]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/ipv4/fib_trie.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
7c0f6ba6 53#include <linux/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
ffa915d0 75#include <linux/vmalloc.h>
b90eb754 76#include <linux/notifier.h>
457c4cbc 77#include <net/net_namespace.h>
19baf839
RO
78#include <net/ip.h>
79#include <net/protocol.h>
80#include <net/route.h>
81#include <net/tcp.h>
82#include <net/sock.h>
83#include <net/ip_fib.h>
f6d3c192 84#include <trace/events/fib.h>
19baf839
RO
85#include "fib_lookup.h"
86
c3852ef7
IS
87static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
88 enum fib_event_type event_type, u32 dst,
89 int dst_len, struct fib_info *fi,
2f3a5272 90 u8 tos, u8 type, u32 tb_id)
c3852ef7
IS
91{
92 struct fib_entry_notifier_info info = {
93 .dst = dst,
94 .dst_len = dst_len,
95 .fi = fi,
96 .tos = tos,
97 .type = type,
98 .tb_id = tb_id,
c3852ef7
IS
99 };
100 return call_fib_notifier(nb, net, event_type, &info.info);
101}
102
b90eb754
JP
103static int call_fib_entry_notifiers(struct net *net,
104 enum fib_event_type event_type, u32 dst,
105 int dst_len, struct fib_info *fi,
2f3a5272 106 u8 tos, u8 type, u32 tb_id)
b90eb754
JP
107{
108 struct fib_entry_notifier_info info = {
109 .dst = dst,
110 .dst_len = dst_len,
111 .fi = fi,
112 .tos = tos,
113 .type = type,
114 .tb_id = tb_id,
b90eb754
JP
115 };
116 return call_fib_notifiers(net, event_type, &info.info);
117}
118
06ef921d 119#define MAX_STAT_DEPTH 32
19baf839 120
95f60ea3
AD
121#define KEYLENGTH (8*sizeof(t_key))
122#define KEY_MAX ((t_key)~0)
19baf839 123
19baf839
RO
124typedef unsigned int t_key;
125
88bae714
AD
126#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
127#define IS_TNODE(n) ((n)->bits)
128#define IS_LEAF(n) (!(n)->bits)
2373ce1c 129
35c6edac 130struct key_vector {
64c9b6fb 131 t_key key;
64c9b6fb 132 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 133 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 134 unsigned char slen;
adaf9816 135 union {
41b489fd 136 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 137 struct hlist_head leaf;
41b489fd 138 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 139 struct key_vector __rcu *tnode[0];
adaf9816 140 };
19baf839
RO
141};
142
dc35dbed 143struct tnode {
56ca2adf 144 struct rcu_head rcu;
6e22d174
AD
145 t_key empty_children; /* KEYLENGTH bits needed */
146 t_key full_children; /* KEYLENGTH bits needed */
f23e59fb 147 struct key_vector __rcu *parent;
dc35dbed 148 struct key_vector kv[1];
56ca2adf 149#define tn_bits kv[0].bits
dc35dbed
AD
150};
151
152#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
153#define LEAF_SIZE TNODE_SIZE(1)
154
19baf839
RO
155#ifdef CONFIG_IP_FIB_TRIE_STATS
156struct trie_use_stats {
157 unsigned int gets;
158 unsigned int backtrack;
159 unsigned int semantic_match_passed;
160 unsigned int semantic_match_miss;
161 unsigned int null_node_hit;
2f36895a 162 unsigned int resize_node_skipped;
19baf839
RO
163};
164#endif
165
166struct trie_stat {
167 unsigned int totdepth;
168 unsigned int maxdepth;
169 unsigned int tnodes;
170 unsigned int leaves;
171 unsigned int nullpointers;
93672292 172 unsigned int prefixes;
06ef921d 173 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 174};
19baf839
RO
175
176struct trie {
88bae714 177 struct key_vector kv[1];
19baf839 178#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 179 struct trie_use_stats __percpu *stats;
19baf839 180#endif
19baf839
RO
181};
182
88bae714 183static struct key_vector *resize(struct trie *t, struct key_vector *tn);
c3059477
JP
184static size_t tnode_free_size;
185
186/*
187 * synchronize_rcu after call_rcu for that many pages; it should be especially
188 * useful before resizing the root node with PREEMPT_NONE configs; the value was
189 * obtained experimentally, aiming to avoid visible slowdown.
190 */
191static const int sync_pages = 128;
19baf839 192
e18b890b 193static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 194static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 195
56ca2adf
AD
196static inline struct tnode *tn_info(struct key_vector *kv)
197{
198 return container_of(kv, struct tnode, kv[0]);
199}
200
64c9b6fb 201/* caller must hold RTNL */
f23e59fb 202#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
754baf8d 203#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 204
64c9b6fb 205/* caller must hold RCU read lock or RTNL */
f23e59fb 206#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
754baf8d 207#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 208
64c9b6fb 209/* wrapper for rcu_assign_pointer */
35c6edac 210static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 211{
adaf9816 212 if (n)
f23e59fb 213 rcu_assign_pointer(tn_info(n)->parent, tp);
06801916
SH
214}
215
f23e59fb 216#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
64c9b6fb
AD
217
218/* This provides us with the number of children in this node, in the case of a
219 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 220 */
2e1ac88a 221static inline unsigned long child_length(const struct key_vector *tn)
06801916 222{
64c9b6fb 223 return (1ul << tn->bits) & ~(1ul);
06801916 224}
2373ce1c 225
88bae714
AD
226#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
227
2e1ac88a
AD
228static inline unsigned long get_index(t_key key, struct key_vector *kv)
229{
230 unsigned long index = key ^ kv->key;
231
88bae714
AD
232 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
233 return 0;
234
2e1ac88a
AD
235 return index >> kv->pos;
236}
237
e9b44019
AD
238/* To understand this stuff, an understanding of keys and all their bits is
239 * necessary. Every node in the trie has a key associated with it, but not
240 * all of the bits in that key are significant.
241 *
242 * Consider a node 'n' and its parent 'tp'.
243 *
244 * If n is a leaf, every bit in its key is significant. Its presence is
245 * necessitated by path compression, since during a tree traversal (when
246 * searching for a leaf - unless we are doing an insertion) we will completely
247 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
248 * a potentially successful search, that we have indeed been walking the
249 * correct key path.
250 *
251 * Note that we can never "miss" the correct key in the tree if present by
252 * following the wrong path. Path compression ensures that segments of the key
253 * that are the same for all keys with a given prefix are skipped, but the
254 * skipped part *is* identical for each node in the subtrie below the skipped
255 * bit! trie_insert() in this implementation takes care of that.
256 *
257 * if n is an internal node - a 'tnode' here, the various parts of its key
258 * have many different meanings.
259 *
260 * Example:
261 * _________________________________________________________________
262 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
263 * -----------------------------------------------------------------
264 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
265 *
266 * _________________________________________________________________
267 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
268 * -----------------------------------------------------------------
269 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
270 *
271 * tp->pos = 22
272 * tp->bits = 3
273 * n->pos = 13
274 * n->bits = 4
275 *
276 * First, let's just ignore the bits that come before the parent tp, that is
277 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
278 * point we do not use them for anything.
279 *
280 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
281 * index into the parent's child array. That is, they will be used to find
282 * 'n' among tp's children.
283 *
98a384ec 284 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
e9b44019
AD
285 * for the node n.
286 *
287 * All the bits we have seen so far are significant to the node n. The rest
288 * of the bits are really not needed or indeed known in n->key.
289 *
290 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
291 * n's child array, and will of course be different for each child.
292 *
98a384ec 293 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
e9b44019
AD
294 * at this point.
295 */
19baf839 296
f5026fab
DL
297static const int halve_threshold = 25;
298static const int inflate_threshold = 50;
345aa031 299static const int halve_threshold_root = 15;
80b71b80 300static const int inflate_threshold_root = 30;
2373ce1c
RO
301
302static void __alias_free_mem(struct rcu_head *head)
19baf839 303{
2373ce1c
RO
304 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
305 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
306}
307
2373ce1c 308static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 309{
2373ce1c
RO
310 call_rcu(&fa->rcu, __alias_free_mem);
311}
91b9a277 312
37fd30f2 313#define TNODE_KMALLOC_MAX \
35c6edac 314 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 315#define TNODE_VMALLOC_MAX \
35c6edac 316 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 317
37fd30f2 318static void __node_free_rcu(struct rcu_head *head)
387a5487 319{
56ca2adf 320 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 321
56ca2adf 322 if (!n->tn_bits)
37fd30f2 323 kmem_cache_free(trie_leaf_kmem, n);
37fd30f2 324 else
1d5cfdb0 325 kvfree(n);
387a5487
SH
326}
327
56ca2adf 328#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 329
dc35dbed 330static struct tnode *tnode_alloc(int bits)
f0e36f8c 331{
1de3d87b
AD
332 size_t size;
333
334 /* verify bits is within bounds */
335 if (bits > TNODE_VMALLOC_MAX)
336 return NULL;
337
338 /* determine size and verify it is non-zero and didn't overflow */
339 size = TNODE_SIZE(1ul << bits);
340
2373ce1c 341 if (size <= PAGE_SIZE)
8d965444 342 return kzalloc(size, GFP_KERNEL);
15be75cd 343 else
7a1c8e5a 344 return vzalloc(size);
15be75cd 345}
2373ce1c 346
35c6edac 347static inline void empty_child_inc(struct key_vector *n)
95f60ea3 348{
6e22d174 349 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
95f60ea3
AD
350}
351
35c6edac 352static inline void empty_child_dec(struct key_vector *n)
95f60ea3 353{
6e22d174 354 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
95f60ea3
AD
355}
356
35c6edac 357static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 358{
f38b24c9
FY
359 struct key_vector *l;
360 struct tnode *kv;
dc35dbed 361
f38b24c9 362 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
dc35dbed
AD
363 if (!kv)
364 return NULL;
365
366 /* initialize key vector */
f38b24c9 367 l = kv->kv;
dc35dbed
AD
368 l->key = key;
369 l->pos = 0;
370 l->bits = 0;
371 l->slen = fa->fa_slen;
372
373 /* link leaf to fib alias */
374 INIT_HLIST_HEAD(&l->leaf);
375 hlist_add_head(&fa->fa_list, &l->leaf);
376
2373ce1c
RO
377 return l;
378}
379
35c6edac 380static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 381{
64c9b6fb 382 unsigned int shift = pos + bits;
f38b24c9
FY
383 struct key_vector *tn;
384 struct tnode *tnode;
64c9b6fb
AD
385
386 /* verify bits and pos their msb bits clear and values are valid */
387 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 388
f38b24c9 389 tnode = tnode_alloc(bits);
dc35dbed
AD
390 if (!tnode)
391 return NULL;
392
f38b24c9
FY
393 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
394 sizeof(struct key_vector *) << bits);
395
dc35dbed 396 if (bits == KEYLENGTH)
6e22d174 397 tnode->full_children = 1;
dc35dbed 398 else
6e22d174 399 tnode->empty_children = 1ul << bits;
dc35dbed 400
f38b24c9 401 tn = tnode->kv;
dc35dbed
AD
402 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
403 tn->pos = pos;
404 tn->bits = bits;
405 tn->slen = pos;
406
19baf839
RO
407 return tn;
408}
409
e9b44019 410/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
411 * and no bits are skipped. See discussion in dyntree paper p. 6
412 */
35c6edac 413static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 414{
e9b44019 415 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
416}
417
ff181ed8
AD
418/* Add a child at position i overwriting the old value.
419 * Update the value of full_children and empty_children.
420 */
35c6edac
AD
421static void put_child(struct key_vector *tn, unsigned long i,
422 struct key_vector *n)
19baf839 423{
754baf8d 424 struct key_vector *chi = get_child(tn, i);
ff181ed8 425 int isfull, wasfull;
19baf839 426
2e1ac88a 427 BUG_ON(i >= child_length(tn));
0c7770c7 428
95f60ea3 429 /* update emptyChildren, overflow into fullChildren */
00db4124 430 if (!n && chi)
95f60ea3 431 empty_child_inc(tn);
00db4124 432 if (n && !chi)
95f60ea3 433 empty_child_dec(tn);
c877efb2 434
19baf839 435 /* update fullChildren */
ff181ed8 436 wasfull = tnode_full(tn, chi);
19baf839 437 isfull = tnode_full(tn, n);
ff181ed8 438
c877efb2 439 if (wasfull && !isfull)
6e22d174 440 tn_info(tn)->full_children--;
c877efb2 441 else if (!wasfull && isfull)
6e22d174 442 tn_info(tn)->full_children++;
91b9a277 443
5405afd1
AD
444 if (n && (tn->slen < n->slen))
445 tn->slen = n->slen;
446
41b489fd 447 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
448}
449
35c6edac 450static void update_children(struct key_vector *tn)
69fa57b1
AD
451{
452 unsigned long i;
453
454 /* update all of the child parent pointers */
2e1ac88a 455 for (i = child_length(tn); i;) {
754baf8d 456 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
457
458 if (!inode)
459 continue;
460
461 /* Either update the children of a tnode that
462 * already belongs to us or update the child
463 * to point to ourselves.
464 */
465 if (node_parent(inode) == tn)
466 update_children(inode);
467 else
468 node_set_parent(inode, tn);
469 }
470}
471
88bae714
AD
472static inline void put_child_root(struct key_vector *tp, t_key key,
473 struct key_vector *n)
836a0123 474{
88bae714
AD
475 if (IS_TRIE(tp))
476 rcu_assign_pointer(tp->tnode[0], n);
836a0123 477 else
88bae714 478 put_child(tp, get_index(key, tp), n);
836a0123
AD
479}
480
35c6edac 481static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 482{
56ca2adf 483 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
484}
485
35c6edac
AD
486static inline void tnode_free_append(struct key_vector *tn,
487 struct key_vector *n)
fc86a93b 488{
56ca2adf
AD
489 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
490 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 491}
0a5c0475 492
35c6edac 493static void tnode_free(struct key_vector *tn)
fc86a93b 494{
56ca2adf 495 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
496
497 while (head) {
498 head = head->next;
41b489fd 499 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
500 node_free(tn);
501
56ca2adf 502 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
503 }
504
505 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
506 tnode_free_size = 0;
507 synchronize_rcu();
0a5c0475 508 }
0a5c0475
ED
509}
510
88bae714
AD
511static struct key_vector *replace(struct trie *t,
512 struct key_vector *oldtnode,
513 struct key_vector *tn)
69fa57b1 514{
35c6edac 515 struct key_vector *tp = node_parent(oldtnode);
69fa57b1
AD
516 unsigned long i;
517
518 /* setup the parent pointer out of and back into this node */
519 NODE_INIT_PARENT(tn, tp);
88bae714 520 put_child_root(tp, tn->key, tn);
69fa57b1
AD
521
522 /* update all of the child parent pointers */
523 update_children(tn);
524
525 /* all pointers should be clean so we are done */
526 tnode_free(oldtnode);
527
528 /* resize children now that oldtnode is freed */
2e1ac88a 529 for (i = child_length(tn); i;) {
754baf8d 530 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
531
532 /* resize child node */
533 if (tnode_full(tn, inode))
88bae714 534 tn = resize(t, inode);
69fa57b1 535 }
8d8e810c 536
88bae714 537 return tp;
69fa57b1
AD
538}
539
88bae714
AD
540static struct key_vector *inflate(struct trie *t,
541 struct key_vector *oldtnode)
19baf839 542{
35c6edac 543 struct key_vector *tn;
69fa57b1 544 unsigned long i;
e9b44019 545 t_key m;
19baf839 546
0c7770c7 547 pr_debug("In inflate\n");
19baf839 548
e9b44019 549 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 550 if (!tn)
8d8e810c 551 goto notnode;
2f36895a 552
69fa57b1
AD
553 /* prepare oldtnode to be freed */
554 tnode_free_init(oldtnode);
555
12c081a5
AD
556 /* Assemble all of the pointers in our cluster, in this case that
557 * represents all of the pointers out of our allocated nodes that
558 * point to existing tnodes and the links between our allocated
559 * nodes.
2f36895a 560 */
2e1ac88a 561 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 562 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 563 struct key_vector *node0, *node1;
69fa57b1 564 unsigned long j, k;
c877efb2 565
19baf839 566 /* An empty child */
51456b29 567 if (!inode)
19baf839
RO
568 continue;
569
570 /* A leaf or an internal node with skipped bits */
adaf9816 571 if (!tnode_full(oldtnode, inode)) {
e9b44019 572 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
573 continue;
574 }
575
69fa57b1
AD
576 /* drop the node in the old tnode free list */
577 tnode_free_append(oldtnode, inode);
578
19baf839 579 /* An internal node with two children */
19baf839 580 if (inode->bits == 1) {
754baf8d
AD
581 put_child(tn, 2 * i + 1, get_child(inode, 1));
582 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 583 continue;
19baf839
RO
584 }
585
91b9a277 586 /* We will replace this node 'inode' with two new
12c081a5 587 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
588 * original children. The two new nodes will have
589 * a position one bit further down the key and this
590 * means that the "significant" part of their keys
591 * (see the discussion near the top of this file)
592 * will differ by one bit, which will be "0" in
12c081a5 593 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
594 * moving the key position by one step, the bit that
595 * we are moving away from - the bit at position
12c081a5
AD
596 * (tn->pos) - is the one that will differ between
597 * node0 and node1. So... we synthesize that bit in the
598 * two new keys.
91b9a277 599 */
12c081a5
AD
600 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
601 if (!node1)
602 goto nomem;
69fa57b1 603 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 604
69fa57b1 605 tnode_free_append(tn, node1);
12c081a5
AD
606 if (!node0)
607 goto nomem;
608 tnode_free_append(tn, node0);
609
610 /* populate child pointers in new nodes */
2e1ac88a 611 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
612 put_child(node1, --j, get_child(inode, --k));
613 put_child(node0, j, get_child(inode, j));
614 put_child(node1, --j, get_child(inode, --k));
615 put_child(node0, j, get_child(inode, j));
12c081a5 616 }
19baf839 617
12c081a5
AD
618 /* link new nodes to parent */
619 NODE_INIT_PARENT(node1, tn);
620 NODE_INIT_PARENT(node0, tn);
2f36895a 621
12c081a5
AD
622 /* link parent to nodes */
623 put_child(tn, 2 * i + 1, node1);
624 put_child(tn, 2 * i, node0);
625 }
2f36895a 626
69fa57b1 627 /* setup the parent pointers into and out of this node */
8d8e810c 628 return replace(t, oldtnode, tn);
2f80b3c8 629nomem:
fc86a93b
AD
630 /* all pointers should be clean so we are done */
631 tnode_free(tn);
8d8e810c
AD
632notnode:
633 return NULL;
19baf839
RO
634}
635
88bae714
AD
636static struct key_vector *halve(struct trie *t,
637 struct key_vector *oldtnode)
19baf839 638{
35c6edac 639 struct key_vector *tn;
12c081a5 640 unsigned long i;
19baf839 641
0c7770c7 642 pr_debug("In halve\n");
c877efb2 643
e9b44019 644 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 645 if (!tn)
8d8e810c 646 goto notnode;
2f36895a 647
69fa57b1
AD
648 /* prepare oldtnode to be freed */
649 tnode_free_init(oldtnode);
650
12c081a5
AD
651 /* Assemble all of the pointers in our cluster, in this case that
652 * represents all of the pointers out of our allocated nodes that
653 * point to existing tnodes and the links between our allocated
654 * nodes.
2f36895a 655 */
2e1ac88a 656 for (i = child_length(oldtnode); i;) {
754baf8d
AD
657 struct key_vector *node1 = get_child(oldtnode, --i);
658 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 659 struct key_vector *inode;
2f36895a 660
12c081a5
AD
661 /* At least one of the children is empty */
662 if (!node1 || !node0) {
663 put_child(tn, i / 2, node1 ? : node0);
664 continue;
665 }
c877efb2 666
2f36895a 667 /* Two nonempty children */
12c081a5 668 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
669 if (!inode)
670 goto nomem;
12c081a5 671 tnode_free_append(tn, inode);
2f36895a 672
12c081a5
AD
673 /* initialize pointers out of node */
674 put_child(inode, 1, node1);
675 put_child(inode, 0, node0);
676 NODE_INIT_PARENT(inode, tn);
677
678 /* link parent to node */
679 put_child(tn, i / 2, inode);
2f36895a 680 }
19baf839 681
69fa57b1 682 /* setup the parent pointers into and out of this node */
8d8e810c
AD
683 return replace(t, oldtnode, tn);
684nomem:
685 /* all pointers should be clean so we are done */
686 tnode_free(tn);
687notnode:
688 return NULL;
19baf839
RO
689}
690
88bae714
AD
691static struct key_vector *collapse(struct trie *t,
692 struct key_vector *oldtnode)
95f60ea3 693{
35c6edac 694 struct key_vector *n, *tp;
95f60ea3
AD
695 unsigned long i;
696
697 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 698 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 699 n = get_child(oldtnode, --i);
95f60ea3
AD
700
701 /* compress one level */
702 tp = node_parent(oldtnode);
88bae714 703 put_child_root(tp, oldtnode->key, n);
95f60ea3
AD
704 node_set_parent(n, tp);
705
706 /* drop dead node */
707 node_free(oldtnode);
88bae714
AD
708
709 return tp;
95f60ea3
AD
710}
711
35c6edac 712static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
713{
714 unsigned char slen = tn->pos;
715 unsigned long stride, i;
a52ca62c
AD
716 unsigned char slen_max;
717
718 /* only vector 0 can have a suffix length greater than or equal to
719 * tn->pos + tn->bits, the second highest node will have a suffix
720 * length at most of tn->pos + tn->bits - 1
721 */
722 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
5405afd1
AD
723
724 /* search though the list of children looking for nodes that might
725 * have a suffix greater than the one we currently have. This is
726 * why we start with a stride of 2 since a stride of 1 would
727 * represent the nodes with suffix length equal to tn->pos
728 */
2e1ac88a 729 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 730 struct key_vector *n = get_child(tn, i);
5405afd1
AD
731
732 if (!n || (n->slen <= slen))
733 continue;
734
735 /* update stride and slen based on new value */
736 stride <<= (n->slen - slen);
737 slen = n->slen;
738 i &= ~(stride - 1);
739
a52ca62c
AD
740 /* stop searching if we have hit the maximum possible value */
741 if (slen >= slen_max)
5405afd1
AD
742 break;
743 }
744
745 tn->slen = slen;
746
747 return slen;
748}
749
f05a4819
AD
750/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
751 * the Helsinki University of Technology and Matti Tikkanen of Nokia
752 * Telecommunications, page 6:
753 * "A node is doubled if the ratio of non-empty children to all
754 * children in the *doubled* node is at least 'high'."
755 *
756 * 'high' in this instance is the variable 'inflate_threshold'. It
757 * is expressed as a percentage, so we multiply it with
2e1ac88a 758 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
759 * child array will be doubled by inflate()) and multiplying
760 * the left-hand side by 100 (to handle the percentage thing) we
761 * multiply the left-hand side by 50.
762 *
2e1ac88a 763 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
764 * - tn->empty_children is of course the number of non-null children
765 * in the current node. tn->full_children is the number of "full"
766 * children, that is non-null tnodes with a skip value of 0.
767 * All of those will be doubled in the resulting inflated tnode, so
768 * we just count them one extra time here.
769 *
770 * A clearer way to write this would be:
771 *
772 * to_be_doubled = tn->full_children;
2e1ac88a 773 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
774 * tn->full_children;
775 *
2e1ac88a 776 * new_child_length = child_length(tn) * 2;
f05a4819
AD
777 *
778 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
779 * new_child_length;
780 * if (new_fill_factor >= inflate_threshold)
781 *
782 * ...and so on, tho it would mess up the while () loop.
783 *
784 * anyway,
785 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
786 * inflate_threshold
787 *
788 * avoid a division:
789 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
790 * inflate_threshold * new_child_length
791 *
792 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 793 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
794 * tn->full_children) >= inflate_threshold * new_child_length
795 *
796 * expand new_child_length:
2e1ac88a 797 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 798 * tn->full_children) >=
2e1ac88a 799 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
800 *
801 * shorten again:
2e1ac88a 802 * 50 * (tn->full_children + child_length(tn) -
f05a4819 803 * tn->empty_children) >= inflate_threshold *
2e1ac88a 804 * child_length(tn)
f05a4819
AD
805 *
806 */
35c6edac 807static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 808{
2e1ac88a 809 unsigned long used = child_length(tn);
f05a4819
AD
810 unsigned long threshold = used;
811
812 /* Keep root node larger */
88bae714 813 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
6e22d174
AD
814 used -= tn_info(tn)->empty_children;
815 used += tn_info(tn)->full_children;
f05a4819 816
95f60ea3
AD
817 /* if bits == KEYLENGTH then pos = 0, and will fail below */
818
819 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
820}
821
35c6edac 822static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 823{
2e1ac88a 824 unsigned long used = child_length(tn);
f05a4819
AD
825 unsigned long threshold = used;
826
827 /* Keep root node larger */
88bae714 828 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
6e22d174 829 used -= tn_info(tn)->empty_children;
f05a4819 830
95f60ea3
AD
831 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
832
833 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
834}
835
35c6edac 836static inline bool should_collapse(struct key_vector *tn)
95f60ea3 837{
2e1ac88a 838 unsigned long used = child_length(tn);
95f60ea3 839
6e22d174 840 used -= tn_info(tn)->empty_children;
95f60ea3
AD
841
842 /* account for bits == KEYLENGTH case */
6e22d174 843 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
95f60ea3
AD
844 used -= KEY_MAX;
845
846 /* One child or none, time to drop us from the trie */
847 return used < 2;
f05a4819
AD
848}
849
cf3637bb 850#define MAX_WORK 10
88bae714 851static struct key_vector *resize(struct trie *t, struct key_vector *tn)
cf3637bb 852{
8d8e810c
AD
853#ifdef CONFIG_IP_FIB_TRIE_STATS
854 struct trie_use_stats __percpu *stats = t->stats;
855#endif
35c6edac 856 struct key_vector *tp = node_parent(tn);
88bae714 857 unsigned long cindex = get_index(tn->key, tp);
a80e89d4 858 int max_work = MAX_WORK;
cf3637bb 859
cf3637bb
AD
860 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
861 tn, inflate_threshold, halve_threshold);
862
ff181ed8
AD
863 /* track the tnode via the pointer from the parent instead of
864 * doing it ourselves. This way we can let RCU fully do its
865 * thing without us interfering
866 */
88bae714 867 BUG_ON(tn != get_child(tp, cindex));
ff181ed8 868
f05a4819
AD
869 /* Double as long as the resulting node has a number of
870 * nonempty nodes that are above the threshold.
cf3637bb 871 */
b6f15f82 872 while (should_inflate(tp, tn) && max_work) {
88bae714
AD
873 tp = inflate(t, tn);
874 if (!tp) {
cf3637bb 875#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 876 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
877#endif
878 break;
879 }
ff181ed8 880
b6f15f82 881 max_work--;
88bae714 882 tn = get_child(tp, cindex);
cf3637bb
AD
883 }
884
b6f15f82
AD
885 /* update parent in case inflate failed */
886 tp = node_parent(tn);
887
cf3637bb
AD
888 /* Return if at least one inflate is run */
889 if (max_work != MAX_WORK)
b6f15f82 890 return tp;
cf3637bb 891
f05a4819 892 /* Halve as long as the number of empty children in this
cf3637bb
AD
893 * node is above threshold.
894 */
b6f15f82 895 while (should_halve(tp, tn) && max_work) {
88bae714
AD
896 tp = halve(t, tn);
897 if (!tp) {
cf3637bb 898#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 899 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
900#endif
901 break;
902 }
cf3637bb 903
b6f15f82 904 max_work--;
88bae714 905 tn = get_child(tp, cindex);
ff181ed8 906 }
cf3637bb
AD
907
908 /* Only one child remains */
88bae714
AD
909 if (should_collapse(tn))
910 return collapse(t, tn);
911
b6f15f82 912 /* update parent in case halve failed */
a52ca62c 913 return node_parent(tn);
cf3637bb
AD
914}
915
1a239173 916static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
5405afd1 917{
1a239173
AD
918 unsigned char node_slen = tn->slen;
919
920 while ((node_slen > tn->pos) && (node_slen > slen)) {
921 slen = update_suffix(tn);
922 if (node_slen == slen)
5405afd1 923 break;
1a239173
AD
924
925 tn = node_parent(tn);
926 node_slen = tn->slen;
5405afd1
AD
927 }
928}
929
1a239173 930static void node_push_suffix(struct key_vector *tn, unsigned char slen)
19baf839 931{
1a239173
AD
932 while (tn->slen < slen) {
933 tn->slen = slen;
5405afd1
AD
934 tn = node_parent(tn);
935 }
936}
937
2373ce1c 938/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
939static struct key_vector *fib_find_node(struct trie *t,
940 struct key_vector **tp, u32 key)
19baf839 941{
88bae714
AD
942 struct key_vector *pn, *n = t->kv;
943 unsigned long index = 0;
944
945 do {
946 pn = n;
947 n = get_child_rcu(n, index);
948
949 if (!n)
950 break;
939afb06 951
88bae714 952 index = get_cindex(key, n);
939afb06
AD
953
954 /* This bit of code is a bit tricky but it combines multiple
955 * checks into a single check. The prefix consists of the
956 * prefix plus zeros for the bits in the cindex. The index
957 * is the difference between the key and this value. From
958 * this we can actually derive several pieces of data.
d4a975e8 959 * if (index >= (1ul << bits))
939afb06 960 * we have a mismatch in skip bits and failed
b3832117
AD
961 * else
962 * we know the value is cindex
d4a975e8
AD
963 *
964 * This check is safe even if bits == KEYLENGTH due to the
965 * fact that we can only allocate a node with 32 bits if a
966 * long is greater than 32 bits.
939afb06 967 */
d4a975e8
AD
968 if (index >= (1ul << n->bits)) {
969 n = NULL;
970 break;
971 }
939afb06 972
88bae714
AD
973 /* keep searching until we find a perfect match leaf or NULL */
974 } while (IS_TNODE(n));
91b9a277 975
35c6edac 976 *tp = pn;
d4a975e8 977
939afb06 978 return n;
19baf839
RO
979}
980
02525368
AD
981/* Return the first fib alias matching TOS with
982 * priority less than or equal to PRIO.
983 */
79e5ad2c 984static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
0b65bd97 985 u8 tos, u32 prio, u32 tb_id)
02525368
AD
986{
987 struct fib_alias *fa;
988
989 if (!fah)
990 return NULL;
991
56315f9e 992 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
993 if (fa->fa_slen < slen)
994 continue;
995 if (fa->fa_slen != slen)
996 break;
0b65bd97
AD
997 if (fa->tb_id > tb_id)
998 continue;
999 if (fa->tb_id != tb_id)
1000 break;
02525368
AD
1001 if (fa->fa_tos > tos)
1002 continue;
1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004 return fa;
1005 }
1006
1007 return NULL;
1008}
1009
35c6edac 1010static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 1011{
88bae714
AD
1012 while (!IS_TRIE(tn))
1013 tn = resize(t, tn);
19baf839
RO
1014}
1015
35c6edac 1016static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 1017 struct fib_alias *new, t_key key)
19baf839 1018{
35c6edac 1019 struct key_vector *n, *l;
19baf839 1020
d5d6487c 1021 l = leaf_new(key, new);
79e5ad2c 1022 if (!l)
8d8e810c 1023 goto noleaf;
d5d6487c
AD
1024
1025 /* retrieve child from parent node */
88bae714 1026 n = get_child(tp, get_index(key, tp));
19baf839 1027
836a0123
AD
1028 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1029 *
1030 * Add a new tnode here
1031 * first tnode need some special handling
1032 * leaves us in position for handling as case 3
1033 */
1034 if (n) {
35c6edac 1035 struct key_vector *tn;
19baf839 1036
e9b44019 1037 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1038 if (!tn)
1039 goto notnode;
91b9a277 1040
836a0123
AD
1041 /* initialize routes out of node */
1042 NODE_INIT_PARENT(tn, tp);
1043 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1044
836a0123 1045 /* start adding routes into the node */
88bae714 1046 put_child_root(tp, key, tn);
836a0123 1047 node_set_parent(n, tn);
e962f302 1048
836a0123 1049 /* parent now has a NULL spot where the leaf can go */
e962f302 1050 tp = tn;
19baf839 1051 }
91b9a277 1052
836a0123 1053 /* Case 3: n is NULL, and will just insert a new leaf */
a52ca62c 1054 node_push_suffix(tp, new->fa_slen);
d5d6487c 1055 NODE_INIT_PARENT(l, tp);
88bae714 1056 put_child_root(tp, key, l);
d5d6487c
AD
1057 trie_rebalance(t, tp);
1058
1059 return 0;
8d8e810c
AD
1060notnode:
1061 node_free(l);
1062noleaf:
1063 return -ENOMEM;
d5d6487c
AD
1064}
1065
35c6edac
AD
1066static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1067 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1068 struct fib_alias *fa, t_key key)
1069{
1070 if (!l)
1071 return fib_insert_node(t, tp, new, key);
1072
1073 if (fa) {
1074 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1075 } else {
d5d6487c
AD
1076 struct fib_alias *last;
1077
1078 hlist_for_each_entry(last, &l->leaf, fa_list) {
1079 if (new->fa_slen < last->fa_slen)
1080 break;
0b65bd97
AD
1081 if ((new->fa_slen == last->fa_slen) &&
1082 (new->tb_id > last->tb_id))
1083 break;
d5d6487c
AD
1084 fa = last;
1085 }
1086
1087 if (fa)
1088 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1089 else
1090 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1091 }
2373ce1c 1092
d5d6487c
AD
1093 /* if we added to the tail node then we need to update slen */
1094 if (l->slen < new->fa_slen) {
1095 l->slen = new->fa_slen;
1a239173 1096 node_push_suffix(tp, new->fa_slen);
d5d6487c
AD
1097 }
1098
1099 return 0;
19baf839
RO
1100}
1101
d5d6487c 1102/* Caller must hold RTNL. */
b90eb754
JP
1103int fib_table_insert(struct net *net, struct fib_table *tb,
1104 struct fib_config *cfg)
19baf839 1105{
2f3a5272 1106 enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
d4a975e8 1107 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1108 struct fib_alias *fa, *new_fa;
35c6edac 1109 struct key_vector *l, *tp;
b93e1fa7 1110 u16 nlflags = NLM_F_EXCL;
19baf839 1111 struct fib_info *fi;
79e5ad2c
AD
1112 u8 plen = cfg->fc_dst_len;
1113 u8 slen = KEYLENGTH - plen;
4e902c57 1114 u8 tos = cfg->fc_tos;
d4a975e8 1115 u32 key;
19baf839 1116 int err;
19baf839 1117
5786ec60 1118 if (plen > KEYLENGTH)
19baf839
RO
1119 return -EINVAL;
1120
4e902c57 1121 key = ntohl(cfg->fc_dst);
19baf839 1122
2dfe55b4 1123 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1124
d4a975e8 1125 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1126 return -EINVAL;
1127
4e902c57
TG
1128 fi = fib_create_info(cfg);
1129 if (IS_ERR(fi)) {
1130 err = PTR_ERR(fi);
19baf839 1131 goto err;
4e902c57 1132 }
19baf839 1133
d4a975e8 1134 l = fib_find_node(t, &tp, key);
0b65bd97
AD
1135 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1136 tb->tb_id) : NULL;
19baf839
RO
1137
1138 /* Now fa, if non-NULL, points to the first fib alias
1139 * with the same keys [prefix,tos,priority], if such key already
1140 * exists or to the node before which we will insert new one.
1141 *
1142 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1143 * insert to the tail of the section matching the suffix length
1144 * of the new alias.
19baf839
RO
1145 */
1146
936f6f8e
JA
1147 if (fa && fa->fa_tos == tos &&
1148 fa->fa_info->fib_priority == fi->fib_priority) {
1149 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1150
1151 err = -EEXIST;
4e902c57 1152 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1153 goto out;
1154
b93e1fa7
GN
1155 nlflags &= ~NLM_F_EXCL;
1156
936f6f8e
JA
1157 /* We have 2 goals:
1158 * 1. Find exact match for type, scope, fib_info to avoid
1159 * duplicate routes
1160 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1161 */
1162 fa_match = NULL;
1163 fa_first = fa;
56315f9e 1164 hlist_for_each_entry_from(fa, fa_list) {
0b65bd97
AD
1165 if ((fa->fa_slen != slen) ||
1166 (fa->tb_id != tb->tb_id) ||
1167 (fa->fa_tos != tos))
936f6f8e
JA
1168 break;
1169 if (fa->fa_info->fib_priority != fi->fib_priority)
1170 break;
1171 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1172 fa->fa_info == fi) {
1173 fa_match = fa;
1174 break;
1175 }
1176 }
1177
4e902c57 1178 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1179 struct fib_info *fi_drop;
1180 u8 state;
1181
b93e1fa7 1182 nlflags |= NLM_F_REPLACE;
936f6f8e
JA
1183 fa = fa_first;
1184 if (fa_match) {
1185 if (fa == fa_match)
1186 err = 0;
6725033f 1187 goto out;
936f6f8e 1188 }
2373ce1c 1189 err = -ENOBUFS;
e94b1766 1190 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1191 if (!new_fa)
2373ce1c 1192 goto out;
19baf839
RO
1193
1194 fi_drop = fa->fa_info;
2373ce1c
RO
1195 new_fa->fa_tos = fa->fa_tos;
1196 new_fa->fa_info = fi;
4e902c57 1197 new_fa->fa_type = cfg->fc_type;
19baf839 1198 state = fa->fa_state;
936f6f8e 1199 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1200 new_fa->fa_slen = fa->fa_slen;
d4e64c29 1201 new_fa->tb_id = tb->tb_id;
2392debc 1202 new_fa->fa_default = -1;
19baf839 1203
2f3a5272 1204 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
5b7d616d
IS
1205 key, plen, fi,
1206 new_fa->fa_tos, cfg->fc_type,
2f3a5272 1207 tb->tb_id);
5b7d616d
IS
1208 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1209 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1210
56315f9e 1211 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1212
2373ce1c 1213 alias_free_mem_rcu(fa);
19baf839
RO
1214
1215 fib_release_info(fi_drop);
1216 if (state & FA_S_ACCESSED)
4ccfe6d4 1217 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b90eb754 1218
91b9a277 1219 goto succeeded;
19baf839
RO
1220 }
1221 /* Error if we find a perfect match which
1222 * uses the same scope, type, and nexthop
1223 * information.
1224 */
936f6f8e
JA
1225 if (fa_match)
1226 goto out;
a07f5f50 1227
2f3a5272
IS
1228 if (cfg->fc_nlflags & NLM_F_APPEND) {
1229 event = FIB_EVENT_ENTRY_APPEND;
b93e1fa7 1230 nlflags |= NLM_F_APPEND;
2f3a5272 1231 } else {
936f6f8e 1232 fa = fa_first;
2f3a5272 1233 }
19baf839
RO
1234 }
1235 err = -ENOENT;
4e902c57 1236 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1237 goto out;
1238
b93e1fa7 1239 nlflags |= NLM_F_CREATE;
19baf839 1240 err = -ENOBUFS;
e94b1766 1241 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1242 if (!new_fa)
19baf839
RO
1243 goto out;
1244
1245 new_fa->fa_info = fi;
1246 new_fa->fa_tos = tos;
4e902c57 1247 new_fa->fa_type = cfg->fc_type;
19baf839 1248 new_fa->fa_state = 0;
79e5ad2c 1249 new_fa->fa_slen = slen;
0ddcf43d 1250 new_fa->tb_id = tb->tb_id;
2392debc 1251 new_fa->fa_default = -1;
19baf839 1252
9b6ebad5 1253 /* Insert new entry to the list. */
d5d6487c
AD
1254 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1255 if (err)
347e3b28 1256 goto out_free_new_fa;
19baf839 1257
21d8c49e
DM
1258 if (!plen)
1259 tb->tb_num_default++;
1260
4ccfe6d4 1261 rt_cache_flush(cfg->fc_nlinfo.nl_net);
2f3a5272
IS
1262 call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type,
1263 tb->tb_id);
0ddcf43d 1264 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
a2bb6d7d 1265 &cfg->fc_nlinfo, nlflags);
19baf839
RO
1266succeeded:
1267 return 0;
f835e471
RO
1268
1269out_free_new_fa:
1270 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1271out:
1272 fib_release_info(fi);
91b9a277 1273err:
19baf839
RO
1274 return err;
1275}
1276
35c6edac 1277static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1278{
1279 t_key prefix = n->key;
1280
1281 return (key ^ prefix) & (prefix | -prefix);
1282}
1283
345e9b54 1284/* should be called with rcu_read_lock */
22bd5b9b 1285int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1286 struct fib_result *res, int fib_flags)
19baf839 1287{
0ddcf43d 1288 struct trie *t = (struct trie *) tb->tb_data;
8274a97a
AD
1289#ifdef CONFIG_IP_FIB_TRIE_STATS
1290 struct trie_use_stats __percpu *stats = t->stats;
1291#endif
9f9e636d 1292 const t_key key = ntohl(flp->daddr);
35c6edac 1293 struct key_vector *n, *pn;
79e5ad2c 1294 struct fib_alias *fa;
71e8b67d 1295 unsigned long index;
9f9e636d 1296 t_key cindex;
91b9a277 1297
f6d3c192
DA
1298 trace_fib_table_lookup(tb->tb_id, flp);
1299
88bae714
AD
1300 pn = t->kv;
1301 cindex = 0;
1302
1303 n = get_child_rcu(pn, cindex);
c877efb2 1304 if (!n)
345e9b54 1305 return -EAGAIN;
19baf839
RO
1306
1307#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1308 this_cpu_inc(stats->gets);
19baf839
RO
1309#endif
1310
9f9e636d
AD
1311 /* Step 1: Travel to the longest prefix match in the trie */
1312 for (;;) {
88bae714 1313 index = get_cindex(key, n);
9f9e636d
AD
1314
1315 /* This bit of code is a bit tricky but it combines multiple
1316 * checks into a single check. The prefix consists of the
1317 * prefix plus zeros for the "bits" in the prefix. The index
1318 * is the difference between the key and this value. From
1319 * this we can actually derive several pieces of data.
71e8b67d 1320 * if (index >= (1ul << bits))
9f9e636d 1321 * we have a mismatch in skip bits and failed
b3832117
AD
1322 * else
1323 * we know the value is cindex
71e8b67d
AD
1324 *
1325 * This check is safe even if bits == KEYLENGTH due to the
1326 * fact that we can only allocate a node with 32 bits if a
1327 * long is greater than 32 bits.
9f9e636d 1328 */
71e8b67d 1329 if (index >= (1ul << n->bits))
9f9e636d 1330 break;
19baf839 1331
9f9e636d
AD
1332 /* we have found a leaf. Prefixes have already been compared */
1333 if (IS_LEAF(n))
a07f5f50 1334 goto found;
19baf839 1335
9f9e636d
AD
1336 /* only record pn and cindex if we are going to be chopping
1337 * bits later. Otherwise we are just wasting cycles.
91b9a277 1338 */
5405afd1 1339 if (n->slen > n->pos) {
9f9e636d
AD
1340 pn = n;
1341 cindex = index;
91b9a277 1342 }
19baf839 1343
754baf8d 1344 n = get_child_rcu(n, index);
9f9e636d
AD
1345 if (unlikely(!n))
1346 goto backtrace;
1347 }
19baf839 1348
9f9e636d
AD
1349 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1350 for (;;) {
1351 /* record the pointer where our next node pointer is stored */
35c6edac 1352 struct key_vector __rcu **cptr = n->tnode;
19baf839 1353
9f9e636d
AD
1354 /* This test verifies that none of the bits that differ
1355 * between the key and the prefix exist in the region of
1356 * the lsb and higher in the prefix.
91b9a277 1357 */
5405afd1 1358 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1359 goto backtrace;
91b9a277 1360
9f9e636d
AD
1361 /* exit out and process leaf */
1362 if (unlikely(IS_LEAF(n)))
1363 break;
91b9a277 1364
9f9e636d
AD
1365 /* Don't bother recording parent info. Since we are in
1366 * prefix match mode we will have to come back to wherever
1367 * we started this traversal anyway
91b9a277 1368 */
91b9a277 1369
9f9e636d 1370 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1371backtrace:
19baf839 1372#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1373 if (!n)
1374 this_cpu_inc(stats->null_node_hit);
19baf839 1375#endif
9f9e636d
AD
1376 /* If we are at cindex 0 there are no more bits for
1377 * us to strip at this level so we must ascend back
1378 * up one level to see if there are any more bits to
1379 * be stripped there.
1380 */
1381 while (!cindex) {
1382 t_key pkey = pn->key;
1383
88bae714
AD
1384 /* If we don't have a parent then there is
1385 * nothing for us to do as we do not have any
1386 * further nodes to parse.
1387 */
1388 if (IS_TRIE(pn))
345e9b54 1389 return -EAGAIN;
9f9e636d
AD
1390#ifdef CONFIG_IP_FIB_TRIE_STATS
1391 this_cpu_inc(stats->backtrack);
1392#endif
1393 /* Get Child's index */
88bae714 1394 pn = node_parent_rcu(pn);
9f9e636d
AD
1395 cindex = get_index(pkey, pn);
1396 }
1397
1398 /* strip the least significant bit from the cindex */
1399 cindex &= cindex - 1;
1400
1401 /* grab pointer for next child node */
41b489fd 1402 cptr = &pn->tnode[cindex];
c877efb2 1403 }
19baf839 1404 }
9f9e636d 1405
19baf839 1406found:
71e8b67d
AD
1407 /* this line carries forward the xor from earlier in the function */
1408 index = key ^ n->key;
1409
9f9e636d 1410 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1411 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1412 struct fib_info *fi = fa->fa_info;
1413 int nhsel, err;
345e9b54 1414
a5829f53
AD
1415 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1416 if (index >= (1ul << fa->fa_slen))
1417 continue;
1418 }
79e5ad2c
AD
1419 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1420 continue;
1421 if (fi->fib_dead)
1422 continue;
1423 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1424 continue;
1425 fib_alias_accessed(fa);
1426 err = fib_props[fa->fa_type].error;
1427 if (unlikely(err < 0)) {
345e9b54 1428#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1429 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1430#endif
79e5ad2c
AD
1431 return err;
1432 }
1433 if (fi->fib_flags & RTNH_F_DEAD)
1434 continue;
1435 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1436 const struct fib_nh *nh = &fi->fib_nh[nhsel];
0eeb075f 1437 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
79e5ad2c
AD
1438
1439 if (nh->nh_flags & RTNH_F_DEAD)
1440 continue;
0eeb075f
AG
1441 if (in_dev &&
1442 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1443 nh->nh_flags & RTNH_F_LINKDOWN &&
1444 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1445 continue;
58189ca7 1446 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
613d09b3
DA
1447 if (flp->flowi4_oif &&
1448 flp->flowi4_oif != nh->nh_oif)
1449 continue;
1450 }
79e5ad2c
AD
1451
1452 if (!(fib_flags & FIB_LOOKUP_NOREF))
1453 atomic_inc(&fi->fib_clntref);
1454
1455 res->prefixlen = KEYLENGTH - fa->fa_slen;
1456 res->nh_sel = nhsel;
1457 res->type = fa->fa_type;
1458 res->scope = fi->fib_scope;
1459 res->fi = fi;
1460 res->table = tb;
1461 res->fa_head = &n->leaf;
345e9b54 1462#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1463 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1464#endif
f6d3c192
DA
1465 trace_fib_table_lookup_nh(nh);
1466
79e5ad2c 1467 return err;
345e9b54 1468 }
9b6ebad5 1469 }
345e9b54 1470#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1471 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1472#endif
345e9b54 1473 goto backtrace;
19baf839 1474}
6fc01438 1475EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1476
35c6edac
AD
1477static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1478 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1479{
1480 /* record the location of the previous list_info entry */
1481 struct hlist_node **pprev = old->fa_list.pprev;
1482 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1483
1484 /* remove the fib_alias from the list */
1485 hlist_del_rcu(&old->fa_list);
1486
1487 /* if we emptied the list this leaf will be freed and we can sort
1488 * out parent suffix lengths as a part of trie_rebalance
1489 */
1490 if (hlist_empty(&l->leaf)) {
a52ca62c
AD
1491 if (tp->slen == l->slen)
1492 node_pull_suffix(tp, tp->pos);
88bae714 1493 put_child_root(tp, l->key, NULL);
d5d6487c
AD
1494 node_free(l);
1495 trie_rebalance(t, tp);
1496 return;
1497 }
1498
1499 /* only access fa if it is pointing at the last valid hlist_node */
1500 if (*pprev)
1501 return;
1502
1503 /* update the trie with the latest suffix length */
1504 l->slen = fa->fa_slen;
1a239173 1505 node_pull_suffix(tp, fa->fa_slen);
d5d6487c
AD
1506}
1507
1508/* Caller must hold RTNL. */
b90eb754
JP
1509int fib_table_delete(struct net *net, struct fib_table *tb,
1510 struct fib_config *cfg)
19baf839
RO
1511{
1512 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1513 struct fib_alias *fa, *fa_to_delete;
35c6edac 1514 struct key_vector *l, *tp;
79e5ad2c 1515 u8 plen = cfg->fc_dst_len;
79e5ad2c 1516 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1517 u8 tos = cfg->fc_tos;
1518 u32 key;
91b9a277 1519
79e5ad2c 1520 if (plen > KEYLENGTH)
19baf839
RO
1521 return -EINVAL;
1522
4e902c57 1523 key = ntohl(cfg->fc_dst);
19baf839 1524
d4a975e8 1525 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1526 return -EINVAL;
1527
d4a975e8 1528 l = fib_find_node(t, &tp, key);
c877efb2 1529 if (!l)
19baf839
RO
1530 return -ESRCH;
1531
0b65bd97 1532 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
19baf839
RO
1533 if (!fa)
1534 return -ESRCH;
1535
0c7770c7 1536 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1537
1538 fa_to_delete = NULL;
56315f9e 1539 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1540 struct fib_info *fi = fa->fa_info;
1541
0b65bd97
AD
1542 if ((fa->fa_slen != slen) ||
1543 (fa->tb_id != tb->tb_id) ||
1544 (fa->fa_tos != tos))
19baf839
RO
1545 break;
1546
4e902c57
TG
1547 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1548 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1549 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1550 (!cfg->fc_prefsrc ||
1551 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1552 (!cfg->fc_protocol ||
1553 fi->fib_protocol == cfg->fc_protocol) &&
1554 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1555 fa_to_delete = fa;
1556 break;
1557 }
1558 }
1559
91b9a277
OJ
1560 if (!fa_to_delete)
1561 return -ESRCH;
19baf839 1562
b90eb754 1563 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
42d5aa76 1564 fa_to_delete->fa_info, tos,
2f3a5272 1565 fa_to_delete->fa_type, tb->tb_id);
d5d6487c 1566 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1567 &cfg->fc_nlinfo, 0);
91b9a277 1568
21d8c49e
DM
1569 if (!plen)
1570 tb->tb_num_default--;
1571
d5d6487c 1572 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1573
d5d6487c 1574 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1575 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1576
d5d6487c
AD
1577 fib_release_info(fa_to_delete->fa_info);
1578 alias_free_mem_rcu(fa_to_delete);
91b9a277 1579 return 0;
19baf839
RO
1580}
1581
8be33e95 1582/* Scan for the next leaf starting at the provided key value */
35c6edac 1583static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1584{
35c6edac 1585 struct key_vector *pn, *n = *tn;
8be33e95 1586 unsigned long cindex;
82cfbb00 1587
8be33e95 1588 /* this loop is meant to try and find the key in the trie */
88bae714 1589 do {
8be33e95
AD
1590 /* record parent and next child index */
1591 pn = n;
c2229fe1 1592 cindex = (key > pn->key) ? get_index(key, pn) : 0;
88bae714
AD
1593
1594 if (cindex >> pn->bits)
1595 break;
82cfbb00 1596
8be33e95 1597 /* descend into the next child */
754baf8d 1598 n = get_child_rcu(pn, cindex++);
88bae714
AD
1599 if (!n)
1600 break;
1601
1602 /* guarantee forward progress on the keys */
1603 if (IS_LEAF(n) && (n->key >= key))
1604 goto found;
1605 } while (IS_TNODE(n));
82cfbb00 1606
8be33e95 1607 /* this loop will search for the next leaf with a greater key */
88bae714 1608 while (!IS_TRIE(pn)) {
8be33e95
AD
1609 /* if we exhausted the parent node we will need to climb */
1610 if (cindex >= (1ul << pn->bits)) {
1611 t_key pkey = pn->key;
82cfbb00 1612
8be33e95 1613 pn = node_parent_rcu(pn);
8be33e95
AD
1614 cindex = get_index(pkey, pn) + 1;
1615 continue;
1616 }
82cfbb00 1617
8be33e95 1618 /* grab the next available node */
754baf8d 1619 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1620 if (!n)
1621 continue;
19baf839 1622
8be33e95
AD
1623 /* no need to compare keys since we bumped the index */
1624 if (IS_LEAF(n))
1625 goto found;
71d67e66 1626
8be33e95
AD
1627 /* Rescan start scanning in new node */
1628 pn = n;
1629 cindex = 0;
1630 }
ec28cf73 1631
8be33e95
AD
1632 *tn = pn;
1633 return NULL; /* Root of trie */
1634found:
1635 /* if we are at the limit for keys just return NULL for the tnode */
88bae714 1636 *tn = pn;
8be33e95 1637 return n;
71d67e66
SH
1638}
1639
0ddcf43d
AD
1640static void fib_trie_free(struct fib_table *tb)
1641{
1642 struct trie *t = (struct trie *)tb->tb_data;
1643 struct key_vector *pn = t->kv;
1644 unsigned long cindex = 1;
1645 struct hlist_node *tmp;
1646 struct fib_alias *fa;
1647
1648 /* walk trie in reverse order and free everything */
1649 for (;;) {
1650 struct key_vector *n;
1651
1652 if (!(cindex--)) {
1653 t_key pkey = pn->key;
1654
1655 if (IS_TRIE(pn))
1656 break;
1657
1658 n = pn;
1659 pn = node_parent(pn);
1660
1661 /* drop emptied tnode */
1662 put_child_root(pn, n->key, NULL);
1663 node_free(n);
1664
1665 cindex = get_index(pkey, pn);
1666
1667 continue;
1668 }
1669
1670 /* grab the next available node */
1671 n = get_child(pn, cindex);
1672 if (!n)
1673 continue;
1674
1675 if (IS_TNODE(n)) {
1676 /* record pn and cindex for leaf walking */
1677 pn = n;
1678 cindex = 1ul << n->bits;
1679
1680 continue;
1681 }
1682
1683 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1684 hlist_del_rcu(&fa->fa_list);
1685 alias_free_mem_rcu(fa);
1686 }
1687
1688 put_child_root(pn, n->key, NULL);
1689 node_free(n);
1690 }
1691
1692#ifdef CONFIG_IP_FIB_TRIE_STATS
1693 free_percpu(t->stats);
1694#endif
1695 kfree(tb);
1696}
1697
1698struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1699{
1700 struct trie *ot = (struct trie *)oldtb->tb_data;
1701 struct key_vector *l, *tp = ot->kv;
1702 struct fib_table *local_tb;
1703 struct fib_alias *fa;
1704 struct trie *lt;
1705 t_key key = 0;
1706
1707 if (oldtb->tb_data == oldtb->__data)
1708 return oldtb;
1709
1710 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1711 if (!local_tb)
1712 return NULL;
1713
1714 lt = (struct trie *)local_tb->tb_data;
1715
1716 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1717 struct key_vector *local_l = NULL, *local_tp;
1718
1719 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1720 struct fib_alias *new_fa;
1721
1722 if (local_tb->tb_id != fa->tb_id)
1723 continue;
1724
1725 /* clone fa for new local table */
1726 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1727 if (!new_fa)
1728 goto out;
1729
1730 memcpy(new_fa, fa, sizeof(*fa));
1731
1732 /* insert clone into table */
1733 if (!local_l)
1734 local_l = fib_find_node(lt, &local_tp, l->key);
1735
1736 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
3114cdfe
AD
1737 NULL, l->key)) {
1738 kmem_cache_free(fn_alias_kmem, new_fa);
0ddcf43d 1739 goto out;
3114cdfe 1740 }
0ddcf43d
AD
1741 }
1742
1743 /* stop loop if key wrapped back to 0 */
1744 key = l->key + 1;
1745 if (key < l->key)
1746 break;
1747 }
1748
1749 return local_tb;
1750out:
1751 fib_trie_free(local_tb);
1752
1753 return NULL;
1754}
1755
3b709334
AD
1756/* Caller must hold RTNL */
1757void fib_table_flush_external(struct fib_table *tb)
1758{
1759 struct trie *t = (struct trie *)tb->tb_data;
1760 struct key_vector *pn = t->kv;
1761 unsigned long cindex = 1;
1762 struct hlist_node *tmp;
1763 struct fib_alias *fa;
1764
1765 /* walk trie in reverse order */
1766 for (;;) {
1767 unsigned char slen = 0;
1768 struct key_vector *n;
1769
1770 if (!(cindex--)) {
1771 t_key pkey = pn->key;
1772
1773 /* cannot resize the trie vector */
1774 if (IS_TRIE(pn))
1775 break;
1776
a52ca62c
AD
1777 /* update the suffix to address pulled leaves */
1778 if (pn->slen > pn->pos)
1779 update_suffix(pn);
1780
3b709334
AD
1781 /* resize completed node */
1782 pn = resize(t, pn);
1783 cindex = get_index(pkey, pn);
1784
1785 continue;
1786 }
1787
1788 /* grab the next available node */
1789 n = get_child(pn, cindex);
1790 if (!n)
1791 continue;
1792
1793 if (IS_TNODE(n)) {
1794 /* record pn and cindex for leaf walking */
1795 pn = n;
1796 cindex = 1ul << n->bits;
1797
1798 continue;
1799 }
1800
1801 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1802 /* if alias was cloned to local then we just
1803 * need to remove the local copy from main
1804 */
1805 if (tb->tb_id != fa->tb_id) {
1806 hlist_del_rcu(&fa->fa_list);
1807 alias_free_mem_rcu(fa);
1808 continue;
1809 }
1810
1811 /* record local slen */
1812 slen = fa->fa_slen;
1813 }
1814
1815 /* update leaf slen */
1816 n->slen = slen;
1817
1818 if (hlist_empty(&n->leaf)) {
1819 put_child_root(pn, n->key, NULL);
1820 node_free(n);
1821 }
1822 }
1823}
1824
8be33e95 1825/* Caller must hold RTNL. */
b90eb754 1826int fib_table_flush(struct net *net, struct fib_table *tb)
19baf839 1827{
7289e6dd 1828 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1829 struct key_vector *pn = t->kv;
1830 unsigned long cindex = 1;
7289e6dd
AD
1831 struct hlist_node *tmp;
1832 struct fib_alias *fa;
82cfbb00 1833 int found = 0;
19baf839 1834
88bae714
AD
1835 /* walk trie in reverse order */
1836 for (;;) {
1837 unsigned char slen = 0;
1838 struct key_vector *n;
19baf839 1839
88bae714
AD
1840 if (!(cindex--)) {
1841 t_key pkey = pn->key;
7289e6dd 1842
88bae714
AD
1843 /* cannot resize the trie vector */
1844 if (IS_TRIE(pn))
1845 break;
7289e6dd 1846
a52ca62c
AD
1847 /* update the suffix to address pulled leaves */
1848 if (pn->slen > pn->pos)
1849 update_suffix(pn);
1850
88bae714
AD
1851 /* resize completed node */
1852 pn = resize(t, pn);
1853 cindex = get_index(pkey, pn);
7289e6dd 1854
88bae714
AD
1855 continue;
1856 }
7289e6dd 1857
88bae714
AD
1858 /* grab the next available node */
1859 n = get_child(pn, cindex);
1860 if (!n)
1861 continue;
7289e6dd 1862
88bae714
AD
1863 if (IS_TNODE(n)) {
1864 /* record pn and cindex for leaf walking */
1865 pn = n;
1866 cindex = 1ul << n->bits;
7289e6dd 1867
88bae714
AD
1868 continue;
1869 }
7289e6dd 1870
88bae714
AD
1871 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1872 struct fib_info *fi = fa->fa_info;
7289e6dd 1873
58e3bdd5
IS
1874 if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
1875 tb->tb_id != fa->tb_id) {
88bae714
AD
1876 slen = fa->fa_slen;
1877 continue;
1878 }
7289e6dd 1879
b90eb754
JP
1880 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1881 n->key,
1882 KEYLENGTH - fa->fa_slen,
1883 fi, fa->fa_tos, fa->fa_type,
2f3a5272 1884 tb->tb_id);
7289e6dd
AD
1885 hlist_del_rcu(&fa->fa_list);
1886 fib_release_info(fa->fa_info);
1887 alias_free_mem_rcu(fa);
1888 found++;
64c62723
AD
1889 }
1890
88bae714
AD
1891 /* update leaf slen */
1892 n->slen = slen;
7289e6dd 1893
88bae714
AD
1894 if (hlist_empty(&n->leaf)) {
1895 put_child_root(pn, n->key, NULL);
1896 node_free(n);
88bae714 1897 }
64c62723 1898 }
19baf839 1899
0c7770c7 1900 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1901 return found;
1902}
1903
c3852ef7 1904static void fib_leaf_notify(struct net *net, struct key_vector *l,
d05f7a7d 1905 struct fib_table *tb, struct notifier_block *nb)
c3852ef7
IS
1906{
1907 struct fib_alias *fa;
1908
1909 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1910 struct fib_info *fi = fa->fa_info;
1911
1912 if (!fi)
1913 continue;
1914
1915 /* local and main table can share the same trie,
1916 * so don't notify twice for the same entry.
1917 */
1918 if (tb->tb_id != fa->tb_id)
1919 continue;
1920
d05f7a7d 1921 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
c3852ef7 1922 KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
2f3a5272 1923 fa->fa_type, fa->tb_id);
c3852ef7
IS
1924 }
1925}
1926
1927static void fib_table_notify(struct net *net, struct fib_table *tb,
d05f7a7d 1928 struct notifier_block *nb)
c3852ef7
IS
1929{
1930 struct trie *t = (struct trie *)tb->tb_data;
1931 struct key_vector *l, *tp = t->kv;
1932 t_key key = 0;
1933
1934 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
d05f7a7d 1935 fib_leaf_notify(net, l, tb, nb);
c3852ef7
IS
1936
1937 key = l->key + 1;
1938 /* stop in case of wrap around */
1939 if (key < l->key)
1940 break;
1941 }
1942}
1943
d05f7a7d 1944void fib_notify(struct net *net, struct notifier_block *nb)
c3852ef7
IS
1945{
1946 unsigned int h;
1947
1948 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1949 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1950 struct fib_table *tb;
1951
1952 hlist_for_each_entry_rcu(tb, head, tb_hlist)
d05f7a7d 1953 fib_table_notify(net, tb, nb);
c3852ef7
IS
1954 }
1955}
1956
a7e53531 1957static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1958{
a7e53531 1959 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1960#ifdef CONFIG_IP_FIB_TRIE_STATS
1961 struct trie *t = (struct trie *)tb->tb_data;
1962
0ddcf43d
AD
1963 if (tb->tb_data == tb->__data)
1964 free_percpu(t->stats);
8274a97a 1965#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1966 kfree(tb);
1967}
1968
a7e53531
AD
1969void fib_free_table(struct fib_table *tb)
1970{
1971 call_rcu(&tb->rcu, __trie_free_rcu);
1972}
1973
35c6edac 1974static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1975 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1976{
79e5ad2c 1977 __be32 xkey = htonl(l->key);
19baf839 1978 struct fib_alias *fa;
79e5ad2c 1979 int i, s_i;
19baf839 1980
79e5ad2c 1981 s_i = cb->args[4];
19baf839
RO
1982 i = 0;
1983
2373ce1c 1984 /* rcu_read_lock is hold by caller */
79e5ad2c 1985 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
f6c5775f
DA
1986 int err;
1987
19baf839
RO
1988 if (i < s_i) {
1989 i++;
1990 continue;
1991 }
19baf839 1992
0ddcf43d
AD
1993 if (tb->tb_id != fa->tb_id) {
1994 i++;
1995 continue;
1996 }
1997
f6c5775f
DA
1998 err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1999 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2000 tb->tb_id, fa->fa_type,
2001 xkey, KEYLENGTH - fa->fa_slen,
2002 fa->fa_tos, fa->fa_info, NLM_F_MULTI);
2003 if (err < 0) {
71d67e66 2004 cb->args[4] = i;
f6c5775f 2005 return err;
19baf839 2006 }
a88ee229 2007 i++;
19baf839 2008 }
a88ee229 2009
71d67e66 2010 cb->args[4] = i;
19baf839
RO
2011 return skb->len;
2012}
2013
a7e53531 2014/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
2015int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2016 struct netlink_callback *cb)
19baf839 2017{
8be33e95 2018 struct trie *t = (struct trie *)tb->tb_data;
88bae714 2019 struct key_vector *l, *tp = t->kv;
d5ce8a0e
SH
2020 /* Dump starting at last key.
2021 * Note: 0.0.0.0/0 (ie default) is first key.
2022 */
8be33e95
AD
2023 int count = cb->args[2];
2024 t_key key = cb->args[3];
a88ee229 2025
8be33e95 2026 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
f6c5775f
DA
2027 int err;
2028
2029 err = fn_trie_dump_leaf(l, tb, skb, cb);
2030 if (err < 0) {
8be33e95
AD
2031 cb->args[3] = key;
2032 cb->args[2] = count;
f6c5775f 2033 return err;
19baf839 2034 }
d5ce8a0e 2035
71d67e66 2036 ++count;
8be33e95
AD
2037 key = l->key + 1;
2038
71d67e66
SH
2039 memset(&cb->args[4], 0,
2040 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
2041
2042 /* stop loop if key wrapped back to 0 */
2043 if (key < l->key)
2044 break;
19baf839 2045 }
8be33e95 2046
8be33e95
AD
2047 cb->args[3] = key;
2048 cb->args[2] = count;
2049
19baf839 2050 return skb->len;
19baf839
RO
2051}
2052
5348ba85 2053void __init fib_trie_init(void)
7f9b8052 2054{
a07f5f50
SH
2055 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2056 sizeof(struct fib_alias),
bc3c8c1e
SH
2057 0, SLAB_PANIC, NULL);
2058
2059 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 2060 LEAF_SIZE,
bc3c8c1e 2061 0, SLAB_PANIC, NULL);
7f9b8052 2062}
19baf839 2063
0ddcf43d 2064struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
19baf839
RO
2065{
2066 struct fib_table *tb;
2067 struct trie *t;
0ddcf43d
AD
2068 size_t sz = sizeof(*tb);
2069
2070 if (!alias)
2071 sz += sizeof(struct trie);
19baf839 2072
0ddcf43d 2073 tb = kzalloc(sz, GFP_KERNEL);
51456b29 2074 if (!tb)
19baf839
RO
2075 return NULL;
2076
2077 tb->tb_id = id;
21d8c49e 2078 tb->tb_num_default = 0;
0ddcf43d
AD
2079 tb->tb_data = (alias ? alias->__data : tb->__data);
2080
2081 if (alias)
2082 return tb;
19baf839
RO
2083
2084 t = (struct trie *) tb->tb_data;
88bae714
AD
2085 t->kv[0].pos = KEYLENGTH;
2086 t->kv[0].slen = KEYLENGTH;
8274a97a
AD
2087#ifdef CONFIG_IP_FIB_TRIE_STATS
2088 t->stats = alloc_percpu(struct trie_use_stats);
2089 if (!t->stats) {
2090 kfree(tb);
2091 tb = NULL;
2092 }
2093#endif
19baf839 2094
19baf839
RO
2095 return tb;
2096}
2097
cb7b593c
SH
2098#ifdef CONFIG_PROC_FS
2099/* Depth first Trie walk iterator */
2100struct fib_trie_iter {
1c340b2f 2101 struct seq_net_private p;
3d3b2d25 2102 struct fib_table *tb;
35c6edac 2103 struct key_vector *tnode;
a034ee3c
ED
2104 unsigned int index;
2105 unsigned int depth;
cb7b593c 2106};
19baf839 2107
35c6edac 2108static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2109{
98293e8d 2110 unsigned long cindex = iter->index;
88bae714
AD
2111 struct key_vector *pn = iter->tnode;
2112 t_key pkey;
6640e697 2113
cb7b593c
SH
2114 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2115 iter->tnode, iter->index, iter->depth);
19baf839 2116
88bae714
AD
2117 while (!IS_TRIE(pn)) {
2118 while (cindex < child_length(pn)) {
2119 struct key_vector *n = get_child_rcu(pn, cindex++);
2120
2121 if (!n)
2122 continue;
2123
cb7b593c 2124 if (IS_LEAF(n)) {
88bae714
AD
2125 iter->tnode = pn;
2126 iter->index = cindex;
cb7b593c
SH
2127 } else {
2128 /* push down one level */
adaf9816 2129 iter->tnode = n;
cb7b593c
SH
2130 iter->index = 0;
2131 ++iter->depth;
2132 }
88bae714 2133
cb7b593c
SH
2134 return n;
2135 }
19baf839 2136
88bae714
AD
2137 /* Current node exhausted, pop back up */
2138 pkey = pn->key;
2139 pn = node_parent_rcu(pn);
2140 cindex = get_index(pkey, pn) + 1;
cb7b593c 2141 --iter->depth;
19baf839 2142 }
cb7b593c 2143
88bae714
AD
2144 /* record root node so further searches know we are done */
2145 iter->tnode = pn;
2146 iter->index = 0;
2147
cb7b593c 2148 return NULL;
19baf839
RO
2149}
2150
35c6edac
AD
2151static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2152 struct trie *t)
19baf839 2153{
f38b24c9 2154 struct key_vector *n, *pn;
5ddf0eb2 2155
132adf54 2156 if (!t)
5ddf0eb2
RO
2157 return NULL;
2158
f38b24c9 2159 pn = t->kv;
88bae714 2160 n = rcu_dereference(pn->tnode[0]);
3d3b2d25 2161 if (!n)
5ddf0eb2 2162 return NULL;
19baf839 2163
3d3b2d25 2164 if (IS_TNODE(n)) {
adaf9816 2165 iter->tnode = n;
3d3b2d25
SH
2166 iter->index = 0;
2167 iter->depth = 1;
2168 } else {
88bae714 2169 iter->tnode = pn;
3d3b2d25
SH
2170 iter->index = 0;
2171 iter->depth = 0;
91b9a277 2172 }
3d3b2d25
SH
2173
2174 return n;
cb7b593c 2175}
91b9a277 2176
cb7b593c
SH
2177static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2178{
35c6edac 2179 struct key_vector *n;
cb7b593c 2180 struct fib_trie_iter iter;
91b9a277 2181
cb7b593c 2182 memset(s, 0, sizeof(*s));
91b9a277 2183
cb7b593c 2184 rcu_read_lock();
3d3b2d25 2185 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2186 if (IS_LEAF(n)) {
79e5ad2c 2187 struct fib_alias *fa;
93672292 2188
cb7b593c
SH
2189 s->leaves++;
2190 s->totdepth += iter.depth;
2191 if (iter.depth > s->maxdepth)
2192 s->maxdepth = iter.depth;
93672292 2193
79e5ad2c 2194 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 2195 ++s->prefixes;
cb7b593c 2196 } else {
cb7b593c 2197 s->tnodes++;
adaf9816
AD
2198 if (n->bits < MAX_STAT_DEPTH)
2199 s->nodesizes[n->bits]++;
6e22d174 2200 s->nullpointers += tn_info(n)->empty_children;
19baf839 2201 }
19baf839 2202 }
2373ce1c 2203 rcu_read_unlock();
19baf839
RO
2204}
2205
cb7b593c
SH
2206/*
2207 * This outputs /proc/net/fib_triestats
2208 */
2209static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2210{
a034ee3c 2211 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2212
cb7b593c
SH
2213 if (stat->leaves)
2214 avdepth = stat->totdepth*100 / stat->leaves;
2215 else
2216 avdepth = 0;
91b9a277 2217
a07f5f50
SH
2218 seq_printf(seq, "\tAver depth: %u.%02d\n",
2219 avdepth / 100, avdepth % 100);
cb7b593c 2220 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2221
cb7b593c 2222 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 2223 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
2224
2225 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 2226 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 2227
187b5188 2228 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 2229 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 2230
06ef921d
RO
2231 max = MAX_STAT_DEPTH;
2232 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2233 max--;
19baf839 2234
cb7b593c 2235 pointers = 0;
f585a991 2236 for (i = 1; i < max; i++)
cb7b593c 2237 if (stat->nodesizes[i] != 0) {
187b5188 2238 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2239 pointers += (1<<i) * stat->nodesizes[i];
2240 }
2241 seq_putc(seq, '\n');
187b5188 2242 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2243
35c6edac 2244 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2245 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2246 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2247}
2373ce1c 2248
cb7b593c 2249#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2250static void trie_show_usage(struct seq_file *seq,
8274a97a 2251 const struct trie_use_stats __percpu *stats)
66a2f7fd 2252{
8274a97a
AD
2253 struct trie_use_stats s = { 0 };
2254 int cpu;
2255
2256 /* loop through all of the CPUs and gather up the stats */
2257 for_each_possible_cpu(cpu) {
2258 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2259
2260 s.gets += pcpu->gets;
2261 s.backtrack += pcpu->backtrack;
2262 s.semantic_match_passed += pcpu->semantic_match_passed;
2263 s.semantic_match_miss += pcpu->semantic_match_miss;
2264 s.null_node_hit += pcpu->null_node_hit;
2265 s.resize_node_skipped += pcpu->resize_node_skipped;
2266 }
2267
66a2f7fd 2268 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2269 seq_printf(seq, "gets = %u\n", s.gets);
2270 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2271 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2272 s.semantic_match_passed);
2273 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2274 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2275 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2276}
66a2f7fd
SH
2277#endif /* CONFIG_IP_FIB_TRIE_STATS */
2278
3d3b2d25 2279static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2280{
3d3b2d25
SH
2281 if (tb->tb_id == RT_TABLE_LOCAL)
2282 seq_puts(seq, "Local:\n");
2283 else if (tb->tb_id == RT_TABLE_MAIN)
2284 seq_puts(seq, "Main:\n");
2285 else
2286 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2287}
19baf839 2288
3d3b2d25 2289
cb7b593c
SH
2290static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2291{
1c340b2f 2292 struct net *net = (struct net *)seq->private;
3d3b2d25 2293 unsigned int h;
877a9bff 2294
d717a9a6 2295 seq_printf(seq,
a07f5f50 2296 "Basic info: size of leaf:"
5b5e0928 2297 " %zd bytes, size of tnode: %zd bytes.\n",
41b489fd 2298 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2299
3d3b2d25
SH
2300 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2301 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2302 struct fib_table *tb;
2303
b67bfe0d 2304 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2305 struct trie *t = (struct trie *) tb->tb_data;
2306 struct trie_stat stat;
877a9bff 2307
3d3b2d25
SH
2308 if (!t)
2309 continue;
2310
2311 fib_table_print(seq, tb);
2312
2313 trie_collect_stats(t, &stat);
2314 trie_show_stats(seq, &stat);
2315#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2316 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2317#endif
2318 }
2319 }
19baf839 2320
cb7b593c 2321 return 0;
19baf839
RO
2322}
2323
cb7b593c 2324static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2325{
de05c557 2326 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2327}
2328
9a32144e 2329static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2330 .owner = THIS_MODULE,
2331 .open = fib_triestat_seq_open,
2332 .read = seq_read,
2333 .llseek = seq_lseek,
b6fcbdb4 2334 .release = single_release_net,
cb7b593c
SH
2335};
2336
35c6edac 2337static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2338{
1218854a
YH
2339 struct fib_trie_iter *iter = seq->private;
2340 struct net *net = seq_file_net(seq);
cb7b593c 2341 loff_t idx = 0;
3d3b2d25 2342 unsigned int h;
cb7b593c 2343
3d3b2d25
SH
2344 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2345 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2346 struct fib_table *tb;
cb7b593c 2347
b67bfe0d 2348 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2349 struct key_vector *n;
3d3b2d25
SH
2350
2351 for (n = fib_trie_get_first(iter,
2352 (struct trie *) tb->tb_data);
2353 n; n = fib_trie_get_next(iter))
2354 if (pos == idx++) {
2355 iter->tb = tb;
2356 return n;
2357 }
2358 }
cb7b593c 2359 }
3d3b2d25 2360
19baf839
RO
2361 return NULL;
2362}
2363
cb7b593c 2364static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2365 __acquires(RCU)
19baf839 2366{
cb7b593c 2367 rcu_read_lock();
1218854a 2368 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2369}
2370
cb7b593c 2371static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2372{
cb7b593c 2373 struct fib_trie_iter *iter = seq->private;
1218854a 2374 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2375 struct fib_table *tb = iter->tb;
2376 struct hlist_node *tb_node;
2377 unsigned int h;
35c6edac 2378 struct key_vector *n;
cb7b593c 2379
19baf839 2380 ++*pos;
3d3b2d25
SH
2381 /* next node in same table */
2382 n = fib_trie_get_next(iter);
2383 if (n)
2384 return n;
19baf839 2385
3d3b2d25
SH
2386 /* walk rest of this hash chain */
2387 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2388 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2389 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2390 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2391 if (n)
2392 goto found;
2393 }
19baf839 2394
3d3b2d25
SH
2395 /* new hash chain */
2396 while (++h < FIB_TABLE_HASHSZ) {
2397 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2398 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2399 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2400 if (n)
2401 goto found;
2402 }
2403 }
cb7b593c 2404 return NULL;
3d3b2d25
SH
2405
2406found:
2407 iter->tb = tb;
2408 return n;
cb7b593c 2409}
19baf839 2410
cb7b593c 2411static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2412 __releases(RCU)
19baf839 2413{
cb7b593c
SH
2414 rcu_read_unlock();
2415}
91b9a277 2416
cb7b593c
SH
2417static void seq_indent(struct seq_file *seq, int n)
2418{
a034ee3c
ED
2419 while (n-- > 0)
2420 seq_puts(seq, " ");
cb7b593c 2421}
19baf839 2422
28d36e37 2423static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2424{
132adf54 2425 switch (s) {
cb7b593c
SH
2426 case RT_SCOPE_UNIVERSE: return "universe";
2427 case RT_SCOPE_SITE: return "site";
2428 case RT_SCOPE_LINK: return "link";
2429 case RT_SCOPE_HOST: return "host";
2430 case RT_SCOPE_NOWHERE: return "nowhere";
2431 default:
28d36e37 2432 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2433 return buf;
2434 }
2435}
19baf839 2436
36cbd3dc 2437static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2438 [RTN_UNSPEC] = "UNSPEC",
2439 [RTN_UNICAST] = "UNICAST",
2440 [RTN_LOCAL] = "LOCAL",
2441 [RTN_BROADCAST] = "BROADCAST",
2442 [RTN_ANYCAST] = "ANYCAST",
2443 [RTN_MULTICAST] = "MULTICAST",
2444 [RTN_BLACKHOLE] = "BLACKHOLE",
2445 [RTN_UNREACHABLE] = "UNREACHABLE",
2446 [RTN_PROHIBIT] = "PROHIBIT",
2447 [RTN_THROW] = "THROW",
2448 [RTN_NAT] = "NAT",
2449 [RTN_XRESOLVE] = "XRESOLVE",
2450};
19baf839 2451
a034ee3c 2452static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2453{
cb7b593c
SH
2454 if (t < __RTN_MAX && rtn_type_names[t])
2455 return rtn_type_names[t];
28d36e37 2456 snprintf(buf, len, "type %u", t);
cb7b593c 2457 return buf;
19baf839
RO
2458}
2459
cb7b593c
SH
2460/* Pretty print the trie */
2461static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2462{
cb7b593c 2463 const struct fib_trie_iter *iter = seq->private;
35c6edac 2464 struct key_vector *n = v;
c877efb2 2465
88bae714 2466 if (IS_TRIE(node_parent_rcu(n)))
3d3b2d25 2467 fib_table_print(seq, iter->tb);
095b8501 2468
cb7b593c 2469 if (IS_TNODE(n)) {
adaf9816 2470 __be32 prf = htonl(n->key);
91b9a277 2471
e9b44019
AD
2472 seq_indent(seq, iter->depth-1);
2473 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2474 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
6e22d174
AD
2475 tn_info(n)->full_children,
2476 tn_info(n)->empty_children);
cb7b593c 2477 } else {
adaf9816 2478 __be32 val = htonl(n->key);
79e5ad2c 2479 struct fib_alias *fa;
cb7b593c
SH
2480
2481 seq_indent(seq, iter->depth);
673d57e7 2482 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2483
79e5ad2c
AD
2484 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2485 char buf1[32], buf2[32];
2486
2487 seq_indent(seq, iter->depth + 1);
2488 seq_printf(seq, " /%zu %s %s",
2489 KEYLENGTH - fa->fa_slen,
2490 rtn_scope(buf1, sizeof(buf1),
2491 fa->fa_info->fib_scope),
2492 rtn_type(buf2, sizeof(buf2),
2493 fa->fa_type));
2494 if (fa->fa_tos)
2495 seq_printf(seq, " tos=%d", fa->fa_tos);
2496 seq_putc(seq, '\n');
cb7b593c 2497 }
19baf839 2498 }
cb7b593c 2499
19baf839
RO
2500 return 0;
2501}
2502
f690808e 2503static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2504 .start = fib_trie_seq_start,
2505 .next = fib_trie_seq_next,
2506 .stop = fib_trie_seq_stop,
2507 .show = fib_trie_seq_show,
19baf839
RO
2508};
2509
cb7b593c 2510static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2511{
1c340b2f
DL
2512 return seq_open_net(inode, file, &fib_trie_seq_ops,
2513 sizeof(struct fib_trie_iter));
19baf839
RO
2514}
2515
9a32144e 2516static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2517 .owner = THIS_MODULE,
2518 .open = fib_trie_seq_open,
2519 .read = seq_read,
2520 .llseek = seq_lseek,
1c340b2f 2521 .release = seq_release_net,
19baf839
RO
2522};
2523
8315f5d8
SH
2524struct fib_route_iter {
2525 struct seq_net_private p;
8be33e95 2526 struct fib_table *main_tb;
35c6edac 2527 struct key_vector *tnode;
8315f5d8
SH
2528 loff_t pos;
2529 t_key key;
2530};
2531
35c6edac
AD
2532static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2533 loff_t pos)
8315f5d8 2534{
35c6edac 2535 struct key_vector *l, **tp = &iter->tnode;
8be33e95 2536 t_key key;
8315f5d8 2537
fd0285a3 2538 /* use cached location of previously found key */
8be33e95 2539 if (iter->pos > 0 && pos >= iter->pos) {
8be33e95
AD
2540 key = iter->key;
2541 } else {
fd0285a3 2542 iter->pos = 1;
8be33e95 2543 key = 0;
8315f5d8
SH
2544 }
2545
fd0285a3
AD
2546 pos -= iter->pos;
2547
2548 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
8be33e95 2549 key = l->key + 1;
8315f5d8 2550 iter->pos++;
8be33e95
AD
2551 l = NULL;
2552
2553 /* handle unlikely case of a key wrap */
2554 if (!key)
2555 break;
8315f5d8
SH
2556 }
2557
2558 if (l)
fd0285a3 2559 iter->key = l->key; /* remember it */
8315f5d8
SH
2560 else
2561 iter->pos = 0; /* forget it */
2562
2563 return l;
2564}
2565
2566static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2567 __acquires(RCU)
2568{
2569 struct fib_route_iter *iter = seq->private;
2570 struct fib_table *tb;
8be33e95 2571 struct trie *t;
8315f5d8
SH
2572
2573 rcu_read_lock();
8be33e95 2574
1218854a 2575 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2576 if (!tb)
2577 return NULL;
2578
8be33e95 2579 iter->main_tb = tb;
94d9f1c5
DF
2580 t = (struct trie *)tb->tb_data;
2581 iter->tnode = t->kv;
8be33e95
AD
2582
2583 if (*pos != 0)
2584 return fib_route_get_idx(iter, *pos);
2585
8be33e95 2586 iter->pos = 0;
fd0285a3 2587 iter->key = KEY_MAX;
8be33e95
AD
2588
2589 return SEQ_START_TOKEN;
8315f5d8
SH
2590}
2591
2592static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2593{
2594 struct fib_route_iter *iter = seq->private;
35c6edac 2595 struct key_vector *l = NULL;
fd0285a3 2596 t_key key = iter->key + 1;
8315f5d8
SH
2597
2598 ++*pos;
8be33e95
AD
2599
2600 /* only allow key of 0 for start of sequence */
2601 if ((v == SEQ_START_TOKEN) || key)
2602 l = leaf_walk_rcu(&iter->tnode, key);
2603
2604 if (l) {
fd0285a3 2605 iter->key = l->key;
8315f5d8 2606 iter->pos++;
8be33e95
AD
2607 } else {
2608 iter->pos = 0;
8315f5d8
SH
2609 }
2610
8315f5d8
SH
2611 return l;
2612}
2613
2614static void fib_route_seq_stop(struct seq_file *seq, void *v)
2615 __releases(RCU)
2616{
2617 rcu_read_unlock();
2618}
2619
a034ee3c 2620static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2621{
a034ee3c 2622 unsigned int flags = 0;
19baf839 2623
a034ee3c
ED
2624 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2625 flags = RTF_REJECT;
cb7b593c
SH
2626 if (fi && fi->fib_nh->nh_gw)
2627 flags |= RTF_GATEWAY;
32ab5f80 2628 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2629 flags |= RTF_HOST;
2630 flags |= RTF_UP;
2631 return flags;
19baf839
RO
2632}
2633
cb7b593c
SH
2634/*
2635 * This outputs /proc/net/route.
2636 * The format of the file is not supposed to be changed
a034ee3c 2637 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2638 * legacy utilities
2639 */
2640static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2641{
654eff45
AD
2642 struct fib_route_iter *iter = seq->private;
2643 struct fib_table *tb = iter->main_tb;
79e5ad2c 2644 struct fib_alias *fa;
35c6edac 2645 struct key_vector *l = v;
9b6ebad5 2646 __be32 prefix;
19baf839 2647
cb7b593c
SH
2648 if (v == SEQ_START_TOKEN) {
2649 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2650 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2651 "\tWindow\tIRTT");
2652 return 0;
2653 }
19baf839 2654
9b6ebad5
AD
2655 prefix = htonl(l->key);
2656
79e5ad2c
AD
2657 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2658 const struct fib_info *fi = fa->fa_info;
2659 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2660 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2661
79e5ad2c
AD
2662 if ((fa->fa_type == RTN_BROADCAST) ||
2663 (fa->fa_type == RTN_MULTICAST))
2664 continue;
19baf839 2665
654eff45
AD
2666 if (fa->tb_id != tb->tb_id)
2667 continue;
2668
79e5ad2c
AD
2669 seq_setwidth(seq, 127);
2670
2671 if (fi)
2672 seq_printf(seq,
2673 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2674 "%d\t%08X\t%d\t%u\t%u",
2675 fi->fib_dev ? fi->fib_dev->name : "*",
2676 prefix,
2677 fi->fib_nh->nh_gw, flags, 0, 0,
2678 fi->fib_priority,
2679 mask,
2680 (fi->fib_advmss ?
2681 fi->fib_advmss + 40 : 0),
2682 fi->fib_window,
2683 fi->fib_rtt >> 3);
2684 else
2685 seq_printf(seq,
2686 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2687 "%d\t%08X\t%d\t%u\t%u",
2688 prefix, 0, flags, 0, 0, 0,
2689 mask, 0, 0, 0);
19baf839 2690
79e5ad2c 2691 seq_pad(seq, '\n');
19baf839
RO
2692 }
2693
2694 return 0;
2695}
2696
f690808e 2697static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2698 .start = fib_route_seq_start,
2699 .next = fib_route_seq_next,
2700 .stop = fib_route_seq_stop,
cb7b593c 2701 .show = fib_route_seq_show,
19baf839
RO
2702};
2703
cb7b593c 2704static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2705{
1c340b2f 2706 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2707 sizeof(struct fib_route_iter));
19baf839
RO
2708}
2709
9a32144e 2710static const struct file_operations fib_route_fops = {
cb7b593c
SH
2711 .owner = THIS_MODULE,
2712 .open = fib_route_seq_open,
2713 .read = seq_read,
2714 .llseek = seq_lseek,
1c340b2f 2715 .release = seq_release_net,
19baf839
RO
2716};
2717
61a02653 2718int __net_init fib_proc_init(struct net *net)
19baf839 2719{
d4beaa66 2720 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2721 goto out1;
2722
d4beaa66
G
2723 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2724 &fib_triestat_fops))
cb7b593c
SH
2725 goto out2;
2726
d4beaa66 2727 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2728 goto out3;
2729
19baf839 2730 return 0;
cb7b593c
SH
2731
2732out3:
ece31ffd 2733 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2734out2:
ece31ffd 2735 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2736out1:
2737 return -ENOMEM;
19baf839
RO
2738}
2739
61a02653 2740void __net_exit fib_proc_exit(struct net *net)
19baf839 2741{
ece31ffd
G
2742 remove_proc_entry("fib_trie", net->proc_net);
2743 remove_proc_entry("fib_triestat", net->proc_net);
2744 remove_proc_entry("route", net->proc_net);
19baf839
RO
2745}
2746
2747#endif /* CONFIG_PROC_FS */