]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/ipv4/fib_trie.c
net: fix htmldocs sunrpc, clnt.c
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
457c4cbc 74#include <net/net_namespace.h>
19baf839
RO
75#include <net/ip.h>
76#include <net/protocol.h>
77#include <net/route.h>
78#include <net/tcp.h>
79#include <net/sock.h>
80#include <net/ip_fib.h>
81#include "fib_lookup.h"
82
06ef921d 83#define MAX_STAT_DEPTH 32
19baf839 84
19baf839 85#define KEYLENGTH (8*sizeof(t_key))
19baf839 86
19baf839
RO
87typedef unsigned int t_key;
88
89#define T_TNODE 0
90#define T_LEAF 1
91#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
92#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
91b9a277
OJ
94#define IS_TNODE(n) (!(n->parent & T_LEAF))
95#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
96
97struct node {
91b9a277 98 unsigned long parent;
8d965444 99 t_key key;
19baf839
RO
100};
101
102struct leaf {
91b9a277 103 unsigned long parent;
8d965444 104 t_key key;
19baf839 105 struct hlist_head list;
2373ce1c 106 struct rcu_head rcu;
19baf839
RO
107};
108
109struct leaf_info {
110 struct hlist_node hlist;
2373ce1c 111 struct rcu_head rcu;
19baf839
RO
112 int plen;
113 struct list_head falh;
114};
115
116struct tnode {
91b9a277 117 unsigned long parent;
8d965444 118 t_key key;
112d8cfc
ED
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
e0f7cb8c 126 struct tnode *tnode_free;
15be75cd 127 };
91b9a277 128 struct node *child[0];
19baf839
RO
129};
130
131#ifdef CONFIG_IP_FIB_TRIE_STATS
132struct trie_use_stats {
133 unsigned int gets;
134 unsigned int backtrack;
135 unsigned int semantic_match_passed;
136 unsigned int semantic_match_miss;
137 unsigned int null_node_hit;
2f36895a 138 unsigned int resize_node_skipped;
19baf839
RO
139};
140#endif
141
142struct trie_stat {
143 unsigned int totdepth;
144 unsigned int maxdepth;
145 unsigned int tnodes;
146 unsigned int leaves;
147 unsigned int nullpointers;
93672292 148 unsigned int prefixes;
06ef921d 149 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 150};
19baf839
RO
151
152struct trie {
91b9a277 153 struct node *trie;
19baf839
RO
154#ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats stats;
156#endif
19baf839
RO
157};
158
19baf839 159static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
a07f5f50
SH
160static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
161 int wasfull);
19baf839 162static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
163static struct tnode *inflate(struct trie *t, struct tnode *tn);
164static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
165/* tnodes to free after resize(); protected by RTNL */
166static struct tnode *tnode_free_head;
c3059477
JP
167static size_t tnode_free_size;
168
169/*
170 * synchronize_rcu after call_rcu for that many pages; it should be especially
171 * useful before resizing the root node with PREEMPT_NONE configs; the value was
172 * obtained experimentally, aiming to avoid visible slowdown.
173 */
174static const int sync_pages = 128;
19baf839 175
e18b890b 176static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 177static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 178
06801916
SH
179static inline struct tnode *node_parent(struct node *node)
180{
b59cfbf7
ED
181 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
182}
183
184static inline struct tnode *node_parent_rcu(struct node *node)
185{
186 struct tnode *ret = node_parent(node);
06801916 187
06801916
SH
188 return rcu_dereference(ret);
189}
190
6440cc9e
SH
191/* Same as rcu_assign_pointer
192 * but that macro() assumes that value is a pointer.
193 */
06801916
SH
194static inline void node_set_parent(struct node *node, struct tnode *ptr)
195{
6440cc9e
SH
196 smp_wmb();
197 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 198}
2373ce1c 199
b59cfbf7
ED
200static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
201{
202 BUG_ON(i >= 1U << tn->bits);
2373ce1c 203
b59cfbf7
ED
204 return tn->child[i];
205}
206
207static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 208{
b59cfbf7 209 struct node *ret = tnode_get_child(tn, i);
19baf839 210
b59cfbf7 211 return rcu_dereference(ret);
19baf839
RO
212}
213
bb435b8d 214static inline int tnode_child_length(const struct tnode *tn)
19baf839 215{
91b9a277 216 return 1 << tn->bits;
19baf839
RO
217}
218
ab66b4a7
SH
219static inline t_key mask_pfx(t_key k, unsigned short l)
220{
221 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
222}
223
19baf839
RO
224static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
225{
91b9a277 226 if (offset < KEYLENGTH)
19baf839 227 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 228 else
19baf839
RO
229 return 0;
230}
231
232static inline int tkey_equals(t_key a, t_key b)
233{
c877efb2 234 return a == b;
19baf839
RO
235}
236
237static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
238{
c877efb2
SH
239 if (bits == 0 || offset >= KEYLENGTH)
240 return 1;
91b9a277
OJ
241 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
242 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 243}
19baf839
RO
244
245static inline int tkey_mismatch(t_key a, int offset, t_key b)
246{
247 t_key diff = a ^ b;
248 int i = offset;
249
c877efb2
SH
250 if (!diff)
251 return 0;
252 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
253 i++;
254 return i;
255}
256
19baf839 257/*
e905a9ed
YH
258 To understand this stuff, an understanding of keys and all their bits is
259 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
260 all of the bits in that key are significant.
261
262 Consider a node 'n' and its parent 'tp'.
263
e905a9ed
YH
264 If n is a leaf, every bit in its key is significant. Its presence is
265 necessitated by path compression, since during a tree traversal (when
266 searching for a leaf - unless we are doing an insertion) we will completely
267 ignore all skipped bits we encounter. Thus we need to verify, at the end of
268 a potentially successful search, that we have indeed been walking the
19baf839
RO
269 correct key path.
270
e905a9ed
YH
271 Note that we can never "miss" the correct key in the tree if present by
272 following the wrong path. Path compression ensures that segments of the key
273 that are the same for all keys with a given prefix are skipped, but the
274 skipped part *is* identical for each node in the subtrie below the skipped
275 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
276 call to tkey_sub_equals() in trie_insert().
277
e905a9ed 278 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
279 have many different meanings.
280
e905a9ed 281 Example:
19baf839
RO
282 _________________________________________________________________
283 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
284 -----------------------------------------------------------------
e905a9ed 285 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
286
287 _________________________________________________________________
288 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
289 -----------------------------------------------------------------
290 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
291
292 tp->pos = 7
293 tp->bits = 3
294 n->pos = 15
91b9a277 295 n->bits = 4
19baf839 296
e905a9ed
YH
297 First, let's just ignore the bits that come before the parent tp, that is
298 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
299 not use them for anything.
300
301 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 302 index into the parent's child array. That is, they will be used to find
19baf839
RO
303 'n' among tp's children.
304
305 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
306 for the node n.
307
e905a9ed 308 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
309 of the bits are really not needed or indeed known in n->key.
310
e905a9ed 311 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 312 n's child array, and will of course be different for each child.
e905a9ed 313
c877efb2 314
19baf839
RO
315 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
316 at this point.
317
318*/
319
0c7770c7 320static inline void check_tnode(const struct tnode *tn)
19baf839 321{
0c7770c7 322 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
323}
324
f5026fab
DL
325static const int halve_threshold = 25;
326static const int inflate_threshold = 50;
345aa031 327static const int halve_threshold_root = 15;
80b71b80 328static const int inflate_threshold_root = 30;
2373ce1c
RO
329
330static void __alias_free_mem(struct rcu_head *head)
19baf839 331{
2373ce1c
RO
332 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
333 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
334}
335
2373ce1c 336static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 337{
2373ce1c
RO
338 call_rcu(&fa->rcu, __alias_free_mem);
339}
91b9a277 340
2373ce1c
RO
341static void __leaf_free_rcu(struct rcu_head *head)
342{
bc3c8c1e
SH
343 struct leaf *l = container_of(head, struct leaf, rcu);
344 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 345}
91b9a277 346
387a5487
SH
347static inline void free_leaf(struct leaf *l)
348{
349 call_rcu_bh(&l->rcu, __leaf_free_rcu);
350}
351
2373ce1c 352static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 353{
2373ce1c 354 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
355}
356
2373ce1c 357static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 358{
2373ce1c 359 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
360}
361
8d965444 362static struct tnode *tnode_alloc(size_t size)
f0e36f8c 363{
2373ce1c 364 if (size <= PAGE_SIZE)
8d965444 365 return kzalloc(size, GFP_KERNEL);
15be75cd
SH
366 else
367 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
368}
2373ce1c 369
15be75cd
SH
370static void __tnode_vfree(struct work_struct *arg)
371{
372 struct tnode *tn = container_of(arg, struct tnode, work);
373 vfree(tn);
f0e36f8c
PM
374}
375
2373ce1c 376static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 377{
2373ce1c 378 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444
ED
379 size_t size = sizeof(struct tnode) +
380 (sizeof(struct node *) << tn->bits);
f0e36f8c
PM
381
382 if (size <= PAGE_SIZE)
383 kfree(tn);
15be75cd
SH
384 else {
385 INIT_WORK(&tn->work, __tnode_vfree);
386 schedule_work(&tn->work);
387 }
f0e36f8c
PM
388}
389
2373ce1c
RO
390static inline void tnode_free(struct tnode *tn)
391{
387a5487
SH
392 if (IS_LEAF(tn))
393 free_leaf((struct leaf *) tn);
394 else
550e29bc 395 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
396}
397
e0f7cb8c
JP
398static void tnode_free_safe(struct tnode *tn)
399{
400 BUG_ON(IS_LEAF(tn));
7b85576d
JP
401 tn->tnode_free = tnode_free_head;
402 tnode_free_head = tn;
c3059477
JP
403 tnode_free_size += sizeof(struct tnode) +
404 (sizeof(struct node *) << tn->bits);
e0f7cb8c
JP
405}
406
407static void tnode_free_flush(void)
408{
409 struct tnode *tn;
410
411 while ((tn = tnode_free_head)) {
412 tnode_free_head = tn->tnode_free;
413 tn->tnode_free = NULL;
414 tnode_free(tn);
415 }
c3059477
JP
416
417 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
418 tnode_free_size = 0;
419 synchronize_rcu();
420 }
e0f7cb8c
JP
421}
422
2373ce1c
RO
423static struct leaf *leaf_new(void)
424{
bc3c8c1e 425 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
426 if (l) {
427 l->parent = T_LEAF;
428 INIT_HLIST_HEAD(&l->list);
429 }
430 return l;
431}
432
433static struct leaf_info *leaf_info_new(int plen)
434{
435 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
436 if (li) {
437 li->plen = plen;
438 INIT_LIST_HEAD(&li->falh);
439 }
440 return li;
441}
442
a07f5f50 443static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 444{
8d965444 445 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
f0e36f8c 446 struct tnode *tn = tnode_alloc(sz);
19baf839 447
91b9a277 448 if (tn) {
2373ce1c 449 tn->parent = T_TNODE;
19baf839
RO
450 tn->pos = pos;
451 tn->bits = bits;
452 tn->key = key;
453 tn->full_children = 0;
454 tn->empty_children = 1<<bits;
455 }
c877efb2 456
8d965444
ED
457 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
458 (unsigned long) (sizeof(struct node) << bits));
19baf839
RO
459 return tn;
460}
461
19baf839
RO
462/*
463 * Check whether a tnode 'n' is "full", i.e. it is an internal node
464 * and no bits are skipped. See discussion in dyntree paper p. 6
465 */
466
bb435b8d 467static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 468{
c877efb2 469 if (n == NULL || IS_LEAF(n))
19baf839
RO
470 return 0;
471
472 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
473}
474
a07f5f50
SH
475static inline void put_child(struct trie *t, struct tnode *tn, int i,
476 struct node *n)
19baf839
RO
477{
478 tnode_put_child_reorg(tn, i, n, -1);
479}
480
c877efb2 481 /*
19baf839
RO
482 * Add a child at position i overwriting the old value.
483 * Update the value of full_children and empty_children.
484 */
485
a07f5f50
SH
486static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
487 int wasfull)
19baf839 488{
2373ce1c 489 struct node *chi = tn->child[i];
19baf839
RO
490 int isfull;
491
0c7770c7
SH
492 BUG_ON(i >= 1<<tn->bits);
493
19baf839
RO
494 /* update emptyChildren */
495 if (n == NULL && chi != NULL)
496 tn->empty_children++;
497 else if (n != NULL && chi == NULL)
498 tn->empty_children--;
c877efb2 499
19baf839 500 /* update fullChildren */
91b9a277 501 if (wasfull == -1)
19baf839
RO
502 wasfull = tnode_full(tn, chi);
503
504 isfull = tnode_full(tn, n);
c877efb2 505 if (wasfull && !isfull)
19baf839 506 tn->full_children--;
c877efb2 507 else if (!wasfull && isfull)
19baf839 508 tn->full_children++;
91b9a277 509
c877efb2 510 if (n)
06801916 511 node_set_parent(n, tn);
19baf839 512
2373ce1c 513 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
514}
515
80b71b80 516#define MAX_WORK 10
c877efb2 517static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
518{
519 int i;
2f80b3c8 520 struct tnode *old_tn;
e6308be8
RO
521 int inflate_threshold_use;
522 int halve_threshold_use;
80b71b80 523 int max_work;
19baf839 524
e905a9ed 525 if (!tn)
19baf839
RO
526 return NULL;
527
0c7770c7
SH
528 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
529 tn, inflate_threshold, halve_threshold);
19baf839
RO
530
531 /* No children */
532 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 533 tnode_free_safe(tn);
19baf839
RO
534 return NULL;
535 }
536 /* One child */
537 if (tn->empty_children == tnode_child_length(tn) - 1)
80b71b80 538 goto one_child;
c877efb2 539 /*
19baf839
RO
540 * Double as long as the resulting node has a number of
541 * nonempty nodes that are above the threshold.
542 */
543
544 /*
c877efb2
SH
545 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
546 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 547 * Telecommunications, page 6:
c877efb2 548 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
549 * children in the *doubled* node is at least 'high'."
550 *
c877efb2
SH
551 * 'high' in this instance is the variable 'inflate_threshold'. It
552 * is expressed as a percentage, so we multiply it with
553 * tnode_child_length() and instead of multiplying by 2 (since the
554 * child array will be doubled by inflate()) and multiplying
555 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 556 * multiply the left-hand side by 50.
c877efb2
SH
557 *
558 * The left-hand side may look a bit weird: tnode_child_length(tn)
559 * - tn->empty_children is of course the number of non-null children
560 * in the current node. tn->full_children is the number of "full"
19baf839 561 * children, that is non-null tnodes with a skip value of 0.
c877efb2 562 * All of those will be doubled in the resulting inflated tnode, so
19baf839 563 * we just count them one extra time here.
c877efb2 564 *
19baf839 565 * A clearer way to write this would be:
c877efb2 566 *
19baf839 567 * to_be_doubled = tn->full_children;
c877efb2 568 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
569 * tn->full_children;
570 *
571 * new_child_length = tnode_child_length(tn) * 2;
572 *
c877efb2 573 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
574 * new_child_length;
575 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
576 *
577 * ...and so on, tho it would mess up the while () loop.
578 *
19baf839
RO
579 * anyway,
580 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
581 * inflate_threshold
c877efb2 582 *
19baf839
RO
583 * avoid a division:
584 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
585 * inflate_threshold * new_child_length
c877efb2 586 *
19baf839 587 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 588 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 589 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 590 *
19baf839 591 * expand new_child_length:
c877efb2 592 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 593 * tn->full_children) >=
19baf839 594 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 595 *
19baf839 596 * shorten again:
c877efb2 597 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 598 * tn->empty_children) >= inflate_threshold *
19baf839 599 * tnode_child_length(tn)
c877efb2 600 *
19baf839
RO
601 */
602
603 check_tnode(tn);
c877efb2 604
e6308be8
RO
605 /* Keep root node larger */
606
80b71b80
JL
607 if (!node_parent((struct node*) tn)) {
608 inflate_threshold_use = inflate_threshold_root;
609 halve_threshold_use = halve_threshold_root;
610 }
611 else {
e6308be8 612 inflate_threshold_use = inflate_threshold;
80b71b80
JL
613 halve_threshold_use = halve_threshold;
614 }
e6308be8 615
80b71b80
JL
616 max_work = MAX_WORK;
617 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
618 50 * (tn->full_children + tnode_child_length(tn)
619 - tn->empty_children)
620 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 621
2f80b3c8
RO
622 old_tn = tn;
623 tn = inflate(t, tn);
a07f5f50 624
2f80b3c8
RO
625 if (IS_ERR(tn)) {
626 tn = old_tn;
2f36895a
RO
627#ifdef CONFIG_IP_FIB_TRIE_STATS
628 t->stats.resize_node_skipped++;
629#endif
630 break;
631 }
19baf839
RO
632 }
633
634 check_tnode(tn);
635
80b71b80
JL
636 /* Return if at least one inflate is run */
637 if( max_work != MAX_WORK)
638 return (struct node *) tn;
639
19baf839
RO
640 /*
641 * Halve as long as the number of empty children in this
642 * node is above threshold.
643 */
2f36895a 644
80b71b80
JL
645 max_work = MAX_WORK;
646 while (tn->bits > 1 && max_work-- &&
19baf839 647 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 648 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 649
2f80b3c8
RO
650 old_tn = tn;
651 tn = halve(t, tn);
652 if (IS_ERR(tn)) {
653 tn = old_tn;
2f36895a
RO
654#ifdef CONFIG_IP_FIB_TRIE_STATS
655 t->stats.resize_node_skipped++;
656#endif
657 break;
658 }
659 }
19baf839 660
c877efb2 661
19baf839 662 /* Only one child remains */
80b71b80
JL
663 if (tn->empty_children == tnode_child_length(tn) - 1) {
664one_child:
19baf839 665 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 666 struct node *n;
19baf839 667
91b9a277 668 n = tn->child[i];
2373ce1c 669 if (!n)
91b9a277 670 continue;
91b9a277
OJ
671
672 /* compress one level */
673
06801916 674 node_set_parent(n, NULL);
e0f7cb8c 675 tnode_free_safe(tn);
91b9a277 676 return n;
19baf839 677 }
80b71b80 678 }
19baf839
RO
679 return (struct node *) tn;
680}
681
2f80b3c8 682static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 683{
19baf839
RO
684 struct tnode *oldtnode = tn;
685 int olen = tnode_child_length(tn);
686 int i;
687
0c7770c7 688 pr_debug("In inflate\n");
19baf839
RO
689
690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
691
0c7770c7 692 if (!tn)
2f80b3c8 693 return ERR_PTR(-ENOMEM);
2f36895a
RO
694
695 /*
c877efb2
SH
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
699 * of tnode is ignored.
700 */
91b9a277
OJ
701
702 for (i = 0; i < olen; i++) {
a07f5f50 703 struct tnode *inode;
2f36895a 704
a07f5f50 705 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
706 if (inode &&
707 IS_TNODE(inode) &&
708 inode->pos == oldtnode->pos + oldtnode->bits &&
709 inode->bits > 1) {
710 struct tnode *left, *right;
ab66b4a7 711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 712
2f36895a
RO
713 left = tnode_new(inode->key&(~m), inode->pos + 1,
714 inode->bits - 1);
2f80b3c8
RO
715 if (!left)
716 goto nomem;
91b9a277 717
2f36895a
RO
718 right = tnode_new(inode->key|m, inode->pos + 1,
719 inode->bits - 1);
720
e905a9ed 721 if (!right) {
2f80b3c8
RO
722 tnode_free(left);
723 goto nomem;
e905a9ed 724 }
2f36895a
RO
725
726 put_child(t, tn, 2*i, (struct node *) left);
727 put_child(t, tn, 2*i+1, (struct node *) right);
728 }
729 }
730
91b9a277 731 for (i = 0; i < olen; i++) {
c95aaf9a 732 struct tnode *inode;
19baf839 733 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
734 struct tnode *left, *right;
735 int size, j;
c877efb2 736
19baf839
RO
737 /* An empty child */
738 if (node == NULL)
739 continue;
740
741 /* A leaf or an internal node with skipped bits */
742
c877efb2 743 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 744 tn->pos + tn->bits - 1) {
a07f5f50
SH
745 if (tkey_extract_bits(node->key,
746 oldtnode->pos + oldtnode->bits,
747 1) == 0)
19baf839
RO
748 put_child(t, tn, 2*i, node);
749 else
750 put_child(t, tn, 2*i+1, node);
751 continue;
752 }
753
754 /* An internal node with two children */
755 inode = (struct tnode *) node;
756
757 if (inode->bits == 1) {
758 put_child(t, tn, 2*i, inode->child[0]);
759 put_child(t, tn, 2*i+1, inode->child[1]);
760
e0f7cb8c 761 tnode_free_safe(inode);
91b9a277 762 continue;
19baf839
RO
763 }
764
91b9a277
OJ
765 /* An internal node with more than two children */
766
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
779 * two new keys.
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
782 */
19baf839 783
91b9a277
OJ
784 /* Use the old key, but set the new significant
785 * bit to zero.
786 */
2f36895a 787
91b9a277
OJ
788 left = (struct tnode *) tnode_get_child(tn, 2*i);
789 put_child(t, tn, 2*i, NULL);
2f36895a 790
91b9a277 791 BUG_ON(!left);
2f36895a 792
91b9a277
OJ
793 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 put_child(t, tn, 2*i+1, NULL);
19baf839 795
91b9a277 796 BUG_ON(!right);
19baf839 797
91b9a277
OJ
798 size = tnode_child_length(left);
799 for (j = 0; j < size; j++) {
800 put_child(t, left, j, inode->child[j]);
801 put_child(t, right, j, inode->child[j + size]);
19baf839 802 }
91b9a277
OJ
803 put_child(t, tn, 2*i, resize(t, left));
804 put_child(t, tn, 2*i+1, resize(t, right));
805
e0f7cb8c 806 tnode_free_safe(inode);
19baf839 807 }
e0f7cb8c 808 tnode_free_safe(oldtnode);
19baf839 809 return tn;
2f80b3c8
RO
810nomem:
811 {
812 int size = tnode_child_length(tn);
813 int j;
814
0c7770c7 815 for (j = 0; j < size; j++)
2f80b3c8
RO
816 if (tn->child[j])
817 tnode_free((struct tnode *)tn->child[j]);
818
819 tnode_free(tn);
0c7770c7 820
2f80b3c8
RO
821 return ERR_PTR(-ENOMEM);
822 }
19baf839
RO
823}
824
2f80b3c8 825static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
826{
827 struct tnode *oldtnode = tn;
828 struct node *left, *right;
829 int i;
830 int olen = tnode_child_length(tn);
831
0c7770c7 832 pr_debug("In halve\n");
c877efb2
SH
833
834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 835
2f80b3c8
RO
836 if (!tn)
837 return ERR_PTR(-ENOMEM);
2f36895a
RO
838
839 /*
c877efb2
SH
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
843 * of tnode is ignored.
844 */
845
91b9a277 846 for (i = 0; i < olen; i += 2) {
2f36895a
RO
847 left = tnode_get_child(oldtnode, i);
848 right = tnode_get_child(oldtnode, i+1);
c877efb2 849
2f36895a 850 /* Two nonempty children */
0c7770c7 851 if (left && right) {
2f80b3c8 852 struct tnode *newn;
0c7770c7 853
2f80b3c8 854 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
855
856 if (!newn)
2f80b3c8 857 goto nomem;
0c7770c7 858
2f80b3c8 859 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 860 }
2f36895a 861
2f36895a 862 }
19baf839 863
91b9a277
OJ
864 for (i = 0; i < olen; i += 2) {
865 struct tnode *newBinNode;
866
19baf839
RO
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
c877efb2 869
19baf839
RO
870 /* At least one of the children is empty */
871 if (left == NULL) {
872 if (right == NULL) /* Both are empty */
873 continue;
874 put_child(t, tn, i/2, right);
91b9a277 875 continue;
0c7770c7 876 }
91b9a277
OJ
877
878 if (right == NULL) {
19baf839 879 put_child(t, tn, i/2, left);
91b9a277
OJ
880 continue;
881 }
c877efb2 882
19baf839 883 /* Two nonempty children */
91b9a277
OJ
884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 put_child(t, tn, i/2, NULL);
91b9a277
OJ
886 put_child(t, newBinNode, 0, left);
887 put_child(t, newBinNode, 1, right);
888 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839 889 }
e0f7cb8c 890 tnode_free_safe(oldtnode);
19baf839 891 return tn;
2f80b3c8
RO
892nomem:
893 {
894 int size = tnode_child_length(tn);
895 int j;
896
0c7770c7 897 for (j = 0; j < size; j++)
2f80b3c8
RO
898 if (tn->child[j])
899 tnode_free((struct tnode *)tn->child[j]);
900
901 tnode_free(tn);
0c7770c7 902
2f80b3c8
RO
903 return ERR_PTR(-ENOMEM);
904 }
19baf839
RO
905}
906
772cb712 907/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
908 via get_fa_head and dump */
909
772cb712 910static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 911{
772cb712 912 struct hlist_head *head = &l->list;
19baf839
RO
913 struct hlist_node *node;
914 struct leaf_info *li;
915
2373ce1c 916 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 917 if (li->plen == plen)
19baf839 918 return li;
91b9a277 919
19baf839
RO
920 return NULL;
921}
922
a07f5f50 923static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 924{
772cb712 925 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 926
91b9a277
OJ
927 if (!li)
928 return NULL;
c877efb2 929
91b9a277 930 return &li->falh;
19baf839
RO
931}
932
933static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
934{
e905a9ed
YH
935 struct leaf_info *li = NULL, *last = NULL;
936 struct hlist_node *node;
937
938 if (hlist_empty(head)) {
939 hlist_add_head_rcu(&new->hlist, head);
940 } else {
941 hlist_for_each_entry(li, node, head, hlist) {
942 if (new->plen > li->plen)
943 break;
944
945 last = li;
946 }
947 if (last)
948 hlist_add_after_rcu(&last->hlist, &new->hlist);
949 else
950 hlist_add_before_rcu(&new->hlist, &li->hlist);
951 }
19baf839
RO
952}
953
2373ce1c
RO
954/* rcu_read_lock needs to be hold by caller from readside */
955
19baf839
RO
956static struct leaf *
957fib_find_node(struct trie *t, u32 key)
958{
959 int pos;
960 struct tnode *tn;
961 struct node *n;
962
963 pos = 0;
2373ce1c 964 n = rcu_dereference(t->trie);
19baf839
RO
965
966 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
967 tn = (struct tnode *) n;
91b9a277 968
19baf839 969 check_tnode(tn);
91b9a277 970
c877efb2 971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 972 pos = tn->pos + tn->bits;
a07f5f50
SH
973 n = tnode_get_child_rcu(tn,
974 tkey_extract_bits(key,
975 tn->pos,
976 tn->bits));
91b9a277 977 } else
19baf839
RO
978 break;
979 }
980 /* Case we have found a leaf. Compare prefixes */
981
91b9a277
OJ
982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 return (struct leaf *)n;
984
19baf839
RO
985 return NULL;
986}
987
7b85576d 988static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 989{
19baf839 990 int wasfull;
3ed18d76 991 t_key cindex, key;
06801916 992 struct tnode *tp;
19baf839 993
3ed18d76
RO
994 key = tn->key;
995
06801916 996 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
997 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
998 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
999 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1000
1001 tnode_put_child_reorg((struct tnode *)tp, cindex,
1002 (struct node *)tn, wasfull);
91b9a277 1003
06801916 1004 tp = node_parent((struct node *) tn);
008440e3
JP
1005 if (!tp)
1006 rcu_assign_pointer(t->trie, (struct node *)tn);
1007
e0f7cb8c 1008 tnode_free_flush();
06801916 1009 if (!tp)
19baf839 1010 break;
06801916 1011 tn = tp;
19baf839 1012 }
06801916 1013
19baf839 1014 /* Handle last (top) tnode */
7b85576d 1015 if (IS_TNODE(tn))
a07f5f50 1016 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1017
7b85576d
JP
1018 rcu_assign_pointer(t->trie, (struct node *)tn);
1019 tnode_free_flush();
1020
1021 return;
19baf839
RO
1022}
1023
2373ce1c
RO
1024/* only used from updater-side */
1025
fea86ad8 1026static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1027{
1028 int pos, newpos;
1029 struct tnode *tp = NULL, *tn = NULL;
1030 struct node *n;
1031 struct leaf *l;
1032 int missbit;
c877efb2 1033 struct list_head *fa_head = NULL;
19baf839
RO
1034 struct leaf_info *li;
1035 t_key cindex;
1036
1037 pos = 0;
c877efb2 1038 n = t->trie;
19baf839 1039
c877efb2
SH
1040 /* If we point to NULL, stop. Either the tree is empty and we should
1041 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1042 * and we should just put our new leaf in that.
c877efb2
SH
1043 * If we point to a T_TNODE, check if it matches our key. Note that
1044 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1045 * not be the parent's 'pos'+'bits'!
1046 *
c877efb2 1047 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1048 * the index from our key, push the T_TNODE and walk the tree.
1049 *
1050 * If it doesn't, we have to replace it with a new T_TNODE.
1051 *
c877efb2
SH
1052 * If we point to a T_LEAF, it might or might not have the same key
1053 * as we do. If it does, just change the value, update the T_LEAF's
1054 * value, and return it.
19baf839
RO
1055 * If it doesn't, we need to replace it with a T_TNODE.
1056 */
1057
1058 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1059 tn = (struct tnode *) n;
91b9a277 1060
c877efb2 1061 check_tnode(tn);
91b9a277 1062
c877efb2 1063 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1064 tp = tn;
91b9a277 1065 pos = tn->pos + tn->bits;
a07f5f50
SH
1066 n = tnode_get_child(tn,
1067 tkey_extract_bits(key,
1068 tn->pos,
1069 tn->bits));
19baf839 1070
06801916 1071 BUG_ON(n && node_parent(n) != tn);
91b9a277 1072 } else
19baf839
RO
1073 break;
1074 }
1075
1076 /*
1077 * n ----> NULL, LEAF or TNODE
1078 *
c877efb2 1079 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1080 */
1081
91b9a277 1082 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1083
1084 /* Case 1: n is a leaf. Compare prefixes */
1085
c877efb2 1086 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1087 l = (struct leaf *) n;
19baf839 1088 li = leaf_info_new(plen);
91b9a277 1089
fea86ad8
SH
1090 if (!li)
1091 return NULL;
19baf839
RO
1092
1093 fa_head = &li->falh;
1094 insert_leaf_info(&l->list, li);
1095 goto done;
1096 }
19baf839
RO
1097 l = leaf_new();
1098
fea86ad8
SH
1099 if (!l)
1100 return NULL;
19baf839
RO
1101
1102 l->key = key;
1103 li = leaf_info_new(plen);
1104
c877efb2 1105 if (!li) {
387a5487 1106 free_leaf(l);
fea86ad8 1107 return NULL;
f835e471 1108 }
19baf839
RO
1109
1110 fa_head = &li->falh;
1111 insert_leaf_info(&l->list, li);
1112
19baf839 1113 if (t->trie && n == NULL) {
91b9a277 1114 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1115
06801916 1116 node_set_parent((struct node *)l, tp);
19baf839 1117
91b9a277
OJ
1118 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1119 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1120 } else {
1121 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1122 /*
1123 * Add a new tnode here
19baf839
RO
1124 * first tnode need some special handling
1125 */
1126
1127 if (tp)
91b9a277 1128 pos = tp->pos+tp->bits;
19baf839 1129 else
91b9a277
OJ
1130 pos = 0;
1131
c877efb2 1132 if (n) {
19baf839
RO
1133 newpos = tkey_mismatch(key, pos, n->key);
1134 tn = tnode_new(n->key, newpos, 1);
91b9a277 1135 } else {
19baf839 1136 newpos = 0;
c877efb2 1137 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1138 }
19baf839 1139
c877efb2 1140 if (!tn) {
f835e471 1141 free_leaf_info(li);
387a5487 1142 free_leaf(l);
fea86ad8 1143 return NULL;
91b9a277
OJ
1144 }
1145
06801916 1146 node_set_parent((struct node *)tn, tp);
19baf839 1147
91b9a277 1148 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1149 put_child(t, tn, missbit, (struct node *)l);
1150 put_child(t, tn, 1-missbit, n);
1151
c877efb2 1152 if (tp) {
19baf839 1153 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50
SH
1154 put_child(t, (struct tnode *)tp, cindex,
1155 (struct node *)tn);
91b9a277 1156 } else {
a07f5f50 1157 rcu_assign_pointer(t->trie, (struct node *)tn);
19baf839
RO
1158 tp = tn;
1159 }
1160 }
91b9a277
OJ
1161
1162 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1163 pr_warning("fib_trie"
1164 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1165 tp, tp->pos, tp->bits, key, plen);
91b9a277 1166
19baf839 1167 /* Rebalance the trie */
2373ce1c 1168
7b85576d 1169 trie_rebalance(t, tp);
f835e471 1170done:
19baf839
RO
1171 return fa_head;
1172}
1173
d562f1f8
RO
1174/*
1175 * Caller must hold RTNL.
1176 */
4e902c57 1177static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1178{
1179 struct trie *t = (struct trie *) tb->tb_data;
1180 struct fib_alias *fa, *new_fa;
c877efb2 1181 struct list_head *fa_head = NULL;
19baf839 1182 struct fib_info *fi;
4e902c57
TG
1183 int plen = cfg->fc_dst_len;
1184 u8 tos = cfg->fc_tos;
19baf839
RO
1185 u32 key, mask;
1186 int err;
1187 struct leaf *l;
1188
1189 if (plen > 32)
1190 return -EINVAL;
1191
4e902c57 1192 key = ntohl(cfg->fc_dst);
19baf839 1193
2dfe55b4 1194 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1195
91b9a277 1196 mask = ntohl(inet_make_mask(plen));
19baf839 1197
c877efb2 1198 if (key & ~mask)
19baf839
RO
1199 return -EINVAL;
1200
1201 key = key & mask;
1202
4e902c57
TG
1203 fi = fib_create_info(cfg);
1204 if (IS_ERR(fi)) {
1205 err = PTR_ERR(fi);
19baf839 1206 goto err;
4e902c57 1207 }
19baf839
RO
1208
1209 l = fib_find_node(t, key);
c877efb2 1210 fa = NULL;
19baf839 1211
c877efb2 1212 if (l) {
19baf839
RO
1213 fa_head = get_fa_head(l, plen);
1214 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1215 }
1216
1217 /* Now fa, if non-NULL, points to the first fib alias
1218 * with the same keys [prefix,tos,priority], if such key already
1219 * exists or to the node before which we will insert new one.
1220 *
1221 * If fa is NULL, we will need to allocate a new one and
1222 * insert to the head of f.
1223 *
1224 * If f is NULL, no fib node matched the destination key
1225 * and we need to allocate a new one of those as well.
1226 */
1227
936f6f8e
JA
1228 if (fa && fa->fa_tos == tos &&
1229 fa->fa_info->fib_priority == fi->fib_priority) {
1230 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1231
1232 err = -EEXIST;
4e902c57 1233 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1234 goto out;
1235
936f6f8e
JA
1236 /* We have 2 goals:
1237 * 1. Find exact match for type, scope, fib_info to avoid
1238 * duplicate routes
1239 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1240 */
1241 fa_match = NULL;
1242 fa_first = fa;
1243 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1244 list_for_each_entry_continue(fa, fa_head, fa_list) {
1245 if (fa->fa_tos != tos)
1246 break;
1247 if (fa->fa_info->fib_priority != fi->fib_priority)
1248 break;
1249 if (fa->fa_type == cfg->fc_type &&
1250 fa->fa_scope == cfg->fc_scope &&
1251 fa->fa_info == fi) {
1252 fa_match = fa;
1253 break;
1254 }
1255 }
1256
4e902c57 1257 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1258 struct fib_info *fi_drop;
1259 u8 state;
1260
936f6f8e
JA
1261 fa = fa_first;
1262 if (fa_match) {
1263 if (fa == fa_match)
1264 err = 0;
6725033f 1265 goto out;
936f6f8e 1266 }
2373ce1c 1267 err = -ENOBUFS;
e94b1766 1268 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1269 if (new_fa == NULL)
1270 goto out;
19baf839
RO
1271
1272 fi_drop = fa->fa_info;
2373ce1c
RO
1273 new_fa->fa_tos = fa->fa_tos;
1274 new_fa->fa_info = fi;
4e902c57
TG
1275 new_fa->fa_type = cfg->fc_type;
1276 new_fa->fa_scope = cfg->fc_scope;
19baf839 1277 state = fa->fa_state;
936f6f8e 1278 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1279
2373ce1c
RO
1280 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1281 alias_free_mem_rcu(fa);
19baf839
RO
1282
1283 fib_release_info(fi_drop);
1284 if (state & FA_S_ACCESSED)
76e6ebfb 1285 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1286 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1287 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1288
91b9a277 1289 goto succeeded;
19baf839
RO
1290 }
1291 /* Error if we find a perfect match which
1292 * uses the same scope, type, and nexthop
1293 * information.
1294 */
936f6f8e
JA
1295 if (fa_match)
1296 goto out;
a07f5f50 1297
4e902c57 1298 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1299 fa = fa_first;
19baf839
RO
1300 }
1301 err = -ENOENT;
4e902c57 1302 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1303 goto out;
1304
1305 err = -ENOBUFS;
e94b1766 1306 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1307 if (new_fa == NULL)
1308 goto out;
1309
1310 new_fa->fa_info = fi;
1311 new_fa->fa_tos = tos;
4e902c57
TG
1312 new_fa->fa_type = cfg->fc_type;
1313 new_fa->fa_scope = cfg->fc_scope;
19baf839 1314 new_fa->fa_state = 0;
19baf839
RO
1315 /*
1316 * Insert new entry to the list.
1317 */
1318
c877efb2 1319 if (!fa_head) {
fea86ad8
SH
1320 fa_head = fib_insert_node(t, key, plen);
1321 if (unlikely(!fa_head)) {
1322 err = -ENOMEM;
f835e471 1323 goto out_free_new_fa;
fea86ad8 1324 }
f835e471 1325 }
19baf839 1326
2373ce1c
RO
1327 list_add_tail_rcu(&new_fa->fa_list,
1328 (fa ? &fa->fa_list : fa_head));
19baf839 1329
76e6ebfb 1330 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1331 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1332 &cfg->fc_nlinfo, 0);
19baf839
RO
1333succeeded:
1334 return 0;
f835e471
RO
1335
1336out_free_new_fa:
1337 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1338out:
1339 fib_release_info(fi);
91b9a277 1340err:
19baf839
RO
1341 return err;
1342}
1343
772cb712 1344/* should be called with rcu_read_lock */
a07f5f50
SH
1345static int check_leaf(struct trie *t, struct leaf *l,
1346 t_key key, const struct flowi *flp,
1347 struct fib_result *res)
19baf839 1348{
19baf839
RO
1349 struct leaf_info *li;
1350 struct hlist_head *hhead = &l->list;
1351 struct hlist_node *node;
c877efb2 1352
2373ce1c 1353 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
a07f5f50
SH
1354 int err;
1355 int plen = li->plen;
1356 __be32 mask = inet_make_mask(plen);
1357
888454c5 1358 if (l->key != (key & ntohl(mask)))
19baf839
RO
1359 continue;
1360
e204a345 1361 err = fib_semantic_match(&li->falh, flp, res, plen);
a07f5f50 1362
19baf839 1363#ifdef CONFIG_IP_FIB_TRIE_STATS
a07f5f50 1364 if (err <= 0)
19baf839 1365 t->stats.semantic_match_passed++;
a07f5f50
SH
1366 else
1367 t->stats.semantic_match_miss++;
19baf839 1368#endif
a07f5f50 1369 if (err <= 0)
2e655571 1370 return err;
19baf839 1371 }
a07f5f50 1372
2e655571 1373 return 1;
19baf839
RO
1374}
1375
a07f5f50
SH
1376static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1377 struct fib_result *res)
19baf839
RO
1378{
1379 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1380 int ret;
19baf839
RO
1381 struct node *n;
1382 struct tnode *pn;
1383 int pos, bits;
91b9a277 1384 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1385 int chopped_off;
1386 t_key cindex = 0;
1387 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1388 struct tnode *cn;
1389 t_key node_prefix, key_prefix, pref_mismatch;
1390 int mp;
1391
2373ce1c 1392 rcu_read_lock();
91b9a277 1393
2373ce1c 1394 n = rcu_dereference(t->trie);
c877efb2 1395 if (!n)
19baf839
RO
1396 goto failed;
1397
1398#ifdef CONFIG_IP_FIB_TRIE_STATS
1399 t->stats.gets++;
1400#endif
1401
1402 /* Just a leaf? */
1403 if (IS_LEAF(n)) {
2e655571 1404 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
a07f5f50 1405 goto found;
19baf839 1406 }
a07f5f50 1407
19baf839
RO
1408 pn = (struct tnode *) n;
1409 chopped_off = 0;
c877efb2 1410
91b9a277 1411 while (pn) {
19baf839
RO
1412 pos = pn->pos;
1413 bits = pn->bits;
1414
c877efb2 1415 if (!chopped_off)
ab66b4a7
SH
1416 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1417 pos, bits);
19baf839 1418
b902e573 1419 n = tnode_get_child_rcu(pn, cindex);
19baf839
RO
1420
1421 if (n == NULL) {
1422#ifdef CONFIG_IP_FIB_TRIE_STATS
1423 t->stats.null_node_hit++;
1424#endif
1425 goto backtrace;
1426 }
1427
91b9a277 1428 if (IS_LEAF(n)) {
2e655571
BH
1429 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1430 if (ret > 0)
91b9a277 1431 goto backtrace;
a07f5f50 1432 goto found;
91b9a277
OJ
1433 }
1434
91b9a277 1435 cn = (struct tnode *)n;
19baf839 1436
91b9a277
OJ
1437 /*
1438 * It's a tnode, and we can do some extra checks here if we
1439 * like, to avoid descending into a dead-end branch.
1440 * This tnode is in the parent's child array at index
1441 * key[p_pos..p_pos+p_bits] but potentially with some bits
1442 * chopped off, so in reality the index may be just a
1443 * subprefix, padded with zero at the end.
1444 * We can also take a look at any skipped bits in this
1445 * tnode - everything up to p_pos is supposed to be ok,
1446 * and the non-chopped bits of the index (se previous
1447 * paragraph) are also guaranteed ok, but the rest is
1448 * considered unknown.
1449 *
1450 * The skipped bits are key[pos+bits..cn->pos].
1451 */
19baf839 1452
91b9a277
OJ
1453 /* If current_prefix_length < pos+bits, we are already doing
1454 * actual prefix matching, which means everything from
1455 * pos+(bits-chopped_off) onward must be zero along some
1456 * branch of this subtree - otherwise there is *no* valid
1457 * prefix present. Here we can only check the skipped
1458 * bits. Remember, since we have already indexed into the
1459 * parent's child array, we know that the bits we chopped of
1460 * *are* zero.
1461 */
19baf839 1462
a07f5f50
SH
1463 /* NOTA BENE: Checking only skipped bits
1464 for the new node here */
19baf839 1465
91b9a277
OJ
1466 if (current_prefix_length < pos+bits) {
1467 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1468 cn->pos - current_prefix_length)
1469 || !(cn->child[0]))
91b9a277
OJ
1470 goto backtrace;
1471 }
19baf839 1472
91b9a277
OJ
1473 /*
1474 * If chopped_off=0, the index is fully validated and we
1475 * only need to look at the skipped bits for this, the new,
1476 * tnode. What we actually want to do is to find out if
1477 * these skipped bits match our key perfectly, or if we will
1478 * have to count on finding a matching prefix further down,
1479 * because if we do, we would like to have some way of
1480 * verifying the existence of such a prefix at this point.
1481 */
19baf839 1482
91b9a277
OJ
1483 /* The only thing we can do at this point is to verify that
1484 * any such matching prefix can indeed be a prefix to our
1485 * key, and if the bits in the node we are inspecting that
1486 * do not match our key are not ZERO, this cannot be true.
1487 * Thus, find out where there is a mismatch (before cn->pos)
1488 * and verify that all the mismatching bits are zero in the
1489 * new tnode's key.
1490 */
19baf839 1491
a07f5f50
SH
1492 /*
1493 * Note: We aren't very concerned about the piece of
1494 * the key that precede pn->pos+pn->bits, since these
1495 * have already been checked. The bits after cn->pos
1496 * aren't checked since these are by definition
1497 * "unknown" at this point. Thus, what we want to see
1498 * is if we are about to enter the "prefix matching"
1499 * state, and in that case verify that the skipped
1500 * bits that will prevail throughout this subtree are
1501 * zero, as they have to be if we are to find a
1502 * matching prefix.
91b9a277
OJ
1503 */
1504
ab66b4a7
SH
1505 node_prefix = mask_pfx(cn->key, cn->pos);
1506 key_prefix = mask_pfx(key, cn->pos);
91b9a277
OJ
1507 pref_mismatch = key_prefix^node_prefix;
1508 mp = 0;
1509
a07f5f50
SH
1510 /*
1511 * In short: If skipped bits in this node do not match
1512 * the search key, enter the "prefix matching"
1513 * state.directly.
91b9a277
OJ
1514 */
1515 if (pref_mismatch) {
1516 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1517 mp++;
a07f5f50 1518 pref_mismatch = pref_mismatch << 1;
91b9a277
OJ
1519 }
1520 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1521
1522 if (key_prefix != 0)
1523 goto backtrace;
1524
1525 if (current_prefix_length >= cn->pos)
1526 current_prefix_length = mp;
c877efb2 1527 }
a07f5f50 1528
91b9a277
OJ
1529 pn = (struct tnode *)n; /* Descend */
1530 chopped_off = 0;
1531 continue;
1532
19baf839
RO
1533backtrace:
1534 chopped_off++;
1535
1536 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1537 while ((chopped_off <= pn->bits)
1538 && !(cindex & (1<<(chopped_off-1))))
19baf839 1539 chopped_off++;
19baf839
RO
1540
1541 /* Decrease current_... with bits chopped off */
1542 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1543 current_prefix_length = pn->pos + pn->bits
1544 - chopped_off;
91b9a277 1545
19baf839 1546 /*
c877efb2 1547 * Either we do the actual chop off according or if we have
19baf839
RO
1548 * chopped off all bits in this tnode walk up to our parent.
1549 */
1550
91b9a277 1551 if (chopped_off <= pn->bits) {
19baf839 1552 cindex &= ~(1 << (chopped_off-1));
91b9a277 1553 } else {
b902e573 1554 struct tnode *parent = node_parent_rcu((struct node *) pn);
06801916 1555 if (!parent)
19baf839 1556 goto failed;
91b9a277 1557
19baf839 1558 /* Get Child's index */
06801916
SH
1559 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1560 pn = parent;
19baf839
RO
1561 chopped_off = 0;
1562
1563#ifdef CONFIG_IP_FIB_TRIE_STATS
1564 t->stats.backtrack++;
1565#endif
1566 goto backtrace;
c877efb2 1567 }
19baf839
RO
1568 }
1569failed:
c877efb2 1570 ret = 1;
19baf839 1571found:
2373ce1c 1572 rcu_read_unlock();
19baf839
RO
1573 return ret;
1574}
1575
9195bef7
SH
1576/*
1577 * Remove the leaf and return parent.
1578 */
1579static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1580{
9195bef7 1581 struct tnode *tp = node_parent((struct node *) l);
c877efb2 1582
9195bef7 1583 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1584
c877efb2 1585 if (tp) {
9195bef7 1586 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1587 put_child(t, (struct tnode *)tp, cindex, NULL);
7b85576d 1588 trie_rebalance(t, tp);
91b9a277 1589 } else
2373ce1c 1590 rcu_assign_pointer(t->trie, NULL);
19baf839 1591
387a5487 1592 free_leaf(l);
19baf839
RO
1593}
1594
d562f1f8
RO
1595/*
1596 * Caller must hold RTNL.
1597 */
4e902c57 1598static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1599{
1600 struct trie *t = (struct trie *) tb->tb_data;
1601 u32 key, mask;
4e902c57
TG
1602 int plen = cfg->fc_dst_len;
1603 u8 tos = cfg->fc_tos;
19baf839
RO
1604 struct fib_alias *fa, *fa_to_delete;
1605 struct list_head *fa_head;
1606 struct leaf *l;
91b9a277
OJ
1607 struct leaf_info *li;
1608
c877efb2 1609 if (plen > 32)
19baf839
RO
1610 return -EINVAL;
1611
4e902c57 1612 key = ntohl(cfg->fc_dst);
91b9a277 1613 mask = ntohl(inet_make_mask(plen));
19baf839 1614
c877efb2 1615 if (key & ~mask)
19baf839
RO
1616 return -EINVAL;
1617
1618 key = key & mask;
1619 l = fib_find_node(t, key);
1620
c877efb2 1621 if (!l)
19baf839
RO
1622 return -ESRCH;
1623
1624 fa_head = get_fa_head(l, plen);
1625 fa = fib_find_alias(fa_head, tos, 0);
1626
1627 if (!fa)
1628 return -ESRCH;
1629
0c7770c7 1630 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1631
1632 fa_to_delete = NULL;
936f6f8e
JA
1633 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1634 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1635 struct fib_info *fi = fa->fa_info;
1636
1637 if (fa->fa_tos != tos)
1638 break;
1639
4e902c57
TG
1640 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1641 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1642 fa->fa_scope == cfg->fc_scope) &&
1643 (!cfg->fc_protocol ||
1644 fi->fib_protocol == cfg->fc_protocol) &&
1645 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1646 fa_to_delete = fa;
1647 break;
1648 }
1649 }
1650
91b9a277
OJ
1651 if (!fa_to_delete)
1652 return -ESRCH;
19baf839 1653
91b9a277 1654 fa = fa_to_delete;
4e902c57 1655 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1656 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1657
1658 l = fib_find_node(t, key);
772cb712 1659 li = find_leaf_info(l, plen);
19baf839 1660
2373ce1c 1661 list_del_rcu(&fa->fa_list);
19baf839 1662
91b9a277 1663 if (list_empty(fa_head)) {
2373ce1c 1664 hlist_del_rcu(&li->hlist);
91b9a277 1665 free_leaf_info(li);
2373ce1c 1666 }
19baf839 1667
91b9a277 1668 if (hlist_empty(&l->list))
9195bef7 1669 trie_leaf_remove(t, l);
19baf839 1670
91b9a277 1671 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1672 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1673
2373ce1c
RO
1674 fib_release_info(fa->fa_info);
1675 alias_free_mem_rcu(fa);
91b9a277 1676 return 0;
19baf839
RO
1677}
1678
ef3660ce 1679static int trie_flush_list(struct list_head *head)
19baf839
RO
1680{
1681 struct fib_alias *fa, *fa_node;
1682 int found = 0;
1683
1684 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1685 struct fib_info *fi = fa->fa_info;
19baf839 1686
2373ce1c
RO
1687 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1688 list_del_rcu(&fa->fa_list);
1689 fib_release_info(fa->fa_info);
1690 alias_free_mem_rcu(fa);
19baf839
RO
1691 found++;
1692 }
1693 }
1694 return found;
1695}
1696
ef3660ce 1697static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1698{
1699 int found = 0;
1700 struct hlist_head *lih = &l->list;
1701 struct hlist_node *node, *tmp;
1702 struct leaf_info *li = NULL;
1703
1704 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1705 found += trie_flush_list(&li->falh);
19baf839
RO
1706
1707 if (list_empty(&li->falh)) {
2373ce1c 1708 hlist_del_rcu(&li->hlist);
19baf839
RO
1709 free_leaf_info(li);
1710 }
1711 }
1712 return found;
1713}
1714
82cfbb00
SH
1715/*
1716 * Scan for the next right leaf starting at node p->child[idx]
1717 * Since we have back pointer, no recursion necessary.
1718 */
1719static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
19baf839 1720{
82cfbb00
SH
1721 do {
1722 t_key idx;
c877efb2 1723
c877efb2 1724 if (c)
82cfbb00 1725 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1726 else
82cfbb00 1727 idx = 0;
2373ce1c 1728
82cfbb00
SH
1729 while (idx < 1u << p->bits) {
1730 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1731 if (!c)
91b9a277
OJ
1732 continue;
1733
82cfbb00
SH
1734 if (IS_LEAF(c)) {
1735 prefetch(p->child[idx]);
1736 return (struct leaf *) c;
19baf839 1737 }
82cfbb00
SH
1738
1739 /* Rescan start scanning in new node */
1740 p = (struct tnode *) c;
1741 idx = 0;
19baf839 1742 }
82cfbb00
SH
1743
1744 /* Node empty, walk back up to parent */
91b9a277 1745 c = (struct node *) p;
82cfbb00
SH
1746 } while ( (p = node_parent_rcu(c)) != NULL);
1747
1748 return NULL; /* Root of trie */
1749}
1750
82cfbb00
SH
1751static struct leaf *trie_firstleaf(struct trie *t)
1752{
1753 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1754
1755 if (!n)
1756 return NULL;
1757
1758 if (IS_LEAF(n)) /* trie is just a leaf */
1759 return (struct leaf *) n;
1760
1761 return leaf_walk_rcu(n, NULL);
1762}
1763
1764static struct leaf *trie_nextleaf(struct leaf *l)
1765{
1766 struct node *c = (struct node *) l;
b902e573 1767 struct tnode *p = node_parent_rcu(c);
82cfbb00
SH
1768
1769 if (!p)
1770 return NULL; /* trie with just one leaf */
1771
1772 return leaf_walk_rcu(p, c);
19baf839
RO
1773}
1774
71d67e66
SH
1775static struct leaf *trie_leafindex(struct trie *t, int index)
1776{
1777 struct leaf *l = trie_firstleaf(t);
1778
ec28cf73 1779 while (l && index-- > 0)
71d67e66 1780 l = trie_nextleaf(l);
ec28cf73 1781
71d67e66
SH
1782 return l;
1783}
1784
1785
d562f1f8
RO
1786/*
1787 * Caller must hold RTNL.
1788 */
19baf839
RO
1789static int fn_trie_flush(struct fib_table *tb)
1790{
1791 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1792 struct leaf *l, *ll = NULL;
82cfbb00 1793 int found = 0;
19baf839 1794
82cfbb00 1795 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1796 found += trie_flush_leaf(l);
19baf839
RO
1797
1798 if (ll && hlist_empty(&ll->list))
9195bef7 1799 trie_leaf_remove(t, ll);
19baf839
RO
1800 ll = l;
1801 }
1802
1803 if (ll && hlist_empty(&ll->list))
9195bef7 1804 trie_leaf_remove(t, ll);
19baf839 1805
0c7770c7 1806 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1807 return found;
1808}
1809
a07f5f50
SH
1810static void fn_trie_select_default(struct fib_table *tb,
1811 const struct flowi *flp,
1812 struct fib_result *res)
19baf839
RO
1813{
1814 struct trie *t = (struct trie *) tb->tb_data;
1815 int order, last_idx;
1816 struct fib_info *fi = NULL;
1817 struct fib_info *last_resort;
1818 struct fib_alias *fa = NULL;
1819 struct list_head *fa_head;
1820 struct leaf *l;
1821
1822 last_idx = -1;
1823 last_resort = NULL;
1824 order = -1;
1825
2373ce1c 1826 rcu_read_lock();
c877efb2 1827
19baf839 1828 l = fib_find_node(t, 0);
c877efb2 1829 if (!l)
19baf839
RO
1830 goto out;
1831
1832 fa_head = get_fa_head(l, 0);
c877efb2 1833 if (!fa_head)
19baf839
RO
1834 goto out;
1835
c877efb2 1836 if (list_empty(fa_head))
19baf839
RO
1837 goto out;
1838
2373ce1c 1839 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1840 struct fib_info *next_fi = fa->fa_info;
91b9a277 1841
19baf839
RO
1842 if (fa->fa_scope != res->scope ||
1843 fa->fa_type != RTN_UNICAST)
1844 continue;
91b9a277 1845
19baf839
RO
1846 if (next_fi->fib_priority > res->fi->fib_priority)
1847 break;
1848 if (!next_fi->fib_nh[0].nh_gw ||
1849 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1850 continue;
1851 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1852
19baf839
RO
1853 if (fi == NULL) {
1854 if (next_fi != res->fi)
1855 break;
1856 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1857 &last_idx, tb->tb_default)) {
a2bbe682 1858 fib_result_assign(res, fi);
971b893e 1859 tb->tb_default = order;
19baf839
RO
1860 goto out;
1861 }
1862 fi = next_fi;
1863 order++;
1864 }
1865 if (order <= 0 || fi == NULL) {
971b893e 1866 tb->tb_default = -1;
19baf839
RO
1867 goto out;
1868 }
1869
971b893e
DL
1870 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1871 tb->tb_default)) {
a2bbe682 1872 fib_result_assign(res, fi);
971b893e 1873 tb->tb_default = order;
19baf839
RO
1874 goto out;
1875 }
a2bbe682
DL
1876 if (last_idx >= 0)
1877 fib_result_assign(res, last_resort);
971b893e
DL
1878 tb->tb_default = last_idx;
1879out:
2373ce1c 1880 rcu_read_unlock();
19baf839
RO
1881}
1882
a07f5f50
SH
1883static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1884 struct fib_table *tb,
19baf839
RO
1885 struct sk_buff *skb, struct netlink_callback *cb)
1886{
1887 int i, s_i;
1888 struct fib_alias *fa;
32ab5f80 1889 __be32 xkey = htonl(key);
19baf839 1890
71d67e66 1891 s_i = cb->args[5];
19baf839
RO
1892 i = 0;
1893
2373ce1c
RO
1894 /* rcu_read_lock is hold by caller */
1895
1896 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1897 if (i < s_i) {
1898 i++;
1899 continue;
1900 }
19baf839
RO
1901
1902 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1903 cb->nlh->nlmsg_seq,
1904 RTM_NEWROUTE,
1905 tb->tb_id,
1906 fa->fa_type,
1907 fa->fa_scope,
be403ea1 1908 xkey,
19baf839
RO
1909 plen,
1910 fa->fa_tos,
64347f78 1911 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1912 cb->args[5] = i;
19baf839 1913 return -1;
91b9a277 1914 }
19baf839
RO
1915 i++;
1916 }
71d67e66 1917 cb->args[5] = i;
19baf839
RO
1918 return skb->len;
1919}
1920
a88ee229
SH
1921static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1922 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1923{
a88ee229
SH
1924 struct leaf_info *li;
1925 struct hlist_node *node;
1926 int i, s_i;
19baf839 1927
71d67e66 1928 s_i = cb->args[4];
a88ee229 1929 i = 0;
19baf839 1930
a88ee229
SH
1931 /* rcu_read_lock is hold by caller */
1932 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1933 if (i < s_i) {
1934 i++;
19baf839 1935 continue;
a88ee229 1936 }
91b9a277 1937
a88ee229 1938 if (i > s_i)
71d67e66 1939 cb->args[5] = 0;
19baf839 1940
a88ee229 1941 if (list_empty(&li->falh))
19baf839
RO
1942 continue;
1943
a88ee229 1944 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1945 cb->args[4] = i;
19baf839
RO
1946 return -1;
1947 }
a88ee229 1948 i++;
19baf839 1949 }
a88ee229 1950
71d67e66 1951 cb->args[4] = i;
19baf839
RO
1952 return skb->len;
1953}
1954
a07f5f50
SH
1955static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1956 struct netlink_callback *cb)
19baf839 1957{
a88ee229 1958 struct leaf *l;
19baf839 1959 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1960 t_key key = cb->args[2];
71d67e66 1961 int count = cb->args[3];
19baf839 1962
2373ce1c 1963 rcu_read_lock();
d5ce8a0e
SH
1964 /* Dump starting at last key.
1965 * Note: 0.0.0.0/0 (ie default) is first key.
1966 */
71d67e66 1967 if (count == 0)
d5ce8a0e
SH
1968 l = trie_firstleaf(t);
1969 else {
71d67e66
SH
1970 /* Normally, continue from last key, but if that is missing
1971 * fallback to using slow rescan
1972 */
d5ce8a0e 1973 l = fib_find_node(t, key);
71d67e66
SH
1974 if (!l)
1975 l = trie_leafindex(t, count);
d5ce8a0e 1976 }
a88ee229 1977
d5ce8a0e
SH
1978 while (l) {
1979 cb->args[2] = l->key;
a88ee229 1980 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1981 cb->args[3] = count;
a88ee229 1982 rcu_read_unlock();
a88ee229 1983 return -1;
19baf839 1984 }
d5ce8a0e 1985
71d67e66 1986 ++count;
d5ce8a0e 1987 l = trie_nextleaf(l);
71d67e66
SH
1988 memset(&cb->args[4], 0,
1989 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1990 }
71d67e66 1991 cb->args[3] = count;
2373ce1c 1992 rcu_read_unlock();
a88ee229 1993
19baf839 1994 return skb->len;
19baf839
RO
1995}
1996
7f9b8052
SH
1997void __init fib_hash_init(void)
1998{
a07f5f50
SH
1999 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2000 sizeof(struct fib_alias),
bc3c8c1e
SH
2001 0, SLAB_PANIC, NULL);
2002
2003 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2004 max(sizeof(struct leaf),
2005 sizeof(struct leaf_info)),
2006 0, SLAB_PANIC, NULL);
7f9b8052 2007}
19baf839 2008
7f9b8052
SH
2009
2010/* Fix more generic FIB names for init later */
2011struct fib_table *fib_hash_table(u32 id)
19baf839
RO
2012{
2013 struct fib_table *tb;
2014 struct trie *t;
2015
19baf839
RO
2016 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2017 GFP_KERNEL);
2018 if (tb == NULL)
2019 return NULL;
2020
2021 tb->tb_id = id;
971b893e 2022 tb->tb_default = -1;
19baf839
RO
2023 tb->tb_lookup = fn_trie_lookup;
2024 tb->tb_insert = fn_trie_insert;
2025 tb->tb_delete = fn_trie_delete;
2026 tb->tb_flush = fn_trie_flush;
2027 tb->tb_select_default = fn_trie_select_default;
2028 tb->tb_dump = fn_trie_dump;
19baf839
RO
2029
2030 t = (struct trie *) tb->tb_data;
c28a1cf4 2031 memset(t, 0, sizeof(*t));
19baf839 2032
19baf839 2033 if (id == RT_TABLE_LOCAL)
a07f5f50 2034 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
2035
2036 return tb;
2037}
2038
cb7b593c
SH
2039#ifdef CONFIG_PROC_FS
2040/* Depth first Trie walk iterator */
2041struct fib_trie_iter {
1c340b2f 2042 struct seq_net_private p;
3d3b2d25 2043 struct fib_table *tb;
cb7b593c 2044 struct tnode *tnode;
cb7b593c
SH
2045 unsigned index;
2046 unsigned depth;
2047};
19baf839 2048
cb7b593c 2049static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2050{
cb7b593c
SH
2051 struct tnode *tn = iter->tnode;
2052 unsigned cindex = iter->index;
2053 struct tnode *p;
19baf839 2054
6640e697
EB
2055 /* A single entry routing table */
2056 if (!tn)
2057 return NULL;
2058
cb7b593c
SH
2059 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2060 iter->tnode, iter->index, iter->depth);
2061rescan:
2062 while (cindex < (1<<tn->bits)) {
b59cfbf7 2063 struct node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2064
cb7b593c
SH
2065 if (n) {
2066 if (IS_LEAF(n)) {
2067 iter->tnode = tn;
2068 iter->index = cindex + 1;
2069 } else {
2070 /* push down one level */
2071 iter->tnode = (struct tnode *) n;
2072 iter->index = 0;
2073 ++iter->depth;
2074 }
2075 return n;
2076 }
19baf839 2077
cb7b593c
SH
2078 ++cindex;
2079 }
91b9a277 2080
cb7b593c 2081 /* Current node exhausted, pop back up */
b59cfbf7 2082 p = node_parent_rcu((struct node *)tn);
cb7b593c
SH
2083 if (p) {
2084 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2085 tn = p;
2086 --iter->depth;
2087 goto rescan;
19baf839 2088 }
cb7b593c
SH
2089
2090 /* got root? */
2091 return NULL;
19baf839
RO
2092}
2093
cb7b593c
SH
2094static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2095 struct trie *t)
19baf839 2096{
3d3b2d25 2097 struct node *n;
5ddf0eb2 2098
132adf54 2099 if (!t)
5ddf0eb2
RO
2100 return NULL;
2101
2102 n = rcu_dereference(t->trie);
3d3b2d25 2103 if (!n)
5ddf0eb2 2104 return NULL;
19baf839 2105
3d3b2d25
SH
2106 if (IS_TNODE(n)) {
2107 iter->tnode = (struct tnode *) n;
2108 iter->index = 0;
2109 iter->depth = 1;
2110 } else {
2111 iter->tnode = NULL;
2112 iter->index = 0;
2113 iter->depth = 0;
91b9a277 2114 }
3d3b2d25
SH
2115
2116 return n;
cb7b593c 2117}
91b9a277 2118
cb7b593c
SH
2119static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2120{
2121 struct node *n;
2122 struct fib_trie_iter iter;
91b9a277 2123
cb7b593c 2124 memset(s, 0, sizeof(*s));
91b9a277 2125
cb7b593c 2126 rcu_read_lock();
3d3b2d25 2127 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2128 if (IS_LEAF(n)) {
93672292
SH
2129 struct leaf *l = (struct leaf *)n;
2130 struct leaf_info *li;
2131 struct hlist_node *tmp;
2132
cb7b593c
SH
2133 s->leaves++;
2134 s->totdepth += iter.depth;
2135 if (iter.depth > s->maxdepth)
2136 s->maxdepth = iter.depth;
93672292
SH
2137
2138 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2139 ++s->prefixes;
cb7b593c
SH
2140 } else {
2141 const struct tnode *tn = (const struct tnode *) n;
2142 int i;
2143
2144 s->tnodes++;
132adf54 2145 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2146 s->nodesizes[tn->bits]++;
2147
cb7b593c
SH
2148 for (i = 0; i < (1<<tn->bits); i++)
2149 if (!tn->child[i])
2150 s->nullpointers++;
19baf839 2151 }
19baf839 2152 }
2373ce1c 2153 rcu_read_unlock();
19baf839
RO
2154}
2155
cb7b593c
SH
2156/*
2157 * This outputs /proc/net/fib_triestats
2158 */
2159static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2160{
cb7b593c 2161 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2162
cb7b593c
SH
2163 if (stat->leaves)
2164 avdepth = stat->totdepth*100 / stat->leaves;
2165 else
2166 avdepth = 0;
91b9a277 2167
a07f5f50
SH
2168 seq_printf(seq, "\tAver depth: %u.%02d\n",
2169 avdepth / 100, avdepth % 100);
cb7b593c 2170 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2171
cb7b593c 2172 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2173 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2174
2175 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2176 bytes += sizeof(struct leaf_info) * stat->prefixes;
2177
187b5188 2178 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2179 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2180
06ef921d
RO
2181 max = MAX_STAT_DEPTH;
2182 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2183 max--;
19baf839 2184
cb7b593c
SH
2185 pointers = 0;
2186 for (i = 1; i <= max; i++)
2187 if (stat->nodesizes[i] != 0) {
187b5188 2188 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2189 pointers += (1<<i) * stat->nodesizes[i];
2190 }
2191 seq_putc(seq, '\n');
187b5188 2192 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2193
cb7b593c 2194 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2195 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2196 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2197}
2373ce1c 2198
cb7b593c 2199#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2200static void trie_show_usage(struct seq_file *seq,
2201 const struct trie_use_stats *stats)
2202{
2203 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2204 seq_printf(seq, "gets = %u\n", stats->gets);
2205 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2206 seq_printf(seq, "semantic match passed = %u\n",
2207 stats->semantic_match_passed);
2208 seq_printf(seq, "semantic match miss = %u\n",
2209 stats->semantic_match_miss);
2210 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2211 seq_printf(seq, "skipped node resize = %u\n\n",
2212 stats->resize_node_skipped);
cb7b593c 2213}
66a2f7fd
SH
2214#endif /* CONFIG_IP_FIB_TRIE_STATS */
2215
3d3b2d25 2216static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2217{
3d3b2d25
SH
2218 if (tb->tb_id == RT_TABLE_LOCAL)
2219 seq_puts(seq, "Local:\n");
2220 else if (tb->tb_id == RT_TABLE_MAIN)
2221 seq_puts(seq, "Main:\n");
2222 else
2223 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2224}
19baf839 2225
3d3b2d25 2226
cb7b593c
SH
2227static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2228{
1c340b2f 2229 struct net *net = (struct net *)seq->private;
3d3b2d25 2230 unsigned int h;
877a9bff 2231
d717a9a6 2232 seq_printf(seq,
a07f5f50
SH
2233 "Basic info: size of leaf:"
2234 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2235 sizeof(struct leaf), sizeof(struct tnode));
2236
3d3b2d25
SH
2237 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2238 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2239 struct hlist_node *node;
2240 struct fib_table *tb;
2241
2242 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2243 struct trie *t = (struct trie *) tb->tb_data;
2244 struct trie_stat stat;
877a9bff 2245
3d3b2d25
SH
2246 if (!t)
2247 continue;
2248
2249 fib_table_print(seq, tb);
2250
2251 trie_collect_stats(t, &stat);
2252 trie_show_stats(seq, &stat);
2253#ifdef CONFIG_IP_FIB_TRIE_STATS
2254 trie_show_usage(seq, &t->stats);
2255#endif
2256 }
2257 }
19baf839 2258
cb7b593c 2259 return 0;
19baf839
RO
2260}
2261
cb7b593c 2262static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2263{
de05c557 2264 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2265}
2266
9a32144e 2267static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2268 .owner = THIS_MODULE,
2269 .open = fib_triestat_seq_open,
2270 .read = seq_read,
2271 .llseek = seq_lseek,
b6fcbdb4 2272 .release = single_release_net,
cb7b593c
SH
2273};
2274
1218854a 2275static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2276{
1218854a
YH
2277 struct fib_trie_iter *iter = seq->private;
2278 struct net *net = seq_file_net(seq);
cb7b593c 2279 loff_t idx = 0;
3d3b2d25 2280 unsigned int h;
cb7b593c 2281
3d3b2d25
SH
2282 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2283 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2284 struct hlist_node *node;
2285 struct fib_table *tb;
cb7b593c 2286
3d3b2d25
SH
2287 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2288 struct node *n;
2289
2290 for (n = fib_trie_get_first(iter,
2291 (struct trie *) tb->tb_data);
2292 n; n = fib_trie_get_next(iter))
2293 if (pos == idx++) {
2294 iter->tb = tb;
2295 return n;
2296 }
2297 }
cb7b593c 2298 }
3d3b2d25 2299
19baf839
RO
2300 return NULL;
2301}
2302
cb7b593c 2303static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2304 __acquires(RCU)
19baf839 2305{
cb7b593c 2306 rcu_read_lock();
1218854a 2307 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2308}
2309
cb7b593c 2310static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2311{
cb7b593c 2312 struct fib_trie_iter *iter = seq->private;
1218854a 2313 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2314 struct fib_table *tb = iter->tb;
2315 struct hlist_node *tb_node;
2316 unsigned int h;
2317 struct node *n;
cb7b593c 2318
19baf839 2319 ++*pos;
3d3b2d25
SH
2320 /* next node in same table */
2321 n = fib_trie_get_next(iter);
2322 if (n)
2323 return n;
19baf839 2324
3d3b2d25
SH
2325 /* walk rest of this hash chain */
2326 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2327 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2328 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2329 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2330 if (n)
2331 goto found;
2332 }
19baf839 2333
3d3b2d25
SH
2334 /* new hash chain */
2335 while (++h < FIB_TABLE_HASHSZ) {
2336 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2337 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2338 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2339 if (n)
2340 goto found;
2341 }
2342 }
cb7b593c 2343 return NULL;
3d3b2d25
SH
2344
2345found:
2346 iter->tb = tb;
2347 return n;
cb7b593c 2348}
19baf839 2349
cb7b593c 2350static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2351 __releases(RCU)
19baf839 2352{
cb7b593c
SH
2353 rcu_read_unlock();
2354}
91b9a277 2355
cb7b593c
SH
2356static void seq_indent(struct seq_file *seq, int n)
2357{
2358 while (n-- > 0) seq_puts(seq, " ");
2359}
19baf839 2360
28d36e37 2361static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2362{
132adf54 2363 switch (s) {
cb7b593c
SH
2364 case RT_SCOPE_UNIVERSE: return "universe";
2365 case RT_SCOPE_SITE: return "site";
2366 case RT_SCOPE_LINK: return "link";
2367 case RT_SCOPE_HOST: return "host";
2368 case RT_SCOPE_NOWHERE: return "nowhere";
2369 default:
28d36e37 2370 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2371 return buf;
2372 }
2373}
19baf839 2374
36cbd3dc 2375static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2376 [RTN_UNSPEC] = "UNSPEC",
2377 [RTN_UNICAST] = "UNICAST",
2378 [RTN_LOCAL] = "LOCAL",
2379 [RTN_BROADCAST] = "BROADCAST",
2380 [RTN_ANYCAST] = "ANYCAST",
2381 [RTN_MULTICAST] = "MULTICAST",
2382 [RTN_BLACKHOLE] = "BLACKHOLE",
2383 [RTN_UNREACHABLE] = "UNREACHABLE",
2384 [RTN_PROHIBIT] = "PROHIBIT",
2385 [RTN_THROW] = "THROW",
2386 [RTN_NAT] = "NAT",
2387 [RTN_XRESOLVE] = "XRESOLVE",
2388};
19baf839 2389
28d36e37 2390static inline const char *rtn_type(char *buf, size_t len, unsigned t)
cb7b593c 2391{
cb7b593c
SH
2392 if (t < __RTN_MAX && rtn_type_names[t])
2393 return rtn_type_names[t];
28d36e37 2394 snprintf(buf, len, "type %u", t);
cb7b593c 2395 return buf;
19baf839
RO
2396}
2397
cb7b593c
SH
2398/* Pretty print the trie */
2399static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2400{
cb7b593c
SH
2401 const struct fib_trie_iter *iter = seq->private;
2402 struct node *n = v;
c877efb2 2403
3d3b2d25
SH
2404 if (!node_parent_rcu(n))
2405 fib_table_print(seq, iter->tb);
095b8501 2406
cb7b593c
SH
2407 if (IS_TNODE(n)) {
2408 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2409 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2410
1d25cd6c 2411 seq_indent(seq, iter->depth-1);
673d57e7
HH
2412 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2413 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2414 tn->empty_children);
e905a9ed 2415
cb7b593c
SH
2416 } else {
2417 struct leaf *l = (struct leaf *) n;
1328042e
SH
2418 struct leaf_info *li;
2419 struct hlist_node *node;
32ab5f80 2420 __be32 val = htonl(l->key);
cb7b593c
SH
2421
2422 seq_indent(seq, iter->depth);
673d57e7 2423 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2424
2425 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2426 struct fib_alias *fa;
2427
2428 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2429 char buf1[32], buf2[32];
2430
2431 seq_indent(seq, iter->depth+1);
2432 seq_printf(seq, " /%d %s %s", li->plen,
2433 rtn_scope(buf1, sizeof(buf1),
2434 fa->fa_scope),
2435 rtn_type(buf2, sizeof(buf2),
2436 fa->fa_type));
2437 if (fa->fa_tos)
b9c4d82a 2438 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2439 seq_putc(seq, '\n');
cb7b593c
SH
2440 }
2441 }
19baf839 2442 }
cb7b593c 2443
19baf839
RO
2444 return 0;
2445}
2446
f690808e 2447static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2448 .start = fib_trie_seq_start,
2449 .next = fib_trie_seq_next,
2450 .stop = fib_trie_seq_stop,
2451 .show = fib_trie_seq_show,
19baf839
RO
2452};
2453
cb7b593c 2454static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2455{
1c340b2f
DL
2456 return seq_open_net(inode, file, &fib_trie_seq_ops,
2457 sizeof(struct fib_trie_iter));
19baf839
RO
2458}
2459
9a32144e 2460static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2461 .owner = THIS_MODULE,
2462 .open = fib_trie_seq_open,
2463 .read = seq_read,
2464 .llseek = seq_lseek,
1c340b2f 2465 .release = seq_release_net,
19baf839
RO
2466};
2467
8315f5d8
SH
2468struct fib_route_iter {
2469 struct seq_net_private p;
2470 struct trie *main_trie;
2471 loff_t pos;
2472 t_key key;
2473};
2474
2475static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2476{
2477 struct leaf *l = NULL;
2478 struct trie *t = iter->main_trie;
2479
2480 /* use cache location of last found key */
2481 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2482 pos -= iter->pos;
2483 else {
2484 iter->pos = 0;
2485 l = trie_firstleaf(t);
2486 }
2487
2488 while (l && pos-- > 0) {
2489 iter->pos++;
2490 l = trie_nextleaf(l);
2491 }
2492
2493 if (l)
2494 iter->key = pos; /* remember it */
2495 else
2496 iter->pos = 0; /* forget it */
2497
2498 return l;
2499}
2500
2501static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2502 __acquires(RCU)
2503{
2504 struct fib_route_iter *iter = seq->private;
2505 struct fib_table *tb;
2506
2507 rcu_read_lock();
1218854a 2508 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2509 if (!tb)
2510 return NULL;
2511
2512 iter->main_trie = (struct trie *) tb->tb_data;
2513 if (*pos == 0)
2514 return SEQ_START_TOKEN;
2515 else
2516 return fib_route_get_idx(iter, *pos - 1);
2517}
2518
2519static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2520{
2521 struct fib_route_iter *iter = seq->private;
2522 struct leaf *l = v;
2523
2524 ++*pos;
2525 if (v == SEQ_START_TOKEN) {
2526 iter->pos = 0;
2527 l = trie_firstleaf(iter->main_trie);
2528 } else {
2529 iter->pos++;
2530 l = trie_nextleaf(l);
2531 }
2532
2533 if (l)
2534 iter->key = l->key;
2535 else
2536 iter->pos = 0;
2537 return l;
2538}
2539
2540static void fib_route_seq_stop(struct seq_file *seq, void *v)
2541 __releases(RCU)
2542{
2543 rcu_read_unlock();
2544}
2545
32ab5f80 2546static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2547{
cb7b593c
SH
2548 static unsigned type2flags[RTN_MAX + 1] = {
2549 [7] = RTF_REJECT, [8] = RTF_REJECT,
2550 };
2551 unsigned flags = type2flags[type];
19baf839 2552
cb7b593c
SH
2553 if (fi && fi->fib_nh->nh_gw)
2554 flags |= RTF_GATEWAY;
32ab5f80 2555 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2556 flags |= RTF_HOST;
2557 flags |= RTF_UP;
2558 return flags;
19baf839
RO
2559}
2560
cb7b593c
SH
2561/*
2562 * This outputs /proc/net/route.
2563 * The format of the file is not supposed to be changed
2564 * and needs to be same as fib_hash output to avoid breaking
2565 * legacy utilities
2566 */
2567static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2568{
cb7b593c 2569 struct leaf *l = v;
1328042e
SH
2570 struct leaf_info *li;
2571 struct hlist_node *node;
19baf839 2572
cb7b593c
SH
2573 if (v == SEQ_START_TOKEN) {
2574 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2575 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2576 "\tWindow\tIRTT");
2577 return 0;
2578 }
19baf839 2579
1328042e 2580 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2581 struct fib_alias *fa;
32ab5f80 2582 __be32 mask, prefix;
91b9a277 2583
cb7b593c
SH
2584 mask = inet_make_mask(li->plen);
2585 prefix = htonl(l->key);
19baf839 2586
cb7b593c 2587 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2588 const struct fib_info *fi = fa->fa_info;
cb7b593c 2589 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2590 int len;
19baf839 2591
cb7b593c
SH
2592 if (fa->fa_type == RTN_BROADCAST
2593 || fa->fa_type == RTN_MULTICAST)
2594 continue;
19baf839 2595
cb7b593c 2596 if (fi)
5e659e4c
PE
2597 seq_printf(seq,
2598 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2599 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2600 fi->fib_dev ? fi->fib_dev->name : "*",
2601 prefix,
2602 fi->fib_nh->nh_gw, flags, 0, 0,
2603 fi->fib_priority,
2604 mask,
a07f5f50
SH
2605 (fi->fib_advmss ?
2606 fi->fib_advmss + 40 : 0),
cb7b593c 2607 fi->fib_window,
5e659e4c 2608 fi->fib_rtt >> 3, &len);
cb7b593c 2609 else
5e659e4c
PE
2610 seq_printf(seq,
2611 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2612 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2613 prefix, 0, flags, 0, 0, 0,
5e659e4c 2614 mask, 0, 0, 0, &len);
19baf839 2615
5e659e4c 2616 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2617 }
19baf839
RO
2618 }
2619
2620 return 0;
2621}
2622
f690808e 2623static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2624 .start = fib_route_seq_start,
2625 .next = fib_route_seq_next,
2626 .stop = fib_route_seq_stop,
cb7b593c 2627 .show = fib_route_seq_show,
19baf839
RO
2628};
2629
cb7b593c 2630static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2631{
1c340b2f 2632 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2633 sizeof(struct fib_route_iter));
19baf839
RO
2634}
2635
9a32144e 2636static const struct file_operations fib_route_fops = {
cb7b593c
SH
2637 .owner = THIS_MODULE,
2638 .open = fib_route_seq_open,
2639 .read = seq_read,
2640 .llseek = seq_lseek,
1c340b2f 2641 .release = seq_release_net,
19baf839
RO
2642};
2643
61a02653 2644int __net_init fib_proc_init(struct net *net)
19baf839 2645{
61a02653 2646 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2647 goto out1;
2648
61a02653
DL
2649 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2650 &fib_triestat_fops))
cb7b593c
SH
2651 goto out2;
2652
61a02653 2653 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2654 goto out3;
2655
19baf839 2656 return 0;
cb7b593c
SH
2657
2658out3:
61a02653 2659 proc_net_remove(net, "fib_triestat");
cb7b593c 2660out2:
61a02653 2661 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2662out1:
2663 return -ENOMEM;
19baf839
RO
2664}
2665
61a02653 2666void __net_exit fib_proc_exit(struct net *net)
19baf839 2667{
61a02653
DL
2668 proc_net_remove(net, "fib_trie");
2669 proc_net_remove(net, "fib_triestat");
2670 proc_net_remove(net, "route");
19baf839
RO
2671}
2672
2673#endif /* CONFIG_PROC_FS */