]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/fib_trie.c
Merge branch 'drm-radeon-kms' of git://git.kernel.org/pub/scm/linux/kernel/git/airlie...
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
05eee48c 51#define VERSION "0.408"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
457c4cbc 74#include <net/net_namespace.h>
19baf839
RO
75#include <net/ip.h>
76#include <net/protocol.h>
77#include <net/route.h>
78#include <net/tcp.h>
79#include <net/sock.h>
80#include <net/ip_fib.h>
81#include "fib_lookup.h"
82
06ef921d 83#define MAX_STAT_DEPTH 32
19baf839 84
19baf839 85#define KEYLENGTH (8*sizeof(t_key))
19baf839 86
19baf839
RO
87typedef unsigned int t_key;
88
89#define T_TNODE 0
90#define T_LEAF 1
91#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
92#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
91b9a277
OJ
94#define IS_TNODE(n) (!(n->parent & T_LEAF))
95#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
96
97struct node {
91b9a277 98 unsigned long parent;
8d965444 99 t_key key;
19baf839
RO
100};
101
102struct leaf {
91b9a277 103 unsigned long parent;
8d965444 104 t_key key;
19baf839 105 struct hlist_head list;
2373ce1c 106 struct rcu_head rcu;
19baf839
RO
107};
108
109struct leaf_info {
110 struct hlist_node hlist;
2373ce1c 111 struct rcu_head rcu;
19baf839
RO
112 int plen;
113 struct list_head falh;
114};
115
116struct tnode {
91b9a277 117 unsigned long parent;
8d965444 118 t_key key;
112d8cfc
ED
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
e0f7cb8c 126 struct tnode *tnode_free;
15be75cd 127 };
91b9a277 128 struct node *child[0];
19baf839
RO
129};
130
131#ifdef CONFIG_IP_FIB_TRIE_STATS
132struct trie_use_stats {
133 unsigned int gets;
134 unsigned int backtrack;
135 unsigned int semantic_match_passed;
136 unsigned int semantic_match_miss;
137 unsigned int null_node_hit;
2f36895a 138 unsigned int resize_node_skipped;
19baf839
RO
139};
140#endif
141
142struct trie_stat {
143 unsigned int totdepth;
144 unsigned int maxdepth;
145 unsigned int tnodes;
146 unsigned int leaves;
147 unsigned int nullpointers;
93672292 148 unsigned int prefixes;
06ef921d 149 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 150};
19baf839
RO
151
152struct trie {
91b9a277 153 struct node *trie;
19baf839
RO
154#ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats stats;
156#endif
19baf839
RO
157};
158
19baf839 159static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
a07f5f50
SH
160static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
161 int wasfull);
19baf839 162static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
163static struct tnode *inflate(struct trie *t, struct tnode *tn);
164static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
165/* tnodes to free after resize(); protected by RTNL */
166static struct tnode *tnode_free_head;
19baf839 167
e18b890b 168static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 169static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 170
06801916
SH
171static inline struct tnode *node_parent(struct node *node)
172{
b59cfbf7
ED
173 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
174}
175
176static inline struct tnode *node_parent_rcu(struct node *node)
177{
178 struct tnode *ret = node_parent(node);
06801916 179
06801916
SH
180 return rcu_dereference(ret);
181}
182
6440cc9e
SH
183/* Same as rcu_assign_pointer
184 * but that macro() assumes that value is a pointer.
185 */
06801916
SH
186static inline void node_set_parent(struct node *node, struct tnode *ptr)
187{
6440cc9e
SH
188 smp_wmb();
189 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 190}
2373ce1c 191
b59cfbf7
ED
192static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
193{
194 BUG_ON(i >= 1U << tn->bits);
2373ce1c 195
b59cfbf7
ED
196 return tn->child[i];
197}
198
199static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 200{
b59cfbf7 201 struct node *ret = tnode_get_child(tn, i);
19baf839 202
b59cfbf7 203 return rcu_dereference(ret);
19baf839
RO
204}
205
bb435b8d 206static inline int tnode_child_length(const struct tnode *tn)
19baf839 207{
91b9a277 208 return 1 << tn->bits;
19baf839
RO
209}
210
ab66b4a7
SH
211static inline t_key mask_pfx(t_key k, unsigned short l)
212{
213 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
214}
215
19baf839
RO
216static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
217{
91b9a277 218 if (offset < KEYLENGTH)
19baf839 219 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 220 else
19baf839
RO
221 return 0;
222}
223
224static inline int tkey_equals(t_key a, t_key b)
225{
c877efb2 226 return a == b;
19baf839
RO
227}
228
229static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
230{
c877efb2
SH
231 if (bits == 0 || offset >= KEYLENGTH)
232 return 1;
91b9a277
OJ
233 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
234 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 235}
19baf839
RO
236
237static inline int tkey_mismatch(t_key a, int offset, t_key b)
238{
239 t_key diff = a ^ b;
240 int i = offset;
241
c877efb2
SH
242 if (!diff)
243 return 0;
244 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
245 i++;
246 return i;
247}
248
19baf839 249/*
e905a9ed
YH
250 To understand this stuff, an understanding of keys and all their bits is
251 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
252 all of the bits in that key are significant.
253
254 Consider a node 'n' and its parent 'tp'.
255
e905a9ed
YH
256 If n is a leaf, every bit in its key is significant. Its presence is
257 necessitated by path compression, since during a tree traversal (when
258 searching for a leaf - unless we are doing an insertion) we will completely
259 ignore all skipped bits we encounter. Thus we need to verify, at the end of
260 a potentially successful search, that we have indeed been walking the
19baf839
RO
261 correct key path.
262
e905a9ed
YH
263 Note that we can never "miss" the correct key in the tree if present by
264 following the wrong path. Path compression ensures that segments of the key
265 that are the same for all keys with a given prefix are skipped, but the
266 skipped part *is* identical for each node in the subtrie below the skipped
267 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
268 call to tkey_sub_equals() in trie_insert().
269
e905a9ed 270 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
271 have many different meanings.
272
e905a9ed 273 Example:
19baf839
RO
274 _________________________________________________________________
275 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
276 -----------------------------------------------------------------
e905a9ed 277 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
278
279 _________________________________________________________________
280 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
281 -----------------------------------------------------------------
282 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
283
284 tp->pos = 7
285 tp->bits = 3
286 n->pos = 15
91b9a277 287 n->bits = 4
19baf839 288
e905a9ed
YH
289 First, let's just ignore the bits that come before the parent tp, that is
290 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
291 not use them for anything.
292
293 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 294 index into the parent's child array. That is, they will be used to find
19baf839
RO
295 'n' among tp's children.
296
297 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
298 for the node n.
299
e905a9ed 300 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
301 of the bits are really not needed or indeed known in n->key.
302
e905a9ed 303 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 304 n's child array, and will of course be different for each child.
e905a9ed 305
c877efb2 306
19baf839
RO
307 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
308 at this point.
309
310*/
311
0c7770c7 312static inline void check_tnode(const struct tnode *tn)
19baf839 313{
0c7770c7 314 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
315}
316
f5026fab
DL
317static const int halve_threshold = 25;
318static const int inflate_threshold = 50;
345aa031
JP
319static const int halve_threshold_root = 15;
320static const int inflate_threshold_root = 25;
19baf839 321
2373ce1c
RO
322
323static void __alias_free_mem(struct rcu_head *head)
19baf839 324{
2373ce1c
RO
325 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
326 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
327}
328
2373ce1c 329static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 330{
2373ce1c
RO
331 call_rcu(&fa->rcu, __alias_free_mem);
332}
91b9a277 333
2373ce1c
RO
334static void __leaf_free_rcu(struct rcu_head *head)
335{
bc3c8c1e
SH
336 struct leaf *l = container_of(head, struct leaf, rcu);
337 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 338}
91b9a277 339
387a5487
SH
340static inline void free_leaf(struct leaf *l)
341{
342 call_rcu_bh(&l->rcu, __leaf_free_rcu);
343}
344
2373ce1c 345static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 346{
2373ce1c 347 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
348}
349
2373ce1c 350static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 351{
2373ce1c 352 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
353}
354
8d965444 355static struct tnode *tnode_alloc(size_t size)
f0e36f8c 356{
2373ce1c 357 if (size <= PAGE_SIZE)
8d965444 358 return kzalloc(size, GFP_KERNEL);
15be75cd
SH
359 else
360 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
361}
2373ce1c 362
15be75cd
SH
363static void __tnode_vfree(struct work_struct *arg)
364{
365 struct tnode *tn = container_of(arg, struct tnode, work);
366 vfree(tn);
f0e36f8c
PM
367}
368
2373ce1c 369static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 370{
2373ce1c 371 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444
ED
372 size_t size = sizeof(struct tnode) +
373 (sizeof(struct node *) << tn->bits);
f0e36f8c
PM
374
375 if (size <= PAGE_SIZE)
376 kfree(tn);
15be75cd
SH
377 else {
378 INIT_WORK(&tn->work, __tnode_vfree);
379 schedule_work(&tn->work);
380 }
f0e36f8c
PM
381}
382
2373ce1c
RO
383static inline void tnode_free(struct tnode *tn)
384{
387a5487
SH
385 if (IS_LEAF(tn))
386 free_leaf((struct leaf *) tn);
387 else
550e29bc 388 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
389}
390
e0f7cb8c
JP
391static void tnode_free_safe(struct tnode *tn)
392{
393 BUG_ON(IS_LEAF(tn));
7b85576d
JP
394 tn->tnode_free = tnode_free_head;
395 tnode_free_head = tn;
e0f7cb8c
JP
396}
397
398static void tnode_free_flush(void)
399{
400 struct tnode *tn;
401
402 while ((tn = tnode_free_head)) {
403 tnode_free_head = tn->tnode_free;
404 tn->tnode_free = NULL;
405 tnode_free(tn);
406 }
407}
408
2373ce1c
RO
409static struct leaf *leaf_new(void)
410{
bc3c8c1e 411 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
412 if (l) {
413 l->parent = T_LEAF;
414 INIT_HLIST_HEAD(&l->list);
415 }
416 return l;
417}
418
419static struct leaf_info *leaf_info_new(int plen)
420{
421 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
422 if (li) {
423 li->plen = plen;
424 INIT_LIST_HEAD(&li->falh);
425 }
426 return li;
427}
428
a07f5f50 429static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 430{
8d965444 431 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
f0e36f8c 432 struct tnode *tn = tnode_alloc(sz);
19baf839 433
91b9a277 434 if (tn) {
2373ce1c 435 tn->parent = T_TNODE;
19baf839
RO
436 tn->pos = pos;
437 tn->bits = bits;
438 tn->key = key;
439 tn->full_children = 0;
440 tn->empty_children = 1<<bits;
441 }
c877efb2 442
8d965444
ED
443 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
444 (unsigned long) (sizeof(struct node) << bits));
19baf839
RO
445 return tn;
446}
447
19baf839
RO
448/*
449 * Check whether a tnode 'n' is "full", i.e. it is an internal node
450 * and no bits are skipped. See discussion in dyntree paper p. 6
451 */
452
bb435b8d 453static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 454{
c877efb2 455 if (n == NULL || IS_LEAF(n))
19baf839
RO
456 return 0;
457
458 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
459}
460
a07f5f50
SH
461static inline void put_child(struct trie *t, struct tnode *tn, int i,
462 struct node *n)
19baf839
RO
463{
464 tnode_put_child_reorg(tn, i, n, -1);
465}
466
c877efb2 467 /*
19baf839
RO
468 * Add a child at position i overwriting the old value.
469 * Update the value of full_children and empty_children.
470 */
471
a07f5f50
SH
472static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
473 int wasfull)
19baf839 474{
2373ce1c 475 struct node *chi = tn->child[i];
19baf839
RO
476 int isfull;
477
0c7770c7
SH
478 BUG_ON(i >= 1<<tn->bits);
479
19baf839
RO
480 /* update emptyChildren */
481 if (n == NULL && chi != NULL)
482 tn->empty_children++;
483 else if (n != NULL && chi == NULL)
484 tn->empty_children--;
c877efb2 485
19baf839 486 /* update fullChildren */
91b9a277 487 if (wasfull == -1)
19baf839
RO
488 wasfull = tnode_full(tn, chi);
489
490 isfull = tnode_full(tn, n);
c877efb2 491 if (wasfull && !isfull)
19baf839 492 tn->full_children--;
c877efb2 493 else if (!wasfull && isfull)
19baf839 494 tn->full_children++;
91b9a277 495
c877efb2 496 if (n)
06801916 497 node_set_parent(n, tn);
19baf839 498
2373ce1c 499 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
500}
501
c877efb2 502static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
503{
504 int i;
2f36895a 505 int err = 0;
2f80b3c8 506 struct tnode *old_tn;
e6308be8
RO
507 int inflate_threshold_use;
508 int halve_threshold_use;
05eee48c 509 int max_resize;
19baf839 510
e905a9ed 511 if (!tn)
19baf839
RO
512 return NULL;
513
0c7770c7
SH
514 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
515 tn, inflate_threshold, halve_threshold);
19baf839
RO
516
517 /* No children */
518 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 519 tnode_free_safe(tn);
19baf839
RO
520 return NULL;
521 }
522 /* One child */
523 if (tn->empty_children == tnode_child_length(tn) - 1)
524 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 525 struct node *n;
19baf839 526
91b9a277 527 n = tn->child[i];
2373ce1c 528 if (!n)
91b9a277 529 continue;
91b9a277
OJ
530
531 /* compress one level */
06801916 532 node_set_parent(n, NULL);
e0f7cb8c 533 tnode_free_safe(tn);
91b9a277 534 return n;
19baf839 535 }
c877efb2 536 /*
19baf839
RO
537 * Double as long as the resulting node has a number of
538 * nonempty nodes that are above the threshold.
539 */
540
541 /*
c877efb2
SH
542 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
543 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 544 * Telecommunications, page 6:
c877efb2 545 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
546 * children in the *doubled* node is at least 'high'."
547 *
c877efb2
SH
548 * 'high' in this instance is the variable 'inflate_threshold'. It
549 * is expressed as a percentage, so we multiply it with
550 * tnode_child_length() and instead of multiplying by 2 (since the
551 * child array will be doubled by inflate()) and multiplying
552 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 553 * multiply the left-hand side by 50.
c877efb2
SH
554 *
555 * The left-hand side may look a bit weird: tnode_child_length(tn)
556 * - tn->empty_children is of course the number of non-null children
557 * in the current node. tn->full_children is the number of "full"
19baf839 558 * children, that is non-null tnodes with a skip value of 0.
c877efb2 559 * All of those will be doubled in the resulting inflated tnode, so
19baf839 560 * we just count them one extra time here.
c877efb2 561 *
19baf839 562 * A clearer way to write this would be:
c877efb2 563 *
19baf839 564 * to_be_doubled = tn->full_children;
c877efb2 565 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
566 * tn->full_children;
567 *
568 * new_child_length = tnode_child_length(tn) * 2;
569 *
c877efb2 570 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
571 * new_child_length;
572 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
573 *
574 * ...and so on, tho it would mess up the while () loop.
575 *
19baf839
RO
576 * anyway,
577 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
578 * inflate_threshold
c877efb2 579 *
19baf839
RO
580 * avoid a division:
581 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
582 * inflate_threshold * new_child_length
c877efb2 583 *
19baf839 584 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 585 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 586 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 587 *
19baf839 588 * expand new_child_length:
c877efb2 589 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 590 * tn->full_children) >=
19baf839 591 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 592 *
19baf839 593 * shorten again:
c877efb2 594 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 595 * tn->empty_children) >= inflate_threshold *
19baf839 596 * tnode_child_length(tn)
c877efb2 597 *
19baf839
RO
598 */
599
600 check_tnode(tn);
c877efb2 601
e6308be8
RO
602 /* Keep root node larger */
603
132adf54 604 if (!tn->parent)
e6308be8 605 inflate_threshold_use = inflate_threshold_root;
e905a9ed 606 else
e6308be8
RO
607 inflate_threshold_use = inflate_threshold;
608
2f36895a 609 err = 0;
05eee48c
RO
610 max_resize = 10;
611 while ((tn->full_children > 0 && max_resize-- &&
a07f5f50
SH
612 50 * (tn->full_children + tnode_child_length(tn)
613 - tn->empty_children)
614 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 615
2f80b3c8
RO
616 old_tn = tn;
617 tn = inflate(t, tn);
a07f5f50 618
2f80b3c8
RO
619 if (IS_ERR(tn)) {
620 tn = old_tn;
2f36895a
RO
621#ifdef CONFIG_IP_FIB_TRIE_STATS
622 t->stats.resize_node_skipped++;
623#endif
624 break;
625 }
19baf839
RO
626 }
627
05eee48c
RO
628 if (max_resize < 0) {
629 if (!tn->parent)
a07f5f50
SH
630 pr_warning("Fix inflate_threshold_root."
631 " Now=%d size=%d bits\n",
632 inflate_threshold_root, tn->bits);
05eee48c 633 else
a07f5f50
SH
634 pr_warning("Fix inflate_threshold."
635 " Now=%d size=%d bits\n",
636 inflate_threshold, tn->bits);
05eee48c
RO
637 }
638
19baf839
RO
639 check_tnode(tn);
640
641 /*
642 * Halve as long as the number of empty children in this
643 * node is above threshold.
644 */
2f36895a 645
e6308be8
RO
646
647 /* Keep root node larger */
648
132adf54 649 if (!tn->parent)
e6308be8 650 halve_threshold_use = halve_threshold_root;
e905a9ed 651 else
e6308be8
RO
652 halve_threshold_use = halve_threshold;
653
2f36895a 654 err = 0;
05eee48c
RO
655 max_resize = 10;
656 while (tn->bits > 1 && max_resize-- &&
19baf839 657 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 658 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 659
2f80b3c8
RO
660 old_tn = tn;
661 tn = halve(t, tn);
662 if (IS_ERR(tn)) {
663 tn = old_tn;
2f36895a
RO
664#ifdef CONFIG_IP_FIB_TRIE_STATS
665 t->stats.resize_node_skipped++;
666#endif
667 break;
668 }
669 }
19baf839 670
05eee48c
RO
671 if (max_resize < 0) {
672 if (!tn->parent)
a07f5f50
SH
673 pr_warning("Fix halve_threshold_root."
674 " Now=%d size=%d bits\n",
675 halve_threshold_root, tn->bits);
05eee48c 676 else
a07f5f50
SH
677 pr_warning("Fix halve_threshold."
678 " Now=%d size=%d bits\n",
679 halve_threshold, tn->bits);
05eee48c 680 }
c877efb2 681
19baf839 682 /* Only one child remains */
19baf839
RO
683 if (tn->empty_children == tnode_child_length(tn) - 1)
684 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 685 struct node *n;
19baf839 686
91b9a277 687 n = tn->child[i];
2373ce1c 688 if (!n)
91b9a277 689 continue;
91b9a277
OJ
690
691 /* compress one level */
692
06801916 693 node_set_parent(n, NULL);
e0f7cb8c 694 tnode_free_safe(tn);
91b9a277 695 return n;
19baf839
RO
696 }
697
698 return (struct node *) tn;
699}
700
2f80b3c8 701static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 702{
19baf839
RO
703 struct tnode *oldtnode = tn;
704 int olen = tnode_child_length(tn);
705 int i;
706
0c7770c7 707 pr_debug("In inflate\n");
19baf839
RO
708
709 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
710
0c7770c7 711 if (!tn)
2f80b3c8 712 return ERR_PTR(-ENOMEM);
2f36895a
RO
713
714 /*
c877efb2
SH
715 * Preallocate and store tnodes before the actual work so we
716 * don't get into an inconsistent state if memory allocation
717 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
718 * of tnode is ignored.
719 */
91b9a277
OJ
720
721 for (i = 0; i < olen; i++) {
a07f5f50 722 struct tnode *inode;
2f36895a 723
a07f5f50 724 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
725 if (inode &&
726 IS_TNODE(inode) &&
727 inode->pos == oldtnode->pos + oldtnode->bits &&
728 inode->bits > 1) {
729 struct tnode *left, *right;
ab66b4a7 730 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 731
2f36895a
RO
732 left = tnode_new(inode->key&(~m), inode->pos + 1,
733 inode->bits - 1);
2f80b3c8
RO
734 if (!left)
735 goto nomem;
91b9a277 736
2f36895a
RO
737 right = tnode_new(inode->key|m, inode->pos + 1,
738 inode->bits - 1);
739
e905a9ed 740 if (!right) {
2f80b3c8
RO
741 tnode_free(left);
742 goto nomem;
e905a9ed 743 }
2f36895a
RO
744
745 put_child(t, tn, 2*i, (struct node *) left);
746 put_child(t, tn, 2*i+1, (struct node *) right);
747 }
748 }
749
91b9a277 750 for (i = 0; i < olen; i++) {
c95aaf9a 751 struct tnode *inode;
19baf839 752 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
753 struct tnode *left, *right;
754 int size, j;
c877efb2 755
19baf839
RO
756 /* An empty child */
757 if (node == NULL)
758 continue;
759
760 /* A leaf or an internal node with skipped bits */
761
c877efb2 762 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 763 tn->pos + tn->bits - 1) {
a07f5f50
SH
764 if (tkey_extract_bits(node->key,
765 oldtnode->pos + oldtnode->bits,
766 1) == 0)
19baf839
RO
767 put_child(t, tn, 2*i, node);
768 else
769 put_child(t, tn, 2*i+1, node);
770 continue;
771 }
772
773 /* An internal node with two children */
774 inode = (struct tnode *) node;
775
776 if (inode->bits == 1) {
777 put_child(t, tn, 2*i, inode->child[0]);
778 put_child(t, tn, 2*i+1, inode->child[1]);
779
e0f7cb8c 780 tnode_free_safe(inode);
91b9a277 781 continue;
19baf839
RO
782 }
783
91b9a277
OJ
784 /* An internal node with more than two children */
785
786 /* We will replace this node 'inode' with two new
787 * ones, 'left' and 'right', each with half of the
788 * original children. The two new nodes will have
789 * a position one bit further down the key and this
790 * means that the "significant" part of their keys
791 * (see the discussion near the top of this file)
792 * will differ by one bit, which will be "0" in
793 * left's key and "1" in right's key. Since we are
794 * moving the key position by one step, the bit that
795 * we are moving away from - the bit at position
796 * (inode->pos) - is the one that will differ between
797 * left and right. So... we synthesize that bit in the
798 * two new keys.
799 * The mask 'm' below will be a single "one" bit at
800 * the position (inode->pos)
801 */
19baf839 802
91b9a277
OJ
803 /* Use the old key, but set the new significant
804 * bit to zero.
805 */
2f36895a 806
91b9a277
OJ
807 left = (struct tnode *) tnode_get_child(tn, 2*i);
808 put_child(t, tn, 2*i, NULL);
2f36895a 809
91b9a277 810 BUG_ON(!left);
2f36895a 811
91b9a277
OJ
812 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
813 put_child(t, tn, 2*i+1, NULL);
19baf839 814
91b9a277 815 BUG_ON(!right);
19baf839 816
91b9a277
OJ
817 size = tnode_child_length(left);
818 for (j = 0; j < size; j++) {
819 put_child(t, left, j, inode->child[j]);
820 put_child(t, right, j, inode->child[j + size]);
19baf839 821 }
91b9a277
OJ
822 put_child(t, tn, 2*i, resize(t, left));
823 put_child(t, tn, 2*i+1, resize(t, right));
824
e0f7cb8c 825 tnode_free_safe(inode);
19baf839 826 }
e0f7cb8c 827 tnode_free_safe(oldtnode);
19baf839 828 return tn;
2f80b3c8
RO
829nomem:
830 {
831 int size = tnode_child_length(tn);
832 int j;
833
0c7770c7 834 for (j = 0; j < size; j++)
2f80b3c8
RO
835 if (tn->child[j])
836 tnode_free((struct tnode *)tn->child[j]);
837
838 tnode_free(tn);
0c7770c7 839
2f80b3c8
RO
840 return ERR_PTR(-ENOMEM);
841 }
19baf839
RO
842}
843
2f80b3c8 844static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
845{
846 struct tnode *oldtnode = tn;
847 struct node *left, *right;
848 int i;
849 int olen = tnode_child_length(tn);
850
0c7770c7 851 pr_debug("In halve\n");
c877efb2
SH
852
853 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 854
2f80b3c8
RO
855 if (!tn)
856 return ERR_PTR(-ENOMEM);
2f36895a
RO
857
858 /*
c877efb2
SH
859 * Preallocate and store tnodes before the actual work so we
860 * don't get into an inconsistent state if memory allocation
861 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
862 * of tnode is ignored.
863 */
864
91b9a277 865 for (i = 0; i < olen; i += 2) {
2f36895a
RO
866 left = tnode_get_child(oldtnode, i);
867 right = tnode_get_child(oldtnode, i+1);
c877efb2 868
2f36895a 869 /* Two nonempty children */
0c7770c7 870 if (left && right) {
2f80b3c8 871 struct tnode *newn;
0c7770c7 872
2f80b3c8 873 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
874
875 if (!newn)
2f80b3c8 876 goto nomem;
0c7770c7 877
2f80b3c8 878 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 879 }
2f36895a 880
2f36895a 881 }
19baf839 882
91b9a277
OJ
883 for (i = 0; i < olen; i += 2) {
884 struct tnode *newBinNode;
885
19baf839
RO
886 left = tnode_get_child(oldtnode, i);
887 right = tnode_get_child(oldtnode, i+1);
c877efb2 888
19baf839
RO
889 /* At least one of the children is empty */
890 if (left == NULL) {
891 if (right == NULL) /* Both are empty */
892 continue;
893 put_child(t, tn, i/2, right);
91b9a277 894 continue;
0c7770c7 895 }
91b9a277
OJ
896
897 if (right == NULL) {
19baf839 898 put_child(t, tn, i/2, left);
91b9a277
OJ
899 continue;
900 }
c877efb2 901
19baf839 902 /* Two nonempty children */
91b9a277
OJ
903 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
904 put_child(t, tn, i/2, NULL);
91b9a277
OJ
905 put_child(t, newBinNode, 0, left);
906 put_child(t, newBinNode, 1, right);
907 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839 908 }
e0f7cb8c 909 tnode_free_safe(oldtnode);
19baf839 910 return tn;
2f80b3c8
RO
911nomem:
912 {
913 int size = tnode_child_length(tn);
914 int j;
915
0c7770c7 916 for (j = 0; j < size; j++)
2f80b3c8
RO
917 if (tn->child[j])
918 tnode_free((struct tnode *)tn->child[j]);
919
920 tnode_free(tn);
0c7770c7 921
2f80b3c8
RO
922 return ERR_PTR(-ENOMEM);
923 }
19baf839
RO
924}
925
772cb712 926/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
927 via get_fa_head and dump */
928
772cb712 929static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 930{
772cb712 931 struct hlist_head *head = &l->list;
19baf839
RO
932 struct hlist_node *node;
933 struct leaf_info *li;
934
2373ce1c 935 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 936 if (li->plen == plen)
19baf839 937 return li;
91b9a277 938
19baf839
RO
939 return NULL;
940}
941
a07f5f50 942static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 943{
772cb712 944 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 945
91b9a277
OJ
946 if (!li)
947 return NULL;
c877efb2 948
91b9a277 949 return &li->falh;
19baf839
RO
950}
951
952static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
953{
e905a9ed
YH
954 struct leaf_info *li = NULL, *last = NULL;
955 struct hlist_node *node;
956
957 if (hlist_empty(head)) {
958 hlist_add_head_rcu(&new->hlist, head);
959 } else {
960 hlist_for_each_entry(li, node, head, hlist) {
961 if (new->plen > li->plen)
962 break;
963
964 last = li;
965 }
966 if (last)
967 hlist_add_after_rcu(&last->hlist, &new->hlist);
968 else
969 hlist_add_before_rcu(&new->hlist, &li->hlist);
970 }
19baf839
RO
971}
972
2373ce1c
RO
973/* rcu_read_lock needs to be hold by caller from readside */
974
19baf839
RO
975static struct leaf *
976fib_find_node(struct trie *t, u32 key)
977{
978 int pos;
979 struct tnode *tn;
980 struct node *n;
981
982 pos = 0;
2373ce1c 983 n = rcu_dereference(t->trie);
19baf839
RO
984
985 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
986 tn = (struct tnode *) n;
91b9a277 987
19baf839 988 check_tnode(tn);
91b9a277 989
c877efb2 990 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 991 pos = tn->pos + tn->bits;
a07f5f50
SH
992 n = tnode_get_child_rcu(tn,
993 tkey_extract_bits(key,
994 tn->pos,
995 tn->bits));
91b9a277 996 } else
19baf839
RO
997 break;
998 }
999 /* Case we have found a leaf. Compare prefixes */
1000
91b9a277
OJ
1001 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
1002 return (struct leaf *)n;
1003
19baf839
RO
1004 return NULL;
1005}
1006
7b85576d 1007static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 1008{
19baf839 1009 int wasfull;
3ed18d76 1010 t_key cindex, key;
06801916 1011 struct tnode *tp;
19baf839 1012
3ed18d76
RO
1013 key = tn->key;
1014
06801916 1015 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
1016 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1017 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
1018 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1019
1020 tnode_put_child_reorg((struct tnode *)tp, cindex,
1021 (struct node *)tn, wasfull);
91b9a277 1022
06801916 1023 tp = node_parent((struct node *) tn);
008440e3
JP
1024 if (!tp)
1025 rcu_assign_pointer(t->trie, (struct node *)tn);
1026
e0f7cb8c 1027 tnode_free_flush();
06801916 1028 if (!tp)
19baf839 1029 break;
06801916 1030 tn = tp;
19baf839 1031 }
06801916 1032
19baf839 1033 /* Handle last (top) tnode */
7b85576d 1034 if (IS_TNODE(tn))
a07f5f50 1035 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1036
7b85576d
JP
1037 rcu_assign_pointer(t->trie, (struct node *)tn);
1038 tnode_free_flush();
1039
1040 return;
19baf839
RO
1041}
1042
2373ce1c
RO
1043/* only used from updater-side */
1044
fea86ad8 1045static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1046{
1047 int pos, newpos;
1048 struct tnode *tp = NULL, *tn = NULL;
1049 struct node *n;
1050 struct leaf *l;
1051 int missbit;
c877efb2 1052 struct list_head *fa_head = NULL;
19baf839
RO
1053 struct leaf_info *li;
1054 t_key cindex;
1055
1056 pos = 0;
c877efb2 1057 n = t->trie;
19baf839 1058
c877efb2
SH
1059 /* If we point to NULL, stop. Either the tree is empty and we should
1060 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1061 * and we should just put our new leaf in that.
c877efb2
SH
1062 * If we point to a T_TNODE, check if it matches our key. Note that
1063 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1064 * not be the parent's 'pos'+'bits'!
1065 *
c877efb2 1066 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1067 * the index from our key, push the T_TNODE and walk the tree.
1068 *
1069 * If it doesn't, we have to replace it with a new T_TNODE.
1070 *
c877efb2
SH
1071 * If we point to a T_LEAF, it might or might not have the same key
1072 * as we do. If it does, just change the value, update the T_LEAF's
1073 * value, and return it.
19baf839
RO
1074 * If it doesn't, we need to replace it with a T_TNODE.
1075 */
1076
1077 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1078 tn = (struct tnode *) n;
91b9a277 1079
c877efb2 1080 check_tnode(tn);
91b9a277 1081
c877efb2 1082 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1083 tp = tn;
91b9a277 1084 pos = tn->pos + tn->bits;
a07f5f50
SH
1085 n = tnode_get_child(tn,
1086 tkey_extract_bits(key,
1087 tn->pos,
1088 tn->bits));
19baf839 1089
06801916 1090 BUG_ON(n && node_parent(n) != tn);
91b9a277 1091 } else
19baf839
RO
1092 break;
1093 }
1094
1095 /*
1096 * n ----> NULL, LEAF or TNODE
1097 *
c877efb2 1098 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1099 */
1100
91b9a277 1101 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1102
1103 /* Case 1: n is a leaf. Compare prefixes */
1104
c877efb2 1105 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1106 l = (struct leaf *) n;
19baf839 1107 li = leaf_info_new(plen);
91b9a277 1108
fea86ad8
SH
1109 if (!li)
1110 return NULL;
19baf839
RO
1111
1112 fa_head = &li->falh;
1113 insert_leaf_info(&l->list, li);
1114 goto done;
1115 }
19baf839
RO
1116 l = leaf_new();
1117
fea86ad8
SH
1118 if (!l)
1119 return NULL;
19baf839
RO
1120
1121 l->key = key;
1122 li = leaf_info_new(plen);
1123
c877efb2 1124 if (!li) {
387a5487 1125 free_leaf(l);
fea86ad8 1126 return NULL;
f835e471 1127 }
19baf839
RO
1128
1129 fa_head = &li->falh;
1130 insert_leaf_info(&l->list, li);
1131
19baf839 1132 if (t->trie && n == NULL) {
91b9a277 1133 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1134
06801916 1135 node_set_parent((struct node *)l, tp);
19baf839 1136
91b9a277
OJ
1137 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1138 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1139 } else {
1140 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1141 /*
1142 * Add a new tnode here
19baf839
RO
1143 * first tnode need some special handling
1144 */
1145
1146 if (tp)
91b9a277 1147 pos = tp->pos+tp->bits;
19baf839 1148 else
91b9a277
OJ
1149 pos = 0;
1150
c877efb2 1151 if (n) {
19baf839
RO
1152 newpos = tkey_mismatch(key, pos, n->key);
1153 tn = tnode_new(n->key, newpos, 1);
91b9a277 1154 } else {
19baf839 1155 newpos = 0;
c877efb2 1156 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1157 }
19baf839 1158
c877efb2 1159 if (!tn) {
f835e471 1160 free_leaf_info(li);
387a5487 1161 free_leaf(l);
fea86ad8 1162 return NULL;
91b9a277
OJ
1163 }
1164
06801916 1165 node_set_parent((struct node *)tn, tp);
19baf839 1166
91b9a277 1167 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1168 put_child(t, tn, missbit, (struct node *)l);
1169 put_child(t, tn, 1-missbit, n);
1170
c877efb2 1171 if (tp) {
19baf839 1172 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50
SH
1173 put_child(t, (struct tnode *)tp, cindex,
1174 (struct node *)tn);
91b9a277 1175 } else {
a07f5f50 1176 rcu_assign_pointer(t->trie, (struct node *)tn);
19baf839
RO
1177 tp = tn;
1178 }
1179 }
91b9a277
OJ
1180
1181 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1182 pr_warning("fib_trie"
1183 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1184 tp, tp->pos, tp->bits, key, plen);
91b9a277 1185
19baf839 1186 /* Rebalance the trie */
2373ce1c 1187
7b85576d 1188 trie_rebalance(t, tp);
f835e471 1189done:
19baf839
RO
1190 return fa_head;
1191}
1192
d562f1f8
RO
1193/*
1194 * Caller must hold RTNL.
1195 */
4e902c57 1196static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1197{
1198 struct trie *t = (struct trie *) tb->tb_data;
1199 struct fib_alias *fa, *new_fa;
c877efb2 1200 struct list_head *fa_head = NULL;
19baf839 1201 struct fib_info *fi;
4e902c57
TG
1202 int plen = cfg->fc_dst_len;
1203 u8 tos = cfg->fc_tos;
19baf839
RO
1204 u32 key, mask;
1205 int err;
1206 struct leaf *l;
1207
1208 if (plen > 32)
1209 return -EINVAL;
1210
4e902c57 1211 key = ntohl(cfg->fc_dst);
19baf839 1212
2dfe55b4 1213 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1214
91b9a277 1215 mask = ntohl(inet_make_mask(plen));
19baf839 1216
c877efb2 1217 if (key & ~mask)
19baf839
RO
1218 return -EINVAL;
1219
1220 key = key & mask;
1221
4e902c57
TG
1222 fi = fib_create_info(cfg);
1223 if (IS_ERR(fi)) {
1224 err = PTR_ERR(fi);
19baf839 1225 goto err;
4e902c57 1226 }
19baf839
RO
1227
1228 l = fib_find_node(t, key);
c877efb2 1229 fa = NULL;
19baf839 1230
c877efb2 1231 if (l) {
19baf839
RO
1232 fa_head = get_fa_head(l, plen);
1233 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1234 }
1235
1236 /* Now fa, if non-NULL, points to the first fib alias
1237 * with the same keys [prefix,tos,priority], if such key already
1238 * exists or to the node before which we will insert new one.
1239 *
1240 * If fa is NULL, we will need to allocate a new one and
1241 * insert to the head of f.
1242 *
1243 * If f is NULL, no fib node matched the destination key
1244 * and we need to allocate a new one of those as well.
1245 */
1246
936f6f8e
JA
1247 if (fa && fa->fa_tos == tos &&
1248 fa->fa_info->fib_priority == fi->fib_priority) {
1249 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1250
1251 err = -EEXIST;
4e902c57 1252 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1253 goto out;
1254
936f6f8e
JA
1255 /* We have 2 goals:
1256 * 1. Find exact match for type, scope, fib_info to avoid
1257 * duplicate routes
1258 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1259 */
1260 fa_match = NULL;
1261 fa_first = fa;
1262 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1263 list_for_each_entry_continue(fa, fa_head, fa_list) {
1264 if (fa->fa_tos != tos)
1265 break;
1266 if (fa->fa_info->fib_priority != fi->fib_priority)
1267 break;
1268 if (fa->fa_type == cfg->fc_type &&
1269 fa->fa_scope == cfg->fc_scope &&
1270 fa->fa_info == fi) {
1271 fa_match = fa;
1272 break;
1273 }
1274 }
1275
4e902c57 1276 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1277 struct fib_info *fi_drop;
1278 u8 state;
1279
936f6f8e
JA
1280 fa = fa_first;
1281 if (fa_match) {
1282 if (fa == fa_match)
1283 err = 0;
6725033f 1284 goto out;
936f6f8e 1285 }
2373ce1c 1286 err = -ENOBUFS;
e94b1766 1287 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1288 if (new_fa == NULL)
1289 goto out;
19baf839
RO
1290
1291 fi_drop = fa->fa_info;
2373ce1c
RO
1292 new_fa->fa_tos = fa->fa_tos;
1293 new_fa->fa_info = fi;
4e902c57
TG
1294 new_fa->fa_type = cfg->fc_type;
1295 new_fa->fa_scope = cfg->fc_scope;
19baf839 1296 state = fa->fa_state;
936f6f8e 1297 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1298
2373ce1c
RO
1299 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1300 alias_free_mem_rcu(fa);
19baf839
RO
1301
1302 fib_release_info(fi_drop);
1303 if (state & FA_S_ACCESSED)
76e6ebfb 1304 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1305 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1306 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1307
91b9a277 1308 goto succeeded;
19baf839
RO
1309 }
1310 /* Error if we find a perfect match which
1311 * uses the same scope, type, and nexthop
1312 * information.
1313 */
936f6f8e
JA
1314 if (fa_match)
1315 goto out;
a07f5f50 1316
4e902c57 1317 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1318 fa = fa_first;
19baf839
RO
1319 }
1320 err = -ENOENT;
4e902c57 1321 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1322 goto out;
1323
1324 err = -ENOBUFS;
e94b1766 1325 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1326 if (new_fa == NULL)
1327 goto out;
1328
1329 new_fa->fa_info = fi;
1330 new_fa->fa_tos = tos;
4e902c57
TG
1331 new_fa->fa_type = cfg->fc_type;
1332 new_fa->fa_scope = cfg->fc_scope;
19baf839 1333 new_fa->fa_state = 0;
19baf839
RO
1334 /*
1335 * Insert new entry to the list.
1336 */
1337
c877efb2 1338 if (!fa_head) {
fea86ad8
SH
1339 fa_head = fib_insert_node(t, key, plen);
1340 if (unlikely(!fa_head)) {
1341 err = -ENOMEM;
f835e471 1342 goto out_free_new_fa;
fea86ad8 1343 }
f835e471 1344 }
19baf839 1345
2373ce1c
RO
1346 list_add_tail_rcu(&new_fa->fa_list,
1347 (fa ? &fa->fa_list : fa_head));
19baf839 1348
76e6ebfb 1349 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1350 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1351 &cfg->fc_nlinfo, 0);
19baf839
RO
1352succeeded:
1353 return 0;
f835e471
RO
1354
1355out_free_new_fa:
1356 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1357out:
1358 fib_release_info(fi);
91b9a277 1359err:
19baf839
RO
1360 return err;
1361}
1362
772cb712 1363/* should be called with rcu_read_lock */
a07f5f50
SH
1364static int check_leaf(struct trie *t, struct leaf *l,
1365 t_key key, const struct flowi *flp,
1366 struct fib_result *res)
19baf839 1367{
19baf839
RO
1368 struct leaf_info *li;
1369 struct hlist_head *hhead = &l->list;
1370 struct hlist_node *node;
c877efb2 1371
2373ce1c 1372 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
a07f5f50
SH
1373 int err;
1374 int plen = li->plen;
1375 __be32 mask = inet_make_mask(plen);
1376
888454c5 1377 if (l->key != (key & ntohl(mask)))
19baf839
RO
1378 continue;
1379
e204a345 1380 err = fib_semantic_match(&li->falh, flp, res, plen);
a07f5f50 1381
19baf839 1382#ifdef CONFIG_IP_FIB_TRIE_STATS
a07f5f50 1383 if (err <= 0)
19baf839 1384 t->stats.semantic_match_passed++;
a07f5f50
SH
1385 else
1386 t->stats.semantic_match_miss++;
19baf839 1387#endif
a07f5f50 1388 if (err <= 0)
2e655571 1389 return err;
19baf839 1390 }
a07f5f50 1391
2e655571 1392 return 1;
19baf839
RO
1393}
1394
a07f5f50
SH
1395static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1396 struct fib_result *res)
19baf839
RO
1397{
1398 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1399 int ret;
19baf839
RO
1400 struct node *n;
1401 struct tnode *pn;
1402 int pos, bits;
91b9a277 1403 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1404 int chopped_off;
1405 t_key cindex = 0;
1406 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1407 struct tnode *cn;
1408 t_key node_prefix, key_prefix, pref_mismatch;
1409 int mp;
1410
2373ce1c 1411 rcu_read_lock();
91b9a277 1412
2373ce1c 1413 n = rcu_dereference(t->trie);
c877efb2 1414 if (!n)
19baf839
RO
1415 goto failed;
1416
1417#ifdef CONFIG_IP_FIB_TRIE_STATS
1418 t->stats.gets++;
1419#endif
1420
1421 /* Just a leaf? */
1422 if (IS_LEAF(n)) {
2e655571 1423 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
a07f5f50 1424 goto found;
19baf839 1425 }
a07f5f50 1426
19baf839
RO
1427 pn = (struct tnode *) n;
1428 chopped_off = 0;
c877efb2 1429
91b9a277 1430 while (pn) {
19baf839
RO
1431 pos = pn->pos;
1432 bits = pn->bits;
1433
c877efb2 1434 if (!chopped_off)
ab66b4a7
SH
1435 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1436 pos, bits);
19baf839
RO
1437
1438 n = tnode_get_child(pn, cindex);
1439
1440 if (n == NULL) {
1441#ifdef CONFIG_IP_FIB_TRIE_STATS
1442 t->stats.null_node_hit++;
1443#endif
1444 goto backtrace;
1445 }
1446
91b9a277 1447 if (IS_LEAF(n)) {
2e655571
BH
1448 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1449 if (ret > 0)
91b9a277 1450 goto backtrace;
a07f5f50 1451 goto found;
91b9a277
OJ
1452 }
1453
91b9a277 1454 cn = (struct tnode *)n;
19baf839 1455
91b9a277
OJ
1456 /*
1457 * It's a tnode, and we can do some extra checks here if we
1458 * like, to avoid descending into a dead-end branch.
1459 * This tnode is in the parent's child array at index
1460 * key[p_pos..p_pos+p_bits] but potentially with some bits
1461 * chopped off, so in reality the index may be just a
1462 * subprefix, padded with zero at the end.
1463 * We can also take a look at any skipped bits in this
1464 * tnode - everything up to p_pos is supposed to be ok,
1465 * and the non-chopped bits of the index (se previous
1466 * paragraph) are also guaranteed ok, but the rest is
1467 * considered unknown.
1468 *
1469 * The skipped bits are key[pos+bits..cn->pos].
1470 */
19baf839 1471
91b9a277
OJ
1472 /* If current_prefix_length < pos+bits, we are already doing
1473 * actual prefix matching, which means everything from
1474 * pos+(bits-chopped_off) onward must be zero along some
1475 * branch of this subtree - otherwise there is *no* valid
1476 * prefix present. Here we can only check the skipped
1477 * bits. Remember, since we have already indexed into the
1478 * parent's child array, we know that the bits we chopped of
1479 * *are* zero.
1480 */
19baf839 1481
a07f5f50
SH
1482 /* NOTA BENE: Checking only skipped bits
1483 for the new node here */
19baf839 1484
91b9a277
OJ
1485 if (current_prefix_length < pos+bits) {
1486 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1487 cn->pos - current_prefix_length)
1488 || !(cn->child[0]))
91b9a277
OJ
1489 goto backtrace;
1490 }
19baf839 1491
91b9a277
OJ
1492 /*
1493 * If chopped_off=0, the index is fully validated and we
1494 * only need to look at the skipped bits for this, the new,
1495 * tnode. What we actually want to do is to find out if
1496 * these skipped bits match our key perfectly, or if we will
1497 * have to count on finding a matching prefix further down,
1498 * because if we do, we would like to have some way of
1499 * verifying the existence of such a prefix at this point.
1500 */
19baf839 1501
91b9a277
OJ
1502 /* The only thing we can do at this point is to verify that
1503 * any such matching prefix can indeed be a prefix to our
1504 * key, and if the bits in the node we are inspecting that
1505 * do not match our key are not ZERO, this cannot be true.
1506 * Thus, find out where there is a mismatch (before cn->pos)
1507 * and verify that all the mismatching bits are zero in the
1508 * new tnode's key.
1509 */
19baf839 1510
a07f5f50
SH
1511 /*
1512 * Note: We aren't very concerned about the piece of
1513 * the key that precede pn->pos+pn->bits, since these
1514 * have already been checked. The bits after cn->pos
1515 * aren't checked since these are by definition
1516 * "unknown" at this point. Thus, what we want to see
1517 * is if we are about to enter the "prefix matching"
1518 * state, and in that case verify that the skipped
1519 * bits that will prevail throughout this subtree are
1520 * zero, as they have to be if we are to find a
1521 * matching prefix.
91b9a277
OJ
1522 */
1523
ab66b4a7
SH
1524 node_prefix = mask_pfx(cn->key, cn->pos);
1525 key_prefix = mask_pfx(key, cn->pos);
91b9a277
OJ
1526 pref_mismatch = key_prefix^node_prefix;
1527 mp = 0;
1528
a07f5f50
SH
1529 /*
1530 * In short: If skipped bits in this node do not match
1531 * the search key, enter the "prefix matching"
1532 * state.directly.
91b9a277
OJ
1533 */
1534 if (pref_mismatch) {
1535 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1536 mp++;
a07f5f50 1537 pref_mismatch = pref_mismatch << 1;
91b9a277
OJ
1538 }
1539 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1540
1541 if (key_prefix != 0)
1542 goto backtrace;
1543
1544 if (current_prefix_length >= cn->pos)
1545 current_prefix_length = mp;
c877efb2 1546 }
a07f5f50 1547
91b9a277
OJ
1548 pn = (struct tnode *)n; /* Descend */
1549 chopped_off = 0;
1550 continue;
1551
19baf839
RO
1552backtrace:
1553 chopped_off++;
1554
1555 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1556 while ((chopped_off <= pn->bits)
1557 && !(cindex & (1<<(chopped_off-1))))
19baf839 1558 chopped_off++;
19baf839
RO
1559
1560 /* Decrease current_... with bits chopped off */
1561 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1562 current_prefix_length = pn->pos + pn->bits
1563 - chopped_off;
91b9a277 1564
19baf839 1565 /*
c877efb2 1566 * Either we do the actual chop off according or if we have
19baf839
RO
1567 * chopped off all bits in this tnode walk up to our parent.
1568 */
1569
91b9a277 1570 if (chopped_off <= pn->bits) {
19baf839 1571 cindex &= ~(1 << (chopped_off-1));
91b9a277 1572 } else {
06801916
SH
1573 struct tnode *parent = node_parent((struct node *) pn);
1574 if (!parent)
19baf839 1575 goto failed;
91b9a277 1576
19baf839 1577 /* Get Child's index */
06801916
SH
1578 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1579 pn = parent;
19baf839
RO
1580 chopped_off = 0;
1581
1582#ifdef CONFIG_IP_FIB_TRIE_STATS
1583 t->stats.backtrack++;
1584#endif
1585 goto backtrace;
c877efb2 1586 }
19baf839
RO
1587 }
1588failed:
c877efb2 1589 ret = 1;
19baf839 1590found:
2373ce1c 1591 rcu_read_unlock();
19baf839
RO
1592 return ret;
1593}
1594
9195bef7
SH
1595/*
1596 * Remove the leaf and return parent.
1597 */
1598static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1599{
9195bef7 1600 struct tnode *tp = node_parent((struct node *) l);
c877efb2 1601
9195bef7 1602 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1603
c877efb2 1604 if (tp) {
9195bef7 1605 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1606 put_child(t, (struct tnode *)tp, cindex, NULL);
7b85576d 1607 trie_rebalance(t, tp);
91b9a277 1608 } else
2373ce1c 1609 rcu_assign_pointer(t->trie, NULL);
19baf839 1610
387a5487 1611 free_leaf(l);
19baf839
RO
1612}
1613
d562f1f8
RO
1614/*
1615 * Caller must hold RTNL.
1616 */
4e902c57 1617static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1618{
1619 struct trie *t = (struct trie *) tb->tb_data;
1620 u32 key, mask;
4e902c57
TG
1621 int plen = cfg->fc_dst_len;
1622 u8 tos = cfg->fc_tos;
19baf839
RO
1623 struct fib_alias *fa, *fa_to_delete;
1624 struct list_head *fa_head;
1625 struct leaf *l;
91b9a277
OJ
1626 struct leaf_info *li;
1627
c877efb2 1628 if (plen > 32)
19baf839
RO
1629 return -EINVAL;
1630
4e902c57 1631 key = ntohl(cfg->fc_dst);
91b9a277 1632 mask = ntohl(inet_make_mask(plen));
19baf839 1633
c877efb2 1634 if (key & ~mask)
19baf839
RO
1635 return -EINVAL;
1636
1637 key = key & mask;
1638 l = fib_find_node(t, key);
1639
c877efb2 1640 if (!l)
19baf839
RO
1641 return -ESRCH;
1642
1643 fa_head = get_fa_head(l, plen);
1644 fa = fib_find_alias(fa_head, tos, 0);
1645
1646 if (!fa)
1647 return -ESRCH;
1648
0c7770c7 1649 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1650
1651 fa_to_delete = NULL;
936f6f8e
JA
1652 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1653 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1654 struct fib_info *fi = fa->fa_info;
1655
1656 if (fa->fa_tos != tos)
1657 break;
1658
4e902c57
TG
1659 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1660 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1661 fa->fa_scope == cfg->fc_scope) &&
1662 (!cfg->fc_protocol ||
1663 fi->fib_protocol == cfg->fc_protocol) &&
1664 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1665 fa_to_delete = fa;
1666 break;
1667 }
1668 }
1669
91b9a277
OJ
1670 if (!fa_to_delete)
1671 return -ESRCH;
19baf839 1672
91b9a277 1673 fa = fa_to_delete;
4e902c57 1674 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1675 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1676
1677 l = fib_find_node(t, key);
772cb712 1678 li = find_leaf_info(l, plen);
19baf839 1679
2373ce1c 1680 list_del_rcu(&fa->fa_list);
19baf839 1681
91b9a277 1682 if (list_empty(fa_head)) {
2373ce1c 1683 hlist_del_rcu(&li->hlist);
91b9a277 1684 free_leaf_info(li);
2373ce1c 1685 }
19baf839 1686
91b9a277 1687 if (hlist_empty(&l->list))
9195bef7 1688 trie_leaf_remove(t, l);
19baf839 1689
91b9a277 1690 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1691 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1692
2373ce1c
RO
1693 fib_release_info(fa->fa_info);
1694 alias_free_mem_rcu(fa);
91b9a277 1695 return 0;
19baf839
RO
1696}
1697
ef3660ce 1698static int trie_flush_list(struct list_head *head)
19baf839
RO
1699{
1700 struct fib_alias *fa, *fa_node;
1701 int found = 0;
1702
1703 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1704 struct fib_info *fi = fa->fa_info;
19baf839 1705
2373ce1c
RO
1706 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1707 list_del_rcu(&fa->fa_list);
1708 fib_release_info(fa->fa_info);
1709 alias_free_mem_rcu(fa);
19baf839
RO
1710 found++;
1711 }
1712 }
1713 return found;
1714}
1715
ef3660ce 1716static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1717{
1718 int found = 0;
1719 struct hlist_head *lih = &l->list;
1720 struct hlist_node *node, *tmp;
1721 struct leaf_info *li = NULL;
1722
1723 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1724 found += trie_flush_list(&li->falh);
19baf839
RO
1725
1726 if (list_empty(&li->falh)) {
2373ce1c 1727 hlist_del_rcu(&li->hlist);
19baf839
RO
1728 free_leaf_info(li);
1729 }
1730 }
1731 return found;
1732}
1733
82cfbb00
SH
1734/*
1735 * Scan for the next right leaf starting at node p->child[idx]
1736 * Since we have back pointer, no recursion necessary.
1737 */
1738static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
19baf839 1739{
82cfbb00
SH
1740 do {
1741 t_key idx;
c877efb2 1742
c877efb2 1743 if (c)
82cfbb00 1744 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1745 else
82cfbb00 1746 idx = 0;
2373ce1c 1747
82cfbb00
SH
1748 while (idx < 1u << p->bits) {
1749 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1750 if (!c)
91b9a277
OJ
1751 continue;
1752
82cfbb00
SH
1753 if (IS_LEAF(c)) {
1754 prefetch(p->child[idx]);
1755 return (struct leaf *) c;
19baf839 1756 }
82cfbb00
SH
1757
1758 /* Rescan start scanning in new node */
1759 p = (struct tnode *) c;
1760 idx = 0;
19baf839 1761 }
82cfbb00
SH
1762
1763 /* Node empty, walk back up to parent */
91b9a277 1764 c = (struct node *) p;
82cfbb00
SH
1765 } while ( (p = node_parent_rcu(c)) != NULL);
1766
1767 return NULL; /* Root of trie */
1768}
1769
82cfbb00
SH
1770static struct leaf *trie_firstleaf(struct trie *t)
1771{
1772 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1773
1774 if (!n)
1775 return NULL;
1776
1777 if (IS_LEAF(n)) /* trie is just a leaf */
1778 return (struct leaf *) n;
1779
1780 return leaf_walk_rcu(n, NULL);
1781}
1782
1783static struct leaf *trie_nextleaf(struct leaf *l)
1784{
1785 struct node *c = (struct node *) l;
1786 struct tnode *p = node_parent(c);
1787
1788 if (!p)
1789 return NULL; /* trie with just one leaf */
1790
1791 return leaf_walk_rcu(p, c);
19baf839
RO
1792}
1793
71d67e66
SH
1794static struct leaf *trie_leafindex(struct trie *t, int index)
1795{
1796 struct leaf *l = trie_firstleaf(t);
1797
ec28cf73 1798 while (l && index-- > 0)
71d67e66 1799 l = trie_nextleaf(l);
ec28cf73 1800
71d67e66
SH
1801 return l;
1802}
1803
1804
d562f1f8
RO
1805/*
1806 * Caller must hold RTNL.
1807 */
19baf839
RO
1808static int fn_trie_flush(struct fib_table *tb)
1809{
1810 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1811 struct leaf *l, *ll = NULL;
82cfbb00 1812 int found = 0;
19baf839 1813
82cfbb00 1814 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1815 found += trie_flush_leaf(l);
19baf839
RO
1816
1817 if (ll && hlist_empty(&ll->list))
9195bef7 1818 trie_leaf_remove(t, ll);
19baf839
RO
1819 ll = l;
1820 }
1821
1822 if (ll && hlist_empty(&ll->list))
9195bef7 1823 trie_leaf_remove(t, ll);
19baf839 1824
0c7770c7 1825 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1826 return found;
1827}
1828
a07f5f50
SH
1829static void fn_trie_select_default(struct fib_table *tb,
1830 const struct flowi *flp,
1831 struct fib_result *res)
19baf839
RO
1832{
1833 struct trie *t = (struct trie *) tb->tb_data;
1834 int order, last_idx;
1835 struct fib_info *fi = NULL;
1836 struct fib_info *last_resort;
1837 struct fib_alias *fa = NULL;
1838 struct list_head *fa_head;
1839 struct leaf *l;
1840
1841 last_idx = -1;
1842 last_resort = NULL;
1843 order = -1;
1844
2373ce1c 1845 rcu_read_lock();
c877efb2 1846
19baf839 1847 l = fib_find_node(t, 0);
c877efb2 1848 if (!l)
19baf839
RO
1849 goto out;
1850
1851 fa_head = get_fa_head(l, 0);
c877efb2 1852 if (!fa_head)
19baf839
RO
1853 goto out;
1854
c877efb2 1855 if (list_empty(fa_head))
19baf839
RO
1856 goto out;
1857
2373ce1c 1858 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1859 struct fib_info *next_fi = fa->fa_info;
91b9a277 1860
19baf839
RO
1861 if (fa->fa_scope != res->scope ||
1862 fa->fa_type != RTN_UNICAST)
1863 continue;
91b9a277 1864
19baf839
RO
1865 if (next_fi->fib_priority > res->fi->fib_priority)
1866 break;
1867 if (!next_fi->fib_nh[0].nh_gw ||
1868 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1869 continue;
1870 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1871
19baf839
RO
1872 if (fi == NULL) {
1873 if (next_fi != res->fi)
1874 break;
1875 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1876 &last_idx, tb->tb_default)) {
a2bbe682 1877 fib_result_assign(res, fi);
971b893e 1878 tb->tb_default = order;
19baf839
RO
1879 goto out;
1880 }
1881 fi = next_fi;
1882 order++;
1883 }
1884 if (order <= 0 || fi == NULL) {
971b893e 1885 tb->tb_default = -1;
19baf839
RO
1886 goto out;
1887 }
1888
971b893e
DL
1889 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1890 tb->tb_default)) {
a2bbe682 1891 fib_result_assign(res, fi);
971b893e 1892 tb->tb_default = order;
19baf839
RO
1893 goto out;
1894 }
a2bbe682
DL
1895 if (last_idx >= 0)
1896 fib_result_assign(res, last_resort);
971b893e
DL
1897 tb->tb_default = last_idx;
1898out:
2373ce1c 1899 rcu_read_unlock();
19baf839
RO
1900}
1901
a07f5f50
SH
1902static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1903 struct fib_table *tb,
19baf839
RO
1904 struct sk_buff *skb, struct netlink_callback *cb)
1905{
1906 int i, s_i;
1907 struct fib_alias *fa;
32ab5f80 1908 __be32 xkey = htonl(key);
19baf839 1909
71d67e66 1910 s_i = cb->args[5];
19baf839
RO
1911 i = 0;
1912
2373ce1c
RO
1913 /* rcu_read_lock is hold by caller */
1914
1915 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1916 if (i < s_i) {
1917 i++;
1918 continue;
1919 }
19baf839
RO
1920
1921 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1922 cb->nlh->nlmsg_seq,
1923 RTM_NEWROUTE,
1924 tb->tb_id,
1925 fa->fa_type,
1926 fa->fa_scope,
be403ea1 1927 xkey,
19baf839
RO
1928 plen,
1929 fa->fa_tos,
64347f78 1930 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1931 cb->args[5] = i;
19baf839 1932 return -1;
91b9a277 1933 }
19baf839
RO
1934 i++;
1935 }
71d67e66 1936 cb->args[5] = i;
19baf839
RO
1937 return skb->len;
1938}
1939
a88ee229
SH
1940static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1941 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1942{
a88ee229
SH
1943 struct leaf_info *li;
1944 struct hlist_node *node;
1945 int i, s_i;
19baf839 1946
71d67e66 1947 s_i = cb->args[4];
a88ee229 1948 i = 0;
19baf839 1949
a88ee229
SH
1950 /* rcu_read_lock is hold by caller */
1951 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1952 if (i < s_i) {
1953 i++;
19baf839 1954 continue;
a88ee229 1955 }
91b9a277 1956
a88ee229 1957 if (i > s_i)
71d67e66 1958 cb->args[5] = 0;
19baf839 1959
a88ee229 1960 if (list_empty(&li->falh))
19baf839
RO
1961 continue;
1962
a88ee229 1963 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1964 cb->args[4] = i;
19baf839
RO
1965 return -1;
1966 }
a88ee229 1967 i++;
19baf839 1968 }
a88ee229 1969
71d67e66 1970 cb->args[4] = i;
19baf839
RO
1971 return skb->len;
1972}
1973
a07f5f50
SH
1974static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1975 struct netlink_callback *cb)
19baf839 1976{
a88ee229 1977 struct leaf *l;
19baf839 1978 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1979 t_key key = cb->args[2];
71d67e66 1980 int count = cb->args[3];
19baf839 1981
2373ce1c 1982 rcu_read_lock();
d5ce8a0e
SH
1983 /* Dump starting at last key.
1984 * Note: 0.0.0.0/0 (ie default) is first key.
1985 */
71d67e66 1986 if (count == 0)
d5ce8a0e
SH
1987 l = trie_firstleaf(t);
1988 else {
71d67e66
SH
1989 /* Normally, continue from last key, but if that is missing
1990 * fallback to using slow rescan
1991 */
d5ce8a0e 1992 l = fib_find_node(t, key);
71d67e66
SH
1993 if (!l)
1994 l = trie_leafindex(t, count);
d5ce8a0e 1995 }
a88ee229 1996
d5ce8a0e
SH
1997 while (l) {
1998 cb->args[2] = l->key;
a88ee229 1999 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 2000 cb->args[3] = count;
a88ee229 2001 rcu_read_unlock();
a88ee229 2002 return -1;
19baf839 2003 }
d5ce8a0e 2004
71d67e66 2005 ++count;
d5ce8a0e 2006 l = trie_nextleaf(l);
71d67e66
SH
2007 memset(&cb->args[4], 0,
2008 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 2009 }
71d67e66 2010 cb->args[3] = count;
2373ce1c 2011 rcu_read_unlock();
a88ee229 2012
19baf839 2013 return skb->len;
19baf839
RO
2014}
2015
7f9b8052
SH
2016void __init fib_hash_init(void)
2017{
a07f5f50
SH
2018 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2019 sizeof(struct fib_alias),
bc3c8c1e
SH
2020 0, SLAB_PANIC, NULL);
2021
2022 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2023 max(sizeof(struct leaf),
2024 sizeof(struct leaf_info)),
2025 0, SLAB_PANIC, NULL);
7f9b8052 2026}
19baf839 2027
7f9b8052
SH
2028
2029/* Fix more generic FIB names for init later */
2030struct fib_table *fib_hash_table(u32 id)
19baf839
RO
2031{
2032 struct fib_table *tb;
2033 struct trie *t;
2034
19baf839
RO
2035 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2036 GFP_KERNEL);
2037 if (tb == NULL)
2038 return NULL;
2039
2040 tb->tb_id = id;
971b893e 2041 tb->tb_default = -1;
19baf839
RO
2042 tb->tb_lookup = fn_trie_lookup;
2043 tb->tb_insert = fn_trie_insert;
2044 tb->tb_delete = fn_trie_delete;
2045 tb->tb_flush = fn_trie_flush;
2046 tb->tb_select_default = fn_trie_select_default;
2047 tb->tb_dump = fn_trie_dump;
19baf839
RO
2048
2049 t = (struct trie *) tb->tb_data;
c28a1cf4 2050 memset(t, 0, sizeof(*t));
19baf839 2051
19baf839 2052 if (id == RT_TABLE_LOCAL)
a07f5f50 2053 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
2054
2055 return tb;
2056}
2057
cb7b593c
SH
2058#ifdef CONFIG_PROC_FS
2059/* Depth first Trie walk iterator */
2060struct fib_trie_iter {
1c340b2f 2061 struct seq_net_private p;
3d3b2d25 2062 struct fib_table *tb;
cb7b593c 2063 struct tnode *tnode;
cb7b593c
SH
2064 unsigned index;
2065 unsigned depth;
2066};
19baf839 2067
cb7b593c 2068static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2069{
cb7b593c
SH
2070 struct tnode *tn = iter->tnode;
2071 unsigned cindex = iter->index;
2072 struct tnode *p;
19baf839 2073
6640e697
EB
2074 /* A single entry routing table */
2075 if (!tn)
2076 return NULL;
2077
cb7b593c
SH
2078 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2079 iter->tnode, iter->index, iter->depth);
2080rescan:
2081 while (cindex < (1<<tn->bits)) {
b59cfbf7 2082 struct node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2083
cb7b593c
SH
2084 if (n) {
2085 if (IS_LEAF(n)) {
2086 iter->tnode = tn;
2087 iter->index = cindex + 1;
2088 } else {
2089 /* push down one level */
2090 iter->tnode = (struct tnode *) n;
2091 iter->index = 0;
2092 ++iter->depth;
2093 }
2094 return n;
2095 }
19baf839 2096
cb7b593c
SH
2097 ++cindex;
2098 }
91b9a277 2099
cb7b593c 2100 /* Current node exhausted, pop back up */
b59cfbf7 2101 p = node_parent_rcu((struct node *)tn);
cb7b593c
SH
2102 if (p) {
2103 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2104 tn = p;
2105 --iter->depth;
2106 goto rescan;
19baf839 2107 }
cb7b593c
SH
2108
2109 /* got root? */
2110 return NULL;
19baf839
RO
2111}
2112
cb7b593c
SH
2113static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2114 struct trie *t)
19baf839 2115{
3d3b2d25 2116 struct node *n;
5ddf0eb2 2117
132adf54 2118 if (!t)
5ddf0eb2
RO
2119 return NULL;
2120
2121 n = rcu_dereference(t->trie);
3d3b2d25 2122 if (!n)
5ddf0eb2 2123 return NULL;
19baf839 2124
3d3b2d25
SH
2125 if (IS_TNODE(n)) {
2126 iter->tnode = (struct tnode *) n;
2127 iter->index = 0;
2128 iter->depth = 1;
2129 } else {
2130 iter->tnode = NULL;
2131 iter->index = 0;
2132 iter->depth = 0;
91b9a277 2133 }
3d3b2d25
SH
2134
2135 return n;
cb7b593c 2136}
91b9a277 2137
cb7b593c
SH
2138static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2139{
2140 struct node *n;
2141 struct fib_trie_iter iter;
91b9a277 2142
cb7b593c 2143 memset(s, 0, sizeof(*s));
91b9a277 2144
cb7b593c 2145 rcu_read_lock();
3d3b2d25 2146 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2147 if (IS_LEAF(n)) {
93672292
SH
2148 struct leaf *l = (struct leaf *)n;
2149 struct leaf_info *li;
2150 struct hlist_node *tmp;
2151
cb7b593c
SH
2152 s->leaves++;
2153 s->totdepth += iter.depth;
2154 if (iter.depth > s->maxdepth)
2155 s->maxdepth = iter.depth;
93672292
SH
2156
2157 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2158 ++s->prefixes;
cb7b593c
SH
2159 } else {
2160 const struct tnode *tn = (const struct tnode *) n;
2161 int i;
2162
2163 s->tnodes++;
132adf54 2164 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2165 s->nodesizes[tn->bits]++;
2166
cb7b593c
SH
2167 for (i = 0; i < (1<<tn->bits); i++)
2168 if (!tn->child[i])
2169 s->nullpointers++;
19baf839 2170 }
19baf839 2171 }
2373ce1c 2172 rcu_read_unlock();
19baf839
RO
2173}
2174
cb7b593c
SH
2175/*
2176 * This outputs /proc/net/fib_triestats
2177 */
2178static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2179{
cb7b593c 2180 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2181
cb7b593c
SH
2182 if (stat->leaves)
2183 avdepth = stat->totdepth*100 / stat->leaves;
2184 else
2185 avdepth = 0;
91b9a277 2186
a07f5f50
SH
2187 seq_printf(seq, "\tAver depth: %u.%02d\n",
2188 avdepth / 100, avdepth % 100);
cb7b593c 2189 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2190
cb7b593c 2191 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2192 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2193
2194 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2195 bytes += sizeof(struct leaf_info) * stat->prefixes;
2196
187b5188 2197 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2198 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2199
06ef921d
RO
2200 max = MAX_STAT_DEPTH;
2201 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2202 max--;
19baf839 2203
cb7b593c
SH
2204 pointers = 0;
2205 for (i = 1; i <= max; i++)
2206 if (stat->nodesizes[i] != 0) {
187b5188 2207 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2208 pointers += (1<<i) * stat->nodesizes[i];
2209 }
2210 seq_putc(seq, '\n');
187b5188 2211 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2212
cb7b593c 2213 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2214 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2215 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2216}
2373ce1c 2217
cb7b593c 2218#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2219static void trie_show_usage(struct seq_file *seq,
2220 const struct trie_use_stats *stats)
2221{
2222 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2223 seq_printf(seq, "gets = %u\n", stats->gets);
2224 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2225 seq_printf(seq, "semantic match passed = %u\n",
2226 stats->semantic_match_passed);
2227 seq_printf(seq, "semantic match miss = %u\n",
2228 stats->semantic_match_miss);
2229 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2230 seq_printf(seq, "skipped node resize = %u\n\n",
2231 stats->resize_node_skipped);
cb7b593c 2232}
66a2f7fd
SH
2233#endif /* CONFIG_IP_FIB_TRIE_STATS */
2234
3d3b2d25 2235static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2236{
3d3b2d25
SH
2237 if (tb->tb_id == RT_TABLE_LOCAL)
2238 seq_puts(seq, "Local:\n");
2239 else if (tb->tb_id == RT_TABLE_MAIN)
2240 seq_puts(seq, "Main:\n");
2241 else
2242 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2243}
19baf839 2244
3d3b2d25 2245
cb7b593c
SH
2246static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2247{
1c340b2f 2248 struct net *net = (struct net *)seq->private;
3d3b2d25 2249 unsigned int h;
877a9bff 2250
d717a9a6 2251 seq_printf(seq,
a07f5f50
SH
2252 "Basic info: size of leaf:"
2253 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2254 sizeof(struct leaf), sizeof(struct tnode));
2255
3d3b2d25
SH
2256 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2257 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2258 struct hlist_node *node;
2259 struct fib_table *tb;
2260
2261 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2262 struct trie *t = (struct trie *) tb->tb_data;
2263 struct trie_stat stat;
877a9bff 2264
3d3b2d25
SH
2265 if (!t)
2266 continue;
2267
2268 fib_table_print(seq, tb);
2269
2270 trie_collect_stats(t, &stat);
2271 trie_show_stats(seq, &stat);
2272#ifdef CONFIG_IP_FIB_TRIE_STATS
2273 trie_show_usage(seq, &t->stats);
2274#endif
2275 }
2276 }
19baf839 2277
cb7b593c 2278 return 0;
19baf839
RO
2279}
2280
cb7b593c 2281static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2282{
de05c557 2283 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2284}
2285
9a32144e 2286static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2287 .owner = THIS_MODULE,
2288 .open = fib_triestat_seq_open,
2289 .read = seq_read,
2290 .llseek = seq_lseek,
b6fcbdb4 2291 .release = single_release_net,
cb7b593c
SH
2292};
2293
1218854a 2294static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2295{
1218854a
YH
2296 struct fib_trie_iter *iter = seq->private;
2297 struct net *net = seq_file_net(seq);
cb7b593c 2298 loff_t idx = 0;
3d3b2d25 2299 unsigned int h;
cb7b593c 2300
3d3b2d25
SH
2301 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2302 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2303 struct hlist_node *node;
2304 struct fib_table *tb;
cb7b593c 2305
3d3b2d25
SH
2306 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2307 struct node *n;
2308
2309 for (n = fib_trie_get_first(iter,
2310 (struct trie *) tb->tb_data);
2311 n; n = fib_trie_get_next(iter))
2312 if (pos == idx++) {
2313 iter->tb = tb;
2314 return n;
2315 }
2316 }
cb7b593c 2317 }
3d3b2d25 2318
19baf839
RO
2319 return NULL;
2320}
2321
cb7b593c 2322static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2323 __acquires(RCU)
19baf839 2324{
cb7b593c 2325 rcu_read_lock();
1218854a 2326 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2327}
2328
cb7b593c 2329static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2330{
cb7b593c 2331 struct fib_trie_iter *iter = seq->private;
1218854a 2332 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2333 struct fib_table *tb = iter->tb;
2334 struct hlist_node *tb_node;
2335 unsigned int h;
2336 struct node *n;
cb7b593c 2337
19baf839 2338 ++*pos;
3d3b2d25
SH
2339 /* next node in same table */
2340 n = fib_trie_get_next(iter);
2341 if (n)
2342 return n;
19baf839 2343
3d3b2d25
SH
2344 /* walk rest of this hash chain */
2345 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2346 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2347 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2348 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2349 if (n)
2350 goto found;
2351 }
19baf839 2352
3d3b2d25
SH
2353 /* new hash chain */
2354 while (++h < FIB_TABLE_HASHSZ) {
2355 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2356 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2357 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2358 if (n)
2359 goto found;
2360 }
2361 }
cb7b593c 2362 return NULL;
3d3b2d25
SH
2363
2364found:
2365 iter->tb = tb;
2366 return n;
cb7b593c 2367}
19baf839 2368
cb7b593c 2369static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2370 __releases(RCU)
19baf839 2371{
cb7b593c
SH
2372 rcu_read_unlock();
2373}
91b9a277 2374
cb7b593c
SH
2375static void seq_indent(struct seq_file *seq, int n)
2376{
2377 while (n-- > 0) seq_puts(seq, " ");
2378}
19baf839 2379
28d36e37 2380static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2381{
132adf54 2382 switch (s) {
cb7b593c
SH
2383 case RT_SCOPE_UNIVERSE: return "universe";
2384 case RT_SCOPE_SITE: return "site";
2385 case RT_SCOPE_LINK: return "link";
2386 case RT_SCOPE_HOST: return "host";
2387 case RT_SCOPE_NOWHERE: return "nowhere";
2388 default:
28d36e37 2389 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2390 return buf;
2391 }
2392}
19baf839 2393
cb7b593c
SH
2394static const char *rtn_type_names[__RTN_MAX] = {
2395 [RTN_UNSPEC] = "UNSPEC",
2396 [RTN_UNICAST] = "UNICAST",
2397 [RTN_LOCAL] = "LOCAL",
2398 [RTN_BROADCAST] = "BROADCAST",
2399 [RTN_ANYCAST] = "ANYCAST",
2400 [RTN_MULTICAST] = "MULTICAST",
2401 [RTN_BLACKHOLE] = "BLACKHOLE",
2402 [RTN_UNREACHABLE] = "UNREACHABLE",
2403 [RTN_PROHIBIT] = "PROHIBIT",
2404 [RTN_THROW] = "THROW",
2405 [RTN_NAT] = "NAT",
2406 [RTN_XRESOLVE] = "XRESOLVE",
2407};
19baf839 2408
28d36e37 2409static inline const char *rtn_type(char *buf, size_t len, unsigned t)
cb7b593c 2410{
cb7b593c
SH
2411 if (t < __RTN_MAX && rtn_type_names[t])
2412 return rtn_type_names[t];
28d36e37 2413 snprintf(buf, len, "type %u", t);
cb7b593c 2414 return buf;
19baf839
RO
2415}
2416
cb7b593c
SH
2417/* Pretty print the trie */
2418static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2419{
cb7b593c
SH
2420 const struct fib_trie_iter *iter = seq->private;
2421 struct node *n = v;
c877efb2 2422
3d3b2d25
SH
2423 if (!node_parent_rcu(n))
2424 fib_table_print(seq, iter->tb);
095b8501 2425
cb7b593c
SH
2426 if (IS_TNODE(n)) {
2427 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2428 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2429
1d25cd6c 2430 seq_indent(seq, iter->depth-1);
673d57e7
HH
2431 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2432 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2433 tn->empty_children);
e905a9ed 2434
cb7b593c
SH
2435 } else {
2436 struct leaf *l = (struct leaf *) n;
1328042e
SH
2437 struct leaf_info *li;
2438 struct hlist_node *node;
32ab5f80 2439 __be32 val = htonl(l->key);
cb7b593c
SH
2440
2441 seq_indent(seq, iter->depth);
673d57e7 2442 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2443
2444 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2445 struct fib_alias *fa;
2446
2447 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2448 char buf1[32], buf2[32];
2449
2450 seq_indent(seq, iter->depth+1);
2451 seq_printf(seq, " /%d %s %s", li->plen,
2452 rtn_scope(buf1, sizeof(buf1),
2453 fa->fa_scope),
2454 rtn_type(buf2, sizeof(buf2),
2455 fa->fa_type));
2456 if (fa->fa_tos)
b9c4d82a 2457 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2458 seq_putc(seq, '\n');
cb7b593c
SH
2459 }
2460 }
19baf839 2461 }
cb7b593c 2462
19baf839
RO
2463 return 0;
2464}
2465
f690808e 2466static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2467 .start = fib_trie_seq_start,
2468 .next = fib_trie_seq_next,
2469 .stop = fib_trie_seq_stop,
2470 .show = fib_trie_seq_show,
19baf839
RO
2471};
2472
cb7b593c 2473static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2474{
1c340b2f
DL
2475 return seq_open_net(inode, file, &fib_trie_seq_ops,
2476 sizeof(struct fib_trie_iter));
19baf839
RO
2477}
2478
9a32144e 2479static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2480 .owner = THIS_MODULE,
2481 .open = fib_trie_seq_open,
2482 .read = seq_read,
2483 .llseek = seq_lseek,
1c340b2f 2484 .release = seq_release_net,
19baf839
RO
2485};
2486
8315f5d8
SH
2487struct fib_route_iter {
2488 struct seq_net_private p;
2489 struct trie *main_trie;
2490 loff_t pos;
2491 t_key key;
2492};
2493
2494static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2495{
2496 struct leaf *l = NULL;
2497 struct trie *t = iter->main_trie;
2498
2499 /* use cache location of last found key */
2500 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2501 pos -= iter->pos;
2502 else {
2503 iter->pos = 0;
2504 l = trie_firstleaf(t);
2505 }
2506
2507 while (l && pos-- > 0) {
2508 iter->pos++;
2509 l = trie_nextleaf(l);
2510 }
2511
2512 if (l)
2513 iter->key = pos; /* remember it */
2514 else
2515 iter->pos = 0; /* forget it */
2516
2517 return l;
2518}
2519
2520static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2521 __acquires(RCU)
2522{
2523 struct fib_route_iter *iter = seq->private;
2524 struct fib_table *tb;
2525
2526 rcu_read_lock();
1218854a 2527 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2528 if (!tb)
2529 return NULL;
2530
2531 iter->main_trie = (struct trie *) tb->tb_data;
2532 if (*pos == 0)
2533 return SEQ_START_TOKEN;
2534 else
2535 return fib_route_get_idx(iter, *pos - 1);
2536}
2537
2538static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2539{
2540 struct fib_route_iter *iter = seq->private;
2541 struct leaf *l = v;
2542
2543 ++*pos;
2544 if (v == SEQ_START_TOKEN) {
2545 iter->pos = 0;
2546 l = trie_firstleaf(iter->main_trie);
2547 } else {
2548 iter->pos++;
2549 l = trie_nextleaf(l);
2550 }
2551
2552 if (l)
2553 iter->key = l->key;
2554 else
2555 iter->pos = 0;
2556 return l;
2557}
2558
2559static void fib_route_seq_stop(struct seq_file *seq, void *v)
2560 __releases(RCU)
2561{
2562 rcu_read_unlock();
2563}
2564
32ab5f80 2565static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2566{
cb7b593c
SH
2567 static unsigned type2flags[RTN_MAX + 1] = {
2568 [7] = RTF_REJECT, [8] = RTF_REJECT,
2569 };
2570 unsigned flags = type2flags[type];
19baf839 2571
cb7b593c
SH
2572 if (fi && fi->fib_nh->nh_gw)
2573 flags |= RTF_GATEWAY;
32ab5f80 2574 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2575 flags |= RTF_HOST;
2576 flags |= RTF_UP;
2577 return flags;
19baf839
RO
2578}
2579
cb7b593c
SH
2580/*
2581 * This outputs /proc/net/route.
2582 * The format of the file is not supposed to be changed
2583 * and needs to be same as fib_hash output to avoid breaking
2584 * legacy utilities
2585 */
2586static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2587{
cb7b593c 2588 struct leaf *l = v;
1328042e
SH
2589 struct leaf_info *li;
2590 struct hlist_node *node;
19baf839 2591
cb7b593c
SH
2592 if (v == SEQ_START_TOKEN) {
2593 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2594 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2595 "\tWindow\tIRTT");
2596 return 0;
2597 }
19baf839 2598
1328042e 2599 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2600 struct fib_alias *fa;
32ab5f80 2601 __be32 mask, prefix;
91b9a277 2602
cb7b593c
SH
2603 mask = inet_make_mask(li->plen);
2604 prefix = htonl(l->key);
19baf839 2605
cb7b593c 2606 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2607 const struct fib_info *fi = fa->fa_info;
cb7b593c 2608 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2609 int len;
19baf839 2610
cb7b593c
SH
2611 if (fa->fa_type == RTN_BROADCAST
2612 || fa->fa_type == RTN_MULTICAST)
2613 continue;
19baf839 2614
cb7b593c 2615 if (fi)
5e659e4c
PE
2616 seq_printf(seq,
2617 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2618 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2619 fi->fib_dev ? fi->fib_dev->name : "*",
2620 prefix,
2621 fi->fib_nh->nh_gw, flags, 0, 0,
2622 fi->fib_priority,
2623 mask,
a07f5f50
SH
2624 (fi->fib_advmss ?
2625 fi->fib_advmss + 40 : 0),
cb7b593c 2626 fi->fib_window,
5e659e4c 2627 fi->fib_rtt >> 3, &len);
cb7b593c 2628 else
5e659e4c
PE
2629 seq_printf(seq,
2630 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2631 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2632 prefix, 0, flags, 0, 0, 0,
5e659e4c 2633 mask, 0, 0, 0, &len);
19baf839 2634
5e659e4c 2635 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2636 }
19baf839
RO
2637 }
2638
2639 return 0;
2640}
2641
f690808e 2642static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2643 .start = fib_route_seq_start,
2644 .next = fib_route_seq_next,
2645 .stop = fib_route_seq_stop,
cb7b593c 2646 .show = fib_route_seq_show,
19baf839
RO
2647};
2648
cb7b593c 2649static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2650{
1c340b2f 2651 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2652 sizeof(struct fib_route_iter));
19baf839
RO
2653}
2654
9a32144e 2655static const struct file_operations fib_route_fops = {
cb7b593c
SH
2656 .owner = THIS_MODULE,
2657 .open = fib_route_seq_open,
2658 .read = seq_read,
2659 .llseek = seq_lseek,
1c340b2f 2660 .release = seq_release_net,
19baf839
RO
2661};
2662
61a02653 2663int __net_init fib_proc_init(struct net *net)
19baf839 2664{
61a02653 2665 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2666 goto out1;
2667
61a02653
DL
2668 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2669 &fib_triestat_fops))
cb7b593c
SH
2670 goto out2;
2671
61a02653 2672 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2673 goto out3;
2674
19baf839 2675 return 0;
cb7b593c
SH
2676
2677out3:
61a02653 2678 proc_net_remove(net, "fib_triestat");
cb7b593c 2679out2:
61a02653 2680 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2681out1:
2682 return -ENOMEM;
19baf839
RO
2683}
2684
61a02653 2685void __net_exit fib_proc_exit(struct net *net)
19baf839 2686{
61a02653
DL
2687 proc_net_remove(net, "fib_trie");
2688 proc_net_remove(net, "fib_triestat");
2689 proc_net_remove(net, "route");
19baf839
RO
2690}
2691
2692#endif /* CONFIG_PROC_FS */