]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - net/ipv4/fib_trie.c
[PKTGEN]: uninline getCurUs
[mirror_ubuntu-jammy-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
fd966255
RO
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
19baf839
RO
51 */
52
05eee48c 53#define VERSION "0.408"
19baf839 54
19baf839
RO
55#include <asm/uaccess.h>
56#include <asm/system.h>
1977f032 57#include <linux/bitops.h>
19baf839
RO
58#include <linux/types.h>
59#include <linux/kernel.h>
19baf839
RO
60#include <linux/mm.h>
61#include <linux/string.h>
62#include <linux/socket.h>
63#include <linux/sockios.h>
64#include <linux/errno.h>
65#include <linux/in.h>
66#include <linux/inet.h>
cd8787ab 67#include <linux/inetdevice.h>
19baf839
RO
68#include <linux/netdevice.h>
69#include <linux/if_arp.h>
70#include <linux/proc_fs.h>
2373ce1c 71#include <linux/rcupdate.h>
19baf839
RO
72#include <linux/skbuff.h>
73#include <linux/netlink.h>
74#include <linux/init.h>
75#include <linux/list.h>
457c4cbc 76#include <net/net_namespace.h>
19baf839
RO
77#include <net/ip.h>
78#include <net/protocol.h>
79#include <net/route.h>
80#include <net/tcp.h>
81#include <net/sock.h>
82#include <net/ip_fib.h>
83#include "fib_lookup.h"
84
85#undef CONFIG_IP_FIB_TRIE_STATS
06ef921d 86#define MAX_STAT_DEPTH 32
19baf839 87
19baf839 88#define KEYLENGTH (8*sizeof(t_key))
19baf839 89
19baf839
RO
90typedef unsigned int t_key;
91
92#define T_TNODE 0
93#define T_LEAF 1
94#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
95#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
96
91b9a277
OJ
97#define IS_TNODE(n) (!(n->parent & T_LEAF))
98#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
99
100struct node {
91b9a277
OJ
101 t_key key;
102 unsigned long parent;
19baf839
RO
103};
104
105struct leaf {
91b9a277
OJ
106 t_key key;
107 unsigned long parent;
19baf839 108 struct hlist_head list;
2373ce1c 109 struct rcu_head rcu;
19baf839
RO
110};
111
112struct leaf_info {
113 struct hlist_node hlist;
2373ce1c 114 struct rcu_head rcu;
19baf839
RO
115 int plen;
116 struct list_head falh;
117};
118
119struct tnode {
91b9a277
OJ
120 t_key key;
121 unsigned long parent;
122 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
123 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
124 unsigned short full_children; /* KEYLENGTH bits needed */
125 unsigned short empty_children; /* KEYLENGTH bits needed */
2373ce1c 126 struct rcu_head rcu;
91b9a277 127 struct node *child[0];
19baf839
RO
128};
129
130#ifdef CONFIG_IP_FIB_TRIE_STATS
131struct trie_use_stats {
132 unsigned int gets;
133 unsigned int backtrack;
134 unsigned int semantic_match_passed;
135 unsigned int semantic_match_miss;
136 unsigned int null_node_hit;
2f36895a 137 unsigned int resize_node_skipped;
19baf839
RO
138};
139#endif
140
141struct trie_stat {
142 unsigned int totdepth;
143 unsigned int maxdepth;
144 unsigned int tnodes;
145 unsigned int leaves;
146 unsigned int nullpointers;
06ef921d 147 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 148};
19baf839
RO
149
150struct trie {
91b9a277 151 struct node *trie;
19baf839
RO
152#ifdef CONFIG_IP_FIB_TRIE_STATS
153 struct trie_use_stats stats;
154#endif
91b9a277 155 int size;
19baf839
RO
156 unsigned int revision;
157};
158
19baf839
RO
159static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
160static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
19baf839 161static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
162static struct tnode *inflate(struct trie *t, struct tnode *tn);
163static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839 164static void tnode_free(struct tnode *tn);
19baf839 165
e18b890b 166static struct kmem_cache *fn_alias_kmem __read_mostly;
19baf839 167
06801916
SH
168static inline struct tnode *node_parent(struct node *node)
169{
170 struct tnode *ret;
171
172 ret = (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
173 return rcu_dereference(ret);
174}
175
176static inline void node_set_parent(struct node *node, struct tnode *ptr)
177{
178 rcu_assign_pointer(node->parent,
179 (unsigned long)ptr | NODE_TYPE(node));
180}
2373ce1c
RO
181
182/* rcu_read_lock needs to be hold by caller from readside */
183
c877efb2 184static inline struct node *tnode_get_child(struct tnode *tn, int i)
19baf839 185{
91b9a277 186 BUG_ON(i >= 1 << tn->bits);
19baf839 187
2373ce1c 188 return rcu_dereference(tn->child[i]);
19baf839
RO
189}
190
bb435b8d 191static inline int tnode_child_length(const struct tnode *tn)
19baf839 192{
91b9a277 193 return 1 << tn->bits;
19baf839
RO
194}
195
ab66b4a7
SH
196static inline t_key mask_pfx(t_key k, unsigned short l)
197{
198 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
199}
200
19baf839
RO
201static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
202{
91b9a277 203 if (offset < KEYLENGTH)
19baf839 204 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 205 else
19baf839
RO
206 return 0;
207}
208
209static inline int tkey_equals(t_key a, t_key b)
210{
c877efb2 211 return a == b;
19baf839
RO
212}
213
214static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
215{
c877efb2
SH
216 if (bits == 0 || offset >= KEYLENGTH)
217 return 1;
91b9a277
OJ
218 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
219 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 220}
19baf839
RO
221
222static inline int tkey_mismatch(t_key a, int offset, t_key b)
223{
224 t_key diff = a ^ b;
225 int i = offset;
226
c877efb2
SH
227 if (!diff)
228 return 0;
229 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
230 i++;
231 return i;
232}
233
19baf839 234/*
e905a9ed
YH
235 To understand this stuff, an understanding of keys and all their bits is
236 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
237 all of the bits in that key are significant.
238
239 Consider a node 'n' and its parent 'tp'.
240
e905a9ed
YH
241 If n is a leaf, every bit in its key is significant. Its presence is
242 necessitated by path compression, since during a tree traversal (when
243 searching for a leaf - unless we are doing an insertion) we will completely
244 ignore all skipped bits we encounter. Thus we need to verify, at the end of
245 a potentially successful search, that we have indeed been walking the
19baf839
RO
246 correct key path.
247
e905a9ed
YH
248 Note that we can never "miss" the correct key in the tree if present by
249 following the wrong path. Path compression ensures that segments of the key
250 that are the same for all keys with a given prefix are skipped, but the
251 skipped part *is* identical for each node in the subtrie below the skipped
252 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
253 call to tkey_sub_equals() in trie_insert().
254
e905a9ed 255 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
256 have many different meanings.
257
e905a9ed 258 Example:
19baf839
RO
259 _________________________________________________________________
260 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
261 -----------------------------------------------------------------
e905a9ed 262 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
263
264 _________________________________________________________________
265 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
266 -----------------------------------------------------------------
267 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
268
269 tp->pos = 7
270 tp->bits = 3
271 n->pos = 15
91b9a277 272 n->bits = 4
19baf839 273
e905a9ed
YH
274 First, let's just ignore the bits that come before the parent tp, that is
275 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
276 not use them for anything.
277
278 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 279 index into the parent's child array. That is, they will be used to find
19baf839
RO
280 'n' among tp's children.
281
282 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
283 for the node n.
284
e905a9ed 285 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
286 of the bits are really not needed or indeed known in n->key.
287
e905a9ed 288 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 289 n's child array, and will of course be different for each child.
e905a9ed 290
c877efb2 291
19baf839
RO
292 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
293 at this point.
294
295*/
296
0c7770c7 297static inline void check_tnode(const struct tnode *tn)
19baf839 298{
0c7770c7 299 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
300}
301
f5026fab
DL
302static const int halve_threshold = 25;
303static const int inflate_threshold = 50;
304static const int halve_threshold_root = 8;
305static const int inflate_threshold_root = 15;
19baf839 306
2373ce1c
RO
307
308static void __alias_free_mem(struct rcu_head *head)
19baf839 309{
2373ce1c
RO
310 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
311 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
312}
313
2373ce1c 314static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 315{
2373ce1c
RO
316 call_rcu(&fa->rcu, __alias_free_mem);
317}
91b9a277 318
2373ce1c
RO
319static void __leaf_free_rcu(struct rcu_head *head)
320{
321 kfree(container_of(head, struct leaf, rcu));
322}
91b9a277 323
2373ce1c 324static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 325{
2373ce1c 326 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
327}
328
2373ce1c 329static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 330{
2373ce1c 331 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
332}
333
f0e36f8c
PM
334static struct tnode *tnode_alloc(unsigned int size)
335{
2373ce1c
RO
336 struct page *pages;
337
338 if (size <= PAGE_SIZE)
339 return kcalloc(size, 1, GFP_KERNEL);
340
341 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
342 if (!pages)
343 return NULL;
344
345 return page_address(pages);
f0e36f8c
PM
346}
347
2373ce1c 348static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 349{
2373ce1c 350 struct tnode *tn = container_of(head, struct tnode, rcu);
f0e36f8c 351 unsigned int size = sizeof(struct tnode) +
2373ce1c 352 (1 << tn->bits) * sizeof(struct node *);
f0e36f8c
PM
353
354 if (size <= PAGE_SIZE)
355 kfree(tn);
356 else
357 free_pages((unsigned long)tn, get_order(size));
358}
359
2373ce1c
RO
360static inline void tnode_free(struct tnode *tn)
361{
132adf54 362 if (IS_LEAF(tn)) {
550e29bc
RO
363 struct leaf *l = (struct leaf *) tn;
364 call_rcu_bh(&l->rcu, __leaf_free_rcu);
132adf54 365 } else
550e29bc 366 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
367}
368
369static struct leaf *leaf_new(void)
370{
371 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
372 if (l) {
373 l->parent = T_LEAF;
374 INIT_HLIST_HEAD(&l->list);
375 }
376 return l;
377}
378
379static struct leaf_info *leaf_info_new(int plen)
380{
381 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
382 if (li) {
383 li->plen = plen;
384 INIT_LIST_HEAD(&li->falh);
385 }
386 return li;
387}
388
19baf839
RO
389static struct tnode* tnode_new(t_key key, int pos, int bits)
390{
391 int nchildren = 1<<bits;
392 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
f0e36f8c 393 struct tnode *tn = tnode_alloc(sz);
19baf839 394
91b9a277 395 if (tn) {
19baf839 396 memset(tn, 0, sz);
2373ce1c 397 tn->parent = T_TNODE;
19baf839
RO
398 tn->pos = pos;
399 tn->bits = bits;
400 tn->key = key;
401 tn->full_children = 0;
402 tn->empty_children = 1<<bits;
403 }
c877efb2 404
0c7770c7
SH
405 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
406 (unsigned int) (sizeof(struct node) * 1<<bits));
19baf839
RO
407 return tn;
408}
409
19baf839
RO
410/*
411 * Check whether a tnode 'n' is "full", i.e. it is an internal node
412 * and no bits are skipped. See discussion in dyntree paper p. 6
413 */
414
bb435b8d 415static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 416{
c877efb2 417 if (n == NULL || IS_LEAF(n))
19baf839
RO
418 return 0;
419
420 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
421}
422
c877efb2 423static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
19baf839
RO
424{
425 tnode_put_child_reorg(tn, i, n, -1);
426}
427
c877efb2 428 /*
19baf839
RO
429 * Add a child at position i overwriting the old value.
430 * Update the value of full_children and empty_children.
431 */
432
c877efb2 433static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
19baf839 434{
2373ce1c 435 struct node *chi = tn->child[i];
19baf839
RO
436 int isfull;
437
0c7770c7
SH
438 BUG_ON(i >= 1<<tn->bits);
439
19baf839
RO
440
441 /* update emptyChildren */
442 if (n == NULL && chi != NULL)
443 tn->empty_children++;
444 else if (n != NULL && chi == NULL)
445 tn->empty_children--;
c877efb2 446
19baf839 447 /* update fullChildren */
91b9a277 448 if (wasfull == -1)
19baf839
RO
449 wasfull = tnode_full(tn, chi);
450
451 isfull = tnode_full(tn, n);
c877efb2 452 if (wasfull && !isfull)
19baf839 453 tn->full_children--;
c877efb2 454 else if (!wasfull && isfull)
19baf839 455 tn->full_children++;
91b9a277 456
c877efb2 457 if (n)
06801916 458 node_set_parent(n, tn);
19baf839 459
2373ce1c 460 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
461}
462
c877efb2 463static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
464{
465 int i;
2f36895a 466 int err = 0;
2f80b3c8 467 struct tnode *old_tn;
e6308be8
RO
468 int inflate_threshold_use;
469 int halve_threshold_use;
05eee48c 470 int max_resize;
19baf839 471
e905a9ed 472 if (!tn)
19baf839
RO
473 return NULL;
474
0c7770c7
SH
475 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
476 tn, inflate_threshold, halve_threshold);
19baf839
RO
477
478 /* No children */
479 if (tn->empty_children == tnode_child_length(tn)) {
480 tnode_free(tn);
481 return NULL;
482 }
483 /* One child */
484 if (tn->empty_children == tnode_child_length(tn) - 1)
485 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 486 struct node *n;
19baf839 487
91b9a277 488 n = tn->child[i];
2373ce1c 489 if (!n)
91b9a277 490 continue;
91b9a277
OJ
491
492 /* compress one level */
06801916 493 node_set_parent(n, NULL);
91b9a277
OJ
494 tnode_free(tn);
495 return n;
19baf839 496 }
c877efb2 497 /*
19baf839
RO
498 * Double as long as the resulting node has a number of
499 * nonempty nodes that are above the threshold.
500 */
501
502 /*
c877efb2
SH
503 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
504 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 505 * Telecommunications, page 6:
c877efb2 506 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
507 * children in the *doubled* node is at least 'high'."
508 *
c877efb2
SH
509 * 'high' in this instance is the variable 'inflate_threshold'. It
510 * is expressed as a percentage, so we multiply it with
511 * tnode_child_length() and instead of multiplying by 2 (since the
512 * child array will be doubled by inflate()) and multiplying
513 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 514 * multiply the left-hand side by 50.
c877efb2
SH
515 *
516 * The left-hand side may look a bit weird: tnode_child_length(tn)
517 * - tn->empty_children is of course the number of non-null children
518 * in the current node. tn->full_children is the number of "full"
19baf839 519 * children, that is non-null tnodes with a skip value of 0.
c877efb2 520 * All of those will be doubled in the resulting inflated tnode, so
19baf839 521 * we just count them one extra time here.
c877efb2 522 *
19baf839 523 * A clearer way to write this would be:
c877efb2 524 *
19baf839 525 * to_be_doubled = tn->full_children;
c877efb2 526 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
527 * tn->full_children;
528 *
529 * new_child_length = tnode_child_length(tn) * 2;
530 *
c877efb2 531 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
532 * new_child_length;
533 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
534 *
535 * ...and so on, tho it would mess up the while () loop.
536 *
19baf839
RO
537 * anyway,
538 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
539 * inflate_threshold
c877efb2 540 *
19baf839
RO
541 * avoid a division:
542 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
543 * inflate_threshold * new_child_length
c877efb2 544 *
19baf839 545 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 546 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 547 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 548 *
19baf839 549 * expand new_child_length:
c877efb2 550 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 551 * tn->full_children) >=
19baf839 552 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 553 *
19baf839 554 * shorten again:
c877efb2 555 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 556 * tn->empty_children) >= inflate_threshold *
19baf839 557 * tnode_child_length(tn)
c877efb2 558 *
19baf839
RO
559 */
560
561 check_tnode(tn);
c877efb2 562
e6308be8
RO
563 /* Keep root node larger */
564
132adf54 565 if (!tn->parent)
e6308be8 566 inflate_threshold_use = inflate_threshold_root;
e905a9ed 567 else
e6308be8
RO
568 inflate_threshold_use = inflate_threshold;
569
2f36895a 570 err = 0;
05eee48c
RO
571 max_resize = 10;
572 while ((tn->full_children > 0 && max_resize-- &&
19baf839 573 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
e6308be8 574 inflate_threshold_use * tnode_child_length(tn))) {
19baf839 575
2f80b3c8
RO
576 old_tn = tn;
577 tn = inflate(t, tn);
578 if (IS_ERR(tn)) {
579 tn = old_tn;
2f36895a
RO
580#ifdef CONFIG_IP_FIB_TRIE_STATS
581 t->stats.resize_node_skipped++;
582#endif
583 break;
584 }
19baf839
RO
585 }
586
05eee48c
RO
587 if (max_resize < 0) {
588 if (!tn->parent)
589 printk(KERN_WARNING "Fix inflate_threshold_root. Now=%d size=%d bits\n",
590 inflate_threshold_root, tn->bits);
591 else
592 printk(KERN_WARNING "Fix inflate_threshold. Now=%d size=%d bits\n",
593 inflate_threshold, tn->bits);
594 }
595
19baf839
RO
596 check_tnode(tn);
597
598 /*
599 * Halve as long as the number of empty children in this
600 * node is above threshold.
601 */
2f36895a 602
e6308be8
RO
603
604 /* Keep root node larger */
605
132adf54 606 if (!tn->parent)
e6308be8 607 halve_threshold_use = halve_threshold_root;
e905a9ed 608 else
e6308be8
RO
609 halve_threshold_use = halve_threshold;
610
2f36895a 611 err = 0;
05eee48c
RO
612 max_resize = 10;
613 while (tn->bits > 1 && max_resize-- &&
19baf839 614 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 615 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 616
2f80b3c8
RO
617 old_tn = tn;
618 tn = halve(t, tn);
619 if (IS_ERR(tn)) {
620 tn = old_tn;
2f36895a
RO
621#ifdef CONFIG_IP_FIB_TRIE_STATS
622 t->stats.resize_node_skipped++;
623#endif
624 break;
625 }
626 }
19baf839 627
05eee48c
RO
628 if (max_resize < 0) {
629 if (!tn->parent)
630 printk(KERN_WARNING "Fix halve_threshold_root. Now=%d size=%d bits\n",
631 halve_threshold_root, tn->bits);
632 else
633 printk(KERN_WARNING "Fix halve_threshold. Now=%d size=%d bits\n",
634 halve_threshold, tn->bits);
635 }
c877efb2 636
19baf839 637 /* Only one child remains */
19baf839
RO
638 if (tn->empty_children == tnode_child_length(tn) - 1)
639 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 640 struct node *n;
19baf839 641
91b9a277 642 n = tn->child[i];
2373ce1c 643 if (!n)
91b9a277 644 continue;
91b9a277
OJ
645
646 /* compress one level */
647
06801916 648 node_set_parent(n, NULL);
91b9a277
OJ
649 tnode_free(tn);
650 return n;
19baf839
RO
651 }
652
653 return (struct node *) tn;
654}
655
2f80b3c8 656static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839
RO
657{
658 struct tnode *inode;
659 struct tnode *oldtnode = tn;
660 int olen = tnode_child_length(tn);
661 int i;
662
0c7770c7 663 pr_debug("In inflate\n");
19baf839
RO
664
665 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
666
0c7770c7 667 if (!tn)
2f80b3c8 668 return ERR_PTR(-ENOMEM);
2f36895a
RO
669
670 /*
c877efb2
SH
671 * Preallocate and store tnodes before the actual work so we
672 * don't get into an inconsistent state if memory allocation
673 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
674 * of tnode is ignored.
675 */
91b9a277
OJ
676
677 for (i = 0; i < olen; i++) {
2f36895a
RO
678 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
679
680 if (inode &&
681 IS_TNODE(inode) &&
682 inode->pos == oldtnode->pos + oldtnode->bits &&
683 inode->bits > 1) {
684 struct tnode *left, *right;
ab66b4a7 685 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 686
2f36895a
RO
687 left = tnode_new(inode->key&(~m), inode->pos + 1,
688 inode->bits - 1);
2f80b3c8
RO
689 if (!left)
690 goto nomem;
91b9a277 691
2f36895a
RO
692 right = tnode_new(inode->key|m, inode->pos + 1,
693 inode->bits - 1);
694
e905a9ed 695 if (!right) {
2f80b3c8
RO
696 tnode_free(left);
697 goto nomem;
e905a9ed 698 }
2f36895a
RO
699
700 put_child(t, tn, 2*i, (struct node *) left);
701 put_child(t, tn, 2*i+1, (struct node *) right);
702 }
703 }
704
91b9a277 705 for (i = 0; i < olen; i++) {
19baf839 706 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
707 struct tnode *left, *right;
708 int size, j;
c877efb2 709
19baf839
RO
710 /* An empty child */
711 if (node == NULL)
712 continue;
713
714 /* A leaf or an internal node with skipped bits */
715
c877efb2 716 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 717 tn->pos + tn->bits - 1) {
c877efb2 718 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
19baf839
RO
719 1) == 0)
720 put_child(t, tn, 2*i, node);
721 else
722 put_child(t, tn, 2*i+1, node);
723 continue;
724 }
725
726 /* An internal node with two children */
727 inode = (struct tnode *) node;
728
729 if (inode->bits == 1) {
730 put_child(t, tn, 2*i, inode->child[0]);
731 put_child(t, tn, 2*i+1, inode->child[1]);
732
733 tnode_free(inode);
91b9a277 734 continue;
19baf839
RO
735 }
736
91b9a277
OJ
737 /* An internal node with more than two children */
738
739 /* We will replace this node 'inode' with two new
740 * ones, 'left' and 'right', each with half of the
741 * original children. The two new nodes will have
742 * a position one bit further down the key and this
743 * means that the "significant" part of their keys
744 * (see the discussion near the top of this file)
745 * will differ by one bit, which will be "0" in
746 * left's key and "1" in right's key. Since we are
747 * moving the key position by one step, the bit that
748 * we are moving away from - the bit at position
749 * (inode->pos) - is the one that will differ between
750 * left and right. So... we synthesize that bit in the
751 * two new keys.
752 * The mask 'm' below will be a single "one" bit at
753 * the position (inode->pos)
754 */
19baf839 755
91b9a277
OJ
756 /* Use the old key, but set the new significant
757 * bit to zero.
758 */
2f36895a 759
91b9a277
OJ
760 left = (struct tnode *) tnode_get_child(tn, 2*i);
761 put_child(t, tn, 2*i, NULL);
2f36895a 762
91b9a277 763 BUG_ON(!left);
2f36895a 764
91b9a277
OJ
765 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
766 put_child(t, tn, 2*i+1, NULL);
19baf839 767
91b9a277 768 BUG_ON(!right);
19baf839 769
91b9a277
OJ
770 size = tnode_child_length(left);
771 for (j = 0; j < size; j++) {
772 put_child(t, left, j, inode->child[j]);
773 put_child(t, right, j, inode->child[j + size]);
19baf839 774 }
91b9a277
OJ
775 put_child(t, tn, 2*i, resize(t, left));
776 put_child(t, tn, 2*i+1, resize(t, right));
777
778 tnode_free(inode);
19baf839
RO
779 }
780 tnode_free(oldtnode);
781 return tn;
2f80b3c8
RO
782nomem:
783 {
784 int size = tnode_child_length(tn);
785 int j;
786
0c7770c7 787 for (j = 0; j < size; j++)
2f80b3c8
RO
788 if (tn->child[j])
789 tnode_free((struct tnode *)tn->child[j]);
790
791 tnode_free(tn);
0c7770c7 792
2f80b3c8
RO
793 return ERR_PTR(-ENOMEM);
794 }
19baf839
RO
795}
796
2f80b3c8 797static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
798{
799 struct tnode *oldtnode = tn;
800 struct node *left, *right;
801 int i;
802 int olen = tnode_child_length(tn);
803
0c7770c7 804 pr_debug("In halve\n");
c877efb2
SH
805
806 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 807
2f80b3c8
RO
808 if (!tn)
809 return ERR_PTR(-ENOMEM);
2f36895a
RO
810
811 /*
c877efb2
SH
812 * Preallocate and store tnodes before the actual work so we
813 * don't get into an inconsistent state if memory allocation
814 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
815 * of tnode is ignored.
816 */
817
91b9a277 818 for (i = 0; i < olen; i += 2) {
2f36895a
RO
819 left = tnode_get_child(oldtnode, i);
820 right = tnode_get_child(oldtnode, i+1);
c877efb2 821
2f36895a 822 /* Two nonempty children */
0c7770c7 823 if (left && right) {
2f80b3c8 824 struct tnode *newn;
0c7770c7 825
2f80b3c8 826 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
827
828 if (!newn)
2f80b3c8 829 goto nomem;
0c7770c7 830
2f80b3c8 831 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 832 }
2f36895a 833
2f36895a 834 }
19baf839 835
91b9a277
OJ
836 for (i = 0; i < olen; i += 2) {
837 struct tnode *newBinNode;
838
19baf839
RO
839 left = tnode_get_child(oldtnode, i);
840 right = tnode_get_child(oldtnode, i+1);
c877efb2 841
19baf839
RO
842 /* At least one of the children is empty */
843 if (left == NULL) {
844 if (right == NULL) /* Both are empty */
845 continue;
846 put_child(t, tn, i/2, right);
91b9a277 847 continue;
0c7770c7 848 }
91b9a277
OJ
849
850 if (right == NULL) {
19baf839 851 put_child(t, tn, i/2, left);
91b9a277
OJ
852 continue;
853 }
c877efb2 854
19baf839 855 /* Two nonempty children */
91b9a277
OJ
856 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
857 put_child(t, tn, i/2, NULL);
91b9a277
OJ
858 put_child(t, newBinNode, 0, left);
859 put_child(t, newBinNode, 1, right);
860 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
861 }
862 tnode_free(oldtnode);
863 return tn;
2f80b3c8
RO
864nomem:
865 {
866 int size = tnode_child_length(tn);
867 int j;
868
0c7770c7 869 for (j = 0; j < size; j++)
2f80b3c8
RO
870 if (tn->child[j])
871 tnode_free((struct tnode *)tn->child[j]);
872
873 tnode_free(tn);
0c7770c7 874
2f80b3c8
RO
875 return ERR_PTR(-ENOMEM);
876 }
19baf839
RO
877}
878
91b9a277 879static void trie_init(struct trie *t)
19baf839 880{
91b9a277
OJ
881 if (!t)
882 return;
883
884 t->size = 0;
2373ce1c 885 rcu_assign_pointer(t->trie, NULL);
91b9a277 886 t->revision = 0;
19baf839 887#ifdef CONFIG_IP_FIB_TRIE_STATS
91b9a277 888 memset(&t->stats, 0, sizeof(struct trie_use_stats));
19baf839 889#endif
19baf839
RO
890}
891
772cb712 892/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
893 via get_fa_head and dump */
894
772cb712 895static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 896{
772cb712 897 struct hlist_head *head = &l->list;
19baf839
RO
898 struct hlist_node *node;
899 struct leaf_info *li;
900
2373ce1c 901 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 902 if (li->plen == plen)
19baf839 903 return li;
91b9a277 904
19baf839
RO
905 return NULL;
906}
907
908static inline struct list_head * get_fa_head(struct leaf *l, int plen)
909{
772cb712 910 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 911
91b9a277
OJ
912 if (!li)
913 return NULL;
c877efb2 914
91b9a277 915 return &li->falh;
19baf839
RO
916}
917
918static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
919{
e905a9ed
YH
920 struct leaf_info *li = NULL, *last = NULL;
921 struct hlist_node *node;
922
923 if (hlist_empty(head)) {
924 hlist_add_head_rcu(&new->hlist, head);
925 } else {
926 hlist_for_each_entry(li, node, head, hlist) {
927 if (new->plen > li->plen)
928 break;
929
930 last = li;
931 }
932 if (last)
933 hlist_add_after_rcu(&last->hlist, &new->hlist);
934 else
935 hlist_add_before_rcu(&new->hlist, &li->hlist);
936 }
19baf839
RO
937}
938
2373ce1c
RO
939/* rcu_read_lock needs to be hold by caller from readside */
940
19baf839
RO
941static struct leaf *
942fib_find_node(struct trie *t, u32 key)
943{
944 int pos;
945 struct tnode *tn;
946 struct node *n;
947
948 pos = 0;
2373ce1c 949 n = rcu_dereference(t->trie);
19baf839
RO
950
951 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
952 tn = (struct tnode *) n;
91b9a277 953
19baf839 954 check_tnode(tn);
91b9a277 955
c877efb2 956 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 957 pos = tn->pos + tn->bits;
19baf839 958 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
91b9a277 959 } else
19baf839
RO
960 break;
961 }
962 /* Case we have found a leaf. Compare prefixes */
963
91b9a277
OJ
964 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
965 return (struct leaf *)n;
966
19baf839
RO
967 return NULL;
968}
969
970static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
971{
19baf839 972 int wasfull;
06801916
SH
973 t_key cindex, key = tn->key;
974 struct tnode *tp;
19baf839 975
06801916 976 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
977 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
978 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
979 tn = (struct tnode *) resize (t, (struct tnode *)tn);
980 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
91b9a277 981
06801916
SH
982 tp = node_parent((struct node *) tn);
983 if (!tp)
19baf839 984 break;
06801916 985 tn = tp;
19baf839 986 }
06801916 987
19baf839 988 /* Handle last (top) tnode */
c877efb2 989 if (IS_TNODE(tn))
19baf839
RO
990 tn = (struct tnode*) resize(t, (struct tnode *)tn);
991
992 return (struct node*) tn;
993}
994
2373ce1c
RO
995/* only used from updater-side */
996
f835e471
RO
997static struct list_head *
998fib_insert_node(struct trie *t, int *err, u32 key, int plen)
19baf839
RO
999{
1000 int pos, newpos;
1001 struct tnode *tp = NULL, *tn = NULL;
1002 struct node *n;
1003 struct leaf *l;
1004 int missbit;
c877efb2 1005 struct list_head *fa_head = NULL;
19baf839
RO
1006 struct leaf_info *li;
1007 t_key cindex;
1008
1009 pos = 0;
c877efb2 1010 n = t->trie;
19baf839 1011
c877efb2
SH
1012 /* If we point to NULL, stop. Either the tree is empty and we should
1013 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1014 * and we should just put our new leaf in that.
c877efb2
SH
1015 * If we point to a T_TNODE, check if it matches our key. Note that
1016 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1017 * not be the parent's 'pos'+'bits'!
1018 *
c877efb2 1019 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1020 * the index from our key, push the T_TNODE and walk the tree.
1021 *
1022 * If it doesn't, we have to replace it with a new T_TNODE.
1023 *
c877efb2
SH
1024 * If we point to a T_LEAF, it might or might not have the same key
1025 * as we do. If it does, just change the value, update the T_LEAF's
1026 * value, and return it.
19baf839
RO
1027 * If it doesn't, we need to replace it with a T_TNODE.
1028 */
1029
1030 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1031 tn = (struct tnode *) n;
91b9a277 1032
c877efb2 1033 check_tnode(tn);
91b9a277 1034
c877efb2 1035 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1036 tp = tn;
91b9a277 1037 pos = tn->pos + tn->bits;
19baf839
RO
1038 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1039
06801916 1040 BUG_ON(n && node_parent(n) != tn);
91b9a277 1041 } else
19baf839
RO
1042 break;
1043 }
1044
1045 /*
1046 * n ----> NULL, LEAF or TNODE
1047 *
c877efb2 1048 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1049 */
1050
91b9a277 1051 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1052
1053 /* Case 1: n is a leaf. Compare prefixes */
1054
c877efb2 1055 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
91b9a277
OJ
1056 struct leaf *l = (struct leaf *) n;
1057
19baf839 1058 li = leaf_info_new(plen);
91b9a277 1059
c877efb2 1060 if (!li) {
f835e471
RO
1061 *err = -ENOMEM;
1062 goto err;
1063 }
19baf839
RO
1064
1065 fa_head = &li->falh;
1066 insert_leaf_info(&l->list, li);
1067 goto done;
1068 }
1069 t->size++;
1070 l = leaf_new();
1071
c877efb2 1072 if (!l) {
f835e471
RO
1073 *err = -ENOMEM;
1074 goto err;
1075 }
19baf839
RO
1076
1077 l->key = key;
1078 li = leaf_info_new(plen);
1079
c877efb2 1080 if (!li) {
f835e471
RO
1081 tnode_free((struct tnode *) l);
1082 *err = -ENOMEM;
1083 goto err;
1084 }
19baf839
RO
1085
1086 fa_head = &li->falh;
1087 insert_leaf_info(&l->list, li);
1088
19baf839 1089 if (t->trie && n == NULL) {
91b9a277 1090 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1091
06801916 1092 node_set_parent((struct node *)l, tp);
19baf839 1093
91b9a277
OJ
1094 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1095 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1096 } else {
1097 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1098 /*
1099 * Add a new tnode here
19baf839
RO
1100 * first tnode need some special handling
1101 */
1102
1103 if (tp)
91b9a277 1104 pos = tp->pos+tp->bits;
19baf839 1105 else
91b9a277
OJ
1106 pos = 0;
1107
c877efb2 1108 if (n) {
19baf839
RO
1109 newpos = tkey_mismatch(key, pos, n->key);
1110 tn = tnode_new(n->key, newpos, 1);
91b9a277 1111 } else {
19baf839 1112 newpos = 0;
c877efb2 1113 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1114 }
19baf839 1115
c877efb2 1116 if (!tn) {
f835e471
RO
1117 free_leaf_info(li);
1118 tnode_free((struct tnode *) l);
1119 *err = -ENOMEM;
1120 goto err;
91b9a277
OJ
1121 }
1122
06801916 1123 node_set_parent((struct node *)tn, tp);
19baf839 1124
91b9a277 1125 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1126 put_child(t, tn, missbit, (struct node *)l);
1127 put_child(t, tn, 1-missbit, n);
1128
c877efb2 1129 if (tp) {
19baf839
RO
1130 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1131 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
91b9a277 1132 } else {
2373ce1c 1133 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
19baf839
RO
1134 tp = tn;
1135 }
1136 }
91b9a277
OJ
1137
1138 if (tp && tp->pos + tp->bits > 32)
78c6671a 1139 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
19baf839 1140 tp, tp->pos, tp->bits, key, plen);
91b9a277 1141
19baf839 1142 /* Rebalance the trie */
2373ce1c
RO
1143
1144 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471
RO
1145done:
1146 t->revision++;
91b9a277 1147err:
19baf839
RO
1148 return fa_head;
1149}
1150
d562f1f8
RO
1151/*
1152 * Caller must hold RTNL.
1153 */
4e902c57 1154static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1155{
1156 struct trie *t = (struct trie *) tb->tb_data;
1157 struct fib_alias *fa, *new_fa;
c877efb2 1158 struct list_head *fa_head = NULL;
19baf839 1159 struct fib_info *fi;
4e902c57
TG
1160 int plen = cfg->fc_dst_len;
1161 u8 tos = cfg->fc_tos;
19baf839
RO
1162 u32 key, mask;
1163 int err;
1164 struct leaf *l;
1165
1166 if (plen > 32)
1167 return -EINVAL;
1168
4e902c57 1169 key = ntohl(cfg->fc_dst);
19baf839 1170
2dfe55b4 1171 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1172
91b9a277 1173 mask = ntohl(inet_make_mask(plen));
19baf839 1174
c877efb2 1175 if (key & ~mask)
19baf839
RO
1176 return -EINVAL;
1177
1178 key = key & mask;
1179
4e902c57
TG
1180 fi = fib_create_info(cfg);
1181 if (IS_ERR(fi)) {
1182 err = PTR_ERR(fi);
19baf839 1183 goto err;
4e902c57 1184 }
19baf839
RO
1185
1186 l = fib_find_node(t, key);
c877efb2 1187 fa = NULL;
19baf839 1188
c877efb2 1189 if (l) {
19baf839
RO
1190 fa_head = get_fa_head(l, plen);
1191 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1192 }
1193
1194 /* Now fa, if non-NULL, points to the first fib alias
1195 * with the same keys [prefix,tos,priority], if such key already
1196 * exists or to the node before which we will insert new one.
1197 *
1198 * If fa is NULL, we will need to allocate a new one and
1199 * insert to the head of f.
1200 *
1201 * If f is NULL, no fib node matched the destination key
1202 * and we need to allocate a new one of those as well.
1203 */
1204
91b9a277 1205 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
19baf839
RO
1206 struct fib_alias *fa_orig;
1207
1208 err = -EEXIST;
4e902c57 1209 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1210 goto out;
1211
4e902c57 1212 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1213 struct fib_info *fi_drop;
1214 u8 state;
1215
6725033f
JP
1216 if (fi->fib_treeref > 1)
1217 goto out;
1218
2373ce1c 1219 err = -ENOBUFS;
e94b1766 1220 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1221 if (new_fa == NULL)
1222 goto out;
19baf839
RO
1223
1224 fi_drop = fa->fa_info;
2373ce1c
RO
1225 new_fa->fa_tos = fa->fa_tos;
1226 new_fa->fa_info = fi;
4e902c57
TG
1227 new_fa->fa_type = cfg->fc_type;
1228 new_fa->fa_scope = cfg->fc_scope;
19baf839 1229 state = fa->fa_state;
2373ce1c 1230 new_fa->fa_state &= ~FA_S_ACCESSED;
19baf839 1231
2373ce1c
RO
1232 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1233 alias_free_mem_rcu(fa);
19baf839
RO
1234
1235 fib_release_info(fi_drop);
1236 if (state & FA_S_ACCESSED)
91b9a277 1237 rt_cache_flush(-1);
b8f55831
MK
1238 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1239 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1240
91b9a277 1241 goto succeeded;
19baf839
RO
1242 }
1243 /* Error if we find a perfect match which
1244 * uses the same scope, type, and nexthop
1245 * information.
1246 */
1247 fa_orig = fa;
1248 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1249 if (fa->fa_tos != tos)
1250 break;
1251 if (fa->fa_info->fib_priority != fi->fib_priority)
1252 break;
4e902c57
TG
1253 if (fa->fa_type == cfg->fc_type &&
1254 fa->fa_scope == cfg->fc_scope &&
19baf839
RO
1255 fa->fa_info == fi) {
1256 goto out;
1257 }
1258 }
4e902c57 1259 if (!(cfg->fc_nlflags & NLM_F_APPEND))
19baf839
RO
1260 fa = fa_orig;
1261 }
1262 err = -ENOENT;
4e902c57 1263 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1264 goto out;
1265
1266 err = -ENOBUFS;
e94b1766 1267 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1268 if (new_fa == NULL)
1269 goto out;
1270
1271 new_fa->fa_info = fi;
1272 new_fa->fa_tos = tos;
4e902c57
TG
1273 new_fa->fa_type = cfg->fc_type;
1274 new_fa->fa_scope = cfg->fc_scope;
19baf839 1275 new_fa->fa_state = 0;
19baf839
RO
1276 /*
1277 * Insert new entry to the list.
1278 */
1279
c877efb2 1280 if (!fa_head) {
f835e471 1281 err = 0;
b47b2ec1 1282 fa_head = fib_insert_node(t, &err, key, plen);
c877efb2 1283 if (err)
f835e471
RO
1284 goto out_free_new_fa;
1285 }
19baf839 1286
2373ce1c
RO
1287 list_add_tail_rcu(&new_fa->fa_list,
1288 (fa ? &fa->fa_list : fa_head));
19baf839
RO
1289
1290 rt_cache_flush(-1);
4e902c57 1291 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1292 &cfg->fc_nlinfo, 0);
19baf839
RO
1293succeeded:
1294 return 0;
f835e471
RO
1295
1296out_free_new_fa:
1297 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1298out:
1299 fib_release_info(fi);
91b9a277 1300err:
19baf839
RO
1301 return err;
1302}
1303
2373ce1c 1304
772cb712 1305/* should be called with rcu_read_lock */
0c7770c7
SH
1306static inline int check_leaf(struct trie *t, struct leaf *l,
1307 t_key key, int *plen, const struct flowi *flp,
06c74270 1308 struct fib_result *res)
19baf839 1309{
06c74270 1310 int err, i;
888454c5 1311 __be32 mask;
19baf839
RO
1312 struct leaf_info *li;
1313 struct hlist_head *hhead = &l->list;
1314 struct hlist_node *node;
c877efb2 1315
2373ce1c 1316 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
19baf839 1317 i = li->plen;
888454c5
AV
1318 mask = inet_make_mask(i);
1319 if (l->key != (key & ntohl(mask)))
19baf839
RO
1320 continue;
1321
888454c5 1322 if ((err = fib_semantic_match(&li->falh, flp, res, htonl(l->key), mask, i)) <= 0) {
19baf839
RO
1323 *plen = i;
1324#ifdef CONFIG_IP_FIB_TRIE_STATS
1325 t->stats.semantic_match_passed++;
1326#endif
06c74270 1327 return err;
19baf839
RO
1328 }
1329#ifdef CONFIG_IP_FIB_TRIE_STATS
1330 t->stats.semantic_match_miss++;
1331#endif
1332 }
06c74270 1333 return 1;
19baf839
RO
1334}
1335
1336static int
1337fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1338{
1339 struct trie *t = (struct trie *) tb->tb_data;
1340 int plen, ret = 0;
1341 struct node *n;
1342 struct tnode *pn;
1343 int pos, bits;
91b9a277 1344 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1345 int chopped_off;
1346 t_key cindex = 0;
1347 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1348 struct tnode *cn;
1349 t_key node_prefix, key_prefix, pref_mismatch;
1350 int mp;
1351
2373ce1c 1352 rcu_read_lock();
91b9a277 1353
2373ce1c 1354 n = rcu_dereference(t->trie);
c877efb2 1355 if (!n)
19baf839
RO
1356 goto failed;
1357
1358#ifdef CONFIG_IP_FIB_TRIE_STATS
1359 t->stats.gets++;
1360#endif
1361
1362 /* Just a leaf? */
1363 if (IS_LEAF(n)) {
06c74270 1364 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
19baf839
RO
1365 goto found;
1366 goto failed;
1367 }
1368 pn = (struct tnode *) n;
1369 chopped_off = 0;
c877efb2 1370
91b9a277 1371 while (pn) {
19baf839
RO
1372 pos = pn->pos;
1373 bits = pn->bits;
1374
c877efb2 1375 if (!chopped_off)
ab66b4a7
SH
1376 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1377 pos, bits);
19baf839
RO
1378
1379 n = tnode_get_child(pn, cindex);
1380
1381 if (n == NULL) {
1382#ifdef CONFIG_IP_FIB_TRIE_STATS
1383 t->stats.null_node_hit++;
1384#endif
1385 goto backtrace;
1386 }
1387
91b9a277
OJ
1388 if (IS_LEAF(n)) {
1389 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1390 goto found;
1391 else
1392 goto backtrace;
1393 }
1394
19baf839
RO
1395#define HL_OPTIMIZE
1396#ifdef HL_OPTIMIZE
91b9a277 1397 cn = (struct tnode *)n;
19baf839 1398
91b9a277
OJ
1399 /*
1400 * It's a tnode, and we can do some extra checks here if we
1401 * like, to avoid descending into a dead-end branch.
1402 * This tnode is in the parent's child array at index
1403 * key[p_pos..p_pos+p_bits] but potentially with some bits
1404 * chopped off, so in reality the index may be just a
1405 * subprefix, padded with zero at the end.
1406 * We can also take a look at any skipped bits in this
1407 * tnode - everything up to p_pos is supposed to be ok,
1408 * and the non-chopped bits of the index (se previous
1409 * paragraph) are also guaranteed ok, but the rest is
1410 * considered unknown.
1411 *
1412 * The skipped bits are key[pos+bits..cn->pos].
1413 */
19baf839 1414
91b9a277
OJ
1415 /* If current_prefix_length < pos+bits, we are already doing
1416 * actual prefix matching, which means everything from
1417 * pos+(bits-chopped_off) onward must be zero along some
1418 * branch of this subtree - otherwise there is *no* valid
1419 * prefix present. Here we can only check the skipped
1420 * bits. Remember, since we have already indexed into the
1421 * parent's child array, we know that the bits we chopped of
1422 * *are* zero.
1423 */
19baf839 1424
91b9a277 1425 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
19baf839 1426
91b9a277
OJ
1427 if (current_prefix_length < pos+bits) {
1428 if (tkey_extract_bits(cn->key, current_prefix_length,
1429 cn->pos - current_prefix_length) != 0 ||
1430 !(cn->child[0]))
1431 goto backtrace;
1432 }
19baf839 1433
91b9a277
OJ
1434 /*
1435 * If chopped_off=0, the index is fully validated and we
1436 * only need to look at the skipped bits for this, the new,
1437 * tnode. What we actually want to do is to find out if
1438 * these skipped bits match our key perfectly, or if we will
1439 * have to count on finding a matching prefix further down,
1440 * because if we do, we would like to have some way of
1441 * verifying the existence of such a prefix at this point.
1442 */
19baf839 1443
91b9a277
OJ
1444 /* The only thing we can do at this point is to verify that
1445 * any such matching prefix can indeed be a prefix to our
1446 * key, and if the bits in the node we are inspecting that
1447 * do not match our key are not ZERO, this cannot be true.
1448 * Thus, find out where there is a mismatch (before cn->pos)
1449 * and verify that all the mismatching bits are zero in the
1450 * new tnode's key.
1451 */
19baf839 1452
91b9a277
OJ
1453 /* Note: We aren't very concerned about the piece of the key
1454 * that precede pn->pos+pn->bits, since these have already been
1455 * checked. The bits after cn->pos aren't checked since these are
1456 * by definition "unknown" at this point. Thus, what we want to
1457 * see is if we are about to enter the "prefix matching" state,
1458 * and in that case verify that the skipped bits that will prevail
1459 * throughout this subtree are zero, as they have to be if we are
1460 * to find a matching prefix.
1461 */
1462
ab66b4a7
SH
1463 node_prefix = mask_pfx(cn->key, cn->pos);
1464 key_prefix = mask_pfx(key, cn->pos);
91b9a277
OJ
1465 pref_mismatch = key_prefix^node_prefix;
1466 mp = 0;
1467
1468 /* In short: If skipped bits in this node do not match the search
1469 * key, enter the "prefix matching" state.directly.
1470 */
1471 if (pref_mismatch) {
1472 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1473 mp++;
1474 pref_mismatch = pref_mismatch <<1;
1475 }
1476 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1477
1478 if (key_prefix != 0)
1479 goto backtrace;
1480
1481 if (current_prefix_length >= cn->pos)
1482 current_prefix_length = mp;
c877efb2 1483 }
91b9a277
OJ
1484#endif
1485 pn = (struct tnode *)n; /* Descend */
1486 chopped_off = 0;
1487 continue;
1488
19baf839
RO
1489backtrace:
1490 chopped_off++;
1491
1492 /* As zero don't change the child key (cindex) */
91b9a277 1493 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
19baf839 1494 chopped_off++;
19baf839
RO
1495
1496 /* Decrease current_... with bits chopped off */
1497 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1498 current_prefix_length = pn->pos + pn->bits - chopped_off;
91b9a277 1499
19baf839 1500 /*
c877efb2 1501 * Either we do the actual chop off according or if we have
19baf839
RO
1502 * chopped off all bits in this tnode walk up to our parent.
1503 */
1504
91b9a277 1505 if (chopped_off <= pn->bits) {
19baf839 1506 cindex &= ~(1 << (chopped_off-1));
91b9a277 1507 } else {
06801916
SH
1508 struct tnode *parent = node_parent((struct node *) pn);
1509 if (!parent)
19baf839 1510 goto failed;
91b9a277 1511
19baf839 1512 /* Get Child's index */
06801916
SH
1513 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1514 pn = parent;
19baf839
RO
1515 chopped_off = 0;
1516
1517#ifdef CONFIG_IP_FIB_TRIE_STATS
1518 t->stats.backtrack++;
1519#endif
1520 goto backtrace;
c877efb2 1521 }
19baf839
RO
1522 }
1523failed:
c877efb2 1524 ret = 1;
19baf839 1525found:
2373ce1c 1526 rcu_read_unlock();
19baf839
RO
1527 return ret;
1528}
1529
2373ce1c 1530/* only called from updater side */
19baf839
RO
1531static int trie_leaf_remove(struct trie *t, t_key key)
1532{
1533 t_key cindex;
1534 struct tnode *tp = NULL;
1535 struct node *n = t->trie;
1536 struct leaf *l;
1537
0c7770c7 1538 pr_debug("entering trie_leaf_remove(%p)\n", n);
19baf839
RO
1539
1540 /* Note that in the case skipped bits, those bits are *not* checked!
c877efb2 1541 * When we finish this, we will have NULL or a T_LEAF, and the
19baf839
RO
1542 * T_LEAF may or may not match our key.
1543 */
1544
91b9a277 1545 while (n != NULL && IS_TNODE(n)) {
19baf839
RO
1546 struct tnode *tn = (struct tnode *) n;
1547 check_tnode(tn);
1548 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1549
06801916 1550 BUG_ON(n && node_parent(n) != tn);
91b9a277 1551 }
19baf839
RO
1552 l = (struct leaf *) n;
1553
c877efb2 1554 if (!n || !tkey_equals(l->key, key))
19baf839 1555 return 0;
c877efb2
SH
1556
1557 /*
1558 * Key found.
1559 * Remove the leaf and rebalance the tree
19baf839
RO
1560 */
1561
1562 t->revision++;
1563 t->size--;
1564
06801916 1565 tp = node_parent(n);
19baf839
RO
1566 tnode_free((struct tnode *) n);
1567
c877efb2 1568 if (tp) {
19baf839
RO
1569 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1570 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1571 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1572 } else
2373ce1c 1573 rcu_assign_pointer(t->trie, NULL);
19baf839
RO
1574
1575 return 1;
1576}
1577
d562f1f8
RO
1578/*
1579 * Caller must hold RTNL.
1580 */
4e902c57 1581static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1582{
1583 struct trie *t = (struct trie *) tb->tb_data;
1584 u32 key, mask;
4e902c57
TG
1585 int plen = cfg->fc_dst_len;
1586 u8 tos = cfg->fc_tos;
19baf839
RO
1587 struct fib_alias *fa, *fa_to_delete;
1588 struct list_head *fa_head;
1589 struct leaf *l;
91b9a277
OJ
1590 struct leaf_info *li;
1591
c877efb2 1592 if (plen > 32)
19baf839
RO
1593 return -EINVAL;
1594
4e902c57 1595 key = ntohl(cfg->fc_dst);
91b9a277 1596 mask = ntohl(inet_make_mask(plen));
19baf839 1597
c877efb2 1598 if (key & ~mask)
19baf839
RO
1599 return -EINVAL;
1600
1601 key = key & mask;
1602 l = fib_find_node(t, key);
1603
c877efb2 1604 if (!l)
19baf839
RO
1605 return -ESRCH;
1606
1607 fa_head = get_fa_head(l, plen);
1608 fa = fib_find_alias(fa_head, tos, 0);
1609
1610 if (!fa)
1611 return -ESRCH;
1612
0c7770c7 1613 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1614
1615 fa_to_delete = NULL;
1616 fa_head = fa->fa_list.prev;
2373ce1c 1617
19baf839
RO
1618 list_for_each_entry(fa, fa_head, fa_list) {
1619 struct fib_info *fi = fa->fa_info;
1620
1621 if (fa->fa_tos != tos)
1622 break;
1623
4e902c57
TG
1624 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1625 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1626 fa->fa_scope == cfg->fc_scope) &&
1627 (!cfg->fc_protocol ||
1628 fi->fib_protocol == cfg->fc_protocol) &&
1629 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1630 fa_to_delete = fa;
1631 break;
1632 }
1633 }
1634
91b9a277
OJ
1635 if (!fa_to_delete)
1636 return -ESRCH;
19baf839 1637
91b9a277 1638 fa = fa_to_delete;
4e902c57 1639 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1640 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1641
1642 l = fib_find_node(t, key);
772cb712 1643 li = find_leaf_info(l, plen);
19baf839 1644
2373ce1c 1645 list_del_rcu(&fa->fa_list);
19baf839 1646
91b9a277 1647 if (list_empty(fa_head)) {
2373ce1c 1648 hlist_del_rcu(&li->hlist);
91b9a277 1649 free_leaf_info(li);
2373ce1c 1650 }
19baf839 1651
91b9a277
OJ
1652 if (hlist_empty(&l->list))
1653 trie_leaf_remove(t, key);
19baf839 1654
91b9a277
OJ
1655 if (fa->fa_state & FA_S_ACCESSED)
1656 rt_cache_flush(-1);
19baf839 1657
2373ce1c
RO
1658 fib_release_info(fa->fa_info);
1659 alias_free_mem_rcu(fa);
91b9a277 1660 return 0;
19baf839
RO
1661}
1662
1663static int trie_flush_list(struct trie *t, struct list_head *head)
1664{
1665 struct fib_alias *fa, *fa_node;
1666 int found = 0;
1667
1668 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1669 struct fib_info *fi = fa->fa_info;
19baf839 1670
2373ce1c
RO
1671 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1672 list_del_rcu(&fa->fa_list);
1673 fib_release_info(fa->fa_info);
1674 alias_free_mem_rcu(fa);
19baf839
RO
1675 found++;
1676 }
1677 }
1678 return found;
1679}
1680
1681static int trie_flush_leaf(struct trie *t, struct leaf *l)
1682{
1683 int found = 0;
1684 struct hlist_head *lih = &l->list;
1685 struct hlist_node *node, *tmp;
1686 struct leaf_info *li = NULL;
1687
1688 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
19baf839
RO
1689 found += trie_flush_list(t, &li->falh);
1690
1691 if (list_empty(&li->falh)) {
2373ce1c 1692 hlist_del_rcu(&li->hlist);
19baf839
RO
1693 free_leaf_info(li);
1694 }
1695 }
1696 return found;
1697}
1698
2373ce1c
RO
1699/* rcu_read_lock needs to be hold by caller from readside */
1700
19baf839
RO
1701static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1702{
1703 struct node *c = (struct node *) thisleaf;
1704 struct tnode *p;
1705 int idx;
2373ce1c 1706 struct node *trie = rcu_dereference(t->trie);
19baf839 1707
c877efb2 1708 if (c == NULL) {
2373ce1c 1709 if (trie == NULL)
19baf839
RO
1710 return NULL;
1711
2373ce1c
RO
1712 if (IS_LEAF(trie)) /* trie w. just a leaf */
1713 return (struct leaf *) trie;
19baf839 1714
2373ce1c 1715 p = (struct tnode*) trie; /* Start */
91b9a277 1716 } else
06801916 1717 p = node_parent(c);
c877efb2 1718
19baf839
RO
1719 while (p) {
1720 int pos, last;
1721
1722 /* Find the next child of the parent */
c877efb2
SH
1723 if (c)
1724 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1725 else
19baf839
RO
1726 pos = 0;
1727
1728 last = 1 << p->bits;
91b9a277 1729 for (idx = pos; idx < last ; idx++) {
2373ce1c
RO
1730 c = rcu_dereference(p->child[idx]);
1731
1732 if (!c)
91b9a277
OJ
1733 continue;
1734
1735 /* Decend if tnode */
2373ce1c
RO
1736 while (IS_TNODE(c)) {
1737 p = (struct tnode *) c;
e905a9ed 1738 idx = 0;
91b9a277
OJ
1739
1740 /* Rightmost non-NULL branch */
1741 if (p && IS_TNODE(p))
2373ce1c
RO
1742 while (!(c = rcu_dereference(p->child[idx]))
1743 && idx < (1<<p->bits)) idx++;
91b9a277
OJ
1744
1745 /* Done with this tnode? */
2373ce1c 1746 if (idx >= (1 << p->bits) || !c)
91b9a277 1747 goto up;
19baf839 1748 }
2373ce1c 1749 return (struct leaf *) c;
19baf839
RO
1750 }
1751up:
1752 /* No more children go up one step */
91b9a277 1753 c = (struct node *) p;
06801916 1754 p = node_parent(c);
19baf839
RO
1755 }
1756 return NULL; /* Ready. Root of trie */
1757}
1758
d562f1f8
RO
1759/*
1760 * Caller must hold RTNL.
1761 */
19baf839
RO
1762static int fn_trie_flush(struct fib_table *tb)
1763{
1764 struct trie *t = (struct trie *) tb->tb_data;
1765 struct leaf *ll = NULL, *l = NULL;
1766 int found = 0, h;
1767
1768 t->revision++;
1769
91b9a277 1770 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1771 found += trie_flush_leaf(t, l);
1772
1773 if (ll && hlist_empty(&ll->list))
1774 trie_leaf_remove(t, ll->key);
1775 ll = l;
1776 }
1777
1778 if (ll && hlist_empty(&ll->list))
1779 trie_leaf_remove(t, ll->key);
1780
0c7770c7 1781 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1782 return found;
1783}
1784
19baf839
RO
1785static void
1786fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1787{
1788 struct trie *t = (struct trie *) tb->tb_data;
1789 int order, last_idx;
1790 struct fib_info *fi = NULL;
1791 struct fib_info *last_resort;
1792 struct fib_alias *fa = NULL;
1793 struct list_head *fa_head;
1794 struct leaf *l;
1795
1796 last_idx = -1;
1797 last_resort = NULL;
1798 order = -1;
1799
2373ce1c 1800 rcu_read_lock();
c877efb2 1801
19baf839 1802 l = fib_find_node(t, 0);
c877efb2 1803 if (!l)
19baf839
RO
1804 goto out;
1805
1806 fa_head = get_fa_head(l, 0);
c877efb2 1807 if (!fa_head)
19baf839
RO
1808 goto out;
1809
c877efb2 1810 if (list_empty(fa_head))
19baf839
RO
1811 goto out;
1812
2373ce1c 1813 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1814 struct fib_info *next_fi = fa->fa_info;
91b9a277 1815
19baf839
RO
1816 if (fa->fa_scope != res->scope ||
1817 fa->fa_type != RTN_UNICAST)
1818 continue;
91b9a277 1819
19baf839
RO
1820 if (next_fi->fib_priority > res->fi->fib_priority)
1821 break;
1822 if (!next_fi->fib_nh[0].nh_gw ||
1823 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1824 continue;
1825 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1826
19baf839
RO
1827 if (fi == NULL) {
1828 if (next_fi != res->fi)
1829 break;
1830 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1831 &last_idx, tb->tb_default)) {
a2bbe682 1832 fib_result_assign(res, fi);
971b893e 1833 tb->tb_default = order;
19baf839
RO
1834 goto out;
1835 }
1836 fi = next_fi;
1837 order++;
1838 }
1839 if (order <= 0 || fi == NULL) {
971b893e 1840 tb->tb_default = -1;
19baf839
RO
1841 goto out;
1842 }
1843
971b893e
DL
1844 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1845 tb->tb_default)) {
a2bbe682 1846 fib_result_assign(res, fi);
971b893e 1847 tb->tb_default = order;
19baf839
RO
1848 goto out;
1849 }
a2bbe682
DL
1850 if (last_idx >= 0)
1851 fib_result_assign(res, last_resort);
971b893e
DL
1852 tb->tb_default = last_idx;
1853out:
2373ce1c 1854 rcu_read_unlock();
19baf839
RO
1855}
1856
c877efb2 1857static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
19baf839
RO
1858 struct sk_buff *skb, struct netlink_callback *cb)
1859{
1860 int i, s_i;
1861 struct fib_alias *fa;
1862
32ab5f80 1863 __be32 xkey = htonl(key);
19baf839 1864
1af5a8c4 1865 s_i = cb->args[4];
19baf839
RO
1866 i = 0;
1867
2373ce1c
RO
1868 /* rcu_read_lock is hold by caller */
1869
1870 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1871 if (i < s_i) {
1872 i++;
1873 continue;
1874 }
78c6671a 1875 BUG_ON(!fa->fa_info);
19baf839
RO
1876
1877 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1878 cb->nlh->nlmsg_seq,
1879 RTM_NEWROUTE,
1880 tb->tb_id,
1881 fa->fa_type,
1882 fa->fa_scope,
be403ea1 1883 xkey,
19baf839
RO
1884 plen,
1885 fa->fa_tos,
90f66914 1886 fa->fa_info, 0) < 0) {
1af5a8c4 1887 cb->args[4] = i;
19baf839 1888 return -1;
91b9a277 1889 }
19baf839
RO
1890 i++;
1891 }
1af5a8c4 1892 cb->args[4] = i;
19baf839
RO
1893 return skb->len;
1894}
1895
c877efb2 1896static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
19baf839
RO
1897 struct netlink_callback *cb)
1898{
1899 int h, s_h;
1900 struct list_head *fa_head;
1901 struct leaf *l = NULL;
19baf839 1902
1af5a8c4 1903 s_h = cb->args[3];
19baf839 1904
91b9a277 1905 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1906 if (h < s_h)
1907 continue;
1908 if (h > s_h)
1af5a8c4
PM
1909 memset(&cb->args[4], 0,
1910 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839
RO
1911
1912 fa_head = get_fa_head(l, plen);
91b9a277 1913
c877efb2 1914 if (!fa_head)
19baf839
RO
1915 continue;
1916
c877efb2 1917 if (list_empty(fa_head))
19baf839
RO
1918 continue;
1919
1920 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1af5a8c4 1921 cb->args[3] = h;
19baf839
RO
1922 return -1;
1923 }
1924 }
1af5a8c4 1925 cb->args[3] = h;
19baf839
RO
1926 return skb->len;
1927}
1928
1929static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1930{
1931 int m, s_m;
1932 struct trie *t = (struct trie *) tb->tb_data;
1933
1af5a8c4 1934 s_m = cb->args[2];
19baf839 1935
2373ce1c 1936 rcu_read_lock();
91b9a277 1937 for (m = 0; m <= 32; m++) {
19baf839
RO
1938 if (m < s_m)
1939 continue;
1940 if (m > s_m)
1af5a8c4
PM
1941 memset(&cb->args[3], 0,
1942 sizeof(cb->args) - 3*sizeof(cb->args[0]));
19baf839
RO
1943
1944 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1af5a8c4 1945 cb->args[2] = m;
19baf839
RO
1946 goto out;
1947 }
1948 }
2373ce1c 1949 rcu_read_unlock();
1af5a8c4 1950 cb->args[2] = m;
19baf839 1951 return skb->len;
91b9a277 1952out:
2373ce1c 1953 rcu_read_unlock();
19baf839
RO
1954 return -1;
1955}
1956
1957/* Fix more generic FIB names for init later */
1958
7b1a74fd 1959struct fib_table *fib_hash_init(u32 id)
19baf839
RO
1960{
1961 struct fib_table *tb;
1962 struct trie *t;
1963
1964 if (fn_alias_kmem == NULL)
1965 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1966 sizeof(struct fib_alias),
1967 0, SLAB_HWCACHE_ALIGN,
20c2df83 1968 NULL);
19baf839
RO
1969
1970 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1971 GFP_KERNEL);
1972 if (tb == NULL)
1973 return NULL;
1974
1975 tb->tb_id = id;
971b893e 1976 tb->tb_default = -1;
19baf839
RO
1977 tb->tb_lookup = fn_trie_lookup;
1978 tb->tb_insert = fn_trie_insert;
1979 tb->tb_delete = fn_trie_delete;
1980 tb->tb_flush = fn_trie_flush;
1981 tb->tb_select_default = fn_trie_select_default;
1982 tb->tb_dump = fn_trie_dump;
1983 memset(tb->tb_data, 0, sizeof(struct trie));
1984
1985 t = (struct trie *) tb->tb_data;
1986
1987 trie_init(t);
1988
19baf839 1989 if (id == RT_TABLE_LOCAL)
78c6671a 1990 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
1991
1992 return tb;
1993}
1994
cb7b593c
SH
1995#ifdef CONFIG_PROC_FS
1996/* Depth first Trie walk iterator */
1997struct fib_trie_iter {
1c340b2f 1998 struct seq_net_private p;
877a9bff 1999 struct trie *trie_local, *trie_main;
cb7b593c
SH
2000 struct tnode *tnode;
2001 struct trie *trie;
2002 unsigned index;
2003 unsigned depth;
2004};
19baf839 2005
cb7b593c 2006static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2007{
cb7b593c
SH
2008 struct tnode *tn = iter->tnode;
2009 unsigned cindex = iter->index;
2010 struct tnode *p;
19baf839 2011
6640e697
EB
2012 /* A single entry routing table */
2013 if (!tn)
2014 return NULL;
2015
cb7b593c
SH
2016 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2017 iter->tnode, iter->index, iter->depth);
2018rescan:
2019 while (cindex < (1<<tn->bits)) {
2020 struct node *n = tnode_get_child(tn, cindex);
19baf839 2021
cb7b593c
SH
2022 if (n) {
2023 if (IS_LEAF(n)) {
2024 iter->tnode = tn;
2025 iter->index = cindex + 1;
2026 } else {
2027 /* push down one level */
2028 iter->tnode = (struct tnode *) n;
2029 iter->index = 0;
2030 ++iter->depth;
2031 }
2032 return n;
2033 }
19baf839 2034
cb7b593c
SH
2035 ++cindex;
2036 }
91b9a277 2037
cb7b593c 2038 /* Current node exhausted, pop back up */
06801916 2039 p = node_parent((struct node *)tn);
cb7b593c
SH
2040 if (p) {
2041 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2042 tn = p;
2043 --iter->depth;
2044 goto rescan;
19baf839 2045 }
cb7b593c
SH
2046
2047 /* got root? */
2048 return NULL;
19baf839
RO
2049}
2050
cb7b593c
SH
2051static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2052 struct trie *t)
19baf839 2053{
5ddf0eb2
RO
2054 struct node *n ;
2055
132adf54 2056 if (!t)
5ddf0eb2
RO
2057 return NULL;
2058
2059 n = rcu_dereference(t->trie);
2060
132adf54 2061 if (!iter)
5ddf0eb2 2062 return NULL;
19baf839 2063
6640e697
EB
2064 if (n) {
2065 if (IS_TNODE(n)) {
2066 iter->tnode = (struct tnode *) n;
2067 iter->trie = t;
2068 iter->index = 0;
2069 iter->depth = 1;
2070 } else {
2071 iter->tnode = NULL;
2072 iter->trie = t;
2073 iter->index = 0;
2074 iter->depth = 0;
2075 }
cb7b593c 2076 return n;
91b9a277 2077 }
cb7b593c
SH
2078 return NULL;
2079}
91b9a277 2080
cb7b593c
SH
2081static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2082{
2083 struct node *n;
2084 struct fib_trie_iter iter;
91b9a277 2085
cb7b593c 2086 memset(s, 0, sizeof(*s));
91b9a277 2087
cb7b593c
SH
2088 rcu_read_lock();
2089 for (n = fib_trie_get_first(&iter, t); n;
2090 n = fib_trie_get_next(&iter)) {
2091 if (IS_LEAF(n)) {
2092 s->leaves++;
2093 s->totdepth += iter.depth;
2094 if (iter.depth > s->maxdepth)
2095 s->maxdepth = iter.depth;
2096 } else {
2097 const struct tnode *tn = (const struct tnode *) n;
2098 int i;
2099
2100 s->tnodes++;
132adf54 2101 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2102 s->nodesizes[tn->bits]++;
2103
cb7b593c
SH
2104 for (i = 0; i < (1<<tn->bits); i++)
2105 if (!tn->child[i])
2106 s->nullpointers++;
19baf839 2107 }
19baf839 2108 }
2373ce1c 2109 rcu_read_unlock();
19baf839
RO
2110}
2111
cb7b593c
SH
2112/*
2113 * This outputs /proc/net/fib_triestats
2114 */
2115static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2116{
cb7b593c 2117 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2118
cb7b593c
SH
2119 if (stat->leaves)
2120 avdepth = stat->totdepth*100 / stat->leaves;
2121 else
2122 avdepth = 0;
91b9a277 2123
cb7b593c
SH
2124 seq_printf(seq, "\tAver depth: %d.%02d\n", avdepth / 100, avdepth % 100 );
2125 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2126
cb7b593c 2127 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
91b9a277 2128
cb7b593c
SH
2129 bytes = sizeof(struct leaf) * stat->leaves;
2130 seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes);
2131 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2132
06ef921d
RO
2133 max = MAX_STAT_DEPTH;
2134 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2135 max--;
19baf839 2136
cb7b593c
SH
2137 pointers = 0;
2138 for (i = 1; i <= max; i++)
2139 if (stat->nodesizes[i] != 0) {
2140 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2141 pointers += (1<<i) * stat->nodesizes[i];
2142 }
2143 seq_putc(seq, '\n');
2144 seq_printf(seq, "\tPointers: %d\n", pointers);
2373ce1c 2145
cb7b593c
SH
2146 bytes += sizeof(struct node *) * pointers;
2147 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2148 seq_printf(seq, "Total size: %d kB\n", (bytes + 1023) / 1024);
2373ce1c 2149
cb7b593c
SH
2150#ifdef CONFIG_IP_FIB_TRIE_STATS
2151 seq_printf(seq, "Counters:\n---------\n");
2152 seq_printf(seq,"gets = %d\n", t->stats.gets);
2153 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2154 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2155 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2156 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2157 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2158#ifdef CLEAR_STATS
2159 memset(&(t->stats), 0, sizeof(t->stats));
2160#endif
2161#endif /* CONFIG_IP_FIB_TRIE_STATS */
2162}
19baf839 2163
cb7b593c
SH
2164static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2165{
1c340b2f 2166 struct net *net = (struct net *)seq->private;
877a9bff 2167 struct trie *trie_local, *trie_main;
cb7b593c 2168 struct trie_stat *stat;
877a9bff
EB
2169 struct fib_table *tb;
2170
2171 trie_local = NULL;
1c340b2f 2172 tb = fib_get_table(net, RT_TABLE_LOCAL);
877a9bff
EB
2173 if (tb)
2174 trie_local = (struct trie *) tb->tb_data;
2175
2176 trie_main = NULL;
1c340b2f 2177 tb = fib_get_table(net, RT_TABLE_MAIN);
877a9bff
EB
2178 if (tb)
2179 trie_main = (struct trie *) tb->tb_data;
2180
91b9a277 2181
cb7b593c
SH
2182 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2183 if (!stat)
2184 return -ENOMEM;
91b9a277 2185
cb7b593c
SH
2186 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2187 sizeof(struct leaf), sizeof(struct tnode));
91b9a277 2188
cb7b593c
SH
2189 if (trie_local) {
2190 seq_printf(seq, "Local:\n");
2191 trie_collect_stats(trie_local, stat);
2192 trie_show_stats(seq, stat);
2193 }
91b9a277 2194
cb7b593c
SH
2195 if (trie_main) {
2196 seq_printf(seq, "Main:\n");
2197 trie_collect_stats(trie_main, stat);
2198 trie_show_stats(seq, stat);
19baf839 2199 }
cb7b593c 2200 kfree(stat);
19baf839 2201
cb7b593c 2202 return 0;
19baf839
RO
2203}
2204
cb7b593c 2205static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2206{
1c340b2f
DL
2207 int err;
2208 struct net *net;
2209
2210 net = get_proc_net(inode);
2211 if (net == NULL)
2212 return -ENXIO;
2213 err = single_open(file, fib_triestat_seq_show, net);
2214 if (err < 0) {
2215 put_net(net);
2216 return err;
2217 }
2218 return 0;
2219}
2220
2221static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2222{
2223 struct seq_file *seq = f->private_data;
2224 put_net(seq->private);
2225 return single_release(ino, f);
19baf839
RO
2226}
2227
9a32144e 2228static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2229 .owner = THIS_MODULE,
2230 .open = fib_triestat_seq_open,
2231 .read = seq_read,
2232 .llseek = seq_lseek,
1c340b2f 2233 .release = fib_triestat_seq_release,
cb7b593c
SH
2234};
2235
2236static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2237 loff_t pos)
19baf839 2238{
cb7b593c
SH
2239 loff_t idx = 0;
2240 struct node *n;
2241
877a9bff 2242 for (n = fib_trie_get_first(iter, iter->trie_local);
cb7b593c
SH
2243 n; ++idx, n = fib_trie_get_next(iter)) {
2244 if (pos == idx)
2245 return n;
2246 }
2247
877a9bff 2248 for (n = fib_trie_get_first(iter, iter->trie_main);
cb7b593c
SH
2249 n; ++idx, n = fib_trie_get_next(iter)) {
2250 if (pos == idx)
2251 return n;
2252 }
19baf839
RO
2253 return NULL;
2254}
2255
cb7b593c 2256static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
19baf839 2257{
877a9bff
EB
2258 struct fib_trie_iter *iter = seq->private;
2259 struct fib_table *tb;
2260
2261 if (!iter->trie_local) {
1c340b2f 2262 tb = fib_get_table(iter->p.net, RT_TABLE_LOCAL);
877a9bff
EB
2263 if (tb)
2264 iter->trie_local = (struct trie *) tb->tb_data;
2265 }
2266 if (!iter->trie_main) {
1c340b2f 2267 tb = fib_get_table(iter->p.net, RT_TABLE_MAIN);
877a9bff
EB
2268 if (tb)
2269 iter->trie_main = (struct trie *) tb->tb_data;
2270 }
cb7b593c
SH
2271 rcu_read_lock();
2272 if (*pos == 0)
91b9a277 2273 return SEQ_START_TOKEN;
877a9bff 2274 return fib_trie_get_idx(iter, *pos - 1);
19baf839
RO
2275}
2276
cb7b593c 2277static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2278{
cb7b593c
SH
2279 struct fib_trie_iter *iter = seq->private;
2280 void *l = v;
2281
19baf839 2282 ++*pos;
91b9a277 2283 if (v == SEQ_START_TOKEN)
cb7b593c 2284 return fib_trie_get_idx(iter, 0);
19baf839 2285
cb7b593c
SH
2286 v = fib_trie_get_next(iter);
2287 BUG_ON(v == l);
2288 if (v)
2289 return v;
19baf839 2290
cb7b593c 2291 /* continue scan in next trie */
877a9bff
EB
2292 if (iter->trie == iter->trie_local)
2293 return fib_trie_get_first(iter, iter->trie_main);
19baf839 2294
cb7b593c
SH
2295 return NULL;
2296}
19baf839 2297
cb7b593c 2298static void fib_trie_seq_stop(struct seq_file *seq, void *v)
19baf839 2299{
cb7b593c
SH
2300 rcu_read_unlock();
2301}
91b9a277 2302
cb7b593c
SH
2303static void seq_indent(struct seq_file *seq, int n)
2304{
2305 while (n-- > 0) seq_puts(seq, " ");
2306}
19baf839 2307
cb7b593c
SH
2308static inline const char *rtn_scope(enum rt_scope_t s)
2309{
2310 static char buf[32];
19baf839 2311
132adf54 2312 switch (s) {
cb7b593c
SH
2313 case RT_SCOPE_UNIVERSE: return "universe";
2314 case RT_SCOPE_SITE: return "site";
2315 case RT_SCOPE_LINK: return "link";
2316 case RT_SCOPE_HOST: return "host";
2317 case RT_SCOPE_NOWHERE: return "nowhere";
2318 default:
2319 snprintf(buf, sizeof(buf), "scope=%d", s);
2320 return buf;
2321 }
2322}
19baf839 2323
cb7b593c
SH
2324static const char *rtn_type_names[__RTN_MAX] = {
2325 [RTN_UNSPEC] = "UNSPEC",
2326 [RTN_UNICAST] = "UNICAST",
2327 [RTN_LOCAL] = "LOCAL",
2328 [RTN_BROADCAST] = "BROADCAST",
2329 [RTN_ANYCAST] = "ANYCAST",
2330 [RTN_MULTICAST] = "MULTICAST",
2331 [RTN_BLACKHOLE] = "BLACKHOLE",
2332 [RTN_UNREACHABLE] = "UNREACHABLE",
2333 [RTN_PROHIBIT] = "PROHIBIT",
2334 [RTN_THROW] = "THROW",
2335 [RTN_NAT] = "NAT",
2336 [RTN_XRESOLVE] = "XRESOLVE",
2337};
19baf839 2338
cb7b593c
SH
2339static inline const char *rtn_type(unsigned t)
2340{
2341 static char buf[32];
19baf839 2342
cb7b593c
SH
2343 if (t < __RTN_MAX && rtn_type_names[t])
2344 return rtn_type_names[t];
2345 snprintf(buf, sizeof(buf), "type %d", t);
2346 return buf;
19baf839
RO
2347}
2348
cb7b593c
SH
2349/* Pretty print the trie */
2350static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2351{
cb7b593c
SH
2352 const struct fib_trie_iter *iter = seq->private;
2353 struct node *n = v;
c877efb2 2354
cb7b593c
SH
2355 if (v == SEQ_START_TOKEN)
2356 return 0;
19baf839 2357
06801916 2358 if (!node_parent(n)) {
877a9bff 2359 if (iter->trie == iter->trie_local)
095b8501
RO
2360 seq_puts(seq, "<local>:\n");
2361 else
2362 seq_puts(seq, "<main>:\n");
2363 }
2364
cb7b593c
SH
2365 if (IS_TNODE(n)) {
2366 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2367 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2368
1d25cd6c
RO
2369 seq_indent(seq, iter->depth-1);
2370 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
e905a9ed 2371 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
1d25cd6c 2372 tn->empty_children);
e905a9ed 2373
cb7b593c
SH
2374 } else {
2375 struct leaf *l = (struct leaf *) n;
2376 int i;
32ab5f80 2377 __be32 val = htonl(l->key);
cb7b593c
SH
2378
2379 seq_indent(seq, iter->depth);
2380 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2381 for (i = 32; i >= 0; i--) {
772cb712 2382 struct leaf_info *li = find_leaf_info(l, i);
cb7b593c
SH
2383 if (li) {
2384 struct fib_alias *fa;
2385 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2386 seq_indent(seq, iter->depth+1);
2387 seq_printf(seq, " /%d %s %s", i,
2388 rtn_scope(fa->fa_scope),
2389 rtn_type(fa->fa_type));
2390 if (fa->fa_tos)
2391 seq_printf(seq, "tos =%d\n",
2392 fa->fa_tos);
2393 seq_putc(seq, '\n');
2394 }
2395 }
2396 }
19baf839 2397 }
cb7b593c 2398
19baf839
RO
2399 return 0;
2400}
2401
f690808e 2402static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2403 .start = fib_trie_seq_start,
2404 .next = fib_trie_seq_next,
2405 .stop = fib_trie_seq_stop,
2406 .show = fib_trie_seq_show,
19baf839
RO
2407};
2408
cb7b593c 2409static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2410{
1c340b2f
DL
2411 return seq_open_net(inode, file, &fib_trie_seq_ops,
2412 sizeof(struct fib_trie_iter));
19baf839
RO
2413}
2414
9a32144e 2415static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2416 .owner = THIS_MODULE,
2417 .open = fib_trie_seq_open,
2418 .read = seq_read,
2419 .llseek = seq_lseek,
1c340b2f 2420 .release = seq_release_net,
19baf839
RO
2421};
2422
32ab5f80 2423static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2424{
cb7b593c
SH
2425 static unsigned type2flags[RTN_MAX + 1] = {
2426 [7] = RTF_REJECT, [8] = RTF_REJECT,
2427 };
2428 unsigned flags = type2flags[type];
19baf839 2429
cb7b593c
SH
2430 if (fi && fi->fib_nh->nh_gw)
2431 flags |= RTF_GATEWAY;
32ab5f80 2432 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2433 flags |= RTF_HOST;
2434 flags |= RTF_UP;
2435 return flags;
19baf839
RO
2436}
2437
cb7b593c
SH
2438/*
2439 * This outputs /proc/net/route.
2440 * The format of the file is not supposed to be changed
2441 * and needs to be same as fib_hash output to avoid breaking
2442 * legacy utilities
2443 */
2444static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2445{
c9e53cbe 2446 const struct fib_trie_iter *iter = seq->private;
cb7b593c
SH
2447 struct leaf *l = v;
2448 int i;
2449 char bf[128];
19baf839 2450
cb7b593c
SH
2451 if (v == SEQ_START_TOKEN) {
2452 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2453 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2454 "\tWindow\tIRTT");
2455 return 0;
2456 }
19baf839 2457
877a9bff 2458 if (iter->trie == iter->trie_local)
c9e53cbe 2459 return 0;
cb7b593c
SH
2460 if (IS_TNODE(l))
2461 return 0;
19baf839 2462
cb7b593c 2463 for (i=32; i>=0; i--) {
772cb712 2464 struct leaf_info *li = find_leaf_info(l, i);
cb7b593c 2465 struct fib_alias *fa;
32ab5f80 2466 __be32 mask, prefix;
91b9a277 2467
cb7b593c
SH
2468 if (!li)
2469 continue;
19baf839 2470
cb7b593c
SH
2471 mask = inet_make_mask(li->plen);
2472 prefix = htonl(l->key);
19baf839 2473
cb7b593c 2474 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2475 const struct fib_info *fi = fa->fa_info;
cb7b593c 2476 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2477
cb7b593c
SH
2478 if (fa->fa_type == RTN_BROADCAST
2479 || fa->fa_type == RTN_MULTICAST)
2480 continue;
19baf839 2481
cb7b593c
SH
2482 if (fi)
2483 snprintf(bf, sizeof(bf),
2484 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2485 fi->fib_dev ? fi->fib_dev->name : "*",
2486 prefix,
2487 fi->fib_nh->nh_gw, flags, 0, 0,
2488 fi->fib_priority,
2489 mask,
2490 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2491 fi->fib_window,
2492 fi->fib_rtt >> 3);
2493 else
2494 snprintf(bf, sizeof(bf),
2495 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2496 prefix, 0, flags, 0, 0, 0,
2497 mask, 0, 0, 0);
19baf839 2498
cb7b593c
SH
2499 seq_printf(seq, "%-127s\n", bf);
2500 }
19baf839
RO
2501 }
2502
2503 return 0;
2504}
2505
f690808e 2506static const struct seq_operations fib_route_seq_ops = {
cb7b593c
SH
2507 .start = fib_trie_seq_start,
2508 .next = fib_trie_seq_next,
2509 .stop = fib_trie_seq_stop,
2510 .show = fib_route_seq_show,
19baf839
RO
2511};
2512
cb7b593c 2513static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2514{
1c340b2f
DL
2515 return seq_open_net(inode, file, &fib_route_seq_ops,
2516 sizeof(struct fib_trie_iter));
19baf839
RO
2517}
2518
9a32144e 2519static const struct file_operations fib_route_fops = {
cb7b593c
SH
2520 .owner = THIS_MODULE,
2521 .open = fib_route_seq_open,
2522 .read = seq_read,
2523 .llseek = seq_lseek,
1c340b2f 2524 .release = seq_release_net,
19baf839
RO
2525};
2526
61a02653 2527int __net_init fib_proc_init(struct net *net)
19baf839 2528{
61a02653 2529 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2530 goto out1;
2531
61a02653
DL
2532 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2533 &fib_triestat_fops))
cb7b593c
SH
2534 goto out2;
2535
61a02653 2536 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2537 goto out3;
2538
19baf839 2539 return 0;
cb7b593c
SH
2540
2541out3:
61a02653 2542 proc_net_remove(net, "fib_triestat");
cb7b593c 2543out2:
61a02653 2544 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2545out1:
2546 return -ENOMEM;
19baf839
RO
2547}
2548
61a02653 2549void __net_exit fib_proc_exit(struct net *net)
19baf839 2550{
61a02653
DL
2551 proc_net_remove(net, "fib_trie");
2552 proc_net_remove(net, "fib_triestat");
2553 proc_net_remove(net, "route");
19baf839
RO
2554}
2555
2556#endif /* CONFIG_PROC_FS */