]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - net/ipv4/fib_trie.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[mirror_ubuntu-jammy-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
7c0f6ba6 53#include <linux/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
ffa915d0 75#include <linux/vmalloc.h>
b90eb754 76#include <linux/notifier.h>
457c4cbc 77#include <net/net_namespace.h>
19baf839
RO
78#include <net/ip.h>
79#include <net/protocol.h>
80#include <net/route.h>
81#include <net/tcp.h>
82#include <net/sock.h>
83#include <net/ip_fib.h>
f6d3c192 84#include <trace/events/fib.h>
19baf839
RO
85#include "fib_lookup.h"
86
c3852ef7
IS
87static unsigned int fib_seq_sum(void)
88{
89 unsigned int fib_seq = 0;
90 struct net *net;
91
92 rtnl_lock();
93 for_each_net(net)
94 fib_seq += net->ipv4.fib_seq;
95 rtnl_unlock();
96
97 return fib_seq;
98}
99
d3f706f6 100static ATOMIC_NOTIFIER_HEAD(fib_chain);
b90eb754 101
c3852ef7
IS
102static int call_fib_notifier(struct notifier_block *nb, struct net *net,
103 enum fib_event_type event_type,
104 struct fib_notifier_info *info)
105{
106 info->net = net;
107 return nb->notifier_call(nb, event_type, info);
108}
109
110static void fib_rules_notify(struct net *net, struct notifier_block *nb,
111 enum fib_event_type event_type)
112{
113#ifdef CONFIG_IP_MULTIPLE_TABLES
114 struct fib_notifier_info info;
115
116 if (net->ipv4.fib_has_custom_rules)
117 call_fib_notifier(nb, net, event_type, &info);
118#endif
119}
120
121static void fib_notify(struct net *net, struct notifier_block *nb,
122 enum fib_event_type event_type);
123
124static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
125 enum fib_event_type event_type, u32 dst,
126 int dst_len, struct fib_info *fi,
127 u8 tos, u8 type, u32 tb_id, u32 nlflags)
128{
129 struct fib_entry_notifier_info info = {
130 .dst = dst,
131 .dst_len = dst_len,
132 .fi = fi,
133 .tos = tos,
134 .type = type,
135 .tb_id = tb_id,
136 .nlflags = nlflags,
137 };
138 return call_fib_notifier(nb, net, event_type, &info.info);
139}
140
141static bool fib_dump_is_consistent(struct notifier_block *nb,
142 void (*cb)(struct notifier_block *nb),
143 unsigned int fib_seq)
144{
145 atomic_notifier_chain_register(&fib_chain, nb);
146 if (fib_seq == fib_seq_sum())
147 return true;
148 atomic_notifier_chain_unregister(&fib_chain, nb);
149 if (cb)
150 cb(nb);
151 return false;
152}
153
154#define FIB_DUMP_MAX_RETRIES 5
155int register_fib_notifier(struct notifier_block *nb,
156 void (*cb)(struct notifier_block *nb))
b90eb754 157{
c3852ef7
IS
158 int retries = 0;
159
160 do {
161 unsigned int fib_seq = fib_seq_sum();
162 struct net *net;
163
164 /* Mutex semantics guarantee that every change done to
165 * FIB tries before we read the change sequence counter
166 * is now visible to us.
167 */
168 rcu_read_lock();
169 for_each_net_rcu(net) {
170 fib_rules_notify(net, nb, FIB_EVENT_RULE_ADD);
171 fib_notify(net, nb, FIB_EVENT_ENTRY_ADD);
172 }
173 rcu_read_unlock();
174
175 if (fib_dump_is_consistent(nb, cb, fib_seq))
176 return 0;
177 } while (++retries < FIB_DUMP_MAX_RETRIES);
178
179 return -EBUSY;
b90eb754
JP
180}
181EXPORT_SYMBOL(register_fib_notifier);
182
183int unregister_fib_notifier(struct notifier_block *nb)
184{
d3f706f6 185 return atomic_notifier_chain_unregister(&fib_chain, nb);
b90eb754
JP
186}
187EXPORT_SYMBOL(unregister_fib_notifier);
188
189int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
190 struct fib_notifier_info *info)
191{
cacaad11 192 net->ipv4.fib_seq++;
b90eb754 193 info->net = net;
d3f706f6 194 return atomic_notifier_call_chain(&fib_chain, event_type, info);
b90eb754
JP
195}
196
197static int call_fib_entry_notifiers(struct net *net,
198 enum fib_event_type event_type, u32 dst,
199 int dst_len, struct fib_info *fi,
200 u8 tos, u8 type, u32 tb_id, u32 nlflags)
201{
202 struct fib_entry_notifier_info info = {
203 .dst = dst,
204 .dst_len = dst_len,
205 .fi = fi,
206 .tos = tos,
207 .type = type,
208 .tb_id = tb_id,
209 .nlflags = nlflags,
210 };
211 return call_fib_notifiers(net, event_type, &info.info);
212}
213
06ef921d 214#define MAX_STAT_DEPTH 32
19baf839 215
95f60ea3
AD
216#define KEYLENGTH (8*sizeof(t_key))
217#define KEY_MAX ((t_key)~0)
19baf839 218
19baf839
RO
219typedef unsigned int t_key;
220
88bae714
AD
221#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
222#define IS_TNODE(n) ((n)->bits)
223#define IS_LEAF(n) (!(n)->bits)
2373ce1c 224
35c6edac 225struct key_vector {
64c9b6fb 226 t_key key;
64c9b6fb 227 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 228 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 229 unsigned char slen;
adaf9816 230 union {
41b489fd 231 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 232 struct hlist_head leaf;
41b489fd 233 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 234 struct key_vector __rcu *tnode[0];
adaf9816 235 };
19baf839
RO
236};
237
dc35dbed 238struct tnode {
56ca2adf 239 struct rcu_head rcu;
6e22d174
AD
240 t_key empty_children; /* KEYLENGTH bits needed */
241 t_key full_children; /* KEYLENGTH bits needed */
f23e59fb 242 struct key_vector __rcu *parent;
dc35dbed 243 struct key_vector kv[1];
56ca2adf 244#define tn_bits kv[0].bits
dc35dbed
AD
245};
246
247#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
248#define LEAF_SIZE TNODE_SIZE(1)
249
19baf839
RO
250#ifdef CONFIG_IP_FIB_TRIE_STATS
251struct trie_use_stats {
252 unsigned int gets;
253 unsigned int backtrack;
254 unsigned int semantic_match_passed;
255 unsigned int semantic_match_miss;
256 unsigned int null_node_hit;
2f36895a 257 unsigned int resize_node_skipped;
19baf839
RO
258};
259#endif
260
261struct trie_stat {
262 unsigned int totdepth;
263 unsigned int maxdepth;
264 unsigned int tnodes;
265 unsigned int leaves;
266 unsigned int nullpointers;
93672292 267 unsigned int prefixes;
06ef921d 268 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 269};
19baf839
RO
270
271struct trie {
88bae714 272 struct key_vector kv[1];
19baf839 273#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 274 struct trie_use_stats __percpu *stats;
19baf839 275#endif
19baf839
RO
276};
277
88bae714 278static struct key_vector *resize(struct trie *t, struct key_vector *tn);
c3059477
JP
279static size_t tnode_free_size;
280
281/*
282 * synchronize_rcu after call_rcu for that many pages; it should be especially
283 * useful before resizing the root node with PREEMPT_NONE configs; the value was
284 * obtained experimentally, aiming to avoid visible slowdown.
285 */
286static const int sync_pages = 128;
19baf839 287
e18b890b 288static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 289static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 290
56ca2adf
AD
291static inline struct tnode *tn_info(struct key_vector *kv)
292{
293 return container_of(kv, struct tnode, kv[0]);
294}
295
64c9b6fb 296/* caller must hold RTNL */
f23e59fb 297#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
754baf8d 298#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 299
64c9b6fb 300/* caller must hold RCU read lock or RTNL */
f23e59fb 301#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
754baf8d 302#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 303
64c9b6fb 304/* wrapper for rcu_assign_pointer */
35c6edac 305static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 306{
adaf9816 307 if (n)
f23e59fb 308 rcu_assign_pointer(tn_info(n)->parent, tp);
06801916
SH
309}
310
f23e59fb 311#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
64c9b6fb
AD
312
313/* This provides us with the number of children in this node, in the case of a
314 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 315 */
2e1ac88a 316static inline unsigned long child_length(const struct key_vector *tn)
06801916 317{
64c9b6fb 318 return (1ul << tn->bits) & ~(1ul);
06801916 319}
2373ce1c 320
88bae714
AD
321#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
322
2e1ac88a
AD
323static inline unsigned long get_index(t_key key, struct key_vector *kv)
324{
325 unsigned long index = key ^ kv->key;
326
88bae714
AD
327 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
328 return 0;
329
2e1ac88a
AD
330 return index >> kv->pos;
331}
332
e9b44019
AD
333/* To understand this stuff, an understanding of keys and all their bits is
334 * necessary. Every node in the trie has a key associated with it, but not
335 * all of the bits in that key are significant.
336 *
337 * Consider a node 'n' and its parent 'tp'.
338 *
339 * If n is a leaf, every bit in its key is significant. Its presence is
340 * necessitated by path compression, since during a tree traversal (when
341 * searching for a leaf - unless we are doing an insertion) we will completely
342 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
343 * a potentially successful search, that we have indeed been walking the
344 * correct key path.
345 *
346 * Note that we can never "miss" the correct key in the tree if present by
347 * following the wrong path. Path compression ensures that segments of the key
348 * that are the same for all keys with a given prefix are skipped, but the
349 * skipped part *is* identical for each node in the subtrie below the skipped
350 * bit! trie_insert() in this implementation takes care of that.
351 *
352 * if n is an internal node - a 'tnode' here, the various parts of its key
353 * have many different meanings.
354 *
355 * Example:
356 * _________________________________________________________________
357 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
358 * -----------------------------------------------------------------
359 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
360 *
361 * _________________________________________________________________
362 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
363 * -----------------------------------------------------------------
364 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
365 *
366 * tp->pos = 22
367 * tp->bits = 3
368 * n->pos = 13
369 * n->bits = 4
370 *
371 * First, let's just ignore the bits that come before the parent tp, that is
372 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
373 * point we do not use them for anything.
374 *
375 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
376 * index into the parent's child array. That is, they will be used to find
377 * 'n' among tp's children.
378 *
98a384ec 379 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
e9b44019
AD
380 * for the node n.
381 *
382 * All the bits we have seen so far are significant to the node n. The rest
383 * of the bits are really not needed or indeed known in n->key.
384 *
385 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
386 * n's child array, and will of course be different for each child.
387 *
98a384ec 388 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
e9b44019
AD
389 * at this point.
390 */
19baf839 391
f5026fab
DL
392static const int halve_threshold = 25;
393static const int inflate_threshold = 50;
345aa031 394static const int halve_threshold_root = 15;
80b71b80 395static const int inflate_threshold_root = 30;
2373ce1c
RO
396
397static void __alias_free_mem(struct rcu_head *head)
19baf839 398{
2373ce1c
RO
399 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
400 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
401}
402
2373ce1c 403static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 404{
2373ce1c
RO
405 call_rcu(&fa->rcu, __alias_free_mem);
406}
91b9a277 407
37fd30f2 408#define TNODE_KMALLOC_MAX \
35c6edac 409 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 410#define TNODE_VMALLOC_MAX \
35c6edac 411 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 412
37fd30f2 413static void __node_free_rcu(struct rcu_head *head)
387a5487 414{
56ca2adf 415 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 416
56ca2adf 417 if (!n->tn_bits)
37fd30f2 418 kmem_cache_free(trie_leaf_kmem, n);
37fd30f2 419 else
1d5cfdb0 420 kvfree(n);
387a5487
SH
421}
422
56ca2adf 423#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 424
dc35dbed 425static struct tnode *tnode_alloc(int bits)
f0e36f8c 426{
1de3d87b
AD
427 size_t size;
428
429 /* verify bits is within bounds */
430 if (bits > TNODE_VMALLOC_MAX)
431 return NULL;
432
433 /* determine size and verify it is non-zero and didn't overflow */
434 size = TNODE_SIZE(1ul << bits);
435
2373ce1c 436 if (size <= PAGE_SIZE)
8d965444 437 return kzalloc(size, GFP_KERNEL);
15be75cd 438 else
7a1c8e5a 439 return vzalloc(size);
15be75cd 440}
2373ce1c 441
35c6edac 442static inline void empty_child_inc(struct key_vector *n)
95f60ea3 443{
6e22d174 444 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
95f60ea3
AD
445}
446
35c6edac 447static inline void empty_child_dec(struct key_vector *n)
95f60ea3 448{
6e22d174 449 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
95f60ea3
AD
450}
451
35c6edac 452static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 453{
f38b24c9
FY
454 struct key_vector *l;
455 struct tnode *kv;
dc35dbed 456
f38b24c9 457 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
dc35dbed
AD
458 if (!kv)
459 return NULL;
460
461 /* initialize key vector */
f38b24c9 462 l = kv->kv;
dc35dbed
AD
463 l->key = key;
464 l->pos = 0;
465 l->bits = 0;
466 l->slen = fa->fa_slen;
467
468 /* link leaf to fib alias */
469 INIT_HLIST_HEAD(&l->leaf);
470 hlist_add_head(&fa->fa_list, &l->leaf);
471
2373ce1c
RO
472 return l;
473}
474
35c6edac 475static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 476{
64c9b6fb 477 unsigned int shift = pos + bits;
f38b24c9
FY
478 struct key_vector *tn;
479 struct tnode *tnode;
64c9b6fb
AD
480
481 /* verify bits and pos their msb bits clear and values are valid */
482 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 483
f38b24c9 484 tnode = tnode_alloc(bits);
dc35dbed
AD
485 if (!tnode)
486 return NULL;
487
f38b24c9
FY
488 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
489 sizeof(struct key_vector *) << bits);
490
dc35dbed 491 if (bits == KEYLENGTH)
6e22d174 492 tnode->full_children = 1;
dc35dbed 493 else
6e22d174 494 tnode->empty_children = 1ul << bits;
dc35dbed 495
f38b24c9 496 tn = tnode->kv;
dc35dbed
AD
497 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
498 tn->pos = pos;
499 tn->bits = bits;
500 tn->slen = pos;
501
19baf839
RO
502 return tn;
503}
504
e9b44019 505/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
506 * and no bits are skipped. See discussion in dyntree paper p. 6
507 */
35c6edac 508static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 509{
e9b44019 510 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
511}
512
ff181ed8
AD
513/* Add a child at position i overwriting the old value.
514 * Update the value of full_children and empty_children.
515 */
35c6edac
AD
516static void put_child(struct key_vector *tn, unsigned long i,
517 struct key_vector *n)
19baf839 518{
754baf8d 519 struct key_vector *chi = get_child(tn, i);
ff181ed8 520 int isfull, wasfull;
19baf839 521
2e1ac88a 522 BUG_ON(i >= child_length(tn));
0c7770c7 523
95f60ea3 524 /* update emptyChildren, overflow into fullChildren */
00db4124 525 if (!n && chi)
95f60ea3 526 empty_child_inc(tn);
00db4124 527 if (n && !chi)
95f60ea3 528 empty_child_dec(tn);
c877efb2 529
19baf839 530 /* update fullChildren */
ff181ed8 531 wasfull = tnode_full(tn, chi);
19baf839 532 isfull = tnode_full(tn, n);
ff181ed8 533
c877efb2 534 if (wasfull && !isfull)
6e22d174 535 tn_info(tn)->full_children--;
c877efb2 536 else if (!wasfull && isfull)
6e22d174 537 tn_info(tn)->full_children++;
91b9a277 538
5405afd1
AD
539 if (n && (tn->slen < n->slen))
540 tn->slen = n->slen;
541
41b489fd 542 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
543}
544
35c6edac 545static void update_children(struct key_vector *tn)
69fa57b1
AD
546{
547 unsigned long i;
548
549 /* update all of the child parent pointers */
2e1ac88a 550 for (i = child_length(tn); i;) {
754baf8d 551 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
552
553 if (!inode)
554 continue;
555
556 /* Either update the children of a tnode that
557 * already belongs to us or update the child
558 * to point to ourselves.
559 */
560 if (node_parent(inode) == tn)
561 update_children(inode);
562 else
563 node_set_parent(inode, tn);
564 }
565}
566
88bae714
AD
567static inline void put_child_root(struct key_vector *tp, t_key key,
568 struct key_vector *n)
836a0123 569{
88bae714
AD
570 if (IS_TRIE(tp))
571 rcu_assign_pointer(tp->tnode[0], n);
836a0123 572 else
88bae714 573 put_child(tp, get_index(key, tp), n);
836a0123
AD
574}
575
35c6edac 576static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 577{
56ca2adf 578 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
579}
580
35c6edac
AD
581static inline void tnode_free_append(struct key_vector *tn,
582 struct key_vector *n)
fc86a93b 583{
56ca2adf
AD
584 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
585 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 586}
0a5c0475 587
35c6edac 588static void tnode_free(struct key_vector *tn)
fc86a93b 589{
56ca2adf 590 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
591
592 while (head) {
593 head = head->next;
41b489fd 594 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
595 node_free(tn);
596
56ca2adf 597 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
598 }
599
600 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
601 tnode_free_size = 0;
602 synchronize_rcu();
0a5c0475 603 }
0a5c0475
ED
604}
605
88bae714
AD
606static struct key_vector *replace(struct trie *t,
607 struct key_vector *oldtnode,
608 struct key_vector *tn)
69fa57b1 609{
35c6edac 610 struct key_vector *tp = node_parent(oldtnode);
69fa57b1
AD
611 unsigned long i;
612
613 /* setup the parent pointer out of and back into this node */
614 NODE_INIT_PARENT(tn, tp);
88bae714 615 put_child_root(tp, tn->key, tn);
69fa57b1
AD
616
617 /* update all of the child parent pointers */
618 update_children(tn);
619
620 /* all pointers should be clean so we are done */
621 tnode_free(oldtnode);
622
623 /* resize children now that oldtnode is freed */
2e1ac88a 624 for (i = child_length(tn); i;) {
754baf8d 625 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
626
627 /* resize child node */
628 if (tnode_full(tn, inode))
88bae714 629 tn = resize(t, inode);
69fa57b1 630 }
8d8e810c 631
88bae714 632 return tp;
69fa57b1
AD
633}
634
88bae714
AD
635static struct key_vector *inflate(struct trie *t,
636 struct key_vector *oldtnode)
19baf839 637{
35c6edac 638 struct key_vector *tn;
69fa57b1 639 unsigned long i;
e9b44019 640 t_key m;
19baf839 641
0c7770c7 642 pr_debug("In inflate\n");
19baf839 643
e9b44019 644 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 645 if (!tn)
8d8e810c 646 goto notnode;
2f36895a 647
69fa57b1
AD
648 /* prepare oldtnode to be freed */
649 tnode_free_init(oldtnode);
650
12c081a5
AD
651 /* Assemble all of the pointers in our cluster, in this case that
652 * represents all of the pointers out of our allocated nodes that
653 * point to existing tnodes and the links between our allocated
654 * nodes.
2f36895a 655 */
2e1ac88a 656 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 657 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 658 struct key_vector *node0, *node1;
69fa57b1 659 unsigned long j, k;
c877efb2 660
19baf839 661 /* An empty child */
51456b29 662 if (!inode)
19baf839
RO
663 continue;
664
665 /* A leaf or an internal node with skipped bits */
adaf9816 666 if (!tnode_full(oldtnode, inode)) {
e9b44019 667 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
668 continue;
669 }
670
69fa57b1
AD
671 /* drop the node in the old tnode free list */
672 tnode_free_append(oldtnode, inode);
673
19baf839 674 /* An internal node with two children */
19baf839 675 if (inode->bits == 1) {
754baf8d
AD
676 put_child(tn, 2 * i + 1, get_child(inode, 1));
677 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 678 continue;
19baf839
RO
679 }
680
91b9a277 681 /* We will replace this node 'inode' with two new
12c081a5 682 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
683 * original children. The two new nodes will have
684 * a position one bit further down the key and this
685 * means that the "significant" part of their keys
686 * (see the discussion near the top of this file)
687 * will differ by one bit, which will be "0" in
12c081a5 688 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
689 * moving the key position by one step, the bit that
690 * we are moving away from - the bit at position
12c081a5
AD
691 * (tn->pos) - is the one that will differ between
692 * node0 and node1. So... we synthesize that bit in the
693 * two new keys.
91b9a277 694 */
12c081a5
AD
695 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
696 if (!node1)
697 goto nomem;
69fa57b1 698 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 699
69fa57b1 700 tnode_free_append(tn, node1);
12c081a5
AD
701 if (!node0)
702 goto nomem;
703 tnode_free_append(tn, node0);
704
705 /* populate child pointers in new nodes */
2e1ac88a 706 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
707 put_child(node1, --j, get_child(inode, --k));
708 put_child(node0, j, get_child(inode, j));
709 put_child(node1, --j, get_child(inode, --k));
710 put_child(node0, j, get_child(inode, j));
12c081a5 711 }
19baf839 712
12c081a5
AD
713 /* link new nodes to parent */
714 NODE_INIT_PARENT(node1, tn);
715 NODE_INIT_PARENT(node0, tn);
2f36895a 716
12c081a5
AD
717 /* link parent to nodes */
718 put_child(tn, 2 * i + 1, node1);
719 put_child(tn, 2 * i, node0);
720 }
2f36895a 721
69fa57b1 722 /* setup the parent pointers into and out of this node */
8d8e810c 723 return replace(t, oldtnode, tn);
2f80b3c8 724nomem:
fc86a93b
AD
725 /* all pointers should be clean so we are done */
726 tnode_free(tn);
8d8e810c
AD
727notnode:
728 return NULL;
19baf839
RO
729}
730
88bae714
AD
731static struct key_vector *halve(struct trie *t,
732 struct key_vector *oldtnode)
19baf839 733{
35c6edac 734 struct key_vector *tn;
12c081a5 735 unsigned long i;
19baf839 736
0c7770c7 737 pr_debug("In halve\n");
c877efb2 738
e9b44019 739 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 740 if (!tn)
8d8e810c 741 goto notnode;
2f36895a 742
69fa57b1
AD
743 /* prepare oldtnode to be freed */
744 tnode_free_init(oldtnode);
745
12c081a5
AD
746 /* Assemble all of the pointers in our cluster, in this case that
747 * represents all of the pointers out of our allocated nodes that
748 * point to existing tnodes and the links between our allocated
749 * nodes.
2f36895a 750 */
2e1ac88a 751 for (i = child_length(oldtnode); i;) {
754baf8d
AD
752 struct key_vector *node1 = get_child(oldtnode, --i);
753 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 754 struct key_vector *inode;
2f36895a 755
12c081a5
AD
756 /* At least one of the children is empty */
757 if (!node1 || !node0) {
758 put_child(tn, i / 2, node1 ? : node0);
759 continue;
760 }
c877efb2 761
2f36895a 762 /* Two nonempty children */
12c081a5 763 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
764 if (!inode)
765 goto nomem;
12c081a5 766 tnode_free_append(tn, inode);
2f36895a 767
12c081a5
AD
768 /* initialize pointers out of node */
769 put_child(inode, 1, node1);
770 put_child(inode, 0, node0);
771 NODE_INIT_PARENT(inode, tn);
772
773 /* link parent to node */
774 put_child(tn, i / 2, inode);
2f36895a 775 }
19baf839 776
69fa57b1 777 /* setup the parent pointers into and out of this node */
8d8e810c
AD
778 return replace(t, oldtnode, tn);
779nomem:
780 /* all pointers should be clean so we are done */
781 tnode_free(tn);
782notnode:
783 return NULL;
19baf839
RO
784}
785
88bae714
AD
786static struct key_vector *collapse(struct trie *t,
787 struct key_vector *oldtnode)
95f60ea3 788{
35c6edac 789 struct key_vector *n, *tp;
95f60ea3
AD
790 unsigned long i;
791
792 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 793 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 794 n = get_child(oldtnode, --i);
95f60ea3
AD
795
796 /* compress one level */
797 tp = node_parent(oldtnode);
88bae714 798 put_child_root(tp, oldtnode->key, n);
95f60ea3
AD
799 node_set_parent(n, tp);
800
801 /* drop dead node */
802 node_free(oldtnode);
88bae714
AD
803
804 return tp;
95f60ea3
AD
805}
806
35c6edac 807static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
808{
809 unsigned char slen = tn->pos;
810 unsigned long stride, i;
a52ca62c
AD
811 unsigned char slen_max;
812
813 /* only vector 0 can have a suffix length greater than or equal to
814 * tn->pos + tn->bits, the second highest node will have a suffix
815 * length at most of tn->pos + tn->bits - 1
816 */
817 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
5405afd1
AD
818
819 /* search though the list of children looking for nodes that might
820 * have a suffix greater than the one we currently have. This is
821 * why we start with a stride of 2 since a stride of 1 would
822 * represent the nodes with suffix length equal to tn->pos
823 */
2e1ac88a 824 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 825 struct key_vector *n = get_child(tn, i);
5405afd1
AD
826
827 if (!n || (n->slen <= slen))
828 continue;
829
830 /* update stride and slen based on new value */
831 stride <<= (n->slen - slen);
832 slen = n->slen;
833 i &= ~(stride - 1);
834
a52ca62c
AD
835 /* stop searching if we have hit the maximum possible value */
836 if (slen >= slen_max)
5405afd1
AD
837 break;
838 }
839
840 tn->slen = slen;
841
842 return slen;
843}
844
f05a4819
AD
845/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
846 * the Helsinki University of Technology and Matti Tikkanen of Nokia
847 * Telecommunications, page 6:
848 * "A node is doubled if the ratio of non-empty children to all
849 * children in the *doubled* node is at least 'high'."
850 *
851 * 'high' in this instance is the variable 'inflate_threshold'. It
852 * is expressed as a percentage, so we multiply it with
2e1ac88a 853 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
854 * child array will be doubled by inflate()) and multiplying
855 * the left-hand side by 100 (to handle the percentage thing) we
856 * multiply the left-hand side by 50.
857 *
2e1ac88a 858 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
859 * - tn->empty_children is of course the number of non-null children
860 * in the current node. tn->full_children is the number of "full"
861 * children, that is non-null tnodes with a skip value of 0.
862 * All of those will be doubled in the resulting inflated tnode, so
863 * we just count them one extra time here.
864 *
865 * A clearer way to write this would be:
866 *
867 * to_be_doubled = tn->full_children;
2e1ac88a 868 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
869 * tn->full_children;
870 *
2e1ac88a 871 * new_child_length = child_length(tn) * 2;
f05a4819
AD
872 *
873 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
874 * new_child_length;
875 * if (new_fill_factor >= inflate_threshold)
876 *
877 * ...and so on, tho it would mess up the while () loop.
878 *
879 * anyway,
880 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
881 * inflate_threshold
882 *
883 * avoid a division:
884 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
885 * inflate_threshold * new_child_length
886 *
887 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 888 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
889 * tn->full_children) >= inflate_threshold * new_child_length
890 *
891 * expand new_child_length:
2e1ac88a 892 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 893 * tn->full_children) >=
2e1ac88a 894 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
895 *
896 * shorten again:
2e1ac88a 897 * 50 * (tn->full_children + child_length(tn) -
f05a4819 898 * tn->empty_children) >= inflate_threshold *
2e1ac88a 899 * child_length(tn)
f05a4819
AD
900 *
901 */
35c6edac 902static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 903{
2e1ac88a 904 unsigned long used = child_length(tn);
f05a4819
AD
905 unsigned long threshold = used;
906
907 /* Keep root node larger */
88bae714 908 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
6e22d174
AD
909 used -= tn_info(tn)->empty_children;
910 used += tn_info(tn)->full_children;
f05a4819 911
95f60ea3
AD
912 /* if bits == KEYLENGTH then pos = 0, and will fail below */
913
914 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
915}
916
35c6edac 917static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 918{
2e1ac88a 919 unsigned long used = child_length(tn);
f05a4819
AD
920 unsigned long threshold = used;
921
922 /* Keep root node larger */
88bae714 923 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
6e22d174 924 used -= tn_info(tn)->empty_children;
f05a4819 925
95f60ea3
AD
926 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
927
928 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
929}
930
35c6edac 931static inline bool should_collapse(struct key_vector *tn)
95f60ea3 932{
2e1ac88a 933 unsigned long used = child_length(tn);
95f60ea3 934
6e22d174 935 used -= tn_info(tn)->empty_children;
95f60ea3
AD
936
937 /* account for bits == KEYLENGTH case */
6e22d174 938 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
95f60ea3
AD
939 used -= KEY_MAX;
940
941 /* One child or none, time to drop us from the trie */
942 return used < 2;
f05a4819
AD
943}
944
cf3637bb 945#define MAX_WORK 10
88bae714 946static struct key_vector *resize(struct trie *t, struct key_vector *tn)
cf3637bb 947{
8d8e810c
AD
948#ifdef CONFIG_IP_FIB_TRIE_STATS
949 struct trie_use_stats __percpu *stats = t->stats;
950#endif
35c6edac 951 struct key_vector *tp = node_parent(tn);
88bae714 952 unsigned long cindex = get_index(tn->key, tp);
a80e89d4 953 int max_work = MAX_WORK;
cf3637bb 954
cf3637bb
AD
955 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
956 tn, inflate_threshold, halve_threshold);
957
ff181ed8
AD
958 /* track the tnode via the pointer from the parent instead of
959 * doing it ourselves. This way we can let RCU fully do its
960 * thing without us interfering
961 */
88bae714 962 BUG_ON(tn != get_child(tp, cindex));
ff181ed8 963
f05a4819
AD
964 /* Double as long as the resulting node has a number of
965 * nonempty nodes that are above the threshold.
cf3637bb 966 */
b6f15f82 967 while (should_inflate(tp, tn) && max_work) {
88bae714
AD
968 tp = inflate(t, tn);
969 if (!tp) {
cf3637bb 970#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 971 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
972#endif
973 break;
974 }
ff181ed8 975
b6f15f82 976 max_work--;
88bae714 977 tn = get_child(tp, cindex);
cf3637bb
AD
978 }
979
b6f15f82
AD
980 /* update parent in case inflate failed */
981 tp = node_parent(tn);
982
cf3637bb
AD
983 /* Return if at least one inflate is run */
984 if (max_work != MAX_WORK)
b6f15f82 985 return tp;
cf3637bb 986
f05a4819 987 /* Halve as long as the number of empty children in this
cf3637bb
AD
988 * node is above threshold.
989 */
b6f15f82 990 while (should_halve(tp, tn) && max_work) {
88bae714
AD
991 tp = halve(t, tn);
992 if (!tp) {
cf3637bb 993#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 994 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
995#endif
996 break;
997 }
cf3637bb 998
b6f15f82 999 max_work--;
88bae714 1000 tn = get_child(tp, cindex);
ff181ed8 1001 }
cf3637bb
AD
1002
1003 /* Only one child remains */
88bae714
AD
1004 if (should_collapse(tn))
1005 return collapse(t, tn);
1006
b6f15f82 1007 /* update parent in case halve failed */
a52ca62c 1008 return node_parent(tn);
cf3637bb
AD
1009}
1010
1a239173 1011static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
5405afd1 1012{
1a239173
AD
1013 unsigned char node_slen = tn->slen;
1014
1015 while ((node_slen > tn->pos) && (node_slen > slen)) {
1016 slen = update_suffix(tn);
1017 if (node_slen == slen)
5405afd1 1018 break;
1a239173
AD
1019
1020 tn = node_parent(tn);
1021 node_slen = tn->slen;
5405afd1
AD
1022 }
1023}
1024
1a239173 1025static void node_push_suffix(struct key_vector *tn, unsigned char slen)
19baf839 1026{
1a239173
AD
1027 while (tn->slen < slen) {
1028 tn->slen = slen;
5405afd1
AD
1029 tn = node_parent(tn);
1030 }
1031}
1032
2373ce1c 1033/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
1034static struct key_vector *fib_find_node(struct trie *t,
1035 struct key_vector **tp, u32 key)
19baf839 1036{
88bae714
AD
1037 struct key_vector *pn, *n = t->kv;
1038 unsigned long index = 0;
1039
1040 do {
1041 pn = n;
1042 n = get_child_rcu(n, index);
1043
1044 if (!n)
1045 break;
939afb06 1046
88bae714 1047 index = get_cindex(key, n);
939afb06
AD
1048
1049 /* This bit of code is a bit tricky but it combines multiple
1050 * checks into a single check. The prefix consists of the
1051 * prefix plus zeros for the bits in the cindex. The index
1052 * is the difference between the key and this value. From
1053 * this we can actually derive several pieces of data.
d4a975e8 1054 * if (index >= (1ul << bits))
939afb06 1055 * we have a mismatch in skip bits and failed
b3832117
AD
1056 * else
1057 * we know the value is cindex
d4a975e8
AD
1058 *
1059 * This check is safe even if bits == KEYLENGTH due to the
1060 * fact that we can only allocate a node with 32 bits if a
1061 * long is greater than 32 bits.
939afb06 1062 */
d4a975e8
AD
1063 if (index >= (1ul << n->bits)) {
1064 n = NULL;
1065 break;
1066 }
939afb06 1067
88bae714
AD
1068 /* keep searching until we find a perfect match leaf or NULL */
1069 } while (IS_TNODE(n));
91b9a277 1070
35c6edac 1071 *tp = pn;
d4a975e8 1072
939afb06 1073 return n;
19baf839
RO
1074}
1075
02525368
AD
1076/* Return the first fib alias matching TOS with
1077 * priority less than or equal to PRIO.
1078 */
79e5ad2c 1079static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
0b65bd97 1080 u8 tos, u32 prio, u32 tb_id)
02525368
AD
1081{
1082 struct fib_alias *fa;
1083
1084 if (!fah)
1085 return NULL;
1086
56315f9e 1087 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
1088 if (fa->fa_slen < slen)
1089 continue;
1090 if (fa->fa_slen != slen)
1091 break;
0b65bd97
AD
1092 if (fa->tb_id > tb_id)
1093 continue;
1094 if (fa->tb_id != tb_id)
1095 break;
02525368
AD
1096 if (fa->fa_tos > tos)
1097 continue;
1098 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1099 return fa;
1100 }
1101
1102 return NULL;
1103}
1104
35c6edac 1105static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 1106{
88bae714
AD
1107 while (!IS_TRIE(tn))
1108 tn = resize(t, tn);
19baf839
RO
1109}
1110
35c6edac 1111static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 1112 struct fib_alias *new, t_key key)
19baf839 1113{
35c6edac 1114 struct key_vector *n, *l;
19baf839 1115
d5d6487c 1116 l = leaf_new(key, new);
79e5ad2c 1117 if (!l)
8d8e810c 1118 goto noleaf;
d5d6487c
AD
1119
1120 /* retrieve child from parent node */
88bae714 1121 n = get_child(tp, get_index(key, tp));
19baf839 1122
836a0123
AD
1123 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1124 *
1125 * Add a new tnode here
1126 * first tnode need some special handling
1127 * leaves us in position for handling as case 3
1128 */
1129 if (n) {
35c6edac 1130 struct key_vector *tn;
19baf839 1131
e9b44019 1132 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1133 if (!tn)
1134 goto notnode;
91b9a277 1135
836a0123
AD
1136 /* initialize routes out of node */
1137 NODE_INIT_PARENT(tn, tp);
1138 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1139
836a0123 1140 /* start adding routes into the node */
88bae714 1141 put_child_root(tp, key, tn);
836a0123 1142 node_set_parent(n, tn);
e962f302 1143
836a0123 1144 /* parent now has a NULL spot where the leaf can go */
e962f302 1145 tp = tn;
19baf839 1146 }
91b9a277 1147
836a0123 1148 /* Case 3: n is NULL, and will just insert a new leaf */
a52ca62c 1149 node_push_suffix(tp, new->fa_slen);
d5d6487c 1150 NODE_INIT_PARENT(l, tp);
88bae714 1151 put_child_root(tp, key, l);
d5d6487c
AD
1152 trie_rebalance(t, tp);
1153
1154 return 0;
8d8e810c
AD
1155notnode:
1156 node_free(l);
1157noleaf:
1158 return -ENOMEM;
d5d6487c
AD
1159}
1160
35c6edac
AD
1161static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1162 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1163 struct fib_alias *fa, t_key key)
1164{
1165 if (!l)
1166 return fib_insert_node(t, tp, new, key);
1167
1168 if (fa) {
1169 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1170 } else {
d5d6487c
AD
1171 struct fib_alias *last;
1172
1173 hlist_for_each_entry(last, &l->leaf, fa_list) {
1174 if (new->fa_slen < last->fa_slen)
1175 break;
0b65bd97
AD
1176 if ((new->fa_slen == last->fa_slen) &&
1177 (new->tb_id > last->tb_id))
1178 break;
d5d6487c
AD
1179 fa = last;
1180 }
1181
1182 if (fa)
1183 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1184 else
1185 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1186 }
2373ce1c 1187
d5d6487c
AD
1188 /* if we added to the tail node then we need to update slen */
1189 if (l->slen < new->fa_slen) {
1190 l->slen = new->fa_slen;
1a239173 1191 node_push_suffix(tp, new->fa_slen);
d5d6487c
AD
1192 }
1193
1194 return 0;
19baf839
RO
1195}
1196
d5d6487c 1197/* Caller must hold RTNL. */
b90eb754
JP
1198int fib_table_insert(struct net *net, struct fib_table *tb,
1199 struct fib_config *cfg)
19baf839 1200{
d4a975e8 1201 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1202 struct fib_alias *fa, *new_fa;
35c6edac 1203 struct key_vector *l, *tp;
b93e1fa7 1204 u16 nlflags = NLM_F_EXCL;
19baf839 1205 struct fib_info *fi;
79e5ad2c
AD
1206 u8 plen = cfg->fc_dst_len;
1207 u8 slen = KEYLENGTH - plen;
4e902c57 1208 u8 tos = cfg->fc_tos;
d4a975e8 1209 u32 key;
19baf839 1210 int err;
19baf839 1211
5786ec60 1212 if (plen > KEYLENGTH)
19baf839
RO
1213 return -EINVAL;
1214
4e902c57 1215 key = ntohl(cfg->fc_dst);
19baf839 1216
2dfe55b4 1217 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1218
d4a975e8 1219 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1220 return -EINVAL;
1221
4e902c57
TG
1222 fi = fib_create_info(cfg);
1223 if (IS_ERR(fi)) {
1224 err = PTR_ERR(fi);
19baf839 1225 goto err;
4e902c57 1226 }
19baf839 1227
d4a975e8 1228 l = fib_find_node(t, &tp, key);
0b65bd97
AD
1229 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1230 tb->tb_id) : NULL;
19baf839
RO
1231
1232 /* Now fa, if non-NULL, points to the first fib alias
1233 * with the same keys [prefix,tos,priority], if such key already
1234 * exists or to the node before which we will insert new one.
1235 *
1236 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1237 * insert to the tail of the section matching the suffix length
1238 * of the new alias.
19baf839
RO
1239 */
1240
936f6f8e
JA
1241 if (fa && fa->fa_tos == tos &&
1242 fa->fa_info->fib_priority == fi->fib_priority) {
1243 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1244
1245 err = -EEXIST;
4e902c57 1246 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1247 goto out;
1248
b93e1fa7
GN
1249 nlflags &= ~NLM_F_EXCL;
1250
936f6f8e
JA
1251 /* We have 2 goals:
1252 * 1. Find exact match for type, scope, fib_info to avoid
1253 * duplicate routes
1254 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1255 */
1256 fa_match = NULL;
1257 fa_first = fa;
56315f9e 1258 hlist_for_each_entry_from(fa, fa_list) {
0b65bd97
AD
1259 if ((fa->fa_slen != slen) ||
1260 (fa->tb_id != tb->tb_id) ||
1261 (fa->fa_tos != tos))
936f6f8e
JA
1262 break;
1263 if (fa->fa_info->fib_priority != fi->fib_priority)
1264 break;
1265 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1266 fa->fa_info == fi) {
1267 fa_match = fa;
1268 break;
1269 }
1270 }
1271
4e902c57 1272 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1273 struct fib_info *fi_drop;
1274 u8 state;
1275
b93e1fa7 1276 nlflags |= NLM_F_REPLACE;
936f6f8e
JA
1277 fa = fa_first;
1278 if (fa_match) {
1279 if (fa == fa_match)
1280 err = 0;
6725033f 1281 goto out;
936f6f8e 1282 }
2373ce1c 1283 err = -ENOBUFS;
e94b1766 1284 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1285 if (!new_fa)
2373ce1c 1286 goto out;
19baf839
RO
1287
1288 fi_drop = fa->fa_info;
2373ce1c
RO
1289 new_fa->fa_tos = fa->fa_tos;
1290 new_fa->fa_info = fi;
4e902c57 1291 new_fa->fa_type = cfg->fc_type;
19baf839 1292 state = fa->fa_state;
936f6f8e 1293 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1294 new_fa->fa_slen = fa->fa_slen;
d4e64c29 1295 new_fa->tb_id = tb->tb_id;
2392debc 1296 new_fa->fa_default = -1;
19baf839 1297
56315f9e 1298 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1299
2373ce1c 1300 alias_free_mem_rcu(fa);
19baf839
RO
1301
1302 fib_release_info(fi_drop);
1303 if (state & FA_S_ACCESSED)
4ccfe6d4 1304 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b90eb754
JP
1305
1306 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD,
1307 key, plen, fi,
1308 new_fa->fa_tos, cfg->fc_type,
1309 tb->tb_id, cfg->fc_nlflags);
b8f55831 1310 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
b93e1fa7 1311 tb->tb_id, &cfg->fc_nlinfo, nlflags);
19baf839 1312
91b9a277 1313 goto succeeded;
19baf839
RO
1314 }
1315 /* Error if we find a perfect match which
1316 * uses the same scope, type, and nexthop
1317 * information.
1318 */
936f6f8e
JA
1319 if (fa_match)
1320 goto out;
a07f5f50 1321
a2bb6d7d 1322 if (cfg->fc_nlflags & NLM_F_APPEND)
b93e1fa7 1323 nlflags |= NLM_F_APPEND;
a2bb6d7d 1324 else
936f6f8e 1325 fa = fa_first;
19baf839
RO
1326 }
1327 err = -ENOENT;
4e902c57 1328 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1329 goto out;
1330
b93e1fa7 1331 nlflags |= NLM_F_CREATE;
19baf839 1332 err = -ENOBUFS;
e94b1766 1333 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1334 if (!new_fa)
19baf839
RO
1335 goto out;
1336
1337 new_fa->fa_info = fi;
1338 new_fa->fa_tos = tos;
4e902c57 1339 new_fa->fa_type = cfg->fc_type;
19baf839 1340 new_fa->fa_state = 0;
79e5ad2c 1341 new_fa->fa_slen = slen;
0ddcf43d 1342 new_fa->tb_id = tb->tb_id;
2392debc 1343 new_fa->fa_default = -1;
19baf839 1344
9b6ebad5 1345 /* Insert new entry to the list. */
d5d6487c
AD
1346 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1347 if (err)
347e3b28 1348 goto out_free_new_fa;
19baf839 1349
21d8c49e
DM
1350 if (!plen)
1351 tb->tb_num_default++;
1352
4ccfe6d4 1353 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b90eb754
JP
1354 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, key, plen, fi, tos,
1355 cfg->fc_type, tb->tb_id, cfg->fc_nlflags);
0ddcf43d 1356 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
a2bb6d7d 1357 &cfg->fc_nlinfo, nlflags);
19baf839
RO
1358succeeded:
1359 return 0;
f835e471
RO
1360
1361out_free_new_fa:
1362 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1363out:
1364 fib_release_info(fi);
91b9a277 1365err:
19baf839
RO
1366 return err;
1367}
1368
35c6edac 1369static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1370{
1371 t_key prefix = n->key;
1372
1373 return (key ^ prefix) & (prefix | -prefix);
1374}
1375
345e9b54 1376/* should be called with rcu_read_lock */
22bd5b9b 1377int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1378 struct fib_result *res, int fib_flags)
19baf839 1379{
0ddcf43d 1380 struct trie *t = (struct trie *) tb->tb_data;
8274a97a
AD
1381#ifdef CONFIG_IP_FIB_TRIE_STATS
1382 struct trie_use_stats __percpu *stats = t->stats;
1383#endif
9f9e636d 1384 const t_key key = ntohl(flp->daddr);
35c6edac 1385 struct key_vector *n, *pn;
79e5ad2c 1386 struct fib_alias *fa;
71e8b67d 1387 unsigned long index;
9f9e636d 1388 t_key cindex;
91b9a277 1389
f6d3c192
DA
1390 trace_fib_table_lookup(tb->tb_id, flp);
1391
88bae714
AD
1392 pn = t->kv;
1393 cindex = 0;
1394
1395 n = get_child_rcu(pn, cindex);
c877efb2 1396 if (!n)
345e9b54 1397 return -EAGAIN;
19baf839
RO
1398
1399#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1400 this_cpu_inc(stats->gets);
19baf839
RO
1401#endif
1402
9f9e636d
AD
1403 /* Step 1: Travel to the longest prefix match in the trie */
1404 for (;;) {
88bae714 1405 index = get_cindex(key, n);
9f9e636d
AD
1406
1407 /* This bit of code is a bit tricky but it combines multiple
1408 * checks into a single check. The prefix consists of the
1409 * prefix plus zeros for the "bits" in the prefix. The index
1410 * is the difference between the key and this value. From
1411 * this we can actually derive several pieces of data.
71e8b67d 1412 * if (index >= (1ul << bits))
9f9e636d 1413 * we have a mismatch in skip bits and failed
b3832117
AD
1414 * else
1415 * we know the value is cindex
71e8b67d
AD
1416 *
1417 * This check is safe even if bits == KEYLENGTH due to the
1418 * fact that we can only allocate a node with 32 bits if a
1419 * long is greater than 32 bits.
9f9e636d 1420 */
71e8b67d 1421 if (index >= (1ul << n->bits))
9f9e636d 1422 break;
19baf839 1423
9f9e636d
AD
1424 /* we have found a leaf. Prefixes have already been compared */
1425 if (IS_LEAF(n))
a07f5f50 1426 goto found;
19baf839 1427
9f9e636d
AD
1428 /* only record pn and cindex if we are going to be chopping
1429 * bits later. Otherwise we are just wasting cycles.
91b9a277 1430 */
5405afd1 1431 if (n->slen > n->pos) {
9f9e636d
AD
1432 pn = n;
1433 cindex = index;
91b9a277 1434 }
19baf839 1435
754baf8d 1436 n = get_child_rcu(n, index);
9f9e636d
AD
1437 if (unlikely(!n))
1438 goto backtrace;
1439 }
19baf839 1440
9f9e636d
AD
1441 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1442 for (;;) {
1443 /* record the pointer where our next node pointer is stored */
35c6edac 1444 struct key_vector __rcu **cptr = n->tnode;
19baf839 1445
9f9e636d
AD
1446 /* This test verifies that none of the bits that differ
1447 * between the key and the prefix exist in the region of
1448 * the lsb and higher in the prefix.
91b9a277 1449 */
5405afd1 1450 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1451 goto backtrace;
91b9a277 1452
9f9e636d
AD
1453 /* exit out and process leaf */
1454 if (unlikely(IS_LEAF(n)))
1455 break;
91b9a277 1456
9f9e636d
AD
1457 /* Don't bother recording parent info. Since we are in
1458 * prefix match mode we will have to come back to wherever
1459 * we started this traversal anyway
91b9a277 1460 */
91b9a277 1461
9f9e636d 1462 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1463backtrace:
19baf839 1464#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1465 if (!n)
1466 this_cpu_inc(stats->null_node_hit);
19baf839 1467#endif
9f9e636d
AD
1468 /* If we are at cindex 0 there are no more bits for
1469 * us to strip at this level so we must ascend back
1470 * up one level to see if there are any more bits to
1471 * be stripped there.
1472 */
1473 while (!cindex) {
1474 t_key pkey = pn->key;
1475
88bae714
AD
1476 /* If we don't have a parent then there is
1477 * nothing for us to do as we do not have any
1478 * further nodes to parse.
1479 */
1480 if (IS_TRIE(pn))
345e9b54 1481 return -EAGAIN;
9f9e636d
AD
1482#ifdef CONFIG_IP_FIB_TRIE_STATS
1483 this_cpu_inc(stats->backtrack);
1484#endif
1485 /* Get Child's index */
88bae714 1486 pn = node_parent_rcu(pn);
9f9e636d
AD
1487 cindex = get_index(pkey, pn);
1488 }
1489
1490 /* strip the least significant bit from the cindex */
1491 cindex &= cindex - 1;
1492
1493 /* grab pointer for next child node */
41b489fd 1494 cptr = &pn->tnode[cindex];
c877efb2 1495 }
19baf839 1496 }
9f9e636d 1497
19baf839 1498found:
71e8b67d
AD
1499 /* this line carries forward the xor from earlier in the function */
1500 index = key ^ n->key;
1501
9f9e636d 1502 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1503 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1504 struct fib_info *fi = fa->fa_info;
1505 int nhsel, err;
345e9b54 1506
a5829f53
AD
1507 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1508 if (index >= (1ul << fa->fa_slen))
1509 continue;
1510 }
79e5ad2c
AD
1511 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1512 continue;
1513 if (fi->fib_dead)
1514 continue;
1515 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1516 continue;
1517 fib_alias_accessed(fa);
1518 err = fib_props[fa->fa_type].error;
1519 if (unlikely(err < 0)) {
345e9b54 1520#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1521 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1522#endif
79e5ad2c
AD
1523 return err;
1524 }
1525 if (fi->fib_flags & RTNH_F_DEAD)
1526 continue;
1527 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1528 const struct fib_nh *nh = &fi->fib_nh[nhsel];
0eeb075f 1529 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
79e5ad2c
AD
1530
1531 if (nh->nh_flags & RTNH_F_DEAD)
1532 continue;
0eeb075f
AG
1533 if (in_dev &&
1534 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1535 nh->nh_flags & RTNH_F_LINKDOWN &&
1536 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1537 continue;
58189ca7 1538 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
613d09b3
DA
1539 if (flp->flowi4_oif &&
1540 flp->flowi4_oif != nh->nh_oif)
1541 continue;
1542 }
79e5ad2c
AD
1543
1544 if (!(fib_flags & FIB_LOOKUP_NOREF))
1545 atomic_inc(&fi->fib_clntref);
1546
1547 res->prefixlen = KEYLENGTH - fa->fa_slen;
1548 res->nh_sel = nhsel;
1549 res->type = fa->fa_type;
1550 res->scope = fi->fib_scope;
1551 res->fi = fi;
1552 res->table = tb;
1553 res->fa_head = &n->leaf;
345e9b54 1554#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1555 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1556#endif
f6d3c192
DA
1557 trace_fib_table_lookup_nh(nh);
1558
79e5ad2c 1559 return err;
345e9b54 1560 }
9b6ebad5 1561 }
345e9b54 1562#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1563 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1564#endif
345e9b54 1565 goto backtrace;
19baf839 1566}
6fc01438 1567EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1568
35c6edac
AD
1569static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1570 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1571{
1572 /* record the location of the previous list_info entry */
1573 struct hlist_node **pprev = old->fa_list.pprev;
1574 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1575
1576 /* remove the fib_alias from the list */
1577 hlist_del_rcu(&old->fa_list);
1578
1579 /* if we emptied the list this leaf will be freed and we can sort
1580 * out parent suffix lengths as a part of trie_rebalance
1581 */
1582 if (hlist_empty(&l->leaf)) {
a52ca62c
AD
1583 if (tp->slen == l->slen)
1584 node_pull_suffix(tp, tp->pos);
88bae714 1585 put_child_root(tp, l->key, NULL);
d5d6487c
AD
1586 node_free(l);
1587 trie_rebalance(t, tp);
1588 return;
1589 }
1590
1591 /* only access fa if it is pointing at the last valid hlist_node */
1592 if (*pprev)
1593 return;
1594
1595 /* update the trie with the latest suffix length */
1596 l->slen = fa->fa_slen;
1a239173 1597 node_pull_suffix(tp, fa->fa_slen);
d5d6487c
AD
1598}
1599
1600/* Caller must hold RTNL. */
b90eb754
JP
1601int fib_table_delete(struct net *net, struct fib_table *tb,
1602 struct fib_config *cfg)
19baf839
RO
1603{
1604 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1605 struct fib_alias *fa, *fa_to_delete;
35c6edac 1606 struct key_vector *l, *tp;
79e5ad2c 1607 u8 plen = cfg->fc_dst_len;
79e5ad2c 1608 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1609 u8 tos = cfg->fc_tos;
1610 u32 key;
91b9a277 1611
79e5ad2c 1612 if (plen > KEYLENGTH)
19baf839
RO
1613 return -EINVAL;
1614
4e902c57 1615 key = ntohl(cfg->fc_dst);
19baf839 1616
d4a975e8 1617 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1618 return -EINVAL;
1619
d4a975e8 1620 l = fib_find_node(t, &tp, key);
c877efb2 1621 if (!l)
19baf839
RO
1622 return -ESRCH;
1623
0b65bd97 1624 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
19baf839
RO
1625 if (!fa)
1626 return -ESRCH;
1627
0c7770c7 1628 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1629
1630 fa_to_delete = NULL;
56315f9e 1631 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1632 struct fib_info *fi = fa->fa_info;
1633
0b65bd97
AD
1634 if ((fa->fa_slen != slen) ||
1635 (fa->tb_id != tb->tb_id) ||
1636 (fa->fa_tos != tos))
19baf839
RO
1637 break;
1638
4e902c57
TG
1639 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1640 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1641 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1642 (!cfg->fc_prefsrc ||
1643 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1644 (!cfg->fc_protocol ||
1645 fi->fib_protocol == cfg->fc_protocol) &&
1646 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1647 fa_to_delete = fa;
1648 break;
1649 }
1650 }
1651
91b9a277
OJ
1652 if (!fa_to_delete)
1653 return -ESRCH;
19baf839 1654
b90eb754
JP
1655 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1656 fa_to_delete->fa_info, tos, cfg->fc_type,
1657 tb->tb_id, 0);
d5d6487c 1658 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1659 &cfg->fc_nlinfo, 0);
91b9a277 1660
21d8c49e
DM
1661 if (!plen)
1662 tb->tb_num_default--;
1663
d5d6487c 1664 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1665
d5d6487c 1666 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1667 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1668
d5d6487c
AD
1669 fib_release_info(fa_to_delete->fa_info);
1670 alias_free_mem_rcu(fa_to_delete);
91b9a277 1671 return 0;
19baf839
RO
1672}
1673
8be33e95 1674/* Scan for the next leaf starting at the provided key value */
35c6edac 1675static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1676{
35c6edac 1677 struct key_vector *pn, *n = *tn;
8be33e95 1678 unsigned long cindex;
82cfbb00 1679
8be33e95 1680 /* this loop is meant to try and find the key in the trie */
88bae714 1681 do {
8be33e95
AD
1682 /* record parent and next child index */
1683 pn = n;
c2229fe1 1684 cindex = (key > pn->key) ? get_index(key, pn) : 0;
88bae714
AD
1685
1686 if (cindex >> pn->bits)
1687 break;
82cfbb00 1688
8be33e95 1689 /* descend into the next child */
754baf8d 1690 n = get_child_rcu(pn, cindex++);
88bae714
AD
1691 if (!n)
1692 break;
1693
1694 /* guarantee forward progress on the keys */
1695 if (IS_LEAF(n) && (n->key >= key))
1696 goto found;
1697 } while (IS_TNODE(n));
82cfbb00 1698
8be33e95 1699 /* this loop will search for the next leaf with a greater key */
88bae714 1700 while (!IS_TRIE(pn)) {
8be33e95
AD
1701 /* if we exhausted the parent node we will need to climb */
1702 if (cindex >= (1ul << pn->bits)) {
1703 t_key pkey = pn->key;
82cfbb00 1704
8be33e95 1705 pn = node_parent_rcu(pn);
8be33e95
AD
1706 cindex = get_index(pkey, pn) + 1;
1707 continue;
1708 }
82cfbb00 1709
8be33e95 1710 /* grab the next available node */
754baf8d 1711 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1712 if (!n)
1713 continue;
19baf839 1714
8be33e95
AD
1715 /* no need to compare keys since we bumped the index */
1716 if (IS_LEAF(n))
1717 goto found;
71d67e66 1718
8be33e95
AD
1719 /* Rescan start scanning in new node */
1720 pn = n;
1721 cindex = 0;
1722 }
ec28cf73 1723
8be33e95
AD
1724 *tn = pn;
1725 return NULL; /* Root of trie */
1726found:
1727 /* if we are at the limit for keys just return NULL for the tnode */
88bae714 1728 *tn = pn;
8be33e95 1729 return n;
71d67e66
SH
1730}
1731
0ddcf43d
AD
1732static void fib_trie_free(struct fib_table *tb)
1733{
1734 struct trie *t = (struct trie *)tb->tb_data;
1735 struct key_vector *pn = t->kv;
1736 unsigned long cindex = 1;
1737 struct hlist_node *tmp;
1738 struct fib_alias *fa;
1739
1740 /* walk trie in reverse order and free everything */
1741 for (;;) {
1742 struct key_vector *n;
1743
1744 if (!(cindex--)) {
1745 t_key pkey = pn->key;
1746
1747 if (IS_TRIE(pn))
1748 break;
1749
1750 n = pn;
1751 pn = node_parent(pn);
1752
1753 /* drop emptied tnode */
1754 put_child_root(pn, n->key, NULL);
1755 node_free(n);
1756
1757 cindex = get_index(pkey, pn);
1758
1759 continue;
1760 }
1761
1762 /* grab the next available node */
1763 n = get_child(pn, cindex);
1764 if (!n)
1765 continue;
1766
1767 if (IS_TNODE(n)) {
1768 /* record pn and cindex for leaf walking */
1769 pn = n;
1770 cindex = 1ul << n->bits;
1771
1772 continue;
1773 }
1774
1775 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1776 hlist_del_rcu(&fa->fa_list);
1777 alias_free_mem_rcu(fa);
1778 }
1779
1780 put_child_root(pn, n->key, NULL);
1781 node_free(n);
1782 }
1783
1784#ifdef CONFIG_IP_FIB_TRIE_STATS
1785 free_percpu(t->stats);
1786#endif
1787 kfree(tb);
1788}
1789
1790struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1791{
1792 struct trie *ot = (struct trie *)oldtb->tb_data;
1793 struct key_vector *l, *tp = ot->kv;
1794 struct fib_table *local_tb;
1795 struct fib_alias *fa;
1796 struct trie *lt;
1797 t_key key = 0;
1798
1799 if (oldtb->tb_data == oldtb->__data)
1800 return oldtb;
1801
1802 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1803 if (!local_tb)
1804 return NULL;
1805
1806 lt = (struct trie *)local_tb->tb_data;
1807
1808 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1809 struct key_vector *local_l = NULL, *local_tp;
1810
1811 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1812 struct fib_alias *new_fa;
1813
1814 if (local_tb->tb_id != fa->tb_id)
1815 continue;
1816
1817 /* clone fa for new local table */
1818 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1819 if (!new_fa)
1820 goto out;
1821
1822 memcpy(new_fa, fa, sizeof(*fa));
1823
1824 /* insert clone into table */
1825 if (!local_l)
1826 local_l = fib_find_node(lt, &local_tp, l->key);
1827
1828 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
3114cdfe
AD
1829 NULL, l->key)) {
1830 kmem_cache_free(fn_alias_kmem, new_fa);
0ddcf43d 1831 goto out;
3114cdfe 1832 }
0ddcf43d
AD
1833 }
1834
1835 /* stop loop if key wrapped back to 0 */
1836 key = l->key + 1;
1837 if (key < l->key)
1838 break;
1839 }
1840
1841 return local_tb;
1842out:
1843 fib_trie_free(local_tb);
1844
1845 return NULL;
1846}
1847
3b709334
AD
1848/* Caller must hold RTNL */
1849void fib_table_flush_external(struct fib_table *tb)
1850{
1851 struct trie *t = (struct trie *)tb->tb_data;
1852 struct key_vector *pn = t->kv;
1853 unsigned long cindex = 1;
1854 struct hlist_node *tmp;
1855 struct fib_alias *fa;
1856
1857 /* walk trie in reverse order */
1858 for (;;) {
1859 unsigned char slen = 0;
1860 struct key_vector *n;
1861
1862 if (!(cindex--)) {
1863 t_key pkey = pn->key;
1864
1865 /* cannot resize the trie vector */
1866 if (IS_TRIE(pn))
1867 break;
1868
a52ca62c
AD
1869 /* update the suffix to address pulled leaves */
1870 if (pn->slen > pn->pos)
1871 update_suffix(pn);
1872
3b709334
AD
1873 /* resize completed node */
1874 pn = resize(t, pn);
1875 cindex = get_index(pkey, pn);
1876
1877 continue;
1878 }
1879
1880 /* grab the next available node */
1881 n = get_child(pn, cindex);
1882 if (!n)
1883 continue;
1884
1885 if (IS_TNODE(n)) {
1886 /* record pn and cindex for leaf walking */
1887 pn = n;
1888 cindex = 1ul << n->bits;
1889
1890 continue;
1891 }
1892
1893 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1894 /* if alias was cloned to local then we just
1895 * need to remove the local copy from main
1896 */
1897 if (tb->tb_id != fa->tb_id) {
1898 hlist_del_rcu(&fa->fa_list);
1899 alias_free_mem_rcu(fa);
1900 continue;
1901 }
1902
1903 /* record local slen */
1904 slen = fa->fa_slen;
1905 }
1906
1907 /* update leaf slen */
1908 n->slen = slen;
1909
1910 if (hlist_empty(&n->leaf)) {
1911 put_child_root(pn, n->key, NULL);
1912 node_free(n);
1913 }
1914 }
1915}
1916
8be33e95 1917/* Caller must hold RTNL. */
b90eb754 1918int fib_table_flush(struct net *net, struct fib_table *tb)
19baf839 1919{
7289e6dd 1920 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1921 struct key_vector *pn = t->kv;
1922 unsigned long cindex = 1;
7289e6dd
AD
1923 struct hlist_node *tmp;
1924 struct fib_alias *fa;
82cfbb00 1925 int found = 0;
19baf839 1926
88bae714
AD
1927 /* walk trie in reverse order */
1928 for (;;) {
1929 unsigned char slen = 0;
1930 struct key_vector *n;
19baf839 1931
88bae714
AD
1932 if (!(cindex--)) {
1933 t_key pkey = pn->key;
7289e6dd 1934
88bae714
AD
1935 /* cannot resize the trie vector */
1936 if (IS_TRIE(pn))
1937 break;
7289e6dd 1938
a52ca62c
AD
1939 /* update the suffix to address pulled leaves */
1940 if (pn->slen > pn->pos)
1941 update_suffix(pn);
1942
88bae714
AD
1943 /* resize completed node */
1944 pn = resize(t, pn);
1945 cindex = get_index(pkey, pn);
7289e6dd 1946
88bae714
AD
1947 continue;
1948 }
7289e6dd 1949
88bae714
AD
1950 /* grab the next available node */
1951 n = get_child(pn, cindex);
1952 if (!n)
1953 continue;
7289e6dd 1954
88bae714
AD
1955 if (IS_TNODE(n)) {
1956 /* record pn and cindex for leaf walking */
1957 pn = n;
1958 cindex = 1ul << n->bits;
7289e6dd 1959
88bae714
AD
1960 continue;
1961 }
7289e6dd 1962
88bae714
AD
1963 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1964 struct fib_info *fi = fa->fa_info;
7289e6dd 1965
88bae714
AD
1966 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1967 slen = fa->fa_slen;
1968 continue;
1969 }
7289e6dd 1970
b90eb754
JP
1971 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1972 n->key,
1973 KEYLENGTH - fa->fa_slen,
1974 fi, fa->fa_tos, fa->fa_type,
1975 tb->tb_id, 0);
7289e6dd
AD
1976 hlist_del_rcu(&fa->fa_list);
1977 fib_release_info(fa->fa_info);
1978 alias_free_mem_rcu(fa);
1979 found++;
64c62723
AD
1980 }
1981
88bae714
AD
1982 /* update leaf slen */
1983 n->slen = slen;
7289e6dd 1984
88bae714
AD
1985 if (hlist_empty(&n->leaf)) {
1986 put_child_root(pn, n->key, NULL);
1987 node_free(n);
88bae714 1988 }
64c62723 1989 }
19baf839 1990
0c7770c7 1991 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1992 return found;
1993}
1994
c3852ef7
IS
1995static void fib_leaf_notify(struct net *net, struct key_vector *l,
1996 struct fib_table *tb, struct notifier_block *nb,
1997 enum fib_event_type event_type)
1998{
1999 struct fib_alias *fa;
2000
2001 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2002 struct fib_info *fi = fa->fa_info;
2003
2004 if (!fi)
2005 continue;
2006
2007 /* local and main table can share the same trie,
2008 * so don't notify twice for the same entry.
2009 */
2010 if (tb->tb_id != fa->tb_id)
2011 continue;
2012
2013 call_fib_entry_notifier(nb, net, event_type, l->key,
2014 KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
2015 fa->fa_type, fa->tb_id, 0);
2016 }
2017}
2018
2019static void fib_table_notify(struct net *net, struct fib_table *tb,
2020 struct notifier_block *nb,
2021 enum fib_event_type event_type)
2022{
2023 struct trie *t = (struct trie *)tb->tb_data;
2024 struct key_vector *l, *tp = t->kv;
2025 t_key key = 0;
2026
2027 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2028 fib_leaf_notify(net, l, tb, nb, event_type);
2029
2030 key = l->key + 1;
2031 /* stop in case of wrap around */
2032 if (key < l->key)
2033 break;
2034 }
2035}
2036
2037static void fib_notify(struct net *net, struct notifier_block *nb,
2038 enum fib_event_type event_type)
2039{
2040 unsigned int h;
2041
2042 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2043 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2044 struct fib_table *tb;
2045
2046 hlist_for_each_entry_rcu(tb, head, tb_hlist)
2047 fib_table_notify(net, tb, nb, event_type);
2048 }
2049}
2050
a7e53531 2051static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 2052{
a7e53531 2053 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
2054#ifdef CONFIG_IP_FIB_TRIE_STATS
2055 struct trie *t = (struct trie *)tb->tb_data;
2056
0ddcf43d
AD
2057 if (tb->tb_data == tb->__data)
2058 free_percpu(t->stats);
8274a97a 2059#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
2060 kfree(tb);
2061}
2062
a7e53531
AD
2063void fib_free_table(struct fib_table *tb)
2064{
2065 call_rcu(&tb->rcu, __trie_free_rcu);
2066}
2067
35c6edac 2068static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 2069 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 2070{
79e5ad2c 2071 __be32 xkey = htonl(l->key);
19baf839 2072 struct fib_alias *fa;
79e5ad2c 2073 int i, s_i;
19baf839 2074
79e5ad2c 2075 s_i = cb->args[4];
19baf839
RO
2076 i = 0;
2077
2373ce1c 2078 /* rcu_read_lock is hold by caller */
79e5ad2c 2079 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
2080 if (i < s_i) {
2081 i++;
2082 continue;
2083 }
19baf839 2084
0ddcf43d
AD
2085 if (tb->tb_id != fa->tb_id) {
2086 i++;
2087 continue;
2088 }
2089
15e47304 2090 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
2091 cb->nlh->nlmsg_seq,
2092 RTM_NEWROUTE,
2093 tb->tb_id,
2094 fa->fa_type,
be403ea1 2095 xkey,
9b6ebad5 2096 KEYLENGTH - fa->fa_slen,
19baf839 2097 fa->fa_tos,
64347f78 2098 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 2099 cb->args[4] = i;
19baf839
RO
2100 return -1;
2101 }
a88ee229 2102 i++;
19baf839 2103 }
a88ee229 2104
71d67e66 2105 cb->args[4] = i;
19baf839
RO
2106 return skb->len;
2107}
2108
a7e53531 2109/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
2110int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2111 struct netlink_callback *cb)
19baf839 2112{
8be33e95 2113 struct trie *t = (struct trie *)tb->tb_data;
88bae714 2114 struct key_vector *l, *tp = t->kv;
d5ce8a0e
SH
2115 /* Dump starting at last key.
2116 * Note: 0.0.0.0/0 (ie default) is first key.
2117 */
8be33e95
AD
2118 int count = cb->args[2];
2119 t_key key = cb->args[3];
a88ee229 2120
8be33e95 2121 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 2122 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
2123 cb->args[3] = key;
2124 cb->args[2] = count;
a88ee229 2125 return -1;
19baf839 2126 }
d5ce8a0e 2127
71d67e66 2128 ++count;
8be33e95
AD
2129 key = l->key + 1;
2130
71d67e66
SH
2131 memset(&cb->args[4], 0,
2132 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
2133
2134 /* stop loop if key wrapped back to 0 */
2135 if (key < l->key)
2136 break;
19baf839 2137 }
8be33e95 2138
8be33e95
AD
2139 cb->args[3] = key;
2140 cb->args[2] = count;
2141
19baf839 2142 return skb->len;
19baf839
RO
2143}
2144
5348ba85 2145void __init fib_trie_init(void)
7f9b8052 2146{
a07f5f50
SH
2147 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2148 sizeof(struct fib_alias),
bc3c8c1e
SH
2149 0, SLAB_PANIC, NULL);
2150
2151 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 2152 LEAF_SIZE,
bc3c8c1e 2153 0, SLAB_PANIC, NULL);
7f9b8052 2154}
19baf839 2155
0ddcf43d 2156struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
19baf839
RO
2157{
2158 struct fib_table *tb;
2159 struct trie *t;
0ddcf43d
AD
2160 size_t sz = sizeof(*tb);
2161
2162 if (!alias)
2163 sz += sizeof(struct trie);
19baf839 2164
0ddcf43d 2165 tb = kzalloc(sz, GFP_KERNEL);
51456b29 2166 if (!tb)
19baf839
RO
2167 return NULL;
2168
2169 tb->tb_id = id;
21d8c49e 2170 tb->tb_num_default = 0;
0ddcf43d
AD
2171 tb->tb_data = (alias ? alias->__data : tb->__data);
2172
2173 if (alias)
2174 return tb;
19baf839
RO
2175
2176 t = (struct trie *) tb->tb_data;
88bae714
AD
2177 t->kv[0].pos = KEYLENGTH;
2178 t->kv[0].slen = KEYLENGTH;
8274a97a
AD
2179#ifdef CONFIG_IP_FIB_TRIE_STATS
2180 t->stats = alloc_percpu(struct trie_use_stats);
2181 if (!t->stats) {
2182 kfree(tb);
2183 tb = NULL;
2184 }
2185#endif
19baf839 2186
19baf839
RO
2187 return tb;
2188}
2189
cb7b593c
SH
2190#ifdef CONFIG_PROC_FS
2191/* Depth first Trie walk iterator */
2192struct fib_trie_iter {
1c340b2f 2193 struct seq_net_private p;
3d3b2d25 2194 struct fib_table *tb;
35c6edac 2195 struct key_vector *tnode;
a034ee3c
ED
2196 unsigned int index;
2197 unsigned int depth;
cb7b593c 2198};
19baf839 2199
35c6edac 2200static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2201{
98293e8d 2202 unsigned long cindex = iter->index;
88bae714
AD
2203 struct key_vector *pn = iter->tnode;
2204 t_key pkey;
6640e697 2205
cb7b593c
SH
2206 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2207 iter->tnode, iter->index, iter->depth);
19baf839 2208
88bae714
AD
2209 while (!IS_TRIE(pn)) {
2210 while (cindex < child_length(pn)) {
2211 struct key_vector *n = get_child_rcu(pn, cindex++);
2212
2213 if (!n)
2214 continue;
2215
cb7b593c 2216 if (IS_LEAF(n)) {
88bae714
AD
2217 iter->tnode = pn;
2218 iter->index = cindex;
cb7b593c
SH
2219 } else {
2220 /* push down one level */
adaf9816 2221 iter->tnode = n;
cb7b593c
SH
2222 iter->index = 0;
2223 ++iter->depth;
2224 }
88bae714 2225
cb7b593c
SH
2226 return n;
2227 }
19baf839 2228
88bae714
AD
2229 /* Current node exhausted, pop back up */
2230 pkey = pn->key;
2231 pn = node_parent_rcu(pn);
2232 cindex = get_index(pkey, pn) + 1;
cb7b593c 2233 --iter->depth;
19baf839 2234 }
cb7b593c 2235
88bae714
AD
2236 /* record root node so further searches know we are done */
2237 iter->tnode = pn;
2238 iter->index = 0;
2239
cb7b593c 2240 return NULL;
19baf839
RO
2241}
2242
35c6edac
AD
2243static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2244 struct trie *t)
19baf839 2245{
f38b24c9 2246 struct key_vector *n, *pn;
5ddf0eb2 2247
132adf54 2248 if (!t)
5ddf0eb2
RO
2249 return NULL;
2250
f38b24c9 2251 pn = t->kv;
88bae714 2252 n = rcu_dereference(pn->tnode[0]);
3d3b2d25 2253 if (!n)
5ddf0eb2 2254 return NULL;
19baf839 2255
3d3b2d25 2256 if (IS_TNODE(n)) {
adaf9816 2257 iter->tnode = n;
3d3b2d25
SH
2258 iter->index = 0;
2259 iter->depth = 1;
2260 } else {
88bae714 2261 iter->tnode = pn;
3d3b2d25
SH
2262 iter->index = 0;
2263 iter->depth = 0;
91b9a277 2264 }
3d3b2d25
SH
2265
2266 return n;
cb7b593c 2267}
91b9a277 2268
cb7b593c
SH
2269static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2270{
35c6edac 2271 struct key_vector *n;
cb7b593c 2272 struct fib_trie_iter iter;
91b9a277 2273
cb7b593c 2274 memset(s, 0, sizeof(*s));
91b9a277 2275
cb7b593c 2276 rcu_read_lock();
3d3b2d25 2277 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2278 if (IS_LEAF(n)) {
79e5ad2c 2279 struct fib_alias *fa;
93672292 2280
cb7b593c
SH
2281 s->leaves++;
2282 s->totdepth += iter.depth;
2283 if (iter.depth > s->maxdepth)
2284 s->maxdepth = iter.depth;
93672292 2285
79e5ad2c 2286 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 2287 ++s->prefixes;
cb7b593c 2288 } else {
cb7b593c 2289 s->tnodes++;
adaf9816
AD
2290 if (n->bits < MAX_STAT_DEPTH)
2291 s->nodesizes[n->bits]++;
6e22d174 2292 s->nullpointers += tn_info(n)->empty_children;
19baf839 2293 }
19baf839 2294 }
2373ce1c 2295 rcu_read_unlock();
19baf839
RO
2296}
2297
cb7b593c
SH
2298/*
2299 * This outputs /proc/net/fib_triestats
2300 */
2301static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2302{
a034ee3c 2303 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2304
cb7b593c
SH
2305 if (stat->leaves)
2306 avdepth = stat->totdepth*100 / stat->leaves;
2307 else
2308 avdepth = 0;
91b9a277 2309
a07f5f50
SH
2310 seq_printf(seq, "\tAver depth: %u.%02d\n",
2311 avdepth / 100, avdepth % 100);
cb7b593c 2312 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2313
cb7b593c 2314 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 2315 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
2316
2317 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 2318 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 2319
187b5188 2320 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 2321 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 2322
06ef921d
RO
2323 max = MAX_STAT_DEPTH;
2324 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2325 max--;
19baf839 2326
cb7b593c 2327 pointers = 0;
f585a991 2328 for (i = 1; i < max; i++)
cb7b593c 2329 if (stat->nodesizes[i] != 0) {
187b5188 2330 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2331 pointers += (1<<i) * stat->nodesizes[i];
2332 }
2333 seq_putc(seq, '\n');
187b5188 2334 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2335
35c6edac 2336 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2337 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2338 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2339}
2373ce1c 2340
cb7b593c 2341#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2342static void trie_show_usage(struct seq_file *seq,
8274a97a 2343 const struct trie_use_stats __percpu *stats)
66a2f7fd 2344{
8274a97a
AD
2345 struct trie_use_stats s = { 0 };
2346 int cpu;
2347
2348 /* loop through all of the CPUs and gather up the stats */
2349 for_each_possible_cpu(cpu) {
2350 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2351
2352 s.gets += pcpu->gets;
2353 s.backtrack += pcpu->backtrack;
2354 s.semantic_match_passed += pcpu->semantic_match_passed;
2355 s.semantic_match_miss += pcpu->semantic_match_miss;
2356 s.null_node_hit += pcpu->null_node_hit;
2357 s.resize_node_skipped += pcpu->resize_node_skipped;
2358 }
2359
66a2f7fd 2360 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2361 seq_printf(seq, "gets = %u\n", s.gets);
2362 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2363 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2364 s.semantic_match_passed);
2365 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2366 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2367 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2368}
66a2f7fd
SH
2369#endif /* CONFIG_IP_FIB_TRIE_STATS */
2370
3d3b2d25 2371static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2372{
3d3b2d25
SH
2373 if (tb->tb_id == RT_TABLE_LOCAL)
2374 seq_puts(seq, "Local:\n");
2375 else if (tb->tb_id == RT_TABLE_MAIN)
2376 seq_puts(seq, "Main:\n");
2377 else
2378 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2379}
19baf839 2380
3d3b2d25 2381
cb7b593c
SH
2382static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2383{
1c340b2f 2384 struct net *net = (struct net *)seq->private;
3d3b2d25 2385 unsigned int h;
877a9bff 2386
d717a9a6 2387 seq_printf(seq,
a07f5f50
SH
2388 "Basic info: size of leaf:"
2389 " %Zd bytes, size of tnode: %Zd bytes.\n",
41b489fd 2390 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2391
3d3b2d25
SH
2392 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2393 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2394 struct fib_table *tb;
2395
b67bfe0d 2396 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2397 struct trie *t = (struct trie *) tb->tb_data;
2398 struct trie_stat stat;
877a9bff 2399
3d3b2d25
SH
2400 if (!t)
2401 continue;
2402
2403 fib_table_print(seq, tb);
2404
2405 trie_collect_stats(t, &stat);
2406 trie_show_stats(seq, &stat);
2407#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2408 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2409#endif
2410 }
2411 }
19baf839 2412
cb7b593c 2413 return 0;
19baf839
RO
2414}
2415
cb7b593c 2416static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2417{
de05c557 2418 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2419}
2420
9a32144e 2421static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2422 .owner = THIS_MODULE,
2423 .open = fib_triestat_seq_open,
2424 .read = seq_read,
2425 .llseek = seq_lseek,
b6fcbdb4 2426 .release = single_release_net,
cb7b593c
SH
2427};
2428
35c6edac 2429static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2430{
1218854a
YH
2431 struct fib_trie_iter *iter = seq->private;
2432 struct net *net = seq_file_net(seq);
cb7b593c 2433 loff_t idx = 0;
3d3b2d25 2434 unsigned int h;
cb7b593c 2435
3d3b2d25
SH
2436 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2437 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2438 struct fib_table *tb;
cb7b593c 2439
b67bfe0d 2440 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2441 struct key_vector *n;
3d3b2d25
SH
2442
2443 for (n = fib_trie_get_first(iter,
2444 (struct trie *) tb->tb_data);
2445 n; n = fib_trie_get_next(iter))
2446 if (pos == idx++) {
2447 iter->tb = tb;
2448 return n;
2449 }
2450 }
cb7b593c 2451 }
3d3b2d25 2452
19baf839
RO
2453 return NULL;
2454}
2455
cb7b593c 2456static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2457 __acquires(RCU)
19baf839 2458{
cb7b593c 2459 rcu_read_lock();
1218854a 2460 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2461}
2462
cb7b593c 2463static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2464{
cb7b593c 2465 struct fib_trie_iter *iter = seq->private;
1218854a 2466 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2467 struct fib_table *tb = iter->tb;
2468 struct hlist_node *tb_node;
2469 unsigned int h;
35c6edac 2470 struct key_vector *n;
cb7b593c 2471
19baf839 2472 ++*pos;
3d3b2d25
SH
2473 /* next node in same table */
2474 n = fib_trie_get_next(iter);
2475 if (n)
2476 return n;
19baf839 2477
3d3b2d25
SH
2478 /* walk rest of this hash chain */
2479 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2480 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2481 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2482 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2483 if (n)
2484 goto found;
2485 }
19baf839 2486
3d3b2d25
SH
2487 /* new hash chain */
2488 while (++h < FIB_TABLE_HASHSZ) {
2489 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2490 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2491 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2492 if (n)
2493 goto found;
2494 }
2495 }
cb7b593c 2496 return NULL;
3d3b2d25
SH
2497
2498found:
2499 iter->tb = tb;
2500 return n;
cb7b593c 2501}
19baf839 2502
cb7b593c 2503static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2504 __releases(RCU)
19baf839 2505{
cb7b593c
SH
2506 rcu_read_unlock();
2507}
91b9a277 2508
cb7b593c
SH
2509static void seq_indent(struct seq_file *seq, int n)
2510{
a034ee3c
ED
2511 while (n-- > 0)
2512 seq_puts(seq, " ");
cb7b593c 2513}
19baf839 2514
28d36e37 2515static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2516{
132adf54 2517 switch (s) {
cb7b593c
SH
2518 case RT_SCOPE_UNIVERSE: return "universe";
2519 case RT_SCOPE_SITE: return "site";
2520 case RT_SCOPE_LINK: return "link";
2521 case RT_SCOPE_HOST: return "host";
2522 case RT_SCOPE_NOWHERE: return "nowhere";
2523 default:
28d36e37 2524 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2525 return buf;
2526 }
2527}
19baf839 2528
36cbd3dc 2529static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2530 [RTN_UNSPEC] = "UNSPEC",
2531 [RTN_UNICAST] = "UNICAST",
2532 [RTN_LOCAL] = "LOCAL",
2533 [RTN_BROADCAST] = "BROADCAST",
2534 [RTN_ANYCAST] = "ANYCAST",
2535 [RTN_MULTICAST] = "MULTICAST",
2536 [RTN_BLACKHOLE] = "BLACKHOLE",
2537 [RTN_UNREACHABLE] = "UNREACHABLE",
2538 [RTN_PROHIBIT] = "PROHIBIT",
2539 [RTN_THROW] = "THROW",
2540 [RTN_NAT] = "NAT",
2541 [RTN_XRESOLVE] = "XRESOLVE",
2542};
19baf839 2543
a034ee3c 2544static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2545{
cb7b593c
SH
2546 if (t < __RTN_MAX && rtn_type_names[t])
2547 return rtn_type_names[t];
28d36e37 2548 snprintf(buf, len, "type %u", t);
cb7b593c 2549 return buf;
19baf839
RO
2550}
2551
cb7b593c
SH
2552/* Pretty print the trie */
2553static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2554{
cb7b593c 2555 const struct fib_trie_iter *iter = seq->private;
35c6edac 2556 struct key_vector *n = v;
c877efb2 2557
88bae714 2558 if (IS_TRIE(node_parent_rcu(n)))
3d3b2d25 2559 fib_table_print(seq, iter->tb);
095b8501 2560
cb7b593c 2561 if (IS_TNODE(n)) {
adaf9816 2562 __be32 prf = htonl(n->key);
91b9a277 2563
e9b44019
AD
2564 seq_indent(seq, iter->depth-1);
2565 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2566 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
6e22d174
AD
2567 tn_info(n)->full_children,
2568 tn_info(n)->empty_children);
cb7b593c 2569 } else {
adaf9816 2570 __be32 val = htonl(n->key);
79e5ad2c 2571 struct fib_alias *fa;
cb7b593c
SH
2572
2573 seq_indent(seq, iter->depth);
673d57e7 2574 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2575
79e5ad2c
AD
2576 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2577 char buf1[32], buf2[32];
2578
2579 seq_indent(seq, iter->depth + 1);
2580 seq_printf(seq, " /%zu %s %s",
2581 KEYLENGTH - fa->fa_slen,
2582 rtn_scope(buf1, sizeof(buf1),
2583 fa->fa_info->fib_scope),
2584 rtn_type(buf2, sizeof(buf2),
2585 fa->fa_type));
2586 if (fa->fa_tos)
2587 seq_printf(seq, " tos=%d", fa->fa_tos);
2588 seq_putc(seq, '\n');
cb7b593c 2589 }
19baf839 2590 }
cb7b593c 2591
19baf839
RO
2592 return 0;
2593}
2594
f690808e 2595static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2596 .start = fib_trie_seq_start,
2597 .next = fib_trie_seq_next,
2598 .stop = fib_trie_seq_stop,
2599 .show = fib_trie_seq_show,
19baf839
RO
2600};
2601
cb7b593c 2602static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2603{
1c340b2f
DL
2604 return seq_open_net(inode, file, &fib_trie_seq_ops,
2605 sizeof(struct fib_trie_iter));
19baf839
RO
2606}
2607
9a32144e 2608static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2609 .owner = THIS_MODULE,
2610 .open = fib_trie_seq_open,
2611 .read = seq_read,
2612 .llseek = seq_lseek,
1c340b2f 2613 .release = seq_release_net,
19baf839
RO
2614};
2615
8315f5d8
SH
2616struct fib_route_iter {
2617 struct seq_net_private p;
8be33e95 2618 struct fib_table *main_tb;
35c6edac 2619 struct key_vector *tnode;
8315f5d8
SH
2620 loff_t pos;
2621 t_key key;
2622};
2623
35c6edac
AD
2624static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2625 loff_t pos)
8315f5d8 2626{
35c6edac 2627 struct key_vector *l, **tp = &iter->tnode;
8be33e95 2628 t_key key;
8315f5d8 2629
fd0285a3 2630 /* use cached location of previously found key */
8be33e95 2631 if (iter->pos > 0 && pos >= iter->pos) {
8be33e95
AD
2632 key = iter->key;
2633 } else {
fd0285a3 2634 iter->pos = 1;
8be33e95 2635 key = 0;
8315f5d8
SH
2636 }
2637
fd0285a3
AD
2638 pos -= iter->pos;
2639
2640 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
8be33e95 2641 key = l->key + 1;
8315f5d8 2642 iter->pos++;
8be33e95
AD
2643 l = NULL;
2644
2645 /* handle unlikely case of a key wrap */
2646 if (!key)
2647 break;
8315f5d8
SH
2648 }
2649
2650 if (l)
fd0285a3 2651 iter->key = l->key; /* remember it */
8315f5d8
SH
2652 else
2653 iter->pos = 0; /* forget it */
2654
2655 return l;
2656}
2657
2658static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2659 __acquires(RCU)
2660{
2661 struct fib_route_iter *iter = seq->private;
2662 struct fib_table *tb;
8be33e95 2663 struct trie *t;
8315f5d8
SH
2664
2665 rcu_read_lock();
8be33e95 2666
1218854a 2667 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2668 if (!tb)
2669 return NULL;
2670
8be33e95 2671 iter->main_tb = tb;
94d9f1c5
DF
2672 t = (struct trie *)tb->tb_data;
2673 iter->tnode = t->kv;
8be33e95
AD
2674
2675 if (*pos != 0)
2676 return fib_route_get_idx(iter, *pos);
2677
8be33e95 2678 iter->pos = 0;
fd0285a3 2679 iter->key = KEY_MAX;
8be33e95
AD
2680
2681 return SEQ_START_TOKEN;
8315f5d8
SH
2682}
2683
2684static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2685{
2686 struct fib_route_iter *iter = seq->private;
35c6edac 2687 struct key_vector *l = NULL;
fd0285a3 2688 t_key key = iter->key + 1;
8315f5d8
SH
2689
2690 ++*pos;
8be33e95
AD
2691
2692 /* only allow key of 0 for start of sequence */
2693 if ((v == SEQ_START_TOKEN) || key)
2694 l = leaf_walk_rcu(&iter->tnode, key);
2695
2696 if (l) {
fd0285a3 2697 iter->key = l->key;
8315f5d8 2698 iter->pos++;
8be33e95
AD
2699 } else {
2700 iter->pos = 0;
8315f5d8
SH
2701 }
2702
8315f5d8
SH
2703 return l;
2704}
2705
2706static void fib_route_seq_stop(struct seq_file *seq, void *v)
2707 __releases(RCU)
2708{
2709 rcu_read_unlock();
2710}
2711
a034ee3c 2712static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2713{
a034ee3c 2714 unsigned int flags = 0;
19baf839 2715
a034ee3c
ED
2716 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2717 flags = RTF_REJECT;
cb7b593c
SH
2718 if (fi && fi->fib_nh->nh_gw)
2719 flags |= RTF_GATEWAY;
32ab5f80 2720 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2721 flags |= RTF_HOST;
2722 flags |= RTF_UP;
2723 return flags;
19baf839
RO
2724}
2725
cb7b593c
SH
2726/*
2727 * This outputs /proc/net/route.
2728 * The format of the file is not supposed to be changed
a034ee3c 2729 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2730 * legacy utilities
2731 */
2732static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2733{
654eff45
AD
2734 struct fib_route_iter *iter = seq->private;
2735 struct fib_table *tb = iter->main_tb;
79e5ad2c 2736 struct fib_alias *fa;
35c6edac 2737 struct key_vector *l = v;
9b6ebad5 2738 __be32 prefix;
19baf839 2739
cb7b593c
SH
2740 if (v == SEQ_START_TOKEN) {
2741 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2742 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2743 "\tWindow\tIRTT");
2744 return 0;
2745 }
19baf839 2746
9b6ebad5
AD
2747 prefix = htonl(l->key);
2748
79e5ad2c
AD
2749 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2750 const struct fib_info *fi = fa->fa_info;
2751 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2752 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2753
79e5ad2c
AD
2754 if ((fa->fa_type == RTN_BROADCAST) ||
2755 (fa->fa_type == RTN_MULTICAST))
2756 continue;
19baf839 2757
654eff45
AD
2758 if (fa->tb_id != tb->tb_id)
2759 continue;
2760
79e5ad2c
AD
2761 seq_setwidth(seq, 127);
2762
2763 if (fi)
2764 seq_printf(seq,
2765 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2766 "%d\t%08X\t%d\t%u\t%u",
2767 fi->fib_dev ? fi->fib_dev->name : "*",
2768 prefix,
2769 fi->fib_nh->nh_gw, flags, 0, 0,
2770 fi->fib_priority,
2771 mask,
2772 (fi->fib_advmss ?
2773 fi->fib_advmss + 40 : 0),
2774 fi->fib_window,
2775 fi->fib_rtt >> 3);
2776 else
2777 seq_printf(seq,
2778 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2779 "%d\t%08X\t%d\t%u\t%u",
2780 prefix, 0, flags, 0, 0, 0,
2781 mask, 0, 0, 0);
19baf839 2782
79e5ad2c 2783 seq_pad(seq, '\n');
19baf839
RO
2784 }
2785
2786 return 0;
2787}
2788
f690808e 2789static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2790 .start = fib_route_seq_start,
2791 .next = fib_route_seq_next,
2792 .stop = fib_route_seq_stop,
cb7b593c 2793 .show = fib_route_seq_show,
19baf839
RO
2794};
2795
cb7b593c 2796static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2797{
1c340b2f 2798 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2799 sizeof(struct fib_route_iter));
19baf839
RO
2800}
2801
9a32144e 2802static const struct file_operations fib_route_fops = {
cb7b593c
SH
2803 .owner = THIS_MODULE,
2804 .open = fib_route_seq_open,
2805 .read = seq_read,
2806 .llseek = seq_lseek,
1c340b2f 2807 .release = seq_release_net,
19baf839
RO
2808};
2809
61a02653 2810int __net_init fib_proc_init(struct net *net)
19baf839 2811{
d4beaa66 2812 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2813 goto out1;
2814
d4beaa66
G
2815 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2816 &fib_triestat_fops))
cb7b593c
SH
2817 goto out2;
2818
d4beaa66 2819 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2820 goto out3;
2821
19baf839 2822 return 0;
cb7b593c
SH
2823
2824out3:
ece31ffd 2825 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2826out2:
ece31ffd 2827 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2828out1:
2829 return -ENOMEM;
19baf839
RO
2830}
2831
61a02653 2832void __net_exit fib_proc_exit(struct net *net)
19baf839 2833{
ece31ffd
G
2834 remove_proc_entry("fib_trie", net->proc_net);
2835 remove_proc_entry("fib_triestat", net->proc_net);
2836 remove_proc_entry("route", net->proc_net);
19baf839
RO
2837}
2838
2839#endif /* CONFIG_PROC_FS */