]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/ipv4/fib_trie.c
UBUNTU: [Config] CONFIG_SND_SOC_ES8316=m
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
7c0f6ba6 53#include <linux/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
ffa915d0 75#include <linux/vmalloc.h>
b90eb754 76#include <linux/notifier.h>
457c4cbc 77#include <net/net_namespace.h>
19baf839
RO
78#include <net/ip.h>
79#include <net/protocol.h>
80#include <net/route.h>
81#include <net/tcp.h>
82#include <net/sock.h>
83#include <net/ip_fib.h>
f6d3c192 84#include <trace/events/fib.h>
19baf839
RO
85#include "fib_lookup.h"
86
c3852ef7
IS
87static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
88 enum fib_event_type event_type, u32 dst,
89 int dst_len, struct fib_info *fi,
2f3a5272 90 u8 tos, u8 type, u32 tb_id)
c3852ef7
IS
91{
92 struct fib_entry_notifier_info info = {
93 .dst = dst,
94 .dst_len = dst_len,
95 .fi = fi,
96 .tos = tos,
97 .type = type,
98 .tb_id = tb_id,
c3852ef7
IS
99 };
100 return call_fib_notifier(nb, net, event_type, &info.info);
101}
102
b90eb754
JP
103static int call_fib_entry_notifiers(struct net *net,
104 enum fib_event_type event_type, u32 dst,
105 int dst_len, struct fib_info *fi,
2f3a5272 106 u8 tos, u8 type, u32 tb_id)
b90eb754
JP
107{
108 struct fib_entry_notifier_info info = {
109 .dst = dst,
110 .dst_len = dst_len,
111 .fi = fi,
112 .tos = tos,
113 .type = type,
114 .tb_id = tb_id,
b90eb754
JP
115 };
116 return call_fib_notifiers(net, event_type, &info.info);
117}
118
06ef921d 119#define MAX_STAT_DEPTH 32
19baf839 120
95f60ea3
AD
121#define KEYLENGTH (8*sizeof(t_key))
122#define KEY_MAX ((t_key)~0)
19baf839 123
19baf839
RO
124typedef unsigned int t_key;
125
88bae714
AD
126#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
127#define IS_TNODE(n) ((n)->bits)
128#define IS_LEAF(n) (!(n)->bits)
2373ce1c 129
35c6edac 130struct key_vector {
64c9b6fb 131 t_key key;
64c9b6fb 132 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 133 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 134 unsigned char slen;
adaf9816 135 union {
41b489fd 136 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 137 struct hlist_head leaf;
41b489fd 138 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 139 struct key_vector __rcu *tnode[0];
adaf9816 140 };
19baf839
RO
141};
142
dc35dbed 143struct tnode {
56ca2adf 144 struct rcu_head rcu;
6e22d174
AD
145 t_key empty_children; /* KEYLENGTH bits needed */
146 t_key full_children; /* KEYLENGTH bits needed */
f23e59fb 147 struct key_vector __rcu *parent;
dc35dbed 148 struct key_vector kv[1];
56ca2adf 149#define tn_bits kv[0].bits
dc35dbed
AD
150};
151
152#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
153#define LEAF_SIZE TNODE_SIZE(1)
154
19baf839
RO
155#ifdef CONFIG_IP_FIB_TRIE_STATS
156struct trie_use_stats {
157 unsigned int gets;
158 unsigned int backtrack;
159 unsigned int semantic_match_passed;
160 unsigned int semantic_match_miss;
161 unsigned int null_node_hit;
2f36895a 162 unsigned int resize_node_skipped;
19baf839
RO
163};
164#endif
165
166struct trie_stat {
167 unsigned int totdepth;
168 unsigned int maxdepth;
169 unsigned int tnodes;
170 unsigned int leaves;
171 unsigned int nullpointers;
93672292 172 unsigned int prefixes;
06ef921d 173 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 174};
19baf839
RO
175
176struct trie {
88bae714 177 struct key_vector kv[1];
19baf839 178#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 179 struct trie_use_stats __percpu *stats;
19baf839 180#endif
19baf839
RO
181};
182
88bae714 183static struct key_vector *resize(struct trie *t, struct key_vector *tn);
c3059477
JP
184static size_t tnode_free_size;
185
186/*
187 * synchronize_rcu after call_rcu for that many pages; it should be especially
188 * useful before resizing the root node with PREEMPT_NONE configs; the value was
189 * obtained experimentally, aiming to avoid visible slowdown.
190 */
191static const int sync_pages = 128;
19baf839 192
e18b890b 193static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 194static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 195
56ca2adf
AD
196static inline struct tnode *tn_info(struct key_vector *kv)
197{
198 return container_of(kv, struct tnode, kv[0]);
199}
200
64c9b6fb 201/* caller must hold RTNL */
f23e59fb 202#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
754baf8d 203#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 204
64c9b6fb 205/* caller must hold RCU read lock or RTNL */
f23e59fb 206#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
754baf8d 207#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 208
64c9b6fb 209/* wrapper for rcu_assign_pointer */
35c6edac 210static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 211{
adaf9816 212 if (n)
f23e59fb 213 rcu_assign_pointer(tn_info(n)->parent, tp);
06801916
SH
214}
215
f23e59fb 216#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
64c9b6fb
AD
217
218/* This provides us with the number of children in this node, in the case of a
219 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 220 */
2e1ac88a 221static inline unsigned long child_length(const struct key_vector *tn)
06801916 222{
64c9b6fb 223 return (1ul << tn->bits) & ~(1ul);
06801916 224}
2373ce1c 225
88bae714
AD
226#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
227
2e1ac88a
AD
228static inline unsigned long get_index(t_key key, struct key_vector *kv)
229{
230 unsigned long index = key ^ kv->key;
231
88bae714
AD
232 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
233 return 0;
234
2e1ac88a
AD
235 return index >> kv->pos;
236}
237
e9b44019
AD
238/* To understand this stuff, an understanding of keys and all their bits is
239 * necessary. Every node in the trie has a key associated with it, but not
240 * all of the bits in that key are significant.
241 *
242 * Consider a node 'n' and its parent 'tp'.
243 *
244 * If n is a leaf, every bit in its key is significant. Its presence is
245 * necessitated by path compression, since during a tree traversal (when
246 * searching for a leaf - unless we are doing an insertion) we will completely
247 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
248 * a potentially successful search, that we have indeed been walking the
249 * correct key path.
250 *
251 * Note that we can never "miss" the correct key in the tree if present by
252 * following the wrong path. Path compression ensures that segments of the key
253 * that are the same for all keys with a given prefix are skipped, but the
254 * skipped part *is* identical for each node in the subtrie below the skipped
255 * bit! trie_insert() in this implementation takes care of that.
256 *
257 * if n is an internal node - a 'tnode' here, the various parts of its key
258 * have many different meanings.
259 *
260 * Example:
261 * _________________________________________________________________
262 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
263 * -----------------------------------------------------------------
264 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
265 *
266 * _________________________________________________________________
267 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
268 * -----------------------------------------------------------------
269 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
270 *
271 * tp->pos = 22
272 * tp->bits = 3
273 * n->pos = 13
274 * n->bits = 4
275 *
276 * First, let's just ignore the bits that come before the parent tp, that is
277 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
278 * point we do not use them for anything.
279 *
280 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
281 * index into the parent's child array. That is, they will be used to find
282 * 'n' among tp's children.
283 *
98a384ec 284 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
e9b44019
AD
285 * for the node n.
286 *
287 * All the bits we have seen so far are significant to the node n. The rest
288 * of the bits are really not needed or indeed known in n->key.
289 *
290 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
291 * n's child array, and will of course be different for each child.
292 *
98a384ec 293 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
e9b44019
AD
294 * at this point.
295 */
19baf839 296
f5026fab
DL
297static const int halve_threshold = 25;
298static const int inflate_threshold = 50;
345aa031 299static const int halve_threshold_root = 15;
80b71b80 300static const int inflate_threshold_root = 30;
2373ce1c
RO
301
302static void __alias_free_mem(struct rcu_head *head)
19baf839 303{
2373ce1c
RO
304 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
305 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
306}
307
2373ce1c 308static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 309{
2373ce1c
RO
310 call_rcu(&fa->rcu, __alias_free_mem);
311}
91b9a277 312
37fd30f2 313#define TNODE_KMALLOC_MAX \
35c6edac 314 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 315#define TNODE_VMALLOC_MAX \
35c6edac 316 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 317
37fd30f2 318static void __node_free_rcu(struct rcu_head *head)
387a5487 319{
56ca2adf 320 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 321
56ca2adf 322 if (!n->tn_bits)
37fd30f2 323 kmem_cache_free(trie_leaf_kmem, n);
37fd30f2 324 else
1d5cfdb0 325 kvfree(n);
387a5487
SH
326}
327
56ca2adf 328#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 329
dc35dbed 330static struct tnode *tnode_alloc(int bits)
f0e36f8c 331{
1de3d87b
AD
332 size_t size;
333
334 /* verify bits is within bounds */
335 if (bits > TNODE_VMALLOC_MAX)
336 return NULL;
337
338 /* determine size and verify it is non-zero and didn't overflow */
339 size = TNODE_SIZE(1ul << bits);
340
2373ce1c 341 if (size <= PAGE_SIZE)
8d965444 342 return kzalloc(size, GFP_KERNEL);
15be75cd 343 else
7a1c8e5a 344 return vzalloc(size);
15be75cd 345}
2373ce1c 346
35c6edac 347static inline void empty_child_inc(struct key_vector *n)
95f60ea3 348{
6e22d174 349 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
95f60ea3
AD
350}
351
35c6edac 352static inline void empty_child_dec(struct key_vector *n)
95f60ea3 353{
6e22d174 354 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
95f60ea3
AD
355}
356
35c6edac 357static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 358{
f38b24c9
FY
359 struct key_vector *l;
360 struct tnode *kv;
dc35dbed 361
f38b24c9 362 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
dc35dbed
AD
363 if (!kv)
364 return NULL;
365
366 /* initialize key vector */
f38b24c9 367 l = kv->kv;
dc35dbed
AD
368 l->key = key;
369 l->pos = 0;
370 l->bits = 0;
371 l->slen = fa->fa_slen;
372
373 /* link leaf to fib alias */
374 INIT_HLIST_HEAD(&l->leaf);
375 hlist_add_head(&fa->fa_list, &l->leaf);
376
2373ce1c
RO
377 return l;
378}
379
35c6edac 380static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 381{
64c9b6fb 382 unsigned int shift = pos + bits;
f38b24c9
FY
383 struct key_vector *tn;
384 struct tnode *tnode;
64c9b6fb
AD
385
386 /* verify bits and pos their msb bits clear and values are valid */
387 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 388
f38b24c9 389 tnode = tnode_alloc(bits);
dc35dbed
AD
390 if (!tnode)
391 return NULL;
392
f38b24c9
FY
393 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
394 sizeof(struct key_vector *) << bits);
395
dc35dbed 396 if (bits == KEYLENGTH)
6e22d174 397 tnode->full_children = 1;
dc35dbed 398 else
6e22d174 399 tnode->empty_children = 1ul << bits;
dc35dbed 400
f38b24c9 401 tn = tnode->kv;
dc35dbed
AD
402 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
403 tn->pos = pos;
404 tn->bits = bits;
405 tn->slen = pos;
406
19baf839
RO
407 return tn;
408}
409
e9b44019 410/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
411 * and no bits are skipped. See discussion in dyntree paper p. 6
412 */
35c6edac 413static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 414{
e9b44019 415 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
416}
417
ff181ed8
AD
418/* Add a child at position i overwriting the old value.
419 * Update the value of full_children and empty_children.
420 */
35c6edac
AD
421static void put_child(struct key_vector *tn, unsigned long i,
422 struct key_vector *n)
19baf839 423{
754baf8d 424 struct key_vector *chi = get_child(tn, i);
ff181ed8 425 int isfull, wasfull;
19baf839 426
2e1ac88a 427 BUG_ON(i >= child_length(tn));
0c7770c7 428
95f60ea3 429 /* update emptyChildren, overflow into fullChildren */
00db4124 430 if (!n && chi)
95f60ea3 431 empty_child_inc(tn);
00db4124 432 if (n && !chi)
95f60ea3 433 empty_child_dec(tn);
c877efb2 434
19baf839 435 /* update fullChildren */
ff181ed8 436 wasfull = tnode_full(tn, chi);
19baf839 437 isfull = tnode_full(tn, n);
ff181ed8 438
c877efb2 439 if (wasfull && !isfull)
6e22d174 440 tn_info(tn)->full_children--;
c877efb2 441 else if (!wasfull && isfull)
6e22d174 442 tn_info(tn)->full_children++;
91b9a277 443
5405afd1
AD
444 if (n && (tn->slen < n->slen))
445 tn->slen = n->slen;
446
41b489fd 447 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
448}
449
35c6edac 450static void update_children(struct key_vector *tn)
69fa57b1
AD
451{
452 unsigned long i;
453
454 /* update all of the child parent pointers */
2e1ac88a 455 for (i = child_length(tn); i;) {
754baf8d 456 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
457
458 if (!inode)
459 continue;
460
461 /* Either update the children of a tnode that
462 * already belongs to us or update the child
463 * to point to ourselves.
464 */
465 if (node_parent(inode) == tn)
466 update_children(inode);
467 else
468 node_set_parent(inode, tn);
469 }
470}
471
88bae714
AD
472static inline void put_child_root(struct key_vector *tp, t_key key,
473 struct key_vector *n)
836a0123 474{
88bae714
AD
475 if (IS_TRIE(tp))
476 rcu_assign_pointer(tp->tnode[0], n);
836a0123 477 else
88bae714 478 put_child(tp, get_index(key, tp), n);
836a0123
AD
479}
480
35c6edac 481static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 482{
56ca2adf 483 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
484}
485
35c6edac
AD
486static inline void tnode_free_append(struct key_vector *tn,
487 struct key_vector *n)
fc86a93b 488{
56ca2adf
AD
489 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
490 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 491}
0a5c0475 492
35c6edac 493static void tnode_free(struct key_vector *tn)
fc86a93b 494{
56ca2adf 495 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
496
497 while (head) {
498 head = head->next;
41b489fd 499 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
500 node_free(tn);
501
56ca2adf 502 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
503 }
504
505 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
506 tnode_free_size = 0;
507 synchronize_rcu();
0a5c0475 508 }
0a5c0475
ED
509}
510
88bae714
AD
511static struct key_vector *replace(struct trie *t,
512 struct key_vector *oldtnode,
513 struct key_vector *tn)
69fa57b1 514{
35c6edac 515 struct key_vector *tp = node_parent(oldtnode);
69fa57b1
AD
516 unsigned long i;
517
518 /* setup the parent pointer out of and back into this node */
519 NODE_INIT_PARENT(tn, tp);
88bae714 520 put_child_root(tp, tn->key, tn);
69fa57b1
AD
521
522 /* update all of the child parent pointers */
523 update_children(tn);
524
525 /* all pointers should be clean so we are done */
526 tnode_free(oldtnode);
527
528 /* resize children now that oldtnode is freed */
2e1ac88a 529 for (i = child_length(tn); i;) {
754baf8d 530 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
531
532 /* resize child node */
533 if (tnode_full(tn, inode))
88bae714 534 tn = resize(t, inode);
69fa57b1 535 }
8d8e810c 536
88bae714 537 return tp;
69fa57b1
AD
538}
539
88bae714
AD
540static struct key_vector *inflate(struct trie *t,
541 struct key_vector *oldtnode)
19baf839 542{
35c6edac 543 struct key_vector *tn;
69fa57b1 544 unsigned long i;
e9b44019 545 t_key m;
19baf839 546
0c7770c7 547 pr_debug("In inflate\n");
19baf839 548
e9b44019 549 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 550 if (!tn)
8d8e810c 551 goto notnode;
2f36895a 552
69fa57b1
AD
553 /* prepare oldtnode to be freed */
554 tnode_free_init(oldtnode);
555
12c081a5
AD
556 /* Assemble all of the pointers in our cluster, in this case that
557 * represents all of the pointers out of our allocated nodes that
558 * point to existing tnodes and the links between our allocated
559 * nodes.
2f36895a 560 */
2e1ac88a 561 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 562 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 563 struct key_vector *node0, *node1;
69fa57b1 564 unsigned long j, k;
c877efb2 565
19baf839 566 /* An empty child */
51456b29 567 if (!inode)
19baf839
RO
568 continue;
569
570 /* A leaf or an internal node with skipped bits */
adaf9816 571 if (!tnode_full(oldtnode, inode)) {
e9b44019 572 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
573 continue;
574 }
575
69fa57b1
AD
576 /* drop the node in the old tnode free list */
577 tnode_free_append(oldtnode, inode);
578
19baf839 579 /* An internal node with two children */
19baf839 580 if (inode->bits == 1) {
754baf8d
AD
581 put_child(tn, 2 * i + 1, get_child(inode, 1));
582 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 583 continue;
19baf839
RO
584 }
585
91b9a277 586 /* We will replace this node 'inode' with two new
12c081a5 587 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
588 * original children. The two new nodes will have
589 * a position one bit further down the key and this
590 * means that the "significant" part of their keys
591 * (see the discussion near the top of this file)
592 * will differ by one bit, which will be "0" in
12c081a5 593 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
594 * moving the key position by one step, the bit that
595 * we are moving away from - the bit at position
12c081a5
AD
596 * (tn->pos) - is the one that will differ between
597 * node0 and node1. So... we synthesize that bit in the
598 * two new keys.
91b9a277 599 */
12c081a5
AD
600 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
601 if (!node1)
602 goto nomem;
69fa57b1 603 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 604
69fa57b1 605 tnode_free_append(tn, node1);
12c081a5
AD
606 if (!node0)
607 goto nomem;
608 tnode_free_append(tn, node0);
609
610 /* populate child pointers in new nodes */
2e1ac88a 611 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
612 put_child(node1, --j, get_child(inode, --k));
613 put_child(node0, j, get_child(inode, j));
614 put_child(node1, --j, get_child(inode, --k));
615 put_child(node0, j, get_child(inode, j));
12c081a5 616 }
19baf839 617
12c081a5
AD
618 /* link new nodes to parent */
619 NODE_INIT_PARENT(node1, tn);
620 NODE_INIT_PARENT(node0, tn);
2f36895a 621
12c081a5
AD
622 /* link parent to nodes */
623 put_child(tn, 2 * i + 1, node1);
624 put_child(tn, 2 * i, node0);
625 }
2f36895a 626
69fa57b1 627 /* setup the parent pointers into and out of this node */
8d8e810c 628 return replace(t, oldtnode, tn);
2f80b3c8 629nomem:
fc86a93b
AD
630 /* all pointers should be clean so we are done */
631 tnode_free(tn);
8d8e810c
AD
632notnode:
633 return NULL;
19baf839
RO
634}
635
88bae714
AD
636static struct key_vector *halve(struct trie *t,
637 struct key_vector *oldtnode)
19baf839 638{
35c6edac 639 struct key_vector *tn;
12c081a5 640 unsigned long i;
19baf839 641
0c7770c7 642 pr_debug("In halve\n");
c877efb2 643
e9b44019 644 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 645 if (!tn)
8d8e810c 646 goto notnode;
2f36895a 647
69fa57b1
AD
648 /* prepare oldtnode to be freed */
649 tnode_free_init(oldtnode);
650
12c081a5
AD
651 /* Assemble all of the pointers in our cluster, in this case that
652 * represents all of the pointers out of our allocated nodes that
653 * point to existing tnodes and the links between our allocated
654 * nodes.
2f36895a 655 */
2e1ac88a 656 for (i = child_length(oldtnode); i;) {
754baf8d
AD
657 struct key_vector *node1 = get_child(oldtnode, --i);
658 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 659 struct key_vector *inode;
2f36895a 660
12c081a5
AD
661 /* At least one of the children is empty */
662 if (!node1 || !node0) {
663 put_child(tn, i / 2, node1 ? : node0);
664 continue;
665 }
c877efb2 666
2f36895a 667 /* Two nonempty children */
12c081a5 668 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
669 if (!inode)
670 goto nomem;
12c081a5 671 tnode_free_append(tn, inode);
2f36895a 672
12c081a5
AD
673 /* initialize pointers out of node */
674 put_child(inode, 1, node1);
675 put_child(inode, 0, node0);
676 NODE_INIT_PARENT(inode, tn);
677
678 /* link parent to node */
679 put_child(tn, i / 2, inode);
2f36895a 680 }
19baf839 681
69fa57b1 682 /* setup the parent pointers into and out of this node */
8d8e810c
AD
683 return replace(t, oldtnode, tn);
684nomem:
685 /* all pointers should be clean so we are done */
686 tnode_free(tn);
687notnode:
688 return NULL;
19baf839
RO
689}
690
88bae714
AD
691static struct key_vector *collapse(struct trie *t,
692 struct key_vector *oldtnode)
95f60ea3 693{
35c6edac 694 struct key_vector *n, *tp;
95f60ea3
AD
695 unsigned long i;
696
697 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 698 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 699 n = get_child(oldtnode, --i);
95f60ea3
AD
700
701 /* compress one level */
702 tp = node_parent(oldtnode);
88bae714 703 put_child_root(tp, oldtnode->key, n);
95f60ea3
AD
704 node_set_parent(n, tp);
705
706 /* drop dead node */
707 node_free(oldtnode);
88bae714
AD
708
709 return tp;
95f60ea3
AD
710}
711
35c6edac 712static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
713{
714 unsigned char slen = tn->pos;
715 unsigned long stride, i;
a52ca62c
AD
716 unsigned char slen_max;
717
718 /* only vector 0 can have a suffix length greater than or equal to
719 * tn->pos + tn->bits, the second highest node will have a suffix
720 * length at most of tn->pos + tn->bits - 1
721 */
722 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
5405afd1
AD
723
724 /* search though the list of children looking for nodes that might
725 * have a suffix greater than the one we currently have. This is
726 * why we start with a stride of 2 since a stride of 1 would
727 * represent the nodes with suffix length equal to tn->pos
728 */
2e1ac88a 729 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 730 struct key_vector *n = get_child(tn, i);
5405afd1
AD
731
732 if (!n || (n->slen <= slen))
733 continue;
734
735 /* update stride and slen based on new value */
736 stride <<= (n->slen - slen);
737 slen = n->slen;
738 i &= ~(stride - 1);
739
a52ca62c
AD
740 /* stop searching if we have hit the maximum possible value */
741 if (slen >= slen_max)
5405afd1
AD
742 break;
743 }
744
745 tn->slen = slen;
746
747 return slen;
748}
749
f05a4819
AD
750/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
751 * the Helsinki University of Technology and Matti Tikkanen of Nokia
752 * Telecommunications, page 6:
753 * "A node is doubled if the ratio of non-empty children to all
754 * children in the *doubled* node is at least 'high'."
755 *
756 * 'high' in this instance is the variable 'inflate_threshold'. It
757 * is expressed as a percentage, so we multiply it with
2e1ac88a 758 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
759 * child array will be doubled by inflate()) and multiplying
760 * the left-hand side by 100 (to handle the percentage thing) we
761 * multiply the left-hand side by 50.
762 *
2e1ac88a 763 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
764 * - tn->empty_children is of course the number of non-null children
765 * in the current node. tn->full_children is the number of "full"
766 * children, that is non-null tnodes with a skip value of 0.
767 * All of those will be doubled in the resulting inflated tnode, so
768 * we just count them one extra time here.
769 *
770 * A clearer way to write this would be:
771 *
772 * to_be_doubled = tn->full_children;
2e1ac88a 773 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
774 * tn->full_children;
775 *
2e1ac88a 776 * new_child_length = child_length(tn) * 2;
f05a4819
AD
777 *
778 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
779 * new_child_length;
780 * if (new_fill_factor >= inflate_threshold)
781 *
782 * ...and so on, tho it would mess up the while () loop.
783 *
784 * anyway,
785 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
786 * inflate_threshold
787 *
788 * avoid a division:
789 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
790 * inflate_threshold * new_child_length
791 *
792 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 793 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
794 * tn->full_children) >= inflate_threshold * new_child_length
795 *
796 * expand new_child_length:
2e1ac88a 797 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 798 * tn->full_children) >=
2e1ac88a 799 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
800 *
801 * shorten again:
2e1ac88a 802 * 50 * (tn->full_children + child_length(tn) -
f05a4819 803 * tn->empty_children) >= inflate_threshold *
2e1ac88a 804 * child_length(tn)
f05a4819
AD
805 *
806 */
35c6edac 807static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 808{
2e1ac88a 809 unsigned long used = child_length(tn);
f05a4819
AD
810 unsigned long threshold = used;
811
812 /* Keep root node larger */
88bae714 813 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
6e22d174
AD
814 used -= tn_info(tn)->empty_children;
815 used += tn_info(tn)->full_children;
f05a4819 816
95f60ea3
AD
817 /* if bits == KEYLENGTH then pos = 0, and will fail below */
818
819 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
820}
821
35c6edac 822static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 823{
2e1ac88a 824 unsigned long used = child_length(tn);
f05a4819
AD
825 unsigned long threshold = used;
826
827 /* Keep root node larger */
88bae714 828 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
6e22d174 829 used -= tn_info(tn)->empty_children;
f05a4819 830
95f60ea3
AD
831 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
832
833 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
834}
835
35c6edac 836static inline bool should_collapse(struct key_vector *tn)
95f60ea3 837{
2e1ac88a 838 unsigned long used = child_length(tn);
95f60ea3 839
6e22d174 840 used -= tn_info(tn)->empty_children;
95f60ea3
AD
841
842 /* account for bits == KEYLENGTH case */
6e22d174 843 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
95f60ea3
AD
844 used -= KEY_MAX;
845
846 /* One child or none, time to drop us from the trie */
847 return used < 2;
f05a4819
AD
848}
849
cf3637bb 850#define MAX_WORK 10
88bae714 851static struct key_vector *resize(struct trie *t, struct key_vector *tn)
cf3637bb 852{
8d8e810c
AD
853#ifdef CONFIG_IP_FIB_TRIE_STATS
854 struct trie_use_stats __percpu *stats = t->stats;
855#endif
35c6edac 856 struct key_vector *tp = node_parent(tn);
88bae714 857 unsigned long cindex = get_index(tn->key, tp);
a80e89d4 858 int max_work = MAX_WORK;
cf3637bb 859
cf3637bb
AD
860 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
861 tn, inflate_threshold, halve_threshold);
862
ff181ed8
AD
863 /* track the tnode via the pointer from the parent instead of
864 * doing it ourselves. This way we can let RCU fully do its
865 * thing without us interfering
866 */
88bae714 867 BUG_ON(tn != get_child(tp, cindex));
ff181ed8 868
f05a4819
AD
869 /* Double as long as the resulting node has a number of
870 * nonempty nodes that are above the threshold.
cf3637bb 871 */
b6f15f82 872 while (should_inflate(tp, tn) && max_work) {
88bae714
AD
873 tp = inflate(t, tn);
874 if (!tp) {
cf3637bb 875#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 876 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
877#endif
878 break;
879 }
ff181ed8 880
b6f15f82 881 max_work--;
88bae714 882 tn = get_child(tp, cindex);
cf3637bb
AD
883 }
884
b6f15f82
AD
885 /* update parent in case inflate failed */
886 tp = node_parent(tn);
887
cf3637bb
AD
888 /* Return if at least one inflate is run */
889 if (max_work != MAX_WORK)
b6f15f82 890 return tp;
cf3637bb 891
f05a4819 892 /* Halve as long as the number of empty children in this
cf3637bb
AD
893 * node is above threshold.
894 */
b6f15f82 895 while (should_halve(tp, tn) && max_work) {
88bae714
AD
896 tp = halve(t, tn);
897 if (!tp) {
cf3637bb 898#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 899 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
900#endif
901 break;
902 }
cf3637bb 903
b6f15f82 904 max_work--;
88bae714 905 tn = get_child(tp, cindex);
ff181ed8 906 }
cf3637bb
AD
907
908 /* Only one child remains */
88bae714
AD
909 if (should_collapse(tn))
910 return collapse(t, tn);
911
b6f15f82 912 /* update parent in case halve failed */
a52ca62c 913 return node_parent(tn);
cf3637bb
AD
914}
915
1a239173 916static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
5405afd1 917{
1a239173
AD
918 unsigned char node_slen = tn->slen;
919
920 while ((node_slen > tn->pos) && (node_slen > slen)) {
921 slen = update_suffix(tn);
922 if (node_slen == slen)
5405afd1 923 break;
1a239173
AD
924
925 tn = node_parent(tn);
926 node_slen = tn->slen;
5405afd1
AD
927 }
928}
929
1a239173 930static void node_push_suffix(struct key_vector *tn, unsigned char slen)
19baf839 931{
1a239173
AD
932 while (tn->slen < slen) {
933 tn->slen = slen;
5405afd1
AD
934 tn = node_parent(tn);
935 }
936}
937
2373ce1c 938/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
939static struct key_vector *fib_find_node(struct trie *t,
940 struct key_vector **tp, u32 key)
19baf839 941{
88bae714
AD
942 struct key_vector *pn, *n = t->kv;
943 unsigned long index = 0;
944
945 do {
946 pn = n;
947 n = get_child_rcu(n, index);
948
949 if (!n)
950 break;
939afb06 951
88bae714 952 index = get_cindex(key, n);
939afb06
AD
953
954 /* This bit of code is a bit tricky but it combines multiple
955 * checks into a single check. The prefix consists of the
956 * prefix plus zeros for the bits in the cindex. The index
957 * is the difference between the key and this value. From
958 * this we can actually derive several pieces of data.
d4a975e8 959 * if (index >= (1ul << bits))
939afb06 960 * we have a mismatch in skip bits and failed
b3832117
AD
961 * else
962 * we know the value is cindex
d4a975e8
AD
963 *
964 * This check is safe even if bits == KEYLENGTH due to the
965 * fact that we can only allocate a node with 32 bits if a
966 * long is greater than 32 bits.
939afb06 967 */
d4a975e8
AD
968 if (index >= (1ul << n->bits)) {
969 n = NULL;
970 break;
971 }
939afb06 972
88bae714
AD
973 /* keep searching until we find a perfect match leaf or NULL */
974 } while (IS_TNODE(n));
91b9a277 975
35c6edac 976 *tp = pn;
d4a975e8 977
939afb06 978 return n;
19baf839
RO
979}
980
02525368
AD
981/* Return the first fib alias matching TOS with
982 * priority less than or equal to PRIO.
983 */
79e5ad2c 984static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
0b65bd97 985 u8 tos, u32 prio, u32 tb_id)
02525368
AD
986{
987 struct fib_alias *fa;
988
989 if (!fah)
990 return NULL;
991
56315f9e 992 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
993 if (fa->fa_slen < slen)
994 continue;
995 if (fa->fa_slen != slen)
996 break;
0b65bd97
AD
997 if (fa->tb_id > tb_id)
998 continue;
999 if (fa->tb_id != tb_id)
1000 break;
02525368
AD
1001 if (fa->fa_tos > tos)
1002 continue;
1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004 return fa;
1005 }
1006
1007 return NULL;
1008}
1009
35c6edac 1010static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 1011{
88bae714
AD
1012 while (!IS_TRIE(tn))
1013 tn = resize(t, tn);
19baf839
RO
1014}
1015
35c6edac 1016static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 1017 struct fib_alias *new, t_key key)
19baf839 1018{
35c6edac 1019 struct key_vector *n, *l;
19baf839 1020
d5d6487c 1021 l = leaf_new(key, new);
79e5ad2c 1022 if (!l)
8d8e810c 1023 goto noleaf;
d5d6487c
AD
1024
1025 /* retrieve child from parent node */
88bae714 1026 n = get_child(tp, get_index(key, tp));
19baf839 1027
836a0123
AD
1028 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1029 *
1030 * Add a new tnode here
1031 * first tnode need some special handling
1032 * leaves us in position for handling as case 3
1033 */
1034 if (n) {
35c6edac 1035 struct key_vector *tn;
19baf839 1036
e9b44019 1037 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1038 if (!tn)
1039 goto notnode;
91b9a277 1040
836a0123
AD
1041 /* initialize routes out of node */
1042 NODE_INIT_PARENT(tn, tp);
1043 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1044
836a0123 1045 /* start adding routes into the node */
88bae714 1046 put_child_root(tp, key, tn);
836a0123 1047 node_set_parent(n, tn);
e962f302 1048
836a0123 1049 /* parent now has a NULL spot where the leaf can go */
e962f302 1050 tp = tn;
19baf839 1051 }
91b9a277 1052
836a0123 1053 /* Case 3: n is NULL, and will just insert a new leaf */
a52ca62c 1054 node_push_suffix(tp, new->fa_slen);
d5d6487c 1055 NODE_INIT_PARENT(l, tp);
88bae714 1056 put_child_root(tp, key, l);
d5d6487c
AD
1057 trie_rebalance(t, tp);
1058
1059 return 0;
8d8e810c
AD
1060notnode:
1061 node_free(l);
1062noleaf:
1063 return -ENOMEM;
d5d6487c
AD
1064}
1065
35c6edac
AD
1066static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1067 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1068 struct fib_alias *fa, t_key key)
1069{
1070 if (!l)
1071 return fib_insert_node(t, tp, new, key);
1072
1073 if (fa) {
1074 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1075 } else {
d5d6487c
AD
1076 struct fib_alias *last;
1077
1078 hlist_for_each_entry(last, &l->leaf, fa_list) {
1079 if (new->fa_slen < last->fa_slen)
1080 break;
0b65bd97
AD
1081 if ((new->fa_slen == last->fa_slen) &&
1082 (new->tb_id > last->tb_id))
1083 break;
d5d6487c
AD
1084 fa = last;
1085 }
1086
1087 if (fa)
1088 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1089 else
1090 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1091 }
2373ce1c 1092
d5d6487c
AD
1093 /* if we added to the tail node then we need to update slen */
1094 if (l->slen < new->fa_slen) {
1095 l->slen = new->fa_slen;
1a239173 1096 node_push_suffix(tp, new->fa_slen);
d5d6487c
AD
1097 }
1098
1099 return 0;
19baf839
RO
1100}
1101
78055998 1102static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
ba277e8e 1103{
78055998
DA
1104 if (plen > KEYLENGTH) {
1105 NL_SET_ERR_MSG(extack, "Invalid prefix length");
ba277e8e 1106 return false;
78055998 1107 }
ba277e8e 1108
78055998
DA
1109 if ((plen < KEYLENGTH) && (key << plen)) {
1110 NL_SET_ERR_MSG(extack,
1111 "Invalid prefix for given prefix length");
ba277e8e 1112 return false;
78055998 1113 }
ba277e8e
DA
1114
1115 return true;
1116}
1117
d5d6487c 1118/* Caller must hold RTNL. */
b90eb754 1119int fib_table_insert(struct net *net, struct fib_table *tb,
6d8422a1 1120 struct fib_config *cfg, struct netlink_ext_ack *extack)
19baf839 1121{
2f3a5272 1122 enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
d4a975e8 1123 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1124 struct fib_alias *fa, *new_fa;
35c6edac 1125 struct key_vector *l, *tp;
b93e1fa7 1126 u16 nlflags = NLM_F_EXCL;
19baf839 1127 struct fib_info *fi;
79e5ad2c
AD
1128 u8 plen = cfg->fc_dst_len;
1129 u8 slen = KEYLENGTH - plen;
4e902c57 1130 u8 tos = cfg->fc_tos;
d4a975e8 1131 u32 key;
19baf839 1132 int err;
19baf839 1133
4e902c57 1134 key = ntohl(cfg->fc_dst);
19baf839 1135
78055998 1136 if (!fib_valid_key_len(key, plen, extack))
19baf839
RO
1137 return -EINVAL;
1138
ba277e8e
DA
1139 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1140
6d8422a1 1141 fi = fib_create_info(cfg, extack);
4e902c57
TG
1142 if (IS_ERR(fi)) {
1143 err = PTR_ERR(fi);
19baf839 1144 goto err;
4e902c57 1145 }
19baf839 1146
d4a975e8 1147 l = fib_find_node(t, &tp, key);
0b65bd97
AD
1148 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1149 tb->tb_id) : NULL;
19baf839
RO
1150
1151 /* Now fa, if non-NULL, points to the first fib alias
1152 * with the same keys [prefix,tos,priority], if such key already
1153 * exists or to the node before which we will insert new one.
1154 *
1155 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1156 * insert to the tail of the section matching the suffix length
1157 * of the new alias.
19baf839
RO
1158 */
1159
936f6f8e
JA
1160 if (fa && fa->fa_tos == tos &&
1161 fa->fa_info->fib_priority == fi->fib_priority) {
1162 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1163
1164 err = -EEXIST;
4e902c57 1165 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1166 goto out;
1167
b93e1fa7
GN
1168 nlflags &= ~NLM_F_EXCL;
1169
936f6f8e
JA
1170 /* We have 2 goals:
1171 * 1. Find exact match for type, scope, fib_info to avoid
1172 * duplicate routes
1173 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1174 */
1175 fa_match = NULL;
1176 fa_first = fa;
56315f9e 1177 hlist_for_each_entry_from(fa, fa_list) {
0b65bd97
AD
1178 if ((fa->fa_slen != slen) ||
1179 (fa->tb_id != tb->tb_id) ||
1180 (fa->fa_tos != tos))
936f6f8e
JA
1181 break;
1182 if (fa->fa_info->fib_priority != fi->fib_priority)
1183 break;
1184 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1185 fa->fa_info == fi) {
1186 fa_match = fa;
1187 break;
1188 }
1189 }
1190
4e902c57 1191 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1192 struct fib_info *fi_drop;
1193 u8 state;
1194
b93e1fa7 1195 nlflags |= NLM_F_REPLACE;
936f6f8e
JA
1196 fa = fa_first;
1197 if (fa_match) {
1198 if (fa == fa_match)
1199 err = 0;
6725033f 1200 goto out;
936f6f8e 1201 }
2373ce1c 1202 err = -ENOBUFS;
e94b1766 1203 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1204 if (!new_fa)
2373ce1c 1205 goto out;
19baf839
RO
1206
1207 fi_drop = fa->fa_info;
2373ce1c
RO
1208 new_fa->fa_tos = fa->fa_tos;
1209 new_fa->fa_info = fi;
4e902c57 1210 new_fa->fa_type = cfg->fc_type;
19baf839 1211 state = fa->fa_state;
936f6f8e 1212 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1213 new_fa->fa_slen = fa->fa_slen;
d4e64c29 1214 new_fa->tb_id = tb->tb_id;
2392debc 1215 new_fa->fa_default = -1;
19baf839 1216
2f3a5272 1217 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
5b7d616d
IS
1218 key, plen, fi,
1219 new_fa->fa_tos, cfg->fc_type,
2f3a5272 1220 tb->tb_id);
5b7d616d
IS
1221 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1222 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1223
56315f9e 1224 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1225
2373ce1c 1226 alias_free_mem_rcu(fa);
19baf839
RO
1227
1228 fib_release_info(fi_drop);
1229 if (state & FA_S_ACCESSED)
4ccfe6d4 1230 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b90eb754 1231
91b9a277 1232 goto succeeded;
19baf839
RO
1233 }
1234 /* Error if we find a perfect match which
1235 * uses the same scope, type, and nexthop
1236 * information.
1237 */
936f6f8e
JA
1238 if (fa_match)
1239 goto out;
a07f5f50 1240
2f3a5272
IS
1241 if (cfg->fc_nlflags & NLM_F_APPEND) {
1242 event = FIB_EVENT_ENTRY_APPEND;
b93e1fa7 1243 nlflags |= NLM_F_APPEND;
2f3a5272 1244 } else {
936f6f8e 1245 fa = fa_first;
2f3a5272 1246 }
19baf839
RO
1247 }
1248 err = -ENOENT;
4e902c57 1249 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1250 goto out;
1251
b93e1fa7 1252 nlflags |= NLM_F_CREATE;
19baf839 1253 err = -ENOBUFS;
e94b1766 1254 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1255 if (!new_fa)
19baf839
RO
1256 goto out;
1257
1258 new_fa->fa_info = fi;
1259 new_fa->fa_tos = tos;
4e902c57 1260 new_fa->fa_type = cfg->fc_type;
19baf839 1261 new_fa->fa_state = 0;
79e5ad2c 1262 new_fa->fa_slen = slen;
0ddcf43d 1263 new_fa->tb_id = tb->tb_id;
2392debc 1264 new_fa->fa_default = -1;
19baf839 1265
9b6ebad5 1266 /* Insert new entry to the list. */
d5d6487c
AD
1267 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1268 if (err)
347e3b28 1269 goto out_free_new_fa;
19baf839 1270
21d8c49e
DM
1271 if (!plen)
1272 tb->tb_num_default++;
1273
4ccfe6d4 1274 rt_cache_flush(cfg->fc_nlinfo.nl_net);
2f3a5272
IS
1275 call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type,
1276 tb->tb_id);
0ddcf43d 1277 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
a2bb6d7d 1278 &cfg->fc_nlinfo, nlflags);
19baf839
RO
1279succeeded:
1280 return 0;
f835e471
RO
1281
1282out_free_new_fa:
1283 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1284out:
1285 fib_release_info(fi);
91b9a277 1286err:
19baf839
RO
1287 return err;
1288}
1289
35c6edac 1290static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1291{
1292 t_key prefix = n->key;
1293
1294 return (key ^ prefix) & (prefix | -prefix);
1295}
1296
345e9b54 1297/* should be called with rcu_read_lock */
22bd5b9b 1298int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1299 struct fib_result *res, int fib_flags)
19baf839 1300{
0ddcf43d 1301 struct trie *t = (struct trie *) tb->tb_data;
8274a97a
AD
1302#ifdef CONFIG_IP_FIB_TRIE_STATS
1303 struct trie_use_stats __percpu *stats = t->stats;
1304#endif
9f9e636d 1305 const t_key key = ntohl(flp->daddr);
35c6edac 1306 struct key_vector *n, *pn;
79e5ad2c 1307 struct fib_alias *fa;
71e8b67d 1308 unsigned long index;
9f9e636d 1309 t_key cindex;
91b9a277 1310
f6d3c192
DA
1311 trace_fib_table_lookup(tb->tb_id, flp);
1312
88bae714
AD
1313 pn = t->kv;
1314 cindex = 0;
1315
1316 n = get_child_rcu(pn, cindex);
c877efb2 1317 if (!n)
345e9b54 1318 return -EAGAIN;
19baf839
RO
1319
1320#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1321 this_cpu_inc(stats->gets);
19baf839
RO
1322#endif
1323
9f9e636d
AD
1324 /* Step 1: Travel to the longest prefix match in the trie */
1325 for (;;) {
88bae714 1326 index = get_cindex(key, n);
9f9e636d
AD
1327
1328 /* This bit of code is a bit tricky but it combines multiple
1329 * checks into a single check. The prefix consists of the
1330 * prefix plus zeros for the "bits" in the prefix. The index
1331 * is the difference between the key and this value. From
1332 * this we can actually derive several pieces of data.
71e8b67d 1333 * if (index >= (1ul << bits))
9f9e636d 1334 * we have a mismatch in skip bits and failed
b3832117
AD
1335 * else
1336 * we know the value is cindex
71e8b67d
AD
1337 *
1338 * This check is safe even if bits == KEYLENGTH due to the
1339 * fact that we can only allocate a node with 32 bits if a
1340 * long is greater than 32 bits.
9f9e636d 1341 */
71e8b67d 1342 if (index >= (1ul << n->bits))
9f9e636d 1343 break;
19baf839 1344
9f9e636d
AD
1345 /* we have found a leaf. Prefixes have already been compared */
1346 if (IS_LEAF(n))
a07f5f50 1347 goto found;
19baf839 1348
9f9e636d
AD
1349 /* only record pn and cindex if we are going to be chopping
1350 * bits later. Otherwise we are just wasting cycles.
91b9a277 1351 */
5405afd1 1352 if (n->slen > n->pos) {
9f9e636d
AD
1353 pn = n;
1354 cindex = index;
91b9a277 1355 }
19baf839 1356
754baf8d 1357 n = get_child_rcu(n, index);
9f9e636d
AD
1358 if (unlikely(!n))
1359 goto backtrace;
1360 }
19baf839 1361
9f9e636d
AD
1362 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1363 for (;;) {
1364 /* record the pointer where our next node pointer is stored */
35c6edac 1365 struct key_vector __rcu **cptr = n->tnode;
19baf839 1366
9f9e636d
AD
1367 /* This test verifies that none of the bits that differ
1368 * between the key and the prefix exist in the region of
1369 * the lsb and higher in the prefix.
91b9a277 1370 */
5405afd1 1371 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1372 goto backtrace;
91b9a277 1373
9f9e636d
AD
1374 /* exit out and process leaf */
1375 if (unlikely(IS_LEAF(n)))
1376 break;
91b9a277 1377
9f9e636d
AD
1378 /* Don't bother recording parent info. Since we are in
1379 * prefix match mode we will have to come back to wherever
1380 * we started this traversal anyway
91b9a277 1381 */
91b9a277 1382
9f9e636d 1383 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1384backtrace:
19baf839 1385#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1386 if (!n)
1387 this_cpu_inc(stats->null_node_hit);
19baf839 1388#endif
9f9e636d
AD
1389 /* If we are at cindex 0 there are no more bits for
1390 * us to strip at this level so we must ascend back
1391 * up one level to see if there are any more bits to
1392 * be stripped there.
1393 */
1394 while (!cindex) {
1395 t_key pkey = pn->key;
1396
88bae714
AD
1397 /* If we don't have a parent then there is
1398 * nothing for us to do as we do not have any
1399 * further nodes to parse.
1400 */
1401 if (IS_TRIE(pn))
345e9b54 1402 return -EAGAIN;
9f9e636d
AD
1403#ifdef CONFIG_IP_FIB_TRIE_STATS
1404 this_cpu_inc(stats->backtrack);
1405#endif
1406 /* Get Child's index */
88bae714 1407 pn = node_parent_rcu(pn);
9f9e636d
AD
1408 cindex = get_index(pkey, pn);
1409 }
1410
1411 /* strip the least significant bit from the cindex */
1412 cindex &= cindex - 1;
1413
1414 /* grab pointer for next child node */
41b489fd 1415 cptr = &pn->tnode[cindex];
c877efb2 1416 }
19baf839 1417 }
9f9e636d 1418
19baf839 1419found:
71e8b67d
AD
1420 /* this line carries forward the xor from earlier in the function */
1421 index = key ^ n->key;
1422
9f9e636d 1423 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1424 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1425 struct fib_info *fi = fa->fa_info;
1426 int nhsel, err;
345e9b54 1427
a5829f53
AD
1428 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1429 if (index >= (1ul << fa->fa_slen))
1430 continue;
1431 }
79e5ad2c
AD
1432 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1433 continue;
1434 if (fi->fib_dead)
1435 continue;
1436 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1437 continue;
1438 fib_alias_accessed(fa);
1439 err = fib_props[fa->fa_type].error;
1440 if (unlikely(err < 0)) {
345e9b54 1441#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1442 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1443#endif
79e5ad2c
AD
1444 return err;
1445 }
1446 if (fi->fib_flags & RTNH_F_DEAD)
1447 continue;
1448 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1449 const struct fib_nh *nh = &fi->fib_nh[nhsel];
0eeb075f 1450 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
79e5ad2c
AD
1451
1452 if (nh->nh_flags & RTNH_F_DEAD)
1453 continue;
0eeb075f
AG
1454 if (in_dev &&
1455 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1456 nh->nh_flags & RTNH_F_LINKDOWN &&
1457 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1458 continue;
58189ca7 1459 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
613d09b3
DA
1460 if (flp->flowi4_oif &&
1461 flp->flowi4_oif != nh->nh_oif)
1462 continue;
1463 }
79e5ad2c
AD
1464
1465 if (!(fib_flags & FIB_LOOKUP_NOREF))
0029c0de 1466 refcount_inc(&fi->fib_clntref);
79e5ad2c 1467
6ffd9034 1468 res->prefix = htonl(n->key);
79e5ad2c
AD
1469 res->prefixlen = KEYLENGTH - fa->fa_slen;
1470 res->nh_sel = nhsel;
1471 res->type = fa->fa_type;
1472 res->scope = fi->fib_scope;
1473 res->fi = fi;
1474 res->table = tb;
1475 res->fa_head = &n->leaf;
345e9b54 1476#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1477 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1478#endif
f6d3c192
DA
1479 trace_fib_table_lookup_nh(nh);
1480
79e5ad2c 1481 return err;
345e9b54 1482 }
9b6ebad5 1483 }
345e9b54 1484#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1485 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1486#endif
345e9b54 1487 goto backtrace;
19baf839 1488}
6fc01438 1489EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1490
35c6edac
AD
1491static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1492 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1493{
1494 /* record the location of the previous list_info entry */
1495 struct hlist_node **pprev = old->fa_list.pprev;
1496 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1497
1498 /* remove the fib_alias from the list */
1499 hlist_del_rcu(&old->fa_list);
1500
1501 /* if we emptied the list this leaf will be freed and we can sort
1502 * out parent suffix lengths as a part of trie_rebalance
1503 */
1504 if (hlist_empty(&l->leaf)) {
a52ca62c
AD
1505 if (tp->slen == l->slen)
1506 node_pull_suffix(tp, tp->pos);
88bae714 1507 put_child_root(tp, l->key, NULL);
d5d6487c
AD
1508 node_free(l);
1509 trie_rebalance(t, tp);
1510 return;
1511 }
1512
1513 /* only access fa if it is pointing at the last valid hlist_node */
1514 if (*pprev)
1515 return;
1516
1517 /* update the trie with the latest suffix length */
1518 l->slen = fa->fa_slen;
1a239173 1519 node_pull_suffix(tp, fa->fa_slen);
d5d6487c
AD
1520}
1521
1522/* Caller must hold RTNL. */
b90eb754 1523int fib_table_delete(struct net *net, struct fib_table *tb,
78055998 1524 struct fib_config *cfg, struct netlink_ext_ack *extack)
19baf839
RO
1525{
1526 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1527 struct fib_alias *fa, *fa_to_delete;
35c6edac 1528 struct key_vector *l, *tp;
79e5ad2c 1529 u8 plen = cfg->fc_dst_len;
79e5ad2c 1530 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1531 u8 tos = cfg->fc_tos;
1532 u32 key;
91b9a277 1533
4e902c57 1534 key = ntohl(cfg->fc_dst);
19baf839 1535
78055998 1536 if (!fib_valid_key_len(key, plen, extack))
19baf839
RO
1537 return -EINVAL;
1538
d4a975e8 1539 l = fib_find_node(t, &tp, key);
c877efb2 1540 if (!l)
19baf839
RO
1541 return -ESRCH;
1542
0b65bd97 1543 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
19baf839
RO
1544 if (!fa)
1545 return -ESRCH;
1546
0c7770c7 1547 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1548
1549 fa_to_delete = NULL;
56315f9e 1550 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1551 struct fib_info *fi = fa->fa_info;
1552
0b65bd97
AD
1553 if ((fa->fa_slen != slen) ||
1554 (fa->tb_id != tb->tb_id) ||
1555 (fa->fa_tos != tos))
19baf839
RO
1556 break;
1557
4e902c57
TG
1558 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1559 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1560 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1561 (!cfg->fc_prefsrc ||
1562 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1563 (!cfg->fc_protocol ||
1564 fi->fib_protocol == cfg->fc_protocol) &&
9ae28727 1565 fib_nh_match(cfg, fi, extack) == 0) {
19baf839
RO
1566 fa_to_delete = fa;
1567 break;
1568 }
1569 }
1570
91b9a277
OJ
1571 if (!fa_to_delete)
1572 return -ESRCH;
19baf839 1573
b90eb754 1574 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
42d5aa76 1575 fa_to_delete->fa_info, tos,
2f3a5272 1576 fa_to_delete->fa_type, tb->tb_id);
d5d6487c 1577 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1578 &cfg->fc_nlinfo, 0);
91b9a277 1579
21d8c49e
DM
1580 if (!plen)
1581 tb->tb_num_default--;
1582
d5d6487c 1583 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1584
d5d6487c 1585 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1586 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1587
d5d6487c
AD
1588 fib_release_info(fa_to_delete->fa_info);
1589 alias_free_mem_rcu(fa_to_delete);
91b9a277 1590 return 0;
19baf839
RO
1591}
1592
8be33e95 1593/* Scan for the next leaf starting at the provided key value */
35c6edac 1594static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1595{
35c6edac 1596 struct key_vector *pn, *n = *tn;
8be33e95 1597 unsigned long cindex;
82cfbb00 1598
8be33e95 1599 /* this loop is meant to try and find the key in the trie */
88bae714 1600 do {
8be33e95
AD
1601 /* record parent and next child index */
1602 pn = n;
c2229fe1 1603 cindex = (key > pn->key) ? get_index(key, pn) : 0;
88bae714
AD
1604
1605 if (cindex >> pn->bits)
1606 break;
82cfbb00 1607
8be33e95 1608 /* descend into the next child */
754baf8d 1609 n = get_child_rcu(pn, cindex++);
88bae714
AD
1610 if (!n)
1611 break;
1612
1613 /* guarantee forward progress on the keys */
1614 if (IS_LEAF(n) && (n->key >= key))
1615 goto found;
1616 } while (IS_TNODE(n));
82cfbb00 1617
8be33e95 1618 /* this loop will search for the next leaf with a greater key */
88bae714 1619 while (!IS_TRIE(pn)) {
8be33e95
AD
1620 /* if we exhausted the parent node we will need to climb */
1621 if (cindex >= (1ul << pn->bits)) {
1622 t_key pkey = pn->key;
82cfbb00 1623
8be33e95 1624 pn = node_parent_rcu(pn);
8be33e95
AD
1625 cindex = get_index(pkey, pn) + 1;
1626 continue;
1627 }
82cfbb00 1628
8be33e95 1629 /* grab the next available node */
754baf8d 1630 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1631 if (!n)
1632 continue;
19baf839 1633
8be33e95
AD
1634 /* no need to compare keys since we bumped the index */
1635 if (IS_LEAF(n))
1636 goto found;
71d67e66 1637
8be33e95
AD
1638 /* Rescan start scanning in new node */
1639 pn = n;
1640 cindex = 0;
1641 }
ec28cf73 1642
8be33e95
AD
1643 *tn = pn;
1644 return NULL; /* Root of trie */
1645found:
1646 /* if we are at the limit for keys just return NULL for the tnode */
88bae714 1647 *tn = pn;
8be33e95 1648 return n;
71d67e66
SH
1649}
1650
0ddcf43d
AD
1651static void fib_trie_free(struct fib_table *tb)
1652{
1653 struct trie *t = (struct trie *)tb->tb_data;
1654 struct key_vector *pn = t->kv;
1655 unsigned long cindex = 1;
1656 struct hlist_node *tmp;
1657 struct fib_alias *fa;
1658
1659 /* walk trie in reverse order and free everything */
1660 for (;;) {
1661 struct key_vector *n;
1662
1663 if (!(cindex--)) {
1664 t_key pkey = pn->key;
1665
1666 if (IS_TRIE(pn))
1667 break;
1668
1669 n = pn;
1670 pn = node_parent(pn);
1671
1672 /* drop emptied tnode */
1673 put_child_root(pn, n->key, NULL);
1674 node_free(n);
1675
1676 cindex = get_index(pkey, pn);
1677
1678 continue;
1679 }
1680
1681 /* grab the next available node */
1682 n = get_child(pn, cindex);
1683 if (!n)
1684 continue;
1685
1686 if (IS_TNODE(n)) {
1687 /* record pn and cindex for leaf walking */
1688 pn = n;
1689 cindex = 1ul << n->bits;
1690
1691 continue;
1692 }
1693
1694 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1695 hlist_del_rcu(&fa->fa_list);
1696 alias_free_mem_rcu(fa);
1697 }
1698
1699 put_child_root(pn, n->key, NULL);
1700 node_free(n);
1701 }
1702
1703#ifdef CONFIG_IP_FIB_TRIE_STATS
1704 free_percpu(t->stats);
1705#endif
1706 kfree(tb);
1707}
1708
1709struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1710{
1711 struct trie *ot = (struct trie *)oldtb->tb_data;
1712 struct key_vector *l, *tp = ot->kv;
1713 struct fib_table *local_tb;
1714 struct fib_alias *fa;
1715 struct trie *lt;
1716 t_key key = 0;
1717
1718 if (oldtb->tb_data == oldtb->__data)
1719 return oldtb;
1720
1721 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1722 if (!local_tb)
1723 return NULL;
1724
1725 lt = (struct trie *)local_tb->tb_data;
1726
1727 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1728 struct key_vector *local_l = NULL, *local_tp;
1729
1730 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1731 struct fib_alias *new_fa;
1732
1733 if (local_tb->tb_id != fa->tb_id)
1734 continue;
1735
1736 /* clone fa for new local table */
1737 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1738 if (!new_fa)
1739 goto out;
1740
1741 memcpy(new_fa, fa, sizeof(*fa));
1742
1743 /* insert clone into table */
1744 if (!local_l)
1745 local_l = fib_find_node(lt, &local_tp, l->key);
1746
1747 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
3114cdfe
AD
1748 NULL, l->key)) {
1749 kmem_cache_free(fn_alias_kmem, new_fa);
0ddcf43d 1750 goto out;
3114cdfe 1751 }
0ddcf43d
AD
1752 }
1753
1754 /* stop loop if key wrapped back to 0 */
1755 key = l->key + 1;
1756 if (key < l->key)
1757 break;
1758 }
1759
1760 return local_tb;
1761out:
1762 fib_trie_free(local_tb);
1763
1764 return NULL;
1765}
1766
3b709334
AD
1767/* Caller must hold RTNL */
1768void fib_table_flush_external(struct fib_table *tb)
1769{
1770 struct trie *t = (struct trie *)tb->tb_data;
1771 struct key_vector *pn = t->kv;
1772 unsigned long cindex = 1;
1773 struct hlist_node *tmp;
1774 struct fib_alias *fa;
1775
1776 /* walk trie in reverse order */
1777 for (;;) {
1778 unsigned char slen = 0;
1779 struct key_vector *n;
1780
1781 if (!(cindex--)) {
1782 t_key pkey = pn->key;
1783
1784 /* cannot resize the trie vector */
1785 if (IS_TRIE(pn))
1786 break;
1787
a52ca62c
AD
1788 /* update the suffix to address pulled leaves */
1789 if (pn->slen > pn->pos)
1790 update_suffix(pn);
1791
3b709334
AD
1792 /* resize completed node */
1793 pn = resize(t, pn);
1794 cindex = get_index(pkey, pn);
1795
1796 continue;
1797 }
1798
1799 /* grab the next available node */
1800 n = get_child(pn, cindex);
1801 if (!n)
1802 continue;
1803
1804 if (IS_TNODE(n)) {
1805 /* record pn and cindex for leaf walking */
1806 pn = n;
1807 cindex = 1ul << n->bits;
1808
1809 continue;
1810 }
1811
1812 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1813 /* if alias was cloned to local then we just
1814 * need to remove the local copy from main
1815 */
1816 if (tb->tb_id != fa->tb_id) {
1817 hlist_del_rcu(&fa->fa_list);
1818 alias_free_mem_rcu(fa);
1819 continue;
1820 }
1821
1822 /* record local slen */
1823 slen = fa->fa_slen;
1824 }
1825
1826 /* update leaf slen */
1827 n->slen = slen;
1828
1829 if (hlist_empty(&n->leaf)) {
1830 put_child_root(pn, n->key, NULL);
1831 node_free(n);
1832 }
1833 }
1834}
1835
8be33e95 1836/* Caller must hold RTNL. */
b90eb754 1837int fib_table_flush(struct net *net, struct fib_table *tb)
19baf839 1838{
7289e6dd 1839 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1840 struct key_vector *pn = t->kv;
1841 unsigned long cindex = 1;
7289e6dd
AD
1842 struct hlist_node *tmp;
1843 struct fib_alias *fa;
82cfbb00 1844 int found = 0;
19baf839 1845
88bae714
AD
1846 /* walk trie in reverse order */
1847 for (;;) {
1848 unsigned char slen = 0;
1849 struct key_vector *n;
19baf839 1850
88bae714
AD
1851 if (!(cindex--)) {
1852 t_key pkey = pn->key;
7289e6dd 1853
88bae714
AD
1854 /* cannot resize the trie vector */
1855 if (IS_TRIE(pn))
1856 break;
7289e6dd 1857
a52ca62c
AD
1858 /* update the suffix to address pulled leaves */
1859 if (pn->slen > pn->pos)
1860 update_suffix(pn);
1861
88bae714
AD
1862 /* resize completed node */
1863 pn = resize(t, pn);
1864 cindex = get_index(pkey, pn);
7289e6dd 1865
88bae714
AD
1866 continue;
1867 }
7289e6dd 1868
88bae714
AD
1869 /* grab the next available node */
1870 n = get_child(pn, cindex);
1871 if (!n)
1872 continue;
7289e6dd 1873
88bae714
AD
1874 if (IS_TNODE(n)) {
1875 /* record pn and cindex for leaf walking */
1876 pn = n;
1877 cindex = 1ul << n->bits;
7289e6dd 1878
88bae714
AD
1879 continue;
1880 }
7289e6dd 1881
88bae714
AD
1882 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1883 struct fib_info *fi = fa->fa_info;
7289e6dd 1884
58e3bdd5
IS
1885 if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
1886 tb->tb_id != fa->tb_id) {
88bae714
AD
1887 slen = fa->fa_slen;
1888 continue;
1889 }
7289e6dd 1890
b90eb754
JP
1891 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1892 n->key,
1893 KEYLENGTH - fa->fa_slen,
1894 fi, fa->fa_tos, fa->fa_type,
2f3a5272 1895 tb->tb_id);
7289e6dd
AD
1896 hlist_del_rcu(&fa->fa_list);
1897 fib_release_info(fa->fa_info);
1898 alias_free_mem_rcu(fa);
1899 found++;
64c62723
AD
1900 }
1901
88bae714
AD
1902 /* update leaf slen */
1903 n->slen = slen;
7289e6dd 1904
88bae714
AD
1905 if (hlist_empty(&n->leaf)) {
1906 put_child_root(pn, n->key, NULL);
1907 node_free(n);
88bae714 1908 }
64c62723 1909 }
19baf839 1910
0c7770c7 1911 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1912 return found;
1913}
1914
c3852ef7 1915static void fib_leaf_notify(struct net *net, struct key_vector *l,
d05f7a7d 1916 struct fib_table *tb, struct notifier_block *nb)
c3852ef7
IS
1917{
1918 struct fib_alias *fa;
1919
1920 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1921 struct fib_info *fi = fa->fa_info;
1922
1923 if (!fi)
1924 continue;
1925
1926 /* local and main table can share the same trie,
1927 * so don't notify twice for the same entry.
1928 */
1929 if (tb->tb_id != fa->tb_id)
1930 continue;
1931
d05f7a7d 1932 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
c3852ef7 1933 KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
2f3a5272 1934 fa->fa_type, fa->tb_id);
c3852ef7
IS
1935 }
1936}
1937
1938static void fib_table_notify(struct net *net, struct fib_table *tb,
d05f7a7d 1939 struct notifier_block *nb)
c3852ef7
IS
1940{
1941 struct trie *t = (struct trie *)tb->tb_data;
1942 struct key_vector *l, *tp = t->kv;
1943 t_key key = 0;
1944
1945 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
d05f7a7d 1946 fib_leaf_notify(net, l, tb, nb);
c3852ef7
IS
1947
1948 key = l->key + 1;
1949 /* stop in case of wrap around */
1950 if (key < l->key)
1951 break;
1952 }
1953}
1954
d05f7a7d 1955void fib_notify(struct net *net, struct notifier_block *nb)
c3852ef7
IS
1956{
1957 unsigned int h;
1958
1959 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1960 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1961 struct fib_table *tb;
1962
1963 hlist_for_each_entry_rcu(tb, head, tb_hlist)
d05f7a7d 1964 fib_table_notify(net, tb, nb);
c3852ef7
IS
1965 }
1966}
1967
a7e53531 1968static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1969{
a7e53531 1970 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1971#ifdef CONFIG_IP_FIB_TRIE_STATS
1972 struct trie *t = (struct trie *)tb->tb_data;
1973
0ddcf43d
AD
1974 if (tb->tb_data == tb->__data)
1975 free_percpu(t->stats);
8274a97a 1976#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1977 kfree(tb);
1978}
1979
a7e53531
AD
1980void fib_free_table(struct fib_table *tb)
1981{
1982 call_rcu(&tb->rcu, __trie_free_rcu);
1983}
1984
35c6edac 1985static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1986 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1987{
79e5ad2c 1988 __be32 xkey = htonl(l->key);
19baf839 1989 struct fib_alias *fa;
79e5ad2c 1990 int i, s_i;
19baf839 1991
79e5ad2c 1992 s_i = cb->args[4];
19baf839
RO
1993 i = 0;
1994
2373ce1c 1995 /* rcu_read_lock is hold by caller */
79e5ad2c 1996 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
f6c5775f
DA
1997 int err;
1998
19baf839
RO
1999 if (i < s_i) {
2000 i++;
2001 continue;
2002 }
19baf839 2003
0ddcf43d
AD
2004 if (tb->tb_id != fa->tb_id) {
2005 i++;
2006 continue;
2007 }
2008
f6c5775f
DA
2009 err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2010 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2011 tb->tb_id, fa->fa_type,
2012 xkey, KEYLENGTH - fa->fa_slen,
2013 fa->fa_tos, fa->fa_info, NLM_F_MULTI);
2014 if (err < 0) {
71d67e66 2015 cb->args[4] = i;
f6c5775f 2016 return err;
19baf839 2017 }
a88ee229 2018 i++;
19baf839 2019 }
a88ee229 2020
71d67e66 2021 cb->args[4] = i;
19baf839
RO
2022 return skb->len;
2023}
2024
a7e53531 2025/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
2026int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2027 struct netlink_callback *cb)
19baf839 2028{
8be33e95 2029 struct trie *t = (struct trie *)tb->tb_data;
88bae714 2030 struct key_vector *l, *tp = t->kv;
d5ce8a0e
SH
2031 /* Dump starting at last key.
2032 * Note: 0.0.0.0/0 (ie default) is first key.
2033 */
8be33e95
AD
2034 int count = cb->args[2];
2035 t_key key = cb->args[3];
a88ee229 2036
8be33e95 2037 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
f6c5775f
DA
2038 int err;
2039
2040 err = fn_trie_dump_leaf(l, tb, skb, cb);
2041 if (err < 0) {
8be33e95
AD
2042 cb->args[3] = key;
2043 cb->args[2] = count;
f6c5775f 2044 return err;
19baf839 2045 }
d5ce8a0e 2046
71d67e66 2047 ++count;
8be33e95
AD
2048 key = l->key + 1;
2049
71d67e66
SH
2050 memset(&cb->args[4], 0,
2051 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
2052
2053 /* stop loop if key wrapped back to 0 */
2054 if (key < l->key)
2055 break;
19baf839 2056 }
8be33e95 2057
8be33e95
AD
2058 cb->args[3] = key;
2059 cb->args[2] = count;
2060
19baf839 2061 return skb->len;
19baf839
RO
2062}
2063
5348ba85 2064void __init fib_trie_init(void)
7f9b8052 2065{
a07f5f50
SH
2066 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2067 sizeof(struct fib_alias),
bc3c8c1e
SH
2068 0, SLAB_PANIC, NULL);
2069
2070 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 2071 LEAF_SIZE,
bc3c8c1e 2072 0, SLAB_PANIC, NULL);
7f9b8052 2073}
19baf839 2074
0ddcf43d 2075struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
19baf839
RO
2076{
2077 struct fib_table *tb;
2078 struct trie *t;
0ddcf43d
AD
2079 size_t sz = sizeof(*tb);
2080
2081 if (!alias)
2082 sz += sizeof(struct trie);
19baf839 2083
0ddcf43d 2084 tb = kzalloc(sz, GFP_KERNEL);
51456b29 2085 if (!tb)
19baf839
RO
2086 return NULL;
2087
2088 tb->tb_id = id;
21d8c49e 2089 tb->tb_num_default = 0;
0ddcf43d
AD
2090 tb->tb_data = (alias ? alias->__data : tb->__data);
2091
2092 if (alias)
2093 return tb;
19baf839
RO
2094
2095 t = (struct trie *) tb->tb_data;
88bae714
AD
2096 t->kv[0].pos = KEYLENGTH;
2097 t->kv[0].slen = KEYLENGTH;
8274a97a
AD
2098#ifdef CONFIG_IP_FIB_TRIE_STATS
2099 t->stats = alloc_percpu(struct trie_use_stats);
2100 if (!t->stats) {
2101 kfree(tb);
2102 tb = NULL;
2103 }
2104#endif
19baf839 2105
19baf839
RO
2106 return tb;
2107}
2108
cb7b593c
SH
2109#ifdef CONFIG_PROC_FS
2110/* Depth first Trie walk iterator */
2111struct fib_trie_iter {
1c340b2f 2112 struct seq_net_private p;
3d3b2d25 2113 struct fib_table *tb;
35c6edac 2114 struct key_vector *tnode;
a034ee3c
ED
2115 unsigned int index;
2116 unsigned int depth;
cb7b593c 2117};
19baf839 2118
35c6edac 2119static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2120{
98293e8d 2121 unsigned long cindex = iter->index;
88bae714
AD
2122 struct key_vector *pn = iter->tnode;
2123 t_key pkey;
6640e697 2124
cb7b593c
SH
2125 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2126 iter->tnode, iter->index, iter->depth);
19baf839 2127
88bae714
AD
2128 while (!IS_TRIE(pn)) {
2129 while (cindex < child_length(pn)) {
2130 struct key_vector *n = get_child_rcu(pn, cindex++);
2131
2132 if (!n)
2133 continue;
2134
cb7b593c 2135 if (IS_LEAF(n)) {
88bae714
AD
2136 iter->tnode = pn;
2137 iter->index = cindex;
cb7b593c
SH
2138 } else {
2139 /* push down one level */
adaf9816 2140 iter->tnode = n;
cb7b593c
SH
2141 iter->index = 0;
2142 ++iter->depth;
2143 }
88bae714 2144
cb7b593c
SH
2145 return n;
2146 }
19baf839 2147
88bae714
AD
2148 /* Current node exhausted, pop back up */
2149 pkey = pn->key;
2150 pn = node_parent_rcu(pn);
2151 cindex = get_index(pkey, pn) + 1;
cb7b593c 2152 --iter->depth;
19baf839 2153 }
cb7b593c 2154
88bae714
AD
2155 /* record root node so further searches know we are done */
2156 iter->tnode = pn;
2157 iter->index = 0;
2158
cb7b593c 2159 return NULL;
19baf839
RO
2160}
2161
35c6edac
AD
2162static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2163 struct trie *t)
19baf839 2164{
f38b24c9 2165 struct key_vector *n, *pn;
5ddf0eb2 2166
132adf54 2167 if (!t)
5ddf0eb2
RO
2168 return NULL;
2169
f38b24c9 2170 pn = t->kv;
88bae714 2171 n = rcu_dereference(pn->tnode[0]);
3d3b2d25 2172 if (!n)
5ddf0eb2 2173 return NULL;
19baf839 2174
3d3b2d25 2175 if (IS_TNODE(n)) {
adaf9816 2176 iter->tnode = n;
3d3b2d25
SH
2177 iter->index = 0;
2178 iter->depth = 1;
2179 } else {
88bae714 2180 iter->tnode = pn;
3d3b2d25
SH
2181 iter->index = 0;
2182 iter->depth = 0;
91b9a277 2183 }
3d3b2d25
SH
2184
2185 return n;
cb7b593c 2186}
91b9a277 2187
cb7b593c
SH
2188static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2189{
35c6edac 2190 struct key_vector *n;
cb7b593c 2191 struct fib_trie_iter iter;
91b9a277 2192
cb7b593c 2193 memset(s, 0, sizeof(*s));
91b9a277 2194
cb7b593c 2195 rcu_read_lock();
3d3b2d25 2196 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2197 if (IS_LEAF(n)) {
79e5ad2c 2198 struct fib_alias *fa;
93672292 2199
cb7b593c
SH
2200 s->leaves++;
2201 s->totdepth += iter.depth;
2202 if (iter.depth > s->maxdepth)
2203 s->maxdepth = iter.depth;
93672292 2204
79e5ad2c 2205 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 2206 ++s->prefixes;
cb7b593c 2207 } else {
cb7b593c 2208 s->tnodes++;
adaf9816
AD
2209 if (n->bits < MAX_STAT_DEPTH)
2210 s->nodesizes[n->bits]++;
6e22d174 2211 s->nullpointers += tn_info(n)->empty_children;
19baf839 2212 }
19baf839 2213 }
2373ce1c 2214 rcu_read_unlock();
19baf839
RO
2215}
2216
cb7b593c
SH
2217/*
2218 * This outputs /proc/net/fib_triestats
2219 */
2220static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2221{
a034ee3c 2222 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2223
cb7b593c
SH
2224 if (stat->leaves)
2225 avdepth = stat->totdepth*100 / stat->leaves;
2226 else
2227 avdepth = 0;
91b9a277 2228
a07f5f50
SH
2229 seq_printf(seq, "\tAver depth: %u.%02d\n",
2230 avdepth / 100, avdepth % 100);
cb7b593c 2231 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2232
cb7b593c 2233 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 2234 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
2235
2236 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 2237 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 2238
187b5188 2239 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 2240 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 2241
06ef921d
RO
2242 max = MAX_STAT_DEPTH;
2243 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2244 max--;
19baf839 2245
cb7b593c 2246 pointers = 0;
f585a991 2247 for (i = 1; i < max; i++)
cb7b593c 2248 if (stat->nodesizes[i] != 0) {
187b5188 2249 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2250 pointers += (1<<i) * stat->nodesizes[i];
2251 }
2252 seq_putc(seq, '\n');
187b5188 2253 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2254
35c6edac 2255 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2256 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2257 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2258}
2373ce1c 2259
cb7b593c 2260#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2261static void trie_show_usage(struct seq_file *seq,
8274a97a 2262 const struct trie_use_stats __percpu *stats)
66a2f7fd 2263{
8274a97a
AD
2264 struct trie_use_stats s = { 0 };
2265 int cpu;
2266
2267 /* loop through all of the CPUs and gather up the stats */
2268 for_each_possible_cpu(cpu) {
2269 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2270
2271 s.gets += pcpu->gets;
2272 s.backtrack += pcpu->backtrack;
2273 s.semantic_match_passed += pcpu->semantic_match_passed;
2274 s.semantic_match_miss += pcpu->semantic_match_miss;
2275 s.null_node_hit += pcpu->null_node_hit;
2276 s.resize_node_skipped += pcpu->resize_node_skipped;
2277 }
2278
66a2f7fd 2279 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2280 seq_printf(seq, "gets = %u\n", s.gets);
2281 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2282 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2283 s.semantic_match_passed);
2284 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2285 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2286 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2287}
66a2f7fd
SH
2288#endif /* CONFIG_IP_FIB_TRIE_STATS */
2289
3d3b2d25 2290static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2291{
3d3b2d25
SH
2292 if (tb->tb_id == RT_TABLE_LOCAL)
2293 seq_puts(seq, "Local:\n");
2294 else if (tb->tb_id == RT_TABLE_MAIN)
2295 seq_puts(seq, "Main:\n");
2296 else
2297 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2298}
19baf839 2299
3d3b2d25 2300
cb7b593c
SH
2301static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2302{
1c340b2f 2303 struct net *net = (struct net *)seq->private;
3d3b2d25 2304 unsigned int h;
877a9bff 2305
d717a9a6 2306 seq_printf(seq,
a07f5f50 2307 "Basic info: size of leaf:"
5b5e0928 2308 " %zd bytes, size of tnode: %zd bytes.\n",
41b489fd 2309 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2310
3d3b2d25
SH
2311 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2312 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2313 struct fib_table *tb;
2314
b67bfe0d 2315 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2316 struct trie *t = (struct trie *) tb->tb_data;
2317 struct trie_stat stat;
877a9bff 2318
3d3b2d25
SH
2319 if (!t)
2320 continue;
2321
2322 fib_table_print(seq, tb);
2323
2324 trie_collect_stats(t, &stat);
2325 trie_show_stats(seq, &stat);
2326#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2327 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2328#endif
2329 }
2330 }
19baf839 2331
cb7b593c 2332 return 0;
19baf839
RO
2333}
2334
cb7b593c 2335static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2336{
de05c557 2337 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2338}
2339
9a32144e 2340static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2341 .owner = THIS_MODULE,
2342 .open = fib_triestat_seq_open,
2343 .read = seq_read,
2344 .llseek = seq_lseek,
b6fcbdb4 2345 .release = single_release_net,
cb7b593c
SH
2346};
2347
35c6edac 2348static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2349{
1218854a
YH
2350 struct fib_trie_iter *iter = seq->private;
2351 struct net *net = seq_file_net(seq);
cb7b593c 2352 loff_t idx = 0;
3d3b2d25 2353 unsigned int h;
cb7b593c 2354
3d3b2d25
SH
2355 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2356 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2357 struct fib_table *tb;
cb7b593c 2358
b67bfe0d 2359 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2360 struct key_vector *n;
3d3b2d25
SH
2361
2362 for (n = fib_trie_get_first(iter,
2363 (struct trie *) tb->tb_data);
2364 n; n = fib_trie_get_next(iter))
2365 if (pos == idx++) {
2366 iter->tb = tb;
2367 return n;
2368 }
2369 }
cb7b593c 2370 }
3d3b2d25 2371
19baf839
RO
2372 return NULL;
2373}
2374
cb7b593c 2375static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2376 __acquires(RCU)
19baf839 2377{
cb7b593c 2378 rcu_read_lock();
1218854a 2379 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2380}
2381
cb7b593c 2382static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2383{
cb7b593c 2384 struct fib_trie_iter *iter = seq->private;
1218854a 2385 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2386 struct fib_table *tb = iter->tb;
2387 struct hlist_node *tb_node;
2388 unsigned int h;
35c6edac 2389 struct key_vector *n;
cb7b593c 2390
19baf839 2391 ++*pos;
3d3b2d25
SH
2392 /* next node in same table */
2393 n = fib_trie_get_next(iter);
2394 if (n)
2395 return n;
19baf839 2396
3d3b2d25
SH
2397 /* walk rest of this hash chain */
2398 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2399 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2400 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2401 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2402 if (n)
2403 goto found;
2404 }
19baf839 2405
3d3b2d25
SH
2406 /* new hash chain */
2407 while (++h < FIB_TABLE_HASHSZ) {
2408 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2409 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2410 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2411 if (n)
2412 goto found;
2413 }
2414 }
cb7b593c 2415 return NULL;
3d3b2d25
SH
2416
2417found:
2418 iter->tb = tb;
2419 return n;
cb7b593c 2420}
19baf839 2421
cb7b593c 2422static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2423 __releases(RCU)
19baf839 2424{
cb7b593c
SH
2425 rcu_read_unlock();
2426}
91b9a277 2427
cb7b593c
SH
2428static void seq_indent(struct seq_file *seq, int n)
2429{
a034ee3c
ED
2430 while (n-- > 0)
2431 seq_puts(seq, " ");
cb7b593c 2432}
19baf839 2433
28d36e37 2434static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2435{
132adf54 2436 switch (s) {
cb7b593c
SH
2437 case RT_SCOPE_UNIVERSE: return "universe";
2438 case RT_SCOPE_SITE: return "site";
2439 case RT_SCOPE_LINK: return "link";
2440 case RT_SCOPE_HOST: return "host";
2441 case RT_SCOPE_NOWHERE: return "nowhere";
2442 default:
28d36e37 2443 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2444 return buf;
2445 }
2446}
19baf839 2447
36cbd3dc 2448static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2449 [RTN_UNSPEC] = "UNSPEC",
2450 [RTN_UNICAST] = "UNICAST",
2451 [RTN_LOCAL] = "LOCAL",
2452 [RTN_BROADCAST] = "BROADCAST",
2453 [RTN_ANYCAST] = "ANYCAST",
2454 [RTN_MULTICAST] = "MULTICAST",
2455 [RTN_BLACKHOLE] = "BLACKHOLE",
2456 [RTN_UNREACHABLE] = "UNREACHABLE",
2457 [RTN_PROHIBIT] = "PROHIBIT",
2458 [RTN_THROW] = "THROW",
2459 [RTN_NAT] = "NAT",
2460 [RTN_XRESOLVE] = "XRESOLVE",
2461};
19baf839 2462
a034ee3c 2463static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2464{
cb7b593c
SH
2465 if (t < __RTN_MAX && rtn_type_names[t])
2466 return rtn_type_names[t];
28d36e37 2467 snprintf(buf, len, "type %u", t);
cb7b593c 2468 return buf;
19baf839
RO
2469}
2470
cb7b593c
SH
2471/* Pretty print the trie */
2472static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2473{
cb7b593c 2474 const struct fib_trie_iter *iter = seq->private;
35c6edac 2475 struct key_vector *n = v;
c877efb2 2476
88bae714 2477 if (IS_TRIE(node_parent_rcu(n)))
3d3b2d25 2478 fib_table_print(seq, iter->tb);
095b8501 2479
cb7b593c 2480 if (IS_TNODE(n)) {
adaf9816 2481 __be32 prf = htonl(n->key);
91b9a277 2482
e9b44019
AD
2483 seq_indent(seq, iter->depth-1);
2484 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2485 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
6e22d174
AD
2486 tn_info(n)->full_children,
2487 tn_info(n)->empty_children);
cb7b593c 2488 } else {
adaf9816 2489 __be32 val = htonl(n->key);
79e5ad2c 2490 struct fib_alias *fa;
cb7b593c
SH
2491
2492 seq_indent(seq, iter->depth);
673d57e7 2493 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2494
79e5ad2c
AD
2495 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2496 char buf1[32], buf2[32];
2497
2498 seq_indent(seq, iter->depth + 1);
2499 seq_printf(seq, " /%zu %s %s",
2500 KEYLENGTH - fa->fa_slen,
2501 rtn_scope(buf1, sizeof(buf1),
2502 fa->fa_info->fib_scope),
2503 rtn_type(buf2, sizeof(buf2),
2504 fa->fa_type));
2505 if (fa->fa_tos)
2506 seq_printf(seq, " tos=%d", fa->fa_tos);
2507 seq_putc(seq, '\n');
cb7b593c 2508 }
19baf839 2509 }
cb7b593c 2510
19baf839
RO
2511 return 0;
2512}
2513
f690808e 2514static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2515 .start = fib_trie_seq_start,
2516 .next = fib_trie_seq_next,
2517 .stop = fib_trie_seq_stop,
2518 .show = fib_trie_seq_show,
19baf839
RO
2519};
2520
cb7b593c 2521static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2522{
1c340b2f
DL
2523 return seq_open_net(inode, file, &fib_trie_seq_ops,
2524 sizeof(struct fib_trie_iter));
19baf839
RO
2525}
2526
9a32144e 2527static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2528 .owner = THIS_MODULE,
2529 .open = fib_trie_seq_open,
2530 .read = seq_read,
2531 .llseek = seq_lseek,
1c340b2f 2532 .release = seq_release_net,
19baf839
RO
2533};
2534
8315f5d8
SH
2535struct fib_route_iter {
2536 struct seq_net_private p;
8be33e95 2537 struct fib_table *main_tb;
35c6edac 2538 struct key_vector *tnode;
8315f5d8
SH
2539 loff_t pos;
2540 t_key key;
2541};
2542
35c6edac
AD
2543static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2544 loff_t pos)
8315f5d8 2545{
35c6edac 2546 struct key_vector *l, **tp = &iter->tnode;
8be33e95 2547 t_key key;
8315f5d8 2548
fd0285a3 2549 /* use cached location of previously found key */
8be33e95 2550 if (iter->pos > 0 && pos >= iter->pos) {
8be33e95
AD
2551 key = iter->key;
2552 } else {
fd0285a3 2553 iter->pos = 1;
8be33e95 2554 key = 0;
8315f5d8
SH
2555 }
2556
fd0285a3
AD
2557 pos -= iter->pos;
2558
2559 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
8be33e95 2560 key = l->key + 1;
8315f5d8 2561 iter->pos++;
8be33e95
AD
2562 l = NULL;
2563
2564 /* handle unlikely case of a key wrap */
2565 if (!key)
2566 break;
8315f5d8
SH
2567 }
2568
2569 if (l)
fd0285a3 2570 iter->key = l->key; /* remember it */
8315f5d8
SH
2571 else
2572 iter->pos = 0; /* forget it */
2573
2574 return l;
2575}
2576
2577static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2578 __acquires(RCU)
2579{
2580 struct fib_route_iter *iter = seq->private;
2581 struct fib_table *tb;
8be33e95 2582 struct trie *t;
8315f5d8
SH
2583
2584 rcu_read_lock();
8be33e95 2585
1218854a 2586 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2587 if (!tb)
2588 return NULL;
2589
8be33e95 2590 iter->main_tb = tb;
94d9f1c5
DF
2591 t = (struct trie *)tb->tb_data;
2592 iter->tnode = t->kv;
8be33e95
AD
2593
2594 if (*pos != 0)
2595 return fib_route_get_idx(iter, *pos);
2596
8be33e95 2597 iter->pos = 0;
fd0285a3 2598 iter->key = KEY_MAX;
8be33e95
AD
2599
2600 return SEQ_START_TOKEN;
8315f5d8
SH
2601}
2602
2603static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2604{
2605 struct fib_route_iter *iter = seq->private;
35c6edac 2606 struct key_vector *l = NULL;
fd0285a3 2607 t_key key = iter->key + 1;
8315f5d8
SH
2608
2609 ++*pos;
8be33e95
AD
2610
2611 /* only allow key of 0 for start of sequence */
2612 if ((v == SEQ_START_TOKEN) || key)
2613 l = leaf_walk_rcu(&iter->tnode, key);
2614
2615 if (l) {
fd0285a3 2616 iter->key = l->key;
8315f5d8 2617 iter->pos++;
8be33e95
AD
2618 } else {
2619 iter->pos = 0;
8315f5d8
SH
2620 }
2621
8315f5d8
SH
2622 return l;
2623}
2624
2625static void fib_route_seq_stop(struct seq_file *seq, void *v)
2626 __releases(RCU)
2627{
2628 rcu_read_unlock();
2629}
2630
a034ee3c 2631static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2632{
a034ee3c 2633 unsigned int flags = 0;
19baf839 2634
a034ee3c
ED
2635 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2636 flags = RTF_REJECT;
cb7b593c
SH
2637 if (fi && fi->fib_nh->nh_gw)
2638 flags |= RTF_GATEWAY;
32ab5f80 2639 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2640 flags |= RTF_HOST;
2641 flags |= RTF_UP;
2642 return flags;
19baf839
RO
2643}
2644
cb7b593c
SH
2645/*
2646 * This outputs /proc/net/route.
2647 * The format of the file is not supposed to be changed
a034ee3c 2648 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2649 * legacy utilities
2650 */
2651static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2652{
654eff45
AD
2653 struct fib_route_iter *iter = seq->private;
2654 struct fib_table *tb = iter->main_tb;
79e5ad2c 2655 struct fib_alias *fa;
35c6edac 2656 struct key_vector *l = v;
9b6ebad5 2657 __be32 prefix;
19baf839 2658
cb7b593c
SH
2659 if (v == SEQ_START_TOKEN) {
2660 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2661 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2662 "\tWindow\tIRTT");
2663 return 0;
2664 }
19baf839 2665
9b6ebad5
AD
2666 prefix = htonl(l->key);
2667
79e5ad2c
AD
2668 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2669 const struct fib_info *fi = fa->fa_info;
2670 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2671 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2672
79e5ad2c
AD
2673 if ((fa->fa_type == RTN_BROADCAST) ||
2674 (fa->fa_type == RTN_MULTICAST))
2675 continue;
19baf839 2676
654eff45
AD
2677 if (fa->tb_id != tb->tb_id)
2678 continue;
2679
79e5ad2c
AD
2680 seq_setwidth(seq, 127);
2681
2682 if (fi)
2683 seq_printf(seq,
2684 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2685 "%d\t%08X\t%d\t%u\t%u",
2686 fi->fib_dev ? fi->fib_dev->name : "*",
2687 prefix,
2688 fi->fib_nh->nh_gw, flags, 0, 0,
2689 fi->fib_priority,
2690 mask,
2691 (fi->fib_advmss ?
2692 fi->fib_advmss + 40 : 0),
2693 fi->fib_window,
2694 fi->fib_rtt >> 3);
2695 else
2696 seq_printf(seq,
2697 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2698 "%d\t%08X\t%d\t%u\t%u",
2699 prefix, 0, flags, 0, 0, 0,
2700 mask, 0, 0, 0);
19baf839 2701
79e5ad2c 2702 seq_pad(seq, '\n');
19baf839
RO
2703 }
2704
2705 return 0;
2706}
2707
f690808e 2708static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2709 .start = fib_route_seq_start,
2710 .next = fib_route_seq_next,
2711 .stop = fib_route_seq_stop,
cb7b593c 2712 .show = fib_route_seq_show,
19baf839
RO
2713};
2714
cb7b593c 2715static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2716{
1c340b2f 2717 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2718 sizeof(struct fib_route_iter));
19baf839
RO
2719}
2720
9a32144e 2721static const struct file_operations fib_route_fops = {
cb7b593c
SH
2722 .owner = THIS_MODULE,
2723 .open = fib_route_seq_open,
2724 .read = seq_read,
2725 .llseek = seq_lseek,
1c340b2f 2726 .release = seq_release_net,
19baf839
RO
2727};
2728
61a02653 2729int __net_init fib_proc_init(struct net *net)
19baf839 2730{
d4beaa66 2731 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2732 goto out1;
2733
d4beaa66
G
2734 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2735 &fib_triestat_fops))
cb7b593c
SH
2736 goto out2;
2737
d4beaa66 2738 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2739 goto out3;
2740
19baf839 2741 return 0;
cb7b593c
SH
2742
2743out3:
ece31ffd 2744 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2745out2:
ece31ffd 2746 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2747out1:
2748 return -ENOMEM;
19baf839
RO
2749}
2750
61a02653 2751void __net_exit fib_proc_exit(struct net *net)
19baf839 2752{
ece31ffd
G
2753 remove_proc_entry("fib_trie", net->proc_net);
2754 remove_proc_entry("fib_triestat", net->proc_net);
2755 remove_proc_entry("route", net->proc_net);
19baf839
RO
2756}
2757
2758#endif /* CONFIG_PROC_FS */