]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/fib_trie.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
ffa915d0 75#include <linux/vmalloc.h>
457c4cbc 76#include <net/net_namespace.h>
19baf839
RO
77#include <net/ip.h>
78#include <net/protocol.h>
79#include <net/route.h>
80#include <net/tcp.h>
81#include <net/sock.h>
82#include <net/ip_fib.h>
8e05fd71 83#include <net/switchdev.h>
f6d3c192 84#include <trace/events/fib.h>
19baf839
RO
85#include "fib_lookup.h"
86
06ef921d 87#define MAX_STAT_DEPTH 32
19baf839 88
95f60ea3
AD
89#define KEYLENGTH (8*sizeof(t_key))
90#define KEY_MAX ((t_key)~0)
19baf839 91
19baf839
RO
92typedef unsigned int t_key;
93
88bae714
AD
94#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
95#define IS_TNODE(n) ((n)->bits)
96#define IS_LEAF(n) (!(n)->bits)
2373ce1c 97
35c6edac 98struct key_vector {
64c9b6fb 99 t_key key;
64c9b6fb 100 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 101 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 102 unsigned char slen;
adaf9816 103 union {
41b489fd 104 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 105 struct hlist_head leaf;
41b489fd 106 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 107 struct key_vector __rcu *tnode[0];
adaf9816 108 };
19baf839
RO
109};
110
dc35dbed 111struct tnode {
56ca2adf 112 struct rcu_head rcu;
6e22d174
AD
113 t_key empty_children; /* KEYLENGTH bits needed */
114 t_key full_children; /* KEYLENGTH bits needed */
f23e59fb 115 struct key_vector __rcu *parent;
dc35dbed 116 struct key_vector kv[1];
56ca2adf 117#define tn_bits kv[0].bits
dc35dbed
AD
118};
119
120#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
121#define LEAF_SIZE TNODE_SIZE(1)
122
19baf839
RO
123#ifdef CONFIG_IP_FIB_TRIE_STATS
124struct trie_use_stats {
125 unsigned int gets;
126 unsigned int backtrack;
127 unsigned int semantic_match_passed;
128 unsigned int semantic_match_miss;
129 unsigned int null_node_hit;
2f36895a 130 unsigned int resize_node_skipped;
19baf839
RO
131};
132#endif
133
134struct trie_stat {
135 unsigned int totdepth;
136 unsigned int maxdepth;
137 unsigned int tnodes;
138 unsigned int leaves;
139 unsigned int nullpointers;
93672292 140 unsigned int prefixes;
06ef921d 141 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 142};
19baf839
RO
143
144struct trie {
88bae714 145 struct key_vector kv[1];
19baf839 146#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 147 struct trie_use_stats __percpu *stats;
19baf839 148#endif
19baf839
RO
149};
150
88bae714 151static struct key_vector *resize(struct trie *t, struct key_vector *tn);
c3059477
JP
152static size_t tnode_free_size;
153
154/*
155 * synchronize_rcu after call_rcu for that many pages; it should be especially
156 * useful before resizing the root node with PREEMPT_NONE configs; the value was
157 * obtained experimentally, aiming to avoid visible slowdown.
158 */
159static const int sync_pages = 128;
19baf839 160
e18b890b 161static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 162static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 163
56ca2adf
AD
164static inline struct tnode *tn_info(struct key_vector *kv)
165{
166 return container_of(kv, struct tnode, kv[0]);
167}
168
64c9b6fb 169/* caller must hold RTNL */
f23e59fb 170#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
754baf8d 171#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 172
64c9b6fb 173/* caller must hold RCU read lock or RTNL */
f23e59fb 174#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
754baf8d 175#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 176
64c9b6fb 177/* wrapper for rcu_assign_pointer */
35c6edac 178static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 179{
adaf9816 180 if (n)
f23e59fb 181 rcu_assign_pointer(tn_info(n)->parent, tp);
06801916
SH
182}
183
f23e59fb 184#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
64c9b6fb
AD
185
186/* This provides us with the number of children in this node, in the case of a
187 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 188 */
2e1ac88a 189static inline unsigned long child_length(const struct key_vector *tn)
06801916 190{
64c9b6fb 191 return (1ul << tn->bits) & ~(1ul);
06801916 192}
2373ce1c 193
88bae714
AD
194#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
195
2e1ac88a
AD
196static inline unsigned long get_index(t_key key, struct key_vector *kv)
197{
198 unsigned long index = key ^ kv->key;
199
88bae714
AD
200 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
201 return 0;
202
2e1ac88a
AD
203 return index >> kv->pos;
204}
205
e9b44019
AD
206/* To understand this stuff, an understanding of keys and all their bits is
207 * necessary. Every node in the trie has a key associated with it, but not
208 * all of the bits in that key are significant.
209 *
210 * Consider a node 'n' and its parent 'tp'.
211 *
212 * If n is a leaf, every bit in its key is significant. Its presence is
213 * necessitated by path compression, since during a tree traversal (when
214 * searching for a leaf - unless we are doing an insertion) we will completely
215 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
216 * a potentially successful search, that we have indeed been walking the
217 * correct key path.
218 *
219 * Note that we can never "miss" the correct key in the tree if present by
220 * following the wrong path. Path compression ensures that segments of the key
221 * that are the same for all keys with a given prefix are skipped, but the
222 * skipped part *is* identical for each node in the subtrie below the skipped
223 * bit! trie_insert() in this implementation takes care of that.
224 *
225 * if n is an internal node - a 'tnode' here, the various parts of its key
226 * have many different meanings.
227 *
228 * Example:
229 * _________________________________________________________________
230 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
231 * -----------------------------------------------------------------
232 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
233 *
234 * _________________________________________________________________
235 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
236 * -----------------------------------------------------------------
237 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
238 *
239 * tp->pos = 22
240 * tp->bits = 3
241 * n->pos = 13
242 * n->bits = 4
243 *
244 * First, let's just ignore the bits that come before the parent tp, that is
245 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
246 * point we do not use them for anything.
247 *
248 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
249 * index into the parent's child array. That is, they will be used to find
250 * 'n' among tp's children.
251 *
98a384ec 252 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
e9b44019
AD
253 * for the node n.
254 *
255 * All the bits we have seen so far are significant to the node n. The rest
256 * of the bits are really not needed or indeed known in n->key.
257 *
258 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
259 * n's child array, and will of course be different for each child.
260 *
98a384ec 261 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
e9b44019
AD
262 * at this point.
263 */
19baf839 264
f5026fab
DL
265static const int halve_threshold = 25;
266static const int inflate_threshold = 50;
345aa031 267static const int halve_threshold_root = 15;
80b71b80 268static const int inflate_threshold_root = 30;
2373ce1c
RO
269
270static void __alias_free_mem(struct rcu_head *head)
19baf839 271{
2373ce1c
RO
272 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
273 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
274}
275
2373ce1c 276static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 277{
2373ce1c
RO
278 call_rcu(&fa->rcu, __alias_free_mem);
279}
91b9a277 280
37fd30f2 281#define TNODE_KMALLOC_MAX \
35c6edac 282 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 283#define TNODE_VMALLOC_MAX \
35c6edac 284 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 285
37fd30f2 286static void __node_free_rcu(struct rcu_head *head)
387a5487 287{
56ca2adf 288 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 289
56ca2adf 290 if (!n->tn_bits)
37fd30f2 291 kmem_cache_free(trie_leaf_kmem, n);
37fd30f2 292 else
1d5cfdb0 293 kvfree(n);
387a5487
SH
294}
295
56ca2adf 296#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 297
dc35dbed 298static struct tnode *tnode_alloc(int bits)
f0e36f8c 299{
1de3d87b
AD
300 size_t size;
301
302 /* verify bits is within bounds */
303 if (bits > TNODE_VMALLOC_MAX)
304 return NULL;
305
306 /* determine size and verify it is non-zero and didn't overflow */
307 size = TNODE_SIZE(1ul << bits);
308
2373ce1c 309 if (size <= PAGE_SIZE)
8d965444 310 return kzalloc(size, GFP_KERNEL);
15be75cd 311 else
7a1c8e5a 312 return vzalloc(size);
15be75cd 313}
2373ce1c 314
35c6edac 315static inline void empty_child_inc(struct key_vector *n)
95f60ea3 316{
6e22d174 317 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
95f60ea3
AD
318}
319
35c6edac 320static inline void empty_child_dec(struct key_vector *n)
95f60ea3 321{
6e22d174 322 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
95f60ea3
AD
323}
324
35c6edac 325static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 326{
f38b24c9
FY
327 struct key_vector *l;
328 struct tnode *kv;
dc35dbed 329
f38b24c9 330 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
dc35dbed
AD
331 if (!kv)
332 return NULL;
333
334 /* initialize key vector */
f38b24c9 335 l = kv->kv;
dc35dbed
AD
336 l->key = key;
337 l->pos = 0;
338 l->bits = 0;
339 l->slen = fa->fa_slen;
340
341 /* link leaf to fib alias */
342 INIT_HLIST_HEAD(&l->leaf);
343 hlist_add_head(&fa->fa_list, &l->leaf);
344
2373ce1c
RO
345 return l;
346}
347
35c6edac 348static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 349{
64c9b6fb 350 unsigned int shift = pos + bits;
f38b24c9
FY
351 struct key_vector *tn;
352 struct tnode *tnode;
64c9b6fb
AD
353
354 /* verify bits and pos their msb bits clear and values are valid */
355 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 356
f38b24c9 357 tnode = tnode_alloc(bits);
dc35dbed
AD
358 if (!tnode)
359 return NULL;
360
f38b24c9
FY
361 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
362 sizeof(struct key_vector *) << bits);
363
dc35dbed 364 if (bits == KEYLENGTH)
6e22d174 365 tnode->full_children = 1;
dc35dbed 366 else
6e22d174 367 tnode->empty_children = 1ul << bits;
dc35dbed 368
f38b24c9 369 tn = tnode->kv;
dc35dbed
AD
370 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
371 tn->pos = pos;
372 tn->bits = bits;
373 tn->slen = pos;
374
19baf839
RO
375 return tn;
376}
377
e9b44019 378/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
379 * and no bits are skipped. See discussion in dyntree paper p. 6
380 */
35c6edac 381static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 382{
e9b44019 383 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
384}
385
ff181ed8
AD
386/* Add a child at position i overwriting the old value.
387 * Update the value of full_children and empty_children.
388 */
35c6edac
AD
389static void put_child(struct key_vector *tn, unsigned long i,
390 struct key_vector *n)
19baf839 391{
754baf8d 392 struct key_vector *chi = get_child(tn, i);
ff181ed8 393 int isfull, wasfull;
19baf839 394
2e1ac88a 395 BUG_ON(i >= child_length(tn));
0c7770c7 396
95f60ea3 397 /* update emptyChildren, overflow into fullChildren */
00db4124 398 if (!n && chi)
95f60ea3 399 empty_child_inc(tn);
00db4124 400 if (n && !chi)
95f60ea3 401 empty_child_dec(tn);
c877efb2 402
19baf839 403 /* update fullChildren */
ff181ed8 404 wasfull = tnode_full(tn, chi);
19baf839 405 isfull = tnode_full(tn, n);
ff181ed8 406
c877efb2 407 if (wasfull && !isfull)
6e22d174 408 tn_info(tn)->full_children--;
c877efb2 409 else if (!wasfull && isfull)
6e22d174 410 tn_info(tn)->full_children++;
91b9a277 411
5405afd1
AD
412 if (n && (tn->slen < n->slen))
413 tn->slen = n->slen;
414
41b489fd 415 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
416}
417
35c6edac 418static void update_children(struct key_vector *tn)
69fa57b1
AD
419{
420 unsigned long i;
421
422 /* update all of the child parent pointers */
2e1ac88a 423 for (i = child_length(tn); i;) {
754baf8d 424 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
425
426 if (!inode)
427 continue;
428
429 /* Either update the children of a tnode that
430 * already belongs to us or update the child
431 * to point to ourselves.
432 */
433 if (node_parent(inode) == tn)
434 update_children(inode);
435 else
436 node_set_parent(inode, tn);
437 }
438}
439
88bae714
AD
440static inline void put_child_root(struct key_vector *tp, t_key key,
441 struct key_vector *n)
836a0123 442{
88bae714
AD
443 if (IS_TRIE(tp))
444 rcu_assign_pointer(tp->tnode[0], n);
836a0123 445 else
88bae714 446 put_child(tp, get_index(key, tp), n);
836a0123
AD
447}
448
35c6edac 449static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 450{
56ca2adf 451 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
452}
453
35c6edac
AD
454static inline void tnode_free_append(struct key_vector *tn,
455 struct key_vector *n)
fc86a93b 456{
56ca2adf
AD
457 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
458 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 459}
0a5c0475 460
35c6edac 461static void tnode_free(struct key_vector *tn)
fc86a93b 462{
56ca2adf 463 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
464
465 while (head) {
466 head = head->next;
41b489fd 467 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
468 node_free(tn);
469
56ca2adf 470 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
471 }
472
473 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
474 tnode_free_size = 0;
475 synchronize_rcu();
0a5c0475 476 }
0a5c0475
ED
477}
478
88bae714
AD
479static struct key_vector *replace(struct trie *t,
480 struct key_vector *oldtnode,
481 struct key_vector *tn)
69fa57b1 482{
35c6edac 483 struct key_vector *tp = node_parent(oldtnode);
69fa57b1
AD
484 unsigned long i;
485
486 /* setup the parent pointer out of and back into this node */
487 NODE_INIT_PARENT(tn, tp);
88bae714 488 put_child_root(tp, tn->key, tn);
69fa57b1
AD
489
490 /* update all of the child parent pointers */
491 update_children(tn);
492
493 /* all pointers should be clean so we are done */
494 tnode_free(oldtnode);
495
496 /* resize children now that oldtnode is freed */
2e1ac88a 497 for (i = child_length(tn); i;) {
754baf8d 498 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
499
500 /* resize child node */
501 if (tnode_full(tn, inode))
88bae714 502 tn = resize(t, inode);
69fa57b1 503 }
8d8e810c 504
88bae714 505 return tp;
69fa57b1
AD
506}
507
88bae714
AD
508static struct key_vector *inflate(struct trie *t,
509 struct key_vector *oldtnode)
19baf839 510{
35c6edac 511 struct key_vector *tn;
69fa57b1 512 unsigned long i;
e9b44019 513 t_key m;
19baf839 514
0c7770c7 515 pr_debug("In inflate\n");
19baf839 516
e9b44019 517 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 518 if (!tn)
8d8e810c 519 goto notnode;
2f36895a 520
69fa57b1
AD
521 /* prepare oldtnode to be freed */
522 tnode_free_init(oldtnode);
523
12c081a5
AD
524 /* Assemble all of the pointers in our cluster, in this case that
525 * represents all of the pointers out of our allocated nodes that
526 * point to existing tnodes and the links between our allocated
527 * nodes.
2f36895a 528 */
2e1ac88a 529 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 530 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 531 struct key_vector *node0, *node1;
69fa57b1 532 unsigned long j, k;
c877efb2 533
19baf839 534 /* An empty child */
51456b29 535 if (!inode)
19baf839
RO
536 continue;
537
538 /* A leaf or an internal node with skipped bits */
adaf9816 539 if (!tnode_full(oldtnode, inode)) {
e9b44019 540 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
541 continue;
542 }
543
69fa57b1
AD
544 /* drop the node in the old tnode free list */
545 tnode_free_append(oldtnode, inode);
546
19baf839 547 /* An internal node with two children */
19baf839 548 if (inode->bits == 1) {
754baf8d
AD
549 put_child(tn, 2 * i + 1, get_child(inode, 1));
550 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 551 continue;
19baf839
RO
552 }
553
91b9a277 554 /* We will replace this node 'inode' with two new
12c081a5 555 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
556 * original children. The two new nodes will have
557 * a position one bit further down the key and this
558 * means that the "significant" part of their keys
559 * (see the discussion near the top of this file)
560 * will differ by one bit, which will be "0" in
12c081a5 561 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
562 * moving the key position by one step, the bit that
563 * we are moving away from - the bit at position
12c081a5
AD
564 * (tn->pos) - is the one that will differ between
565 * node0 and node1. So... we synthesize that bit in the
566 * two new keys.
91b9a277 567 */
12c081a5
AD
568 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
569 if (!node1)
570 goto nomem;
69fa57b1 571 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 572
69fa57b1 573 tnode_free_append(tn, node1);
12c081a5
AD
574 if (!node0)
575 goto nomem;
576 tnode_free_append(tn, node0);
577
578 /* populate child pointers in new nodes */
2e1ac88a 579 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
580 put_child(node1, --j, get_child(inode, --k));
581 put_child(node0, j, get_child(inode, j));
582 put_child(node1, --j, get_child(inode, --k));
583 put_child(node0, j, get_child(inode, j));
12c081a5 584 }
19baf839 585
12c081a5
AD
586 /* link new nodes to parent */
587 NODE_INIT_PARENT(node1, tn);
588 NODE_INIT_PARENT(node0, tn);
2f36895a 589
12c081a5
AD
590 /* link parent to nodes */
591 put_child(tn, 2 * i + 1, node1);
592 put_child(tn, 2 * i, node0);
593 }
2f36895a 594
69fa57b1 595 /* setup the parent pointers into and out of this node */
8d8e810c 596 return replace(t, oldtnode, tn);
2f80b3c8 597nomem:
fc86a93b
AD
598 /* all pointers should be clean so we are done */
599 tnode_free(tn);
8d8e810c
AD
600notnode:
601 return NULL;
19baf839
RO
602}
603
88bae714
AD
604static struct key_vector *halve(struct trie *t,
605 struct key_vector *oldtnode)
19baf839 606{
35c6edac 607 struct key_vector *tn;
12c081a5 608 unsigned long i;
19baf839 609
0c7770c7 610 pr_debug("In halve\n");
c877efb2 611
e9b44019 612 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 613 if (!tn)
8d8e810c 614 goto notnode;
2f36895a 615
69fa57b1
AD
616 /* prepare oldtnode to be freed */
617 tnode_free_init(oldtnode);
618
12c081a5
AD
619 /* Assemble all of the pointers in our cluster, in this case that
620 * represents all of the pointers out of our allocated nodes that
621 * point to existing tnodes and the links between our allocated
622 * nodes.
2f36895a 623 */
2e1ac88a 624 for (i = child_length(oldtnode); i;) {
754baf8d
AD
625 struct key_vector *node1 = get_child(oldtnode, --i);
626 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 627 struct key_vector *inode;
2f36895a 628
12c081a5
AD
629 /* At least one of the children is empty */
630 if (!node1 || !node0) {
631 put_child(tn, i / 2, node1 ? : node0);
632 continue;
633 }
c877efb2 634
2f36895a 635 /* Two nonempty children */
12c081a5 636 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
637 if (!inode)
638 goto nomem;
12c081a5 639 tnode_free_append(tn, inode);
2f36895a 640
12c081a5
AD
641 /* initialize pointers out of node */
642 put_child(inode, 1, node1);
643 put_child(inode, 0, node0);
644 NODE_INIT_PARENT(inode, tn);
645
646 /* link parent to node */
647 put_child(tn, i / 2, inode);
2f36895a 648 }
19baf839 649
69fa57b1 650 /* setup the parent pointers into and out of this node */
8d8e810c
AD
651 return replace(t, oldtnode, tn);
652nomem:
653 /* all pointers should be clean so we are done */
654 tnode_free(tn);
655notnode:
656 return NULL;
19baf839
RO
657}
658
88bae714
AD
659static struct key_vector *collapse(struct trie *t,
660 struct key_vector *oldtnode)
95f60ea3 661{
35c6edac 662 struct key_vector *n, *tp;
95f60ea3
AD
663 unsigned long i;
664
665 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 666 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 667 n = get_child(oldtnode, --i);
95f60ea3
AD
668
669 /* compress one level */
670 tp = node_parent(oldtnode);
88bae714 671 put_child_root(tp, oldtnode->key, n);
95f60ea3
AD
672 node_set_parent(n, tp);
673
674 /* drop dead node */
675 node_free(oldtnode);
88bae714
AD
676
677 return tp;
95f60ea3
AD
678}
679
35c6edac 680static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
681{
682 unsigned char slen = tn->pos;
683 unsigned long stride, i;
684
685 /* search though the list of children looking for nodes that might
686 * have a suffix greater than the one we currently have. This is
687 * why we start with a stride of 2 since a stride of 1 would
688 * represent the nodes with suffix length equal to tn->pos
689 */
2e1ac88a 690 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 691 struct key_vector *n = get_child(tn, i);
5405afd1
AD
692
693 if (!n || (n->slen <= slen))
694 continue;
695
696 /* update stride and slen based on new value */
697 stride <<= (n->slen - slen);
698 slen = n->slen;
699 i &= ~(stride - 1);
700
701 /* if slen covers all but the last bit we can stop here
702 * there will be nothing longer than that since only node
703 * 0 and 1 << (bits - 1) could have that as their suffix
704 * length.
705 */
706 if ((slen + 1) >= (tn->pos + tn->bits))
707 break;
708 }
709
710 tn->slen = slen;
711
712 return slen;
713}
714
f05a4819
AD
715/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
716 * the Helsinki University of Technology and Matti Tikkanen of Nokia
717 * Telecommunications, page 6:
718 * "A node is doubled if the ratio of non-empty children to all
719 * children in the *doubled* node is at least 'high'."
720 *
721 * 'high' in this instance is the variable 'inflate_threshold'. It
722 * is expressed as a percentage, so we multiply it with
2e1ac88a 723 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
724 * child array will be doubled by inflate()) and multiplying
725 * the left-hand side by 100 (to handle the percentage thing) we
726 * multiply the left-hand side by 50.
727 *
2e1ac88a 728 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
729 * - tn->empty_children is of course the number of non-null children
730 * in the current node. tn->full_children is the number of "full"
731 * children, that is non-null tnodes with a skip value of 0.
732 * All of those will be doubled in the resulting inflated tnode, so
733 * we just count them one extra time here.
734 *
735 * A clearer way to write this would be:
736 *
737 * to_be_doubled = tn->full_children;
2e1ac88a 738 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
739 * tn->full_children;
740 *
2e1ac88a 741 * new_child_length = child_length(tn) * 2;
f05a4819
AD
742 *
743 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
744 * new_child_length;
745 * if (new_fill_factor >= inflate_threshold)
746 *
747 * ...and so on, tho it would mess up the while () loop.
748 *
749 * anyway,
750 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
751 * inflate_threshold
752 *
753 * avoid a division:
754 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
755 * inflate_threshold * new_child_length
756 *
757 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 758 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
759 * tn->full_children) >= inflate_threshold * new_child_length
760 *
761 * expand new_child_length:
2e1ac88a 762 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 763 * tn->full_children) >=
2e1ac88a 764 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
765 *
766 * shorten again:
2e1ac88a 767 * 50 * (tn->full_children + child_length(tn) -
f05a4819 768 * tn->empty_children) >= inflate_threshold *
2e1ac88a 769 * child_length(tn)
f05a4819
AD
770 *
771 */
35c6edac 772static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 773{
2e1ac88a 774 unsigned long used = child_length(tn);
f05a4819
AD
775 unsigned long threshold = used;
776
777 /* Keep root node larger */
88bae714 778 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
6e22d174
AD
779 used -= tn_info(tn)->empty_children;
780 used += tn_info(tn)->full_children;
f05a4819 781
95f60ea3
AD
782 /* if bits == KEYLENGTH then pos = 0, and will fail below */
783
784 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
785}
786
35c6edac 787static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 788{
2e1ac88a 789 unsigned long used = child_length(tn);
f05a4819
AD
790 unsigned long threshold = used;
791
792 /* Keep root node larger */
88bae714 793 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
6e22d174 794 used -= tn_info(tn)->empty_children;
f05a4819 795
95f60ea3
AD
796 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
797
798 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
799}
800
35c6edac 801static inline bool should_collapse(struct key_vector *tn)
95f60ea3 802{
2e1ac88a 803 unsigned long used = child_length(tn);
95f60ea3 804
6e22d174 805 used -= tn_info(tn)->empty_children;
95f60ea3
AD
806
807 /* account for bits == KEYLENGTH case */
6e22d174 808 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
95f60ea3
AD
809 used -= KEY_MAX;
810
811 /* One child or none, time to drop us from the trie */
812 return used < 2;
f05a4819
AD
813}
814
cf3637bb 815#define MAX_WORK 10
88bae714 816static struct key_vector *resize(struct trie *t, struct key_vector *tn)
cf3637bb 817{
8d8e810c
AD
818#ifdef CONFIG_IP_FIB_TRIE_STATS
819 struct trie_use_stats __percpu *stats = t->stats;
820#endif
35c6edac 821 struct key_vector *tp = node_parent(tn);
88bae714 822 unsigned long cindex = get_index(tn->key, tp);
a80e89d4 823 int max_work = MAX_WORK;
cf3637bb 824
cf3637bb
AD
825 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
826 tn, inflate_threshold, halve_threshold);
827
ff181ed8
AD
828 /* track the tnode via the pointer from the parent instead of
829 * doing it ourselves. This way we can let RCU fully do its
830 * thing without us interfering
831 */
88bae714 832 BUG_ON(tn != get_child(tp, cindex));
ff181ed8 833
f05a4819
AD
834 /* Double as long as the resulting node has a number of
835 * nonempty nodes that are above the threshold.
cf3637bb 836 */
b6f15f82 837 while (should_inflate(tp, tn) && max_work) {
88bae714
AD
838 tp = inflate(t, tn);
839 if (!tp) {
cf3637bb 840#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 841 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
842#endif
843 break;
844 }
ff181ed8 845
b6f15f82 846 max_work--;
88bae714 847 tn = get_child(tp, cindex);
cf3637bb
AD
848 }
849
b6f15f82
AD
850 /* update parent in case inflate failed */
851 tp = node_parent(tn);
852
cf3637bb
AD
853 /* Return if at least one inflate is run */
854 if (max_work != MAX_WORK)
b6f15f82 855 return tp;
cf3637bb 856
f05a4819 857 /* Halve as long as the number of empty children in this
cf3637bb
AD
858 * node is above threshold.
859 */
b6f15f82 860 while (should_halve(tp, tn) && max_work) {
88bae714
AD
861 tp = halve(t, tn);
862 if (!tp) {
cf3637bb 863#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 864 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
865#endif
866 break;
867 }
cf3637bb 868
b6f15f82 869 max_work--;
88bae714 870 tn = get_child(tp, cindex);
ff181ed8 871 }
cf3637bb
AD
872
873 /* Only one child remains */
88bae714
AD
874 if (should_collapse(tn))
875 return collapse(t, tn);
876
b6f15f82 877 /* update parent in case halve failed */
88bae714 878 tp = node_parent(tn);
5405afd1
AD
879
880 /* Return if at least one deflate was run */
881 if (max_work != MAX_WORK)
88bae714 882 return tp;
5405afd1
AD
883
884 /* push the suffix length to the parent node */
885 if (tn->slen > tn->pos) {
886 unsigned char slen = update_suffix(tn);
887
88bae714 888 if (slen > tp->slen)
5405afd1 889 tp->slen = slen;
cf3637bb 890 }
8d8e810c 891
88bae714 892 return tp;
cf3637bb
AD
893}
894
35c6edac 895static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
5405afd1 896{
88bae714 897 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
5405afd1
AD
898 if (update_suffix(tp) > l->slen)
899 break;
900 tp = node_parent(tp);
901 }
902}
903
35c6edac 904static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
19baf839 905{
5405afd1
AD
906 /* if this is a new leaf then tn will be NULL and we can sort
907 * out parent suffix lengths as a part of trie_rebalance
908 */
88bae714 909 while (tn->slen < l->slen) {
5405afd1
AD
910 tn->slen = l->slen;
911 tn = node_parent(tn);
912 }
913}
914
2373ce1c 915/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
916static struct key_vector *fib_find_node(struct trie *t,
917 struct key_vector **tp, u32 key)
19baf839 918{
88bae714
AD
919 struct key_vector *pn, *n = t->kv;
920 unsigned long index = 0;
921
922 do {
923 pn = n;
924 n = get_child_rcu(n, index);
925
926 if (!n)
927 break;
939afb06 928
88bae714 929 index = get_cindex(key, n);
939afb06
AD
930
931 /* This bit of code is a bit tricky but it combines multiple
932 * checks into a single check. The prefix consists of the
933 * prefix plus zeros for the bits in the cindex. The index
934 * is the difference between the key and this value. From
935 * this we can actually derive several pieces of data.
d4a975e8 936 * if (index >= (1ul << bits))
939afb06 937 * we have a mismatch in skip bits and failed
b3832117
AD
938 * else
939 * we know the value is cindex
d4a975e8
AD
940 *
941 * This check is safe even if bits == KEYLENGTH due to the
942 * fact that we can only allocate a node with 32 bits if a
943 * long is greater than 32 bits.
939afb06 944 */
d4a975e8
AD
945 if (index >= (1ul << n->bits)) {
946 n = NULL;
947 break;
948 }
939afb06 949
88bae714
AD
950 /* keep searching until we find a perfect match leaf or NULL */
951 } while (IS_TNODE(n));
91b9a277 952
35c6edac 953 *tp = pn;
d4a975e8 954
939afb06 955 return n;
19baf839
RO
956}
957
02525368
AD
958/* Return the first fib alias matching TOS with
959 * priority less than or equal to PRIO.
960 */
79e5ad2c 961static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
0b65bd97 962 u8 tos, u32 prio, u32 tb_id)
02525368
AD
963{
964 struct fib_alias *fa;
965
966 if (!fah)
967 return NULL;
968
56315f9e 969 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
970 if (fa->fa_slen < slen)
971 continue;
972 if (fa->fa_slen != slen)
973 break;
0b65bd97
AD
974 if (fa->tb_id > tb_id)
975 continue;
976 if (fa->tb_id != tb_id)
977 break;
02525368
AD
978 if (fa->fa_tos > tos)
979 continue;
980 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
981 return fa;
982 }
983
984 return NULL;
985}
986
35c6edac 987static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 988{
88bae714
AD
989 while (!IS_TRIE(tn))
990 tn = resize(t, tn);
19baf839
RO
991}
992
35c6edac 993static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 994 struct fib_alias *new, t_key key)
19baf839 995{
35c6edac 996 struct key_vector *n, *l;
19baf839 997
d5d6487c 998 l = leaf_new(key, new);
79e5ad2c 999 if (!l)
8d8e810c 1000 goto noleaf;
d5d6487c
AD
1001
1002 /* retrieve child from parent node */
88bae714 1003 n = get_child(tp, get_index(key, tp));
19baf839 1004
836a0123
AD
1005 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1006 *
1007 * Add a new tnode here
1008 * first tnode need some special handling
1009 * leaves us in position for handling as case 3
1010 */
1011 if (n) {
35c6edac 1012 struct key_vector *tn;
19baf839 1013
e9b44019 1014 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1015 if (!tn)
1016 goto notnode;
91b9a277 1017
836a0123
AD
1018 /* initialize routes out of node */
1019 NODE_INIT_PARENT(tn, tp);
1020 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1021
836a0123 1022 /* start adding routes into the node */
88bae714 1023 put_child_root(tp, key, tn);
836a0123 1024 node_set_parent(n, tn);
e962f302 1025
836a0123 1026 /* parent now has a NULL spot where the leaf can go */
e962f302 1027 tp = tn;
19baf839 1028 }
91b9a277 1029
836a0123 1030 /* Case 3: n is NULL, and will just insert a new leaf */
d5d6487c 1031 NODE_INIT_PARENT(l, tp);
88bae714 1032 put_child_root(tp, key, l);
d5d6487c
AD
1033 trie_rebalance(t, tp);
1034
1035 return 0;
8d8e810c
AD
1036notnode:
1037 node_free(l);
1038noleaf:
1039 return -ENOMEM;
d5d6487c
AD
1040}
1041
35c6edac
AD
1042static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1043 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1044 struct fib_alias *fa, t_key key)
1045{
1046 if (!l)
1047 return fib_insert_node(t, tp, new, key);
1048
1049 if (fa) {
1050 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1051 } else {
d5d6487c
AD
1052 struct fib_alias *last;
1053
1054 hlist_for_each_entry(last, &l->leaf, fa_list) {
1055 if (new->fa_slen < last->fa_slen)
1056 break;
0b65bd97
AD
1057 if ((new->fa_slen == last->fa_slen) &&
1058 (new->tb_id > last->tb_id))
1059 break;
d5d6487c
AD
1060 fa = last;
1061 }
1062
1063 if (fa)
1064 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1065 else
1066 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1067 }
2373ce1c 1068
d5d6487c
AD
1069 /* if we added to the tail node then we need to update slen */
1070 if (l->slen < new->fa_slen) {
1071 l->slen = new->fa_slen;
1072 leaf_push_suffix(tp, l);
1073 }
1074
1075 return 0;
19baf839
RO
1076}
1077
d5d6487c 1078/* Caller must hold RTNL. */
16c6cf8b 1079int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839 1080{
d4a975e8 1081 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1082 struct fib_alias *fa, *new_fa;
35c6edac 1083 struct key_vector *l, *tp;
a2bb6d7d 1084 unsigned int nlflags = 0;
19baf839 1085 struct fib_info *fi;
79e5ad2c
AD
1086 u8 plen = cfg->fc_dst_len;
1087 u8 slen = KEYLENGTH - plen;
4e902c57 1088 u8 tos = cfg->fc_tos;
d4a975e8 1089 u32 key;
19baf839 1090 int err;
19baf839 1091
5786ec60 1092 if (plen > KEYLENGTH)
19baf839
RO
1093 return -EINVAL;
1094
4e902c57 1095 key = ntohl(cfg->fc_dst);
19baf839 1096
2dfe55b4 1097 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1098
d4a975e8 1099 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1100 return -EINVAL;
1101
4e902c57
TG
1102 fi = fib_create_info(cfg);
1103 if (IS_ERR(fi)) {
1104 err = PTR_ERR(fi);
19baf839 1105 goto err;
4e902c57 1106 }
19baf839 1107
d4a975e8 1108 l = fib_find_node(t, &tp, key);
0b65bd97
AD
1109 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1110 tb->tb_id) : NULL;
19baf839
RO
1111
1112 /* Now fa, if non-NULL, points to the first fib alias
1113 * with the same keys [prefix,tos,priority], if such key already
1114 * exists or to the node before which we will insert new one.
1115 *
1116 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1117 * insert to the tail of the section matching the suffix length
1118 * of the new alias.
19baf839
RO
1119 */
1120
936f6f8e
JA
1121 if (fa && fa->fa_tos == tos &&
1122 fa->fa_info->fib_priority == fi->fib_priority) {
1123 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1124
1125 err = -EEXIST;
4e902c57 1126 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1127 goto out;
1128
936f6f8e
JA
1129 /* We have 2 goals:
1130 * 1. Find exact match for type, scope, fib_info to avoid
1131 * duplicate routes
1132 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1133 */
1134 fa_match = NULL;
1135 fa_first = fa;
56315f9e 1136 hlist_for_each_entry_from(fa, fa_list) {
0b65bd97
AD
1137 if ((fa->fa_slen != slen) ||
1138 (fa->tb_id != tb->tb_id) ||
1139 (fa->fa_tos != tos))
936f6f8e
JA
1140 break;
1141 if (fa->fa_info->fib_priority != fi->fib_priority)
1142 break;
1143 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1144 fa->fa_info == fi) {
1145 fa_match = fa;
1146 break;
1147 }
1148 }
1149
4e902c57 1150 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1151 struct fib_info *fi_drop;
1152 u8 state;
1153
936f6f8e
JA
1154 fa = fa_first;
1155 if (fa_match) {
1156 if (fa == fa_match)
1157 err = 0;
6725033f 1158 goto out;
936f6f8e 1159 }
2373ce1c 1160 err = -ENOBUFS;
e94b1766 1161 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1162 if (!new_fa)
2373ce1c 1163 goto out;
19baf839
RO
1164
1165 fi_drop = fa->fa_info;
2373ce1c
RO
1166 new_fa->fa_tos = fa->fa_tos;
1167 new_fa->fa_info = fi;
4e902c57 1168 new_fa->fa_type = cfg->fc_type;
19baf839 1169 state = fa->fa_state;
936f6f8e 1170 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1171 new_fa->fa_slen = fa->fa_slen;
d4e64c29 1172 new_fa->tb_id = tb->tb_id;
2392debc 1173 new_fa->fa_default = -1;
19baf839 1174
ebb9a03a
JP
1175 err = switchdev_fib_ipv4_add(key, plen, fi,
1176 new_fa->fa_tos,
1177 cfg->fc_type,
1178 cfg->fc_nlflags,
1179 tb->tb_id);
8e05fd71 1180 if (err) {
ebb9a03a 1181 switchdev_fib_ipv4_abort(fi);
8e05fd71
SF
1182 kmem_cache_free(fn_alias_kmem, new_fa);
1183 goto out;
1184 }
1185
56315f9e 1186 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1187
2373ce1c 1188 alias_free_mem_rcu(fa);
19baf839
RO
1189
1190 fib_release_info(fi_drop);
1191 if (state & FA_S_ACCESSED)
4ccfe6d4 1192 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1193 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1194 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1195
91b9a277 1196 goto succeeded;
19baf839
RO
1197 }
1198 /* Error if we find a perfect match which
1199 * uses the same scope, type, and nexthop
1200 * information.
1201 */
936f6f8e
JA
1202 if (fa_match)
1203 goto out;
a07f5f50 1204
a2bb6d7d
RP
1205 if (cfg->fc_nlflags & NLM_F_APPEND)
1206 nlflags = NLM_F_APPEND;
1207 else
936f6f8e 1208 fa = fa_first;
19baf839
RO
1209 }
1210 err = -ENOENT;
4e902c57 1211 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1212 goto out;
1213
1214 err = -ENOBUFS;
e94b1766 1215 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1216 if (!new_fa)
19baf839
RO
1217 goto out;
1218
1219 new_fa->fa_info = fi;
1220 new_fa->fa_tos = tos;
4e902c57 1221 new_fa->fa_type = cfg->fc_type;
19baf839 1222 new_fa->fa_state = 0;
79e5ad2c 1223 new_fa->fa_slen = slen;
0ddcf43d 1224 new_fa->tb_id = tb->tb_id;
2392debc 1225 new_fa->fa_default = -1;
19baf839 1226
8e05fd71 1227 /* (Optionally) offload fib entry to switch hardware. */
ebb9a03a
JP
1228 err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
1229 cfg->fc_nlflags, tb->tb_id);
8e05fd71 1230 if (err) {
ebb9a03a 1231 switchdev_fib_ipv4_abort(fi);
8e05fd71
SF
1232 goto out_free_new_fa;
1233 }
1234
9b6ebad5 1235 /* Insert new entry to the list. */
d5d6487c
AD
1236 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1237 if (err)
8e05fd71 1238 goto out_sw_fib_del;
19baf839 1239
21d8c49e
DM
1240 if (!plen)
1241 tb->tb_num_default++;
1242
4ccfe6d4 1243 rt_cache_flush(cfg->fc_nlinfo.nl_net);
0ddcf43d 1244 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
a2bb6d7d 1245 &cfg->fc_nlinfo, nlflags);
19baf839
RO
1246succeeded:
1247 return 0;
f835e471 1248
8e05fd71 1249out_sw_fib_del:
ebb9a03a 1250 switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
f835e471
RO
1251out_free_new_fa:
1252 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1253out:
1254 fib_release_info(fi);
91b9a277 1255err:
19baf839
RO
1256 return err;
1257}
1258
35c6edac 1259static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1260{
1261 t_key prefix = n->key;
1262
1263 return (key ^ prefix) & (prefix | -prefix);
1264}
1265
345e9b54 1266/* should be called with rcu_read_lock */
22bd5b9b 1267int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1268 struct fib_result *res, int fib_flags)
19baf839 1269{
0ddcf43d 1270 struct trie *t = (struct trie *) tb->tb_data;
8274a97a
AD
1271#ifdef CONFIG_IP_FIB_TRIE_STATS
1272 struct trie_use_stats __percpu *stats = t->stats;
1273#endif
9f9e636d 1274 const t_key key = ntohl(flp->daddr);
35c6edac 1275 struct key_vector *n, *pn;
79e5ad2c 1276 struct fib_alias *fa;
71e8b67d 1277 unsigned long index;
9f9e636d 1278 t_key cindex;
91b9a277 1279
f6d3c192
DA
1280 trace_fib_table_lookup(tb->tb_id, flp);
1281
88bae714
AD
1282 pn = t->kv;
1283 cindex = 0;
1284
1285 n = get_child_rcu(pn, cindex);
c877efb2 1286 if (!n)
345e9b54 1287 return -EAGAIN;
19baf839
RO
1288
1289#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1290 this_cpu_inc(stats->gets);
19baf839
RO
1291#endif
1292
9f9e636d
AD
1293 /* Step 1: Travel to the longest prefix match in the trie */
1294 for (;;) {
88bae714 1295 index = get_cindex(key, n);
9f9e636d
AD
1296
1297 /* This bit of code is a bit tricky but it combines multiple
1298 * checks into a single check. The prefix consists of the
1299 * prefix plus zeros for the "bits" in the prefix. The index
1300 * is the difference between the key and this value. From
1301 * this we can actually derive several pieces of data.
71e8b67d 1302 * if (index >= (1ul << bits))
9f9e636d 1303 * we have a mismatch in skip bits and failed
b3832117
AD
1304 * else
1305 * we know the value is cindex
71e8b67d
AD
1306 *
1307 * This check is safe even if bits == KEYLENGTH due to the
1308 * fact that we can only allocate a node with 32 bits if a
1309 * long is greater than 32 bits.
9f9e636d 1310 */
71e8b67d 1311 if (index >= (1ul << n->bits))
9f9e636d 1312 break;
19baf839 1313
9f9e636d
AD
1314 /* we have found a leaf. Prefixes have already been compared */
1315 if (IS_LEAF(n))
a07f5f50 1316 goto found;
19baf839 1317
9f9e636d
AD
1318 /* only record pn and cindex if we are going to be chopping
1319 * bits later. Otherwise we are just wasting cycles.
91b9a277 1320 */
5405afd1 1321 if (n->slen > n->pos) {
9f9e636d
AD
1322 pn = n;
1323 cindex = index;
91b9a277 1324 }
19baf839 1325
754baf8d 1326 n = get_child_rcu(n, index);
9f9e636d
AD
1327 if (unlikely(!n))
1328 goto backtrace;
1329 }
19baf839 1330
9f9e636d
AD
1331 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1332 for (;;) {
1333 /* record the pointer where our next node pointer is stored */
35c6edac 1334 struct key_vector __rcu **cptr = n->tnode;
19baf839 1335
9f9e636d
AD
1336 /* This test verifies that none of the bits that differ
1337 * between the key and the prefix exist in the region of
1338 * the lsb and higher in the prefix.
91b9a277 1339 */
5405afd1 1340 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1341 goto backtrace;
91b9a277 1342
9f9e636d
AD
1343 /* exit out and process leaf */
1344 if (unlikely(IS_LEAF(n)))
1345 break;
91b9a277 1346
9f9e636d
AD
1347 /* Don't bother recording parent info. Since we are in
1348 * prefix match mode we will have to come back to wherever
1349 * we started this traversal anyway
91b9a277 1350 */
91b9a277 1351
9f9e636d 1352 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1353backtrace:
19baf839 1354#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1355 if (!n)
1356 this_cpu_inc(stats->null_node_hit);
19baf839 1357#endif
9f9e636d
AD
1358 /* If we are at cindex 0 there are no more bits for
1359 * us to strip at this level so we must ascend back
1360 * up one level to see if there are any more bits to
1361 * be stripped there.
1362 */
1363 while (!cindex) {
1364 t_key pkey = pn->key;
1365
88bae714
AD
1366 /* If we don't have a parent then there is
1367 * nothing for us to do as we do not have any
1368 * further nodes to parse.
1369 */
1370 if (IS_TRIE(pn))
345e9b54 1371 return -EAGAIN;
9f9e636d
AD
1372#ifdef CONFIG_IP_FIB_TRIE_STATS
1373 this_cpu_inc(stats->backtrack);
1374#endif
1375 /* Get Child's index */
88bae714 1376 pn = node_parent_rcu(pn);
9f9e636d
AD
1377 cindex = get_index(pkey, pn);
1378 }
1379
1380 /* strip the least significant bit from the cindex */
1381 cindex &= cindex - 1;
1382
1383 /* grab pointer for next child node */
41b489fd 1384 cptr = &pn->tnode[cindex];
c877efb2 1385 }
19baf839 1386 }
9f9e636d 1387
19baf839 1388found:
71e8b67d
AD
1389 /* this line carries forward the xor from earlier in the function */
1390 index = key ^ n->key;
1391
9f9e636d 1392 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1393 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1394 struct fib_info *fi = fa->fa_info;
1395 int nhsel, err;
345e9b54 1396
a5829f53
AD
1397 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1398 if (index >= (1ul << fa->fa_slen))
1399 continue;
1400 }
79e5ad2c
AD
1401 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1402 continue;
1403 if (fi->fib_dead)
1404 continue;
1405 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1406 continue;
1407 fib_alias_accessed(fa);
1408 err = fib_props[fa->fa_type].error;
1409 if (unlikely(err < 0)) {
345e9b54 1410#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1411 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1412#endif
79e5ad2c
AD
1413 return err;
1414 }
1415 if (fi->fib_flags & RTNH_F_DEAD)
1416 continue;
1417 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1418 const struct fib_nh *nh = &fi->fib_nh[nhsel];
0eeb075f 1419 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
79e5ad2c
AD
1420
1421 if (nh->nh_flags & RTNH_F_DEAD)
1422 continue;
0eeb075f
AG
1423 if (in_dev &&
1424 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1425 nh->nh_flags & RTNH_F_LINKDOWN &&
1426 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1427 continue;
58189ca7 1428 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
613d09b3
DA
1429 if (flp->flowi4_oif &&
1430 flp->flowi4_oif != nh->nh_oif)
1431 continue;
1432 }
79e5ad2c
AD
1433
1434 if (!(fib_flags & FIB_LOOKUP_NOREF))
1435 atomic_inc(&fi->fib_clntref);
1436
1437 res->prefixlen = KEYLENGTH - fa->fa_slen;
1438 res->nh_sel = nhsel;
1439 res->type = fa->fa_type;
1440 res->scope = fi->fib_scope;
1441 res->fi = fi;
1442 res->table = tb;
1443 res->fa_head = &n->leaf;
345e9b54 1444#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1445 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1446#endif
f6d3c192
DA
1447 trace_fib_table_lookup_nh(nh);
1448
79e5ad2c 1449 return err;
345e9b54 1450 }
9b6ebad5 1451 }
345e9b54 1452#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1453 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1454#endif
345e9b54 1455 goto backtrace;
19baf839 1456}
6fc01438 1457EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1458
35c6edac
AD
1459static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1460 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1461{
1462 /* record the location of the previous list_info entry */
1463 struct hlist_node **pprev = old->fa_list.pprev;
1464 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1465
1466 /* remove the fib_alias from the list */
1467 hlist_del_rcu(&old->fa_list);
1468
1469 /* if we emptied the list this leaf will be freed and we can sort
1470 * out parent suffix lengths as a part of trie_rebalance
1471 */
1472 if (hlist_empty(&l->leaf)) {
88bae714 1473 put_child_root(tp, l->key, NULL);
d5d6487c
AD
1474 node_free(l);
1475 trie_rebalance(t, tp);
1476 return;
1477 }
1478
1479 /* only access fa if it is pointing at the last valid hlist_node */
1480 if (*pprev)
1481 return;
1482
1483 /* update the trie with the latest suffix length */
1484 l->slen = fa->fa_slen;
1485 leaf_pull_suffix(tp, l);
1486}
1487
1488/* Caller must hold RTNL. */
16c6cf8b 1489int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1490{
1491 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1492 struct fib_alias *fa, *fa_to_delete;
35c6edac 1493 struct key_vector *l, *tp;
79e5ad2c 1494 u8 plen = cfg->fc_dst_len;
79e5ad2c 1495 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1496 u8 tos = cfg->fc_tos;
1497 u32 key;
91b9a277 1498
79e5ad2c 1499 if (plen > KEYLENGTH)
19baf839
RO
1500 return -EINVAL;
1501
4e902c57 1502 key = ntohl(cfg->fc_dst);
19baf839 1503
d4a975e8 1504 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1505 return -EINVAL;
1506
d4a975e8 1507 l = fib_find_node(t, &tp, key);
c877efb2 1508 if (!l)
19baf839
RO
1509 return -ESRCH;
1510
0b65bd97 1511 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
19baf839
RO
1512 if (!fa)
1513 return -ESRCH;
1514
0c7770c7 1515 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1516
1517 fa_to_delete = NULL;
56315f9e 1518 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1519 struct fib_info *fi = fa->fa_info;
1520
0b65bd97
AD
1521 if ((fa->fa_slen != slen) ||
1522 (fa->tb_id != tb->tb_id) ||
1523 (fa->fa_tos != tos))
19baf839
RO
1524 break;
1525
4e902c57
TG
1526 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1527 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1528 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1529 (!cfg->fc_prefsrc ||
1530 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1531 (!cfg->fc_protocol ||
1532 fi->fib_protocol == cfg->fc_protocol) &&
1533 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1534 fa_to_delete = fa;
1535 break;
1536 }
1537 }
1538
91b9a277
OJ
1539 if (!fa_to_delete)
1540 return -ESRCH;
19baf839 1541
ebb9a03a
JP
1542 switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1543 cfg->fc_type, tb->tb_id);
8e05fd71 1544
d5d6487c 1545 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1546 &cfg->fc_nlinfo, 0);
91b9a277 1547
21d8c49e
DM
1548 if (!plen)
1549 tb->tb_num_default--;
1550
d5d6487c 1551 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1552
d5d6487c 1553 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1554 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1555
d5d6487c
AD
1556 fib_release_info(fa_to_delete->fa_info);
1557 alias_free_mem_rcu(fa_to_delete);
91b9a277 1558 return 0;
19baf839
RO
1559}
1560
8be33e95 1561/* Scan for the next leaf starting at the provided key value */
35c6edac 1562static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1563{
35c6edac 1564 struct key_vector *pn, *n = *tn;
8be33e95 1565 unsigned long cindex;
82cfbb00 1566
8be33e95 1567 /* this loop is meant to try and find the key in the trie */
88bae714 1568 do {
8be33e95
AD
1569 /* record parent and next child index */
1570 pn = n;
c2229fe1 1571 cindex = (key > pn->key) ? get_index(key, pn) : 0;
88bae714
AD
1572
1573 if (cindex >> pn->bits)
1574 break;
82cfbb00 1575
8be33e95 1576 /* descend into the next child */
754baf8d 1577 n = get_child_rcu(pn, cindex++);
88bae714
AD
1578 if (!n)
1579 break;
1580
1581 /* guarantee forward progress on the keys */
1582 if (IS_LEAF(n) && (n->key >= key))
1583 goto found;
1584 } while (IS_TNODE(n));
82cfbb00 1585
8be33e95 1586 /* this loop will search for the next leaf with a greater key */
88bae714 1587 while (!IS_TRIE(pn)) {
8be33e95
AD
1588 /* if we exhausted the parent node we will need to climb */
1589 if (cindex >= (1ul << pn->bits)) {
1590 t_key pkey = pn->key;
82cfbb00 1591
8be33e95 1592 pn = node_parent_rcu(pn);
8be33e95
AD
1593 cindex = get_index(pkey, pn) + 1;
1594 continue;
1595 }
82cfbb00 1596
8be33e95 1597 /* grab the next available node */
754baf8d 1598 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1599 if (!n)
1600 continue;
19baf839 1601
8be33e95
AD
1602 /* no need to compare keys since we bumped the index */
1603 if (IS_LEAF(n))
1604 goto found;
71d67e66 1605
8be33e95
AD
1606 /* Rescan start scanning in new node */
1607 pn = n;
1608 cindex = 0;
1609 }
ec28cf73 1610
8be33e95
AD
1611 *tn = pn;
1612 return NULL; /* Root of trie */
1613found:
1614 /* if we are at the limit for keys just return NULL for the tnode */
88bae714 1615 *tn = pn;
8be33e95 1616 return n;
71d67e66
SH
1617}
1618
0ddcf43d
AD
1619static void fib_trie_free(struct fib_table *tb)
1620{
1621 struct trie *t = (struct trie *)tb->tb_data;
1622 struct key_vector *pn = t->kv;
1623 unsigned long cindex = 1;
1624 struct hlist_node *tmp;
1625 struct fib_alias *fa;
1626
1627 /* walk trie in reverse order and free everything */
1628 for (;;) {
1629 struct key_vector *n;
1630
1631 if (!(cindex--)) {
1632 t_key pkey = pn->key;
1633
1634 if (IS_TRIE(pn))
1635 break;
1636
1637 n = pn;
1638 pn = node_parent(pn);
1639
1640 /* drop emptied tnode */
1641 put_child_root(pn, n->key, NULL);
1642 node_free(n);
1643
1644 cindex = get_index(pkey, pn);
1645
1646 continue;
1647 }
1648
1649 /* grab the next available node */
1650 n = get_child(pn, cindex);
1651 if (!n)
1652 continue;
1653
1654 if (IS_TNODE(n)) {
1655 /* record pn and cindex for leaf walking */
1656 pn = n;
1657 cindex = 1ul << n->bits;
1658
1659 continue;
1660 }
1661
1662 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1663 hlist_del_rcu(&fa->fa_list);
1664 alias_free_mem_rcu(fa);
1665 }
1666
1667 put_child_root(pn, n->key, NULL);
1668 node_free(n);
1669 }
1670
1671#ifdef CONFIG_IP_FIB_TRIE_STATS
1672 free_percpu(t->stats);
1673#endif
1674 kfree(tb);
1675}
1676
1677struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1678{
1679 struct trie *ot = (struct trie *)oldtb->tb_data;
1680 struct key_vector *l, *tp = ot->kv;
1681 struct fib_table *local_tb;
1682 struct fib_alias *fa;
1683 struct trie *lt;
1684 t_key key = 0;
1685
1686 if (oldtb->tb_data == oldtb->__data)
1687 return oldtb;
1688
1689 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1690 if (!local_tb)
1691 return NULL;
1692
1693 lt = (struct trie *)local_tb->tb_data;
1694
1695 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1696 struct key_vector *local_l = NULL, *local_tp;
1697
1698 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1699 struct fib_alias *new_fa;
1700
1701 if (local_tb->tb_id != fa->tb_id)
1702 continue;
1703
1704 /* clone fa for new local table */
1705 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1706 if (!new_fa)
1707 goto out;
1708
1709 memcpy(new_fa, fa, sizeof(*fa));
1710
1711 /* insert clone into table */
1712 if (!local_l)
1713 local_l = fib_find_node(lt, &local_tp, l->key);
1714
1715 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1716 NULL, l->key))
1717 goto out;
1718 }
1719
1720 /* stop loop if key wrapped back to 0 */
1721 key = l->key + 1;
1722 if (key < l->key)
1723 break;
1724 }
1725
1726 return local_tb;
1727out:
1728 fib_trie_free(local_tb);
1729
1730 return NULL;
1731}
1732
104616e7
SF
1733/* Caller must hold RTNL */
1734void fib_table_flush_external(struct fib_table *tb)
1735{
1736 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1737 struct key_vector *pn = t->kv;
1738 unsigned long cindex = 1;
1739 struct hlist_node *tmp;
104616e7 1740 struct fib_alias *fa;
104616e7 1741
88bae714
AD
1742 /* walk trie in reverse order */
1743 for (;;) {
0ddcf43d 1744 unsigned char slen = 0;
88bae714 1745 struct key_vector *n;
104616e7 1746
88bae714
AD
1747 if (!(cindex--)) {
1748 t_key pkey = pn->key;
104616e7 1749
88bae714
AD
1750 /* cannot resize the trie vector */
1751 if (IS_TRIE(pn))
1752 break;
104616e7 1753
0ddcf43d
AD
1754 /* resize completed node */
1755 pn = resize(t, pn);
88bae714 1756 cindex = get_index(pkey, pn);
104616e7 1757
88bae714
AD
1758 continue;
1759 }
104616e7 1760
88bae714
AD
1761 /* grab the next available node */
1762 n = get_child(pn, cindex);
1763 if (!n)
1764 continue;
104616e7 1765
88bae714
AD
1766 if (IS_TNODE(n)) {
1767 /* record pn and cindex for leaf walking */
1768 pn = n;
1769 cindex = 1ul << n->bits;
104616e7 1770
72be7260 1771 continue;
88bae714 1772 }
72be7260 1773
88bae714
AD
1774 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1775 struct fib_info *fi = fa->fa_info;
1776
0ddcf43d
AD
1777 /* if alias was cloned to local then we just
1778 * need to remove the local copy from main
1779 */
1780 if (tb->tb_id != fa->tb_id) {
1781 hlist_del_rcu(&fa->fa_list);
1782 alias_free_mem_rcu(fa);
1783 continue;
1784 }
1785
1786 /* record local slen */
1787 slen = fa->fa_slen;
1788
eea39946 1789 if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
88bae714 1790 continue;
104616e7 1791
ebb9a03a
JP
1792 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1793 fi, fa->fa_tos, fa->fa_type,
1794 tb->tb_id);
88bae714 1795 }
0ddcf43d
AD
1796
1797 /* update leaf slen */
1798 n->slen = slen;
1799
1800 if (hlist_empty(&n->leaf)) {
1801 put_child_root(pn, n->key, NULL);
1802 node_free(n);
0ddcf43d 1803 }
88bae714 1804 }
104616e7
SF
1805}
1806
8be33e95 1807/* Caller must hold RTNL. */
16c6cf8b 1808int fib_table_flush(struct fib_table *tb)
19baf839 1809{
7289e6dd 1810 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1811 struct key_vector *pn = t->kv;
1812 unsigned long cindex = 1;
7289e6dd
AD
1813 struct hlist_node *tmp;
1814 struct fib_alias *fa;
82cfbb00 1815 int found = 0;
19baf839 1816
88bae714
AD
1817 /* walk trie in reverse order */
1818 for (;;) {
1819 unsigned char slen = 0;
1820 struct key_vector *n;
19baf839 1821
88bae714
AD
1822 if (!(cindex--)) {
1823 t_key pkey = pn->key;
7289e6dd 1824
88bae714
AD
1825 /* cannot resize the trie vector */
1826 if (IS_TRIE(pn))
1827 break;
7289e6dd 1828
88bae714
AD
1829 /* resize completed node */
1830 pn = resize(t, pn);
1831 cindex = get_index(pkey, pn);
7289e6dd 1832
88bae714
AD
1833 continue;
1834 }
7289e6dd 1835
88bae714
AD
1836 /* grab the next available node */
1837 n = get_child(pn, cindex);
1838 if (!n)
1839 continue;
7289e6dd 1840
88bae714
AD
1841 if (IS_TNODE(n)) {
1842 /* record pn and cindex for leaf walking */
1843 pn = n;
1844 cindex = 1ul << n->bits;
7289e6dd 1845
88bae714
AD
1846 continue;
1847 }
7289e6dd 1848
88bae714
AD
1849 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1850 struct fib_info *fi = fa->fa_info;
7289e6dd 1851
88bae714
AD
1852 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1853 slen = fa->fa_slen;
1854 continue;
1855 }
7289e6dd 1856
ebb9a03a
JP
1857 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1858 fi, fa->fa_tos, fa->fa_type,
1859 tb->tb_id);
7289e6dd
AD
1860 hlist_del_rcu(&fa->fa_list);
1861 fib_release_info(fa->fa_info);
1862 alias_free_mem_rcu(fa);
1863 found++;
64c62723
AD
1864 }
1865
88bae714
AD
1866 /* update leaf slen */
1867 n->slen = slen;
7289e6dd 1868
88bae714
AD
1869 if (hlist_empty(&n->leaf)) {
1870 put_child_root(pn, n->key, NULL);
1871 node_free(n);
88bae714 1872 }
64c62723 1873 }
19baf839 1874
0c7770c7 1875 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1876 return found;
1877}
1878
a7e53531 1879static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1880{
a7e53531 1881 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1882#ifdef CONFIG_IP_FIB_TRIE_STATS
1883 struct trie *t = (struct trie *)tb->tb_data;
1884
0ddcf43d
AD
1885 if (tb->tb_data == tb->__data)
1886 free_percpu(t->stats);
8274a97a 1887#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1888 kfree(tb);
1889}
1890
a7e53531
AD
1891void fib_free_table(struct fib_table *tb)
1892{
1893 call_rcu(&tb->rcu, __trie_free_rcu);
1894}
1895
35c6edac 1896static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1897 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1898{
79e5ad2c 1899 __be32 xkey = htonl(l->key);
19baf839 1900 struct fib_alias *fa;
79e5ad2c 1901 int i, s_i;
19baf839 1902
79e5ad2c 1903 s_i = cb->args[4];
19baf839
RO
1904 i = 0;
1905
2373ce1c 1906 /* rcu_read_lock is hold by caller */
79e5ad2c 1907 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1908 if (i < s_i) {
1909 i++;
1910 continue;
1911 }
19baf839 1912
0ddcf43d
AD
1913 if (tb->tb_id != fa->tb_id) {
1914 i++;
1915 continue;
1916 }
1917
15e47304 1918 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1919 cb->nlh->nlmsg_seq,
1920 RTM_NEWROUTE,
1921 tb->tb_id,
1922 fa->fa_type,
be403ea1 1923 xkey,
9b6ebad5 1924 KEYLENGTH - fa->fa_slen,
19baf839 1925 fa->fa_tos,
64347f78 1926 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1927 cb->args[4] = i;
19baf839
RO
1928 return -1;
1929 }
a88ee229 1930 i++;
19baf839 1931 }
a88ee229 1932
71d67e66 1933 cb->args[4] = i;
19baf839
RO
1934 return skb->len;
1935}
1936
a7e53531 1937/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
1938int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1939 struct netlink_callback *cb)
19baf839 1940{
8be33e95 1941 struct trie *t = (struct trie *)tb->tb_data;
88bae714 1942 struct key_vector *l, *tp = t->kv;
d5ce8a0e
SH
1943 /* Dump starting at last key.
1944 * Note: 0.0.0.0/0 (ie default) is first key.
1945 */
8be33e95
AD
1946 int count = cb->args[2];
1947 t_key key = cb->args[3];
a88ee229 1948
8be33e95 1949 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1950 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1951 cb->args[3] = key;
1952 cb->args[2] = count;
a88ee229 1953 return -1;
19baf839 1954 }
d5ce8a0e 1955
71d67e66 1956 ++count;
8be33e95
AD
1957 key = l->key + 1;
1958
71d67e66
SH
1959 memset(&cb->args[4], 0,
1960 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1961
1962 /* stop loop if key wrapped back to 0 */
1963 if (key < l->key)
1964 break;
19baf839 1965 }
8be33e95 1966
8be33e95
AD
1967 cb->args[3] = key;
1968 cb->args[2] = count;
1969
19baf839 1970 return skb->len;
19baf839
RO
1971}
1972
5348ba85 1973void __init fib_trie_init(void)
7f9b8052 1974{
a07f5f50
SH
1975 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1976 sizeof(struct fib_alias),
bc3c8c1e
SH
1977 0, SLAB_PANIC, NULL);
1978
1979 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 1980 LEAF_SIZE,
bc3c8c1e 1981 0, SLAB_PANIC, NULL);
7f9b8052 1982}
19baf839 1983
0ddcf43d 1984struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
19baf839
RO
1985{
1986 struct fib_table *tb;
1987 struct trie *t;
0ddcf43d
AD
1988 size_t sz = sizeof(*tb);
1989
1990 if (!alias)
1991 sz += sizeof(struct trie);
19baf839 1992
0ddcf43d 1993 tb = kzalloc(sz, GFP_KERNEL);
51456b29 1994 if (!tb)
19baf839
RO
1995 return NULL;
1996
1997 tb->tb_id = id;
21d8c49e 1998 tb->tb_num_default = 0;
0ddcf43d
AD
1999 tb->tb_data = (alias ? alias->__data : tb->__data);
2000
2001 if (alias)
2002 return tb;
19baf839
RO
2003
2004 t = (struct trie *) tb->tb_data;
88bae714
AD
2005 t->kv[0].pos = KEYLENGTH;
2006 t->kv[0].slen = KEYLENGTH;
8274a97a
AD
2007#ifdef CONFIG_IP_FIB_TRIE_STATS
2008 t->stats = alloc_percpu(struct trie_use_stats);
2009 if (!t->stats) {
2010 kfree(tb);
2011 tb = NULL;
2012 }
2013#endif
19baf839 2014
19baf839
RO
2015 return tb;
2016}
2017
cb7b593c
SH
2018#ifdef CONFIG_PROC_FS
2019/* Depth first Trie walk iterator */
2020struct fib_trie_iter {
1c340b2f 2021 struct seq_net_private p;
3d3b2d25 2022 struct fib_table *tb;
35c6edac 2023 struct key_vector *tnode;
a034ee3c
ED
2024 unsigned int index;
2025 unsigned int depth;
cb7b593c 2026};
19baf839 2027
35c6edac 2028static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2029{
98293e8d 2030 unsigned long cindex = iter->index;
88bae714
AD
2031 struct key_vector *pn = iter->tnode;
2032 t_key pkey;
6640e697 2033
cb7b593c
SH
2034 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2035 iter->tnode, iter->index, iter->depth);
19baf839 2036
88bae714
AD
2037 while (!IS_TRIE(pn)) {
2038 while (cindex < child_length(pn)) {
2039 struct key_vector *n = get_child_rcu(pn, cindex++);
2040
2041 if (!n)
2042 continue;
2043
cb7b593c 2044 if (IS_LEAF(n)) {
88bae714
AD
2045 iter->tnode = pn;
2046 iter->index = cindex;
cb7b593c
SH
2047 } else {
2048 /* push down one level */
adaf9816 2049 iter->tnode = n;
cb7b593c
SH
2050 iter->index = 0;
2051 ++iter->depth;
2052 }
88bae714 2053
cb7b593c
SH
2054 return n;
2055 }
19baf839 2056
88bae714
AD
2057 /* Current node exhausted, pop back up */
2058 pkey = pn->key;
2059 pn = node_parent_rcu(pn);
2060 cindex = get_index(pkey, pn) + 1;
cb7b593c 2061 --iter->depth;
19baf839 2062 }
cb7b593c 2063
88bae714
AD
2064 /* record root node so further searches know we are done */
2065 iter->tnode = pn;
2066 iter->index = 0;
2067
cb7b593c 2068 return NULL;
19baf839
RO
2069}
2070
35c6edac
AD
2071static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2072 struct trie *t)
19baf839 2073{
f38b24c9 2074 struct key_vector *n, *pn;
5ddf0eb2 2075
132adf54 2076 if (!t)
5ddf0eb2
RO
2077 return NULL;
2078
f38b24c9 2079 pn = t->kv;
88bae714 2080 n = rcu_dereference(pn->tnode[0]);
3d3b2d25 2081 if (!n)
5ddf0eb2 2082 return NULL;
19baf839 2083
3d3b2d25 2084 if (IS_TNODE(n)) {
adaf9816 2085 iter->tnode = n;
3d3b2d25
SH
2086 iter->index = 0;
2087 iter->depth = 1;
2088 } else {
88bae714 2089 iter->tnode = pn;
3d3b2d25
SH
2090 iter->index = 0;
2091 iter->depth = 0;
91b9a277 2092 }
3d3b2d25
SH
2093
2094 return n;
cb7b593c 2095}
91b9a277 2096
cb7b593c
SH
2097static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2098{
35c6edac 2099 struct key_vector *n;
cb7b593c 2100 struct fib_trie_iter iter;
91b9a277 2101
cb7b593c 2102 memset(s, 0, sizeof(*s));
91b9a277 2103
cb7b593c 2104 rcu_read_lock();
3d3b2d25 2105 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2106 if (IS_LEAF(n)) {
79e5ad2c 2107 struct fib_alias *fa;
93672292 2108
cb7b593c
SH
2109 s->leaves++;
2110 s->totdepth += iter.depth;
2111 if (iter.depth > s->maxdepth)
2112 s->maxdepth = iter.depth;
93672292 2113
79e5ad2c 2114 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 2115 ++s->prefixes;
cb7b593c 2116 } else {
cb7b593c 2117 s->tnodes++;
adaf9816
AD
2118 if (n->bits < MAX_STAT_DEPTH)
2119 s->nodesizes[n->bits]++;
6e22d174 2120 s->nullpointers += tn_info(n)->empty_children;
19baf839 2121 }
19baf839 2122 }
2373ce1c 2123 rcu_read_unlock();
19baf839
RO
2124}
2125
cb7b593c
SH
2126/*
2127 * This outputs /proc/net/fib_triestats
2128 */
2129static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2130{
a034ee3c 2131 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2132
cb7b593c
SH
2133 if (stat->leaves)
2134 avdepth = stat->totdepth*100 / stat->leaves;
2135 else
2136 avdepth = 0;
91b9a277 2137
a07f5f50
SH
2138 seq_printf(seq, "\tAver depth: %u.%02d\n",
2139 avdepth / 100, avdepth % 100);
cb7b593c 2140 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2141
cb7b593c 2142 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 2143 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
2144
2145 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 2146 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 2147
187b5188 2148 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 2149 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 2150
06ef921d
RO
2151 max = MAX_STAT_DEPTH;
2152 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2153 max--;
19baf839 2154
cb7b593c 2155 pointers = 0;
f585a991 2156 for (i = 1; i < max; i++)
cb7b593c 2157 if (stat->nodesizes[i] != 0) {
187b5188 2158 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2159 pointers += (1<<i) * stat->nodesizes[i];
2160 }
2161 seq_putc(seq, '\n');
187b5188 2162 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2163
35c6edac 2164 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2165 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2166 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2167}
2373ce1c 2168
cb7b593c 2169#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2170static void trie_show_usage(struct seq_file *seq,
8274a97a 2171 const struct trie_use_stats __percpu *stats)
66a2f7fd 2172{
8274a97a
AD
2173 struct trie_use_stats s = { 0 };
2174 int cpu;
2175
2176 /* loop through all of the CPUs and gather up the stats */
2177 for_each_possible_cpu(cpu) {
2178 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2179
2180 s.gets += pcpu->gets;
2181 s.backtrack += pcpu->backtrack;
2182 s.semantic_match_passed += pcpu->semantic_match_passed;
2183 s.semantic_match_miss += pcpu->semantic_match_miss;
2184 s.null_node_hit += pcpu->null_node_hit;
2185 s.resize_node_skipped += pcpu->resize_node_skipped;
2186 }
2187
66a2f7fd 2188 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2189 seq_printf(seq, "gets = %u\n", s.gets);
2190 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2191 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2192 s.semantic_match_passed);
2193 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2194 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2195 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2196}
66a2f7fd
SH
2197#endif /* CONFIG_IP_FIB_TRIE_STATS */
2198
3d3b2d25 2199static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2200{
3d3b2d25
SH
2201 if (tb->tb_id == RT_TABLE_LOCAL)
2202 seq_puts(seq, "Local:\n");
2203 else if (tb->tb_id == RT_TABLE_MAIN)
2204 seq_puts(seq, "Main:\n");
2205 else
2206 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2207}
19baf839 2208
3d3b2d25 2209
cb7b593c
SH
2210static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2211{
1c340b2f 2212 struct net *net = (struct net *)seq->private;
3d3b2d25 2213 unsigned int h;
877a9bff 2214
d717a9a6 2215 seq_printf(seq,
a07f5f50
SH
2216 "Basic info: size of leaf:"
2217 " %Zd bytes, size of tnode: %Zd bytes.\n",
41b489fd 2218 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2219
3d3b2d25
SH
2220 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2221 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2222 struct fib_table *tb;
2223
b67bfe0d 2224 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2225 struct trie *t = (struct trie *) tb->tb_data;
2226 struct trie_stat stat;
877a9bff 2227
3d3b2d25
SH
2228 if (!t)
2229 continue;
2230
2231 fib_table_print(seq, tb);
2232
2233 trie_collect_stats(t, &stat);
2234 trie_show_stats(seq, &stat);
2235#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2236 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2237#endif
2238 }
2239 }
19baf839 2240
cb7b593c 2241 return 0;
19baf839
RO
2242}
2243
cb7b593c 2244static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2245{
de05c557 2246 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2247}
2248
9a32144e 2249static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2250 .owner = THIS_MODULE,
2251 .open = fib_triestat_seq_open,
2252 .read = seq_read,
2253 .llseek = seq_lseek,
b6fcbdb4 2254 .release = single_release_net,
cb7b593c
SH
2255};
2256
35c6edac 2257static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2258{
1218854a
YH
2259 struct fib_trie_iter *iter = seq->private;
2260 struct net *net = seq_file_net(seq);
cb7b593c 2261 loff_t idx = 0;
3d3b2d25 2262 unsigned int h;
cb7b593c 2263
3d3b2d25
SH
2264 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2265 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2266 struct fib_table *tb;
cb7b593c 2267
b67bfe0d 2268 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2269 struct key_vector *n;
3d3b2d25
SH
2270
2271 for (n = fib_trie_get_first(iter,
2272 (struct trie *) tb->tb_data);
2273 n; n = fib_trie_get_next(iter))
2274 if (pos == idx++) {
2275 iter->tb = tb;
2276 return n;
2277 }
2278 }
cb7b593c 2279 }
3d3b2d25 2280
19baf839
RO
2281 return NULL;
2282}
2283
cb7b593c 2284static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2285 __acquires(RCU)
19baf839 2286{
cb7b593c 2287 rcu_read_lock();
1218854a 2288 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2289}
2290
cb7b593c 2291static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2292{
cb7b593c 2293 struct fib_trie_iter *iter = seq->private;
1218854a 2294 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2295 struct fib_table *tb = iter->tb;
2296 struct hlist_node *tb_node;
2297 unsigned int h;
35c6edac 2298 struct key_vector *n;
cb7b593c 2299
19baf839 2300 ++*pos;
3d3b2d25
SH
2301 /* next node in same table */
2302 n = fib_trie_get_next(iter);
2303 if (n)
2304 return n;
19baf839 2305
3d3b2d25
SH
2306 /* walk rest of this hash chain */
2307 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2308 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2309 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2310 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2311 if (n)
2312 goto found;
2313 }
19baf839 2314
3d3b2d25
SH
2315 /* new hash chain */
2316 while (++h < FIB_TABLE_HASHSZ) {
2317 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2318 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2319 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2320 if (n)
2321 goto found;
2322 }
2323 }
cb7b593c 2324 return NULL;
3d3b2d25
SH
2325
2326found:
2327 iter->tb = tb;
2328 return n;
cb7b593c 2329}
19baf839 2330
cb7b593c 2331static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2332 __releases(RCU)
19baf839 2333{
cb7b593c
SH
2334 rcu_read_unlock();
2335}
91b9a277 2336
cb7b593c
SH
2337static void seq_indent(struct seq_file *seq, int n)
2338{
a034ee3c
ED
2339 while (n-- > 0)
2340 seq_puts(seq, " ");
cb7b593c 2341}
19baf839 2342
28d36e37 2343static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2344{
132adf54 2345 switch (s) {
cb7b593c
SH
2346 case RT_SCOPE_UNIVERSE: return "universe";
2347 case RT_SCOPE_SITE: return "site";
2348 case RT_SCOPE_LINK: return "link";
2349 case RT_SCOPE_HOST: return "host";
2350 case RT_SCOPE_NOWHERE: return "nowhere";
2351 default:
28d36e37 2352 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2353 return buf;
2354 }
2355}
19baf839 2356
36cbd3dc 2357static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2358 [RTN_UNSPEC] = "UNSPEC",
2359 [RTN_UNICAST] = "UNICAST",
2360 [RTN_LOCAL] = "LOCAL",
2361 [RTN_BROADCAST] = "BROADCAST",
2362 [RTN_ANYCAST] = "ANYCAST",
2363 [RTN_MULTICAST] = "MULTICAST",
2364 [RTN_BLACKHOLE] = "BLACKHOLE",
2365 [RTN_UNREACHABLE] = "UNREACHABLE",
2366 [RTN_PROHIBIT] = "PROHIBIT",
2367 [RTN_THROW] = "THROW",
2368 [RTN_NAT] = "NAT",
2369 [RTN_XRESOLVE] = "XRESOLVE",
2370};
19baf839 2371
a034ee3c 2372static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2373{
cb7b593c
SH
2374 if (t < __RTN_MAX && rtn_type_names[t])
2375 return rtn_type_names[t];
28d36e37 2376 snprintf(buf, len, "type %u", t);
cb7b593c 2377 return buf;
19baf839
RO
2378}
2379
cb7b593c
SH
2380/* Pretty print the trie */
2381static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2382{
cb7b593c 2383 const struct fib_trie_iter *iter = seq->private;
35c6edac 2384 struct key_vector *n = v;
c877efb2 2385
88bae714 2386 if (IS_TRIE(node_parent_rcu(n)))
3d3b2d25 2387 fib_table_print(seq, iter->tb);
095b8501 2388
cb7b593c 2389 if (IS_TNODE(n)) {
adaf9816 2390 __be32 prf = htonl(n->key);
91b9a277 2391
e9b44019
AD
2392 seq_indent(seq, iter->depth-1);
2393 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2394 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
6e22d174
AD
2395 tn_info(n)->full_children,
2396 tn_info(n)->empty_children);
cb7b593c 2397 } else {
adaf9816 2398 __be32 val = htonl(n->key);
79e5ad2c 2399 struct fib_alias *fa;
cb7b593c
SH
2400
2401 seq_indent(seq, iter->depth);
673d57e7 2402 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2403
79e5ad2c
AD
2404 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2405 char buf1[32], buf2[32];
2406
2407 seq_indent(seq, iter->depth + 1);
2408 seq_printf(seq, " /%zu %s %s",
2409 KEYLENGTH - fa->fa_slen,
2410 rtn_scope(buf1, sizeof(buf1),
2411 fa->fa_info->fib_scope),
2412 rtn_type(buf2, sizeof(buf2),
2413 fa->fa_type));
2414 if (fa->fa_tos)
2415 seq_printf(seq, " tos=%d", fa->fa_tos);
2416 seq_putc(seq, '\n');
cb7b593c 2417 }
19baf839 2418 }
cb7b593c 2419
19baf839
RO
2420 return 0;
2421}
2422
f690808e 2423static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2424 .start = fib_trie_seq_start,
2425 .next = fib_trie_seq_next,
2426 .stop = fib_trie_seq_stop,
2427 .show = fib_trie_seq_show,
19baf839
RO
2428};
2429
cb7b593c 2430static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2431{
1c340b2f
DL
2432 return seq_open_net(inode, file, &fib_trie_seq_ops,
2433 sizeof(struct fib_trie_iter));
19baf839
RO
2434}
2435
9a32144e 2436static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2437 .owner = THIS_MODULE,
2438 .open = fib_trie_seq_open,
2439 .read = seq_read,
2440 .llseek = seq_lseek,
1c340b2f 2441 .release = seq_release_net,
19baf839
RO
2442};
2443
8315f5d8
SH
2444struct fib_route_iter {
2445 struct seq_net_private p;
8be33e95 2446 struct fib_table *main_tb;
35c6edac 2447 struct key_vector *tnode;
8315f5d8
SH
2448 loff_t pos;
2449 t_key key;
2450};
2451
35c6edac
AD
2452static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2453 loff_t pos)
8315f5d8 2454{
35c6edac 2455 struct key_vector *l, **tp = &iter->tnode;
8be33e95 2456 t_key key;
8315f5d8 2457
8be33e95
AD
2458 /* use cache location of next-to-find key */
2459 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2460 pos -= iter->pos;
8be33e95
AD
2461 key = iter->key;
2462 } else {
8315f5d8 2463 iter->pos = 0;
8be33e95 2464 key = 0;
8315f5d8
SH
2465 }
2466
8be33e95
AD
2467 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2468 key = l->key + 1;
8315f5d8 2469 iter->pos++;
8be33e95 2470
25b97c01 2471 if (--pos <= 0)
8be33e95
AD
2472 break;
2473
2474 l = NULL;
2475
2476 /* handle unlikely case of a key wrap */
2477 if (!key)
2478 break;
8315f5d8
SH
2479 }
2480
2481 if (l)
8be33e95 2482 iter->key = key; /* remember it */
8315f5d8
SH
2483 else
2484 iter->pos = 0; /* forget it */
2485
2486 return l;
2487}
2488
2489static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2490 __acquires(RCU)
2491{
2492 struct fib_route_iter *iter = seq->private;
2493 struct fib_table *tb;
8be33e95 2494 struct trie *t;
8315f5d8
SH
2495
2496 rcu_read_lock();
8be33e95 2497
1218854a 2498 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2499 if (!tb)
2500 return NULL;
2501
8be33e95 2502 iter->main_tb = tb;
94d9f1c5
DF
2503 t = (struct trie *)tb->tb_data;
2504 iter->tnode = t->kv;
8be33e95
AD
2505
2506 if (*pos != 0)
2507 return fib_route_get_idx(iter, *pos);
2508
8be33e95
AD
2509 iter->pos = 0;
2510 iter->key = 0;
2511
2512 return SEQ_START_TOKEN;
8315f5d8
SH
2513}
2514
2515static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2516{
2517 struct fib_route_iter *iter = seq->private;
35c6edac 2518 struct key_vector *l = NULL;
8be33e95 2519 t_key key = iter->key;
8315f5d8
SH
2520
2521 ++*pos;
8be33e95
AD
2522
2523 /* only allow key of 0 for start of sequence */
2524 if ((v == SEQ_START_TOKEN) || key)
2525 l = leaf_walk_rcu(&iter->tnode, key);
2526
2527 if (l) {
2528 iter->key = l->key + 1;
8315f5d8 2529 iter->pos++;
8be33e95
AD
2530 } else {
2531 iter->pos = 0;
8315f5d8
SH
2532 }
2533
8315f5d8
SH
2534 return l;
2535}
2536
2537static void fib_route_seq_stop(struct seq_file *seq, void *v)
2538 __releases(RCU)
2539{
2540 rcu_read_unlock();
2541}
2542
a034ee3c 2543static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2544{
a034ee3c 2545 unsigned int flags = 0;
19baf839 2546
a034ee3c
ED
2547 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2548 flags = RTF_REJECT;
cb7b593c
SH
2549 if (fi && fi->fib_nh->nh_gw)
2550 flags |= RTF_GATEWAY;
32ab5f80 2551 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2552 flags |= RTF_HOST;
2553 flags |= RTF_UP;
2554 return flags;
19baf839
RO
2555}
2556
cb7b593c
SH
2557/*
2558 * This outputs /proc/net/route.
2559 * The format of the file is not supposed to be changed
a034ee3c 2560 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2561 * legacy utilities
2562 */
2563static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2564{
654eff45
AD
2565 struct fib_route_iter *iter = seq->private;
2566 struct fib_table *tb = iter->main_tb;
79e5ad2c 2567 struct fib_alias *fa;
35c6edac 2568 struct key_vector *l = v;
9b6ebad5 2569 __be32 prefix;
19baf839 2570
cb7b593c
SH
2571 if (v == SEQ_START_TOKEN) {
2572 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2573 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2574 "\tWindow\tIRTT");
2575 return 0;
2576 }
19baf839 2577
9b6ebad5
AD
2578 prefix = htonl(l->key);
2579
79e5ad2c
AD
2580 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2581 const struct fib_info *fi = fa->fa_info;
2582 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2583 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2584
79e5ad2c
AD
2585 if ((fa->fa_type == RTN_BROADCAST) ||
2586 (fa->fa_type == RTN_MULTICAST))
2587 continue;
19baf839 2588
654eff45
AD
2589 if (fa->tb_id != tb->tb_id)
2590 continue;
2591
79e5ad2c
AD
2592 seq_setwidth(seq, 127);
2593
2594 if (fi)
2595 seq_printf(seq,
2596 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2597 "%d\t%08X\t%d\t%u\t%u",
2598 fi->fib_dev ? fi->fib_dev->name : "*",
2599 prefix,
2600 fi->fib_nh->nh_gw, flags, 0, 0,
2601 fi->fib_priority,
2602 mask,
2603 (fi->fib_advmss ?
2604 fi->fib_advmss + 40 : 0),
2605 fi->fib_window,
2606 fi->fib_rtt >> 3);
2607 else
2608 seq_printf(seq,
2609 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2610 "%d\t%08X\t%d\t%u\t%u",
2611 prefix, 0, flags, 0, 0, 0,
2612 mask, 0, 0, 0);
19baf839 2613
79e5ad2c 2614 seq_pad(seq, '\n');
19baf839
RO
2615 }
2616
2617 return 0;
2618}
2619
f690808e 2620static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2621 .start = fib_route_seq_start,
2622 .next = fib_route_seq_next,
2623 .stop = fib_route_seq_stop,
cb7b593c 2624 .show = fib_route_seq_show,
19baf839
RO
2625};
2626
cb7b593c 2627static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2628{
1c340b2f 2629 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2630 sizeof(struct fib_route_iter));
19baf839
RO
2631}
2632
9a32144e 2633static const struct file_operations fib_route_fops = {
cb7b593c
SH
2634 .owner = THIS_MODULE,
2635 .open = fib_route_seq_open,
2636 .read = seq_read,
2637 .llseek = seq_lseek,
1c340b2f 2638 .release = seq_release_net,
19baf839
RO
2639};
2640
61a02653 2641int __net_init fib_proc_init(struct net *net)
19baf839 2642{
d4beaa66 2643 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2644 goto out1;
2645
d4beaa66
G
2646 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2647 &fib_triestat_fops))
cb7b593c
SH
2648 goto out2;
2649
d4beaa66 2650 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2651 goto out3;
2652
19baf839 2653 return 0;
cb7b593c
SH
2654
2655out3:
ece31ffd 2656 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2657out2:
ece31ffd 2658 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2659out1:
2660 return -ENOMEM;
19baf839
RO
2661}
2662
61a02653 2663void __net_exit fib_proc_exit(struct net *net)
19baf839 2664{
ece31ffd
G
2665 remove_proc_entry("fib_trie", net->proc_net);
2666 remove_proc_entry("fib_triestat", net->proc_net);
2667 remove_proc_entry("route", net->proc_net);
19baf839
RO
2668}
2669
2670#endif /* CONFIG_PROC_FS */