707 fib_trie_free(local_tb);
1708
1709 return NULL;
1710}
1711
104616e7
SF
1712/* Caller must hold RTNL */
1713void fib_table_flush_external(struct fib_table *tb)
1714{
1715 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1716 struct key_vector *pn = t->kv;
1717 unsigned long cindex = 1;
1718 struct hlist_node *tmp;
104616e7 1719 struct fib_alias *fa;
104616e7 1720
88bae714
AD
1721 /* walk trie in reverse order */
1722 for (;;) {
0ddcf43d 1723 unsigned char slen = 0;
88bae714 1724 struct key_vector *n;
104616e7 1725
88bae714
AD
1726 if (!(cindex--)) {
1727 t_key pkey = pn->key;
104616e7 1728
88bae714
AD
1729 /* cannot resize the trie vector */
1730 if (IS_TRIE(pn))
1731 break;
104616e7 1732
0ddcf43d
AD
1733 /* resize completed node */
1734 pn = resize(t, pn);
88bae714 1735 cindex = get_index(pkey, pn);
104616e7 1736
88bae714
AD
1737 continue;
1738 }
104616e7 1739
88bae714
AD
1740 /* grab the next available node */
1741 n = get_child(pn, cindex);
1742 if (!n)
1743 continue;
104616e7 1744
88bae714
AD
1745 if (IS_TNODE(n)) {
1746 /* record pn and cindex for leaf walking */
1747 pn = n;
1748 cindex = 1ul << n->bits;
104616e7 1749
72be7260 1750 continue;
88bae714 1751 }
72be7260 1752
88bae714
AD
1753 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1754 struct fib_info *fi = fa->fa_info;
1755
0ddcf43d
AD
1756 /* if alias was cloned to local then we just
1757 * need to remove the local copy from main
1758 */
1759 if (tb->tb_id != fa->tb_id) {
1760 hlist_del_rcu(&fa->fa_list);
1761 alias_free_mem_rcu(fa);
1762 continue;
1763 }
1764
1765 /* record local slen */
1766 slen = fa->fa_slen;
1767
eea39946 1768 if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
88bae714 1769 continue;
104616e7 1770
88bae714
AD
1771 netdev_switch_fib_ipv4_del(n->key,
1772 KEYLENGTH - fa->fa_slen,
1773 fi, fa->fa_tos,
1774 fa->fa_type, tb->tb_id);
1775 }
0ddcf43d
AD
1776
1777 /* update leaf slen */
1778 n->slen = slen;
1779
1780 if (hlist_empty(&n->leaf)) {
1781 put_child_root(pn, n->key, NULL);
1782 node_free(n);
1783 } else {
1784 leaf_pull_suffix(pn, n);
1785 }
88bae714 1786 }
104616e7
SF
1787}
1788
8be33e95 1789/* Caller must hold RTNL. */
16c6cf8b 1790int fib_table_flush(struct fib_table *tb)
19baf839 1791{
7289e6dd 1792 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1793 struct key_vector *pn = t->kv;
1794 unsigned long cindex = 1;
7289e6dd
AD
1795 struct hlist_node *tmp;
1796 struct fib_alias *fa;
82cfbb00 1797 int found = 0;
19baf839 1798
88bae714
AD
1799 /* walk trie in reverse order */
1800 for (;;) {
1801 unsigned char slen = 0;
1802 struct key_vector *n;
19baf839 1803
88bae714
AD
1804 if (!(cindex--)) {
1805 t_key pkey = pn->key;
7289e6dd 1806
88bae714
AD
1807 /* cannot resize the trie vector */
1808 if (IS_TRIE(pn))
1809 break;
7289e6dd 1810
88bae714
AD
1811 /* resize completed node */
1812 pn = resize(t, pn);
1813 cindex = get_index(pkey, pn);
7289e6dd 1814
88bae714
AD
1815 continue;
1816 }
7289e6dd 1817
88bae714
AD
1818 /* grab the next available node */
1819 n = get_child(pn, cindex);
1820 if (!n)
1821 continue;
7289e6dd 1822
88bae714
AD
1823 if (IS_TNODE(n)) {
1824 /* record pn and cindex for leaf walking */
1825 pn = n;
1826 cindex = 1ul << n->bits;
7289e6dd 1827
88bae714
AD
1828 continue;
1829 }
7289e6dd 1830
88bae714
AD
1831 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1832 struct fib_info *fi = fa->fa_info;
7289e6dd 1833
88bae714
AD
1834 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1835 slen = fa->fa_slen;
1836 continue;
1837 }
7289e6dd 1838
8e05fd71
SF
1839 netdev_switch_fib_ipv4_del(n->key,
1840 KEYLENGTH - fa->fa_slen,
1841 fi, fa->fa_tos,
1842 fa->fa_type, tb->tb_id);
7289e6dd
AD
1843 hlist_del_rcu(&fa->fa_list);
1844 fib_release_info(fa->fa_info);
1845 alias_free_mem_rcu(fa);
1846 found++;
64c62723
AD
1847 }
1848
88bae714
AD
1849 /* update leaf slen */
1850 n->slen = slen;
7289e6dd 1851
88bae714
AD
1852 if (hlist_empty(&n->leaf)) {
1853 put_child_root(pn, n->key, NULL);
1854 node_free(n);
1855 } else {
1856 leaf_pull_suffix(pn, n);
1857 }
64c62723 1858 }
19baf839 1859
0c7770c7 1860 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1861 return found;
1862}
1863
a7e53531 1864static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1865{
a7e53531 1866 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1867#ifdef CONFIG_IP_FIB_TRIE_STATS
1868 struct trie *t = (struct trie *)tb->tb_data;
1869
0ddcf43d
AD
1870 if (tb->tb_data == tb->__data)
1871 free_percpu(t->stats);
8274a97a 1872#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1873 kfree(tb);
1874}
1875
a7e53531
AD
1876void fib_free_table(struct fib_table *tb)
1877{
1878 call_rcu(&tb->rcu, __trie_free_rcu);
1879}
1880
35c6edac 1881static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1882 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1883{
79e5ad2c 1884 __be32 xkey = htonl(l->key);
19baf839 1885 struct fib_alias *fa;
79e5ad2c 1886 int i, s_i;
19baf839 1887
79e5ad2c 1888 s_i = cb->args[4];
19baf839
RO
1889 i = 0;
1890
2373ce1c 1891 /* rcu_read_lock is hold by caller */
79e5ad2c 1892 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1893 if (i < s_i) {
1894 i++;
1895 continue;
1896 }
19baf839 1897
0ddcf43d
AD
1898 if (tb->tb_id != fa->tb_id) {
1899 i++;
1900 continue;
1901 }
1902
15e47304 1903 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1904 cb->nlh->nlmsg_seq,
1905 RTM_NEWROUTE,
1906 tb->tb_id,
1907 fa->fa_type,
be403ea1 1908 xkey,
9b6ebad5 1909 KEYLENGTH - fa->fa_slen,
19baf839 1910 fa->fa_tos,
64347f78 1911 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1912 cb->args[4] = i;
19baf839
RO
1913 return -1;
1914 }
a88ee229 1915 i++;
19baf839 1916 }
a88ee229 1917
71d67e66 1918 cb->args[4] = i;
19baf839
RO
1919 return skb->len;
1920}
1921
a7e53531 1922/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
1923int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1924 struct netlink_callback *cb)
19baf839 1925{
8be33e95 1926 struct trie *t = (struct trie *)tb->tb_data;
88bae714 1927 struct key_vector *l, *tp = t->kv;
d5ce8a0e
SH
1928 /* Dump starting at last key.
1929 * Note: 0.0.0.0/0 (ie default) is first key.
1930 */
8be33e95
AD
1931 int count = cb->args[2];
1932 t_key key = cb->args[3];
a88ee229 1933
8be33e95 1934 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1935 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1936 cb->args[3] = key;
1937 cb->args[2] = count;
a88ee229 1938 return -1;
19baf839 1939 }
d5ce8a0e 1940
71d67e66 1941 ++count;
8be33e95
AD
1942 key = l->key + 1;
1943
71d67e66
SH
1944 memset(&cb->args[4], 0,
1945 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1946
1947 /* stop loop if key wrapped back to 0 */
1948 if (key < l->key)
1949 break;
19baf839 1950 }
8be33e95 1951
8be33e95
AD
1952 cb->args[3] = key;
1953 cb->args[2] = count;
1954
19baf839 1955 return skb->len;
19baf839
RO
1956}
1957
5348ba85 1958void __init fib_trie_init(void)
7f9b8052 1959{
a07f5f50
SH
1960 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1961 sizeof(struct fib_alias),
bc3c8c1e
SH
1962 0, SLAB_PANIC, NULL);
1963
1964 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 1965 LEAF_SIZE,
bc3c8c1e 1966 0, SLAB_PANIC, NULL);
7f9b8052 1967}
19baf839 1968
0ddcf43d 1969struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
19baf839
RO
1970{
1971 struct fib_table *tb;
1972 struct trie *t;
0ddcf43d
AD
1973 size_t sz = sizeof(*tb);
1974
1975 if (!alias)
1976 sz += sizeof(struct trie);
19baf839 1977
0ddcf43d 1978 tb = kzalloc(sz, GFP_KERNEL);
51456b29 1979 if (!tb)
19baf839
RO
1980 return NULL;
1981
1982 tb->tb_id = id;
971b893e 1983 tb->tb_default = -1;
21d8c49e 1984 tb->tb_num_default = 0;
0ddcf43d
AD
1985 tb->tb_data = (alias ? alias->__data : tb->__data);
1986
1987 if (alias)
1988 return tb;
19baf839
RO
1989
1990 t = (struct trie *) tb->tb_data;
88bae714
AD
1991 t->kv[0].pos = KEYLENGTH;
1992 t->kv[0].slen = KEYLENGTH;
8274a97a
AD
1993#ifdef CONFIG_IP_FIB_TRIE_STATS
1994 t->stats = alloc_percpu(struct trie_use_stats);
1995 if (!t->stats) {
1996 kfree(tb);
1997 tb = NULL;
1998 }
1999#endif
19baf839 2000
19baf839
RO
2001 return tb;
2002}
2003
cb7b593c
SH
2004#ifdef CONFIG_PROC_FS
2005/* Depth first Trie walk iterator */
2006struct fib_trie_iter {
1c340b2f 2007 struct seq_net_private p;
3d3b2d25 2008 struct fib_table *tb;
35c6edac 2009 struct key_vector *tnode;
a034ee3c
ED
2010 unsigned int index;
2011 unsigned int depth;
cb7b593c 2012};
19baf839 2013
35c6edac 2014static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2015{
98293e8d 2016 unsigned long cindex = iter->index;
88bae714
AD
2017 struct key_vector *pn = iter->tnode;
2018 t_key pkey;
6640e697 2019
cb7b593c
SH
2020 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2021 iter->tnode, iter->index, iter->depth);
19baf839 2022
88bae714
AD
2023 while (!IS_TRIE(pn)) {
2024 while (cindex < child_length(pn)) {
2025 struct key_vector *n = get_child_rcu(pn, cindex++);
2026
2027 if (!n)
2028 continue;
2029
cb7b593c 2030 if (IS_LEAF(n)) {
88bae714
AD
2031 iter->tnode = pn;
2032 iter->index = cindex;
cb7b593c
SH
2033 } else {
2034 /* push down one level */
adaf9816 2035 iter->tnode = n;
cb7b593c
SH
2036 iter->index = 0;
2037 ++iter->depth;
2038 }
88bae714 2039
cb7b593c
SH
2040 return n;
2041 }
19baf839 2042
88bae714
AD
2043 /* Current node exhausted, pop back up */
2044 pkey = pn->key;
2045 pn = node_parent_rcu(pn);
2046 cindex = get_index(pkey, pn) + 1;
cb7b593c 2047 --iter->depth;
19baf839 2048 }
cb7b593c 2049
88bae714
AD
2050 /* record root node so further searches know we are done */
2051 iter->tnode = pn;
2052 iter->index = 0;
2053
cb7b593c 2054 return NULL;
19baf839
RO
2055}
2056
35c6edac
AD
2057static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2058 struct trie *t)
19baf839 2059{
88bae714 2060 struct key_vector *n, *pn = t->kv;
5ddf0eb2 2061
132adf54 2062 if (!t)
5ddf0eb2
RO
2063 return NULL;
2064
88bae714 2065 n = rcu_dereference(pn->tnode[0]);
3d3b2d25 2066 if (!n)
5ddf0eb2 2067 return NULL;
19baf839 2068
3d3b2d25 2069 if (IS_TNODE(n)) {
adaf9816 2070 iter->tnode = n;
3d3b2d25
SH
2071 iter->index = 0;
2072 iter->depth = 1;
2073 } else {
88bae714 2074 iter->tnode = pn;
3d3b2d25
SH
2075 iter->index = 0;
2076 iter->depth = 0;
91b9a277 2077 }
3d3b2d25
SH
2078
2079 return n;
cb7b593c 2080}
91b9a277 2081
cb7b593c
SH
2082static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2083{
35c6edac 2084 struct key_vector *n;
cb7b593c 2085 struct fib_trie_iter iter;
91b9a277 2086
cb7b593c 2087 memset(s, 0, sizeof(*s));
91b9a277 2088
cb7b593c 2089 rcu_read_lock();
3d3b2d25 2090 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2091 if (IS_LEAF(n)) {
79e5ad2c 2092 struct fib_alias *fa;
93672292 2093
cb7b593c
SH
2094 s->leaves++;
2095 s->totdepth += iter.depth;
2096 if (iter.depth > s->maxdepth)
2097 s->maxdepth = iter.depth;
93672292 2098
79e5ad2c 2099 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 2100 ++s->prefixes;
cb7b593c 2101 } else {
cb7b593c 2102 s->tnodes++;
adaf9816
AD
2103 if (n->bits < MAX_STAT_DEPTH)
2104 s->nodesizes[n->bits]++;
6e22d174 2105 s->nullpointers += tn_info(n)->empty_children;
19baf839 2106 }
19baf839 2107 }
2373ce1c 2108 rcu_read_unlock();
19baf839
RO
2109}
2110
cb7b593c
SH
2111/*
2112 * This outputs /proc/net/fib_triestats
2113 */
2114static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2115{
a034ee3c 2116 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2117
cb7b593c
SH
2118 if (stat->leaves)
2119 avdepth = stat->totdepth*100 / stat->leaves;
2120 else
2121 avdepth = 0;
91b9a277 2122
a07f5f50
SH
2123 seq_printf(seq, "\tAver depth: %u.%02d\n",
2124 avdepth / 100, avdepth % 100);
cb7b593c 2125 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2126
cb7b593c 2127 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 2128 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
2129
2130 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 2131 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 2132
187b5188 2133 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 2134 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 2135
06ef921d
RO
2136 max = MAX_STAT_DEPTH;
2137 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2138 max--;
19baf839 2139
cb7b593c 2140 pointers = 0;
f585a991 2141 for (i = 1; i < max; i++)
cb7b593c 2142 if (stat->nodesizes[i] != 0) {
187b5188 2143 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2144 pointers += (1<<i) * stat->nodesizes[i];
2145 }
2146 seq_putc(seq, '\n');
187b5188 2147 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2148
35c6edac 2149 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2150 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2151 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2152}
2373ce1c 2153
cb7b593c 2154#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2155static void trie_show_usage(struct seq_file *seq,
8274a97a 2156 const struct trie_use_stats __percpu *stats)
66a2f7fd 2157{
8274a97a
AD
2158 struct trie_use_stats s = { 0 };
2159 int cpu;
2160
2161 /* loop through all of the CPUs and gather up the stats */
2162 for_each_possible_cpu(cpu) {
2163 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2164
2165 s.gets += pcpu->gets;
2166 s.backtrack += pcpu->backtrack;
2167 s.semantic_match_passed += pcpu->semantic_match_passed;
2168 s.semantic_match_miss += pcpu->semantic_match_miss;
2169 s.null_node_hit += pcpu->null_node_hit;
2170 s.resize_node_skipped += pcpu->resize_node_skipped;
2171 }
2172
66a2f7fd 2173 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2174 seq_printf(seq, "gets = %u\n", s.gets);
2175 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2176 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2177 s.semantic_match_passed);
2178 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2179 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2180 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2181}
66a2f7fd
SH
2182#endif /* CONFIG_IP_FIB_TRIE_STATS */
2183
3d3b2d25 2184static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2185{
3d3b2d25
SH
2186 if (tb->tb_id == RT_TABLE_LOCAL)
2187 seq_puts(seq, "Local:\n");
2188 else if (tb->tb_id == RT_TABLE_MAIN)
2189 seq_puts(seq, "Main:\n");
2190 else
2191 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2192}
19baf839 2193
3d3b2d25 2194
cb7b593c
SH
2195static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2196{
1c340b2f 2197 struct net *net = (struct net *)seq->private;
3d3b2d25 2198 unsigned int h;
877a9bff 2199
d717a9a6 2200 seq_printf(seq,
a07f5f50
SH
2201 "Basic info: size of leaf:"
2202 " %Zd bytes, size of tnode: %Zd bytes.\n",
41b489fd 2203 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2204
3d3b2d25
SH
2205 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2206 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2207 struct fib_table *tb;
2208
b67bfe0d 2209 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2210 struct trie *t = (struct trie *) tb->tb_data;
2211 struct trie_stat stat;
877a9bff 2212
3d3b2d25
SH
2213 if (!t)
2214 continue;
2215
2216 fib_table_print(seq, tb);
2217
2218 trie_collect_stats(t, &stat);
2219 trie_show_stats(seq, &stat);
2220#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2221 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2222#endif
2223 }
2224 }
19baf839 2225
cb7b593c 2226 return 0;
19baf839
RO
2227}
2228
cb7b593c 2229static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2230{
de05c557 2231 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2232}
2233
9a32144e 2234static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2235 .owner = THIS_MODULE,
2236 .open = fib_triestat_seq_open,
2237 .read = seq_read,
2238 .llseek = seq_lseek,
b6fcbdb4 2239 .release = single_release_net,
cb7b593c
SH
2240};
2241
35c6edac 2242static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2243{
1218854a
YH
2244 struct fib_trie_iter *iter = seq->private;
2245 struct net *net = seq_file_net(seq);
cb7b593c 2246 loff_t idx = 0;
3d3b2d25 2247 unsigned int h;
cb7b593c 2248
3d3b2d25
SH
2249 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2250 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2251 struct fib_table *tb;
cb7b593c 2252
b67bfe0d 2253 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2254 struct key_vector *n;
3d3b2d25
SH
2255
2256 for (n = fib_trie_get_first(iter,
2257 (struct trie *) tb->tb_data);
2258 n; n = fib_trie_get_next(iter))
2259 if (pos == idx++) {
2260 iter->tb = tb;
2261 return n;
2262 }
2263 }
cb7b593c 2264 }
3d3b2d25 2265
19baf839
RO
2266 return NULL;
2267}
2268
cb7b593c 2269static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2270 __acquires(RCU)
19baf839 2271{
cb7b593c 2272 rcu_read_lock();
1218854a 2273 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2274}
2275
cb7b593c 2276static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2277{
cb7b593c 2278 struct fib_trie_iter *iter = seq->private;
1218854a 2279 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2280 struct fib_table *tb = iter->tb;
2281 struct hlist_node *tb_node;
2282 unsigned int h;
35c6edac 2283 struct key_vector *n;
cb7b593c 2284
19baf839 2285 ++*pos;
3d3b2d25
SH
2286 /* next node in same table */
2287 n = fib_trie_get_next(iter);
2288 if (n)
2289 return n;
19baf839 2290
3d3b2d25
SH
2291 /* walk rest of this hash chain */
2292 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2293 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2294 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2295 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2296 if (n)
2297 goto found;
2298 }
19baf839 2299
3d3b2d25
SH
2300 /* new hash chain */
2301 while (++h < FIB_TABLE_HASHSZ) {
2302 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2303 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2304 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2305 if (n)
2306 goto found;
2307 }
2308 }
cb7b593c 2309 return NULL;
3d3b2d25
SH
2310
2311found:
2312 iter->tb = tb;
2313 return n;
cb7b593c 2314}
19baf839 2315
cb7b593c 2316static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2317 __releases(RCU)
19baf839 2318{
cb7b593c
SH
2319 rcu_read_unlock();
2320}
91b9a277 2321
cb7b593c
SH
2322static void seq_indent(struct seq_file *seq, int n)
2323{
a034ee3c
ED
2324 while (n-- > 0)
2325 seq_puts(seq, " ");
cb7b593c 2326}
19baf839 2327
28d36e37 2328static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2329{
132adf54 2330 switch (s) {
cb7b593c
SH
2331 case RT_SCOPE_UNIVERSE: return "universe";
2332 case RT_SCOPE_SITE: return "site";
2333 case RT_SCOPE_LINK: return "link";
2334 case RT_SCOPE_HOST: return "host";
2335 case RT_SCOPE_NOWHERE: return "nowhere";
2336 default:
28d36e37 2337 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2338 return buf;
2339 }
2340}
19baf839 2341
36cbd3dc 2342static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2343 [RTN_UNSPEC] = "UNSPEC",
2344 [RTN_UNICAST] = "UNICAST",
2345 [RTN_LOCAL] = "LOCAL",
2346 [RTN_BROADCAST] = "BROADCAST",
2347 [RTN_ANYCAST] = "ANYCAST",
2348 [RTN_MULTICAST] = "MULTICAST",
2349 [RTN_BLACKHOLE] = "BLACKHOLE",
2350 [RTN_UNREACHABLE] = "UNREACHABLE",
2351 [RTN_PROHIBIT] = "PROHIBIT",
2352 [RTN_THROW] = "THROW",
2353 [RTN_NAT] = "NAT",
2354 [RTN_XRESOLVE] = "XRESOLVE",
2355};
19baf839 2356
a034ee3c 2357static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2358{
cb7b593c
SH
2359 if (t < __RTN_MAX && rtn_type_names[t])
2360 return rtn_type_names[t];
28d36e37 2361 snprintf(buf, len, "type %u", t);
cb7b593c 2362 return buf;
19baf839
RO
2363}
2364
cb7b593c
SH
2365/* Pretty print the trie */
2366static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2367{
cb7b593c 2368 const struct fib_trie_iter *iter = seq->private;
35c6edac 2369 struct key_vector *n = v;
c877efb2 2370
88bae714 2371 if (IS_TRIE(node_parent_rcu(n)))
3d3b2d25 2372 fib_table_print(seq, iter->tb);
095b8501 2373
cb7b593c 2374 if (IS_TNODE(n)) {
adaf9816 2375 __be32 prf = htonl(n->key);
91b9a277 2376
e9b44019
AD
2377 seq_indent(seq, iter->depth-1);
2378 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2379 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
6e22d174
AD
2380 tn_info(n)->full_children,
2381 tn_info(n)->empty_children);
cb7b593c 2382 } else {
adaf9816 2383 __be32 val = htonl(n->key);
79e5ad2c 2384 struct fib_alias *fa;
cb7b593c
SH
2385
2386 seq_indent(seq, iter->depth);
673d57e7 2387 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2388
79e5ad2c
AD
2389 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2390 char buf1[32], buf2[32];
2391
2392 seq_indent(seq, iter->depth + 1);
2393 seq_printf(seq, " /%zu %s %s",
2394 KEYLENGTH - fa->fa_slen,
2395 rtn_scope(buf1, sizeof(buf1),
2396 fa->fa_info->fib_scope),
2397 rtn_type(buf2, sizeof(buf2),
2398 fa->fa_type));
2399 if (fa->fa_tos)
2400 seq_printf(seq, " tos=%d", fa->fa_tos);
2401 seq_putc(seq, '\n');
cb7b593c 2402 }
19baf839 2403 }
cb7b593c 2404
19baf839
RO
2405 return 0;
2406}
2407
f690808e 2408static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2409 .start = fib_trie_seq_start,
2410 .next = fib_trie_seq_next,
2411 .stop = fib_trie_seq_stop,
2412 .show = fib_trie_seq_show,
19baf839
RO
2413};
2414
cb7b593c 2415static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2416{
1c340b2f
DL
2417 return seq_open_net(inode, file, &fib_trie_seq_ops,
2418 sizeof(struct fib_trie_iter));
19baf839
RO
2419}
2420
9a32144e 2421static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2422 .owner = THIS_MODULE,
2423 .open = fib_trie_seq_open,
2424 .read = seq_read,
2425 .llseek = seq_lseek,
1c340b2f 2426 .release = seq_release_net,
19baf839
RO
2427};
2428
8315f5d8
SH
2429struct fib_route_iter {
2430 struct seq_net_private p;
8be33e95 2431 struct fib_table *main_tb;
35c6edac 2432 struct key_vector *tnode;
8315f5d8
SH
2433 loff_t pos;
2434 t_key key;
2435};
2436
35c6edac
AD
2437static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2438 loff_t pos)
8315f5d8 2439{
8be33e95 2440 struct fib_table *tb = iter->main_tb;
35c6edac 2441 struct key_vector *l, **tp = &iter->tnode;
8be33e95
AD
2442 struct trie *t;
2443 t_key key;
8315f5d8 2444
8be33e95
AD
2445 /* use cache location of next-to-find key */
2446 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2447 pos -= iter->pos;
8be33e95
AD
2448 key = iter->key;
2449 } else {
2450 t = (struct trie *)tb->tb_data;
88bae714 2451 iter->tnode = t->kv;
8315f5d8 2452 iter->pos = 0;
8be33e95 2453 key = 0;
8315f5d8
SH
2454 }
2455
8be33e95
AD
2456 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2457 key = l->key + 1;
8315f5d8 2458 iter->pos++;
8be33e95
AD
2459
2460 if (pos-- <= 0)
2461 break;
2462
2463 l = NULL;
2464
2465 /* handle unlikely case of a key wrap */
2466 if (!key)
2467 break;
8315f5d8
SH
2468 }
2469
2470 if (l)
8be33e95 2471 iter->key = key; /* remember it */
8315f5d8
SH
2472 else
2473 iter->pos = 0; /* forget it */
2474
2475 return l;
2476}
2477
2478static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2479 __acquires(RCU)
2480{
2481 struct fib_route_iter *iter = seq->private;
2482 struct fib_table *tb;
8be33e95 2483 struct trie *t;
8315f5d8
SH
2484
2485 rcu_read_lock();
8be33e95 2486
1218854a 2487 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2488 if (!tb)
2489 return NULL;
2490
8be33e95
AD
2491 iter->main_tb = tb;
2492
2493 if (*pos != 0)
2494 return fib_route_get_idx(iter, *pos);
2495
2496 t = (struct trie *)tb->tb_data;
88bae714 2497 iter->tnode = t->kv;
8be33e95
AD
2498 iter->pos = 0;
2499 iter->key = 0;
2500
2501 return SEQ_START_TOKEN;
8315f5d8
SH
2502}
2503
2504static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2505{
2506 struct fib_route_iter *iter = seq->private;
35c6edac 2507 struct key_vector *l = NULL;
8be33e95 2508 t_key key = iter->key;
8315f5d8
SH
2509
2510 ++*pos;
8be33e95
AD
2511
2512 /* only allow key of 0 for start of sequence */
2513 if ((v == SEQ_START_TOKEN) || key)
2514 l = leaf_walk_rcu(&iter->tnode, key);
2515
2516 if (l) {
2517 iter->key = l->key + 1;
8315f5d8 2518 iter->pos++;
8be33e95
AD
2519 } else {
2520 iter->pos = 0;
8315f5d8
SH
2521 }
2522
8315f5d8
SH
2523 return l;
2524}
2525
2526static void fib_route_seq_stop(struct seq_file *seq, void *v)
2527 __releases(RCU)
2528{
2529 rcu_read_unlock();
2530}
2531
a034ee3c 2532static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2533{
a034ee3c 2534 unsigned int flags = 0;
19baf839 2535
a034ee3c
ED
2536 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2537 flags = RTF_REJECT;
cb7b593c
SH
2538 if (fi && fi->fib_nh->nh_gw)
2539 flags |= RTF_GATEWAY;
32ab5f80 2540 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2541 flags |= RTF_HOST;
2542 flags |= RTF_UP;
2543 return flags;
19baf839
RO
2544}
2545
cb7b593c
SH
2546/*
2547 * This outputs /proc/net/route.
2548 * The format of the file is not supposed to be changed
a034ee3c 2549 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2550 * legacy utilities
2551 */
2552static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2553{
654eff45
AD
2554 struct fib_route_iter *iter = seq->private;
2555 struct fib_table *tb = iter->main_tb;
79e5ad2c 2556 struct fib_alias *fa;
35c6edac 2557 struct key_vector *l = v;
9b6ebad5 2558 __be32 prefix;
19baf839 2559
cb7b593c
SH
2560 if (v == SEQ_START_TOKEN) {
2561 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2562 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2563 "\tWindow\tIRTT");
2564 return 0;
2565 }
19baf839 2566
9b6ebad5
AD
2567 prefix = htonl(l->key);
2568
79e5ad2c
AD
2569 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2570 const struct fib_info *fi = fa->fa_info;
2571 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2572 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2573
79e5ad2c
AD
2574 if ((fa->fa_type == RTN_BROADCAST) ||
2575 (fa->fa_type == RTN_MULTICAST))
2576 continue;
19baf839 2577
654eff45
AD
2578 if (fa->tb_id != tb->tb_id)
2579 continue;
2580
79e5ad2c
AD
2581 seq_setwidth(seq, 127);
2582
2583 if (fi)
2584 seq_printf(seq,
2585 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2586 "%d\t%08X\t%d\t%u\t%u",
2587 fi->fib_dev ? fi->fib_dev->name : "*",
2588 prefix,
2589 fi->fib_nh->nh_gw, flags, 0, 0,
2590 fi->fib_priority,
2591 mask,
2592 (fi->fib_advmss ?
2593 fi->fib_advmss + 40 : 0),
2594 fi->fib_window,
2595 fi->fib_rtt >> 3);
2596 else
2597 seq_printf(seq,
2598 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2599 "%d\t%08X\t%d\t%u\t%u",
2600 prefix, 0, flags, 0, 0, 0,
2601 mask, 0, 0, 0);
19baf839 2602
79e5ad2c 2603 seq_pad(seq, '\n');
19baf839
RO
2604 }
2605
2606 return 0;
2607}
2608
f690808e 2609static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2610 .start = fib_route_seq_start,
2611 .next = fib_route_seq_next,
2612 .stop = fib_route_seq_stop,
cb7b593c 2613 .show = fib_route_seq_show,
19baf839
RO
2614};
2615
cb7b593c 2616static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2617{
1c340b2f 2618 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2619 sizeof(struct fib_route_iter));
19baf839
RO
2620}
2621
9a32144e 2622static const struct file_operations fib_route_fops = {
cb7b593c
SH
2623 .owner = THIS_MODULE,
2624 .open = fib_route_seq_open,
2625 .read = seq_read,
2626 .llseek = seq_lseek,
1c340b2f 2627 .release = seq_release_net,
19baf839
RO
2628};
2629
61a02653 2630int __net_init fib_proc_init(struct net *net)
19baf839 2631{
d4beaa66 2632 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2633 goto out1;
2634
d4beaa66
G
2635 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2636 &fib_triestat_fops))
cb7b593c
SH
2637 goto out2;
2638
d4beaa66 2639 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2640 goto out3;
2641
19baf839 2642 return 0;
cb7b593c
SH
2643
2644out3:
ece31ffd 2645 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2646out2:
ece31ffd 2647 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2648out1:
2649 return -ENOMEM;
19baf839
RO
2650}
2651
61a02653 2652void __net_exit fib_proc_exit(struct net *net)
19baf839 2653{
ece31ffd
G
2654 remove_proc_entry("fib_trie", net->proc_net);
2655 remove_proc_entry("fib_triestat", net->proc_net);
2656 remove_proc_entry("route", net->proc_net);
19baf839
RO
2657}
2658
2659#endif /* CONFIG_PROC_FS */