]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/ipv4/fib_trie.c
fib_trie: Move rcu from key_vector to tnode, add accessors.
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
8e05fd71 82#include <net/switchdev.h>
19baf839
RO
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
95f60ea3
AD
87#define KEYLENGTH (8*sizeof(t_key))
88#define KEY_MAX ((t_key)~0)
19baf839 89
19baf839
RO
90typedef unsigned int t_key;
91
64c9b6fb
AD
92#define IS_TNODE(n) ((n)->bits)
93#define IS_LEAF(n) (!(n)->bits)
2373ce1c 94
35c6edac 95struct key_vector {
41b489fd
AD
96 t_key empty_children; /* KEYLENGTH bits needed */
97 t_key full_children; /* KEYLENGTH bits needed */
35c6edac 98 struct key_vector __rcu *parent;
41b489fd 99
64c9b6fb 100 t_key key;
64c9b6fb 101 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 102 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 103 unsigned char slen;
adaf9816 104 union {
41b489fd 105 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 106 struct hlist_head leaf;
41b489fd 107 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 108 struct key_vector __rcu *tnode[0];
adaf9816 109 };
19baf839
RO
110};
111
dc35dbed 112struct tnode {
56ca2adf 113 struct rcu_head rcu;
dc35dbed 114 struct key_vector kv[1];
56ca2adf 115#define tn_bits kv[0].bits
dc35dbed
AD
116};
117
118#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
119#define LEAF_SIZE TNODE_SIZE(1)
120
19baf839
RO
121#ifdef CONFIG_IP_FIB_TRIE_STATS
122struct trie_use_stats {
123 unsigned int gets;
124 unsigned int backtrack;
125 unsigned int semantic_match_passed;
126 unsigned int semantic_match_miss;
127 unsigned int null_node_hit;
2f36895a 128 unsigned int resize_node_skipped;
19baf839
RO
129};
130#endif
131
132struct trie_stat {
133 unsigned int totdepth;
134 unsigned int maxdepth;
135 unsigned int tnodes;
136 unsigned int leaves;
137 unsigned int nullpointers;
93672292 138 unsigned int prefixes;
06ef921d 139 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 140};
19baf839
RO
141
142struct trie {
35c6edac 143 struct key_vector __rcu *tnode[1];
19baf839 144#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 145 struct trie_use_stats __percpu *stats;
19baf839 146#endif
19baf839
RO
147};
148
35c6edac 149static struct key_vector **resize(struct trie *t, struct key_vector *tn);
c3059477
JP
150static size_t tnode_free_size;
151
152/*
153 * synchronize_rcu after call_rcu for that many pages; it should be especially
154 * useful before resizing the root node with PREEMPT_NONE configs; the value was
155 * obtained experimentally, aiming to avoid visible slowdown.
156 */
157static const int sync_pages = 128;
19baf839 158
e18b890b 159static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 160static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 161
56ca2adf
AD
162static inline struct tnode *tn_info(struct key_vector *kv)
163{
164 return container_of(kv, struct tnode, kv[0]);
165}
166
64c9b6fb
AD
167/* caller must hold RTNL */
168#define node_parent(n) rtnl_dereference((n)->parent)
754baf8d 169#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 170
64c9b6fb
AD
171/* caller must hold RCU read lock or RTNL */
172#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
754baf8d 173#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 174
64c9b6fb 175/* wrapper for rcu_assign_pointer */
35c6edac 176static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 177{
adaf9816
AD
178 if (n)
179 rcu_assign_pointer(n->parent, tp);
06801916
SH
180}
181
64c9b6fb
AD
182#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)
183
184/* This provides us with the number of children in this node, in the case of a
185 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 186 */
2e1ac88a 187static inline unsigned long child_length(const struct key_vector *tn)
06801916 188{
64c9b6fb 189 return (1ul << tn->bits) & ~(1ul);
06801916 190}
2373ce1c 191
2e1ac88a
AD
192static inline unsigned long get_index(t_key key, struct key_vector *kv)
193{
194 unsigned long index = key ^ kv->key;
195
196 return index >> kv->pos;
197}
198
e9b44019
AD
199/* To understand this stuff, an understanding of keys and all their bits is
200 * necessary. Every node in the trie has a key associated with it, but not
201 * all of the bits in that key are significant.
202 *
203 * Consider a node 'n' and its parent 'tp'.
204 *
205 * If n is a leaf, every bit in its key is significant. Its presence is
206 * necessitated by path compression, since during a tree traversal (when
207 * searching for a leaf - unless we are doing an insertion) we will completely
208 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
209 * a potentially successful search, that we have indeed been walking the
210 * correct key path.
211 *
212 * Note that we can never "miss" the correct key in the tree if present by
213 * following the wrong path. Path compression ensures that segments of the key
214 * that are the same for all keys with a given prefix are skipped, but the
215 * skipped part *is* identical for each node in the subtrie below the skipped
216 * bit! trie_insert() in this implementation takes care of that.
217 *
218 * if n is an internal node - a 'tnode' here, the various parts of its key
219 * have many different meanings.
220 *
221 * Example:
222 * _________________________________________________________________
223 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
224 * -----------------------------------------------------------------
225 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
226 *
227 * _________________________________________________________________
228 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
229 * -----------------------------------------------------------------
230 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
231 *
232 * tp->pos = 22
233 * tp->bits = 3
234 * n->pos = 13
235 * n->bits = 4
236 *
237 * First, let's just ignore the bits that come before the parent tp, that is
238 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
239 * point we do not use them for anything.
240 *
241 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
242 * index into the parent's child array. That is, they will be used to find
243 * 'n' among tp's children.
244 *
245 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
246 * for the node n.
247 *
248 * All the bits we have seen so far are significant to the node n. The rest
249 * of the bits are really not needed or indeed known in n->key.
250 *
251 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
252 * n's child array, and will of course be different for each child.
253 *
254 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
255 * at this point.
256 */
19baf839 257
f5026fab
DL
258static const int halve_threshold = 25;
259static const int inflate_threshold = 50;
345aa031 260static const int halve_threshold_root = 15;
80b71b80 261static const int inflate_threshold_root = 30;
2373ce1c
RO
262
263static void __alias_free_mem(struct rcu_head *head)
19baf839 264{
2373ce1c
RO
265 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
266 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
267}
268
2373ce1c 269static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 270{
2373ce1c
RO
271 call_rcu(&fa->rcu, __alias_free_mem);
272}
91b9a277 273
37fd30f2 274#define TNODE_KMALLOC_MAX \
35c6edac 275 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 276#define TNODE_VMALLOC_MAX \
35c6edac 277 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 278
37fd30f2 279static void __node_free_rcu(struct rcu_head *head)
387a5487 280{
56ca2adf 281 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 282
56ca2adf 283 if (!n->tn_bits)
37fd30f2 284 kmem_cache_free(trie_leaf_kmem, n);
56ca2adf 285 else if (n->tn_bits <= TNODE_KMALLOC_MAX)
37fd30f2
AD
286 kfree(n);
287 else
288 vfree(n);
387a5487
SH
289}
290
56ca2adf 291#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 292
dc35dbed 293static struct tnode *tnode_alloc(int bits)
f0e36f8c 294{
1de3d87b
AD
295 size_t size;
296
297 /* verify bits is within bounds */
298 if (bits > TNODE_VMALLOC_MAX)
299 return NULL;
300
301 /* determine size and verify it is non-zero and didn't overflow */
302 size = TNODE_SIZE(1ul << bits);
303
2373ce1c 304 if (size <= PAGE_SIZE)
8d965444 305 return kzalloc(size, GFP_KERNEL);
15be75cd 306 else
7a1c8e5a 307 return vzalloc(size);
15be75cd 308}
2373ce1c 309
35c6edac 310static inline void empty_child_inc(struct key_vector *n)
95f60ea3
AD
311{
312 ++n->empty_children ? : ++n->full_children;
313}
314
35c6edac 315static inline void empty_child_dec(struct key_vector *n)
95f60ea3
AD
316{
317 n->empty_children-- ? : n->full_children--;
318}
319
35c6edac 320static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 321{
dc35dbed
AD
322 struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
323 struct key_vector *l = kv->kv;
324
325 if (!kv)
326 return NULL;
327
328 /* initialize key vector */
329 l->key = key;
330 l->pos = 0;
331 l->bits = 0;
332 l->slen = fa->fa_slen;
333
334 /* link leaf to fib alias */
335 INIT_HLIST_HEAD(&l->leaf);
336 hlist_add_head(&fa->fa_list, &l->leaf);
337
2373ce1c
RO
338 return l;
339}
340
35c6edac 341static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 342{
dc35dbed 343 struct tnode *tnode = tnode_alloc(bits);
64c9b6fb 344 unsigned int shift = pos + bits;
dc35dbed 345 struct key_vector *tn = tnode->kv;
64c9b6fb
AD
346
347 /* verify bits and pos their msb bits clear and values are valid */
348 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 349
dc35dbed 350 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
35c6edac 351 sizeof(struct key_vector *) << bits);
dc35dbed
AD
352
353 if (!tnode)
354 return NULL;
355
356 if (bits == KEYLENGTH)
357 tn->full_children = 1;
358 else
359 tn->empty_children = 1ul << bits;
360
361 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
362 tn->pos = pos;
363 tn->bits = bits;
364 tn->slen = pos;
365
19baf839
RO
366 return tn;
367}
368
e9b44019 369/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
370 * and no bits are skipped. See discussion in dyntree paper p. 6
371 */
35c6edac 372static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 373{
e9b44019 374 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
375}
376
ff181ed8
AD
377/* Add a child at position i overwriting the old value.
378 * Update the value of full_children and empty_children.
379 */
35c6edac
AD
380static void put_child(struct key_vector *tn, unsigned long i,
381 struct key_vector *n)
19baf839 382{
754baf8d 383 struct key_vector *chi = get_child(tn, i);
ff181ed8 384 int isfull, wasfull;
19baf839 385
2e1ac88a 386 BUG_ON(i >= child_length(tn));
0c7770c7 387
95f60ea3 388 /* update emptyChildren, overflow into fullChildren */
19baf839 389 if (n == NULL && chi != NULL)
95f60ea3
AD
390 empty_child_inc(tn);
391 if (n != NULL && chi == NULL)
392 empty_child_dec(tn);
c877efb2 393
19baf839 394 /* update fullChildren */
ff181ed8 395 wasfull = tnode_full(tn, chi);
19baf839 396 isfull = tnode_full(tn, n);
ff181ed8 397
c877efb2 398 if (wasfull && !isfull)
19baf839 399 tn->full_children--;
c877efb2 400 else if (!wasfull && isfull)
19baf839 401 tn->full_children++;
91b9a277 402
5405afd1
AD
403 if (n && (tn->slen < n->slen))
404 tn->slen = n->slen;
405
41b489fd 406 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
407}
408
35c6edac 409static void update_children(struct key_vector *tn)
69fa57b1
AD
410{
411 unsigned long i;
412
413 /* update all of the child parent pointers */
2e1ac88a 414 for (i = child_length(tn); i;) {
754baf8d 415 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
416
417 if (!inode)
418 continue;
419
420 /* Either update the children of a tnode that
421 * already belongs to us or update the child
422 * to point to ourselves.
423 */
424 if (node_parent(inode) == tn)
425 update_children(inode);
426 else
427 node_set_parent(inode, tn);
428 }
429}
430
35c6edac
AD
431static inline void put_child_root(struct key_vector *tp, struct trie *t,
432 t_key key, struct key_vector *n)
836a0123
AD
433{
434 if (tp)
435 put_child(tp, get_index(key, tp), n);
436 else
35c6edac 437 rcu_assign_pointer(t->tnode[0], n);
836a0123
AD
438}
439
35c6edac 440static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 441{
56ca2adf 442 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
443}
444
35c6edac
AD
445static inline void tnode_free_append(struct key_vector *tn,
446 struct key_vector *n)
fc86a93b 447{
56ca2adf
AD
448 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
449 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 450}
0a5c0475 451
35c6edac 452static void tnode_free(struct key_vector *tn)
fc86a93b 453{
56ca2adf 454 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
455
456 while (head) {
457 head = head->next;
41b489fd 458 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
459 node_free(tn);
460
56ca2adf 461 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
462 }
463
464 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
465 tnode_free_size = 0;
466 synchronize_rcu();
0a5c0475 467 }
0a5c0475
ED
468}
469
35c6edac
AD
470static struct key_vector __rcu **replace(struct trie *t,
471 struct key_vector *oldtnode,
472 struct key_vector *tn)
69fa57b1 473{
35c6edac
AD
474 struct key_vector *tp = node_parent(oldtnode);
475 struct key_vector **cptr;
69fa57b1
AD
476 unsigned long i;
477
478 /* setup the parent pointer out of and back into this node */
479 NODE_INIT_PARENT(tn, tp);
480 put_child_root(tp, t, tn->key, tn);
481
482 /* update all of the child parent pointers */
483 update_children(tn);
484
485 /* all pointers should be clean so we are done */
486 tnode_free(oldtnode);
487
8d8e810c 488 /* record the pointer that is pointing to this node */
35c6edac 489 cptr = tp ? tp->tnode : t->tnode;
8d8e810c 490
69fa57b1 491 /* resize children now that oldtnode is freed */
2e1ac88a 492 for (i = child_length(tn); i;) {
754baf8d 493 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
494
495 /* resize child node */
496 if (tnode_full(tn, inode))
497 resize(t, inode);
498 }
8d8e810c
AD
499
500 return cptr;
69fa57b1
AD
501}
502
35c6edac
AD
503static struct key_vector __rcu **inflate(struct trie *t,
504 struct key_vector *oldtnode)
19baf839 505{
35c6edac 506 struct key_vector *tn;
69fa57b1 507 unsigned long i;
e9b44019 508 t_key m;
19baf839 509
0c7770c7 510 pr_debug("In inflate\n");
19baf839 511
e9b44019 512 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 513 if (!tn)
8d8e810c 514 goto notnode;
2f36895a 515
69fa57b1
AD
516 /* prepare oldtnode to be freed */
517 tnode_free_init(oldtnode);
518
12c081a5
AD
519 /* Assemble all of the pointers in our cluster, in this case that
520 * represents all of the pointers out of our allocated nodes that
521 * point to existing tnodes and the links between our allocated
522 * nodes.
2f36895a 523 */
2e1ac88a 524 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 525 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 526 struct key_vector *node0, *node1;
69fa57b1 527 unsigned long j, k;
c877efb2 528
19baf839 529 /* An empty child */
adaf9816 530 if (inode == NULL)
19baf839
RO
531 continue;
532
533 /* A leaf or an internal node with skipped bits */
adaf9816 534 if (!tnode_full(oldtnode, inode)) {
e9b44019 535 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
536 continue;
537 }
538
69fa57b1
AD
539 /* drop the node in the old tnode free list */
540 tnode_free_append(oldtnode, inode);
541
19baf839 542 /* An internal node with two children */
19baf839 543 if (inode->bits == 1) {
754baf8d
AD
544 put_child(tn, 2 * i + 1, get_child(inode, 1));
545 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 546 continue;
19baf839
RO
547 }
548
91b9a277 549 /* We will replace this node 'inode' with two new
12c081a5 550 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
551 * original children. The two new nodes will have
552 * a position one bit further down the key and this
553 * means that the "significant" part of their keys
554 * (see the discussion near the top of this file)
555 * will differ by one bit, which will be "0" in
12c081a5 556 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
557 * moving the key position by one step, the bit that
558 * we are moving away from - the bit at position
12c081a5
AD
559 * (tn->pos) - is the one that will differ between
560 * node0 and node1. So... we synthesize that bit in the
561 * two new keys.
91b9a277 562 */
12c081a5
AD
563 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
564 if (!node1)
565 goto nomem;
69fa57b1 566 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 567
69fa57b1 568 tnode_free_append(tn, node1);
12c081a5
AD
569 if (!node0)
570 goto nomem;
571 tnode_free_append(tn, node0);
572
573 /* populate child pointers in new nodes */
2e1ac88a 574 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
575 put_child(node1, --j, get_child(inode, --k));
576 put_child(node0, j, get_child(inode, j));
577 put_child(node1, --j, get_child(inode, --k));
578 put_child(node0, j, get_child(inode, j));
12c081a5 579 }
19baf839 580
12c081a5
AD
581 /* link new nodes to parent */
582 NODE_INIT_PARENT(node1, tn);
583 NODE_INIT_PARENT(node0, tn);
2f36895a 584
12c081a5
AD
585 /* link parent to nodes */
586 put_child(tn, 2 * i + 1, node1);
587 put_child(tn, 2 * i, node0);
588 }
2f36895a 589
69fa57b1 590 /* setup the parent pointers into and out of this node */
8d8e810c 591 return replace(t, oldtnode, tn);
2f80b3c8 592nomem:
fc86a93b
AD
593 /* all pointers should be clean so we are done */
594 tnode_free(tn);
8d8e810c
AD
595notnode:
596 return NULL;
19baf839
RO
597}
598
35c6edac
AD
599static struct key_vector __rcu **halve(struct trie *t,
600 struct key_vector *oldtnode)
19baf839 601{
35c6edac 602 struct key_vector *tn;
12c081a5 603 unsigned long i;
19baf839 604
0c7770c7 605 pr_debug("In halve\n");
c877efb2 606
e9b44019 607 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 608 if (!tn)
8d8e810c 609 goto notnode;
2f36895a 610
69fa57b1
AD
611 /* prepare oldtnode to be freed */
612 tnode_free_init(oldtnode);
613
12c081a5
AD
614 /* Assemble all of the pointers in our cluster, in this case that
615 * represents all of the pointers out of our allocated nodes that
616 * point to existing tnodes and the links between our allocated
617 * nodes.
2f36895a 618 */
2e1ac88a 619 for (i = child_length(oldtnode); i;) {
754baf8d
AD
620 struct key_vector *node1 = get_child(oldtnode, --i);
621 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 622 struct key_vector *inode;
2f36895a 623
12c081a5
AD
624 /* At least one of the children is empty */
625 if (!node1 || !node0) {
626 put_child(tn, i / 2, node1 ? : node0);
627 continue;
628 }
c877efb2 629
2f36895a 630 /* Two nonempty children */
12c081a5 631 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
632 if (!inode)
633 goto nomem;
12c081a5 634 tnode_free_append(tn, inode);
2f36895a 635
12c081a5
AD
636 /* initialize pointers out of node */
637 put_child(inode, 1, node1);
638 put_child(inode, 0, node0);
639 NODE_INIT_PARENT(inode, tn);
640
641 /* link parent to node */
642 put_child(tn, i / 2, inode);
2f36895a 643 }
19baf839 644
69fa57b1 645 /* setup the parent pointers into and out of this node */
8d8e810c
AD
646 return replace(t, oldtnode, tn);
647nomem:
648 /* all pointers should be clean so we are done */
649 tnode_free(tn);
650notnode:
651 return NULL;
19baf839
RO
652}
653
35c6edac 654static void collapse(struct trie *t, struct key_vector *oldtnode)
95f60ea3 655{
35c6edac 656 struct key_vector *n, *tp;
95f60ea3
AD
657 unsigned long i;
658
659 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 660 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 661 n = get_child(oldtnode, --i);
95f60ea3
AD
662
663 /* compress one level */
664 tp = node_parent(oldtnode);
665 put_child_root(tp, t, oldtnode->key, n);
666 node_set_parent(n, tp);
667
668 /* drop dead node */
669 node_free(oldtnode);
670}
671
35c6edac 672static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
673{
674 unsigned char slen = tn->pos;
675 unsigned long stride, i;
676
677 /* search though the list of children looking for nodes that might
678 * have a suffix greater than the one we currently have. This is
679 * why we start with a stride of 2 since a stride of 1 would
680 * represent the nodes with suffix length equal to tn->pos
681 */
2e1ac88a 682 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 683 struct key_vector *n = get_child(tn, i);
5405afd1
AD
684
685 if (!n || (n->slen <= slen))
686 continue;
687
688 /* update stride and slen based on new value */
689 stride <<= (n->slen - slen);
690 slen = n->slen;
691 i &= ~(stride - 1);
692
693 /* if slen covers all but the last bit we can stop here
694 * there will be nothing longer than that since only node
695 * 0 and 1 << (bits - 1) could have that as their suffix
696 * length.
697 */
698 if ((slen + 1) >= (tn->pos + tn->bits))
699 break;
700 }
701
702 tn->slen = slen;
703
704 return slen;
705}
706
f05a4819
AD
707/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
708 * the Helsinki University of Technology and Matti Tikkanen of Nokia
709 * Telecommunications, page 6:
710 * "A node is doubled if the ratio of non-empty children to all
711 * children in the *doubled* node is at least 'high'."
712 *
713 * 'high' in this instance is the variable 'inflate_threshold'. It
714 * is expressed as a percentage, so we multiply it with
2e1ac88a 715 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
716 * child array will be doubled by inflate()) and multiplying
717 * the left-hand side by 100 (to handle the percentage thing) we
718 * multiply the left-hand side by 50.
719 *
2e1ac88a 720 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
721 * - tn->empty_children is of course the number of non-null children
722 * in the current node. tn->full_children is the number of "full"
723 * children, that is non-null tnodes with a skip value of 0.
724 * All of those will be doubled in the resulting inflated tnode, so
725 * we just count them one extra time here.
726 *
727 * A clearer way to write this would be:
728 *
729 * to_be_doubled = tn->full_children;
2e1ac88a 730 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
731 * tn->full_children;
732 *
2e1ac88a 733 * new_child_length = child_length(tn) * 2;
f05a4819
AD
734 *
735 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
736 * new_child_length;
737 * if (new_fill_factor >= inflate_threshold)
738 *
739 * ...and so on, tho it would mess up the while () loop.
740 *
741 * anyway,
742 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
743 * inflate_threshold
744 *
745 * avoid a division:
746 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
747 * inflate_threshold * new_child_length
748 *
749 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 750 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
751 * tn->full_children) >= inflate_threshold * new_child_length
752 *
753 * expand new_child_length:
2e1ac88a 754 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 755 * tn->full_children) >=
2e1ac88a 756 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
757 *
758 * shorten again:
2e1ac88a 759 * 50 * (tn->full_children + child_length(tn) -
f05a4819 760 * tn->empty_children) >= inflate_threshold *
2e1ac88a 761 * child_length(tn)
f05a4819
AD
762 *
763 */
35c6edac 764static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 765{
2e1ac88a 766 unsigned long used = child_length(tn);
f05a4819
AD
767 unsigned long threshold = used;
768
769 /* Keep root node larger */
ff181ed8 770 threshold *= tp ? inflate_threshold : inflate_threshold_root;
f05a4819 771 used -= tn->empty_children;
95f60ea3 772 used += tn->full_children;
f05a4819 773
95f60ea3
AD
774 /* if bits == KEYLENGTH then pos = 0, and will fail below */
775
776 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
777}
778
35c6edac 779static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 780{
2e1ac88a 781 unsigned long used = child_length(tn);
f05a4819
AD
782 unsigned long threshold = used;
783
784 /* Keep root node larger */
ff181ed8 785 threshold *= tp ? halve_threshold : halve_threshold_root;
f05a4819
AD
786 used -= tn->empty_children;
787
95f60ea3
AD
788 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
789
790 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
791}
792
35c6edac 793static inline bool should_collapse(struct key_vector *tn)
95f60ea3 794{
2e1ac88a 795 unsigned long used = child_length(tn);
95f60ea3
AD
796
797 used -= tn->empty_children;
798
799 /* account for bits == KEYLENGTH case */
800 if ((tn->bits == KEYLENGTH) && tn->full_children)
801 used -= KEY_MAX;
802
803 /* One child or none, time to drop us from the trie */
804 return used < 2;
f05a4819
AD
805}
806
cf3637bb 807#define MAX_WORK 10
35c6edac
AD
808static struct key_vector __rcu **resize(struct trie *t,
809 struct key_vector *tn)
cf3637bb 810{
8d8e810c
AD
811#ifdef CONFIG_IP_FIB_TRIE_STATS
812 struct trie_use_stats __percpu *stats = t->stats;
813#endif
35c6edac 814 struct key_vector *tp = node_parent(tn);
8d8e810c 815 unsigned long cindex = tp ? get_index(tn->key, tp) : 0;
35c6edac 816 struct key_vector __rcu **cptr = tp ? tp->tnode : t->tnode;
a80e89d4 817 int max_work = MAX_WORK;
cf3637bb 818
cf3637bb
AD
819 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
820 tn, inflate_threshold, halve_threshold);
821
ff181ed8
AD
822 /* track the tnode via the pointer from the parent instead of
823 * doing it ourselves. This way we can let RCU fully do its
824 * thing without us interfering
825 */
8d8e810c 826 BUG_ON(tn != rtnl_dereference(cptr[cindex]));
ff181ed8 827
f05a4819
AD
828 /* Double as long as the resulting node has a number of
829 * nonempty nodes that are above the threshold.
cf3637bb 830 */
a80e89d4 831 while (should_inflate(tp, tn) && max_work) {
35c6edac 832 struct key_vector __rcu **tcptr = inflate(t, tn);
8d8e810c
AD
833
834 if (!tcptr) {
cf3637bb 835#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 836 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
837#endif
838 break;
839 }
ff181ed8 840
a80e89d4 841 max_work--;
8d8e810c
AD
842 cptr = tcptr;
843 tn = rtnl_dereference(cptr[cindex]);
cf3637bb
AD
844 }
845
846 /* Return if at least one inflate is run */
847 if (max_work != MAX_WORK)
8d8e810c 848 return cptr;
cf3637bb 849
f05a4819 850 /* Halve as long as the number of empty children in this
cf3637bb
AD
851 * node is above threshold.
852 */
a80e89d4 853 while (should_halve(tp, tn) && max_work) {
35c6edac 854 struct key_vector __rcu **tcptr = halve(t, tn);
8d8e810c
AD
855
856 if (!tcptr) {
cf3637bb 857#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 858 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
859#endif
860 break;
861 }
cf3637bb 862
a80e89d4 863 max_work--;
8d8e810c
AD
864 cptr = tcptr;
865 tn = rtnl_dereference(cptr[cindex]);
ff181ed8 866 }
cf3637bb
AD
867
868 /* Only one child remains */
95f60ea3
AD
869 if (should_collapse(tn)) {
870 collapse(t, tn);
8d8e810c 871 return cptr;
5405afd1
AD
872 }
873
874 /* Return if at least one deflate was run */
875 if (max_work != MAX_WORK)
8d8e810c 876 return cptr;
5405afd1
AD
877
878 /* push the suffix length to the parent node */
879 if (tn->slen > tn->pos) {
880 unsigned char slen = update_suffix(tn);
881
882 if (tp && (slen > tp->slen))
883 tp->slen = slen;
cf3637bb 884 }
8d8e810c
AD
885
886 return cptr;
cf3637bb
AD
887}
888
35c6edac 889static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
5405afd1 890{
5405afd1
AD
891 while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
892 if (update_suffix(tp) > l->slen)
893 break;
894 tp = node_parent(tp);
895 }
896}
897
35c6edac 898static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
19baf839 899{
5405afd1
AD
900 /* if this is a new leaf then tn will be NULL and we can sort
901 * out parent suffix lengths as a part of trie_rebalance
902 */
903 while (tn && (tn->slen < l->slen)) {
904 tn->slen = l->slen;
905 tn = node_parent(tn);
906 }
907}
908
2373ce1c 909/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
910static struct key_vector *fib_find_node(struct trie *t,
911 struct key_vector **tp, u32 key)
19baf839 912{
35c6edac 913 struct key_vector *pn = NULL, *n = rcu_dereference_rtnl(t->tnode[0]);
939afb06
AD
914
915 while (n) {
916 unsigned long index = get_index(key, n);
917
918 /* This bit of code is a bit tricky but it combines multiple
919 * checks into a single check. The prefix consists of the
920 * prefix plus zeros for the bits in the cindex. The index
921 * is the difference between the key and this value. From
922 * this we can actually derive several pieces of data.
d4a975e8 923 * if (index >= (1ul << bits))
939afb06 924 * we have a mismatch in skip bits and failed
b3832117
AD
925 * else
926 * we know the value is cindex
d4a975e8
AD
927 *
928 * This check is safe even if bits == KEYLENGTH due to the
929 * fact that we can only allocate a node with 32 bits if a
930 * long is greater than 32 bits.
939afb06 931 */
d4a975e8
AD
932 if (index >= (1ul << n->bits)) {
933 n = NULL;
934 break;
935 }
939afb06
AD
936
937 /* we have found a leaf. Prefixes have already been compared */
938 if (IS_LEAF(n))
19baf839 939 break;
19baf839 940
d4a975e8 941 pn = n;
754baf8d 942 n = get_child_rcu(n, index);
939afb06 943 }
91b9a277 944
35c6edac 945 *tp = pn;
d4a975e8 946
939afb06 947 return n;
19baf839
RO
948}
949
02525368
AD
950/* Return the first fib alias matching TOS with
951 * priority less than or equal to PRIO.
952 */
79e5ad2c
AD
953static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
954 u8 tos, u32 prio)
02525368
AD
955{
956 struct fib_alias *fa;
957
958 if (!fah)
959 return NULL;
960
56315f9e 961 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
962 if (fa->fa_slen < slen)
963 continue;
964 if (fa->fa_slen != slen)
965 break;
02525368
AD
966 if (fa->fa_tos > tos)
967 continue;
968 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
969 return fa;
970 }
971
972 return NULL;
973}
974
35c6edac 975static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 976{
35c6edac 977 struct key_vector __rcu **cptr = t->tnode;
19baf839 978
d5d6487c 979 while (tn) {
35c6edac 980 struct key_vector *tp = node_parent(tn);
8d8e810c
AD
981
982 cptr = resize(t, tn);
983 if (!tp)
984 break;
35c6edac 985 tn = container_of(cptr, struct key_vector, tnode[0]);
19baf839 986 }
19baf839
RO
987}
988
35c6edac 989static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 990 struct fib_alias *new, t_key key)
19baf839 991{
35c6edac 992 struct key_vector *n, *l;
19baf839 993
d5d6487c 994 l = leaf_new(key, new);
79e5ad2c 995 if (!l)
8d8e810c 996 goto noleaf;
d5d6487c
AD
997
998 /* retrieve child from parent node */
999 if (tp)
754baf8d 1000 n = get_child(tp, get_index(key, tp));
d5d6487c 1001 else
35c6edac 1002 n = rcu_dereference_rtnl(t->tnode[0]);
19baf839 1003
836a0123
AD
1004 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1005 *
1006 * Add a new tnode here
1007 * first tnode need some special handling
1008 * leaves us in position for handling as case 3
1009 */
1010 if (n) {
35c6edac 1011 struct key_vector *tn;
19baf839 1012
e9b44019 1013 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1014 if (!tn)
1015 goto notnode;
91b9a277 1016
836a0123
AD
1017 /* initialize routes out of node */
1018 NODE_INIT_PARENT(tn, tp);
1019 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1020
836a0123
AD
1021 /* start adding routes into the node */
1022 put_child_root(tp, t, key, tn);
1023 node_set_parent(n, tn);
e962f302 1024
836a0123 1025 /* parent now has a NULL spot where the leaf can go */
e962f302 1026 tp = tn;
19baf839 1027 }
91b9a277 1028
836a0123 1029 /* Case 3: n is NULL, and will just insert a new leaf */
d5d6487c
AD
1030 NODE_INIT_PARENT(l, tp);
1031 put_child_root(tp, t, key, l);
1032 trie_rebalance(t, tp);
1033
1034 return 0;
8d8e810c
AD
1035notnode:
1036 node_free(l);
1037noleaf:
1038 return -ENOMEM;
d5d6487c
AD
1039}
1040
35c6edac
AD
1041static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1042 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1043 struct fib_alias *fa, t_key key)
1044{
1045 if (!l)
1046 return fib_insert_node(t, tp, new, key);
1047
1048 if (fa) {
1049 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1050 } else {
d5d6487c
AD
1051 struct fib_alias *last;
1052
1053 hlist_for_each_entry(last, &l->leaf, fa_list) {
1054 if (new->fa_slen < last->fa_slen)
1055 break;
1056 fa = last;
1057 }
1058
1059 if (fa)
1060 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1061 else
1062 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1063 }
2373ce1c 1064
d5d6487c
AD
1065 /* if we added to the tail node then we need to update slen */
1066 if (l->slen < new->fa_slen) {
1067 l->slen = new->fa_slen;
1068 leaf_push_suffix(tp, l);
1069 }
1070
1071 return 0;
19baf839
RO
1072}
1073
d5d6487c 1074/* Caller must hold RTNL. */
16c6cf8b 1075int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839 1076{
d4a975e8 1077 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1078 struct fib_alias *fa, *new_fa;
35c6edac 1079 struct key_vector *l, *tp;
19baf839 1080 struct fib_info *fi;
79e5ad2c
AD
1081 u8 plen = cfg->fc_dst_len;
1082 u8 slen = KEYLENGTH - plen;
4e902c57 1083 u8 tos = cfg->fc_tos;
d4a975e8 1084 u32 key;
19baf839 1085 int err;
19baf839 1086
5786ec60 1087 if (plen > KEYLENGTH)
19baf839
RO
1088 return -EINVAL;
1089
4e902c57 1090 key = ntohl(cfg->fc_dst);
19baf839 1091
2dfe55b4 1092 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1093
d4a975e8 1094 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1095 return -EINVAL;
1096
4e902c57
TG
1097 fi = fib_create_info(cfg);
1098 if (IS_ERR(fi)) {
1099 err = PTR_ERR(fi);
19baf839 1100 goto err;
4e902c57 1101 }
19baf839 1102
d4a975e8 1103 l = fib_find_node(t, &tp, key);
79e5ad2c 1104 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
19baf839
RO
1105
1106 /* Now fa, if non-NULL, points to the first fib alias
1107 * with the same keys [prefix,tos,priority], if such key already
1108 * exists or to the node before which we will insert new one.
1109 *
1110 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1111 * insert to the tail of the section matching the suffix length
1112 * of the new alias.
19baf839
RO
1113 */
1114
936f6f8e
JA
1115 if (fa && fa->fa_tos == tos &&
1116 fa->fa_info->fib_priority == fi->fib_priority) {
1117 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1118
1119 err = -EEXIST;
4e902c57 1120 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1121 goto out;
1122
936f6f8e
JA
1123 /* We have 2 goals:
1124 * 1. Find exact match for type, scope, fib_info to avoid
1125 * duplicate routes
1126 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1127 */
1128 fa_match = NULL;
1129 fa_first = fa;
56315f9e 1130 hlist_for_each_entry_from(fa, fa_list) {
79e5ad2c 1131 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
936f6f8e
JA
1132 break;
1133 if (fa->fa_info->fib_priority != fi->fib_priority)
1134 break;
1135 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1136 fa->fa_info == fi) {
1137 fa_match = fa;
1138 break;
1139 }
1140 }
1141
4e902c57 1142 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1143 struct fib_info *fi_drop;
1144 u8 state;
1145
936f6f8e
JA
1146 fa = fa_first;
1147 if (fa_match) {
1148 if (fa == fa_match)
1149 err = 0;
6725033f 1150 goto out;
936f6f8e 1151 }
2373ce1c 1152 err = -ENOBUFS;
e94b1766 1153 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1154 if (new_fa == NULL)
1155 goto out;
19baf839
RO
1156
1157 fi_drop = fa->fa_info;
2373ce1c
RO
1158 new_fa->fa_tos = fa->fa_tos;
1159 new_fa->fa_info = fi;
4e902c57 1160 new_fa->fa_type = cfg->fc_type;
19baf839 1161 state = fa->fa_state;
936f6f8e 1162 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1163 new_fa->fa_slen = fa->fa_slen;
19baf839 1164
8e05fd71
SF
1165 err = netdev_switch_fib_ipv4_add(key, plen, fi,
1166 new_fa->fa_tos,
1167 cfg->fc_type,
1168 tb->tb_id);
1169 if (err) {
1170 netdev_switch_fib_ipv4_abort(fi);
1171 kmem_cache_free(fn_alias_kmem, new_fa);
1172 goto out;
1173 }
1174
56315f9e 1175 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1176
2373ce1c 1177 alias_free_mem_rcu(fa);
19baf839
RO
1178
1179 fib_release_info(fi_drop);
1180 if (state & FA_S_ACCESSED)
4ccfe6d4 1181 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1182 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1183 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1184
91b9a277 1185 goto succeeded;
19baf839
RO
1186 }
1187 /* Error if we find a perfect match which
1188 * uses the same scope, type, and nexthop
1189 * information.
1190 */
936f6f8e
JA
1191 if (fa_match)
1192 goto out;
a07f5f50 1193
4e902c57 1194 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1195 fa = fa_first;
19baf839
RO
1196 }
1197 err = -ENOENT;
4e902c57 1198 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1199 goto out;
1200
1201 err = -ENOBUFS;
e94b1766 1202 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1203 if (new_fa == NULL)
1204 goto out;
1205
1206 new_fa->fa_info = fi;
1207 new_fa->fa_tos = tos;
4e902c57 1208 new_fa->fa_type = cfg->fc_type;
19baf839 1209 new_fa->fa_state = 0;
79e5ad2c 1210 new_fa->fa_slen = slen;
19baf839 1211
8e05fd71
SF
1212 /* (Optionally) offload fib entry to switch hardware. */
1213 err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1214 cfg->fc_type, tb->tb_id);
1215 if (err) {
1216 netdev_switch_fib_ipv4_abort(fi);
1217 goto out_free_new_fa;
1218 }
1219
9b6ebad5 1220 /* Insert new entry to the list. */
d5d6487c
AD
1221 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1222 if (err)
8e05fd71 1223 goto out_sw_fib_del;
19baf839 1224
21d8c49e
DM
1225 if (!plen)
1226 tb->tb_num_default++;
1227
4ccfe6d4 1228 rt_cache_flush(cfg->fc_nlinfo.nl_net);
4e902c57 1229 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1230 &cfg->fc_nlinfo, 0);
19baf839
RO
1231succeeded:
1232 return 0;
f835e471 1233
8e05fd71
SF
1234out_sw_fib_del:
1235 netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
f835e471
RO
1236out_free_new_fa:
1237 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1238out:
1239 fib_release_info(fi);
91b9a277 1240err:
19baf839
RO
1241 return err;
1242}
1243
35c6edac 1244static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1245{
1246 t_key prefix = n->key;
1247
1248 return (key ^ prefix) & (prefix | -prefix);
1249}
1250
345e9b54 1251/* should be called with rcu_read_lock */
22bd5b9b 1252int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1253 struct fib_result *res, int fib_flags)
19baf839 1254{
9f9e636d 1255 struct trie *t = (struct trie *)tb->tb_data;
8274a97a
AD
1256#ifdef CONFIG_IP_FIB_TRIE_STATS
1257 struct trie_use_stats __percpu *stats = t->stats;
1258#endif
9f9e636d 1259 const t_key key = ntohl(flp->daddr);
35c6edac 1260 struct key_vector *n, *pn;
79e5ad2c 1261 struct fib_alias *fa;
71e8b67d 1262 unsigned long index;
9f9e636d 1263 t_key cindex;
91b9a277 1264
35c6edac 1265 n = rcu_dereference(t->tnode[0]);
c877efb2 1266 if (!n)
345e9b54 1267 return -EAGAIN;
19baf839
RO
1268
1269#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1270 this_cpu_inc(stats->gets);
19baf839
RO
1271#endif
1272
adaf9816 1273 pn = n;
9f9e636d
AD
1274 cindex = 0;
1275
1276 /* Step 1: Travel to the longest prefix match in the trie */
1277 for (;;) {
71e8b67d 1278 index = get_index(key, n);
9f9e636d
AD
1279
1280 /* This bit of code is a bit tricky but it combines multiple
1281 * checks into a single check. The prefix consists of the
1282 * prefix plus zeros for the "bits" in the prefix. The index
1283 * is the difference between the key and this value. From
1284 * this we can actually derive several pieces of data.
71e8b67d 1285 * if (index >= (1ul << bits))
9f9e636d 1286 * we have a mismatch in skip bits and failed
b3832117
AD
1287 * else
1288 * we know the value is cindex
71e8b67d
AD
1289 *
1290 * This check is safe even if bits == KEYLENGTH due to the
1291 * fact that we can only allocate a node with 32 bits if a
1292 * long is greater than 32 bits.
9f9e636d 1293 */
71e8b67d 1294 if (index >= (1ul << n->bits))
9f9e636d 1295 break;
19baf839 1296
9f9e636d
AD
1297 /* we have found a leaf. Prefixes have already been compared */
1298 if (IS_LEAF(n))
a07f5f50 1299 goto found;
19baf839 1300
9f9e636d
AD
1301 /* only record pn and cindex if we are going to be chopping
1302 * bits later. Otherwise we are just wasting cycles.
91b9a277 1303 */
5405afd1 1304 if (n->slen > n->pos) {
9f9e636d
AD
1305 pn = n;
1306 cindex = index;
91b9a277 1307 }
19baf839 1308
754baf8d 1309 n = get_child_rcu(n, index);
9f9e636d
AD
1310 if (unlikely(!n))
1311 goto backtrace;
1312 }
19baf839 1313
9f9e636d
AD
1314 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1315 for (;;) {
1316 /* record the pointer where our next node pointer is stored */
35c6edac 1317 struct key_vector __rcu **cptr = n->tnode;
19baf839 1318
9f9e636d
AD
1319 /* This test verifies that none of the bits that differ
1320 * between the key and the prefix exist in the region of
1321 * the lsb and higher in the prefix.
91b9a277 1322 */
5405afd1 1323 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1324 goto backtrace;
91b9a277 1325
9f9e636d
AD
1326 /* exit out and process leaf */
1327 if (unlikely(IS_LEAF(n)))
1328 break;
91b9a277 1329
9f9e636d
AD
1330 /* Don't bother recording parent info. Since we are in
1331 * prefix match mode we will have to come back to wherever
1332 * we started this traversal anyway
91b9a277 1333 */
91b9a277 1334
9f9e636d 1335 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1336backtrace:
19baf839 1337#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1338 if (!n)
1339 this_cpu_inc(stats->null_node_hit);
19baf839 1340#endif
9f9e636d
AD
1341 /* If we are at cindex 0 there are no more bits for
1342 * us to strip at this level so we must ascend back
1343 * up one level to see if there are any more bits to
1344 * be stripped there.
1345 */
1346 while (!cindex) {
1347 t_key pkey = pn->key;
1348
1349 pn = node_parent_rcu(pn);
1350 if (unlikely(!pn))
345e9b54 1351 return -EAGAIN;
9f9e636d
AD
1352#ifdef CONFIG_IP_FIB_TRIE_STATS
1353 this_cpu_inc(stats->backtrack);
1354#endif
1355 /* Get Child's index */
1356 cindex = get_index(pkey, pn);
1357 }
1358
1359 /* strip the least significant bit from the cindex */
1360 cindex &= cindex - 1;
1361
1362 /* grab pointer for next child node */
41b489fd 1363 cptr = &pn->tnode[cindex];
c877efb2 1364 }
19baf839 1365 }
9f9e636d 1366
19baf839 1367found:
71e8b67d
AD
1368 /* this line carries forward the xor from earlier in the function */
1369 index = key ^ n->key;
1370
9f9e636d 1371 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1372 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1373 struct fib_info *fi = fa->fa_info;
1374 int nhsel, err;
345e9b54 1375
71e8b67d 1376 if ((index >= (1ul << fa->fa_slen)) &&
79e5ad2c 1377 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
71e8b67d 1378 continue;
79e5ad2c
AD
1379 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1380 continue;
1381 if (fi->fib_dead)
1382 continue;
1383 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1384 continue;
1385 fib_alias_accessed(fa);
1386 err = fib_props[fa->fa_type].error;
1387 if (unlikely(err < 0)) {
345e9b54 1388#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1389 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1390#endif
79e5ad2c
AD
1391 return err;
1392 }
1393 if (fi->fib_flags & RTNH_F_DEAD)
1394 continue;
1395 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1396 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1397
1398 if (nh->nh_flags & RTNH_F_DEAD)
1399 continue;
1400 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
345e9b54 1401 continue;
79e5ad2c
AD
1402
1403 if (!(fib_flags & FIB_LOOKUP_NOREF))
1404 atomic_inc(&fi->fib_clntref);
1405
1406 res->prefixlen = KEYLENGTH - fa->fa_slen;
1407 res->nh_sel = nhsel;
1408 res->type = fa->fa_type;
1409 res->scope = fi->fib_scope;
1410 res->fi = fi;
1411 res->table = tb;
1412 res->fa_head = &n->leaf;
345e9b54 1413#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1414 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1415#endif
79e5ad2c 1416 return err;
345e9b54 1417 }
9b6ebad5 1418 }
345e9b54 1419#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1420 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1421#endif
345e9b54 1422 goto backtrace;
19baf839 1423}
6fc01438 1424EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1425
35c6edac
AD
1426static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1427 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1428{
1429 /* record the location of the previous list_info entry */
1430 struct hlist_node **pprev = old->fa_list.pprev;
1431 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1432
1433 /* remove the fib_alias from the list */
1434 hlist_del_rcu(&old->fa_list);
1435
1436 /* if we emptied the list this leaf will be freed and we can sort
1437 * out parent suffix lengths as a part of trie_rebalance
1438 */
1439 if (hlist_empty(&l->leaf)) {
1440 put_child_root(tp, t, l->key, NULL);
1441 node_free(l);
1442 trie_rebalance(t, tp);
1443 return;
1444 }
1445
1446 /* only access fa if it is pointing at the last valid hlist_node */
1447 if (*pprev)
1448 return;
1449
1450 /* update the trie with the latest suffix length */
1451 l->slen = fa->fa_slen;
1452 leaf_pull_suffix(tp, l);
1453}
1454
1455/* Caller must hold RTNL. */
16c6cf8b 1456int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1457{
1458 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1459 struct fib_alias *fa, *fa_to_delete;
35c6edac 1460 struct key_vector *l, *tp;
79e5ad2c 1461 u8 plen = cfg->fc_dst_len;
79e5ad2c 1462 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1463 u8 tos = cfg->fc_tos;
1464 u32 key;
91b9a277 1465
79e5ad2c 1466 if (plen > KEYLENGTH)
19baf839
RO
1467 return -EINVAL;
1468
4e902c57 1469 key = ntohl(cfg->fc_dst);
19baf839 1470
d4a975e8 1471 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1472 return -EINVAL;
1473
d4a975e8 1474 l = fib_find_node(t, &tp, key);
c877efb2 1475 if (!l)
19baf839
RO
1476 return -ESRCH;
1477
79e5ad2c 1478 fa = fib_find_alias(&l->leaf, slen, tos, 0);
19baf839
RO
1479 if (!fa)
1480 return -ESRCH;
1481
0c7770c7 1482 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1483
1484 fa_to_delete = NULL;
56315f9e 1485 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1486 struct fib_info *fi = fa->fa_info;
1487
79e5ad2c 1488 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
19baf839
RO
1489 break;
1490
4e902c57
TG
1491 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1492 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1493 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1494 (!cfg->fc_prefsrc ||
1495 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1496 (!cfg->fc_protocol ||
1497 fi->fib_protocol == cfg->fc_protocol) &&
1498 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1499 fa_to_delete = fa;
1500 break;
1501 }
1502 }
1503
91b9a277
OJ
1504 if (!fa_to_delete)
1505 return -ESRCH;
19baf839 1506
8e05fd71
SF
1507 netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1508 cfg->fc_type, tb->tb_id);
1509
d5d6487c 1510 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1511 &cfg->fc_nlinfo, 0);
91b9a277 1512
21d8c49e
DM
1513 if (!plen)
1514 tb->tb_num_default--;
1515
d5d6487c 1516 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1517
d5d6487c 1518 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1519 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1520
d5d6487c
AD
1521 fib_release_info(fa_to_delete->fa_info);
1522 alias_free_mem_rcu(fa_to_delete);
91b9a277 1523 return 0;
19baf839
RO
1524}
1525
8be33e95 1526/* Scan for the next leaf starting at the provided key value */
35c6edac 1527static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1528{
35c6edac 1529 struct key_vector *pn, *n = *tn;
8be33e95 1530 unsigned long cindex;
82cfbb00 1531
8be33e95
AD
1532 /* record parent node for backtracing */
1533 pn = n;
1534 cindex = n ? get_index(key, n) : 0;
82cfbb00 1535
8be33e95
AD
1536 /* this loop is meant to try and find the key in the trie */
1537 while (n) {
1538 unsigned long idx = get_index(key, n);
82cfbb00 1539
8be33e95
AD
1540 /* guarantee forward progress on the keys */
1541 if (IS_LEAF(n) && (n->key >= key))
1542 goto found;
1543 if (idx >= (1ul << n->bits))
1544 break;
82cfbb00 1545
8be33e95
AD
1546 /* record parent and next child index */
1547 pn = n;
1548 cindex = idx;
82cfbb00 1549
8be33e95 1550 /* descend into the next child */
754baf8d 1551 n = get_child_rcu(pn, cindex++);
8be33e95 1552 }
82cfbb00 1553
8be33e95
AD
1554 /* this loop will search for the next leaf with a greater key */
1555 while (pn) {
1556 /* if we exhausted the parent node we will need to climb */
1557 if (cindex >= (1ul << pn->bits)) {
1558 t_key pkey = pn->key;
82cfbb00 1559
8be33e95
AD
1560 pn = node_parent_rcu(pn);
1561 if (!pn)
1562 break;
82cfbb00 1563
8be33e95
AD
1564 cindex = get_index(pkey, pn) + 1;
1565 continue;
1566 }
82cfbb00 1567
8be33e95 1568 /* grab the next available node */
754baf8d 1569 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1570 if (!n)
1571 continue;
19baf839 1572
8be33e95
AD
1573 /* no need to compare keys since we bumped the index */
1574 if (IS_LEAF(n))
1575 goto found;
71d67e66 1576
8be33e95
AD
1577 /* Rescan start scanning in new node */
1578 pn = n;
1579 cindex = 0;
1580 }
ec28cf73 1581
8be33e95
AD
1582 *tn = pn;
1583 return NULL; /* Root of trie */
1584found:
1585 /* if we are at the limit for keys just return NULL for the tnode */
1586 *tn = (n->key == KEY_MAX) ? NULL : pn;
1587 return n;
71d67e66
SH
1588}
1589
104616e7
SF
1590/* Caller must hold RTNL */
1591void fib_table_flush_external(struct fib_table *tb)
1592{
1593 struct trie *t = (struct trie *)tb->tb_data;
1594 struct fib_alias *fa;
35c6edac 1595 struct key_vector *n, *pn;
104616e7 1596 unsigned long cindex;
104616e7 1597
35c6edac 1598 n = rcu_dereference(t->tnode[0]);
104616e7
SF
1599 if (!n)
1600 return;
1601
1602 pn = NULL;
1603 cindex = 0;
1604
1605 while (IS_TNODE(n)) {
1606 /* record pn and cindex for leaf walking */
1607 pn = n;
1608 cindex = 1ul << n->bits;
1609backtrace:
1610 /* walk trie in reverse order */
1611 do {
1612 while (!(cindex--)) {
1613 t_key pkey = pn->key;
1614
104616e7 1615 /* if we got the root we are done */
72be7260 1616 pn = node_parent(pn);
104616e7
SF
1617 if (!pn)
1618 return;
1619
1620 cindex = get_index(pkey, pn);
1621 }
1622
1623 /* grab the next available node */
754baf8d 1624 n = get_child(pn, cindex);
104616e7
SF
1625 } while (!n);
1626 }
1627
1628 hlist_for_each_entry(fa, &n->leaf, fa_list) {
1629 struct fib_info *fi = fa->fa_info;
1630
72be7260
AD
1631 if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
1632 continue;
1633
1634 netdev_switch_fib_ipv4_del(n->key,
1635 KEYLENGTH - fa->fa_slen,
1636 fi, fa->fa_tos,
1637 fa->fa_type, tb->tb_id);
104616e7
SF
1638 }
1639
1640 /* if trie is leaf only loop is completed */
1641 if (pn)
1642 goto backtrace;
1643}
1644
8be33e95 1645/* Caller must hold RTNL. */
16c6cf8b 1646int fib_table_flush(struct fib_table *tb)
19baf839 1647{
7289e6dd 1648 struct trie *t = (struct trie *)tb->tb_data;
35c6edac 1649 struct key_vector *n, *pn;
7289e6dd
AD
1650 struct hlist_node *tmp;
1651 struct fib_alias *fa;
7289e6dd
AD
1652 unsigned long cindex;
1653 unsigned char slen;
82cfbb00 1654 int found = 0;
19baf839 1655
35c6edac 1656 n = rcu_dereference(t->tnode[0]);
7289e6dd
AD
1657 if (!n)
1658 goto flush_complete;
19baf839 1659
7289e6dd
AD
1660 pn = NULL;
1661 cindex = 0;
1662
1663 while (IS_TNODE(n)) {
1664 /* record pn and cindex for leaf walking */
1665 pn = n;
1666 cindex = 1ul << n->bits;
1667backtrace:
1668 /* walk trie in reverse order */
1669 do {
1670 while (!(cindex--)) {
35c6edac 1671 struct key_vector __rcu **cptr;
7289e6dd
AD
1672 t_key pkey = pn->key;
1673
1674 n = pn;
1675 pn = node_parent(n);
1676
1677 /* resize completed node */
8d8e810c 1678 cptr = resize(t, n);
7289e6dd
AD
1679
1680 /* if we got the root we are done */
1681 if (!pn)
1682 goto flush_complete;
1683
35c6edac
AD
1684 pn = container_of(cptr, struct key_vector,
1685 tnode[0]);
7289e6dd
AD
1686 cindex = get_index(pkey, pn);
1687 }
1688
1689 /* grab the next available node */
754baf8d 1690 n = get_child(pn, cindex);
7289e6dd
AD
1691 } while (!n);
1692 }
1693
1694 /* track slen in case any prefixes survive */
1695 slen = 0;
1696
1697 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1698 struct fib_info *fi = fa->fa_info;
1699
1700 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
8e05fd71
SF
1701 netdev_switch_fib_ipv4_del(n->key,
1702 KEYLENGTH - fa->fa_slen,
1703 fi, fa->fa_tos,
1704 fa->fa_type, tb->tb_id);
7289e6dd
AD
1705 hlist_del_rcu(&fa->fa_list);
1706 fib_release_info(fa->fa_info);
1707 alias_free_mem_rcu(fa);
1708 found++;
1709
1710 continue;
64c62723
AD
1711 }
1712
7289e6dd 1713 slen = fa->fa_slen;
19baf839
RO
1714 }
1715
7289e6dd
AD
1716 /* update leaf slen */
1717 n->slen = slen;
1718
1719 if (hlist_empty(&n->leaf)) {
1720 put_child_root(pn, t, n->key, NULL);
1721 node_free(n);
1722 } else {
d5d6487c 1723 leaf_pull_suffix(pn, n);
64c62723 1724 }
19baf839 1725
7289e6dd
AD
1726 /* if trie is leaf only loop is completed */
1727 if (pn)
1728 goto backtrace;
1729flush_complete:
0c7770c7 1730 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1731 return found;
1732}
1733
a7e53531 1734static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1735{
a7e53531 1736 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1737#ifdef CONFIG_IP_FIB_TRIE_STATS
1738 struct trie *t = (struct trie *)tb->tb_data;
1739
1740 free_percpu(t->stats);
1741#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1742 kfree(tb);
1743}
1744
a7e53531
AD
1745void fib_free_table(struct fib_table *tb)
1746{
1747 call_rcu(&tb->rcu, __trie_free_rcu);
1748}
1749
35c6edac 1750static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1751 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1752{
79e5ad2c 1753 __be32 xkey = htonl(l->key);
19baf839 1754 struct fib_alias *fa;
79e5ad2c 1755 int i, s_i;
19baf839 1756
79e5ad2c 1757 s_i = cb->args[4];
19baf839
RO
1758 i = 0;
1759
2373ce1c 1760 /* rcu_read_lock is hold by caller */
79e5ad2c 1761 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1762 if (i < s_i) {
1763 i++;
1764 continue;
1765 }
19baf839 1766
15e47304 1767 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1768 cb->nlh->nlmsg_seq,
1769 RTM_NEWROUTE,
1770 tb->tb_id,
1771 fa->fa_type,
be403ea1 1772 xkey,
9b6ebad5 1773 KEYLENGTH - fa->fa_slen,
19baf839 1774 fa->fa_tos,
64347f78 1775 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1776 cb->args[4] = i;
19baf839
RO
1777 return -1;
1778 }
a88ee229 1779 i++;
19baf839 1780 }
a88ee229 1781
71d67e66 1782 cb->args[4] = i;
19baf839
RO
1783 return skb->len;
1784}
1785
a7e53531 1786/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
1787int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1788 struct netlink_callback *cb)
19baf839 1789{
8be33e95 1790 struct trie *t = (struct trie *)tb->tb_data;
35c6edac 1791 struct key_vector *l, *tp;
d5ce8a0e
SH
1792 /* Dump starting at last key.
1793 * Note: 0.0.0.0/0 (ie default) is first key.
1794 */
8be33e95
AD
1795 int count = cb->args[2];
1796 t_key key = cb->args[3];
a88ee229 1797
35c6edac 1798 tp = rcu_dereference_rtnl(t->tnode[0]);
8be33e95
AD
1799
1800 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1801 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1802 cb->args[3] = key;
1803 cb->args[2] = count;
a88ee229 1804 return -1;
19baf839 1805 }
d5ce8a0e 1806
71d67e66 1807 ++count;
8be33e95
AD
1808 key = l->key + 1;
1809
71d67e66
SH
1810 memset(&cb->args[4], 0,
1811 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1812
1813 /* stop loop if key wrapped back to 0 */
1814 if (key < l->key)
1815 break;
19baf839 1816 }
8be33e95 1817
8be33e95
AD
1818 cb->args[3] = key;
1819 cb->args[2] = count;
1820
19baf839 1821 return skb->len;
19baf839
RO
1822}
1823
5348ba85 1824void __init fib_trie_init(void)
7f9b8052 1825{
a07f5f50
SH
1826 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1827 sizeof(struct fib_alias),
bc3c8c1e
SH
1828 0, SLAB_PANIC, NULL);
1829
1830 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 1831 LEAF_SIZE,
bc3c8c1e 1832 0, SLAB_PANIC, NULL);
7f9b8052 1833}
19baf839 1834
7f9b8052 1835
5348ba85 1836struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1837{
1838 struct fib_table *tb;
1839 struct trie *t;
1840
19baf839
RO
1841 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1842 GFP_KERNEL);
1843 if (tb == NULL)
1844 return NULL;
1845
1846 tb->tb_id = id;
971b893e 1847 tb->tb_default = -1;
21d8c49e 1848 tb->tb_num_default = 0;
19baf839
RO
1849
1850 t = (struct trie *) tb->tb_data;
35c6edac 1851 RCU_INIT_POINTER(t->tnode[0], NULL);
8274a97a
AD
1852#ifdef CONFIG_IP_FIB_TRIE_STATS
1853 t->stats = alloc_percpu(struct trie_use_stats);
1854 if (!t->stats) {
1855 kfree(tb);
1856 tb = NULL;
1857 }
1858#endif
19baf839 1859
19baf839
RO
1860 return tb;
1861}
1862
cb7b593c
SH
1863#ifdef CONFIG_PROC_FS
1864/* Depth first Trie walk iterator */
1865struct fib_trie_iter {
1c340b2f 1866 struct seq_net_private p;
3d3b2d25 1867 struct fib_table *tb;
35c6edac 1868 struct key_vector *tnode;
a034ee3c
ED
1869 unsigned int index;
1870 unsigned int depth;
cb7b593c 1871};
19baf839 1872
35c6edac 1873static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1874{
98293e8d 1875 unsigned long cindex = iter->index;
35c6edac
AD
1876 struct key_vector *tn = iter->tnode;
1877 struct key_vector *p;
19baf839 1878
6640e697
EB
1879 /* A single entry routing table */
1880 if (!tn)
1881 return NULL;
1882
cb7b593c
SH
1883 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1884 iter->tnode, iter->index, iter->depth);
1885rescan:
2e1ac88a 1886 while (cindex < child_length(tn)) {
754baf8d 1887 struct key_vector *n = get_child_rcu(tn, cindex);
19baf839 1888
cb7b593c
SH
1889 if (n) {
1890 if (IS_LEAF(n)) {
1891 iter->tnode = tn;
1892 iter->index = cindex + 1;
1893 } else {
1894 /* push down one level */
adaf9816 1895 iter->tnode = n;
cb7b593c
SH
1896 iter->index = 0;
1897 ++iter->depth;
1898 }
1899 return n;
1900 }
19baf839 1901
cb7b593c
SH
1902 ++cindex;
1903 }
91b9a277 1904
cb7b593c 1905 /* Current node exhausted, pop back up */
adaf9816 1906 p = node_parent_rcu(tn);
cb7b593c 1907 if (p) {
e9b44019 1908 cindex = get_index(tn->key, p) + 1;
cb7b593c
SH
1909 tn = p;
1910 --iter->depth;
1911 goto rescan;
19baf839 1912 }
cb7b593c
SH
1913
1914 /* got root? */
1915 return NULL;
19baf839
RO
1916}
1917
35c6edac
AD
1918static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
1919 struct trie *t)
19baf839 1920{
35c6edac 1921 struct key_vector *n;
5ddf0eb2 1922
132adf54 1923 if (!t)
5ddf0eb2
RO
1924 return NULL;
1925
35c6edac 1926 n = rcu_dereference(t->tnode[0]);
3d3b2d25 1927 if (!n)
5ddf0eb2 1928 return NULL;
19baf839 1929
3d3b2d25 1930 if (IS_TNODE(n)) {
adaf9816 1931 iter->tnode = n;
3d3b2d25
SH
1932 iter->index = 0;
1933 iter->depth = 1;
1934 } else {
1935 iter->tnode = NULL;
1936 iter->index = 0;
1937 iter->depth = 0;
91b9a277 1938 }
3d3b2d25
SH
1939
1940 return n;
cb7b593c 1941}
91b9a277 1942
cb7b593c
SH
1943static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1944{
35c6edac 1945 struct key_vector *n;
cb7b593c 1946 struct fib_trie_iter iter;
91b9a277 1947
cb7b593c 1948 memset(s, 0, sizeof(*s));
91b9a277 1949
cb7b593c 1950 rcu_read_lock();
3d3b2d25 1951 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 1952 if (IS_LEAF(n)) {
79e5ad2c 1953 struct fib_alias *fa;
93672292 1954
cb7b593c
SH
1955 s->leaves++;
1956 s->totdepth += iter.depth;
1957 if (iter.depth > s->maxdepth)
1958 s->maxdepth = iter.depth;
93672292 1959
79e5ad2c 1960 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 1961 ++s->prefixes;
cb7b593c 1962 } else {
cb7b593c 1963 s->tnodes++;
adaf9816
AD
1964 if (n->bits < MAX_STAT_DEPTH)
1965 s->nodesizes[n->bits]++;
30cfe7c9 1966 s->nullpointers += n->empty_children;
19baf839 1967 }
19baf839 1968 }
2373ce1c 1969 rcu_read_unlock();
19baf839
RO
1970}
1971
cb7b593c
SH
1972/*
1973 * This outputs /proc/net/fib_triestats
1974 */
1975static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 1976{
a034ee3c 1977 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 1978
cb7b593c
SH
1979 if (stat->leaves)
1980 avdepth = stat->totdepth*100 / stat->leaves;
1981 else
1982 avdepth = 0;
91b9a277 1983
a07f5f50
SH
1984 seq_printf(seq, "\tAver depth: %u.%02d\n",
1985 avdepth / 100, avdepth % 100);
cb7b593c 1986 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 1987
cb7b593c 1988 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 1989 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
1990
1991 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 1992 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 1993
187b5188 1994 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 1995 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 1996
06ef921d
RO
1997 max = MAX_STAT_DEPTH;
1998 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 1999 max--;
19baf839 2000
cb7b593c 2001 pointers = 0;
f585a991 2002 for (i = 1; i < max; i++)
cb7b593c 2003 if (stat->nodesizes[i] != 0) {
187b5188 2004 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2005 pointers += (1<<i) * stat->nodesizes[i];
2006 }
2007 seq_putc(seq, '\n');
187b5188 2008 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2009
35c6edac 2010 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2011 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2012 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2013}
2373ce1c 2014
cb7b593c 2015#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2016static void trie_show_usage(struct seq_file *seq,
8274a97a 2017 const struct trie_use_stats __percpu *stats)
66a2f7fd 2018{
8274a97a
AD
2019 struct trie_use_stats s = { 0 };
2020 int cpu;
2021
2022 /* loop through all of the CPUs and gather up the stats */
2023 for_each_possible_cpu(cpu) {
2024 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2025
2026 s.gets += pcpu->gets;
2027 s.backtrack += pcpu->backtrack;
2028 s.semantic_match_passed += pcpu->semantic_match_passed;
2029 s.semantic_match_miss += pcpu->semantic_match_miss;
2030 s.null_node_hit += pcpu->null_node_hit;
2031 s.resize_node_skipped += pcpu->resize_node_skipped;
2032 }
2033
66a2f7fd 2034 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2035 seq_printf(seq, "gets = %u\n", s.gets);
2036 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2037 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2038 s.semantic_match_passed);
2039 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2040 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2041 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2042}
66a2f7fd
SH
2043#endif /* CONFIG_IP_FIB_TRIE_STATS */
2044
3d3b2d25 2045static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2046{
3d3b2d25
SH
2047 if (tb->tb_id == RT_TABLE_LOCAL)
2048 seq_puts(seq, "Local:\n");
2049 else if (tb->tb_id == RT_TABLE_MAIN)
2050 seq_puts(seq, "Main:\n");
2051 else
2052 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2053}
19baf839 2054
3d3b2d25 2055
cb7b593c
SH
2056static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2057{
1c340b2f 2058 struct net *net = (struct net *)seq->private;
3d3b2d25 2059 unsigned int h;
877a9bff 2060
d717a9a6 2061 seq_printf(seq,
a07f5f50
SH
2062 "Basic info: size of leaf:"
2063 " %Zd bytes, size of tnode: %Zd bytes.\n",
41b489fd 2064 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2065
3d3b2d25
SH
2066 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2067 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2068 struct fib_table *tb;
2069
b67bfe0d 2070 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2071 struct trie *t = (struct trie *) tb->tb_data;
2072 struct trie_stat stat;
877a9bff 2073
3d3b2d25
SH
2074 if (!t)
2075 continue;
2076
2077 fib_table_print(seq, tb);
2078
2079 trie_collect_stats(t, &stat);
2080 trie_show_stats(seq, &stat);
2081#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2082 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2083#endif
2084 }
2085 }
19baf839 2086
cb7b593c 2087 return 0;
19baf839
RO
2088}
2089
cb7b593c 2090static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2091{
de05c557 2092 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2093}
2094
9a32144e 2095static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2096 .owner = THIS_MODULE,
2097 .open = fib_triestat_seq_open,
2098 .read = seq_read,
2099 .llseek = seq_lseek,
b6fcbdb4 2100 .release = single_release_net,
cb7b593c
SH
2101};
2102
35c6edac 2103static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2104{
1218854a
YH
2105 struct fib_trie_iter *iter = seq->private;
2106 struct net *net = seq_file_net(seq);
cb7b593c 2107 loff_t idx = 0;
3d3b2d25 2108 unsigned int h;
cb7b593c 2109
3d3b2d25
SH
2110 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2111 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2112 struct fib_table *tb;
cb7b593c 2113
b67bfe0d 2114 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2115 struct key_vector *n;
3d3b2d25
SH
2116
2117 for (n = fib_trie_get_first(iter,
2118 (struct trie *) tb->tb_data);
2119 n; n = fib_trie_get_next(iter))
2120 if (pos == idx++) {
2121 iter->tb = tb;
2122 return n;
2123 }
2124 }
cb7b593c 2125 }
3d3b2d25 2126
19baf839
RO
2127 return NULL;
2128}
2129
cb7b593c 2130static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2131 __acquires(RCU)
19baf839 2132{
cb7b593c 2133 rcu_read_lock();
1218854a 2134 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2135}
2136
cb7b593c 2137static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2138{
cb7b593c 2139 struct fib_trie_iter *iter = seq->private;
1218854a 2140 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2141 struct fib_table *tb = iter->tb;
2142 struct hlist_node *tb_node;
2143 unsigned int h;
35c6edac 2144 struct key_vector *n;
cb7b593c 2145
19baf839 2146 ++*pos;
3d3b2d25
SH
2147 /* next node in same table */
2148 n = fib_trie_get_next(iter);
2149 if (n)
2150 return n;
19baf839 2151
3d3b2d25
SH
2152 /* walk rest of this hash chain */
2153 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2154 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2155 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2156 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2157 if (n)
2158 goto found;
2159 }
19baf839 2160
3d3b2d25
SH
2161 /* new hash chain */
2162 while (++h < FIB_TABLE_HASHSZ) {
2163 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2164 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2165 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2166 if (n)
2167 goto found;
2168 }
2169 }
cb7b593c 2170 return NULL;
3d3b2d25
SH
2171
2172found:
2173 iter->tb = tb;
2174 return n;
cb7b593c 2175}
19baf839 2176
cb7b593c 2177static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2178 __releases(RCU)
19baf839 2179{
cb7b593c
SH
2180 rcu_read_unlock();
2181}
91b9a277 2182
cb7b593c
SH
2183static void seq_indent(struct seq_file *seq, int n)
2184{
a034ee3c
ED
2185 while (n-- > 0)
2186 seq_puts(seq, " ");
cb7b593c 2187}
19baf839 2188
28d36e37 2189static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2190{
132adf54 2191 switch (s) {
cb7b593c
SH
2192 case RT_SCOPE_UNIVERSE: return "universe";
2193 case RT_SCOPE_SITE: return "site";
2194 case RT_SCOPE_LINK: return "link";
2195 case RT_SCOPE_HOST: return "host";
2196 case RT_SCOPE_NOWHERE: return "nowhere";
2197 default:
28d36e37 2198 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2199 return buf;
2200 }
2201}
19baf839 2202
36cbd3dc 2203static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2204 [RTN_UNSPEC] = "UNSPEC",
2205 [RTN_UNICAST] = "UNICAST",
2206 [RTN_LOCAL] = "LOCAL",
2207 [RTN_BROADCAST] = "BROADCAST",
2208 [RTN_ANYCAST] = "ANYCAST",
2209 [RTN_MULTICAST] = "MULTICAST",
2210 [RTN_BLACKHOLE] = "BLACKHOLE",
2211 [RTN_UNREACHABLE] = "UNREACHABLE",
2212 [RTN_PROHIBIT] = "PROHIBIT",
2213 [RTN_THROW] = "THROW",
2214 [RTN_NAT] = "NAT",
2215 [RTN_XRESOLVE] = "XRESOLVE",
2216};
19baf839 2217
a034ee3c 2218static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2219{
cb7b593c
SH
2220 if (t < __RTN_MAX && rtn_type_names[t])
2221 return rtn_type_names[t];
28d36e37 2222 snprintf(buf, len, "type %u", t);
cb7b593c 2223 return buf;
19baf839
RO
2224}
2225
cb7b593c
SH
2226/* Pretty print the trie */
2227static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2228{
cb7b593c 2229 const struct fib_trie_iter *iter = seq->private;
35c6edac 2230 struct key_vector *n = v;
c877efb2 2231
3d3b2d25
SH
2232 if (!node_parent_rcu(n))
2233 fib_table_print(seq, iter->tb);
095b8501 2234
cb7b593c 2235 if (IS_TNODE(n)) {
adaf9816 2236 __be32 prf = htonl(n->key);
91b9a277 2237
e9b44019
AD
2238 seq_indent(seq, iter->depth-1);
2239 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2240 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2241 n->full_children, n->empty_children);
cb7b593c 2242 } else {
adaf9816 2243 __be32 val = htonl(n->key);
79e5ad2c 2244 struct fib_alias *fa;
cb7b593c
SH
2245
2246 seq_indent(seq, iter->depth);
673d57e7 2247 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2248
79e5ad2c
AD
2249 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2250 char buf1[32], buf2[32];
2251
2252 seq_indent(seq, iter->depth + 1);
2253 seq_printf(seq, " /%zu %s %s",
2254 KEYLENGTH - fa->fa_slen,
2255 rtn_scope(buf1, sizeof(buf1),
2256 fa->fa_info->fib_scope),
2257 rtn_type(buf2, sizeof(buf2),
2258 fa->fa_type));
2259 if (fa->fa_tos)
2260 seq_printf(seq, " tos=%d", fa->fa_tos);
2261 seq_putc(seq, '\n');
cb7b593c 2262 }
19baf839 2263 }
cb7b593c 2264
19baf839
RO
2265 return 0;
2266}
2267
f690808e 2268static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2269 .start = fib_trie_seq_start,
2270 .next = fib_trie_seq_next,
2271 .stop = fib_trie_seq_stop,
2272 .show = fib_trie_seq_show,
19baf839
RO
2273};
2274
cb7b593c 2275static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2276{
1c340b2f
DL
2277 return seq_open_net(inode, file, &fib_trie_seq_ops,
2278 sizeof(struct fib_trie_iter));
19baf839
RO
2279}
2280
9a32144e 2281static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2282 .owner = THIS_MODULE,
2283 .open = fib_trie_seq_open,
2284 .read = seq_read,
2285 .llseek = seq_lseek,
1c340b2f 2286 .release = seq_release_net,
19baf839
RO
2287};
2288
8315f5d8
SH
2289struct fib_route_iter {
2290 struct seq_net_private p;
8be33e95 2291 struct fib_table *main_tb;
35c6edac 2292 struct key_vector *tnode;
8315f5d8
SH
2293 loff_t pos;
2294 t_key key;
2295};
2296
35c6edac
AD
2297static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2298 loff_t pos)
8315f5d8 2299{
8be33e95 2300 struct fib_table *tb = iter->main_tb;
35c6edac 2301 struct key_vector *l, **tp = &iter->tnode;
8be33e95
AD
2302 struct trie *t;
2303 t_key key;
8315f5d8 2304
8be33e95
AD
2305 /* use cache location of next-to-find key */
2306 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2307 pos -= iter->pos;
8be33e95
AD
2308 key = iter->key;
2309 } else {
2310 t = (struct trie *)tb->tb_data;
35c6edac 2311 iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
8315f5d8 2312 iter->pos = 0;
8be33e95 2313 key = 0;
8315f5d8
SH
2314 }
2315
8be33e95
AD
2316 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2317 key = l->key + 1;
8315f5d8 2318 iter->pos++;
8be33e95
AD
2319
2320 if (pos-- <= 0)
2321 break;
2322
2323 l = NULL;
2324
2325 /* handle unlikely case of a key wrap */
2326 if (!key)
2327 break;
8315f5d8
SH
2328 }
2329
2330 if (l)
8be33e95 2331 iter->key = key; /* remember it */
8315f5d8
SH
2332 else
2333 iter->pos = 0; /* forget it */
2334
2335 return l;
2336}
2337
2338static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2339 __acquires(RCU)
2340{
2341 struct fib_route_iter *iter = seq->private;
2342 struct fib_table *tb;
8be33e95 2343 struct trie *t;
8315f5d8
SH
2344
2345 rcu_read_lock();
8be33e95 2346
1218854a 2347 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2348 if (!tb)
2349 return NULL;
2350
8be33e95
AD
2351 iter->main_tb = tb;
2352
2353 if (*pos != 0)
2354 return fib_route_get_idx(iter, *pos);
2355
2356 t = (struct trie *)tb->tb_data;
35c6edac 2357 iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
8be33e95
AD
2358 iter->pos = 0;
2359 iter->key = 0;
2360
2361 return SEQ_START_TOKEN;
8315f5d8
SH
2362}
2363
2364static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2365{
2366 struct fib_route_iter *iter = seq->private;
35c6edac 2367 struct key_vector *l = NULL;
8be33e95 2368 t_key key = iter->key;
8315f5d8
SH
2369
2370 ++*pos;
8be33e95
AD
2371
2372 /* only allow key of 0 for start of sequence */
2373 if ((v == SEQ_START_TOKEN) || key)
2374 l = leaf_walk_rcu(&iter->tnode, key);
2375
2376 if (l) {
2377 iter->key = l->key + 1;
8315f5d8 2378 iter->pos++;
8be33e95
AD
2379 } else {
2380 iter->pos = 0;
8315f5d8
SH
2381 }
2382
8315f5d8
SH
2383 return l;
2384}
2385
2386static void fib_route_seq_stop(struct seq_file *seq, void *v)
2387 __releases(RCU)
2388{
2389 rcu_read_unlock();
2390}
2391
a034ee3c 2392static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2393{
a034ee3c 2394 unsigned int flags = 0;
19baf839 2395
a034ee3c
ED
2396 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2397 flags = RTF_REJECT;
cb7b593c
SH
2398 if (fi && fi->fib_nh->nh_gw)
2399 flags |= RTF_GATEWAY;
32ab5f80 2400 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2401 flags |= RTF_HOST;
2402 flags |= RTF_UP;
2403 return flags;
19baf839
RO
2404}
2405
cb7b593c
SH
2406/*
2407 * This outputs /proc/net/route.
2408 * The format of the file is not supposed to be changed
a034ee3c 2409 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2410 * legacy utilities
2411 */
2412static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2413{
79e5ad2c 2414 struct fib_alias *fa;
35c6edac 2415 struct key_vector *l = v;
9b6ebad5 2416 __be32 prefix;
19baf839 2417
cb7b593c
SH
2418 if (v == SEQ_START_TOKEN) {
2419 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2420 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2421 "\tWindow\tIRTT");
2422 return 0;
2423 }
19baf839 2424
9b6ebad5
AD
2425 prefix = htonl(l->key);
2426
79e5ad2c
AD
2427 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2428 const struct fib_info *fi = fa->fa_info;
2429 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2430 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2431
79e5ad2c
AD
2432 if ((fa->fa_type == RTN_BROADCAST) ||
2433 (fa->fa_type == RTN_MULTICAST))
2434 continue;
19baf839 2435
79e5ad2c
AD
2436 seq_setwidth(seq, 127);
2437
2438 if (fi)
2439 seq_printf(seq,
2440 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2441 "%d\t%08X\t%d\t%u\t%u",
2442 fi->fib_dev ? fi->fib_dev->name : "*",
2443 prefix,
2444 fi->fib_nh->nh_gw, flags, 0, 0,
2445 fi->fib_priority,
2446 mask,
2447 (fi->fib_advmss ?
2448 fi->fib_advmss + 40 : 0),
2449 fi->fib_window,
2450 fi->fib_rtt >> 3);
2451 else
2452 seq_printf(seq,
2453 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2454 "%d\t%08X\t%d\t%u\t%u",
2455 prefix, 0, flags, 0, 0, 0,
2456 mask, 0, 0, 0);
19baf839 2457
79e5ad2c 2458 seq_pad(seq, '\n');
19baf839
RO
2459 }
2460
2461 return 0;
2462}
2463
f690808e 2464static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2465 .start = fib_route_seq_start,
2466 .next = fib_route_seq_next,
2467 .stop = fib_route_seq_stop,
cb7b593c 2468 .show = fib_route_seq_show,
19baf839
RO
2469};
2470
cb7b593c 2471static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2472{
1c340b2f 2473 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2474 sizeof(struct fib_route_iter));
19baf839
RO
2475}
2476
9a32144e 2477static const struct file_operations fib_route_fops = {
cb7b593c
SH
2478 .owner = THIS_MODULE,
2479 .open = fib_route_seq_open,
2480 .read = seq_read,
2481 .llseek = seq_lseek,
1c340b2f 2482 .release = seq_release_net,
19baf839
RO
2483};
2484
61a02653 2485int __net_init fib_proc_init(struct net *net)
19baf839 2486{
d4beaa66 2487 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2488 goto out1;
2489
d4beaa66
G
2490 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2491 &fib_triestat_fops))
cb7b593c
SH
2492 goto out2;
2493
d4beaa66 2494 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2495 goto out3;
2496
19baf839 2497 return 0;
cb7b593c
SH
2498
2499out3:
ece31ffd 2500 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2501out2:
ece31ffd 2502 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2503out1:
2504 return -ENOMEM;
19baf839
RO
2505}
2506
61a02653 2507void __net_exit fib_proc_exit(struct net *net)
19baf839 2508{
ece31ffd
G
2509 remove_proc_entry("fib_trie", net->proc_net);
2510 remove_proc_entry("fib_triestat", net->proc_net);
2511 remove_proc_entry("route", net->proc_net);
19baf839
RO
2512}
2513
2514#endif /* CONFIG_PROC_FS */