]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/fib_trie.c
Merge branches 'pm-cpu', 'pm-cpuidle' and 'pm-domains'
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
ffa915d0 75#include <linux/vmalloc.h>
457c4cbc 76#include <net/net_namespace.h>
19baf839
RO
77#include <net/ip.h>
78#include <net/protocol.h>
79#include <net/route.h>
80#include <net/tcp.h>
81#include <net/sock.h>
82#include <net/ip_fib.h>
8e05fd71 83#include <net/switchdev.h>
19baf839
RO
84#include "fib_lookup.h"
85
06ef921d 86#define MAX_STAT_DEPTH 32
19baf839 87
95f60ea3
AD
88#define KEYLENGTH (8*sizeof(t_key))
89#define KEY_MAX ((t_key)~0)
19baf839 90
19baf839
RO
91typedef unsigned int t_key;
92
88bae714
AD
93#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
94#define IS_TNODE(n) ((n)->bits)
95#define IS_LEAF(n) (!(n)->bits)
2373ce1c 96
35c6edac 97struct key_vector {
64c9b6fb 98 t_key key;
64c9b6fb 99 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 100 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 101 unsigned char slen;
adaf9816 102 union {
41b489fd 103 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 104 struct hlist_head leaf;
41b489fd 105 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 106 struct key_vector __rcu *tnode[0];
adaf9816 107 };
19baf839
RO
108};
109
dc35dbed 110struct tnode {
56ca2adf 111 struct rcu_head rcu;
6e22d174
AD
112 t_key empty_children; /* KEYLENGTH bits needed */
113 t_key full_children; /* KEYLENGTH bits needed */
f23e59fb 114 struct key_vector __rcu *parent;
dc35dbed 115 struct key_vector kv[1];
56ca2adf 116#define tn_bits kv[0].bits
dc35dbed
AD
117};
118
119#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
120#define LEAF_SIZE TNODE_SIZE(1)
121
19baf839
RO
122#ifdef CONFIG_IP_FIB_TRIE_STATS
123struct trie_use_stats {
124 unsigned int gets;
125 unsigned int backtrack;
126 unsigned int semantic_match_passed;
127 unsigned int semantic_match_miss;
128 unsigned int null_node_hit;
2f36895a 129 unsigned int resize_node_skipped;
19baf839
RO
130};
131#endif
132
133struct trie_stat {
134 unsigned int totdepth;
135 unsigned int maxdepth;
136 unsigned int tnodes;
137 unsigned int leaves;
138 unsigned int nullpointers;
93672292 139 unsigned int prefixes;
06ef921d 140 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 141};
19baf839
RO
142
143struct trie {
88bae714 144 struct key_vector kv[1];
19baf839 145#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 146 struct trie_use_stats __percpu *stats;
19baf839 147#endif
19baf839
RO
148};
149
88bae714 150static struct key_vector *resize(struct trie *t, struct key_vector *tn);
c3059477
JP
151static size_t tnode_free_size;
152
153/*
154 * synchronize_rcu after call_rcu for that many pages; it should be especially
155 * useful before resizing the root node with PREEMPT_NONE configs; the value was
156 * obtained experimentally, aiming to avoid visible slowdown.
157 */
158static const int sync_pages = 128;
19baf839 159
e18b890b 160static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 161static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 162
56ca2adf
AD
163static inline struct tnode *tn_info(struct key_vector *kv)
164{
165 return container_of(kv, struct tnode, kv[0]);
166}
167
64c9b6fb 168/* caller must hold RTNL */
f23e59fb 169#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
754baf8d 170#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 171
64c9b6fb 172/* caller must hold RCU read lock or RTNL */
f23e59fb 173#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
754baf8d 174#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 175
64c9b6fb 176/* wrapper for rcu_assign_pointer */
35c6edac 177static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 178{
adaf9816 179 if (n)
f23e59fb 180 rcu_assign_pointer(tn_info(n)->parent, tp);
06801916
SH
181}
182
f23e59fb 183#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
64c9b6fb
AD
184
185/* This provides us with the number of children in this node, in the case of a
186 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 187 */
2e1ac88a 188static inline unsigned long child_length(const struct key_vector *tn)
06801916 189{
64c9b6fb 190 return (1ul << tn->bits) & ~(1ul);
06801916 191}
2373ce1c 192
88bae714
AD
193#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
194
2e1ac88a
AD
195static inline unsigned long get_index(t_key key, struct key_vector *kv)
196{
197 unsigned long index = key ^ kv->key;
198
88bae714
AD
199 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
200 return 0;
201
2e1ac88a
AD
202 return index >> kv->pos;
203}
204
e9b44019
AD
205/* To understand this stuff, an understanding of keys and all their bits is
206 * necessary. Every node in the trie has a key associated with it, but not
207 * all of the bits in that key are significant.
208 *
209 * Consider a node 'n' and its parent 'tp'.
210 *
211 * If n is a leaf, every bit in its key is significant. Its presence is
212 * necessitated by path compression, since during a tree traversal (when
213 * searching for a leaf - unless we are doing an insertion) we will completely
214 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
215 * a potentially successful search, that we have indeed been walking the
216 * correct key path.
217 *
218 * Note that we can never "miss" the correct key in the tree if present by
219 * following the wrong path. Path compression ensures that segments of the key
220 * that are the same for all keys with a given prefix are skipped, but the
221 * skipped part *is* identical for each node in the subtrie below the skipped
222 * bit! trie_insert() in this implementation takes care of that.
223 *
224 * if n is an internal node - a 'tnode' here, the various parts of its key
225 * have many different meanings.
226 *
227 * Example:
228 * _________________________________________________________________
229 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
230 * -----------------------------------------------------------------
231 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
232 *
233 * _________________________________________________________________
234 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
235 * -----------------------------------------------------------------
236 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
237 *
238 * tp->pos = 22
239 * tp->bits = 3
240 * n->pos = 13
241 * n->bits = 4
242 *
243 * First, let's just ignore the bits that come before the parent tp, that is
244 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
245 * point we do not use them for anything.
246 *
247 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
248 * index into the parent's child array. That is, they will be used to find
249 * 'n' among tp's children.
250 *
251 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
252 * for the node n.
253 *
254 * All the bits we have seen so far are significant to the node n. The rest
255 * of the bits are really not needed or indeed known in n->key.
256 *
257 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
258 * n's child array, and will of course be different for each child.
259 *
260 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
261 * at this point.
262 */
19baf839 263
f5026fab
DL
264static const int halve_threshold = 25;
265static const int inflate_threshold = 50;
345aa031 266static const int halve_threshold_root = 15;
80b71b80 267static const int inflate_threshold_root = 30;
2373ce1c
RO
268
269static void __alias_free_mem(struct rcu_head *head)
19baf839 270{
2373ce1c
RO
271 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
272 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
273}
274
2373ce1c 275static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 276{
2373ce1c
RO
277 call_rcu(&fa->rcu, __alias_free_mem);
278}
91b9a277 279
37fd30f2 280#define TNODE_KMALLOC_MAX \
35c6edac 281 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 282#define TNODE_VMALLOC_MAX \
35c6edac 283 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 284
37fd30f2 285static void __node_free_rcu(struct rcu_head *head)
387a5487 286{
56ca2adf 287 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 288
56ca2adf 289 if (!n->tn_bits)
37fd30f2 290 kmem_cache_free(trie_leaf_kmem, n);
56ca2adf 291 else if (n->tn_bits <= TNODE_KMALLOC_MAX)
37fd30f2
AD
292 kfree(n);
293 else
294 vfree(n);
387a5487
SH
295}
296
56ca2adf 297#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 298
dc35dbed 299static struct tnode *tnode_alloc(int bits)
f0e36f8c 300{
1de3d87b
AD
301 size_t size;
302
303 /* verify bits is within bounds */
304 if (bits > TNODE_VMALLOC_MAX)
305 return NULL;
306
307 /* determine size and verify it is non-zero and didn't overflow */
308 size = TNODE_SIZE(1ul << bits);
309
2373ce1c 310 if (size <= PAGE_SIZE)
8d965444 311 return kzalloc(size, GFP_KERNEL);
15be75cd 312 else
7a1c8e5a 313 return vzalloc(size);
15be75cd 314}
2373ce1c 315
35c6edac 316static inline void empty_child_inc(struct key_vector *n)
95f60ea3 317{
6e22d174 318 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
95f60ea3
AD
319}
320
35c6edac 321static inline void empty_child_dec(struct key_vector *n)
95f60ea3 322{
6e22d174 323 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
95f60ea3
AD
324}
325
35c6edac 326static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 327{
f38b24c9
FY
328 struct key_vector *l;
329 struct tnode *kv;
dc35dbed 330
f38b24c9 331 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
dc35dbed
AD
332 if (!kv)
333 return NULL;
334
335 /* initialize key vector */
f38b24c9 336 l = kv->kv;
dc35dbed
AD
337 l->key = key;
338 l->pos = 0;
339 l->bits = 0;
340 l->slen = fa->fa_slen;
341
342 /* link leaf to fib alias */
343 INIT_HLIST_HEAD(&l->leaf);
344 hlist_add_head(&fa->fa_list, &l->leaf);
345
2373ce1c
RO
346 return l;
347}
348
35c6edac 349static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 350{
64c9b6fb 351 unsigned int shift = pos + bits;
f38b24c9
FY
352 struct key_vector *tn;
353 struct tnode *tnode;
64c9b6fb
AD
354
355 /* verify bits and pos their msb bits clear and values are valid */
356 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 357
f38b24c9 358 tnode = tnode_alloc(bits);
dc35dbed
AD
359 if (!tnode)
360 return NULL;
361
f38b24c9
FY
362 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
363 sizeof(struct key_vector *) << bits);
364
dc35dbed 365 if (bits == KEYLENGTH)
6e22d174 366 tnode->full_children = 1;
dc35dbed 367 else
6e22d174 368 tnode->empty_children = 1ul << bits;
dc35dbed 369
f38b24c9 370 tn = tnode->kv;
dc35dbed
AD
371 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
372 tn->pos = pos;
373 tn->bits = bits;
374 tn->slen = pos;
375
19baf839
RO
376 return tn;
377}
378
e9b44019 379/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
380 * and no bits are skipped. See discussion in dyntree paper p. 6
381 */
35c6edac 382static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 383{
e9b44019 384 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
385}
386
ff181ed8
AD
387/* Add a child at position i overwriting the old value.
388 * Update the value of full_children and empty_children.
389 */
35c6edac
AD
390static void put_child(struct key_vector *tn, unsigned long i,
391 struct key_vector *n)
19baf839 392{
754baf8d 393 struct key_vector *chi = get_child(tn, i);
ff181ed8 394 int isfull, wasfull;
19baf839 395
2e1ac88a 396 BUG_ON(i >= child_length(tn));
0c7770c7 397
95f60ea3 398 /* update emptyChildren, overflow into fullChildren */
00db4124 399 if (!n && chi)
95f60ea3 400 empty_child_inc(tn);
00db4124 401 if (n && !chi)
95f60ea3 402 empty_child_dec(tn);
c877efb2 403
19baf839 404 /* update fullChildren */
ff181ed8 405 wasfull = tnode_full(tn, chi);
19baf839 406 isfull = tnode_full(tn, n);
ff181ed8 407
c877efb2 408 if (wasfull && !isfull)
6e22d174 409 tn_info(tn)->full_children--;
c877efb2 410 else if (!wasfull && isfull)
6e22d174 411 tn_info(tn)->full_children++;
91b9a277 412
5405afd1
AD
413 if (n && (tn->slen < n->slen))
414 tn->slen = n->slen;
415
41b489fd 416 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
417}
418
35c6edac 419static void update_children(struct key_vector *tn)
69fa57b1
AD
420{
421 unsigned long i;
422
423 /* update all of the child parent pointers */
2e1ac88a 424 for (i = child_length(tn); i;) {
754baf8d 425 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
426
427 if (!inode)
428 continue;
429
430 /* Either update the children of a tnode that
431 * already belongs to us or update the child
432 * to point to ourselves.
433 */
434 if (node_parent(inode) == tn)
435 update_children(inode);
436 else
437 node_set_parent(inode, tn);
438 }
439}
440
88bae714
AD
441static inline void put_child_root(struct key_vector *tp, t_key key,
442 struct key_vector *n)
836a0123 443{
88bae714
AD
444 if (IS_TRIE(tp))
445 rcu_assign_pointer(tp->tnode[0], n);
836a0123 446 else
88bae714 447 put_child(tp, get_index(key, tp), n);
836a0123
AD
448}
449
35c6edac 450static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 451{
56ca2adf 452 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
453}
454
35c6edac
AD
455static inline void tnode_free_append(struct key_vector *tn,
456 struct key_vector *n)
fc86a93b 457{
56ca2adf
AD
458 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
459 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 460}
0a5c0475 461
35c6edac 462static void tnode_free(struct key_vector *tn)
fc86a93b 463{
56ca2adf 464 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
465
466 while (head) {
467 head = head->next;
41b489fd 468 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
469 node_free(tn);
470
56ca2adf 471 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
472 }
473
474 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
475 tnode_free_size = 0;
476 synchronize_rcu();
0a5c0475 477 }
0a5c0475
ED
478}
479
88bae714
AD
480static struct key_vector *replace(struct trie *t,
481 struct key_vector *oldtnode,
482 struct key_vector *tn)
69fa57b1 483{
35c6edac 484 struct key_vector *tp = node_parent(oldtnode);
69fa57b1
AD
485 unsigned long i;
486
487 /* setup the parent pointer out of and back into this node */
488 NODE_INIT_PARENT(tn, tp);
88bae714 489 put_child_root(tp, tn->key, tn);
69fa57b1
AD
490
491 /* update all of the child parent pointers */
492 update_children(tn);
493
494 /* all pointers should be clean so we are done */
495 tnode_free(oldtnode);
496
497 /* resize children now that oldtnode is freed */
2e1ac88a 498 for (i = child_length(tn); i;) {
754baf8d 499 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
500
501 /* resize child node */
502 if (tnode_full(tn, inode))
88bae714 503 tn = resize(t, inode);
69fa57b1 504 }
8d8e810c 505
88bae714 506 return tp;
69fa57b1
AD
507}
508
88bae714
AD
509static struct key_vector *inflate(struct trie *t,
510 struct key_vector *oldtnode)
19baf839 511{
35c6edac 512 struct key_vector *tn;
69fa57b1 513 unsigned long i;
e9b44019 514 t_key m;
19baf839 515
0c7770c7 516 pr_debug("In inflate\n");
19baf839 517
e9b44019 518 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 519 if (!tn)
8d8e810c 520 goto notnode;
2f36895a 521
69fa57b1
AD
522 /* prepare oldtnode to be freed */
523 tnode_free_init(oldtnode);
524
12c081a5
AD
525 /* Assemble all of the pointers in our cluster, in this case that
526 * represents all of the pointers out of our allocated nodes that
527 * point to existing tnodes and the links between our allocated
528 * nodes.
2f36895a 529 */
2e1ac88a 530 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 531 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 532 struct key_vector *node0, *node1;
69fa57b1 533 unsigned long j, k;
c877efb2 534
19baf839 535 /* An empty child */
51456b29 536 if (!inode)
19baf839
RO
537 continue;
538
539 /* A leaf or an internal node with skipped bits */
adaf9816 540 if (!tnode_full(oldtnode, inode)) {
e9b44019 541 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
542 continue;
543 }
544
69fa57b1
AD
545 /* drop the node in the old tnode free list */
546 tnode_free_append(oldtnode, inode);
547
19baf839 548 /* An internal node with two children */
19baf839 549 if (inode->bits == 1) {
754baf8d
AD
550 put_child(tn, 2 * i + 1, get_child(inode, 1));
551 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 552 continue;
19baf839
RO
553 }
554
91b9a277 555 /* We will replace this node 'inode' with two new
12c081a5 556 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
557 * original children. The two new nodes will have
558 * a position one bit further down the key and this
559 * means that the "significant" part of their keys
560 * (see the discussion near the top of this file)
561 * will differ by one bit, which will be "0" in
12c081a5 562 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
563 * moving the key position by one step, the bit that
564 * we are moving away from - the bit at position
12c081a5
AD
565 * (tn->pos) - is the one that will differ between
566 * node0 and node1. So... we synthesize that bit in the
567 * two new keys.
91b9a277 568 */
12c081a5
AD
569 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
570 if (!node1)
571 goto nomem;
69fa57b1 572 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 573
69fa57b1 574 tnode_free_append(tn, node1);
12c081a5
AD
575 if (!node0)
576 goto nomem;
577 tnode_free_append(tn, node0);
578
579 /* populate child pointers in new nodes */
2e1ac88a 580 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
581 put_child(node1, --j, get_child(inode, --k));
582 put_child(node0, j, get_child(inode, j));
583 put_child(node1, --j, get_child(inode, --k));
584 put_child(node0, j, get_child(inode, j));
12c081a5 585 }
19baf839 586
12c081a5
AD
587 /* link new nodes to parent */
588 NODE_INIT_PARENT(node1, tn);
589 NODE_INIT_PARENT(node0, tn);
2f36895a 590
12c081a5
AD
591 /* link parent to nodes */
592 put_child(tn, 2 * i + 1, node1);
593 put_child(tn, 2 * i, node0);
594 }
2f36895a 595
69fa57b1 596 /* setup the parent pointers into and out of this node */
8d8e810c 597 return replace(t, oldtnode, tn);
2f80b3c8 598nomem:
fc86a93b
AD
599 /* all pointers should be clean so we are done */
600 tnode_free(tn);
8d8e810c
AD
601notnode:
602 return NULL;
19baf839
RO
603}
604
88bae714
AD
605static struct key_vector *halve(struct trie *t,
606 struct key_vector *oldtnode)
19baf839 607{
35c6edac 608 struct key_vector *tn;
12c081a5 609 unsigned long i;
19baf839 610
0c7770c7 611 pr_debug("In halve\n");
c877efb2 612
e9b44019 613 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 614 if (!tn)
8d8e810c 615 goto notnode;
2f36895a 616
69fa57b1
AD
617 /* prepare oldtnode to be freed */
618 tnode_free_init(oldtnode);
619
12c081a5
AD
620 /* Assemble all of the pointers in our cluster, in this case that
621 * represents all of the pointers out of our allocated nodes that
622 * point to existing tnodes and the links between our allocated
623 * nodes.
2f36895a 624 */
2e1ac88a 625 for (i = child_length(oldtnode); i;) {
754baf8d
AD
626 struct key_vector *node1 = get_child(oldtnode, --i);
627 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 628 struct key_vector *inode;
2f36895a 629
12c081a5
AD
630 /* At least one of the children is empty */
631 if (!node1 || !node0) {
632 put_child(tn, i / 2, node1 ? : node0);
633 continue;
634 }
c877efb2 635
2f36895a 636 /* Two nonempty children */
12c081a5 637 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
638 if (!inode)
639 goto nomem;
12c081a5 640 tnode_free_append(tn, inode);
2f36895a 641
12c081a5
AD
642 /* initialize pointers out of node */
643 put_child(inode, 1, node1);
644 put_child(inode, 0, node0);
645 NODE_INIT_PARENT(inode, tn);
646
647 /* link parent to node */
648 put_child(tn, i / 2, inode);
2f36895a 649 }
19baf839 650
69fa57b1 651 /* setup the parent pointers into and out of this node */
8d8e810c
AD
652 return replace(t, oldtnode, tn);
653nomem:
654 /* all pointers should be clean so we are done */
655 tnode_free(tn);
656notnode:
657 return NULL;
19baf839
RO
658}
659
88bae714
AD
660static struct key_vector *collapse(struct trie *t,
661 struct key_vector *oldtnode)
95f60ea3 662{
35c6edac 663 struct key_vector *n, *tp;
95f60ea3
AD
664 unsigned long i;
665
666 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 667 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 668 n = get_child(oldtnode, --i);
95f60ea3
AD
669
670 /* compress one level */
671 tp = node_parent(oldtnode);
88bae714 672 put_child_root(tp, oldtnode->key, n);
95f60ea3
AD
673 node_set_parent(n, tp);
674
675 /* drop dead node */
676 node_free(oldtnode);
88bae714
AD
677
678 return tp;
95f60ea3
AD
679}
680
35c6edac 681static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
682{
683 unsigned char slen = tn->pos;
684 unsigned long stride, i;
685
686 /* search though the list of children looking for nodes that might
687 * have a suffix greater than the one we currently have. This is
688 * why we start with a stride of 2 since a stride of 1 would
689 * represent the nodes with suffix length equal to tn->pos
690 */
2e1ac88a 691 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 692 struct key_vector *n = get_child(tn, i);
5405afd1
AD
693
694 if (!n || (n->slen <= slen))
695 continue;
696
697 /* update stride and slen based on new value */
698 stride <<= (n->slen - slen);
699 slen = n->slen;
700 i &= ~(stride - 1);
701
702 /* if slen covers all but the last bit we can stop here
703 * there will be nothing longer than that since only node
704 * 0 and 1 << (bits - 1) could have that as their suffix
705 * length.
706 */
707 if ((slen + 1) >= (tn->pos + tn->bits))
708 break;
709 }
710
711 tn->slen = slen;
712
713 return slen;
714}
715
f05a4819
AD
716/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
717 * the Helsinki University of Technology and Matti Tikkanen of Nokia
718 * Telecommunications, page 6:
719 * "A node is doubled if the ratio of non-empty children to all
720 * children in the *doubled* node is at least 'high'."
721 *
722 * 'high' in this instance is the variable 'inflate_threshold'. It
723 * is expressed as a percentage, so we multiply it with
2e1ac88a 724 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
725 * child array will be doubled by inflate()) and multiplying
726 * the left-hand side by 100 (to handle the percentage thing) we
727 * multiply the left-hand side by 50.
728 *
2e1ac88a 729 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
730 * - tn->empty_children is of course the number of non-null children
731 * in the current node. tn->full_children is the number of "full"
732 * children, that is non-null tnodes with a skip value of 0.
733 * All of those will be doubled in the resulting inflated tnode, so
734 * we just count them one extra time here.
735 *
736 * A clearer way to write this would be:
737 *
738 * to_be_doubled = tn->full_children;
2e1ac88a 739 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
740 * tn->full_children;
741 *
2e1ac88a 742 * new_child_length = child_length(tn) * 2;
f05a4819
AD
743 *
744 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
745 * new_child_length;
746 * if (new_fill_factor >= inflate_threshold)
747 *
748 * ...and so on, tho it would mess up the while () loop.
749 *
750 * anyway,
751 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
752 * inflate_threshold
753 *
754 * avoid a division:
755 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
756 * inflate_threshold * new_child_length
757 *
758 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 759 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
760 * tn->full_children) >= inflate_threshold * new_child_length
761 *
762 * expand new_child_length:
2e1ac88a 763 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 764 * tn->full_children) >=
2e1ac88a 765 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
766 *
767 * shorten again:
2e1ac88a 768 * 50 * (tn->full_children + child_length(tn) -
f05a4819 769 * tn->empty_children) >= inflate_threshold *
2e1ac88a 770 * child_length(tn)
f05a4819
AD
771 *
772 */
35c6edac 773static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 774{
2e1ac88a 775 unsigned long used = child_length(tn);
f05a4819
AD
776 unsigned long threshold = used;
777
778 /* Keep root node larger */
88bae714 779 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
6e22d174
AD
780 used -= tn_info(tn)->empty_children;
781 used += tn_info(tn)->full_children;
f05a4819 782
95f60ea3
AD
783 /* if bits == KEYLENGTH then pos = 0, and will fail below */
784
785 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
786}
787
35c6edac 788static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 789{
2e1ac88a 790 unsigned long used = child_length(tn);
f05a4819
AD
791 unsigned long threshold = used;
792
793 /* Keep root node larger */
88bae714 794 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
6e22d174 795 used -= tn_info(tn)->empty_children;
f05a4819 796
95f60ea3
AD
797 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
798
799 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
800}
801
35c6edac 802static inline bool should_collapse(struct key_vector *tn)
95f60ea3 803{
2e1ac88a 804 unsigned long used = child_length(tn);
95f60ea3 805
6e22d174 806 used -= tn_info(tn)->empty_children;
95f60ea3
AD
807
808 /* account for bits == KEYLENGTH case */
6e22d174 809 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
95f60ea3
AD
810 used -= KEY_MAX;
811
812 /* One child or none, time to drop us from the trie */
813 return used < 2;
f05a4819
AD
814}
815
cf3637bb 816#define MAX_WORK 10
88bae714 817static struct key_vector *resize(struct trie *t, struct key_vector *tn)
cf3637bb 818{
8d8e810c
AD
819#ifdef CONFIG_IP_FIB_TRIE_STATS
820 struct trie_use_stats __percpu *stats = t->stats;
821#endif
35c6edac 822 struct key_vector *tp = node_parent(tn);
88bae714 823 unsigned long cindex = get_index(tn->key, tp);
a80e89d4 824 int max_work = MAX_WORK;
cf3637bb 825
cf3637bb
AD
826 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
827 tn, inflate_threshold, halve_threshold);
828
ff181ed8
AD
829 /* track the tnode via the pointer from the parent instead of
830 * doing it ourselves. This way we can let RCU fully do its
831 * thing without us interfering
832 */
88bae714 833 BUG_ON(tn != get_child(tp, cindex));
ff181ed8 834
f05a4819
AD
835 /* Double as long as the resulting node has a number of
836 * nonempty nodes that are above the threshold.
cf3637bb 837 */
b6f15f82 838 while (should_inflate(tp, tn) && max_work) {
88bae714
AD
839 tp = inflate(t, tn);
840 if (!tp) {
cf3637bb 841#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 842 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
843#endif
844 break;
845 }
ff181ed8 846
b6f15f82 847 max_work--;
88bae714 848 tn = get_child(tp, cindex);
cf3637bb
AD
849 }
850
b6f15f82
AD
851 /* update parent in case inflate failed */
852 tp = node_parent(tn);
853
cf3637bb
AD
854 /* Return if at least one inflate is run */
855 if (max_work != MAX_WORK)
b6f15f82 856 return tp;
cf3637bb 857
f05a4819 858 /* Halve as long as the number of empty children in this
cf3637bb
AD
859 * node is above threshold.
860 */
b6f15f82 861 while (should_halve(tp, tn) && max_work) {
88bae714
AD
862 tp = halve(t, tn);
863 if (!tp) {
cf3637bb 864#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 865 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
866#endif
867 break;
868 }
cf3637bb 869
b6f15f82 870 max_work--;
88bae714 871 tn = get_child(tp, cindex);
ff181ed8 872 }
cf3637bb
AD
873
874 /* Only one child remains */
88bae714
AD
875 if (should_collapse(tn))
876 return collapse(t, tn);
877
b6f15f82 878 /* update parent in case halve failed */
88bae714 879 tp = node_parent(tn);
5405afd1
AD
880
881 /* Return if at least one deflate was run */
882 if (max_work != MAX_WORK)
88bae714 883 return tp;
5405afd1
AD
884
885 /* push the suffix length to the parent node */
886 if (tn->slen > tn->pos) {
887 unsigned char slen = update_suffix(tn);
888
88bae714 889 if (slen > tp->slen)
5405afd1 890 tp->slen = slen;
cf3637bb 891 }
8d8e810c 892
88bae714 893 return tp;
cf3637bb
AD
894}
895
35c6edac 896static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
5405afd1 897{
88bae714 898 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
5405afd1
AD
899 if (update_suffix(tp) > l->slen)
900 break;
901 tp = node_parent(tp);
902 }
903}
904
35c6edac 905static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
19baf839 906{
5405afd1
AD
907 /* if this is a new leaf then tn will be NULL and we can sort
908 * out parent suffix lengths as a part of trie_rebalance
909 */
88bae714 910 while (tn->slen < l->slen) {
5405afd1
AD
911 tn->slen = l->slen;
912 tn = node_parent(tn);
913 }
914}
915
2373ce1c 916/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
917static struct key_vector *fib_find_node(struct trie *t,
918 struct key_vector **tp, u32 key)
19baf839 919{
88bae714
AD
920 struct key_vector *pn, *n = t->kv;
921 unsigned long index = 0;
922
923 do {
924 pn = n;
925 n = get_child_rcu(n, index);
926
927 if (!n)
928 break;
939afb06 929
88bae714 930 index = get_cindex(key, n);
939afb06
AD
931
932 /* This bit of code is a bit tricky but it combines multiple
933 * checks into a single check. The prefix consists of the
934 * prefix plus zeros for the bits in the cindex. The index
935 * is the difference between the key and this value. From
936 * this we can actually derive several pieces of data.
d4a975e8 937 * if (index >= (1ul << bits))
939afb06 938 * we have a mismatch in skip bits and failed
b3832117
AD
939 * else
940 * we know the value is cindex
d4a975e8
AD
941 *
942 * This check is safe even if bits == KEYLENGTH due to the
943 * fact that we can only allocate a node with 32 bits if a
944 * long is greater than 32 bits.
939afb06 945 */
d4a975e8
AD
946 if (index >= (1ul << n->bits)) {
947 n = NULL;
948 break;
949 }
939afb06 950
88bae714
AD
951 /* keep searching until we find a perfect match leaf or NULL */
952 } while (IS_TNODE(n));
91b9a277 953
35c6edac 954 *tp = pn;
d4a975e8 955
939afb06 956 return n;
19baf839
RO
957}
958
02525368
AD
959/* Return the first fib alias matching TOS with
960 * priority less than or equal to PRIO.
961 */
79e5ad2c 962static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
0b65bd97 963 u8 tos, u32 prio, u32 tb_id)
02525368
AD
964{
965 struct fib_alias *fa;
966
967 if (!fah)
968 return NULL;
969
56315f9e 970 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
971 if (fa->fa_slen < slen)
972 continue;
973 if (fa->fa_slen != slen)
974 break;
0b65bd97
AD
975 if (fa->tb_id > tb_id)
976 continue;
977 if (fa->tb_id != tb_id)
978 break;
02525368
AD
979 if (fa->fa_tos > tos)
980 continue;
981 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
982 return fa;
983 }
984
985 return NULL;
986}
987
35c6edac 988static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 989{
88bae714
AD
990 while (!IS_TRIE(tn))
991 tn = resize(t, tn);
19baf839
RO
992}
993
35c6edac 994static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 995 struct fib_alias *new, t_key key)
19baf839 996{
35c6edac 997 struct key_vector *n, *l;
19baf839 998
d5d6487c 999 l = leaf_new(key, new);
79e5ad2c 1000 if (!l)
8d8e810c 1001 goto noleaf;
d5d6487c
AD
1002
1003 /* retrieve child from parent node */
88bae714 1004 n = get_child(tp, get_index(key, tp));
19baf839 1005
836a0123
AD
1006 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1007 *
1008 * Add a new tnode here
1009 * first tnode need some special handling
1010 * leaves us in position for handling as case 3
1011 */
1012 if (n) {
35c6edac 1013 struct key_vector *tn;
19baf839 1014
e9b44019 1015 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1016 if (!tn)
1017 goto notnode;
91b9a277 1018
836a0123
AD
1019 /* initialize routes out of node */
1020 NODE_INIT_PARENT(tn, tp);
1021 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1022
836a0123 1023 /* start adding routes into the node */
88bae714 1024 put_child_root(tp, key, tn);
836a0123 1025 node_set_parent(n, tn);
e962f302 1026
836a0123 1027 /* parent now has a NULL spot where the leaf can go */
e962f302 1028 tp = tn;
19baf839 1029 }
91b9a277 1030
836a0123 1031 /* Case 3: n is NULL, and will just insert a new leaf */
d5d6487c 1032 NODE_INIT_PARENT(l, tp);
88bae714 1033 put_child_root(tp, key, l);
d5d6487c
AD
1034 trie_rebalance(t, tp);
1035
1036 return 0;
8d8e810c
AD
1037notnode:
1038 node_free(l);
1039noleaf:
1040 return -ENOMEM;
d5d6487c
AD
1041}
1042
35c6edac
AD
1043static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1044 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1045 struct fib_alias *fa, t_key key)
1046{
1047 if (!l)
1048 return fib_insert_node(t, tp, new, key);
1049
1050 if (fa) {
1051 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1052 } else {
d5d6487c
AD
1053 struct fib_alias *last;
1054
1055 hlist_for_each_entry(last, &l->leaf, fa_list) {
1056 if (new->fa_slen < last->fa_slen)
1057 break;
0b65bd97
AD
1058 if ((new->fa_slen == last->fa_slen) &&
1059 (new->tb_id > last->tb_id))
1060 break;
d5d6487c
AD
1061 fa = last;
1062 }
1063
1064 if (fa)
1065 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1066 else
1067 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1068 }
2373ce1c 1069
d5d6487c
AD
1070 /* if we added to the tail node then we need to update slen */
1071 if (l->slen < new->fa_slen) {
1072 l->slen = new->fa_slen;
1073 leaf_push_suffix(tp, l);
1074 }
1075
1076 return 0;
19baf839
RO
1077}
1078
d5d6487c 1079/* Caller must hold RTNL. */
16c6cf8b 1080int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839 1081{
d4a975e8 1082 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1083 struct fib_alias *fa, *new_fa;
35c6edac 1084 struct key_vector *l, *tp;
a2bb6d7d 1085 unsigned int nlflags = 0;
19baf839 1086 struct fib_info *fi;
79e5ad2c
AD
1087 u8 plen = cfg->fc_dst_len;
1088 u8 slen = KEYLENGTH - plen;
4e902c57 1089 u8 tos = cfg->fc_tos;
d4a975e8 1090 u32 key;
19baf839 1091 int err;
19baf839 1092
5786ec60 1093 if (plen > KEYLENGTH)
19baf839
RO
1094 return -EINVAL;
1095
4e902c57 1096 key = ntohl(cfg->fc_dst);
19baf839 1097
2dfe55b4 1098 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1099
d4a975e8 1100 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1101 return -EINVAL;
1102
4e902c57
TG
1103 fi = fib_create_info(cfg);
1104 if (IS_ERR(fi)) {
1105 err = PTR_ERR(fi);
19baf839 1106 goto err;
4e902c57 1107 }
19baf839 1108
d4a975e8 1109 l = fib_find_node(t, &tp, key);
0b65bd97
AD
1110 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1111 tb->tb_id) : NULL;
19baf839
RO
1112
1113 /* Now fa, if non-NULL, points to the first fib alias
1114 * with the same keys [prefix,tos,priority], if such key already
1115 * exists or to the node before which we will insert new one.
1116 *
1117 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1118 * insert to the tail of the section matching the suffix length
1119 * of the new alias.
19baf839
RO
1120 */
1121
936f6f8e
JA
1122 if (fa && fa->fa_tos == tos &&
1123 fa->fa_info->fib_priority == fi->fib_priority) {
1124 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1125
1126 err = -EEXIST;
4e902c57 1127 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1128 goto out;
1129
936f6f8e
JA
1130 /* We have 2 goals:
1131 * 1. Find exact match for type, scope, fib_info to avoid
1132 * duplicate routes
1133 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1134 */
1135 fa_match = NULL;
1136 fa_first = fa;
56315f9e 1137 hlist_for_each_entry_from(fa, fa_list) {
0b65bd97
AD
1138 if ((fa->fa_slen != slen) ||
1139 (fa->tb_id != tb->tb_id) ||
1140 (fa->fa_tos != tos))
936f6f8e
JA
1141 break;
1142 if (fa->fa_info->fib_priority != fi->fib_priority)
1143 break;
1144 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1145 fa->fa_info == fi) {
1146 fa_match = fa;
1147 break;
1148 }
1149 }
1150
4e902c57 1151 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1152 struct fib_info *fi_drop;
1153 u8 state;
1154
936f6f8e
JA
1155 fa = fa_first;
1156 if (fa_match) {
1157 if (fa == fa_match)
1158 err = 0;
6725033f 1159 goto out;
936f6f8e 1160 }
2373ce1c 1161 err = -ENOBUFS;
e94b1766 1162 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1163 if (!new_fa)
2373ce1c 1164 goto out;
19baf839
RO
1165
1166 fi_drop = fa->fa_info;
2373ce1c
RO
1167 new_fa->fa_tos = fa->fa_tos;
1168 new_fa->fa_info = fi;
4e902c57 1169 new_fa->fa_type = cfg->fc_type;
19baf839 1170 state = fa->fa_state;
936f6f8e 1171 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1172 new_fa->fa_slen = fa->fa_slen;
d4e64c29 1173 new_fa->tb_id = tb->tb_id;
2392debc 1174 new_fa->fa_default = -1;
19baf839 1175
ebb9a03a
JP
1176 err = switchdev_fib_ipv4_add(key, plen, fi,
1177 new_fa->fa_tos,
1178 cfg->fc_type,
1179 cfg->fc_nlflags,
1180 tb->tb_id);
8e05fd71 1181 if (err) {
ebb9a03a 1182 switchdev_fib_ipv4_abort(fi);
8e05fd71
SF
1183 kmem_cache_free(fn_alias_kmem, new_fa);
1184 goto out;
1185 }
1186
56315f9e 1187 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1188
2373ce1c 1189 alias_free_mem_rcu(fa);
19baf839
RO
1190
1191 fib_release_info(fi_drop);
1192 if (state & FA_S_ACCESSED)
4ccfe6d4 1193 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1194 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1195 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1196
91b9a277 1197 goto succeeded;
19baf839
RO
1198 }
1199 /* Error if we find a perfect match which
1200 * uses the same scope, type, and nexthop
1201 * information.
1202 */
936f6f8e
JA
1203 if (fa_match)
1204 goto out;
a07f5f50 1205
a2bb6d7d
RP
1206 if (cfg->fc_nlflags & NLM_F_APPEND)
1207 nlflags = NLM_F_APPEND;
1208 else
936f6f8e 1209 fa = fa_first;
19baf839
RO
1210 }
1211 err = -ENOENT;
4e902c57 1212 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1213 goto out;
1214
1215 err = -ENOBUFS;
e94b1766 1216 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1217 if (!new_fa)
19baf839
RO
1218 goto out;
1219
1220 new_fa->fa_info = fi;
1221 new_fa->fa_tos = tos;
4e902c57 1222 new_fa->fa_type = cfg->fc_type;
19baf839 1223 new_fa->fa_state = 0;
79e5ad2c 1224 new_fa->fa_slen = slen;
0ddcf43d 1225 new_fa->tb_id = tb->tb_id;
2392debc 1226 new_fa->fa_default = -1;
19baf839 1227
8e05fd71 1228 /* (Optionally) offload fib entry to switch hardware. */
ebb9a03a
JP
1229 err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
1230 cfg->fc_nlflags, tb->tb_id);
8e05fd71 1231 if (err) {
ebb9a03a 1232 switchdev_fib_ipv4_abort(fi);
8e05fd71
SF
1233 goto out_free_new_fa;
1234 }
1235
9b6ebad5 1236 /* Insert new entry to the list. */
d5d6487c
AD
1237 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1238 if (err)
8e05fd71 1239 goto out_sw_fib_del;
19baf839 1240
21d8c49e
DM
1241 if (!plen)
1242 tb->tb_num_default++;
1243
4ccfe6d4 1244 rt_cache_flush(cfg->fc_nlinfo.nl_net);
0ddcf43d 1245 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
a2bb6d7d 1246 &cfg->fc_nlinfo, nlflags);
19baf839
RO
1247succeeded:
1248 return 0;
f835e471 1249
8e05fd71 1250out_sw_fib_del:
ebb9a03a 1251 switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
f835e471
RO
1252out_free_new_fa:
1253 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1254out:
1255 fib_release_info(fi);
91b9a277 1256err:
19baf839
RO
1257 return err;
1258}
1259
35c6edac 1260static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1261{
1262 t_key prefix = n->key;
1263
1264 return (key ^ prefix) & (prefix | -prefix);
1265}
1266
345e9b54 1267/* should be called with rcu_read_lock */
22bd5b9b 1268int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1269 struct fib_result *res, int fib_flags)
19baf839 1270{
0ddcf43d 1271 struct trie *t = (struct trie *) tb->tb_data;
8274a97a
AD
1272#ifdef CONFIG_IP_FIB_TRIE_STATS
1273 struct trie_use_stats __percpu *stats = t->stats;
1274#endif
9f9e636d 1275 const t_key key = ntohl(flp->daddr);
35c6edac 1276 struct key_vector *n, *pn;
79e5ad2c 1277 struct fib_alias *fa;
71e8b67d 1278 unsigned long index;
9f9e636d 1279 t_key cindex;
91b9a277 1280
88bae714
AD
1281 pn = t->kv;
1282 cindex = 0;
1283
1284 n = get_child_rcu(pn, cindex);
c877efb2 1285 if (!n)
345e9b54 1286 return -EAGAIN;
19baf839
RO
1287
1288#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1289 this_cpu_inc(stats->gets);
19baf839
RO
1290#endif
1291
9f9e636d
AD
1292 /* Step 1: Travel to the longest prefix match in the trie */
1293 for (;;) {
88bae714 1294 index = get_cindex(key, n);
9f9e636d
AD
1295
1296 /* This bit of code is a bit tricky but it combines multiple
1297 * checks into a single check. The prefix consists of the
1298 * prefix plus zeros for the "bits" in the prefix. The index
1299 * is the difference between the key and this value. From
1300 * this we can actually derive several pieces of data.
71e8b67d 1301 * if (index >= (1ul << bits))
9f9e636d 1302 * we have a mismatch in skip bits and failed
b3832117
AD
1303 * else
1304 * we know the value is cindex
71e8b67d
AD
1305 *
1306 * This check is safe even if bits == KEYLENGTH due to the
1307 * fact that we can only allocate a node with 32 bits if a
1308 * long is greater than 32 bits.
9f9e636d 1309 */
71e8b67d 1310 if (index >= (1ul << n->bits))
9f9e636d 1311 break;
19baf839 1312
9f9e636d
AD
1313 /* we have found a leaf. Prefixes have already been compared */
1314 if (IS_LEAF(n))
a07f5f50 1315 goto found;
19baf839 1316
9f9e636d
AD
1317 /* only record pn and cindex if we are going to be chopping
1318 * bits later. Otherwise we are just wasting cycles.
91b9a277 1319 */
5405afd1 1320 if (n->slen > n->pos) {
9f9e636d
AD
1321 pn = n;
1322 cindex = index;
91b9a277 1323 }
19baf839 1324
754baf8d 1325 n = get_child_rcu(n, index);
9f9e636d
AD
1326 if (unlikely(!n))
1327 goto backtrace;
1328 }
19baf839 1329
9f9e636d
AD
1330 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1331 for (;;) {
1332 /* record the pointer where our next node pointer is stored */
35c6edac 1333 struct key_vector __rcu **cptr = n->tnode;
19baf839 1334
9f9e636d
AD
1335 /* This test verifies that none of the bits that differ
1336 * between the key and the prefix exist in the region of
1337 * the lsb and higher in the prefix.
91b9a277 1338 */
5405afd1 1339 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1340 goto backtrace;
91b9a277 1341
9f9e636d
AD
1342 /* exit out and process leaf */
1343 if (unlikely(IS_LEAF(n)))
1344 break;
91b9a277 1345
9f9e636d
AD
1346 /* Don't bother recording parent info. Since we are in
1347 * prefix match mode we will have to come back to wherever
1348 * we started this traversal anyway
91b9a277 1349 */
91b9a277 1350
9f9e636d 1351 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1352backtrace:
19baf839 1353#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1354 if (!n)
1355 this_cpu_inc(stats->null_node_hit);
19baf839 1356#endif
9f9e636d
AD
1357 /* If we are at cindex 0 there are no more bits for
1358 * us to strip at this level so we must ascend back
1359 * up one level to see if there are any more bits to
1360 * be stripped there.
1361 */
1362 while (!cindex) {
1363 t_key pkey = pn->key;
1364
88bae714
AD
1365 /* If we don't have a parent then there is
1366 * nothing for us to do as we do not have any
1367 * further nodes to parse.
1368 */
1369 if (IS_TRIE(pn))
345e9b54 1370 return -EAGAIN;
9f9e636d
AD
1371#ifdef CONFIG_IP_FIB_TRIE_STATS
1372 this_cpu_inc(stats->backtrack);
1373#endif
1374 /* Get Child's index */
88bae714 1375 pn = node_parent_rcu(pn);
9f9e636d
AD
1376 cindex = get_index(pkey, pn);
1377 }
1378
1379 /* strip the least significant bit from the cindex */
1380 cindex &= cindex - 1;
1381
1382 /* grab pointer for next child node */
41b489fd 1383 cptr = &pn->tnode[cindex];
c877efb2 1384 }
19baf839 1385 }
9f9e636d 1386
19baf839 1387found:
71e8b67d
AD
1388 /* this line carries forward the xor from earlier in the function */
1389 index = key ^ n->key;
1390
9f9e636d 1391 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1392 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1393 struct fib_info *fi = fa->fa_info;
1394 int nhsel, err;
345e9b54 1395
71e8b67d 1396 if ((index >= (1ul << fa->fa_slen)) &&
79e5ad2c 1397 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
71e8b67d 1398 continue;
79e5ad2c
AD
1399 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1400 continue;
1401 if (fi->fib_dead)
1402 continue;
1403 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1404 continue;
1405 fib_alias_accessed(fa);
1406 err = fib_props[fa->fa_type].error;
1407 if (unlikely(err < 0)) {
345e9b54 1408#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1409 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1410#endif
79e5ad2c
AD
1411 return err;
1412 }
1413 if (fi->fib_flags & RTNH_F_DEAD)
1414 continue;
1415 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1416 const struct fib_nh *nh = &fi->fib_nh[nhsel];
0eeb075f 1417 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
79e5ad2c
AD
1418
1419 if (nh->nh_flags & RTNH_F_DEAD)
1420 continue;
0eeb075f
AG
1421 if (in_dev &&
1422 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1423 nh->nh_flags & RTNH_F_LINKDOWN &&
1424 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1425 continue;
79e5ad2c 1426 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
345e9b54 1427 continue;
79e5ad2c
AD
1428
1429 if (!(fib_flags & FIB_LOOKUP_NOREF))
1430 atomic_inc(&fi->fib_clntref);
1431
1432 res->prefixlen = KEYLENGTH - fa->fa_slen;
1433 res->nh_sel = nhsel;
1434 res->type = fa->fa_type;
1435 res->scope = fi->fib_scope;
1436 res->fi = fi;
1437 res->table = tb;
1438 res->fa_head = &n->leaf;
345e9b54 1439#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1440 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1441#endif
79e5ad2c 1442 return err;
345e9b54 1443 }
9b6ebad5 1444 }
345e9b54 1445#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1446 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1447#endif
345e9b54 1448 goto backtrace;
19baf839 1449}
6fc01438 1450EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1451
35c6edac
AD
1452static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1453 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1454{
1455 /* record the location of the previous list_info entry */
1456 struct hlist_node **pprev = old->fa_list.pprev;
1457 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1458
1459 /* remove the fib_alias from the list */
1460 hlist_del_rcu(&old->fa_list);
1461
1462 /* if we emptied the list this leaf will be freed and we can sort
1463 * out parent suffix lengths as a part of trie_rebalance
1464 */
1465 if (hlist_empty(&l->leaf)) {
88bae714 1466 put_child_root(tp, l->key, NULL);
d5d6487c
AD
1467 node_free(l);
1468 trie_rebalance(t, tp);
1469 return;
1470 }
1471
1472 /* only access fa if it is pointing at the last valid hlist_node */
1473 if (*pprev)
1474 return;
1475
1476 /* update the trie with the latest suffix length */
1477 l->slen = fa->fa_slen;
1478 leaf_pull_suffix(tp, l);
1479}
1480
1481/* Caller must hold RTNL. */
16c6cf8b 1482int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1483{
1484 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1485 struct fib_alias *fa, *fa_to_delete;
35c6edac 1486 struct key_vector *l, *tp;
79e5ad2c 1487 u8 plen = cfg->fc_dst_len;
79e5ad2c 1488 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1489 u8 tos = cfg->fc_tos;
1490 u32 key;
91b9a277 1491
79e5ad2c 1492 if (plen > KEYLENGTH)
19baf839
RO
1493 return -EINVAL;
1494
4e902c57 1495 key = ntohl(cfg->fc_dst);
19baf839 1496
d4a975e8 1497 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1498 return -EINVAL;
1499
d4a975e8 1500 l = fib_find_node(t, &tp, key);
c877efb2 1501 if (!l)
19baf839
RO
1502 return -ESRCH;
1503
0b65bd97 1504 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
19baf839
RO
1505 if (!fa)
1506 return -ESRCH;
1507
0c7770c7 1508 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1509
1510 fa_to_delete = NULL;
56315f9e 1511 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1512 struct fib_info *fi = fa->fa_info;
1513
0b65bd97
AD
1514 if ((fa->fa_slen != slen) ||
1515 (fa->tb_id != tb->tb_id) ||
1516 (fa->fa_tos != tos))
19baf839
RO
1517 break;
1518
4e902c57
TG
1519 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1520 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1521 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1522 (!cfg->fc_prefsrc ||
1523 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1524 (!cfg->fc_protocol ||
1525 fi->fib_protocol == cfg->fc_protocol) &&
1526 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1527 fa_to_delete = fa;
1528 break;
1529 }
1530 }
1531
91b9a277
OJ
1532 if (!fa_to_delete)
1533 return -ESRCH;
19baf839 1534
ebb9a03a
JP
1535 switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1536 cfg->fc_type, tb->tb_id);
8e05fd71 1537
d5d6487c 1538 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1539 &cfg->fc_nlinfo, 0);
91b9a277 1540
21d8c49e
DM
1541 if (!plen)
1542 tb->tb_num_default--;
1543
d5d6487c 1544 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1545
d5d6487c 1546 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1547 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1548
d5d6487c
AD
1549 fib_release_info(fa_to_delete->fa_info);
1550 alias_free_mem_rcu(fa_to_delete);
91b9a277 1551 return 0;
19baf839
RO
1552}
1553
8be33e95 1554/* Scan for the next leaf starting at the provided key value */
35c6edac 1555static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1556{
35c6edac 1557 struct key_vector *pn, *n = *tn;
8be33e95 1558 unsigned long cindex;
82cfbb00 1559
8be33e95 1560 /* this loop is meant to try and find the key in the trie */
88bae714 1561 do {
8be33e95
AD
1562 /* record parent and next child index */
1563 pn = n;
3ec320dd 1564 cindex = key ? get_index(key, pn) : 0;
88bae714
AD
1565
1566 if (cindex >> pn->bits)
1567 break;
82cfbb00 1568
8be33e95 1569 /* descend into the next child */
754baf8d 1570 n = get_child_rcu(pn, cindex++);
88bae714
AD
1571 if (!n)
1572 break;
1573
1574 /* guarantee forward progress on the keys */
1575 if (IS_LEAF(n) && (n->key >= key))
1576 goto found;
1577 } while (IS_TNODE(n));
82cfbb00 1578
8be33e95 1579 /* this loop will search for the next leaf with a greater key */
88bae714 1580 while (!IS_TRIE(pn)) {
8be33e95
AD
1581 /* if we exhausted the parent node we will need to climb */
1582 if (cindex >= (1ul << pn->bits)) {
1583 t_key pkey = pn->key;
82cfbb00 1584
8be33e95 1585 pn = node_parent_rcu(pn);
8be33e95
AD
1586 cindex = get_index(pkey, pn) + 1;
1587 continue;
1588 }
82cfbb00 1589
8be33e95 1590 /* grab the next available node */
754baf8d 1591 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1592 if (!n)
1593 continue;
19baf839 1594
8be33e95
AD
1595 /* no need to compare keys since we bumped the index */
1596 if (IS_LEAF(n))
1597 goto found;
71d67e66 1598
8be33e95
AD
1599 /* Rescan start scanning in new node */
1600 pn = n;
1601 cindex = 0;
1602 }
ec28cf73 1603
8be33e95
AD
1604 *tn = pn;
1605 return NULL; /* Root of trie */
1606found:
1607 /* if we are at the limit for keys just return NULL for the tnode */
88bae714 1608 *tn = pn;
8be33e95 1609 return n;
71d67e66
SH
1610}
1611
0ddcf43d
AD
1612static void fib_trie_free(struct fib_table *tb)
1613{
1614 struct trie *t = (struct trie *)tb->tb_data;
1615 struct key_vector *pn = t->kv;
1616 unsigned long cindex = 1;
1617 struct hlist_node *tmp;
1618 struct fib_alias *fa;
1619
1620 /* walk trie in reverse order and free everything */
1621 for (;;) {
1622 struct key_vector *n;
1623
1624 if (!(cindex--)) {
1625 t_key pkey = pn->key;
1626
1627 if (IS_TRIE(pn))
1628 break;
1629
1630 n = pn;
1631 pn = node_parent(pn);
1632
1633 /* drop emptied tnode */
1634 put_child_root(pn, n->key, NULL);
1635 node_free(n);
1636
1637 cindex = get_index(pkey, pn);
1638
1639 continue;
1640 }
1641
1642 /* grab the next available node */
1643 n = get_child(pn, cindex);
1644 if (!n)
1645 continue;
1646
1647 if (IS_TNODE(n)) {
1648 /* record pn and cindex for leaf walking */
1649 pn = n;
1650 cindex = 1ul << n->bits;
1651
1652 continue;
1653 }
1654
1655 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1656 hlist_del_rcu(&fa->fa_list);
1657 alias_free_mem_rcu(fa);
1658 }
1659
1660 put_child_root(pn, n->key, NULL);
1661 node_free(n);
1662 }
1663
1664#ifdef CONFIG_IP_FIB_TRIE_STATS
1665 free_percpu(t->stats);
1666#endif
1667 kfree(tb);
1668}
1669
1670struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1671{
1672 struct trie *ot = (struct trie *)oldtb->tb_data;
1673 struct key_vector *l, *tp = ot->kv;
1674 struct fib_table *local_tb;
1675 struct fib_alias *fa;
1676 struct trie *lt;
1677 t_key key = 0;
1678
1679 if (oldtb->tb_data == oldtb->__data)
1680 return oldtb;
1681
1682 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1683 if (!local_tb)
1684 return NULL;
1685
1686 lt = (struct trie *)local_tb->tb_data;
1687
1688 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1689 struct key_vector *local_l = NULL, *local_tp;
1690
1691 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1692 struct fib_alias *new_fa;
1693
1694 if (local_tb->tb_id != fa->tb_id)
1695 continue;
1696
1697 /* clone fa for new local table */
1698 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1699 if (!new_fa)
1700 goto out;
1701
1702 memcpy(new_fa, fa, sizeof(*fa));
1703
1704 /* insert clone into table */
1705 if (!local_l)
1706 local_l = fib_find_node(lt, &local_tp, l->key);
1707
1708 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1709 NULL, l->key))
1710 goto out;
1711 }
1712
1713 /* stop loop if key wrapped back to 0 */
1714 key = l->key + 1;
1715 if (key < l->key)
1716 break;
1717 }
1718
1719 return local_tb;
1720out:
1721 fib_trie_free(local_tb);
1722
1723 return NULL;
1724}
1725
104616e7
SF
1726/* Caller must hold RTNL */
1727void fib_table_flush_external(struct fib_table *tb)
1728{
1729 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1730 struct key_vector *pn = t->kv;
1731 unsigned long cindex = 1;
1732 struct hlist_node *tmp;
104616e7 1733 struct fib_alias *fa;
104616e7 1734
88bae714
AD
1735 /* walk trie in reverse order */
1736 for (;;) {
0ddcf43d 1737 unsigned char slen = 0;
88bae714 1738 struct key_vector *n;
104616e7 1739
88bae714
AD
1740 if (!(cindex--)) {
1741 t_key pkey = pn->key;
104616e7 1742
88bae714
AD
1743 /* cannot resize the trie vector */
1744 if (IS_TRIE(pn))
1745 break;
104616e7 1746
0ddcf43d
AD
1747 /* resize completed node */
1748 pn = resize(t, pn);
88bae714 1749 cindex = get_index(pkey, pn);
104616e7 1750
88bae714
AD
1751 continue;
1752 }
104616e7 1753
88bae714
AD
1754 /* grab the next available node */
1755 n = get_child(pn, cindex);
1756 if (!n)
1757 continue;
104616e7 1758
88bae714
AD
1759 if (IS_TNODE(n)) {
1760 /* record pn and cindex for leaf walking */
1761 pn = n;
1762 cindex = 1ul << n->bits;
104616e7 1763
72be7260 1764 continue;
88bae714 1765 }
72be7260 1766
88bae714
AD
1767 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1768 struct fib_info *fi = fa->fa_info;
1769
0ddcf43d
AD
1770 /* if alias was cloned to local then we just
1771 * need to remove the local copy from main
1772 */
1773 if (tb->tb_id != fa->tb_id) {
1774 hlist_del_rcu(&fa->fa_list);
1775 alias_free_mem_rcu(fa);
1776 continue;
1777 }
1778
1779 /* record local slen */
1780 slen = fa->fa_slen;
1781
eea39946 1782 if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
88bae714 1783 continue;
104616e7 1784
ebb9a03a
JP
1785 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1786 fi, fa->fa_tos, fa->fa_type,
1787 tb->tb_id);
88bae714 1788 }
0ddcf43d
AD
1789
1790 /* update leaf slen */
1791 n->slen = slen;
1792
1793 if (hlist_empty(&n->leaf)) {
1794 put_child_root(pn, n->key, NULL);
1795 node_free(n);
0ddcf43d 1796 }
88bae714 1797 }
104616e7
SF
1798}
1799
8be33e95 1800/* Caller must hold RTNL. */
16c6cf8b 1801int fib_table_flush(struct fib_table *tb)
19baf839 1802{
7289e6dd 1803 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1804 struct key_vector *pn = t->kv;
1805 unsigned long cindex = 1;
7289e6dd
AD
1806 struct hlist_node *tmp;
1807 struct fib_alias *fa;
82cfbb00 1808 int found = 0;
19baf839 1809
88bae714
AD
1810 /* walk trie in reverse order */
1811 for (;;) {
1812 unsigned char slen = 0;
1813 struct key_vector *n;
19baf839 1814
88bae714
AD
1815 if (!(cindex--)) {
1816 t_key pkey = pn->key;
7289e6dd 1817
88bae714
AD
1818 /* cannot resize the trie vector */
1819 if (IS_TRIE(pn))
1820 break;
7289e6dd 1821
88bae714
AD
1822 /* resize completed node */
1823 pn = resize(t, pn);
1824 cindex = get_index(pkey, pn);
7289e6dd 1825
88bae714
AD
1826 continue;
1827 }
7289e6dd 1828
88bae714
AD
1829 /* grab the next available node */
1830 n = get_child(pn, cindex);
1831 if (!n)
1832 continue;
7289e6dd 1833
88bae714
AD
1834 if (IS_TNODE(n)) {
1835 /* record pn and cindex for leaf walking */
1836 pn = n;
1837 cindex = 1ul << n->bits;
7289e6dd 1838
88bae714
AD
1839 continue;
1840 }
7289e6dd 1841
88bae714
AD
1842 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1843 struct fib_info *fi = fa->fa_info;
7289e6dd 1844
88bae714
AD
1845 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1846 slen = fa->fa_slen;
1847 continue;
1848 }
7289e6dd 1849
ebb9a03a
JP
1850 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1851 fi, fa->fa_tos, fa->fa_type,
1852 tb->tb_id);
7289e6dd
AD
1853 hlist_del_rcu(&fa->fa_list);
1854 fib_release_info(fa->fa_info);
1855 alias_free_mem_rcu(fa);
1856 found++;
64c62723
AD
1857 }
1858
88bae714
AD
1859 /* update leaf slen */
1860 n->slen = slen;
7289e6dd 1861
88bae714
AD
1862 if (hlist_empty(&n->leaf)) {
1863 put_child_root(pn, n->key, NULL);
1864 node_free(n);
88bae714 1865 }
64c62723 1866 }
19baf839 1867
0c7770c7 1868 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1869 return found;
1870}
1871
a7e53531 1872static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1873{
a7e53531 1874 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1875#ifdef CONFIG_IP_FIB_TRIE_STATS
1876 struct trie *t = (struct trie *)tb->tb_data;
1877
0ddcf43d
AD
1878 if (tb->tb_data == tb->__data)
1879 free_percpu(t->stats);
8274a97a 1880#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1881 kfree(tb);
1882}
1883
a7e53531
AD
1884void fib_free_table(struct fib_table *tb)
1885{
1886 call_rcu(&tb->rcu, __trie_free_rcu);
1887}
1888
35c6edac 1889static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1890 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1891{
79e5ad2c 1892 __be32 xkey = htonl(l->key);
19baf839 1893 struct fib_alias *fa;
79e5ad2c 1894 int i, s_i;
19baf839 1895
79e5ad2c 1896 s_i = cb->args[4];
19baf839
RO
1897 i = 0;
1898
2373ce1c 1899 /* rcu_read_lock is hold by caller */
79e5ad2c 1900 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1901 if (i < s_i) {
1902 i++;
1903 continue;
1904 }
19baf839 1905
0ddcf43d
AD
1906 if (tb->tb_id != fa->tb_id) {
1907 i++;
1908 continue;
1909 }
1910
15e47304 1911 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1912 cb->nlh->nlmsg_seq,
1913 RTM_NEWROUTE,
1914 tb->tb_id,
1915 fa->fa_type,
be403ea1 1916 xkey,
9b6ebad5 1917 KEYLENGTH - fa->fa_slen,
19baf839 1918 fa->fa_tos,
64347f78 1919 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1920 cb->args[4] = i;
19baf839
RO
1921 return -1;
1922 }
a88ee229 1923 i++;
19baf839 1924 }
a88ee229 1925
71d67e66 1926 cb->args[4] = i;
19baf839
RO
1927 return skb->len;
1928}
1929
a7e53531 1930/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
1931int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1932 struct netlink_callback *cb)
19baf839 1933{
8be33e95 1934 struct trie *t = (struct trie *)tb->tb_data;
88bae714 1935 struct key_vector *l, *tp = t->kv;
d5ce8a0e
SH
1936 /* Dump starting at last key.
1937 * Note: 0.0.0.0/0 (ie default) is first key.
1938 */
8be33e95
AD
1939 int count = cb->args[2];
1940 t_key key = cb->args[3];
a88ee229 1941
8be33e95 1942 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1943 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1944 cb->args[3] = key;
1945 cb->args[2] = count;
a88ee229 1946 return -1;
19baf839 1947 }
d5ce8a0e 1948
71d67e66 1949 ++count;
8be33e95
AD
1950 key = l->key + 1;
1951
71d67e66
SH
1952 memset(&cb->args[4], 0,
1953 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1954
1955 /* stop loop if key wrapped back to 0 */
1956 if (key < l->key)
1957 break;
19baf839 1958 }
8be33e95 1959
8be33e95
AD
1960 cb->args[3] = key;
1961 cb->args[2] = count;
1962
19baf839 1963 return skb->len;
19baf839
RO
1964}
1965
5348ba85 1966void __init fib_trie_init(void)
7f9b8052 1967{
a07f5f50
SH
1968 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1969 sizeof(struct fib_alias),
bc3c8c1e
SH
1970 0, SLAB_PANIC, NULL);
1971
1972 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 1973 LEAF_SIZE,
bc3c8c1e 1974 0, SLAB_PANIC, NULL);
7f9b8052 1975}
19baf839 1976
0ddcf43d 1977struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
19baf839
RO
1978{
1979 struct fib_table *tb;
1980 struct trie *t;
0ddcf43d
AD
1981 size_t sz = sizeof(*tb);
1982
1983 if (!alias)
1984 sz += sizeof(struct trie);
19baf839 1985
0ddcf43d 1986 tb = kzalloc(sz, GFP_KERNEL);
51456b29 1987 if (!tb)
19baf839
RO
1988 return NULL;
1989
1990 tb->tb_id = id;
21d8c49e 1991 tb->tb_num_default = 0;
0ddcf43d
AD
1992 tb->tb_data = (alias ? alias->__data : tb->__data);
1993
1994 if (alias)
1995 return tb;
19baf839
RO
1996
1997 t = (struct trie *) tb->tb_data;
88bae714
AD
1998 t->kv[0].pos = KEYLENGTH;
1999 t->kv[0].slen = KEYLENGTH;
8274a97a
AD
2000#ifdef CONFIG_IP_FIB_TRIE_STATS
2001 t->stats = alloc_percpu(struct trie_use_stats);
2002 if (!t->stats) {
2003 kfree(tb);
2004 tb = NULL;
2005 }
2006#endif
19baf839 2007
19baf839
RO
2008 return tb;
2009}
2010
cb7b593c
SH
2011#ifdef CONFIG_PROC_FS
2012/* Depth first Trie walk iterator */
2013struct fib_trie_iter {
1c340b2f 2014 struct seq_net_private p;
3d3b2d25 2015 struct fib_table *tb;
35c6edac 2016 struct key_vector *tnode;
a034ee3c
ED
2017 unsigned int index;
2018 unsigned int depth;
cb7b593c 2019};
19baf839 2020
35c6edac 2021static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2022{
98293e8d 2023 unsigned long cindex = iter->index;
88bae714
AD
2024 struct key_vector *pn = iter->tnode;
2025 t_key pkey;
6640e697 2026
cb7b593c
SH
2027 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2028 iter->tnode, iter->index, iter->depth);
19baf839 2029
88bae714
AD
2030 while (!IS_TRIE(pn)) {
2031 while (cindex < child_length(pn)) {
2032 struct key_vector *n = get_child_rcu(pn, cindex++);
2033
2034 if (!n)
2035 continue;
2036
cb7b593c 2037 if (IS_LEAF(n)) {
88bae714
AD
2038 iter->tnode = pn;
2039 iter->index = cindex;
cb7b593c
SH
2040 } else {
2041 /* push down one level */
adaf9816 2042 iter->tnode = n;
cb7b593c
SH
2043 iter->index = 0;
2044 ++iter->depth;
2045 }
88bae714 2046
cb7b593c
SH
2047 return n;
2048 }
19baf839 2049
88bae714
AD
2050 /* Current node exhausted, pop back up */
2051 pkey = pn->key;
2052 pn = node_parent_rcu(pn);
2053 cindex = get_index(pkey, pn) + 1;
cb7b593c 2054 --iter->depth;
19baf839 2055 }
cb7b593c 2056
88bae714
AD
2057 /* record root node so further searches know we are done */
2058 iter->tnode = pn;
2059 iter->index = 0;
2060
cb7b593c 2061 return NULL;
19baf839
RO
2062}
2063
35c6edac
AD
2064static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2065 struct trie *t)
19baf839 2066{
f38b24c9 2067 struct key_vector *n, *pn;
5ddf0eb2 2068
132adf54 2069 if (!t)
5ddf0eb2
RO
2070 return NULL;
2071
f38b24c9 2072 pn = t->kv;
88bae714 2073 n = rcu_dereference(pn->tnode[0]);
3d3b2d25 2074 if (!n)
5ddf0eb2 2075 return NULL;
19baf839 2076
3d3b2d25 2077 if (IS_TNODE(n)) {
adaf9816 2078 iter->tnode = n;
3d3b2d25
SH
2079 iter->index = 0;
2080 iter->depth = 1;
2081 } else {
88bae714 2082 iter->tnode = pn;
3d3b2d25
SH
2083 iter->index = 0;
2084 iter->depth = 0;
91b9a277 2085 }
3d3b2d25
SH
2086
2087 return n;
cb7b593c 2088}
91b9a277 2089
cb7b593c
SH
2090static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2091{
35c6edac 2092 struct key_vector *n;
cb7b593c 2093 struct fib_trie_iter iter;
91b9a277 2094
cb7b593c 2095 memset(s, 0, sizeof(*s));
91b9a277 2096
cb7b593c 2097 rcu_read_lock();
3d3b2d25 2098 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2099 if (IS_LEAF(n)) {
79e5ad2c 2100 struct fib_alias *fa;
93672292 2101
cb7b593c
SH
2102 s->leaves++;
2103 s->totdepth += iter.depth;
2104 if (iter.depth > s->maxdepth)
2105 s->maxdepth = iter.depth;
93672292 2106
79e5ad2c 2107 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 2108 ++s->prefixes;
cb7b593c 2109 } else {
cb7b593c 2110 s->tnodes++;
adaf9816
AD
2111 if (n->bits < MAX_STAT_DEPTH)
2112 s->nodesizes[n->bits]++;
6e22d174 2113 s->nullpointers += tn_info(n)->empty_children;
19baf839 2114 }
19baf839 2115 }
2373ce1c 2116 rcu_read_unlock();
19baf839
RO
2117}
2118
cb7b593c
SH
2119/*
2120 * This outputs /proc/net/fib_triestats
2121 */
2122static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2123{
a034ee3c 2124 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2125
cb7b593c
SH
2126 if (stat->leaves)
2127 avdepth = stat->totdepth*100 / stat->leaves;
2128 else
2129 avdepth = 0;
91b9a277 2130
a07f5f50
SH
2131 seq_printf(seq, "\tAver depth: %u.%02d\n",
2132 avdepth / 100, avdepth % 100);
cb7b593c 2133 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2134
cb7b593c 2135 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 2136 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
2137
2138 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 2139 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 2140
187b5188 2141 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 2142 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 2143
06ef921d
RO
2144 max = MAX_STAT_DEPTH;
2145 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2146 max--;
19baf839 2147
cb7b593c 2148 pointers = 0;
f585a991 2149 for (i = 1; i < max; i++)
cb7b593c 2150 if (stat->nodesizes[i] != 0) {
187b5188 2151 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2152 pointers += (1<<i) * stat->nodesizes[i];
2153 }
2154 seq_putc(seq, '\n');
187b5188 2155 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2156
35c6edac 2157 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2158 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2159 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2160}
2373ce1c 2161
cb7b593c 2162#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2163static void trie_show_usage(struct seq_file *seq,
8274a97a 2164 const struct trie_use_stats __percpu *stats)
66a2f7fd 2165{
8274a97a
AD
2166 struct trie_use_stats s = { 0 };
2167 int cpu;
2168
2169 /* loop through all of the CPUs and gather up the stats */
2170 for_each_possible_cpu(cpu) {
2171 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2172
2173 s.gets += pcpu->gets;
2174 s.backtrack += pcpu->backtrack;
2175 s.semantic_match_passed += pcpu->semantic_match_passed;
2176 s.semantic_match_miss += pcpu->semantic_match_miss;
2177 s.null_node_hit += pcpu->null_node_hit;
2178 s.resize_node_skipped += pcpu->resize_node_skipped;
2179 }
2180
66a2f7fd 2181 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2182 seq_printf(seq, "gets = %u\n", s.gets);
2183 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2184 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2185 s.semantic_match_passed);
2186 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2187 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2188 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2189}
66a2f7fd
SH
2190#endif /* CONFIG_IP_FIB_TRIE_STATS */
2191
3d3b2d25 2192static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2193{
3d3b2d25
SH
2194 if (tb->tb_id == RT_TABLE_LOCAL)
2195 seq_puts(seq, "Local:\n");
2196 else if (tb->tb_id == RT_TABLE_MAIN)
2197 seq_puts(seq, "Main:\n");
2198 else
2199 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2200}
19baf839 2201
3d3b2d25 2202
cb7b593c
SH
2203static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2204{
1c340b2f 2205 struct net *net = (struct net *)seq->private;
3d3b2d25 2206 unsigned int h;
877a9bff 2207
d717a9a6 2208 seq_printf(seq,
a07f5f50
SH
2209 "Basic info: size of leaf:"
2210 " %Zd bytes, size of tnode: %Zd bytes.\n",
41b489fd 2211 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2212
3d3b2d25
SH
2213 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2214 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2215 struct fib_table *tb;
2216
b67bfe0d 2217 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2218 struct trie *t = (struct trie *) tb->tb_data;
2219 struct trie_stat stat;
877a9bff 2220
3d3b2d25
SH
2221 if (!t)
2222 continue;
2223
2224 fib_table_print(seq, tb);
2225
2226 trie_collect_stats(t, &stat);
2227 trie_show_stats(seq, &stat);
2228#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2229 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2230#endif
2231 }
2232 }
19baf839 2233
cb7b593c 2234 return 0;
19baf839
RO
2235}
2236
cb7b593c 2237static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2238{
de05c557 2239 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2240}
2241
9a32144e 2242static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2243 .owner = THIS_MODULE,
2244 .open = fib_triestat_seq_open,
2245 .read = seq_read,
2246 .llseek = seq_lseek,
b6fcbdb4 2247 .release = single_release_net,
cb7b593c
SH
2248};
2249
35c6edac 2250static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2251{
1218854a
YH
2252 struct fib_trie_iter *iter = seq->private;
2253 struct net *net = seq_file_net(seq);
cb7b593c 2254 loff_t idx = 0;
3d3b2d25 2255 unsigned int h;
cb7b593c 2256
3d3b2d25
SH
2257 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2258 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2259 struct fib_table *tb;
cb7b593c 2260
b67bfe0d 2261 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2262 struct key_vector *n;
3d3b2d25
SH
2263
2264 for (n = fib_trie_get_first(iter,
2265 (struct trie *) tb->tb_data);
2266 n; n = fib_trie_get_next(iter))
2267 if (pos == idx++) {
2268 iter->tb = tb;
2269 return n;
2270 }
2271 }
cb7b593c 2272 }
3d3b2d25 2273
19baf839
RO
2274 return NULL;
2275}
2276
cb7b593c 2277static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2278 __acquires(RCU)
19baf839 2279{
cb7b593c 2280 rcu_read_lock();
1218854a 2281 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2282}
2283
cb7b593c 2284static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2285{
cb7b593c 2286 struct fib_trie_iter *iter = seq->private;
1218854a 2287 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2288 struct fib_table *tb = iter->tb;
2289 struct hlist_node *tb_node;
2290 unsigned int h;
35c6edac 2291 struct key_vector *n;
cb7b593c 2292
19baf839 2293 ++*pos;
3d3b2d25
SH
2294 /* next node in same table */
2295 n = fib_trie_get_next(iter);
2296 if (n)
2297 return n;
19baf839 2298
3d3b2d25
SH
2299 /* walk rest of this hash chain */
2300 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2301 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2302 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2303 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2304 if (n)
2305 goto found;
2306 }
19baf839 2307
3d3b2d25
SH
2308 /* new hash chain */
2309 while (++h < FIB_TABLE_HASHSZ) {
2310 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2311 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2312 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2313 if (n)
2314 goto found;
2315 }
2316 }
cb7b593c 2317 return NULL;
3d3b2d25
SH
2318
2319found:
2320 iter->tb = tb;
2321 return n;
cb7b593c 2322}
19baf839 2323
cb7b593c 2324static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2325 __releases(RCU)
19baf839 2326{
cb7b593c
SH
2327 rcu_read_unlock();
2328}
91b9a277 2329
cb7b593c
SH
2330static void seq_indent(struct seq_file *seq, int n)
2331{
a034ee3c
ED
2332 while (n-- > 0)
2333 seq_puts(seq, " ");
cb7b593c 2334}
19baf839 2335
28d36e37 2336static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2337{
132adf54 2338 switch (s) {
cb7b593c
SH
2339 case RT_SCOPE_UNIVERSE: return "universe";
2340 case RT_SCOPE_SITE: return "site";
2341 case RT_SCOPE_LINK: return "link";
2342 case RT_SCOPE_HOST: return "host";
2343 case RT_SCOPE_NOWHERE: return "nowhere";
2344 default:
28d36e37 2345 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2346 return buf;
2347 }
2348}
19baf839 2349
36cbd3dc 2350static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2351 [RTN_UNSPEC] = "UNSPEC",
2352 [RTN_UNICAST] = "UNICAST",
2353 [RTN_LOCAL] = "LOCAL",
2354 [RTN_BROADCAST] = "BROADCAST",
2355 [RTN_ANYCAST] = "ANYCAST",
2356 [RTN_MULTICAST] = "MULTICAST",
2357 [RTN_BLACKHOLE] = "BLACKHOLE",
2358 [RTN_UNREACHABLE] = "UNREACHABLE",
2359 [RTN_PROHIBIT] = "PROHIBIT",
2360 [RTN_THROW] = "THROW",
2361 [RTN_NAT] = "NAT",
2362 [RTN_XRESOLVE] = "XRESOLVE",
2363};
19baf839 2364
a034ee3c 2365static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2366{
cb7b593c
SH
2367 if (t < __RTN_MAX && rtn_type_names[t])
2368 return rtn_type_names[t];
28d36e37 2369 snprintf(buf, len, "type %u", t);
cb7b593c 2370 return buf;
19baf839
RO
2371}
2372
cb7b593c
SH
2373/* Pretty print the trie */
2374static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2375{
cb7b593c 2376 const struct fib_trie_iter *iter = seq->private;
35c6edac 2377 struct key_vector *n = v;
c877efb2 2378
88bae714 2379 if (IS_TRIE(node_parent_rcu(n)))
3d3b2d25 2380 fib_table_print(seq, iter->tb);
095b8501 2381
cb7b593c 2382 if (IS_TNODE(n)) {
adaf9816 2383 __be32 prf = htonl(n->key);
91b9a277 2384
e9b44019
AD
2385 seq_indent(seq, iter->depth-1);
2386 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2387 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
6e22d174
AD
2388 tn_info(n)->full_children,
2389 tn_info(n)->empty_children);
cb7b593c 2390 } else {
adaf9816 2391 __be32 val = htonl(n->key);
79e5ad2c 2392 struct fib_alias *fa;
cb7b593c
SH
2393
2394 seq_indent(seq, iter->depth);
673d57e7 2395 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2396
79e5ad2c
AD
2397 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2398 char buf1[32], buf2[32];
2399
2400 seq_indent(seq, iter->depth + 1);
2401 seq_printf(seq, " /%zu %s %s",
2402 KEYLENGTH - fa->fa_slen,
2403 rtn_scope(buf1, sizeof(buf1),
2404 fa->fa_info->fib_scope),
2405 rtn_type(buf2, sizeof(buf2),
2406 fa->fa_type));
2407 if (fa->fa_tos)
2408 seq_printf(seq, " tos=%d", fa->fa_tos);
2409 seq_putc(seq, '\n');
cb7b593c 2410 }
19baf839 2411 }
cb7b593c 2412
19baf839
RO
2413 return 0;
2414}
2415
f690808e 2416static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2417 .start = fib_trie_seq_start,
2418 .next = fib_trie_seq_next,
2419 .stop = fib_trie_seq_stop,
2420 .show = fib_trie_seq_show,
19baf839
RO
2421};
2422
cb7b593c 2423static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2424{
1c340b2f
DL
2425 return seq_open_net(inode, file, &fib_trie_seq_ops,
2426 sizeof(struct fib_trie_iter));
19baf839
RO
2427}
2428
9a32144e 2429static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2430 .owner = THIS_MODULE,
2431 .open = fib_trie_seq_open,
2432 .read = seq_read,
2433 .llseek = seq_lseek,
1c340b2f 2434 .release = seq_release_net,
19baf839
RO
2435};
2436
8315f5d8
SH
2437struct fib_route_iter {
2438 struct seq_net_private p;
8be33e95 2439 struct fib_table *main_tb;
35c6edac 2440 struct key_vector *tnode;
8315f5d8
SH
2441 loff_t pos;
2442 t_key key;
2443};
2444
35c6edac
AD
2445static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2446 loff_t pos)
8315f5d8 2447{
8be33e95 2448 struct fib_table *tb = iter->main_tb;
35c6edac 2449 struct key_vector *l, **tp = &iter->tnode;
8be33e95
AD
2450 struct trie *t;
2451 t_key key;
8315f5d8 2452
8be33e95
AD
2453 /* use cache location of next-to-find key */
2454 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2455 pos -= iter->pos;
8be33e95
AD
2456 key = iter->key;
2457 } else {
2458 t = (struct trie *)tb->tb_data;
88bae714 2459 iter->tnode = t->kv;
8315f5d8 2460 iter->pos = 0;
8be33e95 2461 key = 0;
8315f5d8
SH
2462 }
2463
8be33e95
AD
2464 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2465 key = l->key + 1;
8315f5d8 2466 iter->pos++;
8be33e95 2467
25b97c01 2468 if (--pos <= 0)
8be33e95
AD
2469 break;
2470
2471 l = NULL;
2472
2473 /* handle unlikely case of a key wrap */
2474 if (!key)
2475 break;
8315f5d8
SH
2476 }
2477
2478 if (l)
8be33e95 2479 iter->key = key; /* remember it */
8315f5d8
SH
2480 else
2481 iter->pos = 0; /* forget it */
2482
2483 return l;
2484}
2485
2486static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2487 __acquires(RCU)
2488{
2489 struct fib_route_iter *iter = seq->private;
2490 struct fib_table *tb;
8be33e95 2491 struct trie *t;
8315f5d8
SH
2492
2493 rcu_read_lock();
8be33e95 2494
1218854a 2495 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2496 if (!tb)
2497 return NULL;
2498
8be33e95
AD
2499 iter->main_tb = tb;
2500
2501 if (*pos != 0)
2502 return fib_route_get_idx(iter, *pos);
2503
2504 t = (struct trie *)tb->tb_data;
88bae714 2505 iter->tnode = t->kv;
8be33e95
AD
2506 iter->pos = 0;
2507 iter->key = 0;
2508
2509 return SEQ_START_TOKEN;
8315f5d8
SH
2510}
2511
2512static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2513{
2514 struct fib_route_iter *iter = seq->private;
35c6edac 2515 struct key_vector *l = NULL;
8be33e95 2516 t_key key = iter->key;
8315f5d8
SH
2517
2518 ++*pos;
8be33e95
AD
2519
2520 /* only allow key of 0 for start of sequence */
2521 if ((v == SEQ_START_TOKEN) || key)
2522 l = leaf_walk_rcu(&iter->tnode, key);
2523
2524 if (l) {
2525 iter->key = l->key + 1;
8315f5d8 2526 iter->pos++;
8be33e95
AD
2527 } else {
2528 iter->pos = 0;
8315f5d8
SH
2529 }
2530
8315f5d8
SH
2531 return l;
2532}
2533
2534static void fib_route_seq_stop(struct seq_file *seq, void *v)
2535 __releases(RCU)
2536{
2537 rcu_read_unlock();
2538}
2539
a034ee3c 2540static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2541{
a034ee3c 2542 unsigned int flags = 0;
19baf839 2543
a034ee3c
ED
2544 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2545 flags = RTF_REJECT;
cb7b593c
SH
2546 if (fi && fi->fib_nh->nh_gw)
2547 flags |= RTF_GATEWAY;
32ab5f80 2548 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2549 flags |= RTF_HOST;
2550 flags |= RTF_UP;
2551 return flags;
19baf839
RO
2552}
2553
cb7b593c
SH
2554/*
2555 * This outputs /proc/net/route.
2556 * The format of the file is not supposed to be changed
a034ee3c 2557 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2558 * legacy utilities
2559 */
2560static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2561{
654eff45
AD
2562 struct fib_route_iter *iter = seq->private;
2563 struct fib_table *tb = iter->main_tb;
79e5ad2c 2564 struct fib_alias *fa;
35c6edac 2565 struct key_vector *l = v;
9b6ebad5 2566 __be32 prefix;
19baf839 2567
cb7b593c
SH
2568 if (v == SEQ_START_TOKEN) {
2569 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2570 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2571 "\tWindow\tIRTT");
2572 return 0;
2573 }
19baf839 2574
9b6ebad5
AD
2575 prefix = htonl(l->key);
2576
79e5ad2c
AD
2577 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2578 const struct fib_info *fi = fa->fa_info;
2579 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2580 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2581
79e5ad2c
AD
2582 if ((fa->fa_type == RTN_BROADCAST) ||
2583 (fa->fa_type == RTN_MULTICAST))
2584 continue;
19baf839 2585
654eff45
AD
2586 if (fa->tb_id != tb->tb_id)
2587 continue;
2588
79e5ad2c
AD
2589 seq_setwidth(seq, 127);
2590
2591 if (fi)
2592 seq_printf(seq,
2593 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2594 "%d\t%08X\t%d\t%u\t%u",
2595 fi->fib_dev ? fi->fib_dev->name : "*",
2596 prefix,
2597 fi->fib_nh->nh_gw, flags, 0, 0,
2598 fi->fib_priority,
2599 mask,
2600 (fi->fib_advmss ?
2601 fi->fib_advmss + 40 : 0),
2602 fi->fib_window,
2603 fi->fib_rtt >> 3);
2604 else
2605 seq_printf(seq,
2606 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2607 "%d\t%08X\t%d\t%u\t%u",
2608 prefix, 0, flags, 0, 0, 0,
2609 mask, 0, 0, 0);
19baf839 2610
79e5ad2c 2611 seq_pad(seq, '\n');
19baf839
RO
2612 }
2613
2614 return 0;
2615}
2616
f690808e 2617static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2618 .start = fib_route_seq_start,
2619 .next = fib_route_seq_next,
2620 .stop = fib_route_seq_stop,
cb7b593c 2621 .show = fib_route_seq_show,
19baf839
RO
2622};
2623
cb7b593c 2624static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2625{
1c340b2f 2626 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2627 sizeof(struct fib_route_iter));
19baf839
RO
2628}
2629
9a32144e 2630static const struct file_operations fib_route_fops = {
cb7b593c
SH
2631 .owner = THIS_MODULE,
2632 .open = fib_route_seq_open,
2633 .read = seq_read,
2634 .llseek = seq_lseek,
1c340b2f 2635 .release = seq_release_net,
19baf839
RO
2636};
2637
61a02653 2638int __net_init fib_proc_init(struct net *net)
19baf839 2639{
d4beaa66 2640 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2641 goto out1;
2642
d4beaa66
G
2643 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2644 &fib_triestat_fops))
cb7b593c
SH
2645 goto out2;
2646
d4beaa66 2647 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2648 goto out3;
2649
19baf839 2650 return 0;
cb7b593c
SH
2651
2652out3:
ece31ffd 2653 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2654out2:
ece31ffd 2655 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2656out1:
2657 return -ENOMEM;
19baf839
RO
2658}
2659
61a02653 2660void __net_exit fib_proc_exit(struct net *net)
19baf839 2661{
ece31ffd
G
2662 remove_proc_entry("fib_trie", net->proc_net);
2663 remove_proc_entry("fib_triestat", net->proc_net);
2664 remove_proc_entry("route", net->proc_net);
19baf839
RO
2665}
2666
2667#endif /* CONFIG_PROC_FS */