]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/fib_trie.c
[IPV6]: Fix infinite loop in udp_v6_get_port().
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
44 */
45
772cb712 46#define VERSION "0.404"
19baf839
RO
47
48#include <linux/config.h>
49#include <asm/uaccess.h>
50#include <asm/system.h>
51#include <asm/bitops.h>
52#include <linux/types.h>
53#include <linux/kernel.h>
54#include <linux/sched.h>
55#include <linux/mm.h>
56#include <linux/string.h>
57#include <linux/socket.h>
58#include <linux/sockios.h>
59#include <linux/errno.h>
60#include <linux/in.h>
61#include <linux/inet.h>
62#include <linux/netdevice.h>
63#include <linux/if_arp.h>
64#include <linux/proc_fs.h>
2373ce1c 65#include <linux/rcupdate.h>
19baf839
RO
66#include <linux/skbuff.h>
67#include <linux/netlink.h>
68#include <linux/init.h>
69#include <linux/list.h>
70#include <net/ip.h>
71#include <net/protocol.h>
72#include <net/route.h>
73#include <net/tcp.h>
74#include <net/sock.h>
75#include <net/ip_fib.h>
76#include "fib_lookup.h"
77
78#undef CONFIG_IP_FIB_TRIE_STATS
79#define MAX_CHILDS 16384
80
19baf839
RO
81#define KEYLENGTH (8*sizeof(t_key))
82#define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
83#define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
84
19baf839
RO
85typedef unsigned int t_key;
86
87#define T_TNODE 0
88#define T_LEAF 1
89#define NODE_TYPE_MASK 0x1UL
91b9a277 90#define NODE_PARENT(node) \
2373ce1c
RO
91 ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
92
93#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
95#define NODE_SET_PARENT(node, ptr) \
96 rcu_assign_pointer((node)->parent, \
97 ((unsigned long)(ptr)) | NODE_TYPE(node))
91b9a277
OJ
98
99#define IS_TNODE(n) (!(n->parent & T_LEAF))
100#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
101
102struct node {
91b9a277
OJ
103 t_key key;
104 unsigned long parent;
19baf839
RO
105};
106
107struct leaf {
91b9a277
OJ
108 t_key key;
109 unsigned long parent;
19baf839 110 struct hlist_head list;
2373ce1c 111 struct rcu_head rcu;
19baf839
RO
112};
113
114struct leaf_info {
115 struct hlist_node hlist;
2373ce1c 116 struct rcu_head rcu;
19baf839
RO
117 int plen;
118 struct list_head falh;
119};
120
121struct tnode {
91b9a277
OJ
122 t_key key;
123 unsigned long parent;
124 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
125 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
126 unsigned short full_children; /* KEYLENGTH bits needed */
127 unsigned short empty_children; /* KEYLENGTH bits needed */
2373ce1c 128 struct rcu_head rcu;
91b9a277 129 struct node *child[0];
19baf839
RO
130};
131
132#ifdef CONFIG_IP_FIB_TRIE_STATS
133struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
2f36895a 139 unsigned int resize_node_skipped;
19baf839
RO
140};
141#endif
142
143struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int nodesizes[MAX_CHILDS];
c877efb2 150};
19baf839
RO
151
152struct trie {
91b9a277 153 struct node *trie;
19baf839
RO
154#ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats stats;
156#endif
91b9a277 157 int size;
19baf839
RO
158 unsigned int revision;
159};
160
19baf839
RO
161static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
162static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
19baf839 163static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
164static struct tnode *inflate(struct trie *t, struct tnode *tn);
165static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839 166static void tnode_free(struct tnode *tn);
19baf839 167
ba89966c 168static kmem_cache_t *fn_alias_kmem __read_mostly;
19baf839
RO
169static struct trie *trie_local = NULL, *trie_main = NULL;
170
2373ce1c
RO
171
172/* rcu_read_lock needs to be hold by caller from readside */
173
c877efb2 174static inline struct node *tnode_get_child(struct tnode *tn, int i)
19baf839 175{
91b9a277 176 BUG_ON(i >= 1 << tn->bits);
19baf839 177
2373ce1c 178 return rcu_dereference(tn->child[i]);
19baf839
RO
179}
180
bb435b8d 181static inline int tnode_child_length(const struct tnode *tn)
19baf839 182{
91b9a277 183 return 1 << tn->bits;
19baf839
RO
184}
185
19baf839
RO
186static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
187{
91b9a277 188 if (offset < KEYLENGTH)
19baf839 189 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 190 else
19baf839
RO
191 return 0;
192}
193
194static inline int tkey_equals(t_key a, t_key b)
195{
c877efb2 196 return a == b;
19baf839
RO
197}
198
199static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
200{
c877efb2
SH
201 if (bits == 0 || offset >= KEYLENGTH)
202 return 1;
91b9a277
OJ
203 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
204 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 205}
19baf839
RO
206
207static inline int tkey_mismatch(t_key a, int offset, t_key b)
208{
209 t_key diff = a ^ b;
210 int i = offset;
211
c877efb2
SH
212 if (!diff)
213 return 0;
214 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
215 i++;
216 return i;
217}
218
19baf839
RO
219/*
220 To understand this stuff, an understanding of keys and all their bits is
221 necessary. Every node in the trie has a key associated with it, but not
222 all of the bits in that key are significant.
223
224 Consider a node 'n' and its parent 'tp'.
225
226 If n is a leaf, every bit in its key is significant. Its presence is
772cb712 227 necessitated by path compression, since during a tree traversal (when
19baf839
RO
228 searching for a leaf - unless we are doing an insertion) we will completely
229 ignore all skipped bits we encounter. Thus we need to verify, at the end of
230 a potentially successful search, that we have indeed been walking the
231 correct key path.
232
233 Note that we can never "miss" the correct key in the tree if present by
234 following the wrong path. Path compression ensures that segments of the key
235 that are the same for all keys with a given prefix are skipped, but the
236 skipped part *is* identical for each node in the subtrie below the skipped
237 bit! trie_insert() in this implementation takes care of that - note the
238 call to tkey_sub_equals() in trie_insert().
239
240 if n is an internal node - a 'tnode' here, the various parts of its key
241 have many different meanings.
242
243 Example:
244 _________________________________________________________________
245 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
246 -----------------------------------------------------------------
247 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
248
249 _________________________________________________________________
250 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
251 -----------------------------------------------------------------
252 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
253
254 tp->pos = 7
255 tp->bits = 3
256 n->pos = 15
91b9a277 257 n->bits = 4
19baf839
RO
258
259 First, let's just ignore the bits that come before the parent tp, that is
260 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
261 not use them for anything.
262
263 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
264 index into the parent's child array. That is, they will be used to find
265 'n' among tp's children.
266
267 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
268 for the node n.
269
270 All the bits we have seen so far are significant to the node n. The rest
271 of the bits are really not needed or indeed known in n->key.
272
273 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
274 n's child array, and will of course be different for each child.
275
c877efb2 276
19baf839
RO
277 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
278 at this point.
279
280*/
281
0c7770c7 282static inline void check_tnode(const struct tnode *tn)
19baf839 283{
0c7770c7 284 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
285}
286
287static int halve_threshold = 25;
288static int inflate_threshold = 50;
289
2373ce1c
RO
290
291static void __alias_free_mem(struct rcu_head *head)
19baf839 292{
2373ce1c
RO
293 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
294 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
295}
296
2373ce1c 297static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 298{
2373ce1c
RO
299 call_rcu(&fa->rcu, __alias_free_mem);
300}
91b9a277 301
2373ce1c
RO
302static void __leaf_free_rcu(struct rcu_head *head)
303{
304 kfree(container_of(head, struct leaf, rcu));
305}
91b9a277 306
2373ce1c
RO
307static inline void free_leaf(struct leaf *leaf)
308{
309 call_rcu(&leaf->rcu, __leaf_free_rcu);
19baf839
RO
310}
311
2373ce1c 312static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 313{
2373ce1c 314 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
315}
316
2373ce1c 317static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 318{
2373ce1c 319 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
320}
321
f0e36f8c
PM
322static struct tnode *tnode_alloc(unsigned int size)
323{
2373ce1c
RO
324 struct page *pages;
325
326 if (size <= PAGE_SIZE)
327 return kcalloc(size, 1, GFP_KERNEL);
328
329 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
330 if (!pages)
331 return NULL;
332
333 return page_address(pages);
f0e36f8c
PM
334}
335
2373ce1c 336static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 337{
2373ce1c 338 struct tnode *tn = container_of(head, struct tnode, rcu);
f0e36f8c 339 unsigned int size = sizeof(struct tnode) +
2373ce1c 340 (1 << tn->bits) * sizeof(struct node *);
f0e36f8c
PM
341
342 if (size <= PAGE_SIZE)
343 kfree(tn);
344 else
345 free_pages((unsigned long)tn, get_order(size));
346}
347
2373ce1c
RO
348static inline void tnode_free(struct tnode *tn)
349{
350 call_rcu(&tn->rcu, __tnode_free_rcu);
351}
352
353static struct leaf *leaf_new(void)
354{
355 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
356 if (l) {
357 l->parent = T_LEAF;
358 INIT_HLIST_HEAD(&l->list);
359 }
360 return l;
361}
362
363static struct leaf_info *leaf_info_new(int plen)
364{
365 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
366 if (li) {
367 li->plen = plen;
368 INIT_LIST_HEAD(&li->falh);
369 }
370 return li;
371}
372
19baf839
RO
373static struct tnode* tnode_new(t_key key, int pos, int bits)
374{
375 int nchildren = 1<<bits;
376 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
f0e36f8c 377 struct tnode *tn = tnode_alloc(sz);
19baf839 378
91b9a277 379 if (tn) {
19baf839 380 memset(tn, 0, sz);
2373ce1c 381 tn->parent = T_TNODE;
19baf839
RO
382 tn->pos = pos;
383 tn->bits = bits;
384 tn->key = key;
385 tn->full_children = 0;
386 tn->empty_children = 1<<bits;
387 }
c877efb2 388
0c7770c7
SH
389 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
390 (unsigned int) (sizeof(struct node) * 1<<bits));
19baf839
RO
391 return tn;
392}
393
19baf839
RO
394/*
395 * Check whether a tnode 'n' is "full", i.e. it is an internal node
396 * and no bits are skipped. See discussion in dyntree paper p. 6
397 */
398
bb435b8d 399static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 400{
c877efb2 401 if (n == NULL || IS_LEAF(n))
19baf839
RO
402 return 0;
403
404 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
405}
406
c877efb2 407static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
19baf839
RO
408{
409 tnode_put_child_reorg(tn, i, n, -1);
410}
411
c877efb2 412 /*
19baf839
RO
413 * Add a child at position i overwriting the old value.
414 * Update the value of full_children and empty_children.
415 */
416
c877efb2 417static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
19baf839 418{
2373ce1c 419 struct node *chi = tn->child[i];
19baf839
RO
420 int isfull;
421
0c7770c7
SH
422 BUG_ON(i >= 1<<tn->bits);
423
19baf839
RO
424
425 /* update emptyChildren */
426 if (n == NULL && chi != NULL)
427 tn->empty_children++;
428 else if (n != NULL && chi == NULL)
429 tn->empty_children--;
c877efb2 430
19baf839 431 /* update fullChildren */
91b9a277 432 if (wasfull == -1)
19baf839
RO
433 wasfull = tnode_full(tn, chi);
434
435 isfull = tnode_full(tn, n);
c877efb2 436 if (wasfull && !isfull)
19baf839 437 tn->full_children--;
c877efb2 438 else if (!wasfull && isfull)
19baf839 439 tn->full_children++;
91b9a277 440
c877efb2
SH
441 if (n)
442 NODE_SET_PARENT(n, tn);
19baf839 443
2373ce1c 444 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
445}
446
c877efb2 447static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
448{
449 int i;
2f36895a 450 int err = 0;
2f80b3c8 451 struct tnode *old_tn;
19baf839
RO
452
453 if (!tn)
454 return NULL;
455
0c7770c7
SH
456 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
457 tn, inflate_threshold, halve_threshold);
19baf839
RO
458
459 /* No children */
460 if (tn->empty_children == tnode_child_length(tn)) {
461 tnode_free(tn);
462 return NULL;
463 }
464 /* One child */
465 if (tn->empty_children == tnode_child_length(tn) - 1)
466 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 467 struct node *n;
19baf839 468
91b9a277 469 n = tn->child[i];
2373ce1c 470 if (!n)
91b9a277 471 continue;
91b9a277
OJ
472
473 /* compress one level */
2373ce1c 474 NODE_SET_PARENT(n, NULL);
91b9a277
OJ
475 tnode_free(tn);
476 return n;
19baf839 477 }
c877efb2 478 /*
19baf839
RO
479 * Double as long as the resulting node has a number of
480 * nonempty nodes that are above the threshold.
481 */
482
483 /*
c877efb2
SH
484 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
485 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 486 * Telecommunications, page 6:
c877efb2 487 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
488 * children in the *doubled* node is at least 'high'."
489 *
c877efb2
SH
490 * 'high' in this instance is the variable 'inflate_threshold'. It
491 * is expressed as a percentage, so we multiply it with
492 * tnode_child_length() and instead of multiplying by 2 (since the
493 * child array will be doubled by inflate()) and multiplying
494 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 495 * multiply the left-hand side by 50.
c877efb2
SH
496 *
497 * The left-hand side may look a bit weird: tnode_child_length(tn)
498 * - tn->empty_children is of course the number of non-null children
499 * in the current node. tn->full_children is the number of "full"
19baf839 500 * children, that is non-null tnodes with a skip value of 0.
c877efb2 501 * All of those will be doubled in the resulting inflated tnode, so
19baf839 502 * we just count them one extra time here.
c877efb2 503 *
19baf839 504 * A clearer way to write this would be:
c877efb2 505 *
19baf839 506 * to_be_doubled = tn->full_children;
c877efb2 507 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
508 * tn->full_children;
509 *
510 * new_child_length = tnode_child_length(tn) * 2;
511 *
c877efb2 512 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
513 * new_child_length;
514 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
515 *
516 * ...and so on, tho it would mess up the while () loop.
517 *
19baf839
RO
518 * anyway,
519 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
520 * inflate_threshold
c877efb2 521 *
19baf839
RO
522 * avoid a division:
523 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
524 * inflate_threshold * new_child_length
c877efb2 525 *
19baf839 526 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 527 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 528 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 529 *
19baf839 530 * expand new_child_length:
c877efb2 531 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 532 * tn->full_children) >=
19baf839 533 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 534 *
19baf839 535 * shorten again:
c877efb2 536 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 537 * tn->empty_children) >= inflate_threshold *
19baf839 538 * tnode_child_length(tn)
c877efb2 539 *
19baf839
RO
540 */
541
542 check_tnode(tn);
c877efb2 543
2f36895a 544 err = 0;
19baf839
RO
545 while ((tn->full_children > 0 &&
546 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
547 inflate_threshold * tnode_child_length(tn))) {
548
2f80b3c8
RO
549 old_tn = tn;
550 tn = inflate(t, tn);
551 if (IS_ERR(tn)) {
552 tn = old_tn;
2f36895a
RO
553#ifdef CONFIG_IP_FIB_TRIE_STATS
554 t->stats.resize_node_skipped++;
555#endif
556 break;
557 }
19baf839
RO
558 }
559
560 check_tnode(tn);
561
562 /*
563 * Halve as long as the number of empty children in this
564 * node is above threshold.
565 */
2f36895a
RO
566
567 err = 0;
19baf839
RO
568 while (tn->bits > 1 &&
569 100 * (tnode_child_length(tn) - tn->empty_children) <
2f36895a
RO
570 halve_threshold * tnode_child_length(tn)) {
571
2f80b3c8
RO
572 old_tn = tn;
573 tn = halve(t, tn);
574 if (IS_ERR(tn)) {
575 tn = old_tn;
2f36895a
RO
576#ifdef CONFIG_IP_FIB_TRIE_STATS
577 t->stats.resize_node_skipped++;
578#endif
579 break;
580 }
581 }
19baf839 582
c877efb2 583
19baf839 584 /* Only one child remains */
19baf839
RO
585 if (tn->empty_children == tnode_child_length(tn) - 1)
586 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 587 struct node *n;
19baf839 588
91b9a277 589 n = tn->child[i];
2373ce1c 590 if (!n)
91b9a277 591 continue;
91b9a277
OJ
592
593 /* compress one level */
594
2373ce1c 595 NODE_SET_PARENT(n, NULL);
91b9a277
OJ
596 tnode_free(tn);
597 return n;
19baf839
RO
598 }
599
600 return (struct node *) tn;
601}
602
2f80b3c8 603static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839
RO
604{
605 struct tnode *inode;
606 struct tnode *oldtnode = tn;
607 int olen = tnode_child_length(tn);
608 int i;
609
0c7770c7 610 pr_debug("In inflate\n");
19baf839
RO
611
612 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
613
0c7770c7 614 if (!tn)
2f80b3c8 615 return ERR_PTR(-ENOMEM);
2f36895a
RO
616
617 /*
c877efb2
SH
618 * Preallocate and store tnodes before the actual work so we
619 * don't get into an inconsistent state if memory allocation
620 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
621 * of tnode is ignored.
622 */
91b9a277
OJ
623
624 for (i = 0; i < olen; i++) {
2f36895a
RO
625 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
626
627 if (inode &&
628 IS_TNODE(inode) &&
629 inode->pos == oldtnode->pos + oldtnode->bits &&
630 inode->bits > 1) {
631 struct tnode *left, *right;
2f36895a 632 t_key m = TKEY_GET_MASK(inode->pos, 1);
c877efb2 633
2f36895a
RO
634 left = tnode_new(inode->key&(~m), inode->pos + 1,
635 inode->bits - 1);
2f80b3c8
RO
636 if (!left)
637 goto nomem;
91b9a277 638
2f36895a
RO
639 right = tnode_new(inode->key|m, inode->pos + 1,
640 inode->bits - 1);
641
2f80b3c8
RO
642 if (!right) {
643 tnode_free(left);
644 goto nomem;
645 }
2f36895a
RO
646
647 put_child(t, tn, 2*i, (struct node *) left);
648 put_child(t, tn, 2*i+1, (struct node *) right);
649 }
650 }
651
91b9a277 652 for (i = 0; i < olen; i++) {
19baf839 653 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
654 struct tnode *left, *right;
655 int size, j;
c877efb2 656
19baf839
RO
657 /* An empty child */
658 if (node == NULL)
659 continue;
660
661 /* A leaf or an internal node with skipped bits */
662
c877efb2 663 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 664 tn->pos + tn->bits - 1) {
c877efb2 665 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
19baf839
RO
666 1) == 0)
667 put_child(t, tn, 2*i, node);
668 else
669 put_child(t, tn, 2*i+1, node);
670 continue;
671 }
672
673 /* An internal node with two children */
674 inode = (struct tnode *) node;
675
676 if (inode->bits == 1) {
677 put_child(t, tn, 2*i, inode->child[0]);
678 put_child(t, tn, 2*i+1, inode->child[1]);
679
680 tnode_free(inode);
91b9a277 681 continue;
19baf839
RO
682 }
683
91b9a277
OJ
684 /* An internal node with more than two children */
685
686 /* We will replace this node 'inode' with two new
687 * ones, 'left' and 'right', each with half of the
688 * original children. The two new nodes will have
689 * a position one bit further down the key and this
690 * means that the "significant" part of their keys
691 * (see the discussion near the top of this file)
692 * will differ by one bit, which will be "0" in
693 * left's key and "1" in right's key. Since we are
694 * moving the key position by one step, the bit that
695 * we are moving away from - the bit at position
696 * (inode->pos) - is the one that will differ between
697 * left and right. So... we synthesize that bit in the
698 * two new keys.
699 * The mask 'm' below will be a single "one" bit at
700 * the position (inode->pos)
701 */
19baf839 702
91b9a277
OJ
703 /* Use the old key, but set the new significant
704 * bit to zero.
705 */
2f36895a 706
91b9a277
OJ
707 left = (struct tnode *) tnode_get_child(tn, 2*i);
708 put_child(t, tn, 2*i, NULL);
2f36895a 709
91b9a277 710 BUG_ON(!left);
2f36895a 711
91b9a277
OJ
712 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
713 put_child(t, tn, 2*i+1, NULL);
19baf839 714
91b9a277 715 BUG_ON(!right);
19baf839 716
91b9a277
OJ
717 size = tnode_child_length(left);
718 for (j = 0; j < size; j++) {
719 put_child(t, left, j, inode->child[j]);
720 put_child(t, right, j, inode->child[j + size]);
19baf839 721 }
91b9a277
OJ
722 put_child(t, tn, 2*i, resize(t, left));
723 put_child(t, tn, 2*i+1, resize(t, right));
724
725 tnode_free(inode);
19baf839
RO
726 }
727 tnode_free(oldtnode);
728 return tn;
2f80b3c8
RO
729nomem:
730 {
731 int size = tnode_child_length(tn);
732 int j;
733
0c7770c7 734 for (j = 0; j < size; j++)
2f80b3c8
RO
735 if (tn->child[j])
736 tnode_free((struct tnode *)tn->child[j]);
737
738 tnode_free(tn);
0c7770c7 739
2f80b3c8
RO
740 return ERR_PTR(-ENOMEM);
741 }
19baf839
RO
742}
743
2f80b3c8 744static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
745{
746 struct tnode *oldtnode = tn;
747 struct node *left, *right;
748 int i;
749 int olen = tnode_child_length(tn);
750
0c7770c7 751 pr_debug("In halve\n");
c877efb2
SH
752
753 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 754
2f80b3c8
RO
755 if (!tn)
756 return ERR_PTR(-ENOMEM);
2f36895a
RO
757
758 /*
c877efb2
SH
759 * Preallocate and store tnodes before the actual work so we
760 * don't get into an inconsistent state if memory allocation
761 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
762 * of tnode is ignored.
763 */
764
91b9a277 765 for (i = 0; i < olen; i += 2) {
2f36895a
RO
766 left = tnode_get_child(oldtnode, i);
767 right = tnode_get_child(oldtnode, i+1);
c877efb2 768
2f36895a 769 /* Two nonempty children */
0c7770c7 770 if (left && right) {
2f80b3c8 771 struct tnode *newn;
0c7770c7 772
2f80b3c8 773 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
774
775 if (!newn)
2f80b3c8 776 goto nomem;
0c7770c7 777
2f80b3c8 778 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 779 }
2f36895a 780
2f36895a 781 }
19baf839 782
91b9a277
OJ
783 for (i = 0; i < olen; i += 2) {
784 struct tnode *newBinNode;
785
19baf839
RO
786 left = tnode_get_child(oldtnode, i);
787 right = tnode_get_child(oldtnode, i+1);
c877efb2 788
19baf839
RO
789 /* At least one of the children is empty */
790 if (left == NULL) {
791 if (right == NULL) /* Both are empty */
792 continue;
793 put_child(t, tn, i/2, right);
91b9a277 794 continue;
0c7770c7 795 }
91b9a277
OJ
796
797 if (right == NULL) {
19baf839 798 put_child(t, tn, i/2, left);
91b9a277
OJ
799 continue;
800 }
c877efb2 801
19baf839 802 /* Two nonempty children */
91b9a277
OJ
803 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
804 put_child(t, tn, i/2, NULL);
91b9a277
OJ
805 put_child(t, newBinNode, 0, left);
806 put_child(t, newBinNode, 1, right);
807 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
808 }
809 tnode_free(oldtnode);
810 return tn;
2f80b3c8
RO
811nomem:
812 {
813 int size = tnode_child_length(tn);
814 int j;
815
0c7770c7 816 for (j = 0; j < size; j++)
2f80b3c8
RO
817 if (tn->child[j])
818 tnode_free((struct tnode *)tn->child[j]);
819
820 tnode_free(tn);
0c7770c7 821
2f80b3c8
RO
822 return ERR_PTR(-ENOMEM);
823 }
19baf839
RO
824}
825
91b9a277 826static void trie_init(struct trie *t)
19baf839 827{
91b9a277
OJ
828 if (!t)
829 return;
830
831 t->size = 0;
2373ce1c 832 rcu_assign_pointer(t->trie, NULL);
91b9a277 833 t->revision = 0;
19baf839 834#ifdef CONFIG_IP_FIB_TRIE_STATS
91b9a277 835 memset(&t->stats, 0, sizeof(struct trie_use_stats));
19baf839 836#endif
19baf839
RO
837}
838
772cb712 839/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
840 via get_fa_head and dump */
841
772cb712 842static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 843{
772cb712 844 struct hlist_head *head = &l->list;
19baf839
RO
845 struct hlist_node *node;
846 struct leaf_info *li;
847
2373ce1c 848 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 849 if (li->plen == plen)
19baf839 850 return li;
91b9a277 851
19baf839
RO
852 return NULL;
853}
854
855static inline struct list_head * get_fa_head(struct leaf *l, int plen)
856{
772cb712 857 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 858
91b9a277
OJ
859 if (!li)
860 return NULL;
c877efb2 861
91b9a277 862 return &li->falh;
19baf839
RO
863}
864
865static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
866{
2373ce1c
RO
867 struct leaf_info *li = NULL, *last = NULL;
868 struct hlist_node *node;
869
870 if (hlist_empty(head)) {
871 hlist_add_head_rcu(&new->hlist, head);
872 } else {
873 hlist_for_each_entry(li, node, head, hlist) {
874 if (new->plen > li->plen)
875 break;
876
877 last = li;
878 }
879 if (last)
880 hlist_add_after_rcu(&last->hlist, &new->hlist);
881 else
882 hlist_add_before_rcu(&new->hlist, &li->hlist);
883 }
19baf839
RO
884}
885
2373ce1c
RO
886/* rcu_read_lock needs to be hold by caller from readside */
887
19baf839
RO
888static struct leaf *
889fib_find_node(struct trie *t, u32 key)
890{
891 int pos;
892 struct tnode *tn;
893 struct node *n;
894
895 pos = 0;
2373ce1c 896 n = rcu_dereference(t->trie);
19baf839
RO
897
898 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
899 tn = (struct tnode *) n;
91b9a277 900
19baf839 901 check_tnode(tn);
91b9a277 902
c877efb2 903 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 904 pos = tn->pos + tn->bits;
19baf839 905 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
91b9a277 906 } else
19baf839
RO
907 break;
908 }
909 /* Case we have found a leaf. Compare prefixes */
910
91b9a277
OJ
911 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
912 return (struct leaf *)n;
913
19baf839
RO
914 return NULL;
915}
916
917static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
918{
19baf839
RO
919 int wasfull;
920 t_key cindex, key;
921 struct tnode *tp = NULL;
922
19baf839 923 key = tn->key;
19baf839
RO
924
925 while (tn != NULL && NODE_PARENT(tn) != NULL) {
19baf839
RO
926
927 tp = NODE_PARENT(tn);
928 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
929 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
930 tn = (struct tnode *) resize (t, (struct tnode *)tn);
931 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
91b9a277 932
c877efb2 933 if (!NODE_PARENT(tn))
19baf839
RO
934 break;
935
936 tn = NODE_PARENT(tn);
937 }
938 /* Handle last (top) tnode */
c877efb2 939 if (IS_TNODE(tn))
19baf839
RO
940 tn = (struct tnode*) resize(t, (struct tnode *)tn);
941
942 return (struct node*) tn;
943}
944
2373ce1c
RO
945/* only used from updater-side */
946
f835e471
RO
947static struct list_head *
948fib_insert_node(struct trie *t, int *err, u32 key, int plen)
19baf839
RO
949{
950 int pos, newpos;
951 struct tnode *tp = NULL, *tn = NULL;
952 struct node *n;
953 struct leaf *l;
954 int missbit;
c877efb2 955 struct list_head *fa_head = NULL;
19baf839
RO
956 struct leaf_info *li;
957 t_key cindex;
958
959 pos = 0;
c877efb2 960 n = t->trie;
19baf839 961
c877efb2
SH
962 /* If we point to NULL, stop. Either the tree is empty and we should
963 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 964 * and we should just put our new leaf in that.
c877efb2
SH
965 * If we point to a T_TNODE, check if it matches our key. Note that
966 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
967 * not be the parent's 'pos'+'bits'!
968 *
c877efb2 969 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
970 * the index from our key, push the T_TNODE and walk the tree.
971 *
972 * If it doesn't, we have to replace it with a new T_TNODE.
973 *
c877efb2
SH
974 * If we point to a T_LEAF, it might or might not have the same key
975 * as we do. If it does, just change the value, update the T_LEAF's
976 * value, and return it.
19baf839
RO
977 * If it doesn't, we need to replace it with a T_TNODE.
978 */
979
980 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
981 tn = (struct tnode *) n;
91b9a277 982
c877efb2 983 check_tnode(tn);
91b9a277 984
c877efb2 985 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 986 tp = tn;
91b9a277 987 pos = tn->pos + tn->bits;
19baf839
RO
988 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
989
0c7770c7 990 BUG_ON(n && NODE_PARENT(n) != tn);
91b9a277 991 } else
19baf839
RO
992 break;
993 }
994
995 /*
996 * n ----> NULL, LEAF or TNODE
997 *
c877efb2 998 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
999 */
1000
91b9a277 1001 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1002
1003 /* Case 1: n is a leaf. Compare prefixes */
1004
c877efb2 1005 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
91b9a277
OJ
1006 struct leaf *l = (struct leaf *) n;
1007
19baf839 1008 li = leaf_info_new(plen);
91b9a277 1009
c877efb2 1010 if (!li) {
f835e471
RO
1011 *err = -ENOMEM;
1012 goto err;
1013 }
19baf839
RO
1014
1015 fa_head = &li->falh;
1016 insert_leaf_info(&l->list, li);
1017 goto done;
1018 }
1019 t->size++;
1020 l = leaf_new();
1021
c877efb2 1022 if (!l) {
f835e471
RO
1023 *err = -ENOMEM;
1024 goto err;
1025 }
19baf839
RO
1026
1027 l->key = key;
1028 li = leaf_info_new(plen);
1029
c877efb2 1030 if (!li) {
f835e471
RO
1031 tnode_free((struct tnode *) l);
1032 *err = -ENOMEM;
1033 goto err;
1034 }
19baf839
RO
1035
1036 fa_head = &li->falh;
1037 insert_leaf_info(&l->list, li);
1038
19baf839 1039 if (t->trie && n == NULL) {
91b9a277 1040 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839
RO
1041
1042 NODE_SET_PARENT(l, tp);
19baf839 1043
91b9a277
OJ
1044 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1045 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1046 } else {
1047 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1048 /*
1049 * Add a new tnode here
19baf839
RO
1050 * first tnode need some special handling
1051 */
1052
1053 if (tp)
91b9a277 1054 pos = tp->pos+tp->bits;
19baf839 1055 else
91b9a277
OJ
1056 pos = 0;
1057
c877efb2 1058 if (n) {
19baf839
RO
1059 newpos = tkey_mismatch(key, pos, n->key);
1060 tn = tnode_new(n->key, newpos, 1);
91b9a277 1061 } else {
19baf839 1062 newpos = 0;
c877efb2 1063 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1064 }
19baf839 1065
c877efb2 1066 if (!tn) {
f835e471
RO
1067 free_leaf_info(li);
1068 tnode_free((struct tnode *) l);
1069 *err = -ENOMEM;
1070 goto err;
91b9a277
OJ
1071 }
1072
19baf839
RO
1073 NODE_SET_PARENT(tn, tp);
1074
91b9a277 1075 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1076 put_child(t, tn, missbit, (struct node *)l);
1077 put_child(t, tn, 1-missbit, n);
1078
c877efb2 1079 if (tp) {
19baf839
RO
1080 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1081 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
91b9a277 1082 } else {
2373ce1c 1083 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
19baf839
RO
1084 tp = tn;
1085 }
1086 }
91b9a277
OJ
1087
1088 if (tp && tp->pos + tp->bits > 32)
78c6671a 1089 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
19baf839 1090 tp, tp->pos, tp->bits, key, plen);
91b9a277 1091
19baf839 1092 /* Rebalance the trie */
2373ce1c
RO
1093
1094 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471
RO
1095done:
1096 t->revision++;
91b9a277 1097err:
19baf839
RO
1098 return fa_head;
1099}
1100
1101static int
1102fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1103 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
1104{
1105 struct trie *t = (struct trie *) tb->tb_data;
1106 struct fib_alias *fa, *new_fa;
c877efb2 1107 struct list_head *fa_head = NULL;
19baf839
RO
1108 struct fib_info *fi;
1109 int plen = r->rtm_dst_len;
1110 int type = r->rtm_type;
1111 u8 tos = r->rtm_tos;
1112 u32 key, mask;
1113 int err;
1114 struct leaf *l;
1115
1116 if (plen > 32)
1117 return -EINVAL;
1118
1119 key = 0;
c877efb2 1120 if (rta->rta_dst)
19baf839
RO
1121 memcpy(&key, rta->rta_dst, 4);
1122
1123 key = ntohl(key);
1124
0c7770c7 1125 pr_debug("Insert table=%d %08x/%d\n", tb->tb_id, key, plen);
19baf839 1126
91b9a277 1127 mask = ntohl(inet_make_mask(plen));
19baf839 1128
c877efb2 1129 if (key & ~mask)
19baf839
RO
1130 return -EINVAL;
1131
1132 key = key & mask;
1133
91b9a277
OJ
1134 fi = fib_create_info(r, rta, nlhdr, &err);
1135
1136 if (!fi)
19baf839
RO
1137 goto err;
1138
1139 l = fib_find_node(t, key);
c877efb2 1140 fa = NULL;
19baf839 1141
c877efb2 1142 if (l) {
19baf839
RO
1143 fa_head = get_fa_head(l, plen);
1144 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1145 }
1146
1147 /* Now fa, if non-NULL, points to the first fib alias
1148 * with the same keys [prefix,tos,priority], if such key already
1149 * exists or to the node before which we will insert new one.
1150 *
1151 * If fa is NULL, we will need to allocate a new one and
1152 * insert to the head of f.
1153 *
1154 * If f is NULL, no fib node matched the destination key
1155 * and we need to allocate a new one of those as well.
1156 */
1157
91b9a277 1158 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
19baf839
RO
1159 struct fib_alias *fa_orig;
1160
1161 err = -EEXIST;
1162 if (nlhdr->nlmsg_flags & NLM_F_EXCL)
1163 goto out;
1164
1165 if (nlhdr->nlmsg_flags & NLM_F_REPLACE) {
1166 struct fib_info *fi_drop;
1167 u8 state;
1168
2373ce1c
RO
1169 err = -ENOBUFS;
1170 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1171 if (new_fa == NULL)
1172 goto out;
19baf839
RO
1173
1174 fi_drop = fa->fa_info;
2373ce1c
RO
1175 new_fa->fa_tos = fa->fa_tos;
1176 new_fa->fa_info = fi;
1177 new_fa->fa_type = type;
1178 new_fa->fa_scope = r->rtm_scope;
19baf839 1179 state = fa->fa_state;
2373ce1c 1180 new_fa->fa_state &= ~FA_S_ACCESSED;
19baf839 1181
2373ce1c
RO
1182 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1183 alias_free_mem_rcu(fa);
19baf839
RO
1184
1185 fib_release_info(fi_drop);
1186 if (state & FA_S_ACCESSED)
91b9a277 1187 rt_cache_flush(-1);
19baf839 1188
91b9a277 1189 goto succeeded;
19baf839
RO
1190 }
1191 /* Error if we find a perfect match which
1192 * uses the same scope, type, and nexthop
1193 * information.
1194 */
1195 fa_orig = fa;
1196 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1197 if (fa->fa_tos != tos)
1198 break;
1199 if (fa->fa_info->fib_priority != fi->fib_priority)
1200 break;
1201 if (fa->fa_type == type &&
1202 fa->fa_scope == r->rtm_scope &&
1203 fa->fa_info == fi) {
1204 goto out;
1205 }
1206 }
1207 if (!(nlhdr->nlmsg_flags & NLM_F_APPEND))
1208 fa = fa_orig;
1209 }
1210 err = -ENOENT;
91b9a277 1211 if (!(nlhdr->nlmsg_flags & NLM_F_CREATE))
19baf839
RO
1212 goto out;
1213
1214 err = -ENOBUFS;
1215 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1216 if (new_fa == NULL)
1217 goto out;
1218
1219 new_fa->fa_info = fi;
1220 new_fa->fa_tos = tos;
1221 new_fa->fa_type = type;
1222 new_fa->fa_scope = r->rtm_scope;
1223 new_fa->fa_state = 0;
19baf839
RO
1224 /*
1225 * Insert new entry to the list.
1226 */
1227
c877efb2 1228 if (!fa_head) {
f835e471
RO
1229 fa_head = fib_insert_node(t, &err, key, plen);
1230 err = 0;
c877efb2 1231 if (err)
f835e471
RO
1232 goto out_free_new_fa;
1233 }
19baf839 1234
2373ce1c
RO
1235 list_add_tail_rcu(&new_fa->fa_list,
1236 (fa ? &fa->fa_list : fa_head));
19baf839
RO
1237
1238 rt_cache_flush(-1);
1239 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req);
1240succeeded:
1241 return 0;
f835e471
RO
1242
1243out_free_new_fa:
1244 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1245out:
1246 fib_release_info(fi);
91b9a277 1247err:
19baf839
RO
1248 return err;
1249}
1250
2373ce1c 1251
772cb712 1252/* should be called with rcu_read_lock */
0c7770c7
SH
1253static inline int check_leaf(struct trie *t, struct leaf *l,
1254 t_key key, int *plen, const struct flowi *flp,
06c74270 1255 struct fib_result *res)
19baf839 1256{
06c74270 1257 int err, i;
19baf839
RO
1258 t_key mask;
1259 struct leaf_info *li;
1260 struct hlist_head *hhead = &l->list;
1261 struct hlist_node *node;
c877efb2 1262
2373ce1c 1263 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
19baf839
RO
1264 i = li->plen;
1265 mask = ntohl(inet_make_mask(i));
c877efb2 1266 if (l->key != (key & mask))
19baf839
RO
1267 continue;
1268
06c74270 1269 if ((err = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) <= 0) {
19baf839
RO
1270 *plen = i;
1271#ifdef CONFIG_IP_FIB_TRIE_STATS
1272 t->stats.semantic_match_passed++;
1273#endif
06c74270 1274 return err;
19baf839
RO
1275 }
1276#ifdef CONFIG_IP_FIB_TRIE_STATS
1277 t->stats.semantic_match_miss++;
1278#endif
1279 }
06c74270 1280 return 1;
19baf839
RO
1281}
1282
1283static int
1284fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1285{
1286 struct trie *t = (struct trie *) tb->tb_data;
1287 int plen, ret = 0;
1288 struct node *n;
1289 struct tnode *pn;
1290 int pos, bits;
91b9a277 1291 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1292 int chopped_off;
1293 t_key cindex = 0;
1294 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1295 struct tnode *cn;
1296 t_key node_prefix, key_prefix, pref_mismatch;
1297 int mp;
1298
2373ce1c 1299 rcu_read_lock();
91b9a277 1300
2373ce1c 1301 n = rcu_dereference(t->trie);
c877efb2 1302 if (!n)
19baf839
RO
1303 goto failed;
1304
1305#ifdef CONFIG_IP_FIB_TRIE_STATS
1306 t->stats.gets++;
1307#endif
1308
1309 /* Just a leaf? */
1310 if (IS_LEAF(n)) {
06c74270 1311 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
19baf839
RO
1312 goto found;
1313 goto failed;
1314 }
1315 pn = (struct tnode *) n;
1316 chopped_off = 0;
c877efb2 1317
91b9a277 1318 while (pn) {
19baf839
RO
1319 pos = pn->pos;
1320 bits = pn->bits;
1321
c877efb2 1322 if (!chopped_off)
19baf839
RO
1323 cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1324
1325 n = tnode_get_child(pn, cindex);
1326
1327 if (n == NULL) {
1328#ifdef CONFIG_IP_FIB_TRIE_STATS
1329 t->stats.null_node_hit++;
1330#endif
1331 goto backtrace;
1332 }
1333
91b9a277
OJ
1334 if (IS_LEAF(n)) {
1335 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1336 goto found;
1337 else
1338 goto backtrace;
1339 }
1340
19baf839
RO
1341#define HL_OPTIMIZE
1342#ifdef HL_OPTIMIZE
91b9a277 1343 cn = (struct tnode *)n;
19baf839 1344
91b9a277
OJ
1345 /*
1346 * It's a tnode, and we can do some extra checks here if we
1347 * like, to avoid descending into a dead-end branch.
1348 * This tnode is in the parent's child array at index
1349 * key[p_pos..p_pos+p_bits] but potentially with some bits
1350 * chopped off, so in reality the index may be just a
1351 * subprefix, padded with zero at the end.
1352 * We can also take a look at any skipped bits in this
1353 * tnode - everything up to p_pos is supposed to be ok,
1354 * and the non-chopped bits of the index (se previous
1355 * paragraph) are also guaranteed ok, but the rest is
1356 * considered unknown.
1357 *
1358 * The skipped bits are key[pos+bits..cn->pos].
1359 */
19baf839 1360
91b9a277
OJ
1361 /* If current_prefix_length < pos+bits, we are already doing
1362 * actual prefix matching, which means everything from
1363 * pos+(bits-chopped_off) onward must be zero along some
1364 * branch of this subtree - otherwise there is *no* valid
1365 * prefix present. Here we can only check the skipped
1366 * bits. Remember, since we have already indexed into the
1367 * parent's child array, we know that the bits we chopped of
1368 * *are* zero.
1369 */
19baf839 1370
91b9a277 1371 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
19baf839 1372
91b9a277
OJ
1373 if (current_prefix_length < pos+bits) {
1374 if (tkey_extract_bits(cn->key, current_prefix_length,
1375 cn->pos - current_prefix_length) != 0 ||
1376 !(cn->child[0]))
1377 goto backtrace;
1378 }
19baf839 1379
91b9a277
OJ
1380 /*
1381 * If chopped_off=0, the index is fully validated and we
1382 * only need to look at the skipped bits for this, the new,
1383 * tnode. What we actually want to do is to find out if
1384 * these skipped bits match our key perfectly, or if we will
1385 * have to count on finding a matching prefix further down,
1386 * because if we do, we would like to have some way of
1387 * verifying the existence of such a prefix at this point.
1388 */
19baf839 1389
91b9a277
OJ
1390 /* The only thing we can do at this point is to verify that
1391 * any such matching prefix can indeed be a prefix to our
1392 * key, and if the bits in the node we are inspecting that
1393 * do not match our key are not ZERO, this cannot be true.
1394 * Thus, find out where there is a mismatch (before cn->pos)
1395 * and verify that all the mismatching bits are zero in the
1396 * new tnode's key.
1397 */
19baf839 1398
91b9a277
OJ
1399 /* Note: We aren't very concerned about the piece of the key
1400 * that precede pn->pos+pn->bits, since these have already been
1401 * checked. The bits after cn->pos aren't checked since these are
1402 * by definition "unknown" at this point. Thus, what we want to
1403 * see is if we are about to enter the "prefix matching" state,
1404 * and in that case verify that the skipped bits that will prevail
1405 * throughout this subtree are zero, as they have to be if we are
1406 * to find a matching prefix.
1407 */
1408
1409 node_prefix = MASK_PFX(cn->key, cn->pos);
1410 key_prefix = MASK_PFX(key, cn->pos);
1411 pref_mismatch = key_prefix^node_prefix;
1412 mp = 0;
1413
1414 /* In short: If skipped bits in this node do not match the search
1415 * key, enter the "prefix matching" state.directly.
1416 */
1417 if (pref_mismatch) {
1418 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1419 mp++;
1420 pref_mismatch = pref_mismatch <<1;
1421 }
1422 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1423
1424 if (key_prefix != 0)
1425 goto backtrace;
1426
1427 if (current_prefix_length >= cn->pos)
1428 current_prefix_length = mp;
c877efb2 1429 }
91b9a277
OJ
1430#endif
1431 pn = (struct tnode *)n; /* Descend */
1432 chopped_off = 0;
1433 continue;
1434
19baf839
RO
1435backtrace:
1436 chopped_off++;
1437
1438 /* As zero don't change the child key (cindex) */
91b9a277 1439 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
19baf839 1440 chopped_off++;
19baf839
RO
1441
1442 /* Decrease current_... with bits chopped off */
1443 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1444 current_prefix_length = pn->pos + pn->bits - chopped_off;
91b9a277 1445
19baf839 1446 /*
c877efb2 1447 * Either we do the actual chop off according or if we have
19baf839
RO
1448 * chopped off all bits in this tnode walk up to our parent.
1449 */
1450
91b9a277 1451 if (chopped_off <= pn->bits) {
19baf839 1452 cindex &= ~(1 << (chopped_off-1));
91b9a277 1453 } else {
c877efb2 1454 if (NODE_PARENT(pn) == NULL)
19baf839 1455 goto failed;
91b9a277 1456
19baf839
RO
1457 /* Get Child's index */
1458 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1459 pn = NODE_PARENT(pn);
1460 chopped_off = 0;
1461
1462#ifdef CONFIG_IP_FIB_TRIE_STATS
1463 t->stats.backtrack++;
1464#endif
1465 goto backtrace;
c877efb2 1466 }
19baf839
RO
1467 }
1468failed:
c877efb2 1469 ret = 1;
19baf839 1470found:
2373ce1c 1471 rcu_read_unlock();
19baf839
RO
1472 return ret;
1473}
1474
2373ce1c 1475/* only called from updater side */
19baf839
RO
1476static int trie_leaf_remove(struct trie *t, t_key key)
1477{
1478 t_key cindex;
1479 struct tnode *tp = NULL;
1480 struct node *n = t->trie;
1481 struct leaf *l;
1482
0c7770c7 1483 pr_debug("entering trie_leaf_remove(%p)\n", n);
19baf839
RO
1484
1485 /* Note that in the case skipped bits, those bits are *not* checked!
c877efb2 1486 * When we finish this, we will have NULL or a T_LEAF, and the
19baf839
RO
1487 * T_LEAF may or may not match our key.
1488 */
1489
91b9a277 1490 while (n != NULL && IS_TNODE(n)) {
19baf839
RO
1491 struct tnode *tn = (struct tnode *) n;
1492 check_tnode(tn);
1493 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1494
0c7770c7 1495 BUG_ON(n && NODE_PARENT(n) != tn);
91b9a277 1496 }
19baf839
RO
1497 l = (struct leaf *) n;
1498
c877efb2 1499 if (!n || !tkey_equals(l->key, key))
19baf839 1500 return 0;
c877efb2
SH
1501
1502 /*
1503 * Key found.
1504 * Remove the leaf and rebalance the tree
19baf839
RO
1505 */
1506
1507 t->revision++;
1508 t->size--;
1509
2373ce1c 1510 preempt_disable();
19baf839
RO
1511 tp = NODE_PARENT(n);
1512 tnode_free((struct tnode *) n);
1513
c877efb2 1514 if (tp) {
19baf839
RO
1515 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1516 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1517 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1518 } else
2373ce1c
RO
1519 rcu_assign_pointer(t->trie, NULL);
1520 preempt_enable();
19baf839
RO
1521
1522 return 1;
1523}
1524
1525static int
1526fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
91b9a277 1527 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
19baf839
RO
1528{
1529 struct trie *t = (struct trie *) tb->tb_data;
1530 u32 key, mask;
1531 int plen = r->rtm_dst_len;
1532 u8 tos = r->rtm_tos;
1533 struct fib_alias *fa, *fa_to_delete;
1534 struct list_head *fa_head;
1535 struct leaf *l;
91b9a277
OJ
1536 struct leaf_info *li;
1537
19baf839 1538
c877efb2 1539 if (plen > 32)
19baf839
RO
1540 return -EINVAL;
1541
1542 key = 0;
c877efb2 1543 if (rta->rta_dst)
19baf839
RO
1544 memcpy(&key, rta->rta_dst, 4);
1545
1546 key = ntohl(key);
91b9a277 1547 mask = ntohl(inet_make_mask(plen));
19baf839 1548
c877efb2 1549 if (key & ~mask)
19baf839
RO
1550 return -EINVAL;
1551
1552 key = key & mask;
1553 l = fib_find_node(t, key);
1554
c877efb2 1555 if (!l)
19baf839
RO
1556 return -ESRCH;
1557
1558 fa_head = get_fa_head(l, plen);
1559 fa = fib_find_alias(fa_head, tos, 0);
1560
1561 if (!fa)
1562 return -ESRCH;
1563
0c7770c7 1564 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1565
1566 fa_to_delete = NULL;
1567 fa_head = fa->fa_list.prev;
2373ce1c 1568
19baf839
RO
1569 list_for_each_entry(fa, fa_head, fa_list) {
1570 struct fib_info *fi = fa->fa_info;
1571
1572 if (fa->fa_tos != tos)
1573 break;
1574
1575 if ((!r->rtm_type ||
1576 fa->fa_type == r->rtm_type) &&
1577 (r->rtm_scope == RT_SCOPE_NOWHERE ||
1578 fa->fa_scope == r->rtm_scope) &&
1579 (!r->rtm_protocol ||
1580 fi->fib_protocol == r->rtm_protocol) &&
1581 fib_nh_match(r, nlhdr, rta, fi) == 0) {
1582 fa_to_delete = fa;
1583 break;
1584 }
1585 }
1586
91b9a277
OJ
1587 if (!fa_to_delete)
1588 return -ESRCH;
19baf839 1589
91b9a277
OJ
1590 fa = fa_to_delete;
1591 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req);
1592
1593 l = fib_find_node(t, key);
772cb712 1594 li = find_leaf_info(l, plen);
19baf839 1595
2373ce1c 1596 list_del_rcu(&fa->fa_list);
19baf839 1597
91b9a277 1598 if (list_empty(fa_head)) {
2373ce1c 1599 hlist_del_rcu(&li->hlist);
91b9a277 1600 free_leaf_info(li);
2373ce1c 1601 }
19baf839 1602
91b9a277
OJ
1603 if (hlist_empty(&l->list))
1604 trie_leaf_remove(t, key);
19baf839 1605
91b9a277
OJ
1606 if (fa->fa_state & FA_S_ACCESSED)
1607 rt_cache_flush(-1);
19baf839 1608
2373ce1c
RO
1609 fib_release_info(fa->fa_info);
1610 alias_free_mem_rcu(fa);
91b9a277 1611 return 0;
19baf839
RO
1612}
1613
1614static int trie_flush_list(struct trie *t, struct list_head *head)
1615{
1616 struct fib_alias *fa, *fa_node;
1617 int found = 0;
1618
1619 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1620 struct fib_info *fi = fa->fa_info;
19baf839 1621
2373ce1c
RO
1622 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1623 list_del_rcu(&fa->fa_list);
1624 fib_release_info(fa->fa_info);
1625 alias_free_mem_rcu(fa);
19baf839
RO
1626 found++;
1627 }
1628 }
1629 return found;
1630}
1631
1632static int trie_flush_leaf(struct trie *t, struct leaf *l)
1633{
1634 int found = 0;
1635 struct hlist_head *lih = &l->list;
1636 struct hlist_node *node, *tmp;
1637 struct leaf_info *li = NULL;
1638
1639 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
19baf839
RO
1640 found += trie_flush_list(t, &li->falh);
1641
1642 if (list_empty(&li->falh)) {
2373ce1c 1643 hlist_del_rcu(&li->hlist);
19baf839
RO
1644 free_leaf_info(li);
1645 }
1646 }
1647 return found;
1648}
1649
2373ce1c
RO
1650/* rcu_read_lock needs to be hold by caller from readside */
1651
19baf839
RO
1652static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1653{
1654 struct node *c = (struct node *) thisleaf;
1655 struct tnode *p;
1656 int idx;
2373ce1c 1657 struct node *trie = rcu_dereference(t->trie);
19baf839 1658
c877efb2 1659 if (c == NULL) {
2373ce1c 1660 if (trie == NULL)
19baf839
RO
1661 return NULL;
1662
2373ce1c
RO
1663 if (IS_LEAF(trie)) /* trie w. just a leaf */
1664 return (struct leaf *) trie;
19baf839 1665
2373ce1c 1666 p = (struct tnode*) trie; /* Start */
91b9a277 1667 } else
19baf839 1668 p = (struct tnode *) NODE_PARENT(c);
c877efb2 1669
19baf839
RO
1670 while (p) {
1671 int pos, last;
1672
1673 /* Find the next child of the parent */
c877efb2
SH
1674 if (c)
1675 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1676 else
19baf839
RO
1677 pos = 0;
1678
1679 last = 1 << p->bits;
91b9a277 1680 for (idx = pos; idx < last ; idx++) {
2373ce1c
RO
1681 c = rcu_dereference(p->child[idx]);
1682
1683 if (!c)
91b9a277
OJ
1684 continue;
1685
1686 /* Decend if tnode */
2373ce1c
RO
1687 while (IS_TNODE(c)) {
1688 p = (struct tnode *) c;
1689 idx = 0;
91b9a277
OJ
1690
1691 /* Rightmost non-NULL branch */
1692 if (p && IS_TNODE(p))
2373ce1c
RO
1693 while (!(c = rcu_dereference(p->child[idx]))
1694 && idx < (1<<p->bits)) idx++;
91b9a277
OJ
1695
1696 /* Done with this tnode? */
2373ce1c 1697 if (idx >= (1 << p->bits) || !c)
91b9a277 1698 goto up;
19baf839 1699 }
2373ce1c 1700 return (struct leaf *) c;
19baf839
RO
1701 }
1702up:
1703 /* No more children go up one step */
91b9a277 1704 c = (struct node *) p;
19baf839
RO
1705 p = (struct tnode *) NODE_PARENT(p);
1706 }
1707 return NULL; /* Ready. Root of trie */
1708}
1709
1710static int fn_trie_flush(struct fib_table *tb)
1711{
1712 struct trie *t = (struct trie *) tb->tb_data;
1713 struct leaf *ll = NULL, *l = NULL;
1714 int found = 0, h;
1715
1716 t->revision++;
1717
91b9a277 1718 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1719 found += trie_flush_leaf(t, l);
1720
1721 if (ll && hlist_empty(&ll->list))
1722 trie_leaf_remove(t, ll->key);
1723 ll = l;
1724 }
1725
1726 if (ll && hlist_empty(&ll->list))
1727 trie_leaf_remove(t, ll->key);
1728
0c7770c7 1729 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1730 return found;
1731}
1732
91b9a277 1733static int trie_last_dflt = -1;
19baf839
RO
1734
1735static void
1736fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1737{
1738 struct trie *t = (struct trie *) tb->tb_data;
1739 int order, last_idx;
1740 struct fib_info *fi = NULL;
1741 struct fib_info *last_resort;
1742 struct fib_alias *fa = NULL;
1743 struct list_head *fa_head;
1744 struct leaf *l;
1745
1746 last_idx = -1;
1747 last_resort = NULL;
1748 order = -1;
1749
2373ce1c 1750 rcu_read_lock();
c877efb2 1751
19baf839 1752 l = fib_find_node(t, 0);
c877efb2 1753 if (!l)
19baf839
RO
1754 goto out;
1755
1756 fa_head = get_fa_head(l, 0);
c877efb2 1757 if (!fa_head)
19baf839
RO
1758 goto out;
1759
c877efb2 1760 if (list_empty(fa_head))
19baf839
RO
1761 goto out;
1762
2373ce1c 1763 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1764 struct fib_info *next_fi = fa->fa_info;
91b9a277 1765
19baf839
RO
1766 if (fa->fa_scope != res->scope ||
1767 fa->fa_type != RTN_UNICAST)
1768 continue;
91b9a277 1769
19baf839
RO
1770 if (next_fi->fib_priority > res->fi->fib_priority)
1771 break;
1772 if (!next_fi->fib_nh[0].nh_gw ||
1773 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1774 continue;
1775 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1776
19baf839
RO
1777 if (fi == NULL) {
1778 if (next_fi != res->fi)
1779 break;
1780 } else if (!fib_detect_death(fi, order, &last_resort,
1781 &last_idx, &trie_last_dflt)) {
1782 if (res->fi)
1783 fib_info_put(res->fi);
1784 res->fi = fi;
1785 atomic_inc(&fi->fib_clntref);
1786 trie_last_dflt = order;
1787 goto out;
1788 }
1789 fi = next_fi;
1790 order++;
1791 }
1792 if (order <= 0 || fi == NULL) {
1793 trie_last_dflt = -1;
1794 goto out;
1795 }
1796
1797 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1798 if (res->fi)
1799 fib_info_put(res->fi);
1800 res->fi = fi;
1801 atomic_inc(&fi->fib_clntref);
1802 trie_last_dflt = order;
1803 goto out;
1804 }
1805 if (last_idx >= 0) {
1806 if (res->fi)
1807 fib_info_put(res->fi);
1808 res->fi = last_resort;
1809 if (last_resort)
1810 atomic_inc(&last_resort->fib_clntref);
1811 }
1812 trie_last_dflt = last_idx;
1813 out:;
2373ce1c 1814 rcu_read_unlock();
19baf839
RO
1815}
1816
c877efb2 1817static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
19baf839
RO
1818 struct sk_buff *skb, struct netlink_callback *cb)
1819{
1820 int i, s_i;
1821 struct fib_alias *fa;
1822
91b9a277 1823 u32 xkey = htonl(key);
19baf839 1824
91b9a277 1825 s_i = cb->args[3];
19baf839
RO
1826 i = 0;
1827
2373ce1c
RO
1828 /* rcu_read_lock is hold by caller */
1829
1830 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1831 if (i < s_i) {
1832 i++;
1833 continue;
1834 }
78c6671a 1835 BUG_ON(!fa->fa_info);
19baf839
RO
1836
1837 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1838 cb->nlh->nlmsg_seq,
1839 RTM_NEWROUTE,
1840 tb->tb_id,
1841 fa->fa_type,
1842 fa->fa_scope,
1843 &xkey,
1844 plen,
1845 fa->fa_tos,
90f66914 1846 fa->fa_info, 0) < 0) {
19baf839
RO
1847 cb->args[3] = i;
1848 return -1;
91b9a277 1849 }
19baf839
RO
1850 i++;
1851 }
91b9a277 1852 cb->args[3] = i;
19baf839
RO
1853 return skb->len;
1854}
1855
c877efb2 1856static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
19baf839
RO
1857 struct netlink_callback *cb)
1858{
1859 int h, s_h;
1860 struct list_head *fa_head;
1861 struct leaf *l = NULL;
19baf839 1862
91b9a277 1863 s_h = cb->args[2];
19baf839 1864
91b9a277 1865 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1866 if (h < s_h)
1867 continue;
1868 if (h > s_h)
1869 memset(&cb->args[3], 0,
1870 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1871
1872 fa_head = get_fa_head(l, plen);
91b9a277 1873
c877efb2 1874 if (!fa_head)
19baf839
RO
1875 continue;
1876
c877efb2 1877 if (list_empty(fa_head))
19baf839
RO
1878 continue;
1879
1880 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
91b9a277 1881 cb->args[2] = h;
19baf839
RO
1882 return -1;
1883 }
1884 }
91b9a277 1885 cb->args[2] = h;
19baf839
RO
1886 return skb->len;
1887}
1888
1889static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1890{
1891 int m, s_m;
1892 struct trie *t = (struct trie *) tb->tb_data;
1893
1894 s_m = cb->args[1];
1895
2373ce1c 1896 rcu_read_lock();
91b9a277 1897 for (m = 0; m <= 32; m++) {
19baf839
RO
1898 if (m < s_m)
1899 continue;
1900 if (m > s_m)
1901 memset(&cb->args[2], 0,
91b9a277 1902 sizeof(cb->args) - 2*sizeof(cb->args[0]));
19baf839
RO
1903
1904 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1905 cb->args[1] = m;
1906 goto out;
1907 }
1908 }
2373ce1c 1909 rcu_read_unlock();
19baf839
RO
1910 cb->args[1] = m;
1911 return skb->len;
91b9a277 1912out:
2373ce1c 1913 rcu_read_unlock();
19baf839
RO
1914 return -1;
1915}
1916
1917/* Fix more generic FIB names for init later */
1918
1919#ifdef CONFIG_IP_MULTIPLE_TABLES
1920struct fib_table * fib_hash_init(int id)
1921#else
1922struct fib_table * __init fib_hash_init(int id)
1923#endif
1924{
1925 struct fib_table *tb;
1926 struct trie *t;
1927
1928 if (fn_alias_kmem == NULL)
1929 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1930 sizeof(struct fib_alias),
1931 0, SLAB_HWCACHE_ALIGN,
1932 NULL, NULL);
1933
1934 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1935 GFP_KERNEL);
1936 if (tb == NULL)
1937 return NULL;
1938
1939 tb->tb_id = id;
1940 tb->tb_lookup = fn_trie_lookup;
1941 tb->tb_insert = fn_trie_insert;
1942 tb->tb_delete = fn_trie_delete;
1943 tb->tb_flush = fn_trie_flush;
1944 tb->tb_select_default = fn_trie_select_default;
1945 tb->tb_dump = fn_trie_dump;
1946 memset(tb->tb_data, 0, sizeof(struct trie));
1947
1948 t = (struct trie *) tb->tb_data;
1949
1950 trie_init(t);
1951
c877efb2 1952 if (id == RT_TABLE_LOCAL)
91b9a277 1953 trie_local = t;
c877efb2 1954 else if (id == RT_TABLE_MAIN)
91b9a277 1955 trie_main = t;
19baf839
RO
1956
1957 if (id == RT_TABLE_LOCAL)
78c6671a 1958 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
1959
1960 return tb;
1961}
1962
cb7b593c
SH
1963#ifdef CONFIG_PROC_FS
1964/* Depth first Trie walk iterator */
1965struct fib_trie_iter {
1966 struct tnode *tnode;
1967 struct trie *trie;
1968 unsigned index;
1969 unsigned depth;
1970};
19baf839 1971
cb7b593c 1972static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1973{
cb7b593c
SH
1974 struct tnode *tn = iter->tnode;
1975 unsigned cindex = iter->index;
1976 struct tnode *p;
19baf839 1977
cb7b593c
SH
1978 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1979 iter->tnode, iter->index, iter->depth);
1980rescan:
1981 while (cindex < (1<<tn->bits)) {
1982 struct node *n = tnode_get_child(tn, cindex);
19baf839 1983
cb7b593c
SH
1984 if (n) {
1985 if (IS_LEAF(n)) {
1986 iter->tnode = tn;
1987 iter->index = cindex + 1;
1988 } else {
1989 /* push down one level */
1990 iter->tnode = (struct tnode *) n;
1991 iter->index = 0;
1992 ++iter->depth;
1993 }
1994 return n;
1995 }
19baf839 1996
cb7b593c
SH
1997 ++cindex;
1998 }
91b9a277 1999
cb7b593c
SH
2000 /* Current node exhausted, pop back up */
2001 p = NODE_PARENT(tn);
2002 if (p) {
2003 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2004 tn = p;
2005 --iter->depth;
2006 goto rescan;
19baf839 2007 }
cb7b593c
SH
2008
2009 /* got root? */
2010 return NULL;
19baf839
RO
2011}
2012
cb7b593c
SH
2013static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2014 struct trie *t)
19baf839 2015{
cb7b593c 2016 struct node *n = rcu_dereference(t->trie);
19baf839 2017
cb7b593c
SH
2018 if (n && IS_TNODE(n)) {
2019 iter->tnode = (struct tnode *) n;
2020 iter->trie = t;
2021 iter->index = 0;
1d25cd6c 2022 iter->depth = 1;
cb7b593c 2023 return n;
91b9a277 2024 }
cb7b593c
SH
2025 return NULL;
2026}
91b9a277 2027
cb7b593c
SH
2028static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2029{
2030 struct node *n;
2031 struct fib_trie_iter iter;
91b9a277 2032
cb7b593c 2033 memset(s, 0, sizeof(*s));
91b9a277 2034
cb7b593c
SH
2035 rcu_read_lock();
2036 for (n = fib_trie_get_first(&iter, t); n;
2037 n = fib_trie_get_next(&iter)) {
2038 if (IS_LEAF(n)) {
2039 s->leaves++;
2040 s->totdepth += iter.depth;
2041 if (iter.depth > s->maxdepth)
2042 s->maxdepth = iter.depth;
2043 } else {
2044 const struct tnode *tn = (const struct tnode *) n;
2045 int i;
2046
2047 s->tnodes++;
2048 s->nodesizes[tn->bits]++;
2049 for (i = 0; i < (1<<tn->bits); i++)
2050 if (!tn->child[i])
2051 s->nullpointers++;
19baf839 2052 }
19baf839 2053 }
2373ce1c 2054 rcu_read_unlock();
19baf839
RO
2055}
2056
cb7b593c
SH
2057/*
2058 * This outputs /proc/net/fib_triestats
2059 */
2060static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2061{
cb7b593c 2062 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2063
cb7b593c
SH
2064 if (stat->leaves)
2065 avdepth = stat->totdepth*100 / stat->leaves;
2066 else
2067 avdepth = 0;
91b9a277 2068
cb7b593c
SH
2069 seq_printf(seq, "\tAver depth: %d.%02d\n", avdepth / 100, avdepth % 100 );
2070 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2071
cb7b593c 2072 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
91b9a277 2073
cb7b593c
SH
2074 bytes = sizeof(struct leaf) * stat->leaves;
2075 seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes);
2076 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2077
cb7b593c
SH
2078 max = MAX_CHILDS-1;
2079 while (max >= 0 && stat->nodesizes[max] == 0)
2080 max--;
19baf839 2081
cb7b593c
SH
2082 pointers = 0;
2083 for (i = 1; i <= max; i++)
2084 if (stat->nodesizes[i] != 0) {
2085 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2086 pointers += (1<<i) * stat->nodesizes[i];
2087 }
2088 seq_putc(seq, '\n');
2089 seq_printf(seq, "\tPointers: %d\n", pointers);
2373ce1c 2090
cb7b593c
SH
2091 bytes += sizeof(struct node *) * pointers;
2092 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2093 seq_printf(seq, "Total size: %d kB\n", (bytes + 1023) / 1024);
2373ce1c 2094
cb7b593c
SH
2095#ifdef CONFIG_IP_FIB_TRIE_STATS
2096 seq_printf(seq, "Counters:\n---------\n");
2097 seq_printf(seq,"gets = %d\n", t->stats.gets);
2098 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2099 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2100 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2101 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2102 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2103#ifdef CLEAR_STATS
2104 memset(&(t->stats), 0, sizeof(t->stats));
2105#endif
2106#endif /* CONFIG_IP_FIB_TRIE_STATS */
2107}
19baf839 2108
cb7b593c
SH
2109static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2110{
2111 struct trie_stat *stat;
91b9a277 2112
cb7b593c
SH
2113 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2114 if (!stat)
2115 return -ENOMEM;
91b9a277 2116
cb7b593c
SH
2117 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2118 sizeof(struct leaf), sizeof(struct tnode));
91b9a277 2119
cb7b593c
SH
2120 if (trie_local) {
2121 seq_printf(seq, "Local:\n");
2122 trie_collect_stats(trie_local, stat);
2123 trie_show_stats(seq, stat);
2124 }
91b9a277 2125
cb7b593c
SH
2126 if (trie_main) {
2127 seq_printf(seq, "Main:\n");
2128 trie_collect_stats(trie_main, stat);
2129 trie_show_stats(seq, stat);
19baf839 2130 }
cb7b593c 2131 kfree(stat);
19baf839 2132
cb7b593c 2133 return 0;
19baf839
RO
2134}
2135
cb7b593c 2136static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2137{
cb7b593c 2138 return single_open(file, fib_triestat_seq_show, NULL);
19baf839
RO
2139}
2140
cb7b593c
SH
2141static struct file_operations fib_triestat_fops = {
2142 .owner = THIS_MODULE,
2143 .open = fib_triestat_seq_open,
2144 .read = seq_read,
2145 .llseek = seq_lseek,
2146 .release = single_release,
2147};
2148
2149static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2150 loff_t pos)
19baf839 2151{
cb7b593c
SH
2152 loff_t idx = 0;
2153 struct node *n;
2154
2155 for (n = fib_trie_get_first(iter, trie_local);
2156 n; ++idx, n = fib_trie_get_next(iter)) {
2157 if (pos == idx)
2158 return n;
2159 }
2160
2161 for (n = fib_trie_get_first(iter, trie_main);
2162 n; ++idx, n = fib_trie_get_next(iter)) {
2163 if (pos == idx)
2164 return n;
2165 }
19baf839
RO
2166 return NULL;
2167}
2168
cb7b593c 2169static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
19baf839 2170{
cb7b593c
SH
2171 rcu_read_lock();
2172 if (*pos == 0)
91b9a277 2173 return SEQ_START_TOKEN;
cb7b593c 2174 return fib_trie_get_idx(seq->private, *pos - 1);
19baf839
RO
2175}
2176
cb7b593c 2177static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2178{
cb7b593c
SH
2179 struct fib_trie_iter *iter = seq->private;
2180 void *l = v;
2181
19baf839 2182 ++*pos;
91b9a277 2183 if (v == SEQ_START_TOKEN)
cb7b593c 2184 return fib_trie_get_idx(iter, 0);
19baf839 2185
cb7b593c
SH
2186 v = fib_trie_get_next(iter);
2187 BUG_ON(v == l);
2188 if (v)
2189 return v;
19baf839 2190
cb7b593c
SH
2191 /* continue scan in next trie */
2192 if (iter->trie == trie_local)
2193 return fib_trie_get_first(iter, trie_main);
19baf839 2194
cb7b593c
SH
2195 return NULL;
2196}
19baf839 2197
cb7b593c 2198static void fib_trie_seq_stop(struct seq_file *seq, void *v)
19baf839 2199{
cb7b593c
SH
2200 rcu_read_unlock();
2201}
91b9a277 2202
cb7b593c
SH
2203static void seq_indent(struct seq_file *seq, int n)
2204{
2205 while (n-- > 0) seq_puts(seq, " ");
2206}
19baf839 2207
cb7b593c
SH
2208static inline const char *rtn_scope(enum rt_scope_t s)
2209{
2210 static char buf[32];
19baf839 2211
cb7b593c
SH
2212 switch(s) {
2213 case RT_SCOPE_UNIVERSE: return "universe";
2214 case RT_SCOPE_SITE: return "site";
2215 case RT_SCOPE_LINK: return "link";
2216 case RT_SCOPE_HOST: return "host";
2217 case RT_SCOPE_NOWHERE: return "nowhere";
2218 default:
2219 snprintf(buf, sizeof(buf), "scope=%d", s);
2220 return buf;
2221 }
2222}
19baf839 2223
cb7b593c
SH
2224static const char *rtn_type_names[__RTN_MAX] = {
2225 [RTN_UNSPEC] = "UNSPEC",
2226 [RTN_UNICAST] = "UNICAST",
2227 [RTN_LOCAL] = "LOCAL",
2228 [RTN_BROADCAST] = "BROADCAST",
2229 [RTN_ANYCAST] = "ANYCAST",
2230 [RTN_MULTICAST] = "MULTICAST",
2231 [RTN_BLACKHOLE] = "BLACKHOLE",
2232 [RTN_UNREACHABLE] = "UNREACHABLE",
2233 [RTN_PROHIBIT] = "PROHIBIT",
2234 [RTN_THROW] = "THROW",
2235 [RTN_NAT] = "NAT",
2236 [RTN_XRESOLVE] = "XRESOLVE",
2237};
19baf839 2238
cb7b593c
SH
2239static inline const char *rtn_type(unsigned t)
2240{
2241 static char buf[32];
19baf839 2242
cb7b593c
SH
2243 if (t < __RTN_MAX && rtn_type_names[t])
2244 return rtn_type_names[t];
2245 snprintf(buf, sizeof(buf), "type %d", t);
2246 return buf;
19baf839
RO
2247}
2248
cb7b593c
SH
2249/* Pretty print the trie */
2250static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2251{
cb7b593c
SH
2252 const struct fib_trie_iter *iter = seq->private;
2253 struct node *n = v;
c877efb2 2254
cb7b593c
SH
2255 if (v == SEQ_START_TOKEN)
2256 return 0;
19baf839 2257
cb7b593c
SH
2258 if (IS_TNODE(n)) {
2259 struct tnode *tn = (struct tnode *) n;
2260 t_key prf = ntohl(MASK_PFX(tn->key, tn->pos));
91b9a277 2261
cb7b593c
SH
2262 if (!NODE_PARENT(n)) {
2263 if (iter->trie == trie_local)
2264 seq_puts(seq, "<local>:\n");
2265 else
2266 seq_puts(seq, "<main>:\n");
1d25cd6c
RO
2267 }
2268 seq_indent(seq, iter->depth-1);
2269 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
2270 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2271 tn->empty_children);
2272
cb7b593c
SH
2273 } else {
2274 struct leaf *l = (struct leaf *) n;
2275 int i;
2276 u32 val = ntohl(l->key);
2277
2278 seq_indent(seq, iter->depth);
2279 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2280 for (i = 32; i >= 0; i--) {
772cb712 2281 struct leaf_info *li = find_leaf_info(l, i);
cb7b593c
SH
2282 if (li) {
2283 struct fib_alias *fa;
2284 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2285 seq_indent(seq, iter->depth+1);
2286 seq_printf(seq, " /%d %s %s", i,
2287 rtn_scope(fa->fa_scope),
2288 rtn_type(fa->fa_type));
2289 if (fa->fa_tos)
2290 seq_printf(seq, "tos =%d\n",
2291 fa->fa_tos);
2292 seq_putc(seq, '\n');
2293 }
2294 }
2295 }
19baf839 2296 }
cb7b593c 2297
19baf839
RO
2298 return 0;
2299}
2300
cb7b593c
SH
2301static struct seq_operations fib_trie_seq_ops = {
2302 .start = fib_trie_seq_start,
2303 .next = fib_trie_seq_next,
2304 .stop = fib_trie_seq_stop,
2305 .show = fib_trie_seq_show,
19baf839
RO
2306};
2307
cb7b593c 2308static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839
RO
2309{
2310 struct seq_file *seq;
2311 int rc = -ENOMEM;
cb7b593c 2312 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
19baf839 2313
cb7b593c
SH
2314 if (!s)
2315 goto out;
2316
2317 rc = seq_open(file, &fib_trie_seq_ops);
19baf839
RO
2318 if (rc)
2319 goto out_kfree;
2320
cb7b593c
SH
2321 seq = file->private_data;
2322 seq->private = s;
2323 memset(s, 0, sizeof(*s));
19baf839
RO
2324out:
2325 return rc;
2326out_kfree:
cb7b593c 2327 kfree(s);
19baf839
RO
2328 goto out;
2329}
2330
cb7b593c
SH
2331static struct file_operations fib_trie_fops = {
2332 .owner = THIS_MODULE,
2333 .open = fib_trie_seq_open,
2334 .read = seq_read,
2335 .llseek = seq_lseek,
c877efb2 2336 .release = seq_release_private,
19baf839
RO
2337};
2338
cb7b593c 2339static unsigned fib_flag_trans(int type, u32 mask, const struct fib_info *fi)
19baf839 2340{
cb7b593c
SH
2341 static unsigned type2flags[RTN_MAX + 1] = {
2342 [7] = RTF_REJECT, [8] = RTF_REJECT,
2343 };
2344 unsigned flags = type2flags[type];
19baf839 2345
cb7b593c
SH
2346 if (fi && fi->fib_nh->nh_gw)
2347 flags |= RTF_GATEWAY;
2348 if (mask == 0xFFFFFFFF)
2349 flags |= RTF_HOST;
2350 flags |= RTF_UP;
2351 return flags;
19baf839
RO
2352}
2353
cb7b593c
SH
2354/*
2355 * This outputs /proc/net/route.
2356 * The format of the file is not supposed to be changed
2357 * and needs to be same as fib_hash output to avoid breaking
2358 * legacy utilities
2359 */
2360static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2361{
cb7b593c
SH
2362 struct leaf *l = v;
2363 int i;
2364 char bf[128];
19baf839 2365
cb7b593c
SH
2366 if (v == SEQ_START_TOKEN) {
2367 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2368 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2369 "\tWindow\tIRTT");
2370 return 0;
2371 }
19baf839 2372
cb7b593c
SH
2373 if (IS_TNODE(l))
2374 return 0;
19baf839 2375
cb7b593c 2376 for (i=32; i>=0; i--) {
772cb712 2377 struct leaf_info *li = find_leaf_info(l, i);
cb7b593c
SH
2378 struct fib_alias *fa;
2379 u32 mask, prefix;
91b9a277 2380
cb7b593c
SH
2381 if (!li)
2382 continue;
19baf839 2383
cb7b593c
SH
2384 mask = inet_make_mask(li->plen);
2385 prefix = htonl(l->key);
19baf839 2386
cb7b593c
SH
2387 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2388 const struct fib_info *fi = rcu_dereference(fa->fa_info);
2389 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2390
cb7b593c
SH
2391 if (fa->fa_type == RTN_BROADCAST
2392 || fa->fa_type == RTN_MULTICAST)
2393 continue;
19baf839 2394
cb7b593c
SH
2395 if (fi)
2396 snprintf(bf, sizeof(bf),
2397 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2398 fi->fib_dev ? fi->fib_dev->name : "*",
2399 prefix,
2400 fi->fib_nh->nh_gw, flags, 0, 0,
2401 fi->fib_priority,
2402 mask,
2403 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2404 fi->fib_window,
2405 fi->fib_rtt >> 3);
2406 else
2407 snprintf(bf, sizeof(bf),
2408 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2409 prefix, 0, flags, 0, 0, 0,
2410 mask, 0, 0, 0);
19baf839 2411
cb7b593c
SH
2412 seq_printf(seq, "%-127s\n", bf);
2413 }
19baf839
RO
2414 }
2415
2416 return 0;
2417}
2418
cb7b593c
SH
2419static struct seq_operations fib_route_seq_ops = {
2420 .start = fib_trie_seq_start,
2421 .next = fib_trie_seq_next,
2422 .stop = fib_trie_seq_stop,
2423 .show = fib_route_seq_show,
19baf839
RO
2424};
2425
cb7b593c 2426static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839
RO
2427{
2428 struct seq_file *seq;
2429 int rc = -ENOMEM;
cb7b593c 2430 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
19baf839 2431
cb7b593c
SH
2432 if (!s)
2433 goto out;
2434
2435 rc = seq_open(file, &fib_route_seq_ops);
19baf839
RO
2436 if (rc)
2437 goto out_kfree;
2438
cb7b593c
SH
2439 seq = file->private_data;
2440 seq->private = s;
2441 memset(s, 0, sizeof(*s));
19baf839
RO
2442out:
2443 return rc;
2444out_kfree:
cb7b593c 2445 kfree(s);
19baf839
RO
2446 goto out;
2447}
2448
cb7b593c
SH
2449static struct file_operations fib_route_fops = {
2450 .owner = THIS_MODULE,
2451 .open = fib_route_seq_open,
2452 .read = seq_read,
2453 .llseek = seq_lseek,
2454 .release = seq_release_private,
19baf839
RO
2455};
2456
2457int __init fib_proc_init(void)
2458{
cb7b593c
SH
2459 if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops))
2460 goto out1;
2461
2462 if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops))
2463 goto out2;
2464
2465 if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops))
2466 goto out3;
2467
19baf839 2468 return 0;
cb7b593c
SH
2469
2470out3:
2471 proc_net_remove("fib_triestat");
2472out2:
2473 proc_net_remove("fib_trie");
2474out1:
2475 return -ENOMEM;
19baf839
RO
2476}
2477
2478void __init fib_proc_exit(void)
2479{
2480 proc_net_remove("fib_trie");
cb7b593c
SH
2481 proc_net_remove("fib_triestat");
2482 proc_net_remove("route");
19baf839
RO
2483}
2484
2485#endif /* CONFIG_PROC_FS */