]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/ipv4/fib_trie.c
rcu: convert uses of rcu_assign_pointer(x, NULL) to RCU_INIT_POINTER
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
5a0e3ad6 74#include <linux/slab.h>
70c71606 75#include <linux/prefetch.h>
457c4cbc 76#include <net/net_namespace.h>
19baf839
RO
77#include <net/ip.h>
78#include <net/protocol.h>
79#include <net/route.h>
80#include <net/tcp.h>
81#include <net/sock.h>
82#include <net/ip_fib.h>
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
19baf839 87#define KEYLENGTH (8*sizeof(t_key))
19baf839 88
19baf839
RO
89typedef unsigned int t_key;
90
91#define T_TNODE 0
92#define T_LEAF 1
93#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
94#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
91b9a277
OJ
96#define IS_TNODE(n) (!(n->parent & T_LEAF))
97#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839 98
b299e4f0 99struct rt_trie_node {
91b9a277 100 unsigned long parent;
8d965444 101 t_key key;
19baf839
RO
102};
103
104struct leaf {
91b9a277 105 unsigned long parent;
8d965444 106 t_key key;
19baf839 107 struct hlist_head list;
2373ce1c 108 struct rcu_head rcu;
19baf839
RO
109};
110
111struct leaf_info {
112 struct hlist_node hlist;
113 int plen;
5c74501f 114 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
19baf839 115 struct list_head falh;
5c74501f 116 struct rcu_head rcu;
19baf839
RO
117};
118
119struct tnode {
91b9a277 120 unsigned long parent;
8d965444 121 t_key key;
112d8cfc
ED
122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
124 unsigned int full_children; /* KEYLENGTH bits needed */
125 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
126 union {
127 struct rcu_head rcu;
128 struct work_struct work;
e0f7cb8c 129 struct tnode *tnode_free;
15be75cd 130 };
0a5c0475 131 struct rt_trie_node __rcu *child[0];
19baf839
RO
132};
133
134#ifdef CONFIG_IP_FIB_TRIE_STATS
135struct trie_use_stats {
136 unsigned int gets;
137 unsigned int backtrack;
138 unsigned int semantic_match_passed;
139 unsigned int semantic_match_miss;
140 unsigned int null_node_hit;
2f36895a 141 unsigned int resize_node_skipped;
19baf839
RO
142};
143#endif
144
145struct trie_stat {
146 unsigned int totdepth;
147 unsigned int maxdepth;
148 unsigned int tnodes;
149 unsigned int leaves;
150 unsigned int nullpointers;
93672292 151 unsigned int prefixes;
06ef921d 152 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 153};
19baf839
RO
154
155struct trie {
0a5c0475 156 struct rt_trie_node __rcu *trie;
19baf839
RO
157#ifdef CONFIG_IP_FIB_TRIE_STATS
158 struct trie_use_stats stats;
159#endif
19baf839
RO
160};
161
b299e4f0
DM
162static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
163static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 164 int wasfull);
b299e4f0 165static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
166static struct tnode *inflate(struct trie *t, struct tnode *tn);
167static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
168/* tnodes to free after resize(); protected by RTNL */
169static struct tnode *tnode_free_head;
c3059477
JP
170static size_t tnode_free_size;
171
172/*
173 * synchronize_rcu after call_rcu for that many pages; it should be especially
174 * useful before resizing the root node with PREEMPT_NONE configs; the value was
175 * obtained experimentally, aiming to avoid visible slowdown.
176 */
177static const int sync_pages = 128;
19baf839 178
e18b890b 179static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 180static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 181
0a5c0475
ED
182/*
183 * caller must hold RTNL
184 */
185static inline struct tnode *node_parent(const struct rt_trie_node *node)
06801916 186{
0a5c0475
ED
187 unsigned long parent;
188
189 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
190
191 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
b59cfbf7
ED
192}
193
0a5c0475
ED
194/*
195 * caller must hold RCU read lock or RTNL
196 */
197static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
b59cfbf7 198{
0a5c0475
ED
199 unsigned long parent;
200
201 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
202 lockdep_rtnl_is_held());
06801916 203
0a5c0475 204 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
06801916
SH
205}
206
a9b3cd7f 207/* Same as RCU_INIT_POINTER
6440cc9e
SH
208 * but that macro() assumes that value is a pointer.
209 */
b299e4f0 210static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
06801916 211{
6440cc9e
SH
212 smp_wmb();
213 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 214}
2373ce1c 215
0a5c0475
ED
216/*
217 * caller must hold RTNL
218 */
219static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
b59cfbf7
ED
220{
221 BUG_ON(i >= 1U << tn->bits);
2373ce1c 222
0a5c0475 223 return rtnl_dereference(tn->child[i]);
b59cfbf7
ED
224}
225
0a5c0475
ED
226/*
227 * caller must hold RCU read lock or RTNL
228 */
229static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
19baf839 230{
0a5c0475 231 BUG_ON(i >= 1U << tn->bits);
19baf839 232
0a5c0475 233 return rcu_dereference_rtnl(tn->child[i]);
19baf839
RO
234}
235
bb435b8d 236static inline int tnode_child_length(const struct tnode *tn)
19baf839 237{
91b9a277 238 return 1 << tn->bits;
19baf839
RO
239}
240
3b004569 241static inline t_key mask_pfx(t_key k, unsigned int l)
ab66b4a7
SH
242{
243 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
244}
245
3b004569 246static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
19baf839 247{
91b9a277 248 if (offset < KEYLENGTH)
19baf839 249 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 250 else
19baf839
RO
251 return 0;
252}
253
254static inline int tkey_equals(t_key a, t_key b)
255{
c877efb2 256 return a == b;
19baf839
RO
257}
258
259static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
260{
c877efb2
SH
261 if (bits == 0 || offset >= KEYLENGTH)
262 return 1;
91b9a277
OJ
263 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
264 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 265}
19baf839
RO
266
267static inline int tkey_mismatch(t_key a, int offset, t_key b)
268{
269 t_key diff = a ^ b;
270 int i = offset;
271
c877efb2
SH
272 if (!diff)
273 return 0;
274 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
275 i++;
276 return i;
277}
278
19baf839 279/*
e905a9ed
YH
280 To understand this stuff, an understanding of keys and all their bits is
281 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
282 all of the bits in that key are significant.
283
284 Consider a node 'n' and its parent 'tp'.
285
e905a9ed
YH
286 If n is a leaf, every bit in its key is significant. Its presence is
287 necessitated by path compression, since during a tree traversal (when
288 searching for a leaf - unless we are doing an insertion) we will completely
289 ignore all skipped bits we encounter. Thus we need to verify, at the end of
290 a potentially successful search, that we have indeed been walking the
19baf839
RO
291 correct key path.
292
e905a9ed
YH
293 Note that we can never "miss" the correct key in the tree if present by
294 following the wrong path. Path compression ensures that segments of the key
295 that are the same for all keys with a given prefix are skipped, but the
296 skipped part *is* identical for each node in the subtrie below the skipped
297 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
298 call to tkey_sub_equals() in trie_insert().
299
e905a9ed 300 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
301 have many different meanings.
302
e905a9ed 303 Example:
19baf839
RO
304 _________________________________________________________________
305 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
306 -----------------------------------------------------------------
e905a9ed 307 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
308
309 _________________________________________________________________
310 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
311 -----------------------------------------------------------------
312 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
313
314 tp->pos = 7
315 tp->bits = 3
316 n->pos = 15
91b9a277 317 n->bits = 4
19baf839 318
e905a9ed
YH
319 First, let's just ignore the bits that come before the parent tp, that is
320 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
321 not use them for anything.
322
323 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 324 index into the parent's child array. That is, they will be used to find
19baf839
RO
325 'n' among tp's children.
326
327 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
328 for the node n.
329
e905a9ed 330 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
331 of the bits are really not needed or indeed known in n->key.
332
e905a9ed 333 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 334 n's child array, and will of course be different for each child.
e905a9ed 335
c877efb2 336
19baf839
RO
337 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
338 at this point.
339
340*/
341
0c7770c7 342static inline void check_tnode(const struct tnode *tn)
19baf839 343{
0c7770c7 344 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
345}
346
f5026fab
DL
347static const int halve_threshold = 25;
348static const int inflate_threshold = 50;
345aa031 349static const int halve_threshold_root = 15;
80b71b80 350static const int inflate_threshold_root = 30;
2373ce1c
RO
351
352static void __alias_free_mem(struct rcu_head *head)
19baf839 353{
2373ce1c
RO
354 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
355 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
356}
357
2373ce1c 358static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 359{
2373ce1c
RO
360 call_rcu(&fa->rcu, __alias_free_mem);
361}
91b9a277 362
2373ce1c
RO
363static void __leaf_free_rcu(struct rcu_head *head)
364{
bc3c8c1e
SH
365 struct leaf *l = container_of(head, struct leaf, rcu);
366 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 367}
91b9a277 368
387a5487
SH
369static inline void free_leaf(struct leaf *l)
370{
371 call_rcu_bh(&l->rcu, __leaf_free_rcu);
372}
373
2373ce1c 374static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 375{
bceb0f45 376 kfree_rcu(leaf, rcu);
19baf839
RO
377}
378
8d965444 379static struct tnode *tnode_alloc(size_t size)
f0e36f8c 380{
2373ce1c 381 if (size <= PAGE_SIZE)
8d965444 382 return kzalloc(size, GFP_KERNEL);
15be75cd 383 else
7a1c8e5a 384 return vzalloc(size);
15be75cd 385}
2373ce1c 386
15be75cd
SH
387static void __tnode_vfree(struct work_struct *arg)
388{
389 struct tnode *tn = container_of(arg, struct tnode, work);
390 vfree(tn);
f0e36f8c
PM
391}
392
2373ce1c 393static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 394{
2373ce1c 395 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444 396 size_t size = sizeof(struct tnode) +
b299e4f0 397 (sizeof(struct rt_trie_node *) << tn->bits);
f0e36f8c
PM
398
399 if (size <= PAGE_SIZE)
400 kfree(tn);
15be75cd
SH
401 else {
402 INIT_WORK(&tn->work, __tnode_vfree);
403 schedule_work(&tn->work);
404 }
f0e36f8c
PM
405}
406
2373ce1c
RO
407static inline void tnode_free(struct tnode *tn)
408{
387a5487
SH
409 if (IS_LEAF(tn))
410 free_leaf((struct leaf *) tn);
411 else
550e29bc 412 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
413}
414
e0f7cb8c
JP
415static void tnode_free_safe(struct tnode *tn)
416{
417 BUG_ON(IS_LEAF(tn));
7b85576d
JP
418 tn->tnode_free = tnode_free_head;
419 tnode_free_head = tn;
c3059477 420 tnode_free_size += sizeof(struct tnode) +
b299e4f0 421 (sizeof(struct rt_trie_node *) << tn->bits);
e0f7cb8c
JP
422}
423
424static void tnode_free_flush(void)
425{
426 struct tnode *tn;
427
428 while ((tn = tnode_free_head)) {
429 tnode_free_head = tn->tnode_free;
430 tn->tnode_free = NULL;
431 tnode_free(tn);
432 }
c3059477
JP
433
434 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
435 tnode_free_size = 0;
436 synchronize_rcu();
437 }
e0f7cb8c
JP
438}
439
2373ce1c
RO
440static struct leaf *leaf_new(void)
441{
bc3c8c1e 442 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
443 if (l) {
444 l->parent = T_LEAF;
445 INIT_HLIST_HEAD(&l->list);
446 }
447 return l;
448}
449
450static struct leaf_info *leaf_info_new(int plen)
451{
452 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
453 if (li) {
454 li->plen = plen;
5c74501f 455 li->mask_plen = ntohl(inet_make_mask(plen));
2373ce1c
RO
456 INIT_LIST_HEAD(&li->falh);
457 }
458 return li;
459}
460
a07f5f50 461static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 462{
b299e4f0 463 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
f0e36f8c 464 struct tnode *tn = tnode_alloc(sz);
19baf839 465
91b9a277 466 if (tn) {
2373ce1c 467 tn->parent = T_TNODE;
19baf839
RO
468 tn->pos = pos;
469 tn->bits = bits;
470 tn->key = key;
471 tn->full_children = 0;
472 tn->empty_children = 1<<bits;
473 }
c877efb2 474
a034ee3c 475 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
b299e4f0 476 sizeof(struct rt_trie_node) << bits);
19baf839
RO
477 return tn;
478}
479
19baf839
RO
480/*
481 * Check whether a tnode 'n' is "full", i.e. it is an internal node
482 * and no bits are skipped. See discussion in dyntree paper p. 6
483 */
484
b299e4f0 485static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
19baf839 486{
c877efb2 487 if (n == NULL || IS_LEAF(n))
19baf839
RO
488 return 0;
489
490 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
491}
492
a07f5f50 493static inline void put_child(struct trie *t, struct tnode *tn, int i,
b299e4f0 494 struct rt_trie_node *n)
19baf839
RO
495{
496 tnode_put_child_reorg(tn, i, n, -1);
497}
498
c877efb2 499 /*
19baf839
RO
500 * Add a child at position i overwriting the old value.
501 * Update the value of full_children and empty_children.
502 */
503
b299e4f0 504static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 505 int wasfull)
19baf839 506{
0a5c0475 507 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
19baf839
RO
508 int isfull;
509
0c7770c7
SH
510 BUG_ON(i >= 1<<tn->bits);
511
19baf839
RO
512 /* update emptyChildren */
513 if (n == NULL && chi != NULL)
514 tn->empty_children++;
515 else if (n != NULL && chi == NULL)
516 tn->empty_children--;
c877efb2 517
19baf839 518 /* update fullChildren */
91b9a277 519 if (wasfull == -1)
19baf839
RO
520 wasfull = tnode_full(tn, chi);
521
522 isfull = tnode_full(tn, n);
c877efb2 523 if (wasfull && !isfull)
19baf839 524 tn->full_children--;
c877efb2 525 else if (!wasfull && isfull)
19baf839 526 tn->full_children++;
91b9a277 527
c877efb2 528 if (n)
06801916 529 node_set_parent(n, tn);
19baf839 530
a9b3cd7f 531 RCU_INIT_POINTER(tn->child[i], n);
19baf839
RO
532}
533
80b71b80 534#define MAX_WORK 10
b299e4f0 535static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
536{
537 int i;
2f80b3c8 538 struct tnode *old_tn;
e6308be8
RO
539 int inflate_threshold_use;
540 int halve_threshold_use;
80b71b80 541 int max_work;
19baf839 542
e905a9ed 543 if (!tn)
19baf839
RO
544 return NULL;
545
0c7770c7
SH
546 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
547 tn, inflate_threshold, halve_threshold);
19baf839
RO
548
549 /* No children */
550 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 551 tnode_free_safe(tn);
19baf839
RO
552 return NULL;
553 }
554 /* One child */
555 if (tn->empty_children == tnode_child_length(tn) - 1)
80b71b80 556 goto one_child;
c877efb2 557 /*
19baf839
RO
558 * Double as long as the resulting node has a number of
559 * nonempty nodes that are above the threshold.
560 */
561
562 /*
c877efb2
SH
563 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
564 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 565 * Telecommunications, page 6:
c877efb2 566 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
567 * children in the *doubled* node is at least 'high'."
568 *
c877efb2
SH
569 * 'high' in this instance is the variable 'inflate_threshold'. It
570 * is expressed as a percentage, so we multiply it with
571 * tnode_child_length() and instead of multiplying by 2 (since the
572 * child array will be doubled by inflate()) and multiplying
573 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 574 * multiply the left-hand side by 50.
c877efb2
SH
575 *
576 * The left-hand side may look a bit weird: tnode_child_length(tn)
577 * - tn->empty_children is of course the number of non-null children
578 * in the current node. tn->full_children is the number of "full"
19baf839 579 * children, that is non-null tnodes with a skip value of 0.
c877efb2 580 * All of those will be doubled in the resulting inflated tnode, so
19baf839 581 * we just count them one extra time here.
c877efb2 582 *
19baf839 583 * A clearer way to write this would be:
c877efb2 584 *
19baf839 585 * to_be_doubled = tn->full_children;
c877efb2 586 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
587 * tn->full_children;
588 *
589 * new_child_length = tnode_child_length(tn) * 2;
590 *
c877efb2 591 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
592 * new_child_length;
593 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
594 *
595 * ...and so on, tho it would mess up the while () loop.
596 *
19baf839
RO
597 * anyway,
598 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
599 * inflate_threshold
c877efb2 600 *
19baf839
RO
601 * avoid a division:
602 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
603 * inflate_threshold * new_child_length
c877efb2 604 *
19baf839 605 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 606 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 607 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 608 *
19baf839 609 * expand new_child_length:
c877efb2 610 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 611 * tn->full_children) >=
19baf839 612 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 613 *
19baf839 614 * shorten again:
c877efb2 615 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 616 * tn->empty_children) >= inflate_threshold *
19baf839 617 * tnode_child_length(tn)
c877efb2 618 *
19baf839
RO
619 */
620
621 check_tnode(tn);
c877efb2 622
e6308be8
RO
623 /* Keep root node larger */
624
b299e4f0 625 if (!node_parent((struct rt_trie_node *)tn)) {
80b71b80
JL
626 inflate_threshold_use = inflate_threshold_root;
627 halve_threshold_use = halve_threshold_root;
a034ee3c 628 } else {
e6308be8 629 inflate_threshold_use = inflate_threshold;
80b71b80
JL
630 halve_threshold_use = halve_threshold;
631 }
e6308be8 632
80b71b80
JL
633 max_work = MAX_WORK;
634 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
635 50 * (tn->full_children + tnode_child_length(tn)
636 - tn->empty_children)
637 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 638
2f80b3c8
RO
639 old_tn = tn;
640 tn = inflate(t, tn);
a07f5f50 641
2f80b3c8
RO
642 if (IS_ERR(tn)) {
643 tn = old_tn;
2f36895a
RO
644#ifdef CONFIG_IP_FIB_TRIE_STATS
645 t->stats.resize_node_skipped++;
646#endif
647 break;
648 }
19baf839
RO
649 }
650
651 check_tnode(tn);
652
80b71b80 653 /* Return if at least one inflate is run */
a034ee3c 654 if (max_work != MAX_WORK)
b299e4f0 655 return (struct rt_trie_node *) tn;
80b71b80 656
19baf839
RO
657 /*
658 * Halve as long as the number of empty children in this
659 * node is above threshold.
660 */
2f36895a 661
80b71b80
JL
662 max_work = MAX_WORK;
663 while (tn->bits > 1 && max_work-- &&
19baf839 664 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 665 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 666
2f80b3c8
RO
667 old_tn = tn;
668 tn = halve(t, tn);
669 if (IS_ERR(tn)) {
670 tn = old_tn;
2f36895a
RO
671#ifdef CONFIG_IP_FIB_TRIE_STATS
672 t->stats.resize_node_skipped++;
673#endif
674 break;
675 }
676 }
19baf839 677
c877efb2 678
19baf839 679 /* Only one child remains */
80b71b80
JL
680 if (tn->empty_children == tnode_child_length(tn) - 1) {
681one_child:
19baf839 682 for (i = 0; i < tnode_child_length(tn); i++) {
b299e4f0 683 struct rt_trie_node *n;
19baf839 684
0a5c0475 685 n = rtnl_dereference(tn->child[i]);
2373ce1c 686 if (!n)
91b9a277 687 continue;
91b9a277
OJ
688
689 /* compress one level */
690
06801916 691 node_set_parent(n, NULL);
e0f7cb8c 692 tnode_free_safe(tn);
91b9a277 693 return n;
19baf839 694 }
80b71b80 695 }
b299e4f0 696 return (struct rt_trie_node *) tn;
19baf839
RO
697}
698
0a5c0475
ED
699
700static void tnode_clean_free(struct tnode *tn)
701{
702 int i;
703 struct tnode *tofree;
704
705 for (i = 0; i < tnode_child_length(tn); i++) {
706 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
707 if (tofree)
708 tnode_free(tofree);
709 }
710 tnode_free(tn);
711}
712
2f80b3c8 713static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 714{
19baf839
RO
715 struct tnode *oldtnode = tn;
716 int olen = tnode_child_length(tn);
717 int i;
718
0c7770c7 719 pr_debug("In inflate\n");
19baf839
RO
720
721 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
722
0c7770c7 723 if (!tn)
2f80b3c8 724 return ERR_PTR(-ENOMEM);
2f36895a
RO
725
726 /*
c877efb2
SH
727 * Preallocate and store tnodes before the actual work so we
728 * don't get into an inconsistent state if memory allocation
729 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
730 * of tnode is ignored.
731 */
91b9a277
OJ
732
733 for (i = 0; i < olen; i++) {
a07f5f50 734 struct tnode *inode;
2f36895a 735
a07f5f50 736 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
737 if (inode &&
738 IS_TNODE(inode) &&
739 inode->pos == oldtnode->pos + oldtnode->bits &&
740 inode->bits > 1) {
741 struct tnode *left, *right;
ab66b4a7 742 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 743
2f36895a
RO
744 left = tnode_new(inode->key&(~m), inode->pos + 1,
745 inode->bits - 1);
2f80b3c8
RO
746 if (!left)
747 goto nomem;
91b9a277 748
2f36895a
RO
749 right = tnode_new(inode->key|m, inode->pos + 1,
750 inode->bits - 1);
751
e905a9ed 752 if (!right) {
2f80b3c8
RO
753 tnode_free(left);
754 goto nomem;
e905a9ed 755 }
2f36895a 756
b299e4f0
DM
757 put_child(t, tn, 2*i, (struct rt_trie_node *) left);
758 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
2f36895a
RO
759 }
760 }
761
91b9a277 762 for (i = 0; i < olen; i++) {
c95aaf9a 763 struct tnode *inode;
b299e4f0 764 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
765 struct tnode *left, *right;
766 int size, j;
c877efb2 767
19baf839
RO
768 /* An empty child */
769 if (node == NULL)
770 continue;
771
772 /* A leaf or an internal node with skipped bits */
773
c877efb2 774 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 775 tn->pos + tn->bits - 1) {
a07f5f50
SH
776 if (tkey_extract_bits(node->key,
777 oldtnode->pos + oldtnode->bits,
778 1) == 0)
19baf839
RO
779 put_child(t, tn, 2*i, node);
780 else
781 put_child(t, tn, 2*i+1, node);
782 continue;
783 }
784
785 /* An internal node with two children */
786 inode = (struct tnode *) node;
787
788 if (inode->bits == 1) {
0a5c0475
ED
789 put_child(t, tn, 2*i, rtnl_dereference(inode->child[0]));
790 put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1]));
19baf839 791
e0f7cb8c 792 tnode_free_safe(inode);
91b9a277 793 continue;
19baf839
RO
794 }
795
91b9a277
OJ
796 /* An internal node with more than two children */
797
798 /* We will replace this node 'inode' with two new
799 * ones, 'left' and 'right', each with half of the
800 * original children. The two new nodes will have
801 * a position one bit further down the key and this
802 * means that the "significant" part of their keys
803 * (see the discussion near the top of this file)
804 * will differ by one bit, which will be "0" in
805 * left's key and "1" in right's key. Since we are
806 * moving the key position by one step, the bit that
807 * we are moving away from - the bit at position
808 * (inode->pos) - is the one that will differ between
809 * left and right. So... we synthesize that bit in the
810 * two new keys.
811 * The mask 'm' below will be a single "one" bit at
812 * the position (inode->pos)
813 */
19baf839 814
91b9a277
OJ
815 /* Use the old key, but set the new significant
816 * bit to zero.
817 */
2f36895a 818
91b9a277
OJ
819 left = (struct tnode *) tnode_get_child(tn, 2*i);
820 put_child(t, tn, 2*i, NULL);
2f36895a 821
91b9a277 822 BUG_ON(!left);
2f36895a 823
91b9a277
OJ
824 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
825 put_child(t, tn, 2*i+1, NULL);
19baf839 826
91b9a277 827 BUG_ON(!right);
19baf839 828
91b9a277
OJ
829 size = tnode_child_length(left);
830 for (j = 0; j < size; j++) {
0a5c0475
ED
831 put_child(t, left, j, rtnl_dereference(inode->child[j]));
832 put_child(t, right, j, rtnl_dereference(inode->child[j + size]));
19baf839 833 }
91b9a277
OJ
834 put_child(t, tn, 2*i, resize(t, left));
835 put_child(t, tn, 2*i+1, resize(t, right));
836
e0f7cb8c 837 tnode_free_safe(inode);
19baf839 838 }
e0f7cb8c 839 tnode_free_safe(oldtnode);
19baf839 840 return tn;
2f80b3c8 841nomem:
0a5c0475
ED
842 tnode_clean_free(tn);
843 return ERR_PTR(-ENOMEM);
19baf839
RO
844}
845
2f80b3c8 846static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
847{
848 struct tnode *oldtnode = tn;
b299e4f0 849 struct rt_trie_node *left, *right;
19baf839
RO
850 int i;
851 int olen = tnode_child_length(tn);
852
0c7770c7 853 pr_debug("In halve\n");
c877efb2
SH
854
855 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 856
2f80b3c8
RO
857 if (!tn)
858 return ERR_PTR(-ENOMEM);
2f36895a
RO
859
860 /*
c877efb2
SH
861 * Preallocate and store tnodes before the actual work so we
862 * don't get into an inconsistent state if memory allocation
863 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
864 * of tnode is ignored.
865 */
866
91b9a277 867 for (i = 0; i < olen; i += 2) {
2f36895a
RO
868 left = tnode_get_child(oldtnode, i);
869 right = tnode_get_child(oldtnode, i+1);
c877efb2 870
2f36895a 871 /* Two nonempty children */
0c7770c7 872 if (left && right) {
2f80b3c8 873 struct tnode *newn;
0c7770c7 874
2f80b3c8 875 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
876
877 if (!newn)
2f80b3c8 878 goto nomem;
0c7770c7 879
b299e4f0 880 put_child(t, tn, i/2, (struct rt_trie_node *)newn);
2f36895a 881 }
2f36895a 882
2f36895a 883 }
19baf839 884
91b9a277
OJ
885 for (i = 0; i < olen; i += 2) {
886 struct tnode *newBinNode;
887
19baf839
RO
888 left = tnode_get_child(oldtnode, i);
889 right = tnode_get_child(oldtnode, i+1);
c877efb2 890
19baf839
RO
891 /* At least one of the children is empty */
892 if (left == NULL) {
893 if (right == NULL) /* Both are empty */
894 continue;
895 put_child(t, tn, i/2, right);
91b9a277 896 continue;
0c7770c7 897 }
91b9a277
OJ
898
899 if (right == NULL) {
19baf839 900 put_child(t, tn, i/2, left);
91b9a277
OJ
901 continue;
902 }
c877efb2 903
19baf839 904 /* Two nonempty children */
91b9a277
OJ
905 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
906 put_child(t, tn, i/2, NULL);
91b9a277
OJ
907 put_child(t, newBinNode, 0, left);
908 put_child(t, newBinNode, 1, right);
909 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839 910 }
e0f7cb8c 911 tnode_free_safe(oldtnode);
19baf839 912 return tn;
2f80b3c8 913nomem:
0a5c0475
ED
914 tnode_clean_free(tn);
915 return ERR_PTR(-ENOMEM);
19baf839
RO
916}
917
772cb712 918/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
919 via get_fa_head and dump */
920
772cb712 921static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 922{
772cb712 923 struct hlist_head *head = &l->list;
19baf839
RO
924 struct hlist_node *node;
925 struct leaf_info *li;
926
2373ce1c 927 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 928 if (li->plen == plen)
19baf839 929 return li;
91b9a277 930
19baf839
RO
931 return NULL;
932}
933
a07f5f50 934static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 935{
772cb712 936 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 937
91b9a277
OJ
938 if (!li)
939 return NULL;
c877efb2 940
91b9a277 941 return &li->falh;
19baf839
RO
942}
943
944static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
945{
e905a9ed
YH
946 struct leaf_info *li = NULL, *last = NULL;
947 struct hlist_node *node;
948
949 if (hlist_empty(head)) {
950 hlist_add_head_rcu(&new->hlist, head);
951 } else {
952 hlist_for_each_entry(li, node, head, hlist) {
953 if (new->plen > li->plen)
954 break;
955
956 last = li;
957 }
958 if (last)
959 hlist_add_after_rcu(&last->hlist, &new->hlist);
960 else
961 hlist_add_before_rcu(&new->hlist, &li->hlist);
962 }
19baf839
RO
963}
964
2373ce1c
RO
965/* rcu_read_lock needs to be hold by caller from readside */
966
19baf839
RO
967static struct leaf *
968fib_find_node(struct trie *t, u32 key)
969{
970 int pos;
971 struct tnode *tn;
b299e4f0 972 struct rt_trie_node *n;
19baf839
RO
973
974 pos = 0;
a034ee3c 975 n = rcu_dereference_rtnl(t->trie);
19baf839
RO
976
977 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
978 tn = (struct tnode *) n;
91b9a277 979
19baf839 980 check_tnode(tn);
91b9a277 981
c877efb2 982 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 983 pos = tn->pos + tn->bits;
a07f5f50
SH
984 n = tnode_get_child_rcu(tn,
985 tkey_extract_bits(key,
986 tn->pos,
987 tn->bits));
91b9a277 988 } else
19baf839
RO
989 break;
990 }
991 /* Case we have found a leaf. Compare prefixes */
992
91b9a277
OJ
993 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
994 return (struct leaf *)n;
995
19baf839
RO
996 return NULL;
997}
998
7b85576d 999static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 1000{
19baf839 1001 int wasfull;
3ed18d76 1002 t_key cindex, key;
06801916 1003 struct tnode *tp;
19baf839 1004
3ed18d76
RO
1005 key = tn->key;
1006
b299e4f0 1007 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
19baf839
RO
1008 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1009 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
1010 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1011
1012 tnode_put_child_reorg((struct tnode *)tp, cindex,
b299e4f0 1013 (struct rt_trie_node *)tn, wasfull);
91b9a277 1014
b299e4f0 1015 tp = node_parent((struct rt_trie_node *) tn);
008440e3 1016 if (!tp)
a9b3cd7f 1017 RCU_INIT_POINTER(t->trie, (struct rt_trie_node *)tn);
008440e3 1018
e0f7cb8c 1019 tnode_free_flush();
06801916 1020 if (!tp)
19baf839 1021 break;
06801916 1022 tn = tp;
19baf839 1023 }
06801916 1024
19baf839 1025 /* Handle last (top) tnode */
7b85576d 1026 if (IS_TNODE(tn))
a07f5f50 1027 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1028
a9b3cd7f 1029 RCU_INIT_POINTER(t->trie, (struct rt_trie_node *)tn);
7b85576d 1030 tnode_free_flush();
19baf839
RO
1031}
1032
2373ce1c
RO
1033/* only used from updater-side */
1034
fea86ad8 1035static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1036{
1037 int pos, newpos;
1038 struct tnode *tp = NULL, *tn = NULL;
b299e4f0 1039 struct rt_trie_node *n;
19baf839
RO
1040 struct leaf *l;
1041 int missbit;
c877efb2 1042 struct list_head *fa_head = NULL;
19baf839
RO
1043 struct leaf_info *li;
1044 t_key cindex;
1045
1046 pos = 0;
0a5c0475 1047 n = rtnl_dereference(t->trie);
19baf839 1048
c877efb2
SH
1049 /* If we point to NULL, stop. Either the tree is empty and we should
1050 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1051 * and we should just put our new leaf in that.
c877efb2
SH
1052 * If we point to a T_TNODE, check if it matches our key. Note that
1053 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1054 * not be the parent's 'pos'+'bits'!
1055 *
c877efb2 1056 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1057 * the index from our key, push the T_TNODE and walk the tree.
1058 *
1059 * If it doesn't, we have to replace it with a new T_TNODE.
1060 *
c877efb2
SH
1061 * If we point to a T_LEAF, it might or might not have the same key
1062 * as we do. If it does, just change the value, update the T_LEAF's
1063 * value, and return it.
19baf839
RO
1064 * If it doesn't, we need to replace it with a T_TNODE.
1065 */
1066
1067 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1068 tn = (struct tnode *) n;
91b9a277 1069
c877efb2 1070 check_tnode(tn);
91b9a277 1071
c877efb2 1072 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1073 tp = tn;
91b9a277 1074 pos = tn->pos + tn->bits;
a07f5f50
SH
1075 n = tnode_get_child(tn,
1076 tkey_extract_bits(key,
1077 tn->pos,
1078 tn->bits));
19baf839 1079
06801916 1080 BUG_ON(n && node_parent(n) != tn);
91b9a277 1081 } else
19baf839
RO
1082 break;
1083 }
1084
1085 /*
1086 * n ----> NULL, LEAF or TNODE
1087 *
c877efb2 1088 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1089 */
1090
91b9a277 1091 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1092
1093 /* Case 1: n is a leaf. Compare prefixes */
1094
c877efb2 1095 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1096 l = (struct leaf *) n;
19baf839 1097 li = leaf_info_new(plen);
91b9a277 1098
fea86ad8
SH
1099 if (!li)
1100 return NULL;
19baf839
RO
1101
1102 fa_head = &li->falh;
1103 insert_leaf_info(&l->list, li);
1104 goto done;
1105 }
19baf839
RO
1106 l = leaf_new();
1107
fea86ad8
SH
1108 if (!l)
1109 return NULL;
19baf839
RO
1110
1111 l->key = key;
1112 li = leaf_info_new(plen);
1113
c877efb2 1114 if (!li) {
387a5487 1115 free_leaf(l);
fea86ad8 1116 return NULL;
f835e471 1117 }
19baf839
RO
1118
1119 fa_head = &li->falh;
1120 insert_leaf_info(&l->list, li);
1121
19baf839 1122 if (t->trie && n == NULL) {
91b9a277 1123 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1124
b299e4f0 1125 node_set_parent((struct rt_trie_node *)l, tp);
19baf839 1126
91b9a277 1127 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
b299e4f0 1128 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
91b9a277
OJ
1129 } else {
1130 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1131 /*
1132 * Add a new tnode here
19baf839
RO
1133 * first tnode need some special handling
1134 */
1135
1136 if (tp)
91b9a277 1137 pos = tp->pos+tp->bits;
19baf839 1138 else
91b9a277
OJ
1139 pos = 0;
1140
c877efb2 1141 if (n) {
19baf839
RO
1142 newpos = tkey_mismatch(key, pos, n->key);
1143 tn = tnode_new(n->key, newpos, 1);
91b9a277 1144 } else {
19baf839 1145 newpos = 0;
c877efb2 1146 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1147 }
19baf839 1148
c877efb2 1149 if (!tn) {
f835e471 1150 free_leaf_info(li);
387a5487 1151 free_leaf(l);
fea86ad8 1152 return NULL;
91b9a277
OJ
1153 }
1154
b299e4f0 1155 node_set_parent((struct rt_trie_node *)tn, tp);
19baf839 1156
91b9a277 1157 missbit = tkey_extract_bits(key, newpos, 1);
b299e4f0 1158 put_child(t, tn, missbit, (struct rt_trie_node *)l);
19baf839
RO
1159 put_child(t, tn, 1-missbit, n);
1160
c877efb2 1161 if (tp) {
19baf839 1162 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50 1163 put_child(t, (struct tnode *)tp, cindex,
b299e4f0 1164 (struct rt_trie_node *)tn);
91b9a277 1165 } else {
a9b3cd7f 1166 RCU_INIT_POINTER(t->trie, (struct rt_trie_node *)tn);
19baf839
RO
1167 tp = tn;
1168 }
1169 }
91b9a277
OJ
1170
1171 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1172 pr_warning("fib_trie"
1173 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1174 tp, tp->pos, tp->bits, key, plen);
91b9a277 1175
19baf839 1176 /* Rebalance the trie */
2373ce1c 1177
7b85576d 1178 trie_rebalance(t, tp);
f835e471 1179done:
19baf839
RO
1180 return fa_head;
1181}
1182
d562f1f8
RO
1183/*
1184 * Caller must hold RTNL.
1185 */
16c6cf8b 1186int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1187{
1188 struct trie *t = (struct trie *) tb->tb_data;
1189 struct fib_alias *fa, *new_fa;
c877efb2 1190 struct list_head *fa_head = NULL;
19baf839 1191 struct fib_info *fi;
4e902c57
TG
1192 int plen = cfg->fc_dst_len;
1193 u8 tos = cfg->fc_tos;
19baf839
RO
1194 u32 key, mask;
1195 int err;
1196 struct leaf *l;
1197
1198 if (plen > 32)
1199 return -EINVAL;
1200
4e902c57 1201 key = ntohl(cfg->fc_dst);
19baf839 1202
2dfe55b4 1203 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1204
91b9a277 1205 mask = ntohl(inet_make_mask(plen));
19baf839 1206
c877efb2 1207 if (key & ~mask)
19baf839
RO
1208 return -EINVAL;
1209
1210 key = key & mask;
1211
4e902c57
TG
1212 fi = fib_create_info(cfg);
1213 if (IS_ERR(fi)) {
1214 err = PTR_ERR(fi);
19baf839 1215 goto err;
4e902c57 1216 }
19baf839
RO
1217
1218 l = fib_find_node(t, key);
c877efb2 1219 fa = NULL;
19baf839 1220
c877efb2 1221 if (l) {
19baf839
RO
1222 fa_head = get_fa_head(l, plen);
1223 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1224 }
1225
1226 /* Now fa, if non-NULL, points to the first fib alias
1227 * with the same keys [prefix,tos,priority], if such key already
1228 * exists or to the node before which we will insert new one.
1229 *
1230 * If fa is NULL, we will need to allocate a new one and
1231 * insert to the head of f.
1232 *
1233 * If f is NULL, no fib node matched the destination key
1234 * and we need to allocate a new one of those as well.
1235 */
1236
936f6f8e
JA
1237 if (fa && fa->fa_tos == tos &&
1238 fa->fa_info->fib_priority == fi->fib_priority) {
1239 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1240
1241 err = -EEXIST;
4e902c57 1242 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1243 goto out;
1244
936f6f8e
JA
1245 /* We have 2 goals:
1246 * 1. Find exact match for type, scope, fib_info to avoid
1247 * duplicate routes
1248 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1249 */
1250 fa_match = NULL;
1251 fa_first = fa;
1252 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1253 list_for_each_entry_continue(fa, fa_head, fa_list) {
1254 if (fa->fa_tos != tos)
1255 break;
1256 if (fa->fa_info->fib_priority != fi->fib_priority)
1257 break;
1258 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1259 fa->fa_info == fi) {
1260 fa_match = fa;
1261 break;
1262 }
1263 }
1264
4e902c57 1265 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1266 struct fib_info *fi_drop;
1267 u8 state;
1268
936f6f8e
JA
1269 fa = fa_first;
1270 if (fa_match) {
1271 if (fa == fa_match)
1272 err = 0;
6725033f 1273 goto out;
936f6f8e 1274 }
2373ce1c 1275 err = -ENOBUFS;
e94b1766 1276 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1277 if (new_fa == NULL)
1278 goto out;
19baf839
RO
1279
1280 fi_drop = fa->fa_info;
2373ce1c
RO
1281 new_fa->fa_tos = fa->fa_tos;
1282 new_fa->fa_info = fi;
4e902c57 1283 new_fa->fa_type = cfg->fc_type;
19baf839 1284 state = fa->fa_state;
936f6f8e 1285 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1286
2373ce1c
RO
1287 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1288 alias_free_mem_rcu(fa);
19baf839
RO
1289
1290 fib_release_info(fi_drop);
1291 if (state & FA_S_ACCESSED)
76e6ebfb 1292 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1293 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1294 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1295
91b9a277 1296 goto succeeded;
19baf839
RO
1297 }
1298 /* Error if we find a perfect match which
1299 * uses the same scope, type, and nexthop
1300 * information.
1301 */
936f6f8e
JA
1302 if (fa_match)
1303 goto out;
a07f5f50 1304
4e902c57 1305 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1306 fa = fa_first;
19baf839
RO
1307 }
1308 err = -ENOENT;
4e902c57 1309 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1310 goto out;
1311
1312 err = -ENOBUFS;
e94b1766 1313 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1314 if (new_fa == NULL)
1315 goto out;
1316
1317 new_fa->fa_info = fi;
1318 new_fa->fa_tos = tos;
4e902c57 1319 new_fa->fa_type = cfg->fc_type;
19baf839 1320 new_fa->fa_state = 0;
19baf839
RO
1321 /*
1322 * Insert new entry to the list.
1323 */
1324
c877efb2 1325 if (!fa_head) {
fea86ad8
SH
1326 fa_head = fib_insert_node(t, key, plen);
1327 if (unlikely(!fa_head)) {
1328 err = -ENOMEM;
f835e471 1329 goto out_free_new_fa;
fea86ad8 1330 }
f835e471 1331 }
19baf839 1332
21d8c49e
DM
1333 if (!plen)
1334 tb->tb_num_default++;
1335
2373ce1c
RO
1336 list_add_tail_rcu(&new_fa->fa_list,
1337 (fa ? &fa->fa_list : fa_head));
19baf839 1338
76e6ebfb 1339 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1340 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1341 &cfg->fc_nlinfo, 0);
19baf839
RO
1342succeeded:
1343 return 0;
f835e471
RO
1344
1345out_free_new_fa:
1346 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1347out:
1348 fib_release_info(fi);
91b9a277 1349err:
19baf839
RO
1350 return err;
1351}
1352
772cb712 1353/* should be called with rcu_read_lock */
5b470441 1354static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
22bd5b9b 1355 t_key key, const struct flowi4 *flp,
ebc0ffae 1356 struct fib_result *res, int fib_flags)
19baf839 1357{
19baf839
RO
1358 struct leaf_info *li;
1359 struct hlist_head *hhead = &l->list;
1360 struct hlist_node *node;
c877efb2 1361
2373ce1c 1362 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
3be0686b 1363 struct fib_alias *fa;
a07f5f50 1364
5c74501f 1365 if (l->key != (key & li->mask_plen))
19baf839
RO
1366 continue;
1367
3be0686b
DM
1368 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1369 struct fib_info *fi = fa->fa_info;
1370 int nhsel, err;
a07f5f50 1371
22bd5b9b 1372 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
3be0686b 1373 continue;
37e826c5 1374 if (fa->fa_info->fib_scope < flp->flowi4_scope)
3be0686b
DM
1375 continue;
1376 fib_alias_accessed(fa);
1377 err = fib_props[fa->fa_type].error;
1378 if (err) {
19baf839 1379#ifdef CONFIG_IP_FIB_TRIE_STATS
1fbc7843 1380 t->stats.semantic_match_passed++;
3be0686b 1381#endif
1fbc7843 1382 return err;
3be0686b
DM
1383 }
1384 if (fi->fib_flags & RTNH_F_DEAD)
1385 continue;
1386 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1387 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1388
1389 if (nh->nh_flags & RTNH_F_DEAD)
1390 continue;
22bd5b9b 1391 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
3be0686b
DM
1392 continue;
1393
1394#ifdef CONFIG_IP_FIB_TRIE_STATS
1395 t->stats.semantic_match_passed++;
1396#endif
5c74501f 1397 res->prefixlen = li->plen;
3be0686b
DM
1398 res->nh_sel = nhsel;
1399 res->type = fa->fa_type;
37e826c5 1400 res->scope = fa->fa_info->fib_scope;
3be0686b
DM
1401 res->fi = fi;
1402 res->table = tb;
1403 res->fa_head = &li->falh;
1404 if (!(fib_flags & FIB_LOOKUP_NOREF))
5c74501f 1405 atomic_inc(&fi->fib_clntref);
3be0686b
DM
1406 return 0;
1407 }
1408 }
1409
1410#ifdef CONFIG_IP_FIB_TRIE_STATS
1411 t->stats.semantic_match_miss++;
19baf839 1412#endif
19baf839 1413 }
a07f5f50 1414
2e655571 1415 return 1;
19baf839
RO
1416}
1417
22bd5b9b 1418int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1419 struct fib_result *res, int fib_flags)
19baf839
RO
1420{
1421 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1422 int ret;
b299e4f0 1423 struct rt_trie_node *n;
19baf839 1424 struct tnode *pn;
3b004569 1425 unsigned int pos, bits;
22bd5b9b 1426 t_key key = ntohl(flp->daddr);
3b004569 1427 unsigned int chopped_off;
19baf839 1428 t_key cindex = 0;
3b004569 1429 unsigned int current_prefix_length = KEYLENGTH;
91b9a277 1430 struct tnode *cn;
874ffa8f 1431 t_key pref_mismatch;
91b9a277 1432
2373ce1c 1433 rcu_read_lock();
91b9a277 1434
2373ce1c 1435 n = rcu_dereference(t->trie);
c877efb2 1436 if (!n)
19baf839
RO
1437 goto failed;
1438
1439#ifdef CONFIG_IP_FIB_TRIE_STATS
1440 t->stats.gets++;
1441#endif
1442
1443 /* Just a leaf? */
1444 if (IS_LEAF(n)) {
5b470441 1445 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
a07f5f50 1446 goto found;
19baf839 1447 }
a07f5f50 1448
19baf839
RO
1449 pn = (struct tnode *) n;
1450 chopped_off = 0;
c877efb2 1451
91b9a277 1452 while (pn) {
19baf839
RO
1453 pos = pn->pos;
1454 bits = pn->bits;
1455
c877efb2 1456 if (!chopped_off)
ab66b4a7
SH
1457 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1458 pos, bits);
19baf839 1459
b902e573 1460 n = tnode_get_child_rcu(pn, cindex);
19baf839
RO
1461
1462 if (n == NULL) {
1463#ifdef CONFIG_IP_FIB_TRIE_STATS
1464 t->stats.null_node_hit++;
1465#endif
1466 goto backtrace;
1467 }
1468
91b9a277 1469 if (IS_LEAF(n)) {
5b470441 1470 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
2e655571 1471 if (ret > 0)
91b9a277 1472 goto backtrace;
a07f5f50 1473 goto found;
91b9a277
OJ
1474 }
1475
91b9a277 1476 cn = (struct tnode *)n;
19baf839 1477
91b9a277
OJ
1478 /*
1479 * It's a tnode, and we can do some extra checks here if we
1480 * like, to avoid descending into a dead-end branch.
1481 * This tnode is in the parent's child array at index
1482 * key[p_pos..p_pos+p_bits] but potentially with some bits
1483 * chopped off, so in reality the index may be just a
1484 * subprefix, padded with zero at the end.
1485 * We can also take a look at any skipped bits in this
1486 * tnode - everything up to p_pos is supposed to be ok,
1487 * and the non-chopped bits of the index (se previous
1488 * paragraph) are also guaranteed ok, but the rest is
1489 * considered unknown.
1490 *
1491 * The skipped bits are key[pos+bits..cn->pos].
1492 */
19baf839 1493
91b9a277
OJ
1494 /* If current_prefix_length < pos+bits, we are already doing
1495 * actual prefix matching, which means everything from
1496 * pos+(bits-chopped_off) onward must be zero along some
1497 * branch of this subtree - otherwise there is *no* valid
1498 * prefix present. Here we can only check the skipped
1499 * bits. Remember, since we have already indexed into the
1500 * parent's child array, we know that the bits we chopped of
1501 * *are* zero.
1502 */
19baf839 1503
a07f5f50
SH
1504 /* NOTA BENE: Checking only skipped bits
1505 for the new node here */
19baf839 1506
91b9a277
OJ
1507 if (current_prefix_length < pos+bits) {
1508 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1509 cn->pos - current_prefix_length)
1510 || !(cn->child[0]))
91b9a277
OJ
1511 goto backtrace;
1512 }
19baf839 1513
91b9a277
OJ
1514 /*
1515 * If chopped_off=0, the index is fully validated and we
1516 * only need to look at the skipped bits for this, the new,
1517 * tnode. What we actually want to do is to find out if
1518 * these skipped bits match our key perfectly, or if we will
1519 * have to count on finding a matching prefix further down,
1520 * because if we do, we would like to have some way of
1521 * verifying the existence of such a prefix at this point.
1522 */
19baf839 1523
91b9a277
OJ
1524 /* The only thing we can do at this point is to verify that
1525 * any such matching prefix can indeed be a prefix to our
1526 * key, and if the bits in the node we are inspecting that
1527 * do not match our key are not ZERO, this cannot be true.
1528 * Thus, find out where there is a mismatch (before cn->pos)
1529 * and verify that all the mismatching bits are zero in the
1530 * new tnode's key.
1531 */
19baf839 1532
a07f5f50
SH
1533 /*
1534 * Note: We aren't very concerned about the piece of
1535 * the key that precede pn->pos+pn->bits, since these
1536 * have already been checked. The bits after cn->pos
1537 * aren't checked since these are by definition
1538 * "unknown" at this point. Thus, what we want to see
1539 * is if we are about to enter the "prefix matching"
1540 * state, and in that case verify that the skipped
1541 * bits that will prevail throughout this subtree are
1542 * zero, as they have to be if we are to find a
1543 * matching prefix.
91b9a277
OJ
1544 */
1545
874ffa8f 1546 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
91b9a277 1547
a07f5f50
SH
1548 /*
1549 * In short: If skipped bits in this node do not match
1550 * the search key, enter the "prefix matching"
1551 * state.directly.
91b9a277
OJ
1552 */
1553 if (pref_mismatch) {
874ffa8f 1554 int mp = KEYLENGTH - fls(pref_mismatch);
91b9a277 1555
874ffa8f 1556 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
91b9a277
OJ
1557 goto backtrace;
1558
1559 if (current_prefix_length >= cn->pos)
1560 current_prefix_length = mp;
c877efb2 1561 }
a07f5f50 1562
91b9a277
OJ
1563 pn = (struct tnode *)n; /* Descend */
1564 chopped_off = 0;
1565 continue;
1566
19baf839
RO
1567backtrace:
1568 chopped_off++;
1569
1570 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1571 while ((chopped_off <= pn->bits)
1572 && !(cindex & (1<<(chopped_off-1))))
19baf839 1573 chopped_off++;
19baf839
RO
1574
1575 /* Decrease current_... with bits chopped off */
1576 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1577 current_prefix_length = pn->pos + pn->bits
1578 - chopped_off;
91b9a277 1579
19baf839 1580 /*
c877efb2 1581 * Either we do the actual chop off according or if we have
19baf839
RO
1582 * chopped off all bits in this tnode walk up to our parent.
1583 */
1584
91b9a277 1585 if (chopped_off <= pn->bits) {
19baf839 1586 cindex &= ~(1 << (chopped_off-1));
91b9a277 1587 } else {
b299e4f0 1588 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
06801916 1589 if (!parent)
19baf839 1590 goto failed;
91b9a277 1591
19baf839 1592 /* Get Child's index */
06801916
SH
1593 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1594 pn = parent;
19baf839
RO
1595 chopped_off = 0;
1596
1597#ifdef CONFIG_IP_FIB_TRIE_STATS
1598 t->stats.backtrack++;
1599#endif
1600 goto backtrace;
c877efb2 1601 }
19baf839
RO
1602 }
1603failed:
c877efb2 1604 ret = 1;
19baf839 1605found:
2373ce1c 1606 rcu_read_unlock();
19baf839
RO
1607 return ret;
1608}
1609
9195bef7
SH
1610/*
1611 * Remove the leaf and return parent.
1612 */
1613static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1614{
b299e4f0 1615 struct tnode *tp = node_parent((struct rt_trie_node *) l);
c877efb2 1616
9195bef7 1617 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1618
c877efb2 1619 if (tp) {
9195bef7 1620 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1621 put_child(t, (struct tnode *)tp, cindex, NULL);
7b85576d 1622 trie_rebalance(t, tp);
91b9a277 1623 } else
a9b3cd7f 1624 RCU_INIT_POINTER(t->trie, NULL);
19baf839 1625
387a5487 1626 free_leaf(l);
19baf839
RO
1627}
1628
d562f1f8
RO
1629/*
1630 * Caller must hold RTNL.
1631 */
16c6cf8b 1632int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1633{
1634 struct trie *t = (struct trie *) tb->tb_data;
1635 u32 key, mask;
4e902c57
TG
1636 int plen = cfg->fc_dst_len;
1637 u8 tos = cfg->fc_tos;
19baf839
RO
1638 struct fib_alias *fa, *fa_to_delete;
1639 struct list_head *fa_head;
1640 struct leaf *l;
91b9a277
OJ
1641 struct leaf_info *li;
1642
c877efb2 1643 if (plen > 32)
19baf839
RO
1644 return -EINVAL;
1645
4e902c57 1646 key = ntohl(cfg->fc_dst);
91b9a277 1647 mask = ntohl(inet_make_mask(plen));
19baf839 1648
c877efb2 1649 if (key & ~mask)
19baf839
RO
1650 return -EINVAL;
1651
1652 key = key & mask;
1653 l = fib_find_node(t, key);
1654
c877efb2 1655 if (!l)
19baf839
RO
1656 return -ESRCH;
1657
1658 fa_head = get_fa_head(l, plen);
1659 fa = fib_find_alias(fa_head, tos, 0);
1660
1661 if (!fa)
1662 return -ESRCH;
1663
0c7770c7 1664 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1665
1666 fa_to_delete = NULL;
936f6f8e
JA
1667 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1668 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1669 struct fib_info *fi = fa->fa_info;
1670
1671 if (fa->fa_tos != tos)
1672 break;
1673
4e902c57
TG
1674 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1675 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1676 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1677 (!cfg->fc_prefsrc ||
1678 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1679 (!cfg->fc_protocol ||
1680 fi->fib_protocol == cfg->fc_protocol) &&
1681 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1682 fa_to_delete = fa;
1683 break;
1684 }
1685 }
1686
91b9a277
OJ
1687 if (!fa_to_delete)
1688 return -ESRCH;
19baf839 1689
91b9a277 1690 fa = fa_to_delete;
4e902c57 1691 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1692 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1693
1694 l = fib_find_node(t, key);
772cb712 1695 li = find_leaf_info(l, plen);
19baf839 1696
2373ce1c 1697 list_del_rcu(&fa->fa_list);
19baf839 1698
21d8c49e
DM
1699 if (!plen)
1700 tb->tb_num_default--;
1701
91b9a277 1702 if (list_empty(fa_head)) {
2373ce1c 1703 hlist_del_rcu(&li->hlist);
91b9a277 1704 free_leaf_info(li);
2373ce1c 1705 }
19baf839 1706
91b9a277 1707 if (hlist_empty(&l->list))
9195bef7 1708 trie_leaf_remove(t, l);
19baf839 1709
91b9a277 1710 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1711 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1712
2373ce1c
RO
1713 fib_release_info(fa->fa_info);
1714 alias_free_mem_rcu(fa);
91b9a277 1715 return 0;
19baf839
RO
1716}
1717
ef3660ce 1718static int trie_flush_list(struct list_head *head)
19baf839
RO
1719{
1720 struct fib_alias *fa, *fa_node;
1721 int found = 0;
1722
1723 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1724 struct fib_info *fi = fa->fa_info;
19baf839 1725
2373ce1c
RO
1726 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1727 list_del_rcu(&fa->fa_list);
1728 fib_release_info(fa->fa_info);
1729 alias_free_mem_rcu(fa);
19baf839
RO
1730 found++;
1731 }
1732 }
1733 return found;
1734}
1735
ef3660ce 1736static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1737{
1738 int found = 0;
1739 struct hlist_head *lih = &l->list;
1740 struct hlist_node *node, *tmp;
1741 struct leaf_info *li = NULL;
1742
1743 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1744 found += trie_flush_list(&li->falh);
19baf839
RO
1745
1746 if (list_empty(&li->falh)) {
2373ce1c 1747 hlist_del_rcu(&li->hlist);
19baf839
RO
1748 free_leaf_info(li);
1749 }
1750 }
1751 return found;
1752}
1753
82cfbb00
SH
1754/*
1755 * Scan for the next right leaf starting at node p->child[idx]
1756 * Since we have back pointer, no recursion necessary.
1757 */
b299e4f0 1758static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
19baf839 1759{
82cfbb00
SH
1760 do {
1761 t_key idx;
c877efb2 1762
c877efb2 1763 if (c)
82cfbb00 1764 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1765 else
82cfbb00 1766 idx = 0;
2373ce1c 1767
82cfbb00
SH
1768 while (idx < 1u << p->bits) {
1769 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1770 if (!c)
91b9a277
OJ
1771 continue;
1772
82cfbb00 1773 if (IS_LEAF(c)) {
0a5c0475 1774 prefetch(rcu_dereference_rtnl(p->child[idx]));
82cfbb00 1775 return (struct leaf *) c;
19baf839 1776 }
82cfbb00
SH
1777
1778 /* Rescan start scanning in new node */
1779 p = (struct tnode *) c;
1780 idx = 0;
19baf839 1781 }
82cfbb00
SH
1782
1783 /* Node empty, walk back up to parent */
b299e4f0 1784 c = (struct rt_trie_node *) p;
a034ee3c 1785 } while ((p = node_parent_rcu(c)) != NULL);
82cfbb00
SH
1786
1787 return NULL; /* Root of trie */
1788}
1789
82cfbb00
SH
1790static struct leaf *trie_firstleaf(struct trie *t)
1791{
a034ee3c 1792 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
82cfbb00
SH
1793
1794 if (!n)
1795 return NULL;
1796
1797 if (IS_LEAF(n)) /* trie is just a leaf */
1798 return (struct leaf *) n;
1799
1800 return leaf_walk_rcu(n, NULL);
1801}
1802
1803static struct leaf *trie_nextleaf(struct leaf *l)
1804{
b299e4f0 1805 struct rt_trie_node *c = (struct rt_trie_node *) l;
b902e573 1806 struct tnode *p = node_parent_rcu(c);
82cfbb00
SH
1807
1808 if (!p)
1809 return NULL; /* trie with just one leaf */
1810
1811 return leaf_walk_rcu(p, c);
19baf839
RO
1812}
1813
71d67e66
SH
1814static struct leaf *trie_leafindex(struct trie *t, int index)
1815{
1816 struct leaf *l = trie_firstleaf(t);
1817
ec28cf73 1818 while (l && index-- > 0)
71d67e66 1819 l = trie_nextleaf(l);
ec28cf73 1820
71d67e66
SH
1821 return l;
1822}
1823
1824
d562f1f8
RO
1825/*
1826 * Caller must hold RTNL.
1827 */
16c6cf8b 1828int fib_table_flush(struct fib_table *tb)
19baf839
RO
1829{
1830 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1831 struct leaf *l, *ll = NULL;
82cfbb00 1832 int found = 0;
19baf839 1833
82cfbb00 1834 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1835 found += trie_flush_leaf(l);
19baf839
RO
1836
1837 if (ll && hlist_empty(&ll->list))
9195bef7 1838 trie_leaf_remove(t, ll);
19baf839
RO
1839 ll = l;
1840 }
1841
1842 if (ll && hlist_empty(&ll->list))
9195bef7 1843 trie_leaf_remove(t, ll);
19baf839 1844
0c7770c7 1845 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1846 return found;
1847}
1848
4aa2c466
PE
1849void fib_free_table(struct fib_table *tb)
1850{
1851 kfree(tb);
1852}
1853
a07f5f50
SH
1854static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1855 struct fib_table *tb,
19baf839
RO
1856 struct sk_buff *skb, struct netlink_callback *cb)
1857{
1858 int i, s_i;
1859 struct fib_alias *fa;
32ab5f80 1860 __be32 xkey = htonl(key);
19baf839 1861
71d67e66 1862 s_i = cb->args[5];
19baf839
RO
1863 i = 0;
1864
2373ce1c
RO
1865 /* rcu_read_lock is hold by caller */
1866
1867 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1868 if (i < s_i) {
1869 i++;
1870 continue;
1871 }
19baf839
RO
1872
1873 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1874 cb->nlh->nlmsg_seq,
1875 RTM_NEWROUTE,
1876 tb->tb_id,
1877 fa->fa_type,
be403ea1 1878 xkey,
19baf839
RO
1879 plen,
1880 fa->fa_tos,
64347f78 1881 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1882 cb->args[5] = i;
19baf839 1883 return -1;
91b9a277 1884 }
19baf839
RO
1885 i++;
1886 }
71d67e66 1887 cb->args[5] = i;
19baf839
RO
1888 return skb->len;
1889}
1890
a88ee229
SH
1891static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1892 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1893{
a88ee229
SH
1894 struct leaf_info *li;
1895 struct hlist_node *node;
1896 int i, s_i;
19baf839 1897
71d67e66 1898 s_i = cb->args[4];
a88ee229 1899 i = 0;
19baf839 1900
a88ee229
SH
1901 /* rcu_read_lock is hold by caller */
1902 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1903 if (i < s_i) {
1904 i++;
19baf839 1905 continue;
a88ee229 1906 }
91b9a277 1907
a88ee229 1908 if (i > s_i)
71d67e66 1909 cb->args[5] = 0;
19baf839 1910
a88ee229 1911 if (list_empty(&li->falh))
19baf839
RO
1912 continue;
1913
a88ee229 1914 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1915 cb->args[4] = i;
19baf839
RO
1916 return -1;
1917 }
a88ee229 1918 i++;
19baf839 1919 }
a88ee229 1920
71d67e66 1921 cb->args[4] = i;
19baf839
RO
1922 return skb->len;
1923}
1924
16c6cf8b
SH
1925int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1926 struct netlink_callback *cb)
19baf839 1927{
a88ee229 1928 struct leaf *l;
19baf839 1929 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1930 t_key key = cb->args[2];
71d67e66 1931 int count = cb->args[3];
19baf839 1932
2373ce1c 1933 rcu_read_lock();
d5ce8a0e
SH
1934 /* Dump starting at last key.
1935 * Note: 0.0.0.0/0 (ie default) is first key.
1936 */
71d67e66 1937 if (count == 0)
d5ce8a0e
SH
1938 l = trie_firstleaf(t);
1939 else {
71d67e66
SH
1940 /* Normally, continue from last key, but if that is missing
1941 * fallback to using slow rescan
1942 */
d5ce8a0e 1943 l = fib_find_node(t, key);
71d67e66
SH
1944 if (!l)
1945 l = trie_leafindex(t, count);
d5ce8a0e 1946 }
a88ee229 1947
d5ce8a0e
SH
1948 while (l) {
1949 cb->args[2] = l->key;
a88ee229 1950 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1951 cb->args[3] = count;
a88ee229 1952 rcu_read_unlock();
a88ee229 1953 return -1;
19baf839 1954 }
d5ce8a0e 1955
71d67e66 1956 ++count;
d5ce8a0e 1957 l = trie_nextleaf(l);
71d67e66
SH
1958 memset(&cb->args[4], 0,
1959 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1960 }
71d67e66 1961 cb->args[3] = count;
2373ce1c 1962 rcu_read_unlock();
a88ee229 1963
19baf839 1964 return skb->len;
19baf839
RO
1965}
1966
5348ba85 1967void __init fib_trie_init(void)
7f9b8052 1968{
a07f5f50
SH
1969 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1970 sizeof(struct fib_alias),
bc3c8c1e
SH
1971 0, SLAB_PANIC, NULL);
1972
1973 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1974 max(sizeof(struct leaf),
1975 sizeof(struct leaf_info)),
1976 0, SLAB_PANIC, NULL);
7f9b8052 1977}
19baf839 1978
7f9b8052 1979
5348ba85 1980struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1981{
1982 struct fib_table *tb;
1983 struct trie *t;
1984
19baf839
RO
1985 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1986 GFP_KERNEL);
1987 if (tb == NULL)
1988 return NULL;
1989
1990 tb->tb_id = id;
971b893e 1991 tb->tb_default = -1;
21d8c49e 1992 tb->tb_num_default = 0;
19baf839
RO
1993
1994 t = (struct trie *) tb->tb_data;
c28a1cf4 1995 memset(t, 0, sizeof(*t));
19baf839 1996
19baf839
RO
1997 return tb;
1998}
1999
cb7b593c
SH
2000#ifdef CONFIG_PROC_FS
2001/* Depth first Trie walk iterator */
2002struct fib_trie_iter {
1c340b2f 2003 struct seq_net_private p;
3d3b2d25 2004 struct fib_table *tb;
cb7b593c 2005 struct tnode *tnode;
a034ee3c
ED
2006 unsigned int index;
2007 unsigned int depth;
cb7b593c 2008};
19baf839 2009
b299e4f0 2010static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2011{
cb7b593c 2012 struct tnode *tn = iter->tnode;
a034ee3c 2013 unsigned int cindex = iter->index;
cb7b593c 2014 struct tnode *p;
19baf839 2015
6640e697
EB
2016 /* A single entry routing table */
2017 if (!tn)
2018 return NULL;
2019
cb7b593c
SH
2020 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2021 iter->tnode, iter->index, iter->depth);
2022rescan:
2023 while (cindex < (1<<tn->bits)) {
b299e4f0 2024 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2025
cb7b593c
SH
2026 if (n) {
2027 if (IS_LEAF(n)) {
2028 iter->tnode = tn;
2029 iter->index = cindex + 1;
2030 } else {
2031 /* push down one level */
2032 iter->tnode = (struct tnode *) n;
2033 iter->index = 0;
2034 ++iter->depth;
2035 }
2036 return n;
2037 }
19baf839 2038
cb7b593c
SH
2039 ++cindex;
2040 }
91b9a277 2041
cb7b593c 2042 /* Current node exhausted, pop back up */
b299e4f0 2043 p = node_parent_rcu((struct rt_trie_node *)tn);
cb7b593c
SH
2044 if (p) {
2045 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2046 tn = p;
2047 --iter->depth;
2048 goto rescan;
19baf839 2049 }
cb7b593c
SH
2050
2051 /* got root? */
2052 return NULL;
19baf839
RO
2053}
2054
b299e4f0 2055static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
cb7b593c 2056 struct trie *t)
19baf839 2057{
b299e4f0 2058 struct rt_trie_node *n;
5ddf0eb2 2059
132adf54 2060 if (!t)
5ddf0eb2
RO
2061 return NULL;
2062
2063 n = rcu_dereference(t->trie);
3d3b2d25 2064 if (!n)
5ddf0eb2 2065 return NULL;
19baf839 2066
3d3b2d25
SH
2067 if (IS_TNODE(n)) {
2068 iter->tnode = (struct tnode *) n;
2069 iter->index = 0;
2070 iter->depth = 1;
2071 } else {
2072 iter->tnode = NULL;
2073 iter->index = 0;
2074 iter->depth = 0;
91b9a277 2075 }
3d3b2d25
SH
2076
2077 return n;
cb7b593c 2078}
91b9a277 2079
cb7b593c
SH
2080static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2081{
b299e4f0 2082 struct rt_trie_node *n;
cb7b593c 2083 struct fib_trie_iter iter;
91b9a277 2084
cb7b593c 2085 memset(s, 0, sizeof(*s));
91b9a277 2086
cb7b593c 2087 rcu_read_lock();
3d3b2d25 2088 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2089 if (IS_LEAF(n)) {
93672292
SH
2090 struct leaf *l = (struct leaf *)n;
2091 struct leaf_info *li;
2092 struct hlist_node *tmp;
2093
cb7b593c
SH
2094 s->leaves++;
2095 s->totdepth += iter.depth;
2096 if (iter.depth > s->maxdepth)
2097 s->maxdepth = iter.depth;
93672292
SH
2098
2099 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2100 ++s->prefixes;
cb7b593c
SH
2101 } else {
2102 const struct tnode *tn = (const struct tnode *) n;
2103 int i;
2104
2105 s->tnodes++;
132adf54 2106 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2107 s->nodesizes[tn->bits]++;
2108
cb7b593c
SH
2109 for (i = 0; i < (1<<tn->bits); i++)
2110 if (!tn->child[i])
2111 s->nullpointers++;
19baf839 2112 }
19baf839 2113 }
2373ce1c 2114 rcu_read_unlock();
19baf839
RO
2115}
2116
cb7b593c
SH
2117/*
2118 * This outputs /proc/net/fib_triestats
2119 */
2120static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2121{
a034ee3c 2122 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2123
cb7b593c
SH
2124 if (stat->leaves)
2125 avdepth = stat->totdepth*100 / stat->leaves;
2126 else
2127 avdepth = 0;
91b9a277 2128
a07f5f50
SH
2129 seq_printf(seq, "\tAver depth: %u.%02d\n",
2130 avdepth / 100, avdepth % 100);
cb7b593c 2131 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2132
cb7b593c 2133 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2134 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2135
2136 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2137 bytes += sizeof(struct leaf_info) * stat->prefixes;
2138
187b5188 2139 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2140 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2141
06ef921d
RO
2142 max = MAX_STAT_DEPTH;
2143 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2144 max--;
19baf839 2145
cb7b593c
SH
2146 pointers = 0;
2147 for (i = 1; i <= max; i++)
2148 if (stat->nodesizes[i] != 0) {
187b5188 2149 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2150 pointers += (1<<i) * stat->nodesizes[i];
2151 }
2152 seq_putc(seq, '\n');
187b5188 2153 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2154
b299e4f0 2155 bytes += sizeof(struct rt_trie_node *) * pointers;
187b5188
SH
2156 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2157 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2158}
2373ce1c 2159
cb7b593c 2160#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2161static void trie_show_usage(struct seq_file *seq,
2162 const struct trie_use_stats *stats)
2163{
2164 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2165 seq_printf(seq, "gets = %u\n", stats->gets);
2166 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2167 seq_printf(seq, "semantic match passed = %u\n",
2168 stats->semantic_match_passed);
2169 seq_printf(seq, "semantic match miss = %u\n",
2170 stats->semantic_match_miss);
2171 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2172 seq_printf(seq, "skipped node resize = %u\n\n",
2173 stats->resize_node_skipped);
cb7b593c 2174}
66a2f7fd
SH
2175#endif /* CONFIG_IP_FIB_TRIE_STATS */
2176
3d3b2d25 2177static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2178{
3d3b2d25
SH
2179 if (tb->tb_id == RT_TABLE_LOCAL)
2180 seq_puts(seq, "Local:\n");
2181 else if (tb->tb_id == RT_TABLE_MAIN)
2182 seq_puts(seq, "Main:\n");
2183 else
2184 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2185}
19baf839 2186
3d3b2d25 2187
cb7b593c
SH
2188static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2189{
1c340b2f 2190 struct net *net = (struct net *)seq->private;
3d3b2d25 2191 unsigned int h;
877a9bff 2192
d717a9a6 2193 seq_printf(seq,
a07f5f50
SH
2194 "Basic info: size of leaf:"
2195 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2196 sizeof(struct leaf), sizeof(struct tnode));
2197
3d3b2d25
SH
2198 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2199 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2200 struct hlist_node *node;
2201 struct fib_table *tb;
2202
2203 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2204 struct trie *t = (struct trie *) tb->tb_data;
2205 struct trie_stat stat;
877a9bff 2206
3d3b2d25
SH
2207 if (!t)
2208 continue;
2209
2210 fib_table_print(seq, tb);
2211
2212 trie_collect_stats(t, &stat);
2213 trie_show_stats(seq, &stat);
2214#ifdef CONFIG_IP_FIB_TRIE_STATS
2215 trie_show_usage(seq, &t->stats);
2216#endif
2217 }
2218 }
19baf839 2219
cb7b593c 2220 return 0;
19baf839
RO
2221}
2222
cb7b593c 2223static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2224{
de05c557 2225 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2226}
2227
9a32144e 2228static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2229 .owner = THIS_MODULE,
2230 .open = fib_triestat_seq_open,
2231 .read = seq_read,
2232 .llseek = seq_lseek,
b6fcbdb4 2233 .release = single_release_net,
cb7b593c
SH
2234};
2235
b299e4f0 2236static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2237{
1218854a
YH
2238 struct fib_trie_iter *iter = seq->private;
2239 struct net *net = seq_file_net(seq);
cb7b593c 2240 loff_t idx = 0;
3d3b2d25 2241 unsigned int h;
cb7b593c 2242
3d3b2d25
SH
2243 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2244 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2245 struct hlist_node *node;
2246 struct fib_table *tb;
cb7b593c 2247
3d3b2d25 2248 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
b299e4f0 2249 struct rt_trie_node *n;
3d3b2d25
SH
2250
2251 for (n = fib_trie_get_first(iter,
2252 (struct trie *) tb->tb_data);
2253 n; n = fib_trie_get_next(iter))
2254 if (pos == idx++) {
2255 iter->tb = tb;
2256 return n;
2257 }
2258 }
cb7b593c 2259 }
3d3b2d25 2260
19baf839
RO
2261 return NULL;
2262}
2263
cb7b593c 2264static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2265 __acquires(RCU)
19baf839 2266{
cb7b593c 2267 rcu_read_lock();
1218854a 2268 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2269}
2270
cb7b593c 2271static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2272{
cb7b593c 2273 struct fib_trie_iter *iter = seq->private;
1218854a 2274 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2275 struct fib_table *tb = iter->tb;
2276 struct hlist_node *tb_node;
2277 unsigned int h;
b299e4f0 2278 struct rt_trie_node *n;
cb7b593c 2279
19baf839 2280 ++*pos;
3d3b2d25
SH
2281 /* next node in same table */
2282 n = fib_trie_get_next(iter);
2283 if (n)
2284 return n;
19baf839 2285
3d3b2d25
SH
2286 /* walk rest of this hash chain */
2287 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2288 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2289 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2290 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2291 if (n)
2292 goto found;
2293 }
19baf839 2294
3d3b2d25
SH
2295 /* new hash chain */
2296 while (++h < FIB_TABLE_HASHSZ) {
2297 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2298 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2299 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2300 if (n)
2301 goto found;
2302 }
2303 }
cb7b593c 2304 return NULL;
3d3b2d25
SH
2305
2306found:
2307 iter->tb = tb;
2308 return n;
cb7b593c 2309}
19baf839 2310
cb7b593c 2311static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2312 __releases(RCU)
19baf839 2313{
cb7b593c
SH
2314 rcu_read_unlock();
2315}
91b9a277 2316
cb7b593c
SH
2317static void seq_indent(struct seq_file *seq, int n)
2318{
a034ee3c
ED
2319 while (n-- > 0)
2320 seq_puts(seq, " ");
cb7b593c 2321}
19baf839 2322
28d36e37 2323static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2324{
132adf54 2325 switch (s) {
cb7b593c
SH
2326 case RT_SCOPE_UNIVERSE: return "universe";
2327 case RT_SCOPE_SITE: return "site";
2328 case RT_SCOPE_LINK: return "link";
2329 case RT_SCOPE_HOST: return "host";
2330 case RT_SCOPE_NOWHERE: return "nowhere";
2331 default:
28d36e37 2332 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2333 return buf;
2334 }
2335}
19baf839 2336
36cbd3dc 2337static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2338 [RTN_UNSPEC] = "UNSPEC",
2339 [RTN_UNICAST] = "UNICAST",
2340 [RTN_LOCAL] = "LOCAL",
2341 [RTN_BROADCAST] = "BROADCAST",
2342 [RTN_ANYCAST] = "ANYCAST",
2343 [RTN_MULTICAST] = "MULTICAST",
2344 [RTN_BLACKHOLE] = "BLACKHOLE",
2345 [RTN_UNREACHABLE] = "UNREACHABLE",
2346 [RTN_PROHIBIT] = "PROHIBIT",
2347 [RTN_THROW] = "THROW",
2348 [RTN_NAT] = "NAT",
2349 [RTN_XRESOLVE] = "XRESOLVE",
2350};
19baf839 2351
a034ee3c 2352static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2353{
cb7b593c
SH
2354 if (t < __RTN_MAX && rtn_type_names[t])
2355 return rtn_type_names[t];
28d36e37 2356 snprintf(buf, len, "type %u", t);
cb7b593c 2357 return buf;
19baf839
RO
2358}
2359
cb7b593c
SH
2360/* Pretty print the trie */
2361static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2362{
cb7b593c 2363 const struct fib_trie_iter *iter = seq->private;
b299e4f0 2364 struct rt_trie_node *n = v;
c877efb2 2365
3d3b2d25
SH
2366 if (!node_parent_rcu(n))
2367 fib_table_print(seq, iter->tb);
095b8501 2368
cb7b593c
SH
2369 if (IS_TNODE(n)) {
2370 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2371 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2372
1d25cd6c 2373 seq_indent(seq, iter->depth-1);
673d57e7
HH
2374 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2375 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2376 tn->empty_children);
e905a9ed 2377
cb7b593c
SH
2378 } else {
2379 struct leaf *l = (struct leaf *) n;
1328042e
SH
2380 struct leaf_info *li;
2381 struct hlist_node *node;
32ab5f80 2382 __be32 val = htonl(l->key);
cb7b593c
SH
2383
2384 seq_indent(seq, iter->depth);
673d57e7 2385 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2386
2387 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2388 struct fib_alias *fa;
2389
2390 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2391 char buf1[32], buf2[32];
2392
2393 seq_indent(seq, iter->depth+1);
2394 seq_printf(seq, " /%d %s %s", li->plen,
2395 rtn_scope(buf1, sizeof(buf1),
37e826c5 2396 fa->fa_info->fib_scope),
1328042e
SH
2397 rtn_type(buf2, sizeof(buf2),
2398 fa->fa_type));
2399 if (fa->fa_tos)
b9c4d82a 2400 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2401 seq_putc(seq, '\n');
cb7b593c
SH
2402 }
2403 }
19baf839 2404 }
cb7b593c 2405
19baf839
RO
2406 return 0;
2407}
2408
f690808e 2409static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2410 .start = fib_trie_seq_start,
2411 .next = fib_trie_seq_next,
2412 .stop = fib_trie_seq_stop,
2413 .show = fib_trie_seq_show,
19baf839
RO
2414};
2415
cb7b593c 2416static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2417{
1c340b2f
DL
2418 return seq_open_net(inode, file, &fib_trie_seq_ops,
2419 sizeof(struct fib_trie_iter));
19baf839
RO
2420}
2421
9a32144e 2422static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2423 .owner = THIS_MODULE,
2424 .open = fib_trie_seq_open,
2425 .read = seq_read,
2426 .llseek = seq_lseek,
1c340b2f 2427 .release = seq_release_net,
19baf839
RO
2428};
2429
8315f5d8
SH
2430struct fib_route_iter {
2431 struct seq_net_private p;
2432 struct trie *main_trie;
2433 loff_t pos;
2434 t_key key;
2435};
2436
2437static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2438{
2439 struct leaf *l = NULL;
2440 struct trie *t = iter->main_trie;
2441
2442 /* use cache location of last found key */
2443 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2444 pos -= iter->pos;
2445 else {
2446 iter->pos = 0;
2447 l = trie_firstleaf(t);
2448 }
2449
2450 while (l && pos-- > 0) {
2451 iter->pos++;
2452 l = trie_nextleaf(l);
2453 }
2454
2455 if (l)
2456 iter->key = pos; /* remember it */
2457 else
2458 iter->pos = 0; /* forget it */
2459
2460 return l;
2461}
2462
2463static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2464 __acquires(RCU)
2465{
2466 struct fib_route_iter *iter = seq->private;
2467 struct fib_table *tb;
2468
2469 rcu_read_lock();
1218854a 2470 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2471 if (!tb)
2472 return NULL;
2473
2474 iter->main_trie = (struct trie *) tb->tb_data;
2475 if (*pos == 0)
2476 return SEQ_START_TOKEN;
2477 else
2478 return fib_route_get_idx(iter, *pos - 1);
2479}
2480
2481static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2482{
2483 struct fib_route_iter *iter = seq->private;
2484 struct leaf *l = v;
2485
2486 ++*pos;
2487 if (v == SEQ_START_TOKEN) {
2488 iter->pos = 0;
2489 l = trie_firstleaf(iter->main_trie);
2490 } else {
2491 iter->pos++;
2492 l = trie_nextleaf(l);
2493 }
2494
2495 if (l)
2496 iter->key = l->key;
2497 else
2498 iter->pos = 0;
2499 return l;
2500}
2501
2502static void fib_route_seq_stop(struct seq_file *seq, void *v)
2503 __releases(RCU)
2504{
2505 rcu_read_unlock();
2506}
2507
a034ee3c 2508static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2509{
a034ee3c 2510 unsigned int flags = 0;
19baf839 2511
a034ee3c
ED
2512 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2513 flags = RTF_REJECT;
cb7b593c
SH
2514 if (fi && fi->fib_nh->nh_gw)
2515 flags |= RTF_GATEWAY;
32ab5f80 2516 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2517 flags |= RTF_HOST;
2518 flags |= RTF_UP;
2519 return flags;
19baf839
RO
2520}
2521
cb7b593c
SH
2522/*
2523 * This outputs /proc/net/route.
2524 * The format of the file is not supposed to be changed
a034ee3c 2525 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2526 * legacy utilities
2527 */
2528static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2529{
cb7b593c 2530 struct leaf *l = v;
1328042e
SH
2531 struct leaf_info *li;
2532 struct hlist_node *node;
19baf839 2533
cb7b593c
SH
2534 if (v == SEQ_START_TOKEN) {
2535 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2536 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2537 "\tWindow\tIRTT");
2538 return 0;
2539 }
19baf839 2540
1328042e 2541 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2542 struct fib_alias *fa;
32ab5f80 2543 __be32 mask, prefix;
91b9a277 2544
cb7b593c
SH
2545 mask = inet_make_mask(li->plen);
2546 prefix = htonl(l->key);
19baf839 2547
cb7b593c 2548 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2549 const struct fib_info *fi = fa->fa_info;
a034ee3c 2550 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2551 int len;
19baf839 2552
cb7b593c
SH
2553 if (fa->fa_type == RTN_BROADCAST
2554 || fa->fa_type == RTN_MULTICAST)
2555 continue;
19baf839 2556
cb7b593c 2557 if (fi)
5e659e4c
PE
2558 seq_printf(seq,
2559 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2560 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2561 fi->fib_dev ? fi->fib_dev->name : "*",
2562 prefix,
2563 fi->fib_nh->nh_gw, flags, 0, 0,
2564 fi->fib_priority,
2565 mask,
a07f5f50
SH
2566 (fi->fib_advmss ?
2567 fi->fib_advmss + 40 : 0),
cb7b593c 2568 fi->fib_window,
5e659e4c 2569 fi->fib_rtt >> 3, &len);
cb7b593c 2570 else
5e659e4c
PE
2571 seq_printf(seq,
2572 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2573 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2574 prefix, 0, flags, 0, 0, 0,
5e659e4c 2575 mask, 0, 0, 0, &len);
19baf839 2576
5e659e4c 2577 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2578 }
19baf839
RO
2579 }
2580
2581 return 0;
2582}
2583
f690808e 2584static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2585 .start = fib_route_seq_start,
2586 .next = fib_route_seq_next,
2587 .stop = fib_route_seq_stop,
cb7b593c 2588 .show = fib_route_seq_show,
19baf839
RO
2589};
2590
cb7b593c 2591static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2592{
1c340b2f 2593 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2594 sizeof(struct fib_route_iter));
19baf839
RO
2595}
2596
9a32144e 2597static const struct file_operations fib_route_fops = {
cb7b593c
SH
2598 .owner = THIS_MODULE,
2599 .open = fib_route_seq_open,
2600 .read = seq_read,
2601 .llseek = seq_lseek,
1c340b2f 2602 .release = seq_release_net,
19baf839
RO
2603};
2604
61a02653 2605int __net_init fib_proc_init(struct net *net)
19baf839 2606{
61a02653 2607 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2608 goto out1;
2609
61a02653
DL
2610 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2611 &fib_triestat_fops))
cb7b593c
SH
2612 goto out2;
2613
61a02653 2614 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2615 goto out3;
2616
19baf839 2617 return 0;
cb7b593c
SH
2618
2619out3:
61a02653 2620 proc_net_remove(net, "fib_triestat");
cb7b593c 2621out2:
61a02653 2622 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2623out1:
2624 return -ENOMEM;
19baf839
RO
2625}
2626
61a02653 2627void __net_exit fib_proc_exit(struct net *net)
19baf839 2628{
61a02653
DL
2629 proc_net_remove(net, "fib_trie");
2630 proc_net_remove(net, "fib_triestat");
2631 proc_net_remove(net, "route");
19baf839
RO
2632}
2633
2634#endif /* CONFIG_PROC_FS */