]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/ipv4/fib_trie.c
cpufreq: CPPC: Don't set transition_latency
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
7c0f6ba6 53#include <linux/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
ffa915d0 75#include <linux/vmalloc.h>
b90eb754 76#include <linux/notifier.h>
457c4cbc 77#include <net/net_namespace.h>
19baf839
RO
78#include <net/ip.h>
79#include <net/protocol.h>
80#include <net/route.h>
81#include <net/tcp.h>
82#include <net/sock.h>
83#include <net/ip_fib.h>
04b1d4e5 84#include <net/fib_notifier.h>
f6d3c192 85#include <trace/events/fib.h>
19baf839
RO
86#include "fib_lookup.h"
87
c3852ef7
IS
88static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
89 enum fib_event_type event_type, u32 dst,
6eba87c7 90 int dst_len, struct fib_alias *fa)
c3852ef7
IS
91{
92 struct fib_entry_notifier_info info = {
93 .dst = dst,
94 .dst_len = dst_len,
6eba87c7
DA
95 .fi = fa->fa_info,
96 .tos = fa->fa_tos,
97 .type = fa->fa_type,
98 .tb_id = fa->tb_id,
c3852ef7 99 };
04b1d4e5 100 return call_fib4_notifier(nb, net, event_type, &info.info);
c3852ef7
IS
101}
102
b90eb754
JP
103static int call_fib_entry_notifiers(struct net *net,
104 enum fib_event_type event_type, u32 dst,
6c31e5a9
DA
105 int dst_len, struct fib_alias *fa,
106 struct netlink_ext_ack *extack)
b90eb754
JP
107{
108 struct fib_entry_notifier_info info = {
6c31e5a9 109 .info.extack = extack,
b90eb754
JP
110 .dst = dst,
111 .dst_len = dst_len,
6eba87c7
DA
112 .fi = fa->fa_info,
113 .tos = fa->fa_tos,
114 .type = fa->fa_type,
115 .tb_id = fa->tb_id,
b90eb754 116 };
04b1d4e5 117 return call_fib4_notifiers(net, event_type, &info.info);
b90eb754
JP
118}
119
06ef921d 120#define MAX_STAT_DEPTH 32
19baf839 121
95f60ea3
AD
122#define KEYLENGTH (8*sizeof(t_key))
123#define KEY_MAX ((t_key)~0)
19baf839 124
19baf839
RO
125typedef unsigned int t_key;
126
88bae714
AD
127#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
128#define IS_TNODE(n) ((n)->bits)
129#define IS_LEAF(n) (!(n)->bits)
2373ce1c 130
35c6edac 131struct key_vector {
64c9b6fb 132 t_key key;
64c9b6fb 133 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 134 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 135 unsigned char slen;
adaf9816 136 union {
41b489fd 137 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 138 struct hlist_head leaf;
41b489fd 139 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 140 struct key_vector __rcu *tnode[0];
adaf9816 141 };
19baf839
RO
142};
143
dc35dbed 144struct tnode {
56ca2adf 145 struct rcu_head rcu;
6e22d174
AD
146 t_key empty_children; /* KEYLENGTH bits needed */
147 t_key full_children; /* KEYLENGTH bits needed */
f23e59fb 148 struct key_vector __rcu *parent;
dc35dbed 149 struct key_vector kv[1];
56ca2adf 150#define tn_bits kv[0].bits
dc35dbed
AD
151};
152
153#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
154#define LEAF_SIZE TNODE_SIZE(1)
155
19baf839
RO
156#ifdef CONFIG_IP_FIB_TRIE_STATS
157struct trie_use_stats {
158 unsigned int gets;
159 unsigned int backtrack;
160 unsigned int semantic_match_passed;
161 unsigned int semantic_match_miss;
162 unsigned int null_node_hit;
2f36895a 163 unsigned int resize_node_skipped;
19baf839
RO
164};
165#endif
166
167struct trie_stat {
168 unsigned int totdepth;
169 unsigned int maxdepth;
170 unsigned int tnodes;
171 unsigned int leaves;
172 unsigned int nullpointers;
93672292 173 unsigned int prefixes;
06ef921d 174 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 175};
19baf839
RO
176
177struct trie {
88bae714 178 struct key_vector kv[1];
19baf839 179#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 180 struct trie_use_stats __percpu *stats;
19baf839 181#endif
19baf839
RO
182};
183
88bae714 184static struct key_vector *resize(struct trie *t, struct key_vector *tn);
c3059477
JP
185static size_t tnode_free_size;
186
187/*
188 * synchronize_rcu after call_rcu for that many pages; it should be especially
189 * useful before resizing the root node with PREEMPT_NONE configs; the value was
190 * obtained experimentally, aiming to avoid visible slowdown.
191 */
192static const int sync_pages = 128;
19baf839 193
e18b890b 194static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 195static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 196
56ca2adf
AD
197static inline struct tnode *tn_info(struct key_vector *kv)
198{
199 return container_of(kv, struct tnode, kv[0]);
200}
201
64c9b6fb 202/* caller must hold RTNL */
f23e59fb 203#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
754baf8d 204#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 205
64c9b6fb 206/* caller must hold RCU read lock or RTNL */
f23e59fb 207#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
754baf8d 208#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 209
64c9b6fb 210/* wrapper for rcu_assign_pointer */
35c6edac 211static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 212{
adaf9816 213 if (n)
f23e59fb 214 rcu_assign_pointer(tn_info(n)->parent, tp);
06801916
SH
215}
216
f23e59fb 217#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
64c9b6fb
AD
218
219/* This provides us with the number of children in this node, in the case of a
220 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 221 */
2e1ac88a 222static inline unsigned long child_length(const struct key_vector *tn)
06801916 223{
64c9b6fb 224 return (1ul << tn->bits) & ~(1ul);
06801916 225}
2373ce1c 226
88bae714
AD
227#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
228
2e1ac88a
AD
229static inline unsigned long get_index(t_key key, struct key_vector *kv)
230{
231 unsigned long index = key ^ kv->key;
232
88bae714
AD
233 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
234 return 0;
235
2e1ac88a
AD
236 return index >> kv->pos;
237}
238
e9b44019
AD
239/* To understand this stuff, an understanding of keys and all their bits is
240 * necessary. Every node in the trie has a key associated with it, but not
241 * all of the bits in that key are significant.
242 *
243 * Consider a node 'n' and its parent 'tp'.
244 *
245 * If n is a leaf, every bit in its key is significant. Its presence is
246 * necessitated by path compression, since during a tree traversal (when
247 * searching for a leaf - unless we are doing an insertion) we will completely
248 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
249 * a potentially successful search, that we have indeed been walking the
250 * correct key path.
251 *
252 * Note that we can never "miss" the correct key in the tree if present by
253 * following the wrong path. Path compression ensures that segments of the key
254 * that are the same for all keys with a given prefix are skipped, but the
255 * skipped part *is* identical for each node in the subtrie below the skipped
256 * bit! trie_insert() in this implementation takes care of that.
257 *
258 * if n is an internal node - a 'tnode' here, the various parts of its key
259 * have many different meanings.
260 *
261 * Example:
262 * _________________________________________________________________
263 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
264 * -----------------------------------------------------------------
265 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
266 *
267 * _________________________________________________________________
268 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
269 * -----------------------------------------------------------------
270 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
271 *
272 * tp->pos = 22
273 * tp->bits = 3
274 * n->pos = 13
275 * n->bits = 4
276 *
277 * First, let's just ignore the bits that come before the parent tp, that is
278 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
279 * point we do not use them for anything.
280 *
281 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
282 * index into the parent's child array. That is, they will be used to find
283 * 'n' among tp's children.
284 *
98a384ec 285 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
e9b44019
AD
286 * for the node n.
287 *
288 * All the bits we have seen so far are significant to the node n. The rest
289 * of the bits are really not needed or indeed known in n->key.
290 *
291 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
292 * n's child array, and will of course be different for each child.
293 *
98a384ec 294 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
e9b44019
AD
295 * at this point.
296 */
19baf839 297
f5026fab
DL
298static const int halve_threshold = 25;
299static const int inflate_threshold = 50;
345aa031 300static const int halve_threshold_root = 15;
80b71b80 301static const int inflate_threshold_root = 30;
2373ce1c
RO
302
303static void __alias_free_mem(struct rcu_head *head)
19baf839 304{
2373ce1c
RO
305 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
306 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
307}
308
2373ce1c 309static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 310{
2373ce1c
RO
311 call_rcu(&fa->rcu, __alias_free_mem);
312}
91b9a277 313
37fd30f2 314#define TNODE_KMALLOC_MAX \
35c6edac 315 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 316#define TNODE_VMALLOC_MAX \
35c6edac 317 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 318
37fd30f2 319static void __node_free_rcu(struct rcu_head *head)
387a5487 320{
56ca2adf 321 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 322
56ca2adf 323 if (!n->tn_bits)
37fd30f2 324 kmem_cache_free(trie_leaf_kmem, n);
37fd30f2 325 else
1d5cfdb0 326 kvfree(n);
387a5487
SH
327}
328
56ca2adf 329#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 330
dc35dbed 331static struct tnode *tnode_alloc(int bits)
f0e36f8c 332{
1de3d87b
AD
333 size_t size;
334
335 /* verify bits is within bounds */
336 if (bits > TNODE_VMALLOC_MAX)
337 return NULL;
338
339 /* determine size and verify it is non-zero and didn't overflow */
340 size = TNODE_SIZE(1ul << bits);
341
2373ce1c 342 if (size <= PAGE_SIZE)
8d965444 343 return kzalloc(size, GFP_KERNEL);
15be75cd 344 else
7a1c8e5a 345 return vzalloc(size);
15be75cd 346}
2373ce1c 347
35c6edac 348static inline void empty_child_inc(struct key_vector *n)
95f60ea3 349{
6e22d174 350 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
95f60ea3
AD
351}
352
35c6edac 353static inline void empty_child_dec(struct key_vector *n)
95f60ea3 354{
6e22d174 355 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
95f60ea3
AD
356}
357
35c6edac 358static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 359{
f38b24c9
FY
360 struct key_vector *l;
361 struct tnode *kv;
dc35dbed 362
f38b24c9 363 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
dc35dbed
AD
364 if (!kv)
365 return NULL;
366
367 /* initialize key vector */
f38b24c9 368 l = kv->kv;
dc35dbed
AD
369 l->key = key;
370 l->pos = 0;
371 l->bits = 0;
372 l->slen = fa->fa_slen;
373
374 /* link leaf to fib alias */
375 INIT_HLIST_HEAD(&l->leaf);
376 hlist_add_head(&fa->fa_list, &l->leaf);
377
2373ce1c
RO
378 return l;
379}
380
35c6edac 381static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 382{
64c9b6fb 383 unsigned int shift = pos + bits;
f38b24c9
FY
384 struct key_vector *tn;
385 struct tnode *tnode;
64c9b6fb
AD
386
387 /* verify bits and pos their msb bits clear and values are valid */
388 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 389
f38b24c9 390 tnode = tnode_alloc(bits);
dc35dbed
AD
391 if (!tnode)
392 return NULL;
393
f38b24c9
FY
394 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
395 sizeof(struct key_vector *) << bits);
396
dc35dbed 397 if (bits == KEYLENGTH)
6e22d174 398 tnode->full_children = 1;
dc35dbed 399 else
6e22d174 400 tnode->empty_children = 1ul << bits;
dc35dbed 401
f38b24c9 402 tn = tnode->kv;
dc35dbed
AD
403 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
404 tn->pos = pos;
405 tn->bits = bits;
406 tn->slen = pos;
407
19baf839
RO
408 return tn;
409}
410
e9b44019 411/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
412 * and no bits are skipped. See discussion in dyntree paper p. 6
413 */
35c6edac 414static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 415{
e9b44019 416 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
417}
418
ff181ed8
AD
419/* Add a child at position i overwriting the old value.
420 * Update the value of full_children and empty_children.
421 */
35c6edac
AD
422static void put_child(struct key_vector *tn, unsigned long i,
423 struct key_vector *n)
19baf839 424{
754baf8d 425 struct key_vector *chi = get_child(tn, i);
ff181ed8 426 int isfull, wasfull;
19baf839 427
2e1ac88a 428 BUG_ON(i >= child_length(tn));
0c7770c7 429
95f60ea3 430 /* update emptyChildren, overflow into fullChildren */
00db4124 431 if (!n && chi)
95f60ea3 432 empty_child_inc(tn);
00db4124 433 if (n && !chi)
95f60ea3 434 empty_child_dec(tn);
c877efb2 435
19baf839 436 /* update fullChildren */
ff181ed8 437 wasfull = tnode_full(tn, chi);
19baf839 438 isfull = tnode_full(tn, n);
ff181ed8 439
c877efb2 440 if (wasfull && !isfull)
6e22d174 441 tn_info(tn)->full_children--;
c877efb2 442 else if (!wasfull && isfull)
6e22d174 443 tn_info(tn)->full_children++;
91b9a277 444
5405afd1
AD
445 if (n && (tn->slen < n->slen))
446 tn->slen = n->slen;
447
41b489fd 448 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
449}
450
35c6edac 451static void update_children(struct key_vector *tn)
69fa57b1
AD
452{
453 unsigned long i;
454
455 /* update all of the child parent pointers */
2e1ac88a 456 for (i = child_length(tn); i;) {
754baf8d 457 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
458
459 if (!inode)
460 continue;
461
462 /* Either update the children of a tnode that
463 * already belongs to us or update the child
464 * to point to ourselves.
465 */
466 if (node_parent(inode) == tn)
467 update_children(inode);
468 else
469 node_set_parent(inode, tn);
470 }
471}
472
88bae714
AD
473static inline void put_child_root(struct key_vector *tp, t_key key,
474 struct key_vector *n)
836a0123 475{
88bae714
AD
476 if (IS_TRIE(tp))
477 rcu_assign_pointer(tp->tnode[0], n);
836a0123 478 else
88bae714 479 put_child(tp, get_index(key, tp), n);
836a0123
AD
480}
481
35c6edac 482static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 483{
56ca2adf 484 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
485}
486
35c6edac
AD
487static inline void tnode_free_append(struct key_vector *tn,
488 struct key_vector *n)
fc86a93b 489{
56ca2adf
AD
490 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
491 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 492}
0a5c0475 493
35c6edac 494static void tnode_free(struct key_vector *tn)
fc86a93b 495{
56ca2adf 496 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
497
498 while (head) {
499 head = head->next;
41b489fd 500 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
501 node_free(tn);
502
56ca2adf 503 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
504 }
505
506 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
507 tnode_free_size = 0;
508 synchronize_rcu();
0a5c0475 509 }
0a5c0475
ED
510}
511
88bae714
AD
512static struct key_vector *replace(struct trie *t,
513 struct key_vector *oldtnode,
514 struct key_vector *tn)
69fa57b1 515{
35c6edac 516 struct key_vector *tp = node_parent(oldtnode);
69fa57b1
AD
517 unsigned long i;
518
519 /* setup the parent pointer out of and back into this node */
520 NODE_INIT_PARENT(tn, tp);
88bae714 521 put_child_root(tp, tn->key, tn);
69fa57b1
AD
522
523 /* update all of the child parent pointers */
524 update_children(tn);
525
526 /* all pointers should be clean so we are done */
527 tnode_free(oldtnode);
528
529 /* resize children now that oldtnode is freed */
2e1ac88a 530 for (i = child_length(tn); i;) {
754baf8d 531 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
532
533 /* resize child node */
534 if (tnode_full(tn, inode))
88bae714 535 tn = resize(t, inode);
69fa57b1 536 }
8d8e810c 537
88bae714 538 return tp;
69fa57b1
AD
539}
540
88bae714
AD
541static struct key_vector *inflate(struct trie *t,
542 struct key_vector *oldtnode)
19baf839 543{
35c6edac 544 struct key_vector *tn;
69fa57b1 545 unsigned long i;
e9b44019 546 t_key m;
19baf839 547
0c7770c7 548 pr_debug("In inflate\n");
19baf839 549
e9b44019 550 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 551 if (!tn)
8d8e810c 552 goto notnode;
2f36895a 553
69fa57b1
AD
554 /* prepare oldtnode to be freed */
555 tnode_free_init(oldtnode);
556
12c081a5
AD
557 /* Assemble all of the pointers in our cluster, in this case that
558 * represents all of the pointers out of our allocated nodes that
559 * point to existing tnodes and the links between our allocated
560 * nodes.
2f36895a 561 */
2e1ac88a 562 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 563 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 564 struct key_vector *node0, *node1;
69fa57b1 565 unsigned long j, k;
c877efb2 566
19baf839 567 /* An empty child */
51456b29 568 if (!inode)
19baf839
RO
569 continue;
570
571 /* A leaf or an internal node with skipped bits */
adaf9816 572 if (!tnode_full(oldtnode, inode)) {
e9b44019 573 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
574 continue;
575 }
576
69fa57b1
AD
577 /* drop the node in the old tnode free list */
578 tnode_free_append(oldtnode, inode);
579
19baf839 580 /* An internal node with two children */
19baf839 581 if (inode->bits == 1) {
754baf8d
AD
582 put_child(tn, 2 * i + 1, get_child(inode, 1));
583 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 584 continue;
19baf839
RO
585 }
586
91b9a277 587 /* We will replace this node 'inode' with two new
12c081a5 588 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
589 * original children. The two new nodes will have
590 * a position one bit further down the key and this
591 * means that the "significant" part of their keys
592 * (see the discussion near the top of this file)
593 * will differ by one bit, which will be "0" in
12c081a5 594 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
595 * moving the key position by one step, the bit that
596 * we are moving away from - the bit at position
12c081a5
AD
597 * (tn->pos) - is the one that will differ between
598 * node0 and node1. So... we synthesize that bit in the
599 * two new keys.
91b9a277 600 */
12c081a5
AD
601 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
602 if (!node1)
603 goto nomem;
69fa57b1 604 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 605
69fa57b1 606 tnode_free_append(tn, node1);
12c081a5
AD
607 if (!node0)
608 goto nomem;
609 tnode_free_append(tn, node0);
610
611 /* populate child pointers in new nodes */
2e1ac88a 612 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
613 put_child(node1, --j, get_child(inode, --k));
614 put_child(node0, j, get_child(inode, j));
615 put_child(node1, --j, get_child(inode, --k));
616 put_child(node0, j, get_child(inode, j));
12c081a5 617 }
19baf839 618
12c081a5
AD
619 /* link new nodes to parent */
620 NODE_INIT_PARENT(node1, tn);
621 NODE_INIT_PARENT(node0, tn);
2f36895a 622
12c081a5
AD
623 /* link parent to nodes */
624 put_child(tn, 2 * i + 1, node1);
625 put_child(tn, 2 * i, node0);
626 }
2f36895a 627
69fa57b1 628 /* setup the parent pointers into and out of this node */
8d8e810c 629 return replace(t, oldtnode, tn);
2f80b3c8 630nomem:
fc86a93b
AD
631 /* all pointers should be clean so we are done */
632 tnode_free(tn);
8d8e810c
AD
633notnode:
634 return NULL;
19baf839
RO
635}
636
88bae714
AD
637static struct key_vector *halve(struct trie *t,
638 struct key_vector *oldtnode)
19baf839 639{
35c6edac 640 struct key_vector *tn;
12c081a5 641 unsigned long i;
19baf839 642
0c7770c7 643 pr_debug("In halve\n");
c877efb2 644
e9b44019 645 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 646 if (!tn)
8d8e810c 647 goto notnode;
2f36895a 648
69fa57b1
AD
649 /* prepare oldtnode to be freed */
650 tnode_free_init(oldtnode);
651
12c081a5
AD
652 /* Assemble all of the pointers in our cluster, in this case that
653 * represents all of the pointers out of our allocated nodes that
654 * point to existing tnodes and the links between our allocated
655 * nodes.
2f36895a 656 */
2e1ac88a 657 for (i = child_length(oldtnode); i;) {
754baf8d
AD
658 struct key_vector *node1 = get_child(oldtnode, --i);
659 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 660 struct key_vector *inode;
2f36895a 661
12c081a5
AD
662 /* At least one of the children is empty */
663 if (!node1 || !node0) {
664 put_child(tn, i / 2, node1 ? : node0);
665 continue;
666 }
c877efb2 667
2f36895a 668 /* Two nonempty children */
12c081a5 669 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
670 if (!inode)
671 goto nomem;
12c081a5 672 tnode_free_append(tn, inode);
2f36895a 673
12c081a5
AD
674 /* initialize pointers out of node */
675 put_child(inode, 1, node1);
676 put_child(inode, 0, node0);
677 NODE_INIT_PARENT(inode, tn);
678
679 /* link parent to node */
680 put_child(tn, i / 2, inode);
2f36895a 681 }
19baf839 682
69fa57b1 683 /* setup the parent pointers into and out of this node */
8d8e810c
AD
684 return replace(t, oldtnode, tn);
685nomem:
686 /* all pointers should be clean so we are done */
687 tnode_free(tn);
688notnode:
689 return NULL;
19baf839
RO
690}
691
88bae714
AD
692static struct key_vector *collapse(struct trie *t,
693 struct key_vector *oldtnode)
95f60ea3 694{
35c6edac 695 struct key_vector *n, *tp;
95f60ea3
AD
696 unsigned long i;
697
698 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 699 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 700 n = get_child(oldtnode, --i);
95f60ea3
AD
701
702 /* compress one level */
703 tp = node_parent(oldtnode);
88bae714 704 put_child_root(tp, oldtnode->key, n);
95f60ea3
AD
705 node_set_parent(n, tp);
706
707 /* drop dead node */
708 node_free(oldtnode);
88bae714
AD
709
710 return tp;
95f60ea3
AD
711}
712
35c6edac 713static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
714{
715 unsigned char slen = tn->pos;
716 unsigned long stride, i;
a52ca62c
AD
717 unsigned char slen_max;
718
719 /* only vector 0 can have a suffix length greater than or equal to
720 * tn->pos + tn->bits, the second highest node will have a suffix
721 * length at most of tn->pos + tn->bits - 1
722 */
723 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
5405afd1
AD
724
725 /* search though the list of children looking for nodes that might
726 * have a suffix greater than the one we currently have. This is
727 * why we start with a stride of 2 since a stride of 1 would
728 * represent the nodes with suffix length equal to tn->pos
729 */
2e1ac88a 730 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 731 struct key_vector *n = get_child(tn, i);
5405afd1
AD
732
733 if (!n || (n->slen <= slen))
734 continue;
735
736 /* update stride and slen based on new value */
737 stride <<= (n->slen - slen);
738 slen = n->slen;
739 i &= ~(stride - 1);
740
a52ca62c
AD
741 /* stop searching if we have hit the maximum possible value */
742 if (slen >= slen_max)
5405afd1
AD
743 break;
744 }
745
746 tn->slen = slen;
747
748 return slen;
749}
750
f05a4819
AD
751/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
752 * the Helsinki University of Technology and Matti Tikkanen of Nokia
753 * Telecommunications, page 6:
754 * "A node is doubled if the ratio of non-empty children to all
755 * children in the *doubled* node is at least 'high'."
756 *
757 * 'high' in this instance is the variable 'inflate_threshold'. It
758 * is expressed as a percentage, so we multiply it with
2e1ac88a 759 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
760 * child array will be doubled by inflate()) and multiplying
761 * the left-hand side by 100 (to handle the percentage thing) we
762 * multiply the left-hand side by 50.
763 *
2e1ac88a 764 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
765 * - tn->empty_children is of course the number of non-null children
766 * in the current node. tn->full_children is the number of "full"
767 * children, that is non-null tnodes with a skip value of 0.
768 * All of those will be doubled in the resulting inflated tnode, so
769 * we just count them one extra time here.
770 *
771 * A clearer way to write this would be:
772 *
773 * to_be_doubled = tn->full_children;
2e1ac88a 774 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
775 * tn->full_children;
776 *
2e1ac88a 777 * new_child_length = child_length(tn) * 2;
f05a4819
AD
778 *
779 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
780 * new_child_length;
781 * if (new_fill_factor >= inflate_threshold)
782 *
783 * ...and so on, tho it would mess up the while () loop.
784 *
785 * anyway,
786 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
787 * inflate_threshold
788 *
789 * avoid a division:
790 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
791 * inflate_threshold * new_child_length
792 *
793 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 794 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
795 * tn->full_children) >= inflate_threshold * new_child_length
796 *
797 * expand new_child_length:
2e1ac88a 798 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 799 * tn->full_children) >=
2e1ac88a 800 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
801 *
802 * shorten again:
2e1ac88a 803 * 50 * (tn->full_children + child_length(tn) -
f05a4819 804 * tn->empty_children) >= inflate_threshold *
2e1ac88a 805 * child_length(tn)
f05a4819
AD
806 *
807 */
35c6edac 808static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 809{
2e1ac88a 810 unsigned long used = child_length(tn);
f05a4819
AD
811 unsigned long threshold = used;
812
813 /* Keep root node larger */
88bae714 814 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
6e22d174
AD
815 used -= tn_info(tn)->empty_children;
816 used += tn_info(tn)->full_children;
f05a4819 817
95f60ea3
AD
818 /* if bits == KEYLENGTH then pos = 0, and will fail below */
819
820 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
821}
822
35c6edac 823static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 824{
2e1ac88a 825 unsigned long used = child_length(tn);
f05a4819
AD
826 unsigned long threshold = used;
827
828 /* Keep root node larger */
88bae714 829 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
6e22d174 830 used -= tn_info(tn)->empty_children;
f05a4819 831
95f60ea3
AD
832 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
833
834 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
835}
836
35c6edac 837static inline bool should_collapse(struct key_vector *tn)
95f60ea3 838{
2e1ac88a 839 unsigned long used = child_length(tn);
95f60ea3 840
6e22d174 841 used -= tn_info(tn)->empty_children;
95f60ea3
AD
842
843 /* account for bits == KEYLENGTH case */
6e22d174 844 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
95f60ea3
AD
845 used -= KEY_MAX;
846
847 /* One child or none, time to drop us from the trie */
848 return used < 2;
f05a4819
AD
849}
850
cf3637bb 851#define MAX_WORK 10
88bae714 852static struct key_vector *resize(struct trie *t, struct key_vector *tn)
cf3637bb 853{
8d8e810c
AD
854#ifdef CONFIG_IP_FIB_TRIE_STATS
855 struct trie_use_stats __percpu *stats = t->stats;
856#endif
35c6edac 857 struct key_vector *tp = node_parent(tn);
88bae714 858 unsigned long cindex = get_index(tn->key, tp);
a80e89d4 859 int max_work = MAX_WORK;
cf3637bb 860
cf3637bb
AD
861 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
862 tn, inflate_threshold, halve_threshold);
863
ff181ed8
AD
864 /* track the tnode via the pointer from the parent instead of
865 * doing it ourselves. This way we can let RCU fully do its
866 * thing without us interfering
867 */
88bae714 868 BUG_ON(tn != get_child(tp, cindex));
ff181ed8 869
f05a4819
AD
870 /* Double as long as the resulting node has a number of
871 * nonempty nodes that are above the threshold.
cf3637bb 872 */
b6f15f82 873 while (should_inflate(tp, tn) && max_work) {
88bae714
AD
874 tp = inflate(t, tn);
875 if (!tp) {
cf3637bb 876#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 877 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
878#endif
879 break;
880 }
ff181ed8 881
b6f15f82 882 max_work--;
88bae714 883 tn = get_child(tp, cindex);
cf3637bb
AD
884 }
885
b6f15f82
AD
886 /* update parent in case inflate failed */
887 tp = node_parent(tn);
888
cf3637bb
AD
889 /* Return if at least one inflate is run */
890 if (max_work != MAX_WORK)
b6f15f82 891 return tp;
cf3637bb 892
f05a4819 893 /* Halve as long as the number of empty children in this
cf3637bb
AD
894 * node is above threshold.
895 */
b6f15f82 896 while (should_halve(tp, tn) && max_work) {
88bae714
AD
897 tp = halve(t, tn);
898 if (!tp) {
cf3637bb 899#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 900 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
901#endif
902 break;
903 }
cf3637bb 904
b6f15f82 905 max_work--;
88bae714 906 tn = get_child(tp, cindex);
ff181ed8 907 }
cf3637bb
AD
908
909 /* Only one child remains */
88bae714
AD
910 if (should_collapse(tn))
911 return collapse(t, tn);
912
b6f15f82 913 /* update parent in case halve failed */
a52ca62c 914 return node_parent(tn);
cf3637bb
AD
915}
916
1a239173 917static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
5405afd1 918{
1a239173
AD
919 unsigned char node_slen = tn->slen;
920
921 while ((node_slen > tn->pos) && (node_slen > slen)) {
922 slen = update_suffix(tn);
923 if (node_slen == slen)
5405afd1 924 break;
1a239173
AD
925
926 tn = node_parent(tn);
927 node_slen = tn->slen;
5405afd1
AD
928 }
929}
930
1a239173 931static void node_push_suffix(struct key_vector *tn, unsigned char slen)
19baf839 932{
1a239173
AD
933 while (tn->slen < slen) {
934 tn->slen = slen;
5405afd1
AD
935 tn = node_parent(tn);
936 }
937}
938
2373ce1c 939/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
940static struct key_vector *fib_find_node(struct trie *t,
941 struct key_vector **tp, u32 key)
19baf839 942{
88bae714
AD
943 struct key_vector *pn, *n = t->kv;
944 unsigned long index = 0;
945
946 do {
947 pn = n;
948 n = get_child_rcu(n, index);
949
950 if (!n)
951 break;
939afb06 952
88bae714 953 index = get_cindex(key, n);
939afb06
AD
954
955 /* This bit of code is a bit tricky but it combines multiple
956 * checks into a single check. The prefix consists of the
957 * prefix plus zeros for the bits in the cindex. The index
958 * is the difference between the key and this value. From
959 * this we can actually derive several pieces of data.
d4a975e8 960 * if (index >= (1ul << bits))
939afb06 961 * we have a mismatch in skip bits and failed
b3832117
AD
962 * else
963 * we know the value is cindex
d4a975e8
AD
964 *
965 * This check is safe even if bits == KEYLENGTH due to the
966 * fact that we can only allocate a node with 32 bits if a
967 * long is greater than 32 bits.
939afb06 968 */
d4a975e8
AD
969 if (index >= (1ul << n->bits)) {
970 n = NULL;
971 break;
972 }
939afb06 973
88bae714
AD
974 /* keep searching until we find a perfect match leaf or NULL */
975 } while (IS_TNODE(n));
91b9a277 976
35c6edac 977 *tp = pn;
d4a975e8 978
939afb06 979 return n;
19baf839
RO
980}
981
02525368
AD
982/* Return the first fib alias matching TOS with
983 * priority less than or equal to PRIO.
984 */
79e5ad2c 985static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
0b65bd97 986 u8 tos, u32 prio, u32 tb_id)
02525368
AD
987{
988 struct fib_alias *fa;
989
990 if (!fah)
991 return NULL;
992
56315f9e 993 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
994 if (fa->fa_slen < slen)
995 continue;
996 if (fa->fa_slen != slen)
997 break;
0b65bd97
AD
998 if (fa->tb_id > tb_id)
999 continue;
1000 if (fa->tb_id != tb_id)
1001 break;
02525368
AD
1002 if (fa->fa_tos > tos)
1003 continue;
1004 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1005 return fa;
1006 }
1007
1008 return NULL;
1009}
1010
35c6edac 1011static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 1012{
88bae714
AD
1013 while (!IS_TRIE(tn))
1014 tn = resize(t, tn);
19baf839
RO
1015}
1016
35c6edac 1017static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 1018 struct fib_alias *new, t_key key)
19baf839 1019{
35c6edac 1020 struct key_vector *n, *l;
19baf839 1021
d5d6487c 1022 l = leaf_new(key, new);
79e5ad2c 1023 if (!l)
8d8e810c 1024 goto noleaf;
d5d6487c
AD
1025
1026 /* retrieve child from parent node */
88bae714 1027 n = get_child(tp, get_index(key, tp));
19baf839 1028
836a0123
AD
1029 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1030 *
1031 * Add a new tnode here
1032 * first tnode need some special handling
1033 * leaves us in position for handling as case 3
1034 */
1035 if (n) {
35c6edac 1036 struct key_vector *tn;
19baf839 1037
e9b44019 1038 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1039 if (!tn)
1040 goto notnode;
91b9a277 1041
836a0123
AD
1042 /* initialize routes out of node */
1043 NODE_INIT_PARENT(tn, tp);
1044 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1045
836a0123 1046 /* start adding routes into the node */
88bae714 1047 put_child_root(tp, key, tn);
836a0123 1048 node_set_parent(n, tn);
e962f302 1049
836a0123 1050 /* parent now has a NULL spot where the leaf can go */
e962f302 1051 tp = tn;
19baf839 1052 }
91b9a277 1053
836a0123 1054 /* Case 3: n is NULL, and will just insert a new leaf */
a52ca62c 1055 node_push_suffix(tp, new->fa_slen);
d5d6487c 1056 NODE_INIT_PARENT(l, tp);
88bae714 1057 put_child_root(tp, key, l);
d5d6487c
AD
1058 trie_rebalance(t, tp);
1059
1060 return 0;
8d8e810c
AD
1061notnode:
1062 node_free(l);
1063noleaf:
1064 return -ENOMEM;
d5d6487c
AD
1065}
1066
35c6edac
AD
1067static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1068 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1069 struct fib_alias *fa, t_key key)
1070{
1071 if (!l)
1072 return fib_insert_node(t, tp, new, key);
1073
1074 if (fa) {
1075 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1076 } else {
d5d6487c
AD
1077 struct fib_alias *last;
1078
1079 hlist_for_each_entry(last, &l->leaf, fa_list) {
1080 if (new->fa_slen < last->fa_slen)
1081 break;
0b65bd97
AD
1082 if ((new->fa_slen == last->fa_slen) &&
1083 (new->tb_id > last->tb_id))
1084 break;
d5d6487c
AD
1085 fa = last;
1086 }
1087
1088 if (fa)
1089 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1090 else
1091 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1092 }
2373ce1c 1093
d5d6487c
AD
1094 /* if we added to the tail node then we need to update slen */
1095 if (l->slen < new->fa_slen) {
1096 l->slen = new->fa_slen;
1a239173 1097 node_push_suffix(tp, new->fa_slen);
d5d6487c
AD
1098 }
1099
1100 return 0;
19baf839
RO
1101}
1102
78055998 1103static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
ba277e8e 1104{
78055998
DA
1105 if (plen > KEYLENGTH) {
1106 NL_SET_ERR_MSG(extack, "Invalid prefix length");
ba277e8e 1107 return false;
78055998 1108 }
ba277e8e 1109
78055998
DA
1110 if ((plen < KEYLENGTH) && (key << plen)) {
1111 NL_SET_ERR_MSG(extack,
1112 "Invalid prefix for given prefix length");
ba277e8e 1113 return false;
78055998 1114 }
ba277e8e
DA
1115
1116 return true;
1117}
1118
d5d6487c 1119/* Caller must hold RTNL. */
b90eb754 1120int fib_table_insert(struct net *net, struct fib_table *tb,
6d8422a1 1121 struct fib_config *cfg, struct netlink_ext_ack *extack)
19baf839 1122{
2f3a5272 1123 enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
d4a975e8 1124 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1125 struct fib_alias *fa, *new_fa;
35c6edac 1126 struct key_vector *l, *tp;
b93e1fa7 1127 u16 nlflags = NLM_F_EXCL;
19baf839 1128 struct fib_info *fi;
79e5ad2c
AD
1129 u8 plen = cfg->fc_dst_len;
1130 u8 slen = KEYLENGTH - plen;
4e902c57 1131 u8 tos = cfg->fc_tos;
d4a975e8 1132 u32 key;
19baf839 1133 int err;
19baf839 1134
4e902c57 1135 key = ntohl(cfg->fc_dst);
19baf839 1136
78055998 1137 if (!fib_valid_key_len(key, plen, extack))
19baf839
RO
1138 return -EINVAL;
1139
ba277e8e
DA
1140 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1141
6d8422a1 1142 fi = fib_create_info(cfg, extack);
4e902c57
TG
1143 if (IS_ERR(fi)) {
1144 err = PTR_ERR(fi);
19baf839 1145 goto err;
4e902c57 1146 }
19baf839 1147
d4a975e8 1148 l = fib_find_node(t, &tp, key);
0b65bd97
AD
1149 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1150 tb->tb_id) : NULL;
19baf839
RO
1151
1152 /* Now fa, if non-NULL, points to the first fib alias
1153 * with the same keys [prefix,tos,priority], if such key already
1154 * exists or to the node before which we will insert new one.
1155 *
1156 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1157 * insert to the tail of the section matching the suffix length
1158 * of the new alias.
19baf839
RO
1159 */
1160
936f6f8e
JA
1161 if (fa && fa->fa_tos == tos &&
1162 fa->fa_info->fib_priority == fi->fib_priority) {
1163 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1164
1165 err = -EEXIST;
4e902c57 1166 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1167 goto out;
1168
b93e1fa7
GN
1169 nlflags &= ~NLM_F_EXCL;
1170
936f6f8e
JA
1171 /* We have 2 goals:
1172 * 1. Find exact match for type, scope, fib_info to avoid
1173 * duplicate routes
1174 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1175 */
1176 fa_match = NULL;
1177 fa_first = fa;
56315f9e 1178 hlist_for_each_entry_from(fa, fa_list) {
0b65bd97
AD
1179 if ((fa->fa_slen != slen) ||
1180 (fa->tb_id != tb->tb_id) ||
1181 (fa->fa_tos != tos))
936f6f8e
JA
1182 break;
1183 if (fa->fa_info->fib_priority != fi->fib_priority)
1184 break;
1185 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1186 fa->fa_info == fi) {
1187 fa_match = fa;
1188 break;
1189 }
1190 }
1191
4e902c57 1192 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1193 struct fib_info *fi_drop;
1194 u8 state;
1195
b93e1fa7 1196 nlflags |= NLM_F_REPLACE;
936f6f8e
JA
1197 fa = fa_first;
1198 if (fa_match) {
1199 if (fa == fa_match)
1200 err = 0;
6725033f 1201 goto out;
936f6f8e 1202 }
2373ce1c 1203 err = -ENOBUFS;
e94b1766 1204 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1205 if (!new_fa)
2373ce1c 1206 goto out;
19baf839
RO
1207
1208 fi_drop = fa->fa_info;
2373ce1c
RO
1209 new_fa->fa_tos = fa->fa_tos;
1210 new_fa->fa_info = fi;
4e902c57 1211 new_fa->fa_type = cfg->fc_type;
19baf839 1212 state = fa->fa_state;
936f6f8e 1213 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1214 new_fa->fa_slen = fa->fa_slen;
d4e64c29 1215 new_fa->tb_id = tb->tb_id;
2392debc 1216 new_fa->fa_default = -1;
19baf839 1217
2f3a5272 1218 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
6c31e5a9 1219 key, plen, new_fa, extack);
5b7d616d
IS
1220 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1221 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1222
56315f9e 1223 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1224
2373ce1c 1225 alias_free_mem_rcu(fa);
19baf839
RO
1226
1227 fib_release_info(fi_drop);
1228 if (state & FA_S_ACCESSED)
4ccfe6d4 1229 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b90eb754 1230
91b9a277 1231 goto succeeded;
19baf839
RO
1232 }
1233 /* Error if we find a perfect match which
1234 * uses the same scope, type, and nexthop
1235 * information.
1236 */
936f6f8e
JA
1237 if (fa_match)
1238 goto out;
a07f5f50 1239
2f3a5272
IS
1240 if (cfg->fc_nlflags & NLM_F_APPEND) {
1241 event = FIB_EVENT_ENTRY_APPEND;
b93e1fa7 1242 nlflags |= NLM_F_APPEND;
2f3a5272 1243 } else {
936f6f8e 1244 fa = fa_first;
2f3a5272 1245 }
19baf839
RO
1246 }
1247 err = -ENOENT;
4e902c57 1248 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1249 goto out;
1250
b93e1fa7 1251 nlflags |= NLM_F_CREATE;
19baf839 1252 err = -ENOBUFS;
e94b1766 1253 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1254 if (!new_fa)
19baf839
RO
1255 goto out;
1256
1257 new_fa->fa_info = fi;
1258 new_fa->fa_tos = tos;
4e902c57 1259 new_fa->fa_type = cfg->fc_type;
19baf839 1260 new_fa->fa_state = 0;
79e5ad2c 1261 new_fa->fa_slen = slen;
0ddcf43d 1262 new_fa->tb_id = tb->tb_id;
2392debc 1263 new_fa->fa_default = -1;
19baf839 1264
9b6ebad5 1265 /* Insert new entry to the list. */
d5d6487c
AD
1266 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1267 if (err)
347e3b28 1268 goto out_free_new_fa;
19baf839 1269
21d8c49e
DM
1270 if (!plen)
1271 tb->tb_num_default++;
1272
4ccfe6d4 1273 rt_cache_flush(cfg->fc_nlinfo.nl_net);
6c31e5a9 1274 call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
0ddcf43d 1275 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
a2bb6d7d 1276 &cfg->fc_nlinfo, nlflags);
19baf839
RO
1277succeeded:
1278 return 0;
f835e471
RO
1279
1280out_free_new_fa:
1281 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1282out:
1283 fib_release_info(fi);
91b9a277 1284err:
19baf839
RO
1285 return err;
1286}
1287
35c6edac 1288static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1289{
1290 t_key prefix = n->key;
1291
1292 return (key ^ prefix) & (prefix | -prefix);
1293}
1294
345e9b54 1295/* should be called with rcu_read_lock */
22bd5b9b 1296int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1297 struct fib_result *res, int fib_flags)
19baf839 1298{
0ddcf43d 1299 struct trie *t = (struct trie *) tb->tb_data;
8274a97a
AD
1300#ifdef CONFIG_IP_FIB_TRIE_STATS
1301 struct trie_use_stats __percpu *stats = t->stats;
1302#endif
9f9e636d 1303 const t_key key = ntohl(flp->daddr);
35c6edac 1304 struct key_vector *n, *pn;
79e5ad2c 1305 struct fib_alias *fa;
71e8b67d 1306 unsigned long index;
9f9e636d 1307 t_key cindex;
91b9a277 1308
f6d3c192
DA
1309 trace_fib_table_lookup(tb->tb_id, flp);
1310
88bae714
AD
1311 pn = t->kv;
1312 cindex = 0;
1313
1314 n = get_child_rcu(pn, cindex);
c877efb2 1315 if (!n)
345e9b54 1316 return -EAGAIN;
19baf839
RO
1317
1318#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1319 this_cpu_inc(stats->gets);
19baf839
RO
1320#endif
1321
9f9e636d
AD
1322 /* Step 1: Travel to the longest prefix match in the trie */
1323 for (;;) {
88bae714 1324 index = get_cindex(key, n);
9f9e636d
AD
1325
1326 /* This bit of code is a bit tricky but it combines multiple
1327 * checks into a single check. The prefix consists of the
1328 * prefix plus zeros for the "bits" in the prefix. The index
1329 * is the difference between the key and this value. From
1330 * this we can actually derive several pieces of data.
71e8b67d 1331 * if (index >= (1ul << bits))
9f9e636d 1332 * we have a mismatch in skip bits and failed
b3832117
AD
1333 * else
1334 * we know the value is cindex
71e8b67d
AD
1335 *
1336 * This check is safe even if bits == KEYLENGTH due to the
1337 * fact that we can only allocate a node with 32 bits if a
1338 * long is greater than 32 bits.
9f9e636d 1339 */
71e8b67d 1340 if (index >= (1ul << n->bits))
9f9e636d 1341 break;
19baf839 1342
9f9e636d
AD
1343 /* we have found a leaf. Prefixes have already been compared */
1344 if (IS_LEAF(n))
a07f5f50 1345 goto found;
19baf839 1346
9f9e636d
AD
1347 /* only record pn and cindex if we are going to be chopping
1348 * bits later. Otherwise we are just wasting cycles.
91b9a277 1349 */
5405afd1 1350 if (n->slen > n->pos) {
9f9e636d
AD
1351 pn = n;
1352 cindex = index;
91b9a277 1353 }
19baf839 1354
754baf8d 1355 n = get_child_rcu(n, index);
9f9e636d
AD
1356 if (unlikely(!n))
1357 goto backtrace;
1358 }
19baf839 1359
9f9e636d
AD
1360 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1361 for (;;) {
1362 /* record the pointer where our next node pointer is stored */
35c6edac 1363 struct key_vector __rcu **cptr = n->tnode;
19baf839 1364
9f9e636d
AD
1365 /* This test verifies that none of the bits that differ
1366 * between the key and the prefix exist in the region of
1367 * the lsb and higher in the prefix.
91b9a277 1368 */
5405afd1 1369 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1370 goto backtrace;
91b9a277 1371
9f9e636d
AD
1372 /* exit out and process leaf */
1373 if (unlikely(IS_LEAF(n)))
1374 break;
91b9a277 1375
9f9e636d
AD
1376 /* Don't bother recording parent info. Since we are in
1377 * prefix match mode we will have to come back to wherever
1378 * we started this traversal anyway
91b9a277 1379 */
91b9a277 1380
9f9e636d 1381 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1382backtrace:
19baf839 1383#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1384 if (!n)
1385 this_cpu_inc(stats->null_node_hit);
19baf839 1386#endif
9f9e636d
AD
1387 /* If we are at cindex 0 there are no more bits for
1388 * us to strip at this level so we must ascend back
1389 * up one level to see if there are any more bits to
1390 * be stripped there.
1391 */
1392 while (!cindex) {
1393 t_key pkey = pn->key;
1394
88bae714
AD
1395 /* If we don't have a parent then there is
1396 * nothing for us to do as we do not have any
1397 * further nodes to parse.
1398 */
1399 if (IS_TRIE(pn))
345e9b54 1400 return -EAGAIN;
9f9e636d
AD
1401#ifdef CONFIG_IP_FIB_TRIE_STATS
1402 this_cpu_inc(stats->backtrack);
1403#endif
1404 /* Get Child's index */
88bae714 1405 pn = node_parent_rcu(pn);
9f9e636d
AD
1406 cindex = get_index(pkey, pn);
1407 }
1408
1409 /* strip the least significant bit from the cindex */
1410 cindex &= cindex - 1;
1411
1412 /* grab pointer for next child node */
41b489fd 1413 cptr = &pn->tnode[cindex];
c877efb2 1414 }
19baf839 1415 }
9f9e636d 1416
19baf839 1417found:
71e8b67d
AD
1418 /* this line carries forward the xor from earlier in the function */
1419 index = key ^ n->key;
1420
9f9e636d 1421 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1422 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1423 struct fib_info *fi = fa->fa_info;
1424 int nhsel, err;
345e9b54 1425
a5829f53
AD
1426 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1427 if (index >= (1ul << fa->fa_slen))
1428 continue;
1429 }
79e5ad2c
AD
1430 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1431 continue;
1432 if (fi->fib_dead)
1433 continue;
1434 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1435 continue;
1436 fib_alias_accessed(fa);
1437 err = fib_props[fa->fa_type].error;
1438 if (unlikely(err < 0)) {
345e9b54 1439#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1440 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1441#endif
79e5ad2c
AD
1442 return err;
1443 }
1444 if (fi->fib_flags & RTNH_F_DEAD)
1445 continue;
1446 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1447 const struct fib_nh *nh = &fi->fib_nh[nhsel];
0eeb075f 1448 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
79e5ad2c
AD
1449
1450 if (nh->nh_flags & RTNH_F_DEAD)
1451 continue;
0eeb075f
AG
1452 if (in_dev &&
1453 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1454 nh->nh_flags & RTNH_F_LINKDOWN &&
1455 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1456 continue;
58189ca7 1457 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
613d09b3
DA
1458 if (flp->flowi4_oif &&
1459 flp->flowi4_oif != nh->nh_oif)
1460 continue;
1461 }
79e5ad2c
AD
1462
1463 if (!(fib_flags & FIB_LOOKUP_NOREF))
0029c0de 1464 refcount_inc(&fi->fib_clntref);
79e5ad2c 1465
6ffd9034 1466 res->prefix = htonl(n->key);
79e5ad2c
AD
1467 res->prefixlen = KEYLENGTH - fa->fa_slen;
1468 res->nh_sel = nhsel;
1469 res->type = fa->fa_type;
1470 res->scope = fi->fib_scope;
1471 res->fi = fi;
1472 res->table = tb;
1473 res->fa_head = &n->leaf;
345e9b54 1474#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1475 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1476#endif
f6d3c192
DA
1477 trace_fib_table_lookup_nh(nh);
1478
79e5ad2c 1479 return err;
345e9b54 1480 }
9b6ebad5 1481 }
345e9b54 1482#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1483 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1484#endif
345e9b54 1485 goto backtrace;
19baf839 1486}
6fc01438 1487EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1488
35c6edac
AD
1489static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1490 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1491{
1492 /* record the location of the previous list_info entry */
1493 struct hlist_node **pprev = old->fa_list.pprev;
1494 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1495
1496 /* remove the fib_alias from the list */
1497 hlist_del_rcu(&old->fa_list);
1498
1499 /* if we emptied the list this leaf will be freed and we can sort
1500 * out parent suffix lengths as a part of trie_rebalance
1501 */
1502 if (hlist_empty(&l->leaf)) {
a52ca62c
AD
1503 if (tp->slen == l->slen)
1504 node_pull_suffix(tp, tp->pos);
88bae714 1505 put_child_root(tp, l->key, NULL);
d5d6487c
AD
1506 node_free(l);
1507 trie_rebalance(t, tp);
1508 return;
1509 }
1510
1511 /* only access fa if it is pointing at the last valid hlist_node */
1512 if (*pprev)
1513 return;
1514
1515 /* update the trie with the latest suffix length */
1516 l->slen = fa->fa_slen;
1a239173 1517 node_pull_suffix(tp, fa->fa_slen);
d5d6487c
AD
1518}
1519
1520/* Caller must hold RTNL. */
b90eb754 1521int fib_table_delete(struct net *net, struct fib_table *tb,
78055998 1522 struct fib_config *cfg, struct netlink_ext_ack *extack)
19baf839
RO
1523{
1524 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1525 struct fib_alias *fa, *fa_to_delete;
35c6edac 1526 struct key_vector *l, *tp;
79e5ad2c 1527 u8 plen = cfg->fc_dst_len;
79e5ad2c 1528 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1529 u8 tos = cfg->fc_tos;
1530 u32 key;
91b9a277 1531
4e902c57 1532 key = ntohl(cfg->fc_dst);
19baf839 1533
78055998 1534 if (!fib_valid_key_len(key, plen, extack))
19baf839
RO
1535 return -EINVAL;
1536
d4a975e8 1537 l = fib_find_node(t, &tp, key);
c877efb2 1538 if (!l)
19baf839
RO
1539 return -ESRCH;
1540
0b65bd97 1541 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
19baf839
RO
1542 if (!fa)
1543 return -ESRCH;
1544
0c7770c7 1545 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1546
1547 fa_to_delete = NULL;
56315f9e 1548 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1549 struct fib_info *fi = fa->fa_info;
1550
0b65bd97
AD
1551 if ((fa->fa_slen != slen) ||
1552 (fa->tb_id != tb->tb_id) ||
1553 (fa->fa_tos != tos))
19baf839
RO
1554 break;
1555
4e902c57
TG
1556 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1557 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1558 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1559 (!cfg->fc_prefsrc ||
1560 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1561 (!cfg->fc_protocol ||
1562 fi->fib_protocol == cfg->fc_protocol) &&
5f9ae3d9
XL
1563 fib_nh_match(cfg, fi, extack) == 0 &&
1564 fib_metrics_match(cfg, fi)) {
19baf839
RO
1565 fa_to_delete = fa;
1566 break;
1567 }
1568 }
1569
91b9a277
OJ
1570 if (!fa_to_delete)
1571 return -ESRCH;
19baf839 1572
b90eb754 1573 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
6c31e5a9 1574 fa_to_delete, extack);
d5d6487c 1575 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1576 &cfg->fc_nlinfo, 0);
91b9a277 1577
21d8c49e
DM
1578 if (!plen)
1579 tb->tb_num_default--;
1580
d5d6487c 1581 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1582
d5d6487c 1583 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1584 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1585
d5d6487c
AD
1586 fib_release_info(fa_to_delete->fa_info);
1587 alias_free_mem_rcu(fa_to_delete);
91b9a277 1588 return 0;
19baf839
RO
1589}
1590
8be33e95 1591/* Scan for the next leaf starting at the provided key value */
35c6edac 1592static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1593{
35c6edac 1594 struct key_vector *pn, *n = *tn;
8be33e95 1595 unsigned long cindex;
82cfbb00 1596
8be33e95 1597 /* this loop is meant to try and find the key in the trie */
88bae714 1598 do {
8be33e95
AD
1599 /* record parent and next child index */
1600 pn = n;
c2229fe1 1601 cindex = (key > pn->key) ? get_index(key, pn) : 0;
88bae714
AD
1602
1603 if (cindex >> pn->bits)
1604 break;
82cfbb00 1605
8be33e95 1606 /* descend into the next child */
754baf8d 1607 n = get_child_rcu(pn, cindex++);
88bae714
AD
1608 if (!n)
1609 break;
1610
1611 /* guarantee forward progress on the keys */
1612 if (IS_LEAF(n) && (n->key >= key))
1613 goto found;
1614 } while (IS_TNODE(n));
82cfbb00 1615
8be33e95 1616 /* this loop will search for the next leaf with a greater key */
88bae714 1617 while (!IS_TRIE(pn)) {
8be33e95
AD
1618 /* if we exhausted the parent node we will need to climb */
1619 if (cindex >= (1ul << pn->bits)) {
1620 t_key pkey = pn->key;
82cfbb00 1621
8be33e95 1622 pn = node_parent_rcu(pn);
8be33e95
AD
1623 cindex = get_index(pkey, pn) + 1;
1624 continue;
1625 }
82cfbb00 1626
8be33e95 1627 /* grab the next available node */
754baf8d 1628 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1629 if (!n)
1630 continue;
19baf839 1631
8be33e95
AD
1632 /* no need to compare keys since we bumped the index */
1633 if (IS_LEAF(n))
1634 goto found;
71d67e66 1635
8be33e95
AD
1636 /* Rescan start scanning in new node */
1637 pn = n;
1638 cindex = 0;
1639 }
ec28cf73 1640
8be33e95
AD
1641 *tn = pn;
1642 return NULL; /* Root of trie */
1643found:
1644 /* if we are at the limit for keys just return NULL for the tnode */
88bae714 1645 *tn = pn;
8be33e95 1646 return n;
71d67e66
SH
1647}
1648
0ddcf43d
AD
1649static void fib_trie_free(struct fib_table *tb)
1650{
1651 struct trie *t = (struct trie *)tb->tb_data;
1652 struct key_vector *pn = t->kv;
1653 unsigned long cindex = 1;
1654 struct hlist_node *tmp;
1655 struct fib_alias *fa;
1656
1657 /* walk trie in reverse order and free everything */
1658 for (;;) {
1659 struct key_vector *n;
1660
1661 if (!(cindex--)) {
1662 t_key pkey = pn->key;
1663
1664 if (IS_TRIE(pn))
1665 break;
1666
1667 n = pn;
1668 pn = node_parent(pn);
1669
1670 /* drop emptied tnode */
1671 put_child_root(pn, n->key, NULL);
1672 node_free(n);
1673
1674 cindex = get_index(pkey, pn);
1675
1676 continue;
1677 }
1678
1679 /* grab the next available node */
1680 n = get_child(pn, cindex);
1681 if (!n)
1682 continue;
1683
1684 if (IS_TNODE(n)) {
1685 /* record pn and cindex for leaf walking */
1686 pn = n;
1687 cindex = 1ul << n->bits;
1688
1689 continue;
1690 }
1691
1692 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1693 hlist_del_rcu(&fa->fa_list);
1694 alias_free_mem_rcu(fa);
1695 }
1696
1697 put_child_root(pn, n->key, NULL);
1698 node_free(n);
1699 }
1700
1701#ifdef CONFIG_IP_FIB_TRIE_STATS
1702 free_percpu(t->stats);
1703#endif
1704 kfree(tb);
1705}
1706
1707struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1708{
1709 struct trie *ot = (struct trie *)oldtb->tb_data;
1710 struct key_vector *l, *tp = ot->kv;
1711 struct fib_table *local_tb;
1712 struct fib_alias *fa;
1713 struct trie *lt;
1714 t_key key = 0;
1715
1716 if (oldtb->tb_data == oldtb->__data)
1717 return oldtb;
1718
1719 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1720 if (!local_tb)
1721 return NULL;
1722
1723 lt = (struct trie *)local_tb->tb_data;
1724
1725 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1726 struct key_vector *local_l = NULL, *local_tp;
1727
1728 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1729 struct fib_alias *new_fa;
1730
1731 if (local_tb->tb_id != fa->tb_id)
1732 continue;
1733
1734 /* clone fa for new local table */
1735 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1736 if (!new_fa)
1737 goto out;
1738
1739 memcpy(new_fa, fa, sizeof(*fa));
1740
1741 /* insert clone into table */
1742 if (!local_l)
1743 local_l = fib_find_node(lt, &local_tp, l->key);
1744
1745 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
3114cdfe
AD
1746 NULL, l->key)) {
1747 kmem_cache_free(fn_alias_kmem, new_fa);
0ddcf43d 1748 goto out;
3114cdfe 1749 }
0ddcf43d
AD
1750 }
1751
1752 /* stop loop if key wrapped back to 0 */
1753 key = l->key + 1;
1754 if (key < l->key)
1755 break;
1756 }
1757
1758 return local_tb;
1759out:
1760 fib_trie_free(local_tb);
1761
1762 return NULL;
1763}
1764
3b709334
AD
1765/* Caller must hold RTNL */
1766void fib_table_flush_external(struct fib_table *tb)
1767{
1768 struct trie *t = (struct trie *)tb->tb_data;
1769 struct key_vector *pn = t->kv;
1770 unsigned long cindex = 1;
1771 struct hlist_node *tmp;
1772 struct fib_alias *fa;
1773
1774 /* walk trie in reverse order */
1775 for (;;) {
1776 unsigned char slen = 0;
1777 struct key_vector *n;
1778
1779 if (!(cindex--)) {
1780 t_key pkey = pn->key;
1781
1782 /* cannot resize the trie vector */
1783 if (IS_TRIE(pn))
1784 break;
1785
a52ca62c
AD
1786 /* update the suffix to address pulled leaves */
1787 if (pn->slen > pn->pos)
1788 update_suffix(pn);
1789
3b709334
AD
1790 /* resize completed node */
1791 pn = resize(t, pn);
1792 cindex = get_index(pkey, pn);
1793
1794 continue;
1795 }
1796
1797 /* grab the next available node */
1798 n = get_child(pn, cindex);
1799 if (!n)
1800 continue;
1801
1802 if (IS_TNODE(n)) {
1803 /* record pn and cindex for leaf walking */
1804 pn = n;
1805 cindex = 1ul << n->bits;
1806
1807 continue;
1808 }
1809
1810 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1811 /* if alias was cloned to local then we just
1812 * need to remove the local copy from main
1813 */
1814 if (tb->tb_id != fa->tb_id) {
1815 hlist_del_rcu(&fa->fa_list);
1816 alias_free_mem_rcu(fa);
1817 continue;
1818 }
1819
1820 /* record local slen */
1821 slen = fa->fa_slen;
1822 }
1823
1824 /* update leaf slen */
1825 n->slen = slen;
1826
1827 if (hlist_empty(&n->leaf)) {
1828 put_child_root(pn, n->key, NULL);
1829 node_free(n);
1830 }
1831 }
1832}
1833
8be33e95 1834/* Caller must hold RTNL. */
b90eb754 1835int fib_table_flush(struct net *net, struct fib_table *tb)
19baf839 1836{
7289e6dd 1837 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1838 struct key_vector *pn = t->kv;
1839 unsigned long cindex = 1;
7289e6dd
AD
1840 struct hlist_node *tmp;
1841 struct fib_alias *fa;
82cfbb00 1842 int found = 0;
19baf839 1843
88bae714
AD
1844 /* walk trie in reverse order */
1845 for (;;) {
1846 unsigned char slen = 0;
1847 struct key_vector *n;
19baf839 1848
88bae714
AD
1849 if (!(cindex--)) {
1850 t_key pkey = pn->key;
7289e6dd 1851
88bae714
AD
1852 /* cannot resize the trie vector */
1853 if (IS_TRIE(pn))
1854 break;
7289e6dd 1855
a52ca62c
AD
1856 /* update the suffix to address pulled leaves */
1857 if (pn->slen > pn->pos)
1858 update_suffix(pn);
1859
88bae714
AD
1860 /* resize completed node */
1861 pn = resize(t, pn);
1862 cindex = get_index(pkey, pn);
7289e6dd 1863
88bae714
AD
1864 continue;
1865 }
7289e6dd 1866
88bae714
AD
1867 /* grab the next available node */
1868 n = get_child(pn, cindex);
1869 if (!n)
1870 continue;
7289e6dd 1871
88bae714
AD
1872 if (IS_TNODE(n)) {
1873 /* record pn and cindex for leaf walking */
1874 pn = n;
1875 cindex = 1ul << n->bits;
7289e6dd 1876
88bae714
AD
1877 continue;
1878 }
7289e6dd 1879
88bae714
AD
1880 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1881 struct fib_info *fi = fa->fa_info;
7289e6dd 1882
58e3bdd5
IS
1883 if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
1884 tb->tb_id != fa->tb_id) {
88bae714
AD
1885 slen = fa->fa_slen;
1886 continue;
1887 }
7289e6dd 1888
b90eb754
JP
1889 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1890 n->key,
6c31e5a9
DA
1891 KEYLENGTH - fa->fa_slen, fa,
1892 NULL);
7289e6dd
AD
1893 hlist_del_rcu(&fa->fa_list);
1894 fib_release_info(fa->fa_info);
1895 alias_free_mem_rcu(fa);
1896 found++;
64c62723
AD
1897 }
1898
88bae714
AD
1899 /* update leaf slen */
1900 n->slen = slen;
7289e6dd 1901
88bae714
AD
1902 if (hlist_empty(&n->leaf)) {
1903 put_child_root(pn, n->key, NULL);
1904 node_free(n);
88bae714 1905 }
64c62723 1906 }
19baf839 1907
0c7770c7 1908 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1909 return found;
1910}
1911
c3852ef7 1912static void fib_leaf_notify(struct net *net, struct key_vector *l,
d05f7a7d 1913 struct fib_table *tb, struct notifier_block *nb)
c3852ef7
IS
1914{
1915 struct fib_alias *fa;
1916
1917 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1918 struct fib_info *fi = fa->fa_info;
1919
1920 if (!fi)
1921 continue;
1922
1923 /* local and main table can share the same trie,
1924 * so don't notify twice for the same entry.
1925 */
1926 if (tb->tb_id != fa->tb_id)
1927 continue;
1928
d05f7a7d 1929 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
6eba87c7 1930 KEYLENGTH - fa->fa_slen, fa);
c3852ef7
IS
1931 }
1932}
1933
1934static void fib_table_notify(struct net *net, struct fib_table *tb,
d05f7a7d 1935 struct notifier_block *nb)
c3852ef7
IS
1936{
1937 struct trie *t = (struct trie *)tb->tb_data;
1938 struct key_vector *l, *tp = t->kv;
1939 t_key key = 0;
1940
1941 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
d05f7a7d 1942 fib_leaf_notify(net, l, tb, nb);
c3852ef7
IS
1943
1944 key = l->key + 1;
1945 /* stop in case of wrap around */
1946 if (key < l->key)
1947 break;
1948 }
1949}
1950
d05f7a7d 1951void fib_notify(struct net *net, struct notifier_block *nb)
c3852ef7
IS
1952{
1953 unsigned int h;
1954
1955 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1956 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1957 struct fib_table *tb;
1958
1959 hlist_for_each_entry_rcu(tb, head, tb_hlist)
d05f7a7d 1960 fib_table_notify(net, tb, nb);
c3852ef7
IS
1961 }
1962}
1963
a7e53531 1964static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1965{
a7e53531 1966 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1967#ifdef CONFIG_IP_FIB_TRIE_STATS
1968 struct trie *t = (struct trie *)tb->tb_data;
1969
0ddcf43d
AD
1970 if (tb->tb_data == tb->__data)
1971 free_percpu(t->stats);
8274a97a 1972#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1973 kfree(tb);
1974}
1975
a7e53531
AD
1976void fib_free_table(struct fib_table *tb)
1977{
1978 call_rcu(&tb->rcu, __trie_free_rcu);
1979}
1980
35c6edac 1981static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1982 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1983{
79e5ad2c 1984 __be32 xkey = htonl(l->key);
19baf839 1985 struct fib_alias *fa;
79e5ad2c 1986 int i, s_i;
19baf839 1987
79e5ad2c 1988 s_i = cb->args[4];
19baf839
RO
1989 i = 0;
1990
2373ce1c 1991 /* rcu_read_lock is hold by caller */
79e5ad2c 1992 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
f6c5775f
DA
1993 int err;
1994
19baf839
RO
1995 if (i < s_i) {
1996 i++;
1997 continue;
1998 }
19baf839 1999
0ddcf43d
AD
2000 if (tb->tb_id != fa->tb_id) {
2001 i++;
2002 continue;
2003 }
2004
f6c5775f
DA
2005 err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2006 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2007 tb->tb_id, fa->fa_type,
2008 xkey, KEYLENGTH - fa->fa_slen,
2009 fa->fa_tos, fa->fa_info, NLM_F_MULTI);
2010 if (err < 0) {
71d67e66 2011 cb->args[4] = i;
f6c5775f 2012 return err;
19baf839 2013 }
a88ee229 2014 i++;
19baf839 2015 }
a88ee229 2016
71d67e66 2017 cb->args[4] = i;
19baf839
RO
2018 return skb->len;
2019}
2020
a7e53531 2021/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
2022int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2023 struct netlink_callback *cb)
19baf839 2024{
8be33e95 2025 struct trie *t = (struct trie *)tb->tb_data;
88bae714 2026 struct key_vector *l, *tp = t->kv;
d5ce8a0e
SH
2027 /* Dump starting at last key.
2028 * Note: 0.0.0.0/0 (ie default) is first key.
2029 */
8be33e95
AD
2030 int count = cb->args[2];
2031 t_key key = cb->args[3];
a88ee229 2032
8be33e95 2033 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
f6c5775f
DA
2034 int err;
2035
2036 err = fn_trie_dump_leaf(l, tb, skb, cb);
2037 if (err < 0) {
8be33e95
AD
2038 cb->args[3] = key;
2039 cb->args[2] = count;
f6c5775f 2040 return err;
19baf839 2041 }
d5ce8a0e 2042
71d67e66 2043 ++count;
8be33e95
AD
2044 key = l->key + 1;
2045
71d67e66
SH
2046 memset(&cb->args[4], 0,
2047 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
2048
2049 /* stop loop if key wrapped back to 0 */
2050 if (key < l->key)
2051 break;
19baf839 2052 }
8be33e95 2053
8be33e95
AD
2054 cb->args[3] = key;
2055 cb->args[2] = count;
2056
19baf839 2057 return skb->len;
19baf839
RO
2058}
2059
5348ba85 2060void __init fib_trie_init(void)
7f9b8052 2061{
a07f5f50
SH
2062 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2063 sizeof(struct fib_alias),
bc3c8c1e
SH
2064 0, SLAB_PANIC, NULL);
2065
2066 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 2067 LEAF_SIZE,
bc3c8c1e 2068 0, SLAB_PANIC, NULL);
7f9b8052 2069}
19baf839 2070
0ddcf43d 2071struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
19baf839
RO
2072{
2073 struct fib_table *tb;
2074 struct trie *t;
0ddcf43d
AD
2075 size_t sz = sizeof(*tb);
2076
2077 if (!alias)
2078 sz += sizeof(struct trie);
19baf839 2079
0ddcf43d 2080 tb = kzalloc(sz, GFP_KERNEL);
51456b29 2081 if (!tb)
19baf839
RO
2082 return NULL;
2083
2084 tb->tb_id = id;
21d8c49e 2085 tb->tb_num_default = 0;
0ddcf43d
AD
2086 tb->tb_data = (alias ? alias->__data : tb->__data);
2087
2088 if (alias)
2089 return tb;
19baf839
RO
2090
2091 t = (struct trie *) tb->tb_data;
88bae714
AD
2092 t->kv[0].pos = KEYLENGTH;
2093 t->kv[0].slen = KEYLENGTH;
8274a97a
AD
2094#ifdef CONFIG_IP_FIB_TRIE_STATS
2095 t->stats = alloc_percpu(struct trie_use_stats);
2096 if (!t->stats) {
2097 kfree(tb);
2098 tb = NULL;
2099 }
2100#endif
19baf839 2101
19baf839
RO
2102 return tb;
2103}
2104
cb7b593c
SH
2105#ifdef CONFIG_PROC_FS
2106/* Depth first Trie walk iterator */
2107struct fib_trie_iter {
1c340b2f 2108 struct seq_net_private p;
3d3b2d25 2109 struct fib_table *tb;
35c6edac 2110 struct key_vector *tnode;
a034ee3c
ED
2111 unsigned int index;
2112 unsigned int depth;
cb7b593c 2113};
19baf839 2114
35c6edac 2115static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2116{
98293e8d 2117 unsigned long cindex = iter->index;
88bae714
AD
2118 struct key_vector *pn = iter->tnode;
2119 t_key pkey;
6640e697 2120
cb7b593c
SH
2121 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2122 iter->tnode, iter->index, iter->depth);
19baf839 2123
88bae714
AD
2124 while (!IS_TRIE(pn)) {
2125 while (cindex < child_length(pn)) {
2126 struct key_vector *n = get_child_rcu(pn, cindex++);
2127
2128 if (!n)
2129 continue;
2130
cb7b593c 2131 if (IS_LEAF(n)) {
88bae714
AD
2132 iter->tnode = pn;
2133 iter->index = cindex;
cb7b593c
SH
2134 } else {
2135 /* push down one level */
adaf9816 2136 iter->tnode = n;
cb7b593c
SH
2137 iter->index = 0;
2138 ++iter->depth;
2139 }
88bae714 2140
cb7b593c
SH
2141 return n;
2142 }
19baf839 2143
88bae714
AD
2144 /* Current node exhausted, pop back up */
2145 pkey = pn->key;
2146 pn = node_parent_rcu(pn);
2147 cindex = get_index(pkey, pn) + 1;
cb7b593c 2148 --iter->depth;
19baf839 2149 }
cb7b593c 2150
88bae714
AD
2151 /* record root node so further searches know we are done */
2152 iter->tnode = pn;
2153 iter->index = 0;
2154
cb7b593c 2155 return NULL;
19baf839
RO
2156}
2157
35c6edac
AD
2158static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2159 struct trie *t)
19baf839 2160{
f38b24c9 2161 struct key_vector *n, *pn;
5ddf0eb2 2162
132adf54 2163 if (!t)
5ddf0eb2
RO
2164 return NULL;
2165
f38b24c9 2166 pn = t->kv;
88bae714 2167 n = rcu_dereference(pn->tnode[0]);
3d3b2d25 2168 if (!n)
5ddf0eb2 2169 return NULL;
19baf839 2170
3d3b2d25 2171 if (IS_TNODE(n)) {
adaf9816 2172 iter->tnode = n;
3d3b2d25
SH
2173 iter->index = 0;
2174 iter->depth = 1;
2175 } else {
88bae714 2176 iter->tnode = pn;
3d3b2d25
SH
2177 iter->index = 0;
2178 iter->depth = 0;
91b9a277 2179 }
3d3b2d25
SH
2180
2181 return n;
cb7b593c 2182}
91b9a277 2183
cb7b593c
SH
2184static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2185{
35c6edac 2186 struct key_vector *n;
cb7b593c 2187 struct fib_trie_iter iter;
91b9a277 2188
cb7b593c 2189 memset(s, 0, sizeof(*s));
91b9a277 2190
cb7b593c 2191 rcu_read_lock();
3d3b2d25 2192 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2193 if (IS_LEAF(n)) {
79e5ad2c 2194 struct fib_alias *fa;
93672292 2195
cb7b593c
SH
2196 s->leaves++;
2197 s->totdepth += iter.depth;
2198 if (iter.depth > s->maxdepth)
2199 s->maxdepth = iter.depth;
93672292 2200
79e5ad2c 2201 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 2202 ++s->prefixes;
cb7b593c 2203 } else {
cb7b593c 2204 s->tnodes++;
adaf9816
AD
2205 if (n->bits < MAX_STAT_DEPTH)
2206 s->nodesizes[n->bits]++;
6e22d174 2207 s->nullpointers += tn_info(n)->empty_children;
19baf839 2208 }
19baf839 2209 }
2373ce1c 2210 rcu_read_unlock();
19baf839
RO
2211}
2212
cb7b593c
SH
2213/*
2214 * This outputs /proc/net/fib_triestats
2215 */
2216static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2217{
a034ee3c 2218 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2219
cb7b593c
SH
2220 if (stat->leaves)
2221 avdepth = stat->totdepth*100 / stat->leaves;
2222 else
2223 avdepth = 0;
91b9a277 2224
a07f5f50
SH
2225 seq_printf(seq, "\tAver depth: %u.%02d\n",
2226 avdepth / 100, avdepth % 100);
cb7b593c 2227 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2228
cb7b593c 2229 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 2230 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
2231
2232 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 2233 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 2234
187b5188 2235 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 2236 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 2237
06ef921d
RO
2238 max = MAX_STAT_DEPTH;
2239 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2240 max--;
19baf839 2241
cb7b593c 2242 pointers = 0;
f585a991 2243 for (i = 1; i < max; i++)
cb7b593c 2244 if (stat->nodesizes[i] != 0) {
187b5188 2245 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2246 pointers += (1<<i) * stat->nodesizes[i];
2247 }
2248 seq_putc(seq, '\n');
187b5188 2249 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2250
35c6edac 2251 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2252 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2253 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2254}
2373ce1c 2255
cb7b593c 2256#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2257static void trie_show_usage(struct seq_file *seq,
8274a97a 2258 const struct trie_use_stats __percpu *stats)
66a2f7fd 2259{
8274a97a
AD
2260 struct trie_use_stats s = { 0 };
2261 int cpu;
2262
2263 /* loop through all of the CPUs and gather up the stats */
2264 for_each_possible_cpu(cpu) {
2265 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2266
2267 s.gets += pcpu->gets;
2268 s.backtrack += pcpu->backtrack;
2269 s.semantic_match_passed += pcpu->semantic_match_passed;
2270 s.semantic_match_miss += pcpu->semantic_match_miss;
2271 s.null_node_hit += pcpu->null_node_hit;
2272 s.resize_node_skipped += pcpu->resize_node_skipped;
2273 }
2274
66a2f7fd 2275 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2276 seq_printf(seq, "gets = %u\n", s.gets);
2277 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2278 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2279 s.semantic_match_passed);
2280 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2281 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2282 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2283}
66a2f7fd
SH
2284#endif /* CONFIG_IP_FIB_TRIE_STATS */
2285
3d3b2d25 2286static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2287{
3d3b2d25
SH
2288 if (tb->tb_id == RT_TABLE_LOCAL)
2289 seq_puts(seq, "Local:\n");
2290 else if (tb->tb_id == RT_TABLE_MAIN)
2291 seq_puts(seq, "Main:\n");
2292 else
2293 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2294}
19baf839 2295
3d3b2d25 2296
cb7b593c
SH
2297static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2298{
1c340b2f 2299 struct net *net = (struct net *)seq->private;
3d3b2d25 2300 unsigned int h;
877a9bff 2301
d717a9a6 2302 seq_printf(seq,
a07f5f50 2303 "Basic info: size of leaf:"
5b5e0928 2304 " %zd bytes, size of tnode: %zd bytes.\n",
41b489fd 2305 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2306
3d3b2d25
SH
2307 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2308 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2309 struct fib_table *tb;
2310
b67bfe0d 2311 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2312 struct trie *t = (struct trie *) tb->tb_data;
2313 struct trie_stat stat;
877a9bff 2314
3d3b2d25
SH
2315 if (!t)
2316 continue;
2317
2318 fib_table_print(seq, tb);
2319
2320 trie_collect_stats(t, &stat);
2321 trie_show_stats(seq, &stat);
2322#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2323 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2324#endif
2325 }
2326 }
19baf839 2327
cb7b593c 2328 return 0;
19baf839
RO
2329}
2330
cb7b593c 2331static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2332{
de05c557 2333 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2334}
2335
9a32144e 2336static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2337 .owner = THIS_MODULE,
2338 .open = fib_triestat_seq_open,
2339 .read = seq_read,
2340 .llseek = seq_lseek,
b6fcbdb4 2341 .release = single_release_net,
cb7b593c
SH
2342};
2343
35c6edac 2344static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2345{
1218854a
YH
2346 struct fib_trie_iter *iter = seq->private;
2347 struct net *net = seq_file_net(seq);
cb7b593c 2348 loff_t idx = 0;
3d3b2d25 2349 unsigned int h;
cb7b593c 2350
3d3b2d25
SH
2351 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2352 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2353 struct fib_table *tb;
cb7b593c 2354
b67bfe0d 2355 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2356 struct key_vector *n;
3d3b2d25
SH
2357
2358 for (n = fib_trie_get_first(iter,
2359 (struct trie *) tb->tb_data);
2360 n; n = fib_trie_get_next(iter))
2361 if (pos == idx++) {
2362 iter->tb = tb;
2363 return n;
2364 }
2365 }
cb7b593c 2366 }
3d3b2d25 2367
19baf839
RO
2368 return NULL;
2369}
2370
cb7b593c 2371static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2372 __acquires(RCU)
19baf839 2373{
cb7b593c 2374 rcu_read_lock();
1218854a 2375 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2376}
2377
cb7b593c 2378static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2379{
cb7b593c 2380 struct fib_trie_iter *iter = seq->private;
1218854a 2381 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2382 struct fib_table *tb = iter->tb;
2383 struct hlist_node *tb_node;
2384 unsigned int h;
35c6edac 2385 struct key_vector *n;
cb7b593c 2386
19baf839 2387 ++*pos;
3d3b2d25
SH
2388 /* next node in same table */
2389 n = fib_trie_get_next(iter);
2390 if (n)
2391 return n;
19baf839 2392
3d3b2d25
SH
2393 /* walk rest of this hash chain */
2394 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2395 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2396 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2397 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2398 if (n)
2399 goto found;
2400 }
19baf839 2401
3d3b2d25
SH
2402 /* new hash chain */
2403 while (++h < FIB_TABLE_HASHSZ) {
2404 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2405 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2406 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2407 if (n)
2408 goto found;
2409 }
2410 }
cb7b593c 2411 return NULL;
3d3b2d25
SH
2412
2413found:
2414 iter->tb = tb;
2415 return n;
cb7b593c 2416}
19baf839 2417
cb7b593c 2418static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2419 __releases(RCU)
19baf839 2420{
cb7b593c
SH
2421 rcu_read_unlock();
2422}
91b9a277 2423
cb7b593c
SH
2424static void seq_indent(struct seq_file *seq, int n)
2425{
a034ee3c
ED
2426 while (n-- > 0)
2427 seq_puts(seq, " ");
cb7b593c 2428}
19baf839 2429
28d36e37 2430static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2431{
132adf54 2432 switch (s) {
cb7b593c
SH
2433 case RT_SCOPE_UNIVERSE: return "universe";
2434 case RT_SCOPE_SITE: return "site";
2435 case RT_SCOPE_LINK: return "link";
2436 case RT_SCOPE_HOST: return "host";
2437 case RT_SCOPE_NOWHERE: return "nowhere";
2438 default:
28d36e37 2439 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2440 return buf;
2441 }
2442}
19baf839 2443
36cbd3dc 2444static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2445 [RTN_UNSPEC] = "UNSPEC",
2446 [RTN_UNICAST] = "UNICAST",
2447 [RTN_LOCAL] = "LOCAL",
2448 [RTN_BROADCAST] = "BROADCAST",
2449 [RTN_ANYCAST] = "ANYCAST",
2450 [RTN_MULTICAST] = "MULTICAST",
2451 [RTN_BLACKHOLE] = "BLACKHOLE",
2452 [RTN_UNREACHABLE] = "UNREACHABLE",
2453 [RTN_PROHIBIT] = "PROHIBIT",
2454 [RTN_THROW] = "THROW",
2455 [RTN_NAT] = "NAT",
2456 [RTN_XRESOLVE] = "XRESOLVE",
2457};
19baf839 2458
a034ee3c 2459static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2460{
cb7b593c
SH
2461 if (t < __RTN_MAX && rtn_type_names[t])
2462 return rtn_type_names[t];
28d36e37 2463 snprintf(buf, len, "type %u", t);
cb7b593c 2464 return buf;
19baf839
RO
2465}
2466
cb7b593c
SH
2467/* Pretty print the trie */
2468static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2469{
cb7b593c 2470 const struct fib_trie_iter *iter = seq->private;
35c6edac 2471 struct key_vector *n = v;
c877efb2 2472
88bae714 2473 if (IS_TRIE(node_parent_rcu(n)))
3d3b2d25 2474 fib_table_print(seq, iter->tb);
095b8501 2475
cb7b593c 2476 if (IS_TNODE(n)) {
adaf9816 2477 __be32 prf = htonl(n->key);
91b9a277 2478
e9b44019
AD
2479 seq_indent(seq, iter->depth-1);
2480 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2481 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
6e22d174
AD
2482 tn_info(n)->full_children,
2483 tn_info(n)->empty_children);
cb7b593c 2484 } else {
adaf9816 2485 __be32 val = htonl(n->key);
79e5ad2c 2486 struct fib_alias *fa;
cb7b593c
SH
2487
2488 seq_indent(seq, iter->depth);
673d57e7 2489 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2490
79e5ad2c
AD
2491 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2492 char buf1[32], buf2[32];
2493
2494 seq_indent(seq, iter->depth + 1);
2495 seq_printf(seq, " /%zu %s %s",
2496 KEYLENGTH - fa->fa_slen,
2497 rtn_scope(buf1, sizeof(buf1),
2498 fa->fa_info->fib_scope),
2499 rtn_type(buf2, sizeof(buf2),
2500 fa->fa_type));
2501 if (fa->fa_tos)
2502 seq_printf(seq, " tos=%d", fa->fa_tos);
2503 seq_putc(seq, '\n');
cb7b593c 2504 }
19baf839 2505 }
cb7b593c 2506
19baf839
RO
2507 return 0;
2508}
2509
f690808e 2510static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2511 .start = fib_trie_seq_start,
2512 .next = fib_trie_seq_next,
2513 .stop = fib_trie_seq_stop,
2514 .show = fib_trie_seq_show,
19baf839
RO
2515};
2516
cb7b593c 2517static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2518{
1c340b2f
DL
2519 return seq_open_net(inode, file, &fib_trie_seq_ops,
2520 sizeof(struct fib_trie_iter));
19baf839
RO
2521}
2522
9a32144e 2523static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2524 .owner = THIS_MODULE,
2525 .open = fib_trie_seq_open,
2526 .read = seq_read,
2527 .llseek = seq_lseek,
1c340b2f 2528 .release = seq_release_net,
19baf839
RO
2529};
2530
8315f5d8
SH
2531struct fib_route_iter {
2532 struct seq_net_private p;
8be33e95 2533 struct fib_table *main_tb;
35c6edac 2534 struct key_vector *tnode;
8315f5d8
SH
2535 loff_t pos;
2536 t_key key;
2537};
2538
35c6edac
AD
2539static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2540 loff_t pos)
8315f5d8 2541{
35c6edac 2542 struct key_vector *l, **tp = &iter->tnode;
8be33e95 2543 t_key key;
8315f5d8 2544
fd0285a3 2545 /* use cached location of previously found key */
8be33e95 2546 if (iter->pos > 0 && pos >= iter->pos) {
8be33e95
AD
2547 key = iter->key;
2548 } else {
fd0285a3 2549 iter->pos = 1;
8be33e95 2550 key = 0;
8315f5d8
SH
2551 }
2552
fd0285a3
AD
2553 pos -= iter->pos;
2554
2555 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
8be33e95 2556 key = l->key + 1;
8315f5d8 2557 iter->pos++;
8be33e95
AD
2558 l = NULL;
2559
2560 /* handle unlikely case of a key wrap */
2561 if (!key)
2562 break;
8315f5d8
SH
2563 }
2564
2565 if (l)
fd0285a3 2566 iter->key = l->key; /* remember it */
8315f5d8
SH
2567 else
2568 iter->pos = 0; /* forget it */
2569
2570 return l;
2571}
2572
2573static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2574 __acquires(RCU)
2575{
2576 struct fib_route_iter *iter = seq->private;
2577 struct fib_table *tb;
8be33e95 2578 struct trie *t;
8315f5d8
SH
2579
2580 rcu_read_lock();
8be33e95 2581
1218854a 2582 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2583 if (!tb)
2584 return NULL;
2585
8be33e95 2586 iter->main_tb = tb;
94d9f1c5
DF
2587 t = (struct trie *)tb->tb_data;
2588 iter->tnode = t->kv;
8be33e95
AD
2589
2590 if (*pos != 0)
2591 return fib_route_get_idx(iter, *pos);
2592
8be33e95 2593 iter->pos = 0;
fd0285a3 2594 iter->key = KEY_MAX;
8be33e95
AD
2595
2596 return SEQ_START_TOKEN;
8315f5d8
SH
2597}
2598
2599static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2600{
2601 struct fib_route_iter *iter = seq->private;
35c6edac 2602 struct key_vector *l = NULL;
fd0285a3 2603 t_key key = iter->key + 1;
8315f5d8
SH
2604
2605 ++*pos;
8be33e95
AD
2606
2607 /* only allow key of 0 for start of sequence */
2608 if ((v == SEQ_START_TOKEN) || key)
2609 l = leaf_walk_rcu(&iter->tnode, key);
2610
2611 if (l) {
fd0285a3 2612 iter->key = l->key;
8315f5d8 2613 iter->pos++;
8be33e95
AD
2614 } else {
2615 iter->pos = 0;
8315f5d8
SH
2616 }
2617
8315f5d8
SH
2618 return l;
2619}
2620
2621static void fib_route_seq_stop(struct seq_file *seq, void *v)
2622 __releases(RCU)
2623{
2624 rcu_read_unlock();
2625}
2626
a034ee3c 2627static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2628{
a034ee3c 2629 unsigned int flags = 0;
19baf839 2630
a034ee3c
ED
2631 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2632 flags = RTF_REJECT;
cb7b593c
SH
2633 if (fi && fi->fib_nh->nh_gw)
2634 flags |= RTF_GATEWAY;
32ab5f80 2635 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2636 flags |= RTF_HOST;
2637 flags |= RTF_UP;
2638 return flags;
19baf839
RO
2639}
2640
cb7b593c
SH
2641/*
2642 * This outputs /proc/net/route.
2643 * The format of the file is not supposed to be changed
a034ee3c 2644 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2645 * legacy utilities
2646 */
2647static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2648{
654eff45
AD
2649 struct fib_route_iter *iter = seq->private;
2650 struct fib_table *tb = iter->main_tb;
79e5ad2c 2651 struct fib_alias *fa;
35c6edac 2652 struct key_vector *l = v;
9b6ebad5 2653 __be32 prefix;
19baf839 2654
cb7b593c
SH
2655 if (v == SEQ_START_TOKEN) {
2656 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2657 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2658 "\tWindow\tIRTT");
2659 return 0;
2660 }
19baf839 2661
9b6ebad5
AD
2662 prefix = htonl(l->key);
2663
79e5ad2c
AD
2664 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2665 const struct fib_info *fi = fa->fa_info;
2666 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2667 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2668
79e5ad2c
AD
2669 if ((fa->fa_type == RTN_BROADCAST) ||
2670 (fa->fa_type == RTN_MULTICAST))
2671 continue;
19baf839 2672
654eff45
AD
2673 if (fa->tb_id != tb->tb_id)
2674 continue;
2675
79e5ad2c
AD
2676 seq_setwidth(seq, 127);
2677
2678 if (fi)
2679 seq_printf(seq,
2680 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2681 "%d\t%08X\t%d\t%u\t%u",
2682 fi->fib_dev ? fi->fib_dev->name : "*",
2683 prefix,
2684 fi->fib_nh->nh_gw, flags, 0, 0,
2685 fi->fib_priority,
2686 mask,
2687 (fi->fib_advmss ?
2688 fi->fib_advmss + 40 : 0),
2689 fi->fib_window,
2690 fi->fib_rtt >> 3);
2691 else
2692 seq_printf(seq,
2693 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2694 "%d\t%08X\t%d\t%u\t%u",
2695 prefix, 0, flags, 0, 0, 0,
2696 mask, 0, 0, 0);
19baf839 2697
79e5ad2c 2698 seq_pad(seq, '\n');
19baf839
RO
2699 }
2700
2701 return 0;
2702}
2703
f690808e 2704static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2705 .start = fib_route_seq_start,
2706 .next = fib_route_seq_next,
2707 .stop = fib_route_seq_stop,
cb7b593c 2708 .show = fib_route_seq_show,
19baf839
RO
2709};
2710
cb7b593c 2711static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2712{
1c340b2f 2713 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2714 sizeof(struct fib_route_iter));
19baf839
RO
2715}
2716
9a32144e 2717static const struct file_operations fib_route_fops = {
cb7b593c
SH
2718 .owner = THIS_MODULE,
2719 .open = fib_route_seq_open,
2720 .read = seq_read,
2721 .llseek = seq_lseek,
1c340b2f 2722 .release = seq_release_net,
19baf839
RO
2723};
2724
61a02653 2725int __net_init fib_proc_init(struct net *net)
19baf839 2726{
d4beaa66 2727 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2728 goto out1;
2729
d4beaa66
G
2730 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2731 &fib_triestat_fops))
cb7b593c
SH
2732 goto out2;
2733
d4beaa66 2734 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2735 goto out3;
2736
19baf839 2737 return 0;
cb7b593c
SH
2738
2739out3:
ece31ffd 2740 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2741out2:
ece31ffd 2742 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2743out1:
2744 return -ENOMEM;
19baf839
RO
2745}
2746
61a02653 2747void __net_exit fib_proc_exit(struct net *net)
19baf839 2748{
ece31ffd
G
2749 remove_proc_entry("fib_trie", net->proc_net);
2750 remove_proc_entry("fib_triestat", net->proc_net);
2751 remove_proc_entry("route", net->proc_net);
19baf839
RO
2752}
2753
2754#endif /* CONFIG_PROC_FS */