]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - net/ipv4/fib_trie.c
[IPV4] fib_trie: Use %u for unsigned printfs.
[mirror_ubuntu-jammy-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
fd966255
RO
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
19baf839
RO
51 */
52
05eee48c 53#define VERSION "0.408"
19baf839 54
19baf839
RO
55#include <asm/uaccess.h>
56#include <asm/system.h>
1977f032 57#include <linux/bitops.h>
19baf839
RO
58#include <linux/types.h>
59#include <linux/kernel.h>
19baf839
RO
60#include <linux/mm.h>
61#include <linux/string.h>
62#include <linux/socket.h>
63#include <linux/sockios.h>
64#include <linux/errno.h>
65#include <linux/in.h>
66#include <linux/inet.h>
cd8787ab 67#include <linux/inetdevice.h>
19baf839
RO
68#include <linux/netdevice.h>
69#include <linux/if_arp.h>
70#include <linux/proc_fs.h>
2373ce1c 71#include <linux/rcupdate.h>
19baf839
RO
72#include <linux/skbuff.h>
73#include <linux/netlink.h>
74#include <linux/init.h>
75#include <linux/list.h>
457c4cbc 76#include <net/net_namespace.h>
19baf839
RO
77#include <net/ip.h>
78#include <net/protocol.h>
79#include <net/route.h>
80#include <net/tcp.h>
81#include <net/sock.h>
82#include <net/ip_fib.h>
83#include "fib_lookup.h"
84
85#undef CONFIG_IP_FIB_TRIE_STATS
06ef921d 86#define MAX_STAT_DEPTH 32
19baf839 87
19baf839 88#define KEYLENGTH (8*sizeof(t_key))
19baf839 89
19baf839
RO
90typedef unsigned int t_key;
91
92#define T_TNODE 0
93#define T_LEAF 1
94#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
95#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
96
91b9a277
OJ
97#define IS_TNODE(n) (!(n->parent & T_LEAF))
98#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
99
100struct node {
91b9a277
OJ
101 t_key key;
102 unsigned long parent;
19baf839
RO
103};
104
105struct leaf {
91b9a277
OJ
106 t_key key;
107 unsigned long parent;
19baf839 108 struct hlist_head list;
2373ce1c 109 struct rcu_head rcu;
19baf839
RO
110};
111
112struct leaf_info {
113 struct hlist_node hlist;
2373ce1c 114 struct rcu_head rcu;
19baf839
RO
115 int plen;
116 struct list_head falh;
117};
118
119struct tnode {
91b9a277
OJ
120 t_key key;
121 unsigned long parent;
122 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
123 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
124 unsigned short full_children; /* KEYLENGTH bits needed */
125 unsigned short empty_children; /* KEYLENGTH bits needed */
2373ce1c 126 struct rcu_head rcu;
91b9a277 127 struct node *child[0];
19baf839
RO
128};
129
130#ifdef CONFIG_IP_FIB_TRIE_STATS
131struct trie_use_stats {
132 unsigned int gets;
133 unsigned int backtrack;
134 unsigned int semantic_match_passed;
135 unsigned int semantic_match_miss;
136 unsigned int null_node_hit;
2f36895a 137 unsigned int resize_node_skipped;
19baf839
RO
138};
139#endif
140
141struct trie_stat {
142 unsigned int totdepth;
143 unsigned int maxdepth;
144 unsigned int tnodes;
145 unsigned int leaves;
146 unsigned int nullpointers;
06ef921d 147 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 148};
19baf839
RO
149
150struct trie {
91b9a277 151 struct node *trie;
19baf839
RO
152#ifdef CONFIG_IP_FIB_TRIE_STATS
153 struct trie_use_stats stats;
154#endif
91b9a277 155 int size;
19baf839
RO
156};
157
19baf839
RO
158static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
159static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
19baf839 160static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
161static struct tnode *inflate(struct trie *t, struct tnode *tn);
162static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839 163static void tnode_free(struct tnode *tn);
19baf839 164
e18b890b 165static struct kmem_cache *fn_alias_kmem __read_mostly;
19baf839 166
06801916
SH
167static inline struct tnode *node_parent(struct node *node)
168{
169 struct tnode *ret;
170
171 ret = (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
172 return rcu_dereference(ret);
173}
174
175static inline void node_set_parent(struct node *node, struct tnode *ptr)
176{
177 rcu_assign_pointer(node->parent,
178 (unsigned long)ptr | NODE_TYPE(node));
179}
2373ce1c
RO
180
181/* rcu_read_lock needs to be hold by caller from readside */
182
c877efb2 183static inline struct node *tnode_get_child(struct tnode *tn, int i)
19baf839 184{
91b9a277 185 BUG_ON(i >= 1 << tn->bits);
19baf839 186
2373ce1c 187 return rcu_dereference(tn->child[i]);
19baf839
RO
188}
189
bb435b8d 190static inline int tnode_child_length(const struct tnode *tn)
19baf839 191{
91b9a277 192 return 1 << tn->bits;
19baf839
RO
193}
194
ab66b4a7
SH
195static inline t_key mask_pfx(t_key k, unsigned short l)
196{
197 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
198}
199
19baf839
RO
200static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
201{
91b9a277 202 if (offset < KEYLENGTH)
19baf839 203 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 204 else
19baf839
RO
205 return 0;
206}
207
208static inline int tkey_equals(t_key a, t_key b)
209{
c877efb2 210 return a == b;
19baf839
RO
211}
212
213static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
214{
c877efb2
SH
215 if (bits == 0 || offset >= KEYLENGTH)
216 return 1;
91b9a277
OJ
217 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
218 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 219}
19baf839
RO
220
221static inline int tkey_mismatch(t_key a, int offset, t_key b)
222{
223 t_key diff = a ^ b;
224 int i = offset;
225
c877efb2
SH
226 if (!diff)
227 return 0;
228 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
229 i++;
230 return i;
231}
232
19baf839 233/*
e905a9ed
YH
234 To understand this stuff, an understanding of keys and all their bits is
235 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
236 all of the bits in that key are significant.
237
238 Consider a node 'n' and its parent 'tp'.
239
e905a9ed
YH
240 If n is a leaf, every bit in its key is significant. Its presence is
241 necessitated by path compression, since during a tree traversal (when
242 searching for a leaf - unless we are doing an insertion) we will completely
243 ignore all skipped bits we encounter. Thus we need to verify, at the end of
244 a potentially successful search, that we have indeed been walking the
19baf839
RO
245 correct key path.
246
e905a9ed
YH
247 Note that we can never "miss" the correct key in the tree if present by
248 following the wrong path. Path compression ensures that segments of the key
249 that are the same for all keys with a given prefix are skipped, but the
250 skipped part *is* identical for each node in the subtrie below the skipped
251 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
252 call to tkey_sub_equals() in trie_insert().
253
e905a9ed 254 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
255 have many different meanings.
256
e905a9ed 257 Example:
19baf839
RO
258 _________________________________________________________________
259 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
260 -----------------------------------------------------------------
e905a9ed 261 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
262
263 _________________________________________________________________
264 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
265 -----------------------------------------------------------------
266 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
267
268 tp->pos = 7
269 tp->bits = 3
270 n->pos = 15
91b9a277 271 n->bits = 4
19baf839 272
e905a9ed
YH
273 First, let's just ignore the bits that come before the parent tp, that is
274 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
275 not use them for anything.
276
277 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 278 index into the parent's child array. That is, they will be used to find
19baf839
RO
279 'n' among tp's children.
280
281 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
282 for the node n.
283
e905a9ed 284 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
285 of the bits are really not needed or indeed known in n->key.
286
e905a9ed 287 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 288 n's child array, and will of course be different for each child.
e905a9ed 289
c877efb2 290
19baf839
RO
291 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
292 at this point.
293
294*/
295
0c7770c7 296static inline void check_tnode(const struct tnode *tn)
19baf839 297{
0c7770c7 298 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
299}
300
f5026fab
DL
301static const int halve_threshold = 25;
302static const int inflate_threshold = 50;
303static const int halve_threshold_root = 8;
304static const int inflate_threshold_root = 15;
19baf839 305
2373ce1c
RO
306
307static void __alias_free_mem(struct rcu_head *head)
19baf839 308{
2373ce1c
RO
309 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
310 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
311}
312
2373ce1c 313static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 314{
2373ce1c
RO
315 call_rcu(&fa->rcu, __alias_free_mem);
316}
91b9a277 317
2373ce1c
RO
318static void __leaf_free_rcu(struct rcu_head *head)
319{
320 kfree(container_of(head, struct leaf, rcu));
321}
91b9a277 322
2373ce1c 323static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 324{
2373ce1c 325 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
326}
327
2373ce1c 328static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 329{
2373ce1c 330 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
331}
332
f0e36f8c
PM
333static struct tnode *tnode_alloc(unsigned int size)
334{
2373ce1c
RO
335 struct page *pages;
336
337 if (size <= PAGE_SIZE)
338 return kcalloc(size, 1, GFP_KERNEL);
339
340 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
341 if (!pages)
342 return NULL;
343
344 return page_address(pages);
f0e36f8c
PM
345}
346
2373ce1c 347static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 348{
2373ce1c 349 struct tnode *tn = container_of(head, struct tnode, rcu);
f0e36f8c 350 unsigned int size = sizeof(struct tnode) +
2373ce1c 351 (1 << tn->bits) * sizeof(struct node *);
f0e36f8c
PM
352
353 if (size <= PAGE_SIZE)
354 kfree(tn);
355 else
356 free_pages((unsigned long)tn, get_order(size));
357}
358
2373ce1c
RO
359static inline void tnode_free(struct tnode *tn)
360{
132adf54 361 if (IS_LEAF(tn)) {
550e29bc
RO
362 struct leaf *l = (struct leaf *) tn;
363 call_rcu_bh(&l->rcu, __leaf_free_rcu);
132adf54 364 } else
550e29bc 365 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
366}
367
368static struct leaf *leaf_new(void)
369{
370 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
371 if (l) {
372 l->parent = T_LEAF;
373 INIT_HLIST_HEAD(&l->list);
374 }
375 return l;
376}
377
378static struct leaf_info *leaf_info_new(int plen)
379{
380 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
381 if (li) {
382 li->plen = plen;
383 INIT_LIST_HEAD(&li->falh);
384 }
385 return li;
386}
387
19baf839
RO
388static struct tnode* tnode_new(t_key key, int pos, int bits)
389{
390 int nchildren = 1<<bits;
391 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
f0e36f8c 392 struct tnode *tn = tnode_alloc(sz);
19baf839 393
91b9a277 394 if (tn) {
19baf839 395 memset(tn, 0, sz);
2373ce1c 396 tn->parent = T_TNODE;
19baf839
RO
397 tn->pos = pos;
398 tn->bits = bits;
399 tn->key = key;
400 tn->full_children = 0;
401 tn->empty_children = 1<<bits;
402 }
c877efb2 403
0c7770c7
SH
404 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
405 (unsigned int) (sizeof(struct node) * 1<<bits));
19baf839
RO
406 return tn;
407}
408
19baf839
RO
409/*
410 * Check whether a tnode 'n' is "full", i.e. it is an internal node
411 * and no bits are skipped. See discussion in dyntree paper p. 6
412 */
413
bb435b8d 414static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 415{
c877efb2 416 if (n == NULL || IS_LEAF(n))
19baf839
RO
417 return 0;
418
419 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
420}
421
c877efb2 422static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
19baf839
RO
423{
424 tnode_put_child_reorg(tn, i, n, -1);
425}
426
c877efb2 427 /*
19baf839
RO
428 * Add a child at position i overwriting the old value.
429 * Update the value of full_children and empty_children.
430 */
431
c877efb2 432static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
19baf839 433{
2373ce1c 434 struct node *chi = tn->child[i];
19baf839
RO
435 int isfull;
436
0c7770c7
SH
437 BUG_ON(i >= 1<<tn->bits);
438
19baf839
RO
439
440 /* update emptyChildren */
441 if (n == NULL && chi != NULL)
442 tn->empty_children++;
443 else if (n != NULL && chi == NULL)
444 tn->empty_children--;
c877efb2 445
19baf839 446 /* update fullChildren */
91b9a277 447 if (wasfull == -1)
19baf839
RO
448 wasfull = tnode_full(tn, chi);
449
450 isfull = tnode_full(tn, n);
c877efb2 451 if (wasfull && !isfull)
19baf839 452 tn->full_children--;
c877efb2 453 else if (!wasfull && isfull)
19baf839 454 tn->full_children++;
91b9a277 455
c877efb2 456 if (n)
06801916 457 node_set_parent(n, tn);
19baf839 458
2373ce1c 459 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
460}
461
c877efb2 462static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
463{
464 int i;
2f36895a 465 int err = 0;
2f80b3c8 466 struct tnode *old_tn;
e6308be8
RO
467 int inflate_threshold_use;
468 int halve_threshold_use;
05eee48c 469 int max_resize;
19baf839 470
e905a9ed 471 if (!tn)
19baf839
RO
472 return NULL;
473
0c7770c7
SH
474 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
475 tn, inflate_threshold, halve_threshold);
19baf839
RO
476
477 /* No children */
478 if (tn->empty_children == tnode_child_length(tn)) {
479 tnode_free(tn);
480 return NULL;
481 }
482 /* One child */
483 if (tn->empty_children == tnode_child_length(tn) - 1)
484 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 485 struct node *n;
19baf839 486
91b9a277 487 n = tn->child[i];
2373ce1c 488 if (!n)
91b9a277 489 continue;
91b9a277
OJ
490
491 /* compress one level */
06801916 492 node_set_parent(n, NULL);
91b9a277
OJ
493 tnode_free(tn);
494 return n;
19baf839 495 }
c877efb2 496 /*
19baf839
RO
497 * Double as long as the resulting node has a number of
498 * nonempty nodes that are above the threshold.
499 */
500
501 /*
c877efb2
SH
502 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
503 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 504 * Telecommunications, page 6:
c877efb2 505 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
506 * children in the *doubled* node is at least 'high'."
507 *
c877efb2
SH
508 * 'high' in this instance is the variable 'inflate_threshold'. It
509 * is expressed as a percentage, so we multiply it with
510 * tnode_child_length() and instead of multiplying by 2 (since the
511 * child array will be doubled by inflate()) and multiplying
512 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 513 * multiply the left-hand side by 50.
c877efb2
SH
514 *
515 * The left-hand side may look a bit weird: tnode_child_length(tn)
516 * - tn->empty_children is of course the number of non-null children
517 * in the current node. tn->full_children is the number of "full"
19baf839 518 * children, that is non-null tnodes with a skip value of 0.
c877efb2 519 * All of those will be doubled in the resulting inflated tnode, so
19baf839 520 * we just count them one extra time here.
c877efb2 521 *
19baf839 522 * A clearer way to write this would be:
c877efb2 523 *
19baf839 524 * to_be_doubled = tn->full_children;
c877efb2 525 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
526 * tn->full_children;
527 *
528 * new_child_length = tnode_child_length(tn) * 2;
529 *
c877efb2 530 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
531 * new_child_length;
532 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
533 *
534 * ...and so on, tho it would mess up the while () loop.
535 *
19baf839
RO
536 * anyway,
537 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
538 * inflate_threshold
c877efb2 539 *
19baf839
RO
540 * avoid a division:
541 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
542 * inflate_threshold * new_child_length
c877efb2 543 *
19baf839 544 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 545 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 546 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 547 *
19baf839 548 * expand new_child_length:
c877efb2 549 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 550 * tn->full_children) >=
19baf839 551 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 552 *
19baf839 553 * shorten again:
c877efb2 554 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 555 * tn->empty_children) >= inflate_threshold *
19baf839 556 * tnode_child_length(tn)
c877efb2 557 *
19baf839
RO
558 */
559
560 check_tnode(tn);
c877efb2 561
e6308be8
RO
562 /* Keep root node larger */
563
132adf54 564 if (!tn->parent)
e6308be8 565 inflate_threshold_use = inflate_threshold_root;
e905a9ed 566 else
e6308be8
RO
567 inflate_threshold_use = inflate_threshold;
568
2f36895a 569 err = 0;
05eee48c
RO
570 max_resize = 10;
571 while ((tn->full_children > 0 && max_resize-- &&
19baf839 572 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
e6308be8 573 inflate_threshold_use * tnode_child_length(tn))) {
19baf839 574
2f80b3c8
RO
575 old_tn = tn;
576 tn = inflate(t, tn);
577 if (IS_ERR(tn)) {
578 tn = old_tn;
2f36895a
RO
579#ifdef CONFIG_IP_FIB_TRIE_STATS
580 t->stats.resize_node_skipped++;
581#endif
582 break;
583 }
19baf839
RO
584 }
585
05eee48c
RO
586 if (max_resize < 0) {
587 if (!tn->parent)
588 printk(KERN_WARNING "Fix inflate_threshold_root. Now=%d size=%d bits\n",
589 inflate_threshold_root, tn->bits);
590 else
591 printk(KERN_WARNING "Fix inflate_threshold. Now=%d size=%d bits\n",
592 inflate_threshold, tn->bits);
593 }
594
19baf839
RO
595 check_tnode(tn);
596
597 /*
598 * Halve as long as the number of empty children in this
599 * node is above threshold.
600 */
2f36895a 601
e6308be8
RO
602
603 /* Keep root node larger */
604
132adf54 605 if (!tn->parent)
e6308be8 606 halve_threshold_use = halve_threshold_root;
e905a9ed 607 else
e6308be8
RO
608 halve_threshold_use = halve_threshold;
609
2f36895a 610 err = 0;
05eee48c
RO
611 max_resize = 10;
612 while (tn->bits > 1 && max_resize-- &&
19baf839 613 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 614 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 615
2f80b3c8
RO
616 old_tn = tn;
617 tn = halve(t, tn);
618 if (IS_ERR(tn)) {
619 tn = old_tn;
2f36895a
RO
620#ifdef CONFIG_IP_FIB_TRIE_STATS
621 t->stats.resize_node_skipped++;
622#endif
623 break;
624 }
625 }
19baf839 626
05eee48c
RO
627 if (max_resize < 0) {
628 if (!tn->parent)
629 printk(KERN_WARNING "Fix halve_threshold_root. Now=%d size=%d bits\n",
630 halve_threshold_root, tn->bits);
631 else
632 printk(KERN_WARNING "Fix halve_threshold. Now=%d size=%d bits\n",
633 halve_threshold, tn->bits);
634 }
c877efb2 635
19baf839 636 /* Only one child remains */
19baf839
RO
637 if (tn->empty_children == tnode_child_length(tn) - 1)
638 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 639 struct node *n;
19baf839 640
91b9a277 641 n = tn->child[i];
2373ce1c 642 if (!n)
91b9a277 643 continue;
91b9a277
OJ
644
645 /* compress one level */
646
06801916 647 node_set_parent(n, NULL);
91b9a277
OJ
648 tnode_free(tn);
649 return n;
19baf839
RO
650 }
651
652 return (struct node *) tn;
653}
654
2f80b3c8 655static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839
RO
656{
657 struct tnode *inode;
658 struct tnode *oldtnode = tn;
659 int olen = tnode_child_length(tn);
660 int i;
661
0c7770c7 662 pr_debug("In inflate\n");
19baf839
RO
663
664 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
665
0c7770c7 666 if (!tn)
2f80b3c8 667 return ERR_PTR(-ENOMEM);
2f36895a
RO
668
669 /*
c877efb2
SH
670 * Preallocate and store tnodes before the actual work so we
671 * don't get into an inconsistent state if memory allocation
672 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
673 * of tnode is ignored.
674 */
91b9a277
OJ
675
676 for (i = 0; i < olen; i++) {
2f36895a
RO
677 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
678
679 if (inode &&
680 IS_TNODE(inode) &&
681 inode->pos == oldtnode->pos + oldtnode->bits &&
682 inode->bits > 1) {
683 struct tnode *left, *right;
ab66b4a7 684 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 685
2f36895a
RO
686 left = tnode_new(inode->key&(~m), inode->pos + 1,
687 inode->bits - 1);
2f80b3c8
RO
688 if (!left)
689 goto nomem;
91b9a277 690
2f36895a
RO
691 right = tnode_new(inode->key|m, inode->pos + 1,
692 inode->bits - 1);
693
e905a9ed 694 if (!right) {
2f80b3c8
RO
695 tnode_free(left);
696 goto nomem;
e905a9ed 697 }
2f36895a
RO
698
699 put_child(t, tn, 2*i, (struct node *) left);
700 put_child(t, tn, 2*i+1, (struct node *) right);
701 }
702 }
703
91b9a277 704 for (i = 0; i < olen; i++) {
19baf839 705 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
706 struct tnode *left, *right;
707 int size, j;
c877efb2 708
19baf839
RO
709 /* An empty child */
710 if (node == NULL)
711 continue;
712
713 /* A leaf or an internal node with skipped bits */
714
c877efb2 715 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 716 tn->pos + tn->bits - 1) {
c877efb2 717 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
19baf839
RO
718 1) == 0)
719 put_child(t, tn, 2*i, node);
720 else
721 put_child(t, tn, 2*i+1, node);
722 continue;
723 }
724
725 /* An internal node with two children */
726 inode = (struct tnode *) node;
727
728 if (inode->bits == 1) {
729 put_child(t, tn, 2*i, inode->child[0]);
730 put_child(t, tn, 2*i+1, inode->child[1]);
731
732 tnode_free(inode);
91b9a277 733 continue;
19baf839
RO
734 }
735
91b9a277
OJ
736 /* An internal node with more than two children */
737
738 /* We will replace this node 'inode' with two new
739 * ones, 'left' and 'right', each with half of the
740 * original children. The two new nodes will have
741 * a position one bit further down the key and this
742 * means that the "significant" part of their keys
743 * (see the discussion near the top of this file)
744 * will differ by one bit, which will be "0" in
745 * left's key and "1" in right's key. Since we are
746 * moving the key position by one step, the bit that
747 * we are moving away from - the bit at position
748 * (inode->pos) - is the one that will differ between
749 * left and right. So... we synthesize that bit in the
750 * two new keys.
751 * The mask 'm' below will be a single "one" bit at
752 * the position (inode->pos)
753 */
19baf839 754
91b9a277
OJ
755 /* Use the old key, but set the new significant
756 * bit to zero.
757 */
2f36895a 758
91b9a277
OJ
759 left = (struct tnode *) tnode_get_child(tn, 2*i);
760 put_child(t, tn, 2*i, NULL);
2f36895a 761
91b9a277 762 BUG_ON(!left);
2f36895a 763
91b9a277
OJ
764 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
765 put_child(t, tn, 2*i+1, NULL);
19baf839 766
91b9a277 767 BUG_ON(!right);
19baf839 768
91b9a277
OJ
769 size = tnode_child_length(left);
770 for (j = 0; j < size; j++) {
771 put_child(t, left, j, inode->child[j]);
772 put_child(t, right, j, inode->child[j + size]);
19baf839 773 }
91b9a277
OJ
774 put_child(t, tn, 2*i, resize(t, left));
775 put_child(t, tn, 2*i+1, resize(t, right));
776
777 tnode_free(inode);
19baf839
RO
778 }
779 tnode_free(oldtnode);
780 return tn;
2f80b3c8
RO
781nomem:
782 {
783 int size = tnode_child_length(tn);
784 int j;
785
0c7770c7 786 for (j = 0; j < size; j++)
2f80b3c8
RO
787 if (tn->child[j])
788 tnode_free((struct tnode *)tn->child[j]);
789
790 tnode_free(tn);
0c7770c7 791
2f80b3c8
RO
792 return ERR_PTR(-ENOMEM);
793 }
19baf839
RO
794}
795
2f80b3c8 796static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
797{
798 struct tnode *oldtnode = tn;
799 struct node *left, *right;
800 int i;
801 int olen = tnode_child_length(tn);
802
0c7770c7 803 pr_debug("In halve\n");
c877efb2
SH
804
805 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 806
2f80b3c8
RO
807 if (!tn)
808 return ERR_PTR(-ENOMEM);
2f36895a
RO
809
810 /*
c877efb2
SH
811 * Preallocate and store tnodes before the actual work so we
812 * don't get into an inconsistent state if memory allocation
813 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
814 * of tnode is ignored.
815 */
816
91b9a277 817 for (i = 0; i < olen; i += 2) {
2f36895a
RO
818 left = tnode_get_child(oldtnode, i);
819 right = tnode_get_child(oldtnode, i+1);
c877efb2 820
2f36895a 821 /* Two nonempty children */
0c7770c7 822 if (left && right) {
2f80b3c8 823 struct tnode *newn;
0c7770c7 824
2f80b3c8 825 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
826
827 if (!newn)
2f80b3c8 828 goto nomem;
0c7770c7 829
2f80b3c8 830 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 831 }
2f36895a 832
2f36895a 833 }
19baf839 834
91b9a277
OJ
835 for (i = 0; i < olen; i += 2) {
836 struct tnode *newBinNode;
837
19baf839
RO
838 left = tnode_get_child(oldtnode, i);
839 right = tnode_get_child(oldtnode, i+1);
c877efb2 840
19baf839
RO
841 /* At least one of the children is empty */
842 if (left == NULL) {
843 if (right == NULL) /* Both are empty */
844 continue;
845 put_child(t, tn, i/2, right);
91b9a277 846 continue;
0c7770c7 847 }
91b9a277
OJ
848
849 if (right == NULL) {
19baf839 850 put_child(t, tn, i/2, left);
91b9a277
OJ
851 continue;
852 }
c877efb2 853
19baf839 854 /* Two nonempty children */
91b9a277
OJ
855 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
856 put_child(t, tn, i/2, NULL);
91b9a277
OJ
857 put_child(t, newBinNode, 0, left);
858 put_child(t, newBinNode, 1, right);
859 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
860 }
861 tnode_free(oldtnode);
862 return tn;
2f80b3c8
RO
863nomem:
864 {
865 int size = tnode_child_length(tn);
866 int j;
867
0c7770c7 868 for (j = 0; j < size; j++)
2f80b3c8
RO
869 if (tn->child[j])
870 tnode_free((struct tnode *)tn->child[j]);
871
872 tnode_free(tn);
0c7770c7 873
2f80b3c8
RO
874 return ERR_PTR(-ENOMEM);
875 }
19baf839
RO
876}
877
772cb712 878/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
879 via get_fa_head and dump */
880
772cb712 881static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 882{
772cb712 883 struct hlist_head *head = &l->list;
19baf839
RO
884 struct hlist_node *node;
885 struct leaf_info *li;
886
2373ce1c 887 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 888 if (li->plen == plen)
19baf839 889 return li;
91b9a277 890
19baf839
RO
891 return NULL;
892}
893
894static inline struct list_head * get_fa_head(struct leaf *l, int plen)
895{
772cb712 896 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 897
91b9a277
OJ
898 if (!li)
899 return NULL;
c877efb2 900
91b9a277 901 return &li->falh;
19baf839
RO
902}
903
904static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
905{
e905a9ed
YH
906 struct leaf_info *li = NULL, *last = NULL;
907 struct hlist_node *node;
908
909 if (hlist_empty(head)) {
910 hlist_add_head_rcu(&new->hlist, head);
911 } else {
912 hlist_for_each_entry(li, node, head, hlist) {
913 if (new->plen > li->plen)
914 break;
915
916 last = li;
917 }
918 if (last)
919 hlist_add_after_rcu(&last->hlist, &new->hlist);
920 else
921 hlist_add_before_rcu(&new->hlist, &li->hlist);
922 }
19baf839
RO
923}
924
2373ce1c
RO
925/* rcu_read_lock needs to be hold by caller from readside */
926
19baf839
RO
927static struct leaf *
928fib_find_node(struct trie *t, u32 key)
929{
930 int pos;
931 struct tnode *tn;
932 struct node *n;
933
934 pos = 0;
2373ce1c 935 n = rcu_dereference(t->trie);
19baf839
RO
936
937 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
938 tn = (struct tnode *) n;
91b9a277 939
19baf839 940 check_tnode(tn);
91b9a277 941
c877efb2 942 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 943 pos = tn->pos + tn->bits;
19baf839 944 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
91b9a277 945 } else
19baf839
RO
946 break;
947 }
948 /* Case we have found a leaf. Compare prefixes */
949
91b9a277
OJ
950 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
951 return (struct leaf *)n;
952
19baf839
RO
953 return NULL;
954}
955
956static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
957{
19baf839 958 int wasfull;
06801916
SH
959 t_key cindex, key = tn->key;
960 struct tnode *tp;
19baf839 961
06801916 962 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
963 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
964 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
965 tn = (struct tnode *) resize (t, (struct tnode *)tn);
966 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
91b9a277 967
06801916
SH
968 tp = node_parent((struct node *) tn);
969 if (!tp)
19baf839 970 break;
06801916 971 tn = tp;
19baf839 972 }
06801916 973
19baf839 974 /* Handle last (top) tnode */
c877efb2 975 if (IS_TNODE(tn))
19baf839
RO
976 tn = (struct tnode*) resize(t, (struct tnode *)tn);
977
978 return (struct node*) tn;
979}
980
2373ce1c
RO
981/* only used from updater-side */
982
f835e471
RO
983static struct list_head *
984fib_insert_node(struct trie *t, int *err, u32 key, int plen)
19baf839
RO
985{
986 int pos, newpos;
987 struct tnode *tp = NULL, *tn = NULL;
988 struct node *n;
989 struct leaf *l;
990 int missbit;
c877efb2 991 struct list_head *fa_head = NULL;
19baf839
RO
992 struct leaf_info *li;
993 t_key cindex;
994
995 pos = 0;
c877efb2 996 n = t->trie;
19baf839 997
c877efb2
SH
998 /* If we point to NULL, stop. Either the tree is empty and we should
999 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1000 * and we should just put our new leaf in that.
c877efb2
SH
1001 * If we point to a T_TNODE, check if it matches our key. Note that
1002 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1003 * not be the parent's 'pos'+'bits'!
1004 *
c877efb2 1005 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1006 * the index from our key, push the T_TNODE and walk the tree.
1007 *
1008 * If it doesn't, we have to replace it with a new T_TNODE.
1009 *
c877efb2
SH
1010 * If we point to a T_LEAF, it might or might not have the same key
1011 * as we do. If it does, just change the value, update the T_LEAF's
1012 * value, and return it.
19baf839
RO
1013 * If it doesn't, we need to replace it with a T_TNODE.
1014 */
1015
1016 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1017 tn = (struct tnode *) n;
91b9a277 1018
c877efb2 1019 check_tnode(tn);
91b9a277 1020
c877efb2 1021 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1022 tp = tn;
91b9a277 1023 pos = tn->pos + tn->bits;
19baf839
RO
1024 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1025
06801916 1026 BUG_ON(n && node_parent(n) != tn);
91b9a277 1027 } else
19baf839
RO
1028 break;
1029 }
1030
1031 /*
1032 * n ----> NULL, LEAF or TNODE
1033 *
c877efb2 1034 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1035 */
1036
91b9a277 1037 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1038
1039 /* Case 1: n is a leaf. Compare prefixes */
1040
c877efb2 1041 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
91b9a277
OJ
1042 struct leaf *l = (struct leaf *) n;
1043
19baf839 1044 li = leaf_info_new(plen);
91b9a277 1045
c877efb2 1046 if (!li) {
f835e471 1047 *err = -ENOMEM;
93e4308b 1048 goto done;
f835e471 1049 }
19baf839
RO
1050
1051 fa_head = &li->falh;
1052 insert_leaf_info(&l->list, li);
1053 goto done;
1054 }
1055 t->size++;
1056 l = leaf_new();
1057
c877efb2 1058 if (!l) {
f835e471 1059 *err = -ENOMEM;
93e4308b 1060 goto done;
f835e471 1061 }
19baf839
RO
1062
1063 l->key = key;
1064 li = leaf_info_new(plen);
1065
c877efb2 1066 if (!li) {
f835e471
RO
1067 tnode_free((struct tnode *) l);
1068 *err = -ENOMEM;
93e4308b 1069 goto done;
f835e471 1070 }
19baf839
RO
1071
1072 fa_head = &li->falh;
1073 insert_leaf_info(&l->list, li);
1074
19baf839 1075 if (t->trie && n == NULL) {
91b9a277 1076 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1077
06801916 1078 node_set_parent((struct node *)l, tp);
19baf839 1079
91b9a277
OJ
1080 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1081 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1082 } else {
1083 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1084 /*
1085 * Add a new tnode here
19baf839
RO
1086 * first tnode need some special handling
1087 */
1088
1089 if (tp)
91b9a277 1090 pos = tp->pos+tp->bits;
19baf839 1091 else
91b9a277
OJ
1092 pos = 0;
1093
c877efb2 1094 if (n) {
19baf839
RO
1095 newpos = tkey_mismatch(key, pos, n->key);
1096 tn = tnode_new(n->key, newpos, 1);
91b9a277 1097 } else {
19baf839 1098 newpos = 0;
c877efb2 1099 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1100 }
19baf839 1101
c877efb2 1102 if (!tn) {
f835e471
RO
1103 free_leaf_info(li);
1104 tnode_free((struct tnode *) l);
1105 *err = -ENOMEM;
93e4308b 1106 goto done;
91b9a277
OJ
1107 }
1108
06801916 1109 node_set_parent((struct node *)tn, tp);
19baf839 1110
91b9a277 1111 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1112 put_child(t, tn, missbit, (struct node *)l);
1113 put_child(t, tn, 1-missbit, n);
1114
c877efb2 1115 if (tp) {
19baf839
RO
1116 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1117 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
91b9a277 1118 } else {
2373ce1c 1119 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
19baf839
RO
1120 tp = tn;
1121 }
1122 }
91b9a277
OJ
1123
1124 if (tp && tp->pos + tp->bits > 32)
78c6671a 1125 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
19baf839 1126 tp, tp->pos, tp->bits, key, plen);
91b9a277 1127
19baf839 1128 /* Rebalance the trie */
2373ce1c
RO
1129
1130 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471 1131done:
19baf839
RO
1132 return fa_head;
1133}
1134
d562f1f8
RO
1135/*
1136 * Caller must hold RTNL.
1137 */
4e902c57 1138static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1139{
1140 struct trie *t = (struct trie *) tb->tb_data;
1141 struct fib_alias *fa, *new_fa;
c877efb2 1142 struct list_head *fa_head = NULL;
19baf839 1143 struct fib_info *fi;
4e902c57
TG
1144 int plen = cfg->fc_dst_len;
1145 u8 tos = cfg->fc_tos;
19baf839
RO
1146 u32 key, mask;
1147 int err;
1148 struct leaf *l;
1149
1150 if (plen > 32)
1151 return -EINVAL;
1152
4e902c57 1153 key = ntohl(cfg->fc_dst);
19baf839 1154
2dfe55b4 1155 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1156
91b9a277 1157 mask = ntohl(inet_make_mask(plen));
19baf839 1158
c877efb2 1159 if (key & ~mask)
19baf839
RO
1160 return -EINVAL;
1161
1162 key = key & mask;
1163
4e902c57
TG
1164 fi = fib_create_info(cfg);
1165 if (IS_ERR(fi)) {
1166 err = PTR_ERR(fi);
19baf839 1167 goto err;
4e902c57 1168 }
19baf839
RO
1169
1170 l = fib_find_node(t, key);
c877efb2 1171 fa = NULL;
19baf839 1172
c877efb2 1173 if (l) {
19baf839
RO
1174 fa_head = get_fa_head(l, plen);
1175 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1176 }
1177
1178 /* Now fa, if non-NULL, points to the first fib alias
1179 * with the same keys [prefix,tos,priority], if such key already
1180 * exists or to the node before which we will insert new one.
1181 *
1182 * If fa is NULL, we will need to allocate a new one and
1183 * insert to the head of f.
1184 *
1185 * If f is NULL, no fib node matched the destination key
1186 * and we need to allocate a new one of those as well.
1187 */
1188
91b9a277 1189 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
19baf839
RO
1190 struct fib_alias *fa_orig;
1191
1192 err = -EEXIST;
4e902c57 1193 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1194 goto out;
1195
4e902c57 1196 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1197 struct fib_info *fi_drop;
1198 u8 state;
1199
6725033f
JP
1200 if (fi->fib_treeref > 1)
1201 goto out;
1202
2373ce1c 1203 err = -ENOBUFS;
e94b1766 1204 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1205 if (new_fa == NULL)
1206 goto out;
19baf839
RO
1207
1208 fi_drop = fa->fa_info;
2373ce1c
RO
1209 new_fa->fa_tos = fa->fa_tos;
1210 new_fa->fa_info = fi;
4e902c57
TG
1211 new_fa->fa_type = cfg->fc_type;
1212 new_fa->fa_scope = cfg->fc_scope;
19baf839 1213 state = fa->fa_state;
2373ce1c 1214 new_fa->fa_state &= ~FA_S_ACCESSED;
19baf839 1215
2373ce1c
RO
1216 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1217 alias_free_mem_rcu(fa);
19baf839
RO
1218
1219 fib_release_info(fi_drop);
1220 if (state & FA_S_ACCESSED)
91b9a277 1221 rt_cache_flush(-1);
b8f55831
MK
1222 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1223 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1224
91b9a277 1225 goto succeeded;
19baf839
RO
1226 }
1227 /* Error if we find a perfect match which
1228 * uses the same scope, type, and nexthop
1229 * information.
1230 */
1231 fa_orig = fa;
1232 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1233 if (fa->fa_tos != tos)
1234 break;
1235 if (fa->fa_info->fib_priority != fi->fib_priority)
1236 break;
4e902c57
TG
1237 if (fa->fa_type == cfg->fc_type &&
1238 fa->fa_scope == cfg->fc_scope &&
19baf839
RO
1239 fa->fa_info == fi) {
1240 goto out;
1241 }
1242 }
4e902c57 1243 if (!(cfg->fc_nlflags & NLM_F_APPEND))
19baf839
RO
1244 fa = fa_orig;
1245 }
1246 err = -ENOENT;
4e902c57 1247 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1248 goto out;
1249
1250 err = -ENOBUFS;
e94b1766 1251 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1252 if (new_fa == NULL)
1253 goto out;
1254
1255 new_fa->fa_info = fi;
1256 new_fa->fa_tos = tos;
4e902c57
TG
1257 new_fa->fa_type = cfg->fc_type;
1258 new_fa->fa_scope = cfg->fc_scope;
19baf839 1259 new_fa->fa_state = 0;
19baf839
RO
1260 /*
1261 * Insert new entry to the list.
1262 */
1263
c877efb2 1264 if (!fa_head) {
f835e471 1265 err = 0;
b47b2ec1 1266 fa_head = fib_insert_node(t, &err, key, plen);
c877efb2 1267 if (err)
f835e471
RO
1268 goto out_free_new_fa;
1269 }
19baf839 1270
2373ce1c
RO
1271 list_add_tail_rcu(&new_fa->fa_list,
1272 (fa ? &fa->fa_list : fa_head));
19baf839
RO
1273
1274 rt_cache_flush(-1);
4e902c57 1275 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1276 &cfg->fc_nlinfo, 0);
19baf839
RO
1277succeeded:
1278 return 0;
f835e471
RO
1279
1280out_free_new_fa:
1281 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1282out:
1283 fib_release_info(fi);
91b9a277 1284err:
19baf839
RO
1285 return err;
1286}
1287
2373ce1c 1288
772cb712 1289/* should be called with rcu_read_lock */
0c7770c7
SH
1290static inline int check_leaf(struct trie *t, struct leaf *l,
1291 t_key key, int *plen, const struct flowi *flp,
06c74270 1292 struct fib_result *res)
19baf839 1293{
06c74270 1294 int err, i;
888454c5 1295 __be32 mask;
19baf839
RO
1296 struct leaf_info *li;
1297 struct hlist_head *hhead = &l->list;
1298 struct hlist_node *node;
c877efb2 1299
2373ce1c 1300 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
19baf839 1301 i = li->plen;
888454c5
AV
1302 mask = inet_make_mask(i);
1303 if (l->key != (key & ntohl(mask)))
19baf839
RO
1304 continue;
1305
888454c5 1306 if ((err = fib_semantic_match(&li->falh, flp, res, htonl(l->key), mask, i)) <= 0) {
19baf839
RO
1307 *plen = i;
1308#ifdef CONFIG_IP_FIB_TRIE_STATS
1309 t->stats.semantic_match_passed++;
1310#endif
06c74270 1311 return err;
19baf839
RO
1312 }
1313#ifdef CONFIG_IP_FIB_TRIE_STATS
1314 t->stats.semantic_match_miss++;
1315#endif
1316 }
06c74270 1317 return 1;
19baf839
RO
1318}
1319
1320static int
1321fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1322{
1323 struct trie *t = (struct trie *) tb->tb_data;
1324 int plen, ret = 0;
1325 struct node *n;
1326 struct tnode *pn;
1327 int pos, bits;
91b9a277 1328 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1329 int chopped_off;
1330 t_key cindex = 0;
1331 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1332 struct tnode *cn;
1333 t_key node_prefix, key_prefix, pref_mismatch;
1334 int mp;
1335
2373ce1c 1336 rcu_read_lock();
91b9a277 1337
2373ce1c 1338 n = rcu_dereference(t->trie);
c877efb2 1339 if (!n)
19baf839
RO
1340 goto failed;
1341
1342#ifdef CONFIG_IP_FIB_TRIE_STATS
1343 t->stats.gets++;
1344#endif
1345
1346 /* Just a leaf? */
1347 if (IS_LEAF(n)) {
06c74270 1348 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
19baf839
RO
1349 goto found;
1350 goto failed;
1351 }
1352 pn = (struct tnode *) n;
1353 chopped_off = 0;
c877efb2 1354
91b9a277 1355 while (pn) {
19baf839
RO
1356 pos = pn->pos;
1357 bits = pn->bits;
1358
c877efb2 1359 if (!chopped_off)
ab66b4a7
SH
1360 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1361 pos, bits);
19baf839
RO
1362
1363 n = tnode_get_child(pn, cindex);
1364
1365 if (n == NULL) {
1366#ifdef CONFIG_IP_FIB_TRIE_STATS
1367 t->stats.null_node_hit++;
1368#endif
1369 goto backtrace;
1370 }
1371
91b9a277
OJ
1372 if (IS_LEAF(n)) {
1373 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1374 goto found;
1375 else
1376 goto backtrace;
1377 }
1378
19baf839
RO
1379#define HL_OPTIMIZE
1380#ifdef HL_OPTIMIZE
91b9a277 1381 cn = (struct tnode *)n;
19baf839 1382
91b9a277
OJ
1383 /*
1384 * It's a tnode, and we can do some extra checks here if we
1385 * like, to avoid descending into a dead-end branch.
1386 * This tnode is in the parent's child array at index
1387 * key[p_pos..p_pos+p_bits] but potentially with some bits
1388 * chopped off, so in reality the index may be just a
1389 * subprefix, padded with zero at the end.
1390 * We can also take a look at any skipped bits in this
1391 * tnode - everything up to p_pos is supposed to be ok,
1392 * and the non-chopped bits of the index (se previous
1393 * paragraph) are also guaranteed ok, but the rest is
1394 * considered unknown.
1395 *
1396 * The skipped bits are key[pos+bits..cn->pos].
1397 */
19baf839 1398
91b9a277
OJ
1399 /* If current_prefix_length < pos+bits, we are already doing
1400 * actual prefix matching, which means everything from
1401 * pos+(bits-chopped_off) onward must be zero along some
1402 * branch of this subtree - otherwise there is *no* valid
1403 * prefix present. Here we can only check the skipped
1404 * bits. Remember, since we have already indexed into the
1405 * parent's child array, we know that the bits we chopped of
1406 * *are* zero.
1407 */
19baf839 1408
91b9a277 1409 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
19baf839 1410
91b9a277
OJ
1411 if (current_prefix_length < pos+bits) {
1412 if (tkey_extract_bits(cn->key, current_prefix_length,
1413 cn->pos - current_prefix_length) != 0 ||
1414 !(cn->child[0]))
1415 goto backtrace;
1416 }
19baf839 1417
91b9a277
OJ
1418 /*
1419 * If chopped_off=0, the index is fully validated and we
1420 * only need to look at the skipped bits for this, the new,
1421 * tnode. What we actually want to do is to find out if
1422 * these skipped bits match our key perfectly, or if we will
1423 * have to count on finding a matching prefix further down,
1424 * because if we do, we would like to have some way of
1425 * verifying the existence of such a prefix at this point.
1426 */
19baf839 1427
91b9a277
OJ
1428 /* The only thing we can do at this point is to verify that
1429 * any such matching prefix can indeed be a prefix to our
1430 * key, and if the bits in the node we are inspecting that
1431 * do not match our key are not ZERO, this cannot be true.
1432 * Thus, find out where there is a mismatch (before cn->pos)
1433 * and verify that all the mismatching bits are zero in the
1434 * new tnode's key.
1435 */
19baf839 1436
91b9a277
OJ
1437 /* Note: We aren't very concerned about the piece of the key
1438 * that precede pn->pos+pn->bits, since these have already been
1439 * checked. The bits after cn->pos aren't checked since these are
1440 * by definition "unknown" at this point. Thus, what we want to
1441 * see is if we are about to enter the "prefix matching" state,
1442 * and in that case verify that the skipped bits that will prevail
1443 * throughout this subtree are zero, as they have to be if we are
1444 * to find a matching prefix.
1445 */
1446
ab66b4a7
SH
1447 node_prefix = mask_pfx(cn->key, cn->pos);
1448 key_prefix = mask_pfx(key, cn->pos);
91b9a277
OJ
1449 pref_mismatch = key_prefix^node_prefix;
1450 mp = 0;
1451
1452 /* In short: If skipped bits in this node do not match the search
1453 * key, enter the "prefix matching" state.directly.
1454 */
1455 if (pref_mismatch) {
1456 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1457 mp++;
1458 pref_mismatch = pref_mismatch <<1;
1459 }
1460 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1461
1462 if (key_prefix != 0)
1463 goto backtrace;
1464
1465 if (current_prefix_length >= cn->pos)
1466 current_prefix_length = mp;
c877efb2 1467 }
91b9a277
OJ
1468#endif
1469 pn = (struct tnode *)n; /* Descend */
1470 chopped_off = 0;
1471 continue;
1472
19baf839
RO
1473backtrace:
1474 chopped_off++;
1475
1476 /* As zero don't change the child key (cindex) */
91b9a277 1477 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
19baf839 1478 chopped_off++;
19baf839
RO
1479
1480 /* Decrease current_... with bits chopped off */
1481 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1482 current_prefix_length = pn->pos + pn->bits - chopped_off;
91b9a277 1483
19baf839 1484 /*
c877efb2 1485 * Either we do the actual chop off according or if we have
19baf839
RO
1486 * chopped off all bits in this tnode walk up to our parent.
1487 */
1488
91b9a277 1489 if (chopped_off <= pn->bits) {
19baf839 1490 cindex &= ~(1 << (chopped_off-1));
91b9a277 1491 } else {
06801916
SH
1492 struct tnode *parent = node_parent((struct node *) pn);
1493 if (!parent)
19baf839 1494 goto failed;
91b9a277 1495
19baf839 1496 /* Get Child's index */
06801916
SH
1497 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1498 pn = parent;
19baf839
RO
1499 chopped_off = 0;
1500
1501#ifdef CONFIG_IP_FIB_TRIE_STATS
1502 t->stats.backtrack++;
1503#endif
1504 goto backtrace;
c877efb2 1505 }
19baf839
RO
1506 }
1507failed:
c877efb2 1508 ret = 1;
19baf839 1509found:
2373ce1c 1510 rcu_read_unlock();
19baf839
RO
1511 return ret;
1512}
1513
2373ce1c 1514/* only called from updater side */
19baf839
RO
1515static int trie_leaf_remove(struct trie *t, t_key key)
1516{
1517 t_key cindex;
1518 struct tnode *tp = NULL;
1519 struct node *n = t->trie;
1520 struct leaf *l;
1521
0c7770c7 1522 pr_debug("entering trie_leaf_remove(%p)\n", n);
19baf839
RO
1523
1524 /* Note that in the case skipped bits, those bits are *not* checked!
c877efb2 1525 * When we finish this, we will have NULL or a T_LEAF, and the
19baf839
RO
1526 * T_LEAF may or may not match our key.
1527 */
1528
91b9a277 1529 while (n != NULL && IS_TNODE(n)) {
19baf839
RO
1530 struct tnode *tn = (struct tnode *) n;
1531 check_tnode(tn);
1532 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1533
06801916 1534 BUG_ON(n && node_parent(n) != tn);
91b9a277 1535 }
19baf839
RO
1536 l = (struct leaf *) n;
1537
c877efb2 1538 if (!n || !tkey_equals(l->key, key))
19baf839 1539 return 0;
c877efb2
SH
1540
1541 /*
1542 * Key found.
1543 * Remove the leaf and rebalance the tree
19baf839
RO
1544 */
1545
19baf839
RO
1546 t->size--;
1547
06801916 1548 tp = node_parent(n);
19baf839
RO
1549 tnode_free((struct tnode *) n);
1550
c877efb2 1551 if (tp) {
19baf839
RO
1552 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1553 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1554 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1555 } else
2373ce1c 1556 rcu_assign_pointer(t->trie, NULL);
19baf839
RO
1557
1558 return 1;
1559}
1560
d562f1f8
RO
1561/*
1562 * Caller must hold RTNL.
1563 */
4e902c57 1564static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1565{
1566 struct trie *t = (struct trie *) tb->tb_data;
1567 u32 key, mask;
4e902c57
TG
1568 int plen = cfg->fc_dst_len;
1569 u8 tos = cfg->fc_tos;
19baf839
RO
1570 struct fib_alias *fa, *fa_to_delete;
1571 struct list_head *fa_head;
1572 struct leaf *l;
91b9a277
OJ
1573 struct leaf_info *li;
1574
c877efb2 1575 if (plen > 32)
19baf839
RO
1576 return -EINVAL;
1577
4e902c57 1578 key = ntohl(cfg->fc_dst);
91b9a277 1579 mask = ntohl(inet_make_mask(plen));
19baf839 1580
c877efb2 1581 if (key & ~mask)
19baf839
RO
1582 return -EINVAL;
1583
1584 key = key & mask;
1585 l = fib_find_node(t, key);
1586
c877efb2 1587 if (!l)
19baf839
RO
1588 return -ESRCH;
1589
1590 fa_head = get_fa_head(l, plen);
1591 fa = fib_find_alias(fa_head, tos, 0);
1592
1593 if (!fa)
1594 return -ESRCH;
1595
0c7770c7 1596 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1597
1598 fa_to_delete = NULL;
1599 fa_head = fa->fa_list.prev;
2373ce1c 1600
19baf839
RO
1601 list_for_each_entry(fa, fa_head, fa_list) {
1602 struct fib_info *fi = fa->fa_info;
1603
1604 if (fa->fa_tos != tos)
1605 break;
1606
4e902c57
TG
1607 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1608 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1609 fa->fa_scope == cfg->fc_scope) &&
1610 (!cfg->fc_protocol ||
1611 fi->fib_protocol == cfg->fc_protocol) &&
1612 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1613 fa_to_delete = fa;
1614 break;
1615 }
1616 }
1617
91b9a277
OJ
1618 if (!fa_to_delete)
1619 return -ESRCH;
19baf839 1620
91b9a277 1621 fa = fa_to_delete;
4e902c57 1622 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1623 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1624
1625 l = fib_find_node(t, key);
772cb712 1626 li = find_leaf_info(l, plen);
19baf839 1627
2373ce1c 1628 list_del_rcu(&fa->fa_list);
19baf839 1629
91b9a277 1630 if (list_empty(fa_head)) {
2373ce1c 1631 hlist_del_rcu(&li->hlist);
91b9a277 1632 free_leaf_info(li);
2373ce1c 1633 }
19baf839 1634
91b9a277
OJ
1635 if (hlist_empty(&l->list))
1636 trie_leaf_remove(t, key);
19baf839 1637
91b9a277
OJ
1638 if (fa->fa_state & FA_S_ACCESSED)
1639 rt_cache_flush(-1);
19baf839 1640
2373ce1c
RO
1641 fib_release_info(fa->fa_info);
1642 alias_free_mem_rcu(fa);
91b9a277 1643 return 0;
19baf839
RO
1644}
1645
1646static int trie_flush_list(struct trie *t, struct list_head *head)
1647{
1648 struct fib_alias *fa, *fa_node;
1649 int found = 0;
1650
1651 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1652 struct fib_info *fi = fa->fa_info;
19baf839 1653
2373ce1c
RO
1654 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1655 list_del_rcu(&fa->fa_list);
1656 fib_release_info(fa->fa_info);
1657 alias_free_mem_rcu(fa);
19baf839
RO
1658 found++;
1659 }
1660 }
1661 return found;
1662}
1663
1664static int trie_flush_leaf(struct trie *t, struct leaf *l)
1665{
1666 int found = 0;
1667 struct hlist_head *lih = &l->list;
1668 struct hlist_node *node, *tmp;
1669 struct leaf_info *li = NULL;
1670
1671 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
19baf839
RO
1672 found += trie_flush_list(t, &li->falh);
1673
1674 if (list_empty(&li->falh)) {
2373ce1c 1675 hlist_del_rcu(&li->hlist);
19baf839
RO
1676 free_leaf_info(li);
1677 }
1678 }
1679 return found;
1680}
1681
2373ce1c
RO
1682/* rcu_read_lock needs to be hold by caller from readside */
1683
19baf839
RO
1684static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1685{
1686 struct node *c = (struct node *) thisleaf;
1687 struct tnode *p;
1688 int idx;
2373ce1c 1689 struct node *trie = rcu_dereference(t->trie);
19baf839 1690
c877efb2 1691 if (c == NULL) {
2373ce1c 1692 if (trie == NULL)
19baf839
RO
1693 return NULL;
1694
2373ce1c
RO
1695 if (IS_LEAF(trie)) /* trie w. just a leaf */
1696 return (struct leaf *) trie;
19baf839 1697
2373ce1c 1698 p = (struct tnode*) trie; /* Start */
91b9a277 1699 } else
06801916 1700 p = node_parent(c);
c877efb2 1701
19baf839
RO
1702 while (p) {
1703 int pos, last;
1704
1705 /* Find the next child of the parent */
c877efb2
SH
1706 if (c)
1707 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1708 else
19baf839
RO
1709 pos = 0;
1710
1711 last = 1 << p->bits;
91b9a277 1712 for (idx = pos; idx < last ; idx++) {
2373ce1c
RO
1713 c = rcu_dereference(p->child[idx]);
1714
1715 if (!c)
91b9a277
OJ
1716 continue;
1717
1718 /* Decend if tnode */
2373ce1c
RO
1719 while (IS_TNODE(c)) {
1720 p = (struct tnode *) c;
e905a9ed 1721 idx = 0;
91b9a277
OJ
1722
1723 /* Rightmost non-NULL branch */
1724 if (p && IS_TNODE(p))
2373ce1c
RO
1725 while (!(c = rcu_dereference(p->child[idx]))
1726 && idx < (1<<p->bits)) idx++;
91b9a277
OJ
1727
1728 /* Done with this tnode? */
2373ce1c 1729 if (idx >= (1 << p->bits) || !c)
91b9a277 1730 goto up;
19baf839 1731 }
2373ce1c 1732 return (struct leaf *) c;
19baf839
RO
1733 }
1734up:
1735 /* No more children go up one step */
91b9a277 1736 c = (struct node *) p;
06801916 1737 p = node_parent(c);
19baf839
RO
1738 }
1739 return NULL; /* Ready. Root of trie */
1740}
1741
d562f1f8
RO
1742/*
1743 * Caller must hold RTNL.
1744 */
19baf839
RO
1745static int fn_trie_flush(struct fib_table *tb)
1746{
1747 struct trie *t = (struct trie *) tb->tb_data;
1748 struct leaf *ll = NULL, *l = NULL;
1749 int found = 0, h;
1750
91b9a277 1751 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1752 found += trie_flush_leaf(t, l);
1753
1754 if (ll && hlist_empty(&ll->list))
1755 trie_leaf_remove(t, ll->key);
1756 ll = l;
1757 }
1758
1759 if (ll && hlist_empty(&ll->list))
1760 trie_leaf_remove(t, ll->key);
1761
0c7770c7 1762 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1763 return found;
1764}
1765
19baf839
RO
1766static void
1767fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1768{
1769 struct trie *t = (struct trie *) tb->tb_data;
1770 int order, last_idx;
1771 struct fib_info *fi = NULL;
1772 struct fib_info *last_resort;
1773 struct fib_alias *fa = NULL;
1774 struct list_head *fa_head;
1775 struct leaf *l;
1776
1777 last_idx = -1;
1778 last_resort = NULL;
1779 order = -1;
1780
2373ce1c 1781 rcu_read_lock();
c877efb2 1782
19baf839 1783 l = fib_find_node(t, 0);
c877efb2 1784 if (!l)
19baf839
RO
1785 goto out;
1786
1787 fa_head = get_fa_head(l, 0);
c877efb2 1788 if (!fa_head)
19baf839
RO
1789 goto out;
1790
c877efb2 1791 if (list_empty(fa_head))
19baf839
RO
1792 goto out;
1793
2373ce1c 1794 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1795 struct fib_info *next_fi = fa->fa_info;
91b9a277 1796
19baf839
RO
1797 if (fa->fa_scope != res->scope ||
1798 fa->fa_type != RTN_UNICAST)
1799 continue;
91b9a277 1800
19baf839
RO
1801 if (next_fi->fib_priority > res->fi->fib_priority)
1802 break;
1803 if (!next_fi->fib_nh[0].nh_gw ||
1804 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1805 continue;
1806 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1807
19baf839
RO
1808 if (fi == NULL) {
1809 if (next_fi != res->fi)
1810 break;
1811 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1812 &last_idx, tb->tb_default)) {
a2bbe682 1813 fib_result_assign(res, fi);
971b893e 1814 tb->tb_default = order;
19baf839
RO
1815 goto out;
1816 }
1817 fi = next_fi;
1818 order++;
1819 }
1820 if (order <= 0 || fi == NULL) {
971b893e 1821 tb->tb_default = -1;
19baf839
RO
1822 goto out;
1823 }
1824
971b893e
DL
1825 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1826 tb->tb_default)) {
a2bbe682 1827 fib_result_assign(res, fi);
971b893e 1828 tb->tb_default = order;
19baf839
RO
1829 goto out;
1830 }
a2bbe682
DL
1831 if (last_idx >= 0)
1832 fib_result_assign(res, last_resort);
971b893e
DL
1833 tb->tb_default = last_idx;
1834out:
2373ce1c 1835 rcu_read_unlock();
19baf839
RO
1836}
1837
c877efb2 1838static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
19baf839
RO
1839 struct sk_buff *skb, struct netlink_callback *cb)
1840{
1841 int i, s_i;
1842 struct fib_alias *fa;
1843
32ab5f80 1844 __be32 xkey = htonl(key);
19baf839 1845
1af5a8c4 1846 s_i = cb->args[4];
19baf839
RO
1847 i = 0;
1848
2373ce1c
RO
1849 /* rcu_read_lock is hold by caller */
1850
1851 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1852 if (i < s_i) {
1853 i++;
1854 continue;
1855 }
78c6671a 1856 BUG_ON(!fa->fa_info);
19baf839
RO
1857
1858 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1859 cb->nlh->nlmsg_seq,
1860 RTM_NEWROUTE,
1861 tb->tb_id,
1862 fa->fa_type,
1863 fa->fa_scope,
be403ea1 1864 xkey,
19baf839
RO
1865 plen,
1866 fa->fa_tos,
90f66914 1867 fa->fa_info, 0) < 0) {
1af5a8c4 1868 cb->args[4] = i;
19baf839 1869 return -1;
91b9a277 1870 }
19baf839
RO
1871 i++;
1872 }
1af5a8c4 1873 cb->args[4] = i;
19baf839
RO
1874 return skb->len;
1875}
1876
c877efb2 1877static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
19baf839
RO
1878 struct netlink_callback *cb)
1879{
1880 int h, s_h;
1881 struct list_head *fa_head;
1882 struct leaf *l = NULL;
19baf839 1883
1af5a8c4 1884 s_h = cb->args[3];
19baf839 1885
91b9a277 1886 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1887 if (h < s_h)
1888 continue;
1889 if (h > s_h)
1af5a8c4
PM
1890 memset(&cb->args[4], 0,
1891 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839
RO
1892
1893 fa_head = get_fa_head(l, plen);
91b9a277 1894
c877efb2 1895 if (!fa_head)
19baf839
RO
1896 continue;
1897
c877efb2 1898 if (list_empty(fa_head))
19baf839
RO
1899 continue;
1900
1901 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1af5a8c4 1902 cb->args[3] = h;
19baf839
RO
1903 return -1;
1904 }
1905 }
1af5a8c4 1906 cb->args[3] = h;
19baf839
RO
1907 return skb->len;
1908}
1909
1910static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1911{
1912 int m, s_m;
1913 struct trie *t = (struct trie *) tb->tb_data;
1914
1af5a8c4 1915 s_m = cb->args[2];
19baf839 1916
2373ce1c 1917 rcu_read_lock();
91b9a277 1918 for (m = 0; m <= 32; m++) {
19baf839
RO
1919 if (m < s_m)
1920 continue;
1921 if (m > s_m)
1af5a8c4
PM
1922 memset(&cb->args[3], 0,
1923 sizeof(cb->args) - 3*sizeof(cb->args[0]));
19baf839
RO
1924
1925 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1af5a8c4 1926 cb->args[2] = m;
19baf839
RO
1927 goto out;
1928 }
1929 }
2373ce1c 1930 rcu_read_unlock();
1af5a8c4 1931 cb->args[2] = m;
19baf839 1932 return skb->len;
91b9a277 1933out:
2373ce1c 1934 rcu_read_unlock();
19baf839
RO
1935 return -1;
1936}
1937
1938/* Fix more generic FIB names for init later */
1939
7b1a74fd 1940struct fib_table *fib_hash_init(u32 id)
19baf839
RO
1941{
1942 struct fib_table *tb;
1943 struct trie *t;
1944
1945 if (fn_alias_kmem == NULL)
1946 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1947 sizeof(struct fib_alias),
1948 0, SLAB_HWCACHE_ALIGN,
20c2df83 1949 NULL);
19baf839
RO
1950
1951 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1952 GFP_KERNEL);
1953 if (tb == NULL)
1954 return NULL;
1955
1956 tb->tb_id = id;
971b893e 1957 tb->tb_default = -1;
19baf839
RO
1958 tb->tb_lookup = fn_trie_lookup;
1959 tb->tb_insert = fn_trie_insert;
1960 tb->tb_delete = fn_trie_delete;
1961 tb->tb_flush = fn_trie_flush;
1962 tb->tb_select_default = fn_trie_select_default;
1963 tb->tb_dump = fn_trie_dump;
19baf839
RO
1964
1965 t = (struct trie *) tb->tb_data;
c28a1cf4 1966 memset(t, 0, sizeof(*t));
19baf839 1967
19baf839 1968 if (id == RT_TABLE_LOCAL)
78c6671a 1969 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
1970
1971 return tb;
1972}
1973
cb7b593c
SH
1974#ifdef CONFIG_PROC_FS
1975/* Depth first Trie walk iterator */
1976struct fib_trie_iter {
1c340b2f 1977 struct seq_net_private p;
877a9bff 1978 struct trie *trie_local, *trie_main;
cb7b593c
SH
1979 struct tnode *tnode;
1980 struct trie *trie;
1981 unsigned index;
1982 unsigned depth;
1983};
19baf839 1984
cb7b593c 1985static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1986{
cb7b593c
SH
1987 struct tnode *tn = iter->tnode;
1988 unsigned cindex = iter->index;
1989 struct tnode *p;
19baf839 1990
6640e697
EB
1991 /* A single entry routing table */
1992 if (!tn)
1993 return NULL;
1994
cb7b593c
SH
1995 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1996 iter->tnode, iter->index, iter->depth);
1997rescan:
1998 while (cindex < (1<<tn->bits)) {
1999 struct node *n = tnode_get_child(tn, cindex);
19baf839 2000
cb7b593c
SH
2001 if (n) {
2002 if (IS_LEAF(n)) {
2003 iter->tnode = tn;
2004 iter->index = cindex + 1;
2005 } else {
2006 /* push down one level */
2007 iter->tnode = (struct tnode *) n;
2008 iter->index = 0;
2009 ++iter->depth;
2010 }
2011 return n;
2012 }
19baf839 2013
cb7b593c
SH
2014 ++cindex;
2015 }
91b9a277 2016
cb7b593c 2017 /* Current node exhausted, pop back up */
06801916 2018 p = node_parent((struct node *)tn);
cb7b593c
SH
2019 if (p) {
2020 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2021 tn = p;
2022 --iter->depth;
2023 goto rescan;
19baf839 2024 }
cb7b593c
SH
2025
2026 /* got root? */
2027 return NULL;
19baf839
RO
2028}
2029
cb7b593c
SH
2030static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2031 struct trie *t)
19baf839 2032{
5ddf0eb2
RO
2033 struct node *n ;
2034
132adf54 2035 if (!t)
5ddf0eb2
RO
2036 return NULL;
2037
2038 n = rcu_dereference(t->trie);
2039
132adf54 2040 if (!iter)
5ddf0eb2 2041 return NULL;
19baf839 2042
6640e697
EB
2043 if (n) {
2044 if (IS_TNODE(n)) {
2045 iter->tnode = (struct tnode *) n;
2046 iter->trie = t;
2047 iter->index = 0;
2048 iter->depth = 1;
2049 } else {
2050 iter->tnode = NULL;
2051 iter->trie = t;
2052 iter->index = 0;
2053 iter->depth = 0;
2054 }
cb7b593c 2055 return n;
91b9a277 2056 }
cb7b593c
SH
2057 return NULL;
2058}
91b9a277 2059
cb7b593c
SH
2060static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2061{
2062 struct node *n;
2063 struct fib_trie_iter iter;
91b9a277 2064
cb7b593c 2065 memset(s, 0, sizeof(*s));
91b9a277 2066
cb7b593c
SH
2067 rcu_read_lock();
2068 for (n = fib_trie_get_first(&iter, t); n;
2069 n = fib_trie_get_next(&iter)) {
2070 if (IS_LEAF(n)) {
2071 s->leaves++;
2072 s->totdepth += iter.depth;
2073 if (iter.depth > s->maxdepth)
2074 s->maxdepth = iter.depth;
2075 } else {
2076 const struct tnode *tn = (const struct tnode *) n;
2077 int i;
2078
2079 s->tnodes++;
132adf54 2080 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2081 s->nodesizes[tn->bits]++;
2082
cb7b593c
SH
2083 for (i = 0; i < (1<<tn->bits); i++)
2084 if (!tn->child[i])
2085 s->nullpointers++;
19baf839 2086 }
19baf839 2087 }
2373ce1c 2088 rcu_read_unlock();
19baf839
RO
2089}
2090
cb7b593c
SH
2091/*
2092 * This outputs /proc/net/fib_triestats
2093 */
2094static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2095{
cb7b593c 2096 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2097
cb7b593c
SH
2098 if (stat->leaves)
2099 avdepth = stat->totdepth*100 / stat->leaves;
2100 else
2101 avdepth = 0;
91b9a277 2102
187b5188 2103 seq_printf(seq, "\tAver depth: %u.%02d\n", avdepth / 100, avdepth % 100 );
cb7b593c 2104 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2105
cb7b593c 2106 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
91b9a277 2107
cb7b593c 2108 bytes = sizeof(struct leaf) * stat->leaves;
187b5188 2109 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2110 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2111
06ef921d
RO
2112 max = MAX_STAT_DEPTH;
2113 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2114 max--;
19baf839 2115
cb7b593c
SH
2116 pointers = 0;
2117 for (i = 1; i <= max; i++)
2118 if (stat->nodesizes[i] != 0) {
187b5188 2119 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2120 pointers += (1<<i) * stat->nodesizes[i];
2121 }
2122 seq_putc(seq, '\n');
187b5188 2123 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2124
cb7b593c 2125 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2126 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2127 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2373ce1c 2128
cb7b593c
SH
2129#ifdef CONFIG_IP_FIB_TRIE_STATS
2130 seq_printf(seq, "Counters:\n---------\n");
2131 seq_printf(seq,"gets = %d\n", t->stats.gets);
2132 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2133 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2134 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2135 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2136 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2137#ifdef CLEAR_STATS
2138 memset(&(t->stats), 0, sizeof(t->stats));
2139#endif
2140#endif /* CONFIG_IP_FIB_TRIE_STATS */
2141}
19baf839 2142
cb7b593c
SH
2143static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2144{
1c340b2f 2145 struct net *net = (struct net *)seq->private;
877a9bff 2146 struct trie *trie_local, *trie_main;
cb7b593c 2147 struct trie_stat *stat;
877a9bff
EB
2148 struct fib_table *tb;
2149
2150 trie_local = NULL;
1c340b2f 2151 tb = fib_get_table(net, RT_TABLE_LOCAL);
877a9bff
EB
2152 if (tb)
2153 trie_local = (struct trie *) tb->tb_data;
2154
2155 trie_main = NULL;
1c340b2f 2156 tb = fib_get_table(net, RT_TABLE_MAIN);
877a9bff
EB
2157 if (tb)
2158 trie_main = (struct trie *) tb->tb_data;
2159
91b9a277 2160
cb7b593c
SH
2161 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2162 if (!stat)
2163 return -ENOMEM;
91b9a277 2164
cb7b593c
SH
2165 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2166 sizeof(struct leaf), sizeof(struct tnode));
91b9a277 2167
cb7b593c
SH
2168 if (trie_local) {
2169 seq_printf(seq, "Local:\n");
2170 trie_collect_stats(trie_local, stat);
2171 trie_show_stats(seq, stat);
2172 }
91b9a277 2173
cb7b593c
SH
2174 if (trie_main) {
2175 seq_printf(seq, "Main:\n");
2176 trie_collect_stats(trie_main, stat);
2177 trie_show_stats(seq, stat);
19baf839 2178 }
cb7b593c 2179 kfree(stat);
19baf839 2180
cb7b593c 2181 return 0;
19baf839
RO
2182}
2183
cb7b593c 2184static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2185{
1c340b2f
DL
2186 int err;
2187 struct net *net;
2188
2189 net = get_proc_net(inode);
2190 if (net == NULL)
2191 return -ENXIO;
2192 err = single_open(file, fib_triestat_seq_show, net);
2193 if (err < 0) {
2194 put_net(net);
2195 return err;
2196 }
2197 return 0;
2198}
2199
2200static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2201{
2202 struct seq_file *seq = f->private_data;
2203 put_net(seq->private);
2204 return single_release(ino, f);
19baf839
RO
2205}
2206
9a32144e 2207static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2208 .owner = THIS_MODULE,
2209 .open = fib_triestat_seq_open,
2210 .read = seq_read,
2211 .llseek = seq_lseek,
1c340b2f 2212 .release = fib_triestat_seq_release,
cb7b593c
SH
2213};
2214
2215static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2216 loff_t pos)
19baf839 2217{
cb7b593c
SH
2218 loff_t idx = 0;
2219 struct node *n;
2220
877a9bff 2221 for (n = fib_trie_get_first(iter, iter->trie_local);
cb7b593c
SH
2222 n; ++idx, n = fib_trie_get_next(iter)) {
2223 if (pos == idx)
2224 return n;
2225 }
2226
877a9bff 2227 for (n = fib_trie_get_first(iter, iter->trie_main);
cb7b593c
SH
2228 n; ++idx, n = fib_trie_get_next(iter)) {
2229 if (pos == idx)
2230 return n;
2231 }
19baf839
RO
2232 return NULL;
2233}
2234
cb7b593c 2235static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
19baf839 2236{
877a9bff
EB
2237 struct fib_trie_iter *iter = seq->private;
2238 struct fib_table *tb;
2239
2240 if (!iter->trie_local) {
1c340b2f 2241 tb = fib_get_table(iter->p.net, RT_TABLE_LOCAL);
877a9bff
EB
2242 if (tb)
2243 iter->trie_local = (struct trie *) tb->tb_data;
2244 }
2245 if (!iter->trie_main) {
1c340b2f 2246 tb = fib_get_table(iter->p.net, RT_TABLE_MAIN);
877a9bff
EB
2247 if (tb)
2248 iter->trie_main = (struct trie *) tb->tb_data;
2249 }
cb7b593c
SH
2250 rcu_read_lock();
2251 if (*pos == 0)
91b9a277 2252 return SEQ_START_TOKEN;
877a9bff 2253 return fib_trie_get_idx(iter, *pos - 1);
19baf839
RO
2254}
2255
cb7b593c 2256static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2257{
cb7b593c
SH
2258 struct fib_trie_iter *iter = seq->private;
2259 void *l = v;
2260
19baf839 2261 ++*pos;
91b9a277 2262 if (v == SEQ_START_TOKEN)
cb7b593c 2263 return fib_trie_get_idx(iter, 0);
19baf839 2264
cb7b593c
SH
2265 v = fib_trie_get_next(iter);
2266 BUG_ON(v == l);
2267 if (v)
2268 return v;
19baf839 2269
cb7b593c 2270 /* continue scan in next trie */
877a9bff
EB
2271 if (iter->trie == iter->trie_local)
2272 return fib_trie_get_first(iter, iter->trie_main);
19baf839 2273
cb7b593c
SH
2274 return NULL;
2275}
19baf839 2276
cb7b593c 2277static void fib_trie_seq_stop(struct seq_file *seq, void *v)
19baf839 2278{
cb7b593c
SH
2279 rcu_read_unlock();
2280}
91b9a277 2281
cb7b593c
SH
2282static void seq_indent(struct seq_file *seq, int n)
2283{
2284 while (n-- > 0) seq_puts(seq, " ");
2285}
19baf839 2286
cb7b593c
SH
2287static inline const char *rtn_scope(enum rt_scope_t s)
2288{
2289 static char buf[32];
19baf839 2290
132adf54 2291 switch (s) {
cb7b593c
SH
2292 case RT_SCOPE_UNIVERSE: return "universe";
2293 case RT_SCOPE_SITE: return "site";
2294 case RT_SCOPE_LINK: return "link";
2295 case RT_SCOPE_HOST: return "host";
2296 case RT_SCOPE_NOWHERE: return "nowhere";
2297 default:
2298 snprintf(buf, sizeof(buf), "scope=%d", s);
2299 return buf;
2300 }
2301}
19baf839 2302
cb7b593c
SH
2303static const char *rtn_type_names[__RTN_MAX] = {
2304 [RTN_UNSPEC] = "UNSPEC",
2305 [RTN_UNICAST] = "UNICAST",
2306 [RTN_LOCAL] = "LOCAL",
2307 [RTN_BROADCAST] = "BROADCAST",
2308 [RTN_ANYCAST] = "ANYCAST",
2309 [RTN_MULTICAST] = "MULTICAST",
2310 [RTN_BLACKHOLE] = "BLACKHOLE",
2311 [RTN_UNREACHABLE] = "UNREACHABLE",
2312 [RTN_PROHIBIT] = "PROHIBIT",
2313 [RTN_THROW] = "THROW",
2314 [RTN_NAT] = "NAT",
2315 [RTN_XRESOLVE] = "XRESOLVE",
2316};
19baf839 2317
cb7b593c
SH
2318static inline const char *rtn_type(unsigned t)
2319{
2320 static char buf[32];
19baf839 2321
cb7b593c
SH
2322 if (t < __RTN_MAX && rtn_type_names[t])
2323 return rtn_type_names[t];
187b5188 2324 snprintf(buf, sizeof(buf), "type %u", t);
cb7b593c 2325 return buf;
19baf839
RO
2326}
2327
cb7b593c
SH
2328/* Pretty print the trie */
2329static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2330{
cb7b593c
SH
2331 const struct fib_trie_iter *iter = seq->private;
2332 struct node *n = v;
c877efb2 2333
cb7b593c
SH
2334 if (v == SEQ_START_TOKEN)
2335 return 0;
19baf839 2336
06801916 2337 if (!node_parent(n)) {
877a9bff 2338 if (iter->trie == iter->trie_local)
095b8501
RO
2339 seq_puts(seq, "<local>:\n");
2340 else
2341 seq_puts(seq, "<main>:\n");
2342 }
2343
cb7b593c
SH
2344 if (IS_TNODE(n)) {
2345 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2346 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2347
1d25cd6c
RO
2348 seq_indent(seq, iter->depth-1);
2349 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
e905a9ed 2350 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
1d25cd6c 2351 tn->empty_children);
e905a9ed 2352
cb7b593c
SH
2353 } else {
2354 struct leaf *l = (struct leaf *) n;
2355 int i;
32ab5f80 2356 __be32 val = htonl(l->key);
cb7b593c
SH
2357
2358 seq_indent(seq, iter->depth);
2359 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2360 for (i = 32; i >= 0; i--) {
772cb712 2361 struct leaf_info *li = find_leaf_info(l, i);
cb7b593c
SH
2362 if (li) {
2363 struct fib_alias *fa;
2364 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2365 seq_indent(seq, iter->depth+1);
2366 seq_printf(seq, " /%d %s %s", i,
2367 rtn_scope(fa->fa_scope),
2368 rtn_type(fa->fa_type));
2369 if (fa->fa_tos)
2370 seq_printf(seq, "tos =%d\n",
2371 fa->fa_tos);
2372 seq_putc(seq, '\n');
2373 }
2374 }
2375 }
19baf839 2376 }
cb7b593c 2377
19baf839
RO
2378 return 0;
2379}
2380
f690808e 2381static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2382 .start = fib_trie_seq_start,
2383 .next = fib_trie_seq_next,
2384 .stop = fib_trie_seq_stop,
2385 .show = fib_trie_seq_show,
19baf839
RO
2386};
2387
cb7b593c 2388static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2389{
1c340b2f
DL
2390 return seq_open_net(inode, file, &fib_trie_seq_ops,
2391 sizeof(struct fib_trie_iter));
19baf839
RO
2392}
2393
9a32144e 2394static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2395 .owner = THIS_MODULE,
2396 .open = fib_trie_seq_open,
2397 .read = seq_read,
2398 .llseek = seq_lseek,
1c340b2f 2399 .release = seq_release_net,
19baf839
RO
2400};
2401
32ab5f80 2402static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2403{
cb7b593c
SH
2404 static unsigned type2flags[RTN_MAX + 1] = {
2405 [7] = RTF_REJECT, [8] = RTF_REJECT,
2406 };
2407 unsigned flags = type2flags[type];
19baf839 2408
cb7b593c
SH
2409 if (fi && fi->fib_nh->nh_gw)
2410 flags |= RTF_GATEWAY;
32ab5f80 2411 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2412 flags |= RTF_HOST;
2413 flags |= RTF_UP;
2414 return flags;
19baf839
RO
2415}
2416
cb7b593c
SH
2417/*
2418 * This outputs /proc/net/route.
2419 * The format of the file is not supposed to be changed
2420 * and needs to be same as fib_hash output to avoid breaking
2421 * legacy utilities
2422 */
2423static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2424{
c9e53cbe 2425 const struct fib_trie_iter *iter = seq->private;
cb7b593c
SH
2426 struct leaf *l = v;
2427 int i;
2428 char bf[128];
19baf839 2429
cb7b593c
SH
2430 if (v == SEQ_START_TOKEN) {
2431 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2432 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2433 "\tWindow\tIRTT");
2434 return 0;
2435 }
19baf839 2436
877a9bff 2437 if (iter->trie == iter->trie_local)
c9e53cbe 2438 return 0;
cb7b593c
SH
2439 if (IS_TNODE(l))
2440 return 0;
19baf839 2441
cb7b593c 2442 for (i=32; i>=0; i--) {
772cb712 2443 struct leaf_info *li = find_leaf_info(l, i);
cb7b593c 2444 struct fib_alias *fa;
32ab5f80 2445 __be32 mask, prefix;
91b9a277 2446
cb7b593c
SH
2447 if (!li)
2448 continue;
19baf839 2449
cb7b593c
SH
2450 mask = inet_make_mask(li->plen);
2451 prefix = htonl(l->key);
19baf839 2452
cb7b593c 2453 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2454 const struct fib_info *fi = fa->fa_info;
cb7b593c 2455 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2456
cb7b593c
SH
2457 if (fa->fa_type == RTN_BROADCAST
2458 || fa->fa_type == RTN_MULTICAST)
2459 continue;
19baf839 2460
cb7b593c
SH
2461 if (fi)
2462 snprintf(bf, sizeof(bf),
2463 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2464 fi->fib_dev ? fi->fib_dev->name : "*",
2465 prefix,
2466 fi->fib_nh->nh_gw, flags, 0, 0,
2467 fi->fib_priority,
2468 mask,
2469 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2470 fi->fib_window,
2471 fi->fib_rtt >> 3);
2472 else
2473 snprintf(bf, sizeof(bf),
2474 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2475 prefix, 0, flags, 0, 0, 0,
2476 mask, 0, 0, 0);
19baf839 2477
cb7b593c
SH
2478 seq_printf(seq, "%-127s\n", bf);
2479 }
19baf839
RO
2480 }
2481
2482 return 0;
2483}
2484
f690808e 2485static const struct seq_operations fib_route_seq_ops = {
cb7b593c
SH
2486 .start = fib_trie_seq_start,
2487 .next = fib_trie_seq_next,
2488 .stop = fib_trie_seq_stop,
2489 .show = fib_route_seq_show,
19baf839
RO
2490};
2491
cb7b593c 2492static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2493{
1c340b2f
DL
2494 return seq_open_net(inode, file, &fib_route_seq_ops,
2495 sizeof(struct fib_trie_iter));
19baf839
RO
2496}
2497
9a32144e 2498static const struct file_operations fib_route_fops = {
cb7b593c
SH
2499 .owner = THIS_MODULE,
2500 .open = fib_route_seq_open,
2501 .read = seq_read,
2502 .llseek = seq_lseek,
1c340b2f 2503 .release = seq_release_net,
19baf839
RO
2504};
2505
61a02653 2506int __net_init fib_proc_init(struct net *net)
19baf839 2507{
61a02653 2508 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2509 goto out1;
2510
61a02653
DL
2511 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2512 &fib_triestat_fops))
cb7b593c
SH
2513 goto out2;
2514
61a02653 2515 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2516 goto out3;
2517
19baf839 2518 return 0;
cb7b593c
SH
2519
2520out3:
61a02653 2521 proc_net_remove(net, "fib_triestat");
cb7b593c 2522out2:
61a02653 2523 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2524out1:
2525 return -ENOMEM;
19baf839
RO
2526}
2527
61a02653 2528void __net_exit fib_proc_exit(struct net *net)
19baf839 2529{
61a02653
DL
2530 proc_net_remove(net, "fib_trie");
2531 proc_net_remove(net, "fib_triestat");
2532 proc_net_remove(net, "route");
19baf839
RO
2533}
2534
2535#endif /* CONFIG_PROC_FS */