]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/ipv4/fib_trie.c
fib_trie: Rename tnode to key_vector
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
8e05fd71 82#include <net/switchdev.h>
19baf839
RO
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
95f60ea3
AD
87#define KEYLENGTH (8*sizeof(t_key))
88#define KEY_MAX ((t_key)~0)
19baf839 89
19baf839
RO
90typedef unsigned int t_key;
91
64c9b6fb
AD
92#define IS_TNODE(n) ((n)->bits)
93#define IS_LEAF(n) (!(n)->bits)
2373ce1c 94
e9b44019 95#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
9f9e636d 96
35c6edac 97struct key_vector {
41b489fd
AD
98 struct rcu_head rcu;
99
100 t_key empty_children; /* KEYLENGTH bits needed */
101 t_key full_children; /* KEYLENGTH bits needed */
35c6edac 102 struct key_vector __rcu *parent;
41b489fd 103
64c9b6fb 104 t_key key;
64c9b6fb 105 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 106 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 107 unsigned char slen;
adaf9816 108 union {
41b489fd 109 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 110 struct hlist_head leaf;
41b489fd 111 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 112 struct key_vector __rcu *tnode[0];
adaf9816 113 };
19baf839
RO
114};
115
35c6edac 116#define TNODE_SIZE(n) offsetof(struct key_vector, tnode[n])
41b489fd
AD
117#define LEAF_SIZE TNODE_SIZE(1)
118
19baf839
RO
119#ifdef CONFIG_IP_FIB_TRIE_STATS
120struct trie_use_stats {
121 unsigned int gets;
122 unsigned int backtrack;
123 unsigned int semantic_match_passed;
124 unsigned int semantic_match_miss;
125 unsigned int null_node_hit;
2f36895a 126 unsigned int resize_node_skipped;
19baf839
RO
127};
128#endif
129
130struct trie_stat {
131 unsigned int totdepth;
132 unsigned int maxdepth;
133 unsigned int tnodes;
134 unsigned int leaves;
135 unsigned int nullpointers;
93672292 136 unsigned int prefixes;
06ef921d 137 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 138};
19baf839
RO
139
140struct trie {
35c6edac 141 struct key_vector __rcu *tnode[1];
19baf839 142#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 143 struct trie_use_stats __percpu *stats;
19baf839 144#endif
19baf839
RO
145};
146
35c6edac 147static struct key_vector **resize(struct trie *t, struct key_vector *tn);
c3059477
JP
148static size_t tnode_free_size;
149
150/*
151 * synchronize_rcu after call_rcu for that many pages; it should be especially
152 * useful before resizing the root node with PREEMPT_NONE configs; the value was
153 * obtained experimentally, aiming to avoid visible slowdown.
154 */
155static const int sync_pages = 128;
19baf839 156
e18b890b 157static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 158static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 159
64c9b6fb
AD
160/* caller must hold RTNL */
161#define node_parent(n) rtnl_dereference((n)->parent)
0a5c0475 162
64c9b6fb
AD
163/* caller must hold RCU read lock or RTNL */
164#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
0a5c0475 165
64c9b6fb 166/* wrapper for rcu_assign_pointer */
35c6edac 167static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 168{
adaf9816
AD
169 if (n)
170 rcu_assign_pointer(n->parent, tp);
06801916
SH
171}
172
64c9b6fb
AD
173#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)
174
175/* This provides us with the number of children in this node, in the case of a
176 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 177 */
35c6edac 178static inline unsigned long tnode_child_length(const struct key_vector *tn)
06801916 179{
64c9b6fb 180 return (1ul << tn->bits) & ~(1ul);
06801916 181}
2373ce1c 182
98293e8d 183/* caller must hold RTNL */
35c6edac
AD
184static inline struct key_vector *tnode_get_child(struct key_vector *tn,
185 unsigned long i)
b59cfbf7 186{
41b489fd 187 return rtnl_dereference(tn->tnode[i]);
b59cfbf7
ED
188}
189
98293e8d 190/* caller must hold RCU read lock or RTNL */
35c6edac
AD
191static inline struct key_vector *tnode_get_child_rcu(struct key_vector *tn,
192 unsigned long i)
19baf839 193{
41b489fd 194 return rcu_dereference_rtnl(tn->tnode[i]);
19baf839
RO
195}
196
a7e53531
AD
197static inline struct fib_table *trie_get_table(struct trie *t)
198{
199 unsigned long *tb_data = (unsigned long *)t;
200
201 return container_of(tb_data, struct fib_table, tb_data[0]);
202}
203
e9b44019
AD
204/* To understand this stuff, an understanding of keys and all their bits is
205 * necessary. Every node in the trie has a key associated with it, but not
206 * all of the bits in that key are significant.
207 *
208 * Consider a node 'n' and its parent 'tp'.
209 *
210 * If n is a leaf, every bit in its key is significant. Its presence is
211 * necessitated by path compression, since during a tree traversal (when
212 * searching for a leaf - unless we are doing an insertion) we will completely
213 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
214 * a potentially successful search, that we have indeed been walking the
215 * correct key path.
216 *
217 * Note that we can never "miss" the correct key in the tree if present by
218 * following the wrong path. Path compression ensures that segments of the key
219 * that are the same for all keys with a given prefix are skipped, but the
220 * skipped part *is* identical for each node in the subtrie below the skipped
221 * bit! trie_insert() in this implementation takes care of that.
222 *
223 * if n is an internal node - a 'tnode' here, the various parts of its key
224 * have many different meanings.
225 *
226 * Example:
227 * _________________________________________________________________
228 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
229 * -----------------------------------------------------------------
230 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
231 *
232 * _________________________________________________________________
233 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
234 * -----------------------------------------------------------------
235 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
236 *
237 * tp->pos = 22
238 * tp->bits = 3
239 * n->pos = 13
240 * n->bits = 4
241 *
242 * First, let's just ignore the bits that come before the parent tp, that is
243 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
244 * point we do not use them for anything.
245 *
246 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
247 * index into the parent's child array. That is, they will be used to find
248 * 'n' among tp's children.
249 *
250 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
251 * for the node n.
252 *
253 * All the bits we have seen so far are significant to the node n. The rest
254 * of the bits are really not needed or indeed known in n->key.
255 *
256 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
257 * n's child array, and will of course be different for each child.
258 *
259 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
260 * at this point.
261 */
19baf839 262
f5026fab
DL
263static const int halve_threshold = 25;
264static const int inflate_threshold = 50;
345aa031 265static const int halve_threshold_root = 15;
80b71b80 266static const int inflate_threshold_root = 30;
2373ce1c
RO
267
268static void __alias_free_mem(struct rcu_head *head)
19baf839 269{
2373ce1c
RO
270 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
271 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
272}
273
2373ce1c 274static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 275{
2373ce1c
RO
276 call_rcu(&fa->rcu, __alias_free_mem);
277}
91b9a277 278
37fd30f2 279#define TNODE_KMALLOC_MAX \
35c6edac 280 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 281#define TNODE_VMALLOC_MAX \
35c6edac 282 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 283
37fd30f2 284static void __node_free_rcu(struct rcu_head *head)
387a5487 285{
35c6edac 286 struct key_vector *n = container_of(head, struct key_vector, rcu);
37fd30f2
AD
287
288 if (IS_LEAF(n))
289 kmem_cache_free(trie_leaf_kmem, n);
290 else if (n->bits <= TNODE_KMALLOC_MAX)
291 kfree(n);
292 else
293 vfree(n);
387a5487
SH
294}
295
37fd30f2
AD
296#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)
297
35c6edac 298static struct key_vector *tnode_alloc(int bits)
f0e36f8c 299{
1de3d87b
AD
300 size_t size;
301
302 /* verify bits is within bounds */
303 if (bits > TNODE_VMALLOC_MAX)
304 return NULL;
305
306 /* determine size and verify it is non-zero and didn't overflow */
307 size = TNODE_SIZE(1ul << bits);
308
2373ce1c 309 if (size <= PAGE_SIZE)
8d965444 310 return kzalloc(size, GFP_KERNEL);
15be75cd 311 else
7a1c8e5a 312 return vzalloc(size);
15be75cd 313}
2373ce1c 314
35c6edac 315static inline void empty_child_inc(struct key_vector *n)
95f60ea3
AD
316{
317 ++n->empty_children ? : ++n->full_children;
318}
319
35c6edac 320static inline void empty_child_dec(struct key_vector *n)
95f60ea3
AD
321{
322 n->empty_children-- ? : n->full_children--;
323}
324
35c6edac 325static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 326{
35c6edac 327 struct key_vector *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c 328 if (l) {
64c9b6fb
AD
329 l->parent = NULL;
330 /* set key and pos to reflect full key value
331 * any trailing zeros in the key should be ignored
332 * as the nodes are searched
333 */
334 l->key = key;
d5d6487c 335 l->slen = fa->fa_slen;
e9b44019 336 l->pos = 0;
64c9b6fb
AD
337 /* set bits to 0 indicating we are not a tnode */
338 l->bits = 0;
339
d5d6487c 340 /* link leaf to fib alias */
79e5ad2c 341 INIT_HLIST_HEAD(&l->leaf);
d5d6487c 342 hlist_add_head(&fa->fa_list, &l->leaf);
2373ce1c
RO
343 }
344 return l;
345}
346
35c6edac 347static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 348{
35c6edac 349 struct key_vector *tn = tnode_alloc(bits);
64c9b6fb
AD
350 unsigned int shift = pos + bits;
351
352 /* verify bits and pos their msb bits clear and values are valid */
353 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 354
91b9a277 355 if (tn) {
64c9b6fb 356 tn->parent = NULL;
5405afd1 357 tn->slen = pos;
19baf839
RO
358 tn->pos = pos;
359 tn->bits = bits;
e9b44019 360 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
95f60ea3
AD
361 if (bits == KEYLENGTH)
362 tn->full_children = 1;
363 else
364 tn->empty_children = 1ul << bits;
19baf839 365 }
c877efb2 366
41b489fd 367 pr_debug("AT %p s=%zu %zu\n", tn, TNODE_SIZE(0),
35c6edac 368 sizeof(struct key_vector *) << bits);
19baf839
RO
369 return tn;
370}
371
e9b44019 372/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
373 * and no bits are skipped. See discussion in dyntree paper p. 6
374 */
35c6edac 375static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 376{
e9b44019 377 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
378}
379
ff181ed8
AD
380/* Add a child at position i overwriting the old value.
381 * Update the value of full_children and empty_children.
382 */
35c6edac
AD
383static void put_child(struct key_vector *tn, unsigned long i,
384 struct key_vector *n)
19baf839 385{
35c6edac 386 struct key_vector *chi = tnode_get_child(tn, i);
ff181ed8 387 int isfull, wasfull;
19baf839 388
98293e8d 389 BUG_ON(i >= tnode_child_length(tn));
0c7770c7 390
95f60ea3 391 /* update emptyChildren, overflow into fullChildren */
19baf839 392 if (n == NULL && chi != NULL)
95f60ea3
AD
393 empty_child_inc(tn);
394 if (n != NULL && chi == NULL)
395 empty_child_dec(tn);
c877efb2 396
19baf839 397 /* update fullChildren */
ff181ed8 398 wasfull = tnode_full(tn, chi);
19baf839 399 isfull = tnode_full(tn, n);
ff181ed8 400
c877efb2 401 if (wasfull && !isfull)
19baf839 402 tn->full_children--;
c877efb2 403 else if (!wasfull && isfull)
19baf839 404 tn->full_children++;
91b9a277 405
5405afd1
AD
406 if (n && (tn->slen < n->slen))
407 tn->slen = n->slen;
408
41b489fd 409 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
410}
411
35c6edac 412static void update_children(struct key_vector *tn)
69fa57b1
AD
413{
414 unsigned long i;
415
416 /* update all of the child parent pointers */
417 for (i = tnode_child_length(tn); i;) {
35c6edac 418 struct key_vector *inode = tnode_get_child(tn, --i);
69fa57b1
AD
419
420 if (!inode)
421 continue;
422
423 /* Either update the children of a tnode that
424 * already belongs to us or update the child
425 * to point to ourselves.
426 */
427 if (node_parent(inode) == tn)
428 update_children(inode);
429 else
430 node_set_parent(inode, tn);
431 }
432}
433
35c6edac
AD
434static inline void put_child_root(struct key_vector *tp, struct trie *t,
435 t_key key, struct key_vector *n)
836a0123
AD
436{
437 if (tp)
438 put_child(tp, get_index(key, tp), n);
439 else
35c6edac 440 rcu_assign_pointer(t->tnode[0], n);
836a0123
AD
441}
442
35c6edac 443static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 444{
fc86a93b
AD
445 tn->rcu.next = NULL;
446}
447
35c6edac
AD
448static inline void tnode_free_append(struct key_vector *tn,
449 struct key_vector *n)
fc86a93b
AD
450{
451 n->rcu.next = tn->rcu.next;
452 tn->rcu.next = &n->rcu;
453}
0a5c0475 454
35c6edac 455static void tnode_free(struct key_vector *tn)
fc86a93b
AD
456{
457 struct callback_head *head = &tn->rcu;
458
459 while (head) {
460 head = head->next;
41b489fd 461 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
462 node_free(tn);
463
35c6edac 464 tn = container_of(head, struct key_vector, rcu);
fc86a93b
AD
465 }
466
467 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
468 tnode_free_size = 0;
469 synchronize_rcu();
0a5c0475 470 }
0a5c0475
ED
471}
472
35c6edac
AD
473static struct key_vector __rcu **replace(struct trie *t,
474 struct key_vector *oldtnode,
475 struct key_vector *tn)
69fa57b1 476{
35c6edac
AD
477 struct key_vector *tp = node_parent(oldtnode);
478 struct key_vector **cptr;
69fa57b1
AD
479 unsigned long i;
480
481 /* setup the parent pointer out of and back into this node */
482 NODE_INIT_PARENT(tn, tp);
483 put_child_root(tp, t, tn->key, tn);
484
485 /* update all of the child parent pointers */
486 update_children(tn);
487
488 /* all pointers should be clean so we are done */
489 tnode_free(oldtnode);
490
8d8e810c 491 /* record the pointer that is pointing to this node */
35c6edac 492 cptr = tp ? tp->tnode : t->tnode;
8d8e810c 493
69fa57b1
AD
494 /* resize children now that oldtnode is freed */
495 for (i = tnode_child_length(tn); i;) {
35c6edac 496 struct key_vector *inode = tnode_get_child(tn, --i);
69fa57b1
AD
497
498 /* resize child node */
499 if (tnode_full(tn, inode))
500 resize(t, inode);
501 }
8d8e810c
AD
502
503 return cptr;
69fa57b1
AD
504}
505
35c6edac
AD
506static struct key_vector __rcu **inflate(struct trie *t,
507 struct key_vector *oldtnode)
19baf839 508{
35c6edac 509 struct key_vector *tn;
69fa57b1 510 unsigned long i;
e9b44019 511 t_key m;
19baf839 512
0c7770c7 513 pr_debug("In inflate\n");
19baf839 514
e9b44019 515 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 516 if (!tn)
8d8e810c 517 goto notnode;
2f36895a 518
69fa57b1
AD
519 /* prepare oldtnode to be freed */
520 tnode_free_init(oldtnode);
521
12c081a5
AD
522 /* Assemble all of the pointers in our cluster, in this case that
523 * represents all of the pointers out of our allocated nodes that
524 * point to existing tnodes and the links between our allocated
525 * nodes.
2f36895a 526 */
12c081a5 527 for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
35c6edac
AD
528 struct key_vector *inode = tnode_get_child(oldtnode, --i);
529 struct key_vector *node0, *node1;
69fa57b1 530 unsigned long j, k;
c877efb2 531
19baf839 532 /* An empty child */
adaf9816 533 if (inode == NULL)
19baf839
RO
534 continue;
535
536 /* A leaf or an internal node with skipped bits */
adaf9816 537 if (!tnode_full(oldtnode, inode)) {
e9b44019 538 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
539 continue;
540 }
541
69fa57b1
AD
542 /* drop the node in the old tnode free list */
543 tnode_free_append(oldtnode, inode);
544
19baf839 545 /* An internal node with two children */
19baf839 546 if (inode->bits == 1) {
12c081a5
AD
547 put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
548 put_child(tn, 2 * i, tnode_get_child(inode, 0));
91b9a277 549 continue;
19baf839
RO
550 }
551
91b9a277 552 /* We will replace this node 'inode' with two new
12c081a5 553 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
554 * original children. The two new nodes will have
555 * a position one bit further down the key and this
556 * means that the "significant" part of their keys
557 * (see the discussion near the top of this file)
558 * will differ by one bit, which will be "0" in
12c081a5 559 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
560 * moving the key position by one step, the bit that
561 * we are moving away from - the bit at position
12c081a5
AD
562 * (tn->pos) - is the one that will differ between
563 * node0 and node1. So... we synthesize that bit in the
564 * two new keys.
91b9a277 565 */
12c081a5
AD
566 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
567 if (!node1)
568 goto nomem;
69fa57b1 569 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 570
69fa57b1 571 tnode_free_append(tn, node1);
12c081a5
AD
572 if (!node0)
573 goto nomem;
574 tnode_free_append(tn, node0);
575
576 /* populate child pointers in new nodes */
577 for (k = tnode_child_length(inode), j = k / 2; j;) {
578 put_child(node1, --j, tnode_get_child(inode, --k));
579 put_child(node0, j, tnode_get_child(inode, j));
580 put_child(node1, --j, tnode_get_child(inode, --k));
581 put_child(node0, j, tnode_get_child(inode, j));
582 }
19baf839 583
12c081a5
AD
584 /* link new nodes to parent */
585 NODE_INIT_PARENT(node1, tn);
586 NODE_INIT_PARENT(node0, tn);
2f36895a 587
12c081a5
AD
588 /* link parent to nodes */
589 put_child(tn, 2 * i + 1, node1);
590 put_child(tn, 2 * i, node0);
591 }
2f36895a 592
69fa57b1 593 /* setup the parent pointers into and out of this node */
8d8e810c 594 return replace(t, oldtnode, tn);
2f80b3c8 595nomem:
fc86a93b
AD
596 /* all pointers should be clean so we are done */
597 tnode_free(tn);
8d8e810c
AD
598notnode:
599 return NULL;
19baf839
RO
600}
601
35c6edac
AD
602static struct key_vector __rcu **halve(struct trie *t,
603 struct key_vector *oldtnode)
19baf839 604{
35c6edac 605 struct key_vector *tn;
12c081a5 606 unsigned long i;
19baf839 607
0c7770c7 608 pr_debug("In halve\n");
c877efb2 609
e9b44019 610 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 611 if (!tn)
8d8e810c 612 goto notnode;
2f36895a 613
69fa57b1
AD
614 /* prepare oldtnode to be freed */
615 tnode_free_init(oldtnode);
616
12c081a5
AD
617 /* Assemble all of the pointers in our cluster, in this case that
618 * represents all of the pointers out of our allocated nodes that
619 * point to existing tnodes and the links between our allocated
620 * nodes.
2f36895a 621 */
12c081a5 622 for (i = tnode_child_length(oldtnode); i;) {
35c6edac
AD
623 struct key_vector *node1 = tnode_get_child(oldtnode, --i);
624 struct key_vector *node0 = tnode_get_child(oldtnode, --i);
625 struct key_vector *inode;
2f36895a 626
12c081a5
AD
627 /* At least one of the children is empty */
628 if (!node1 || !node0) {
629 put_child(tn, i / 2, node1 ? : node0);
630 continue;
631 }
c877efb2 632
2f36895a 633 /* Two nonempty children */
12c081a5 634 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
635 if (!inode)
636 goto nomem;
12c081a5 637 tnode_free_append(tn, inode);
2f36895a 638
12c081a5
AD
639 /* initialize pointers out of node */
640 put_child(inode, 1, node1);
641 put_child(inode, 0, node0);
642 NODE_INIT_PARENT(inode, tn);
643
644 /* link parent to node */
645 put_child(tn, i / 2, inode);
2f36895a 646 }
19baf839 647
69fa57b1 648 /* setup the parent pointers into and out of this node */
8d8e810c
AD
649 return replace(t, oldtnode, tn);
650nomem:
651 /* all pointers should be clean so we are done */
652 tnode_free(tn);
653notnode:
654 return NULL;
19baf839
RO
655}
656
35c6edac 657static void collapse(struct trie *t, struct key_vector *oldtnode)
95f60ea3 658{
35c6edac 659 struct key_vector *n, *tp;
95f60ea3
AD
660 unsigned long i;
661
662 /* scan the tnode looking for that one child that might still exist */
663 for (n = NULL, i = tnode_child_length(oldtnode); !n && i;)
664 n = tnode_get_child(oldtnode, --i);
665
666 /* compress one level */
667 tp = node_parent(oldtnode);
668 put_child_root(tp, t, oldtnode->key, n);
669 node_set_parent(n, tp);
670
671 /* drop dead node */
672 node_free(oldtnode);
673}
674
35c6edac 675static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
676{
677 unsigned char slen = tn->pos;
678 unsigned long stride, i;
679
680 /* search though the list of children looking for nodes that might
681 * have a suffix greater than the one we currently have. This is
682 * why we start with a stride of 2 since a stride of 1 would
683 * represent the nodes with suffix length equal to tn->pos
684 */
685 for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
35c6edac 686 struct key_vector *n = tnode_get_child(tn, i);
5405afd1
AD
687
688 if (!n || (n->slen <= slen))
689 continue;
690
691 /* update stride and slen based on new value */
692 stride <<= (n->slen - slen);
693 slen = n->slen;
694 i &= ~(stride - 1);
695
696 /* if slen covers all but the last bit we can stop here
697 * there will be nothing longer than that since only node
698 * 0 and 1 << (bits - 1) could have that as their suffix
699 * length.
700 */
701 if ((slen + 1) >= (tn->pos + tn->bits))
702 break;
703 }
704
705 tn->slen = slen;
706
707 return slen;
708}
709
f05a4819
AD
710/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
711 * the Helsinki University of Technology and Matti Tikkanen of Nokia
712 * Telecommunications, page 6:
713 * "A node is doubled if the ratio of non-empty children to all
714 * children in the *doubled* node is at least 'high'."
715 *
716 * 'high' in this instance is the variable 'inflate_threshold'. It
717 * is expressed as a percentage, so we multiply it with
718 * tnode_child_length() and instead of multiplying by 2 (since the
719 * child array will be doubled by inflate()) and multiplying
720 * the left-hand side by 100 (to handle the percentage thing) we
721 * multiply the left-hand side by 50.
722 *
723 * The left-hand side may look a bit weird: tnode_child_length(tn)
724 * - tn->empty_children is of course the number of non-null children
725 * in the current node. tn->full_children is the number of "full"
726 * children, that is non-null tnodes with a skip value of 0.
727 * All of those will be doubled in the resulting inflated tnode, so
728 * we just count them one extra time here.
729 *
730 * A clearer way to write this would be:
731 *
732 * to_be_doubled = tn->full_children;
733 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
734 * tn->full_children;
735 *
736 * new_child_length = tnode_child_length(tn) * 2;
737 *
738 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
739 * new_child_length;
740 * if (new_fill_factor >= inflate_threshold)
741 *
742 * ...and so on, tho it would mess up the while () loop.
743 *
744 * anyway,
745 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
746 * inflate_threshold
747 *
748 * avoid a division:
749 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
750 * inflate_threshold * new_child_length
751 *
752 * expand not_to_be_doubled and to_be_doubled, and shorten:
753 * 100 * (tnode_child_length(tn) - tn->empty_children +
754 * tn->full_children) >= inflate_threshold * new_child_length
755 *
756 * expand new_child_length:
757 * 100 * (tnode_child_length(tn) - tn->empty_children +
758 * tn->full_children) >=
759 * inflate_threshold * tnode_child_length(tn) * 2
760 *
761 * shorten again:
762 * 50 * (tn->full_children + tnode_child_length(tn) -
763 * tn->empty_children) >= inflate_threshold *
764 * tnode_child_length(tn)
765 *
766 */
35c6edac 767static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819
AD
768{
769 unsigned long used = tnode_child_length(tn);
770 unsigned long threshold = used;
771
772 /* Keep root node larger */
ff181ed8 773 threshold *= tp ? inflate_threshold : inflate_threshold_root;
f05a4819 774 used -= tn->empty_children;
95f60ea3 775 used += tn->full_children;
f05a4819 776
95f60ea3
AD
777 /* if bits == KEYLENGTH then pos = 0, and will fail below */
778
779 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
780}
781
35c6edac 782static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819
AD
783{
784 unsigned long used = tnode_child_length(tn);
785 unsigned long threshold = used;
786
787 /* Keep root node larger */
ff181ed8 788 threshold *= tp ? halve_threshold : halve_threshold_root;
f05a4819
AD
789 used -= tn->empty_children;
790
95f60ea3
AD
791 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
792
793 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
794}
795
35c6edac 796static inline bool should_collapse(struct key_vector *tn)
95f60ea3
AD
797{
798 unsigned long used = tnode_child_length(tn);
799
800 used -= tn->empty_children;
801
802 /* account for bits == KEYLENGTH case */
803 if ((tn->bits == KEYLENGTH) && tn->full_children)
804 used -= KEY_MAX;
805
806 /* One child or none, time to drop us from the trie */
807 return used < 2;
f05a4819
AD
808}
809
cf3637bb 810#define MAX_WORK 10
35c6edac
AD
811static struct key_vector __rcu **resize(struct trie *t,
812 struct key_vector *tn)
cf3637bb 813{
8d8e810c
AD
814#ifdef CONFIG_IP_FIB_TRIE_STATS
815 struct trie_use_stats __percpu *stats = t->stats;
816#endif
35c6edac 817 struct key_vector *tp = node_parent(tn);
8d8e810c 818 unsigned long cindex = tp ? get_index(tn->key, tp) : 0;
35c6edac 819 struct key_vector __rcu **cptr = tp ? tp->tnode : t->tnode;
a80e89d4 820 int max_work = MAX_WORK;
cf3637bb 821
cf3637bb
AD
822 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
823 tn, inflate_threshold, halve_threshold);
824
ff181ed8
AD
825 /* track the tnode via the pointer from the parent instead of
826 * doing it ourselves. This way we can let RCU fully do its
827 * thing without us interfering
828 */
8d8e810c 829 BUG_ON(tn != rtnl_dereference(cptr[cindex]));
ff181ed8 830
f05a4819
AD
831 /* Double as long as the resulting node has a number of
832 * nonempty nodes that are above the threshold.
cf3637bb 833 */
a80e89d4 834 while (should_inflate(tp, tn) && max_work) {
35c6edac 835 struct key_vector __rcu **tcptr = inflate(t, tn);
8d8e810c
AD
836
837 if (!tcptr) {
cf3637bb 838#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 839 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
840#endif
841 break;
842 }
ff181ed8 843
a80e89d4 844 max_work--;
8d8e810c
AD
845 cptr = tcptr;
846 tn = rtnl_dereference(cptr[cindex]);
cf3637bb
AD
847 }
848
849 /* Return if at least one inflate is run */
850 if (max_work != MAX_WORK)
8d8e810c 851 return cptr;
cf3637bb 852
f05a4819 853 /* Halve as long as the number of empty children in this
cf3637bb
AD
854 * node is above threshold.
855 */
a80e89d4 856 while (should_halve(tp, tn) && max_work) {
35c6edac 857 struct key_vector __rcu **tcptr = halve(t, tn);
8d8e810c
AD
858
859 if (!tcptr) {
cf3637bb 860#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 861 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
862#endif
863 break;
864 }
cf3637bb 865
a80e89d4 866 max_work--;
8d8e810c
AD
867 cptr = tcptr;
868 tn = rtnl_dereference(cptr[cindex]);
ff181ed8 869 }
cf3637bb
AD
870
871 /* Only one child remains */
95f60ea3
AD
872 if (should_collapse(tn)) {
873 collapse(t, tn);
8d8e810c 874 return cptr;
5405afd1
AD
875 }
876
877 /* Return if at least one deflate was run */
878 if (max_work != MAX_WORK)
8d8e810c 879 return cptr;
5405afd1
AD
880
881 /* push the suffix length to the parent node */
882 if (tn->slen > tn->pos) {
883 unsigned char slen = update_suffix(tn);
884
885 if (tp && (slen > tp->slen))
886 tp->slen = slen;
cf3637bb 887 }
8d8e810c
AD
888
889 return cptr;
cf3637bb
AD
890}
891
35c6edac 892static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
5405afd1 893{
5405afd1
AD
894 while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
895 if (update_suffix(tp) > l->slen)
896 break;
897 tp = node_parent(tp);
898 }
899}
900
35c6edac 901static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
19baf839 902{
5405afd1
AD
903 /* if this is a new leaf then tn will be NULL and we can sort
904 * out parent suffix lengths as a part of trie_rebalance
905 */
906 while (tn && (tn->slen < l->slen)) {
907 tn->slen = l->slen;
908 tn = node_parent(tn);
909 }
910}
911
2373ce1c 912/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
913static struct key_vector *fib_find_node(struct trie *t,
914 struct key_vector **tp, u32 key)
19baf839 915{
35c6edac 916 struct key_vector *pn = NULL, *n = rcu_dereference_rtnl(t->tnode[0]);
939afb06
AD
917
918 while (n) {
919 unsigned long index = get_index(key, n);
920
921 /* This bit of code is a bit tricky but it combines multiple
922 * checks into a single check. The prefix consists of the
923 * prefix plus zeros for the bits in the cindex. The index
924 * is the difference between the key and this value. From
925 * this we can actually derive several pieces of data.
d4a975e8 926 * if (index >= (1ul << bits))
939afb06 927 * we have a mismatch in skip bits and failed
b3832117
AD
928 * else
929 * we know the value is cindex
d4a975e8
AD
930 *
931 * This check is safe even if bits == KEYLENGTH due to the
932 * fact that we can only allocate a node with 32 bits if a
933 * long is greater than 32 bits.
939afb06 934 */
d4a975e8
AD
935 if (index >= (1ul << n->bits)) {
936 n = NULL;
937 break;
938 }
939afb06
AD
939
940 /* we have found a leaf. Prefixes have already been compared */
941 if (IS_LEAF(n))
19baf839 942 break;
19baf839 943
d4a975e8 944 pn = n;
21d1f11d 945 n = tnode_get_child_rcu(n, index);
939afb06 946 }
91b9a277 947
35c6edac 948 *tp = pn;
d4a975e8 949
939afb06 950 return n;
19baf839
RO
951}
952
02525368
AD
953/* Return the first fib alias matching TOS with
954 * priority less than or equal to PRIO.
955 */
79e5ad2c
AD
956static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
957 u8 tos, u32 prio)
02525368
AD
958{
959 struct fib_alias *fa;
960
961 if (!fah)
962 return NULL;
963
56315f9e 964 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
965 if (fa->fa_slen < slen)
966 continue;
967 if (fa->fa_slen != slen)
968 break;
02525368
AD
969 if (fa->fa_tos > tos)
970 continue;
971 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
972 return fa;
973 }
974
975 return NULL;
976}
977
35c6edac 978static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 979{
35c6edac 980 struct key_vector __rcu **cptr = t->tnode;
19baf839 981
d5d6487c 982 while (tn) {
35c6edac 983 struct key_vector *tp = node_parent(tn);
8d8e810c
AD
984
985 cptr = resize(t, tn);
986 if (!tp)
987 break;
35c6edac 988 tn = container_of(cptr, struct key_vector, tnode[0]);
19baf839 989 }
19baf839
RO
990}
991
35c6edac 992static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 993 struct fib_alias *new, t_key key)
19baf839 994{
35c6edac 995 struct key_vector *n, *l;
19baf839 996
d5d6487c 997 l = leaf_new(key, new);
79e5ad2c 998 if (!l)
8d8e810c 999 goto noleaf;
d5d6487c
AD
1000
1001 /* retrieve child from parent node */
1002 if (tp)
1003 n = tnode_get_child(tp, get_index(key, tp));
1004 else
35c6edac 1005 n = rcu_dereference_rtnl(t->tnode[0]);
19baf839 1006
836a0123
AD
1007 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1008 *
1009 * Add a new tnode here
1010 * first tnode need some special handling
1011 * leaves us in position for handling as case 3
1012 */
1013 if (n) {
35c6edac 1014 struct key_vector *tn;
19baf839 1015
e9b44019 1016 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1017 if (!tn)
1018 goto notnode;
91b9a277 1019
836a0123
AD
1020 /* initialize routes out of node */
1021 NODE_INIT_PARENT(tn, tp);
1022 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1023
836a0123
AD
1024 /* start adding routes into the node */
1025 put_child_root(tp, t, key, tn);
1026 node_set_parent(n, tn);
e962f302 1027
836a0123 1028 /* parent now has a NULL spot where the leaf can go */
e962f302 1029 tp = tn;
19baf839 1030 }
91b9a277 1031
836a0123 1032 /* Case 3: n is NULL, and will just insert a new leaf */
d5d6487c
AD
1033 NODE_INIT_PARENT(l, tp);
1034 put_child_root(tp, t, key, l);
1035 trie_rebalance(t, tp);
1036
1037 return 0;
8d8e810c
AD
1038notnode:
1039 node_free(l);
1040noleaf:
1041 return -ENOMEM;
d5d6487c
AD
1042}
1043
35c6edac
AD
1044static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1045 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1046 struct fib_alias *fa, t_key key)
1047{
1048 if (!l)
1049 return fib_insert_node(t, tp, new, key);
1050
1051 if (fa) {
1052 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1053 } else {
d5d6487c
AD
1054 struct fib_alias *last;
1055
1056 hlist_for_each_entry(last, &l->leaf, fa_list) {
1057 if (new->fa_slen < last->fa_slen)
1058 break;
1059 fa = last;
1060 }
1061
1062 if (fa)
1063 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1064 else
1065 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1066 }
2373ce1c 1067
d5d6487c
AD
1068 /* if we added to the tail node then we need to update slen */
1069 if (l->slen < new->fa_slen) {
1070 l->slen = new->fa_slen;
1071 leaf_push_suffix(tp, l);
1072 }
1073
1074 return 0;
19baf839
RO
1075}
1076
d5d6487c 1077/* Caller must hold RTNL. */
16c6cf8b 1078int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839 1079{
d4a975e8 1080 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1081 struct fib_alias *fa, *new_fa;
35c6edac 1082 struct key_vector *l, *tp;
19baf839 1083 struct fib_info *fi;
79e5ad2c
AD
1084 u8 plen = cfg->fc_dst_len;
1085 u8 slen = KEYLENGTH - plen;
4e902c57 1086 u8 tos = cfg->fc_tos;
d4a975e8 1087 u32 key;
19baf839 1088 int err;
19baf839 1089
5786ec60 1090 if (plen > KEYLENGTH)
19baf839
RO
1091 return -EINVAL;
1092
4e902c57 1093 key = ntohl(cfg->fc_dst);
19baf839 1094
2dfe55b4 1095 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1096
d4a975e8 1097 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1098 return -EINVAL;
1099
4e902c57
TG
1100 fi = fib_create_info(cfg);
1101 if (IS_ERR(fi)) {
1102 err = PTR_ERR(fi);
19baf839 1103 goto err;
4e902c57 1104 }
19baf839 1105
d4a975e8 1106 l = fib_find_node(t, &tp, key);
79e5ad2c 1107 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
19baf839
RO
1108
1109 /* Now fa, if non-NULL, points to the first fib alias
1110 * with the same keys [prefix,tos,priority], if such key already
1111 * exists or to the node before which we will insert new one.
1112 *
1113 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1114 * insert to the tail of the section matching the suffix length
1115 * of the new alias.
19baf839
RO
1116 */
1117
936f6f8e
JA
1118 if (fa && fa->fa_tos == tos &&
1119 fa->fa_info->fib_priority == fi->fib_priority) {
1120 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1121
1122 err = -EEXIST;
4e902c57 1123 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1124 goto out;
1125
936f6f8e
JA
1126 /* We have 2 goals:
1127 * 1. Find exact match for type, scope, fib_info to avoid
1128 * duplicate routes
1129 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1130 */
1131 fa_match = NULL;
1132 fa_first = fa;
56315f9e 1133 hlist_for_each_entry_from(fa, fa_list) {
79e5ad2c 1134 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
936f6f8e
JA
1135 break;
1136 if (fa->fa_info->fib_priority != fi->fib_priority)
1137 break;
1138 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1139 fa->fa_info == fi) {
1140 fa_match = fa;
1141 break;
1142 }
1143 }
1144
4e902c57 1145 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1146 struct fib_info *fi_drop;
1147 u8 state;
1148
936f6f8e
JA
1149 fa = fa_first;
1150 if (fa_match) {
1151 if (fa == fa_match)
1152 err = 0;
6725033f 1153 goto out;
936f6f8e 1154 }
2373ce1c 1155 err = -ENOBUFS;
e94b1766 1156 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1157 if (new_fa == NULL)
1158 goto out;
19baf839
RO
1159
1160 fi_drop = fa->fa_info;
2373ce1c
RO
1161 new_fa->fa_tos = fa->fa_tos;
1162 new_fa->fa_info = fi;
4e902c57 1163 new_fa->fa_type = cfg->fc_type;
19baf839 1164 state = fa->fa_state;
936f6f8e 1165 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1166 new_fa->fa_slen = fa->fa_slen;
19baf839 1167
8e05fd71
SF
1168 err = netdev_switch_fib_ipv4_add(key, plen, fi,
1169 new_fa->fa_tos,
1170 cfg->fc_type,
1171 tb->tb_id);
1172 if (err) {
1173 netdev_switch_fib_ipv4_abort(fi);
1174 kmem_cache_free(fn_alias_kmem, new_fa);
1175 goto out;
1176 }
1177
56315f9e 1178 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1179
2373ce1c 1180 alias_free_mem_rcu(fa);
19baf839
RO
1181
1182 fib_release_info(fi_drop);
1183 if (state & FA_S_ACCESSED)
4ccfe6d4 1184 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1185 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1186 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1187
91b9a277 1188 goto succeeded;
19baf839
RO
1189 }
1190 /* Error if we find a perfect match which
1191 * uses the same scope, type, and nexthop
1192 * information.
1193 */
936f6f8e
JA
1194 if (fa_match)
1195 goto out;
a07f5f50 1196
4e902c57 1197 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1198 fa = fa_first;
19baf839
RO
1199 }
1200 err = -ENOENT;
4e902c57 1201 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1202 goto out;
1203
1204 err = -ENOBUFS;
e94b1766 1205 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1206 if (new_fa == NULL)
1207 goto out;
1208
1209 new_fa->fa_info = fi;
1210 new_fa->fa_tos = tos;
4e902c57 1211 new_fa->fa_type = cfg->fc_type;
19baf839 1212 new_fa->fa_state = 0;
79e5ad2c 1213 new_fa->fa_slen = slen;
19baf839 1214
8e05fd71
SF
1215 /* (Optionally) offload fib entry to switch hardware. */
1216 err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1217 cfg->fc_type, tb->tb_id);
1218 if (err) {
1219 netdev_switch_fib_ipv4_abort(fi);
1220 goto out_free_new_fa;
1221 }
1222
9b6ebad5 1223 /* Insert new entry to the list. */
d5d6487c
AD
1224 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1225 if (err)
8e05fd71 1226 goto out_sw_fib_del;
19baf839 1227
21d8c49e
DM
1228 if (!plen)
1229 tb->tb_num_default++;
1230
4ccfe6d4 1231 rt_cache_flush(cfg->fc_nlinfo.nl_net);
4e902c57 1232 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1233 &cfg->fc_nlinfo, 0);
19baf839
RO
1234succeeded:
1235 return 0;
f835e471 1236
8e05fd71
SF
1237out_sw_fib_del:
1238 netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
f835e471
RO
1239out_free_new_fa:
1240 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1241out:
1242 fib_release_info(fi);
91b9a277 1243err:
19baf839
RO
1244 return err;
1245}
1246
35c6edac 1247static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1248{
1249 t_key prefix = n->key;
1250
1251 return (key ^ prefix) & (prefix | -prefix);
1252}
1253
345e9b54 1254/* should be called with rcu_read_lock */
22bd5b9b 1255int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1256 struct fib_result *res, int fib_flags)
19baf839 1257{
9f9e636d 1258 struct trie *t = (struct trie *)tb->tb_data;
8274a97a
AD
1259#ifdef CONFIG_IP_FIB_TRIE_STATS
1260 struct trie_use_stats __percpu *stats = t->stats;
1261#endif
9f9e636d 1262 const t_key key = ntohl(flp->daddr);
35c6edac 1263 struct key_vector *n, *pn;
79e5ad2c 1264 struct fib_alias *fa;
71e8b67d 1265 unsigned long index;
9f9e636d 1266 t_key cindex;
91b9a277 1267
35c6edac 1268 n = rcu_dereference(t->tnode[0]);
c877efb2 1269 if (!n)
345e9b54 1270 return -EAGAIN;
19baf839
RO
1271
1272#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1273 this_cpu_inc(stats->gets);
19baf839
RO
1274#endif
1275
adaf9816 1276 pn = n;
9f9e636d
AD
1277 cindex = 0;
1278
1279 /* Step 1: Travel to the longest prefix match in the trie */
1280 for (;;) {
71e8b67d 1281 index = get_index(key, n);
9f9e636d
AD
1282
1283 /* This bit of code is a bit tricky but it combines multiple
1284 * checks into a single check. The prefix consists of the
1285 * prefix plus zeros for the "bits" in the prefix. The index
1286 * is the difference between the key and this value. From
1287 * this we can actually derive several pieces of data.
71e8b67d 1288 * if (index >= (1ul << bits))
9f9e636d 1289 * we have a mismatch in skip bits and failed
b3832117
AD
1290 * else
1291 * we know the value is cindex
71e8b67d
AD
1292 *
1293 * This check is safe even if bits == KEYLENGTH due to the
1294 * fact that we can only allocate a node with 32 bits if a
1295 * long is greater than 32 bits.
9f9e636d 1296 */
71e8b67d 1297 if (index >= (1ul << n->bits))
9f9e636d 1298 break;
19baf839 1299
9f9e636d
AD
1300 /* we have found a leaf. Prefixes have already been compared */
1301 if (IS_LEAF(n))
a07f5f50 1302 goto found;
19baf839 1303
9f9e636d
AD
1304 /* only record pn and cindex if we are going to be chopping
1305 * bits later. Otherwise we are just wasting cycles.
91b9a277 1306 */
5405afd1 1307 if (n->slen > n->pos) {
9f9e636d
AD
1308 pn = n;
1309 cindex = index;
91b9a277 1310 }
19baf839 1311
21d1f11d 1312 n = tnode_get_child_rcu(n, index);
9f9e636d
AD
1313 if (unlikely(!n))
1314 goto backtrace;
1315 }
19baf839 1316
9f9e636d
AD
1317 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1318 for (;;) {
1319 /* record the pointer where our next node pointer is stored */
35c6edac 1320 struct key_vector __rcu **cptr = n->tnode;
19baf839 1321
9f9e636d
AD
1322 /* This test verifies that none of the bits that differ
1323 * between the key and the prefix exist in the region of
1324 * the lsb and higher in the prefix.
91b9a277 1325 */
5405afd1 1326 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1327 goto backtrace;
91b9a277 1328
9f9e636d
AD
1329 /* exit out and process leaf */
1330 if (unlikely(IS_LEAF(n)))
1331 break;
91b9a277 1332
9f9e636d
AD
1333 /* Don't bother recording parent info. Since we are in
1334 * prefix match mode we will have to come back to wherever
1335 * we started this traversal anyway
91b9a277 1336 */
91b9a277 1337
9f9e636d 1338 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1339backtrace:
19baf839 1340#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1341 if (!n)
1342 this_cpu_inc(stats->null_node_hit);
19baf839 1343#endif
9f9e636d
AD
1344 /* If we are at cindex 0 there are no more bits for
1345 * us to strip at this level so we must ascend back
1346 * up one level to see if there are any more bits to
1347 * be stripped there.
1348 */
1349 while (!cindex) {
1350 t_key pkey = pn->key;
1351
1352 pn = node_parent_rcu(pn);
1353 if (unlikely(!pn))
345e9b54 1354 return -EAGAIN;
9f9e636d
AD
1355#ifdef CONFIG_IP_FIB_TRIE_STATS
1356 this_cpu_inc(stats->backtrack);
1357#endif
1358 /* Get Child's index */
1359 cindex = get_index(pkey, pn);
1360 }
1361
1362 /* strip the least significant bit from the cindex */
1363 cindex &= cindex - 1;
1364
1365 /* grab pointer for next child node */
41b489fd 1366 cptr = &pn->tnode[cindex];
c877efb2 1367 }
19baf839 1368 }
9f9e636d 1369
19baf839 1370found:
71e8b67d
AD
1371 /* this line carries forward the xor from earlier in the function */
1372 index = key ^ n->key;
1373
9f9e636d 1374 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1375 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1376 struct fib_info *fi = fa->fa_info;
1377 int nhsel, err;
345e9b54 1378
71e8b67d 1379 if ((index >= (1ul << fa->fa_slen)) &&
79e5ad2c 1380 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
71e8b67d 1381 continue;
79e5ad2c
AD
1382 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1383 continue;
1384 if (fi->fib_dead)
1385 continue;
1386 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1387 continue;
1388 fib_alias_accessed(fa);
1389 err = fib_props[fa->fa_type].error;
1390 if (unlikely(err < 0)) {
345e9b54 1391#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1392 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1393#endif
79e5ad2c
AD
1394 return err;
1395 }
1396 if (fi->fib_flags & RTNH_F_DEAD)
1397 continue;
1398 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1399 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1400
1401 if (nh->nh_flags & RTNH_F_DEAD)
1402 continue;
1403 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
345e9b54 1404 continue;
79e5ad2c
AD
1405
1406 if (!(fib_flags & FIB_LOOKUP_NOREF))
1407 atomic_inc(&fi->fib_clntref);
1408
1409 res->prefixlen = KEYLENGTH - fa->fa_slen;
1410 res->nh_sel = nhsel;
1411 res->type = fa->fa_type;
1412 res->scope = fi->fib_scope;
1413 res->fi = fi;
1414 res->table = tb;
1415 res->fa_head = &n->leaf;
345e9b54 1416#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1417 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1418#endif
79e5ad2c 1419 return err;
345e9b54 1420 }
9b6ebad5 1421 }
345e9b54 1422#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1423 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1424#endif
345e9b54 1425 goto backtrace;
19baf839 1426}
6fc01438 1427EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1428
35c6edac
AD
1429static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1430 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1431{
1432 /* record the location of the previous list_info entry */
1433 struct hlist_node **pprev = old->fa_list.pprev;
1434 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1435
1436 /* remove the fib_alias from the list */
1437 hlist_del_rcu(&old->fa_list);
1438
1439 /* if we emptied the list this leaf will be freed and we can sort
1440 * out parent suffix lengths as a part of trie_rebalance
1441 */
1442 if (hlist_empty(&l->leaf)) {
1443 put_child_root(tp, t, l->key, NULL);
1444 node_free(l);
1445 trie_rebalance(t, tp);
1446 return;
1447 }
1448
1449 /* only access fa if it is pointing at the last valid hlist_node */
1450 if (*pprev)
1451 return;
1452
1453 /* update the trie with the latest suffix length */
1454 l->slen = fa->fa_slen;
1455 leaf_pull_suffix(tp, l);
1456}
1457
1458/* Caller must hold RTNL. */
16c6cf8b 1459int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1460{
1461 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1462 struct fib_alias *fa, *fa_to_delete;
35c6edac 1463 struct key_vector *l, *tp;
79e5ad2c 1464 u8 plen = cfg->fc_dst_len;
79e5ad2c 1465 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1466 u8 tos = cfg->fc_tos;
1467 u32 key;
91b9a277 1468
79e5ad2c 1469 if (plen > KEYLENGTH)
19baf839
RO
1470 return -EINVAL;
1471
4e902c57 1472 key = ntohl(cfg->fc_dst);
19baf839 1473
d4a975e8 1474 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1475 return -EINVAL;
1476
d4a975e8 1477 l = fib_find_node(t, &tp, key);
c877efb2 1478 if (!l)
19baf839
RO
1479 return -ESRCH;
1480
79e5ad2c 1481 fa = fib_find_alias(&l->leaf, slen, tos, 0);
19baf839
RO
1482 if (!fa)
1483 return -ESRCH;
1484
0c7770c7 1485 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1486
1487 fa_to_delete = NULL;
56315f9e 1488 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1489 struct fib_info *fi = fa->fa_info;
1490
79e5ad2c 1491 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
19baf839
RO
1492 break;
1493
4e902c57
TG
1494 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1495 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1496 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1497 (!cfg->fc_prefsrc ||
1498 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1499 (!cfg->fc_protocol ||
1500 fi->fib_protocol == cfg->fc_protocol) &&
1501 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1502 fa_to_delete = fa;
1503 break;
1504 }
1505 }
1506
91b9a277
OJ
1507 if (!fa_to_delete)
1508 return -ESRCH;
19baf839 1509
8e05fd71
SF
1510 netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1511 cfg->fc_type, tb->tb_id);
1512
d5d6487c 1513 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1514 &cfg->fc_nlinfo, 0);
91b9a277 1515
21d8c49e
DM
1516 if (!plen)
1517 tb->tb_num_default--;
1518
d5d6487c 1519 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1520
d5d6487c 1521 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1522 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1523
d5d6487c
AD
1524 fib_release_info(fa_to_delete->fa_info);
1525 alias_free_mem_rcu(fa_to_delete);
91b9a277 1526 return 0;
19baf839
RO
1527}
1528
8be33e95 1529/* Scan for the next leaf starting at the provided key value */
35c6edac 1530static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1531{
35c6edac 1532 struct key_vector *pn, *n = *tn;
8be33e95 1533 unsigned long cindex;
82cfbb00 1534
8be33e95
AD
1535 /* record parent node for backtracing */
1536 pn = n;
1537 cindex = n ? get_index(key, n) : 0;
82cfbb00 1538
8be33e95
AD
1539 /* this loop is meant to try and find the key in the trie */
1540 while (n) {
1541 unsigned long idx = get_index(key, n);
82cfbb00 1542
8be33e95
AD
1543 /* guarantee forward progress on the keys */
1544 if (IS_LEAF(n) && (n->key >= key))
1545 goto found;
1546 if (idx >= (1ul << n->bits))
1547 break;
82cfbb00 1548
8be33e95
AD
1549 /* record parent and next child index */
1550 pn = n;
1551 cindex = idx;
82cfbb00 1552
8be33e95
AD
1553 /* descend into the next child */
1554 n = tnode_get_child_rcu(pn, cindex++);
1555 }
82cfbb00 1556
8be33e95
AD
1557 /* this loop will search for the next leaf with a greater key */
1558 while (pn) {
1559 /* if we exhausted the parent node we will need to climb */
1560 if (cindex >= (1ul << pn->bits)) {
1561 t_key pkey = pn->key;
82cfbb00 1562
8be33e95
AD
1563 pn = node_parent_rcu(pn);
1564 if (!pn)
1565 break;
82cfbb00 1566
8be33e95
AD
1567 cindex = get_index(pkey, pn) + 1;
1568 continue;
1569 }
82cfbb00 1570
8be33e95
AD
1571 /* grab the next available node */
1572 n = tnode_get_child_rcu(pn, cindex++);
1573 if (!n)
1574 continue;
19baf839 1575
8be33e95
AD
1576 /* no need to compare keys since we bumped the index */
1577 if (IS_LEAF(n))
1578 goto found;
71d67e66 1579
8be33e95
AD
1580 /* Rescan start scanning in new node */
1581 pn = n;
1582 cindex = 0;
1583 }
ec28cf73 1584
8be33e95
AD
1585 *tn = pn;
1586 return NULL; /* Root of trie */
1587found:
1588 /* if we are at the limit for keys just return NULL for the tnode */
1589 *tn = (n->key == KEY_MAX) ? NULL : pn;
1590 return n;
71d67e66
SH
1591}
1592
104616e7
SF
1593/* Caller must hold RTNL */
1594void fib_table_flush_external(struct fib_table *tb)
1595{
1596 struct trie *t = (struct trie *)tb->tb_data;
1597 struct fib_alias *fa;
35c6edac 1598 struct key_vector *n, *pn;
104616e7 1599 unsigned long cindex;
104616e7 1600
35c6edac 1601 n = rcu_dereference(t->tnode[0]);
104616e7
SF
1602 if (!n)
1603 return;
1604
1605 pn = NULL;
1606 cindex = 0;
1607
1608 while (IS_TNODE(n)) {
1609 /* record pn and cindex for leaf walking */
1610 pn = n;
1611 cindex = 1ul << n->bits;
1612backtrace:
1613 /* walk trie in reverse order */
1614 do {
1615 while (!(cindex--)) {
1616 t_key pkey = pn->key;
1617
104616e7 1618 /* if we got the root we are done */
72be7260 1619 pn = node_parent(pn);
104616e7
SF
1620 if (!pn)
1621 return;
1622
1623 cindex = get_index(pkey, pn);
1624 }
1625
1626 /* grab the next available node */
1627 n = tnode_get_child(pn, cindex);
1628 } while (!n);
1629 }
1630
1631 hlist_for_each_entry(fa, &n->leaf, fa_list) {
1632 struct fib_info *fi = fa->fa_info;
1633
72be7260
AD
1634 if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
1635 continue;
1636
1637 netdev_switch_fib_ipv4_del(n->key,
1638 KEYLENGTH - fa->fa_slen,
1639 fi, fa->fa_tos,
1640 fa->fa_type, tb->tb_id);
104616e7
SF
1641 }
1642
1643 /* if trie is leaf only loop is completed */
1644 if (pn)
1645 goto backtrace;
1646}
1647
8be33e95 1648/* Caller must hold RTNL. */
16c6cf8b 1649int fib_table_flush(struct fib_table *tb)
19baf839 1650{
7289e6dd 1651 struct trie *t = (struct trie *)tb->tb_data;
35c6edac 1652 struct key_vector *n, *pn;
7289e6dd
AD
1653 struct hlist_node *tmp;
1654 struct fib_alias *fa;
7289e6dd
AD
1655 unsigned long cindex;
1656 unsigned char slen;
82cfbb00 1657 int found = 0;
19baf839 1658
35c6edac 1659 n = rcu_dereference(t->tnode[0]);
7289e6dd
AD
1660 if (!n)
1661 goto flush_complete;
19baf839 1662
7289e6dd
AD
1663 pn = NULL;
1664 cindex = 0;
1665
1666 while (IS_TNODE(n)) {
1667 /* record pn and cindex for leaf walking */
1668 pn = n;
1669 cindex = 1ul << n->bits;
1670backtrace:
1671 /* walk trie in reverse order */
1672 do {
1673 while (!(cindex--)) {
35c6edac 1674 struct key_vector __rcu **cptr;
7289e6dd
AD
1675 t_key pkey = pn->key;
1676
1677 n = pn;
1678 pn = node_parent(n);
1679
1680 /* resize completed node */
8d8e810c 1681 cptr = resize(t, n);
7289e6dd
AD
1682
1683 /* if we got the root we are done */
1684 if (!pn)
1685 goto flush_complete;
1686
35c6edac
AD
1687 pn = container_of(cptr, struct key_vector,
1688 tnode[0]);
7289e6dd
AD
1689 cindex = get_index(pkey, pn);
1690 }
1691
1692 /* grab the next available node */
1693 n = tnode_get_child(pn, cindex);
1694 } while (!n);
1695 }
1696
1697 /* track slen in case any prefixes survive */
1698 slen = 0;
1699
1700 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1701 struct fib_info *fi = fa->fa_info;
1702
1703 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
8e05fd71
SF
1704 netdev_switch_fib_ipv4_del(n->key,
1705 KEYLENGTH - fa->fa_slen,
1706 fi, fa->fa_tos,
1707 fa->fa_type, tb->tb_id);
7289e6dd
AD
1708 hlist_del_rcu(&fa->fa_list);
1709 fib_release_info(fa->fa_info);
1710 alias_free_mem_rcu(fa);
1711 found++;
1712
1713 continue;
64c62723
AD
1714 }
1715
7289e6dd 1716 slen = fa->fa_slen;
19baf839
RO
1717 }
1718
7289e6dd
AD
1719 /* update leaf slen */
1720 n->slen = slen;
1721
1722 if (hlist_empty(&n->leaf)) {
1723 put_child_root(pn, t, n->key, NULL);
1724 node_free(n);
1725 } else {
d5d6487c 1726 leaf_pull_suffix(pn, n);
64c62723 1727 }
19baf839 1728
7289e6dd
AD
1729 /* if trie is leaf only loop is completed */
1730 if (pn)
1731 goto backtrace;
1732flush_complete:
0c7770c7 1733 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1734 return found;
1735}
1736
a7e53531 1737static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1738{
a7e53531 1739 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1740#ifdef CONFIG_IP_FIB_TRIE_STATS
1741 struct trie *t = (struct trie *)tb->tb_data;
1742
1743 free_percpu(t->stats);
1744#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1745 kfree(tb);
1746}
1747
a7e53531
AD
1748void fib_free_table(struct fib_table *tb)
1749{
1750 call_rcu(&tb->rcu, __trie_free_rcu);
1751}
1752
35c6edac 1753static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1754 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1755{
79e5ad2c 1756 __be32 xkey = htonl(l->key);
19baf839 1757 struct fib_alias *fa;
79e5ad2c 1758 int i, s_i;
19baf839 1759
79e5ad2c 1760 s_i = cb->args[4];
19baf839
RO
1761 i = 0;
1762
2373ce1c 1763 /* rcu_read_lock is hold by caller */
79e5ad2c 1764 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1765 if (i < s_i) {
1766 i++;
1767 continue;
1768 }
19baf839 1769
15e47304 1770 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1771 cb->nlh->nlmsg_seq,
1772 RTM_NEWROUTE,
1773 tb->tb_id,
1774 fa->fa_type,
be403ea1 1775 xkey,
9b6ebad5 1776 KEYLENGTH - fa->fa_slen,
19baf839 1777 fa->fa_tos,
64347f78 1778 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1779 cb->args[4] = i;
19baf839
RO
1780 return -1;
1781 }
a88ee229 1782 i++;
19baf839 1783 }
a88ee229 1784
71d67e66 1785 cb->args[4] = i;
19baf839
RO
1786 return skb->len;
1787}
1788
a7e53531 1789/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
1790int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1791 struct netlink_callback *cb)
19baf839 1792{
8be33e95 1793 struct trie *t = (struct trie *)tb->tb_data;
35c6edac 1794 struct key_vector *l, *tp;
d5ce8a0e
SH
1795 /* Dump starting at last key.
1796 * Note: 0.0.0.0/0 (ie default) is first key.
1797 */
8be33e95
AD
1798 int count = cb->args[2];
1799 t_key key = cb->args[3];
a88ee229 1800
35c6edac 1801 tp = rcu_dereference_rtnl(t->tnode[0]);
8be33e95
AD
1802
1803 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1804 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1805 cb->args[3] = key;
1806 cb->args[2] = count;
a88ee229 1807 return -1;
19baf839 1808 }
d5ce8a0e 1809
71d67e66 1810 ++count;
8be33e95
AD
1811 key = l->key + 1;
1812
71d67e66
SH
1813 memset(&cb->args[4], 0,
1814 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1815
1816 /* stop loop if key wrapped back to 0 */
1817 if (key < l->key)
1818 break;
19baf839 1819 }
8be33e95 1820
8be33e95
AD
1821 cb->args[3] = key;
1822 cb->args[2] = count;
1823
19baf839 1824 return skb->len;
19baf839
RO
1825}
1826
5348ba85 1827void __init fib_trie_init(void)
7f9b8052 1828{
a07f5f50
SH
1829 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1830 sizeof(struct fib_alias),
bc3c8c1e
SH
1831 0, SLAB_PANIC, NULL);
1832
1833 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 1834 LEAF_SIZE,
bc3c8c1e 1835 0, SLAB_PANIC, NULL);
7f9b8052 1836}
19baf839 1837
7f9b8052 1838
5348ba85 1839struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1840{
1841 struct fib_table *tb;
1842 struct trie *t;
1843
19baf839
RO
1844 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1845 GFP_KERNEL);
1846 if (tb == NULL)
1847 return NULL;
1848
1849 tb->tb_id = id;
971b893e 1850 tb->tb_default = -1;
21d8c49e 1851 tb->tb_num_default = 0;
19baf839
RO
1852
1853 t = (struct trie *) tb->tb_data;
35c6edac 1854 RCU_INIT_POINTER(t->tnode[0], NULL);
8274a97a
AD
1855#ifdef CONFIG_IP_FIB_TRIE_STATS
1856 t->stats = alloc_percpu(struct trie_use_stats);
1857 if (!t->stats) {
1858 kfree(tb);
1859 tb = NULL;
1860 }
1861#endif
19baf839 1862
19baf839
RO
1863 return tb;
1864}
1865
cb7b593c
SH
1866#ifdef CONFIG_PROC_FS
1867/* Depth first Trie walk iterator */
1868struct fib_trie_iter {
1c340b2f 1869 struct seq_net_private p;
3d3b2d25 1870 struct fib_table *tb;
35c6edac 1871 struct key_vector *tnode;
a034ee3c
ED
1872 unsigned int index;
1873 unsigned int depth;
cb7b593c 1874};
19baf839 1875
35c6edac 1876static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1877{
98293e8d 1878 unsigned long cindex = iter->index;
35c6edac
AD
1879 struct key_vector *tn = iter->tnode;
1880 struct key_vector *p;
19baf839 1881
6640e697
EB
1882 /* A single entry routing table */
1883 if (!tn)
1884 return NULL;
1885
cb7b593c
SH
1886 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1887 iter->tnode, iter->index, iter->depth);
1888rescan:
98293e8d 1889 while (cindex < tnode_child_length(tn)) {
35c6edac 1890 struct key_vector *n = tnode_get_child_rcu(tn, cindex);
19baf839 1891
cb7b593c
SH
1892 if (n) {
1893 if (IS_LEAF(n)) {
1894 iter->tnode = tn;
1895 iter->index = cindex + 1;
1896 } else {
1897 /* push down one level */
adaf9816 1898 iter->tnode = n;
cb7b593c
SH
1899 iter->index = 0;
1900 ++iter->depth;
1901 }
1902 return n;
1903 }
19baf839 1904
cb7b593c
SH
1905 ++cindex;
1906 }
91b9a277 1907
cb7b593c 1908 /* Current node exhausted, pop back up */
adaf9816 1909 p = node_parent_rcu(tn);
cb7b593c 1910 if (p) {
e9b44019 1911 cindex = get_index(tn->key, p) + 1;
cb7b593c
SH
1912 tn = p;
1913 --iter->depth;
1914 goto rescan;
19baf839 1915 }
cb7b593c
SH
1916
1917 /* got root? */
1918 return NULL;
19baf839
RO
1919}
1920
35c6edac
AD
1921static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
1922 struct trie *t)
19baf839 1923{
35c6edac 1924 struct key_vector *n;
5ddf0eb2 1925
132adf54 1926 if (!t)
5ddf0eb2
RO
1927 return NULL;
1928
35c6edac 1929 n = rcu_dereference(t->tnode[0]);
3d3b2d25 1930 if (!n)
5ddf0eb2 1931 return NULL;
19baf839 1932
3d3b2d25 1933 if (IS_TNODE(n)) {
adaf9816 1934 iter->tnode = n;
3d3b2d25
SH
1935 iter->index = 0;
1936 iter->depth = 1;
1937 } else {
1938 iter->tnode = NULL;
1939 iter->index = 0;
1940 iter->depth = 0;
91b9a277 1941 }
3d3b2d25
SH
1942
1943 return n;
cb7b593c 1944}
91b9a277 1945
cb7b593c
SH
1946static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1947{
35c6edac 1948 struct key_vector *n;
cb7b593c 1949 struct fib_trie_iter iter;
91b9a277 1950
cb7b593c 1951 memset(s, 0, sizeof(*s));
91b9a277 1952
cb7b593c 1953 rcu_read_lock();
3d3b2d25 1954 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 1955 if (IS_LEAF(n)) {
79e5ad2c 1956 struct fib_alias *fa;
93672292 1957
cb7b593c
SH
1958 s->leaves++;
1959 s->totdepth += iter.depth;
1960 if (iter.depth > s->maxdepth)
1961 s->maxdepth = iter.depth;
93672292 1962
79e5ad2c 1963 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 1964 ++s->prefixes;
cb7b593c 1965 } else {
cb7b593c 1966 s->tnodes++;
adaf9816
AD
1967 if (n->bits < MAX_STAT_DEPTH)
1968 s->nodesizes[n->bits]++;
30cfe7c9 1969 s->nullpointers += n->empty_children;
19baf839 1970 }
19baf839 1971 }
2373ce1c 1972 rcu_read_unlock();
19baf839
RO
1973}
1974
cb7b593c
SH
1975/*
1976 * This outputs /proc/net/fib_triestats
1977 */
1978static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 1979{
a034ee3c 1980 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 1981
cb7b593c
SH
1982 if (stat->leaves)
1983 avdepth = stat->totdepth*100 / stat->leaves;
1984 else
1985 avdepth = 0;
91b9a277 1986
a07f5f50
SH
1987 seq_printf(seq, "\tAver depth: %u.%02d\n",
1988 avdepth / 100, avdepth % 100);
cb7b593c 1989 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 1990
cb7b593c 1991 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 1992 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
1993
1994 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 1995 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 1996
187b5188 1997 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 1998 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 1999
06ef921d
RO
2000 max = MAX_STAT_DEPTH;
2001 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2002 max--;
19baf839 2003
cb7b593c 2004 pointers = 0;
f585a991 2005 for (i = 1; i < max; i++)
cb7b593c 2006 if (stat->nodesizes[i] != 0) {
187b5188 2007 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2008 pointers += (1<<i) * stat->nodesizes[i];
2009 }
2010 seq_putc(seq, '\n');
187b5188 2011 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2012
35c6edac 2013 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2014 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2015 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2016}
2373ce1c 2017
cb7b593c 2018#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2019static void trie_show_usage(struct seq_file *seq,
8274a97a 2020 const struct trie_use_stats __percpu *stats)
66a2f7fd 2021{
8274a97a
AD
2022 struct trie_use_stats s = { 0 };
2023 int cpu;
2024
2025 /* loop through all of the CPUs and gather up the stats */
2026 for_each_possible_cpu(cpu) {
2027 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2028
2029 s.gets += pcpu->gets;
2030 s.backtrack += pcpu->backtrack;
2031 s.semantic_match_passed += pcpu->semantic_match_passed;
2032 s.semantic_match_miss += pcpu->semantic_match_miss;
2033 s.null_node_hit += pcpu->null_node_hit;
2034 s.resize_node_skipped += pcpu->resize_node_skipped;
2035 }
2036
66a2f7fd 2037 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2038 seq_printf(seq, "gets = %u\n", s.gets);
2039 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2040 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2041 s.semantic_match_passed);
2042 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2043 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2044 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2045}
66a2f7fd
SH
2046#endif /* CONFIG_IP_FIB_TRIE_STATS */
2047
3d3b2d25 2048static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2049{
3d3b2d25
SH
2050 if (tb->tb_id == RT_TABLE_LOCAL)
2051 seq_puts(seq, "Local:\n");
2052 else if (tb->tb_id == RT_TABLE_MAIN)
2053 seq_puts(seq, "Main:\n");
2054 else
2055 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2056}
19baf839 2057
3d3b2d25 2058
cb7b593c
SH
2059static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2060{
1c340b2f 2061 struct net *net = (struct net *)seq->private;
3d3b2d25 2062 unsigned int h;
877a9bff 2063
d717a9a6 2064 seq_printf(seq,
a07f5f50
SH
2065 "Basic info: size of leaf:"
2066 " %Zd bytes, size of tnode: %Zd bytes.\n",
41b489fd 2067 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2068
3d3b2d25
SH
2069 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2070 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2071 struct fib_table *tb;
2072
b67bfe0d 2073 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2074 struct trie *t = (struct trie *) tb->tb_data;
2075 struct trie_stat stat;
877a9bff 2076
3d3b2d25
SH
2077 if (!t)
2078 continue;
2079
2080 fib_table_print(seq, tb);
2081
2082 trie_collect_stats(t, &stat);
2083 trie_show_stats(seq, &stat);
2084#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2085 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2086#endif
2087 }
2088 }
19baf839 2089
cb7b593c 2090 return 0;
19baf839
RO
2091}
2092
cb7b593c 2093static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2094{
de05c557 2095 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2096}
2097
9a32144e 2098static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2099 .owner = THIS_MODULE,
2100 .open = fib_triestat_seq_open,
2101 .read = seq_read,
2102 .llseek = seq_lseek,
b6fcbdb4 2103 .release = single_release_net,
cb7b593c
SH
2104};
2105
35c6edac 2106static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2107{
1218854a
YH
2108 struct fib_trie_iter *iter = seq->private;
2109 struct net *net = seq_file_net(seq);
cb7b593c 2110 loff_t idx = 0;
3d3b2d25 2111 unsigned int h;
cb7b593c 2112
3d3b2d25
SH
2113 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2114 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2115 struct fib_table *tb;
cb7b593c 2116
b67bfe0d 2117 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2118 struct key_vector *n;
3d3b2d25
SH
2119
2120 for (n = fib_trie_get_first(iter,
2121 (struct trie *) tb->tb_data);
2122 n; n = fib_trie_get_next(iter))
2123 if (pos == idx++) {
2124 iter->tb = tb;
2125 return n;
2126 }
2127 }
cb7b593c 2128 }
3d3b2d25 2129
19baf839
RO
2130 return NULL;
2131}
2132
cb7b593c 2133static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2134 __acquires(RCU)
19baf839 2135{
cb7b593c 2136 rcu_read_lock();
1218854a 2137 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2138}
2139
cb7b593c 2140static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2141{
cb7b593c 2142 struct fib_trie_iter *iter = seq->private;
1218854a 2143 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2144 struct fib_table *tb = iter->tb;
2145 struct hlist_node *tb_node;
2146 unsigned int h;
35c6edac 2147 struct key_vector *n;
cb7b593c 2148
19baf839 2149 ++*pos;
3d3b2d25
SH
2150 /* next node in same table */
2151 n = fib_trie_get_next(iter);
2152 if (n)
2153 return n;
19baf839 2154
3d3b2d25
SH
2155 /* walk rest of this hash chain */
2156 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2157 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2158 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2159 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2160 if (n)
2161 goto found;
2162 }
19baf839 2163
3d3b2d25
SH
2164 /* new hash chain */
2165 while (++h < FIB_TABLE_HASHSZ) {
2166 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2167 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2168 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2169 if (n)
2170 goto found;
2171 }
2172 }
cb7b593c 2173 return NULL;
3d3b2d25
SH
2174
2175found:
2176 iter->tb = tb;
2177 return n;
cb7b593c 2178}
19baf839 2179
cb7b593c 2180static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2181 __releases(RCU)
19baf839 2182{
cb7b593c
SH
2183 rcu_read_unlock();
2184}
91b9a277 2185
cb7b593c
SH
2186static void seq_indent(struct seq_file *seq, int n)
2187{
a034ee3c
ED
2188 while (n-- > 0)
2189 seq_puts(seq, " ");
cb7b593c 2190}
19baf839 2191
28d36e37 2192static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2193{
132adf54 2194 switch (s) {
cb7b593c
SH
2195 case RT_SCOPE_UNIVERSE: return "universe";
2196 case RT_SCOPE_SITE: return "site";
2197 case RT_SCOPE_LINK: return "link";
2198 case RT_SCOPE_HOST: return "host";
2199 case RT_SCOPE_NOWHERE: return "nowhere";
2200 default:
28d36e37 2201 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2202 return buf;
2203 }
2204}
19baf839 2205
36cbd3dc 2206static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2207 [RTN_UNSPEC] = "UNSPEC",
2208 [RTN_UNICAST] = "UNICAST",
2209 [RTN_LOCAL] = "LOCAL",
2210 [RTN_BROADCAST] = "BROADCAST",
2211 [RTN_ANYCAST] = "ANYCAST",
2212 [RTN_MULTICAST] = "MULTICAST",
2213 [RTN_BLACKHOLE] = "BLACKHOLE",
2214 [RTN_UNREACHABLE] = "UNREACHABLE",
2215 [RTN_PROHIBIT] = "PROHIBIT",
2216 [RTN_THROW] = "THROW",
2217 [RTN_NAT] = "NAT",
2218 [RTN_XRESOLVE] = "XRESOLVE",
2219};
19baf839 2220
a034ee3c 2221static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2222{
cb7b593c
SH
2223 if (t < __RTN_MAX && rtn_type_names[t])
2224 return rtn_type_names[t];
28d36e37 2225 snprintf(buf, len, "type %u", t);
cb7b593c 2226 return buf;
19baf839
RO
2227}
2228
cb7b593c
SH
2229/* Pretty print the trie */
2230static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2231{
cb7b593c 2232 const struct fib_trie_iter *iter = seq->private;
35c6edac 2233 struct key_vector *n = v;
c877efb2 2234
3d3b2d25
SH
2235 if (!node_parent_rcu(n))
2236 fib_table_print(seq, iter->tb);
095b8501 2237
cb7b593c 2238 if (IS_TNODE(n)) {
adaf9816 2239 __be32 prf = htonl(n->key);
91b9a277 2240
e9b44019
AD
2241 seq_indent(seq, iter->depth-1);
2242 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2243 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2244 n->full_children, n->empty_children);
cb7b593c 2245 } else {
adaf9816 2246 __be32 val = htonl(n->key);
79e5ad2c 2247 struct fib_alias *fa;
cb7b593c
SH
2248
2249 seq_indent(seq, iter->depth);
673d57e7 2250 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2251
79e5ad2c
AD
2252 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2253 char buf1[32], buf2[32];
2254
2255 seq_indent(seq, iter->depth + 1);
2256 seq_printf(seq, " /%zu %s %s",
2257 KEYLENGTH - fa->fa_slen,
2258 rtn_scope(buf1, sizeof(buf1),
2259 fa->fa_info->fib_scope),
2260 rtn_type(buf2, sizeof(buf2),
2261 fa->fa_type));
2262 if (fa->fa_tos)
2263 seq_printf(seq, " tos=%d", fa->fa_tos);
2264 seq_putc(seq, '\n');
cb7b593c 2265 }
19baf839 2266 }
cb7b593c 2267
19baf839
RO
2268 return 0;
2269}
2270
f690808e 2271static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2272 .start = fib_trie_seq_start,
2273 .next = fib_trie_seq_next,
2274 .stop = fib_trie_seq_stop,
2275 .show = fib_trie_seq_show,
19baf839
RO
2276};
2277
cb7b593c 2278static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2279{
1c340b2f
DL
2280 return seq_open_net(inode, file, &fib_trie_seq_ops,
2281 sizeof(struct fib_trie_iter));
19baf839
RO
2282}
2283
9a32144e 2284static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2285 .owner = THIS_MODULE,
2286 .open = fib_trie_seq_open,
2287 .read = seq_read,
2288 .llseek = seq_lseek,
1c340b2f 2289 .release = seq_release_net,
19baf839
RO
2290};
2291
8315f5d8
SH
2292struct fib_route_iter {
2293 struct seq_net_private p;
8be33e95 2294 struct fib_table *main_tb;
35c6edac 2295 struct key_vector *tnode;
8315f5d8
SH
2296 loff_t pos;
2297 t_key key;
2298};
2299
35c6edac
AD
2300static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2301 loff_t pos)
8315f5d8 2302{
8be33e95 2303 struct fib_table *tb = iter->main_tb;
35c6edac 2304 struct key_vector *l, **tp = &iter->tnode;
8be33e95
AD
2305 struct trie *t;
2306 t_key key;
8315f5d8 2307
8be33e95
AD
2308 /* use cache location of next-to-find key */
2309 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2310 pos -= iter->pos;
8be33e95
AD
2311 key = iter->key;
2312 } else {
2313 t = (struct trie *)tb->tb_data;
35c6edac 2314 iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
8315f5d8 2315 iter->pos = 0;
8be33e95 2316 key = 0;
8315f5d8
SH
2317 }
2318
8be33e95
AD
2319 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2320 key = l->key + 1;
8315f5d8 2321 iter->pos++;
8be33e95
AD
2322
2323 if (pos-- <= 0)
2324 break;
2325
2326 l = NULL;
2327
2328 /* handle unlikely case of a key wrap */
2329 if (!key)
2330 break;
8315f5d8
SH
2331 }
2332
2333 if (l)
8be33e95 2334 iter->key = key; /* remember it */
8315f5d8
SH
2335 else
2336 iter->pos = 0; /* forget it */
2337
2338 return l;
2339}
2340
2341static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2342 __acquires(RCU)
2343{
2344 struct fib_route_iter *iter = seq->private;
2345 struct fib_table *tb;
8be33e95 2346 struct trie *t;
8315f5d8
SH
2347
2348 rcu_read_lock();
8be33e95 2349
1218854a 2350 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2351 if (!tb)
2352 return NULL;
2353
8be33e95
AD
2354 iter->main_tb = tb;
2355
2356 if (*pos != 0)
2357 return fib_route_get_idx(iter, *pos);
2358
2359 t = (struct trie *)tb->tb_data;
35c6edac 2360 iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
8be33e95
AD
2361 iter->pos = 0;
2362 iter->key = 0;
2363
2364 return SEQ_START_TOKEN;
8315f5d8
SH
2365}
2366
2367static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2368{
2369 struct fib_route_iter *iter = seq->private;
35c6edac 2370 struct key_vector *l = NULL;
8be33e95 2371 t_key key = iter->key;
8315f5d8
SH
2372
2373 ++*pos;
8be33e95
AD
2374
2375 /* only allow key of 0 for start of sequence */
2376 if ((v == SEQ_START_TOKEN) || key)
2377 l = leaf_walk_rcu(&iter->tnode, key);
2378
2379 if (l) {
2380 iter->key = l->key + 1;
8315f5d8 2381 iter->pos++;
8be33e95
AD
2382 } else {
2383 iter->pos = 0;
8315f5d8
SH
2384 }
2385
8315f5d8
SH
2386 return l;
2387}
2388
2389static void fib_route_seq_stop(struct seq_file *seq, void *v)
2390 __releases(RCU)
2391{
2392 rcu_read_unlock();
2393}
2394
a034ee3c 2395static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2396{
a034ee3c 2397 unsigned int flags = 0;
19baf839 2398
a034ee3c
ED
2399 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2400 flags = RTF_REJECT;
cb7b593c
SH
2401 if (fi && fi->fib_nh->nh_gw)
2402 flags |= RTF_GATEWAY;
32ab5f80 2403 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2404 flags |= RTF_HOST;
2405 flags |= RTF_UP;
2406 return flags;
19baf839
RO
2407}
2408
cb7b593c
SH
2409/*
2410 * This outputs /proc/net/route.
2411 * The format of the file is not supposed to be changed
a034ee3c 2412 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2413 * legacy utilities
2414 */
2415static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2416{
79e5ad2c 2417 struct fib_alias *fa;
35c6edac 2418 struct key_vector *l = v;
9b6ebad5 2419 __be32 prefix;
19baf839 2420
cb7b593c
SH
2421 if (v == SEQ_START_TOKEN) {
2422 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2423 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2424 "\tWindow\tIRTT");
2425 return 0;
2426 }
19baf839 2427
9b6ebad5
AD
2428 prefix = htonl(l->key);
2429
79e5ad2c
AD
2430 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2431 const struct fib_info *fi = fa->fa_info;
2432 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2433 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2434
79e5ad2c
AD
2435 if ((fa->fa_type == RTN_BROADCAST) ||
2436 (fa->fa_type == RTN_MULTICAST))
2437 continue;
19baf839 2438
79e5ad2c
AD
2439 seq_setwidth(seq, 127);
2440
2441 if (fi)
2442 seq_printf(seq,
2443 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2444 "%d\t%08X\t%d\t%u\t%u",
2445 fi->fib_dev ? fi->fib_dev->name : "*",
2446 prefix,
2447 fi->fib_nh->nh_gw, flags, 0, 0,
2448 fi->fib_priority,
2449 mask,
2450 (fi->fib_advmss ?
2451 fi->fib_advmss + 40 : 0),
2452 fi->fib_window,
2453 fi->fib_rtt >> 3);
2454 else
2455 seq_printf(seq,
2456 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2457 "%d\t%08X\t%d\t%u\t%u",
2458 prefix, 0, flags, 0, 0, 0,
2459 mask, 0, 0, 0);
19baf839 2460
79e5ad2c 2461 seq_pad(seq, '\n');
19baf839
RO
2462 }
2463
2464 return 0;
2465}
2466
f690808e 2467static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2468 .start = fib_route_seq_start,
2469 .next = fib_route_seq_next,
2470 .stop = fib_route_seq_stop,
cb7b593c 2471 .show = fib_route_seq_show,
19baf839
RO
2472};
2473
cb7b593c 2474static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2475{
1c340b2f 2476 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2477 sizeof(struct fib_route_iter));
19baf839
RO
2478}
2479
9a32144e 2480static const struct file_operations fib_route_fops = {
cb7b593c
SH
2481 .owner = THIS_MODULE,
2482 .open = fib_route_seq_open,
2483 .read = seq_read,
2484 .llseek = seq_lseek,
1c340b2f 2485 .release = seq_release_net,
19baf839
RO
2486};
2487
61a02653 2488int __net_init fib_proc_init(struct net *net)
19baf839 2489{
d4beaa66 2490 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2491 goto out1;
2492
d4beaa66
G
2493 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2494 &fib_triestat_fops))
cb7b593c
SH
2495 goto out2;
2496
d4beaa66 2497 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2498 goto out3;
2499
19baf839 2500 return 0;
cb7b593c
SH
2501
2502out3:
ece31ffd 2503 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2504out2:
ece31ffd 2505 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2506out1:
2507 return -ENOMEM;
19baf839
RO
2508}
2509
61a02653 2510void __net_exit fib_proc_exit(struct net *net)
19baf839 2511{
ece31ffd
G
2512 remove_proc_entry("fib_trie", net->proc_net);
2513 remove_proc_entry("fib_triestat", net->proc_net);
2514 remove_proc_entry("route", net->proc_net);
19baf839
RO
2515}
2516
2517#endif /* CONFIG_PROC_FS */