]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/ipv4/fib_trie.c
Merge branch 'dsa-next'
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
8e05fd71 82#include <net/switchdev.h>
19baf839
RO
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
95f60ea3
AD
87#define KEYLENGTH (8*sizeof(t_key))
88#define KEY_MAX ((t_key)~0)
19baf839 89
19baf839
RO
90typedef unsigned int t_key;
91
88bae714
AD
92#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
93#define IS_TNODE(n) ((n)->bits)
94#define IS_LEAF(n) (!(n)->bits)
2373ce1c 95
35c6edac 96struct key_vector {
64c9b6fb 97 t_key key;
64c9b6fb 98 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 99 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 100 unsigned char slen;
adaf9816 101 union {
41b489fd 102 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 103 struct hlist_head leaf;
41b489fd 104 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 105 struct key_vector __rcu *tnode[0];
adaf9816 106 };
19baf839
RO
107};
108
dc35dbed 109struct tnode {
56ca2adf 110 struct rcu_head rcu;
6e22d174
AD
111 t_key empty_children; /* KEYLENGTH bits needed */
112 t_key full_children; /* KEYLENGTH bits needed */
f23e59fb 113 struct key_vector __rcu *parent;
dc35dbed 114 struct key_vector kv[1];
56ca2adf 115#define tn_bits kv[0].bits
dc35dbed
AD
116};
117
118#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
119#define LEAF_SIZE TNODE_SIZE(1)
120
19baf839
RO
121#ifdef CONFIG_IP_FIB_TRIE_STATS
122struct trie_use_stats {
123 unsigned int gets;
124 unsigned int backtrack;
125 unsigned int semantic_match_passed;
126 unsigned int semantic_match_miss;
127 unsigned int null_node_hit;
2f36895a 128 unsigned int resize_node_skipped;
19baf839
RO
129};
130#endif
131
132struct trie_stat {
133 unsigned int totdepth;
134 unsigned int maxdepth;
135 unsigned int tnodes;
136 unsigned int leaves;
137 unsigned int nullpointers;
93672292 138 unsigned int prefixes;
06ef921d 139 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 140};
19baf839
RO
141
142struct trie {
88bae714 143 struct key_vector kv[1];
19baf839 144#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 145 struct trie_use_stats __percpu *stats;
19baf839 146#endif
19baf839
RO
147};
148
88bae714 149static struct key_vector *resize(struct trie *t, struct key_vector *tn);
c3059477
JP
150static size_t tnode_free_size;
151
152/*
153 * synchronize_rcu after call_rcu for that many pages; it should be especially
154 * useful before resizing the root node with PREEMPT_NONE configs; the value was
155 * obtained experimentally, aiming to avoid visible slowdown.
156 */
157static const int sync_pages = 128;
19baf839 158
e18b890b 159static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 160static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 161
56ca2adf
AD
162static inline struct tnode *tn_info(struct key_vector *kv)
163{
164 return container_of(kv, struct tnode, kv[0]);
165}
166
64c9b6fb 167/* caller must hold RTNL */
f23e59fb 168#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
754baf8d 169#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 170
64c9b6fb 171/* caller must hold RCU read lock or RTNL */
f23e59fb 172#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
754baf8d 173#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 174
64c9b6fb 175/* wrapper for rcu_assign_pointer */
35c6edac 176static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 177{
adaf9816 178 if (n)
f23e59fb 179 rcu_assign_pointer(tn_info(n)->parent, tp);
06801916
SH
180}
181
f23e59fb 182#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
64c9b6fb
AD
183
184/* This provides us with the number of children in this node, in the case of a
185 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 186 */
2e1ac88a 187static inline unsigned long child_length(const struct key_vector *tn)
06801916 188{
64c9b6fb 189 return (1ul << tn->bits) & ~(1ul);
06801916 190}
2373ce1c 191
88bae714
AD
192#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
193
2e1ac88a
AD
194static inline unsigned long get_index(t_key key, struct key_vector *kv)
195{
196 unsigned long index = key ^ kv->key;
197
88bae714
AD
198 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
199 return 0;
200
2e1ac88a
AD
201 return index >> kv->pos;
202}
203
e9b44019
AD
204/* To understand this stuff, an understanding of keys and all their bits is
205 * necessary. Every node in the trie has a key associated with it, but not
206 * all of the bits in that key are significant.
207 *
208 * Consider a node 'n' and its parent 'tp'.
209 *
210 * If n is a leaf, every bit in its key is significant. Its presence is
211 * necessitated by path compression, since during a tree traversal (when
212 * searching for a leaf - unless we are doing an insertion) we will completely
213 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
214 * a potentially successful search, that we have indeed been walking the
215 * correct key path.
216 *
217 * Note that we can never "miss" the correct key in the tree if present by
218 * following the wrong path. Path compression ensures that segments of the key
219 * that are the same for all keys with a given prefix are skipped, but the
220 * skipped part *is* identical for each node in the subtrie below the skipped
221 * bit! trie_insert() in this implementation takes care of that.
222 *
223 * if n is an internal node - a 'tnode' here, the various parts of its key
224 * have many different meanings.
225 *
226 * Example:
227 * _________________________________________________________________
228 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
229 * -----------------------------------------------------------------
230 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
231 *
232 * _________________________________________________________________
233 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
234 * -----------------------------------------------------------------
235 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
236 *
237 * tp->pos = 22
238 * tp->bits = 3
239 * n->pos = 13
240 * n->bits = 4
241 *
242 * First, let's just ignore the bits that come before the parent tp, that is
243 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
244 * point we do not use them for anything.
245 *
246 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
247 * index into the parent's child array. That is, they will be used to find
248 * 'n' among tp's children.
249 *
250 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
251 * for the node n.
252 *
253 * All the bits we have seen so far are significant to the node n. The rest
254 * of the bits are really not needed or indeed known in n->key.
255 *
256 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
257 * n's child array, and will of course be different for each child.
258 *
259 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
260 * at this point.
261 */
19baf839 262
f5026fab
DL
263static const int halve_threshold = 25;
264static const int inflate_threshold = 50;
345aa031 265static const int halve_threshold_root = 15;
80b71b80 266static const int inflate_threshold_root = 30;
2373ce1c
RO
267
268static void __alias_free_mem(struct rcu_head *head)
19baf839 269{
2373ce1c
RO
270 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
271 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
272}
273
2373ce1c 274static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 275{
2373ce1c
RO
276 call_rcu(&fa->rcu, __alias_free_mem);
277}
91b9a277 278
37fd30f2 279#define TNODE_KMALLOC_MAX \
35c6edac 280 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 281#define TNODE_VMALLOC_MAX \
35c6edac 282 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 283
37fd30f2 284static void __node_free_rcu(struct rcu_head *head)
387a5487 285{
56ca2adf 286 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 287
56ca2adf 288 if (!n->tn_bits)
37fd30f2 289 kmem_cache_free(trie_leaf_kmem, n);
56ca2adf 290 else if (n->tn_bits <= TNODE_KMALLOC_MAX)
37fd30f2
AD
291 kfree(n);
292 else
293 vfree(n);
387a5487
SH
294}
295
56ca2adf 296#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 297
dc35dbed 298static struct tnode *tnode_alloc(int bits)
f0e36f8c 299{
1de3d87b
AD
300 size_t size;
301
302 /* verify bits is within bounds */
303 if (bits > TNODE_VMALLOC_MAX)
304 return NULL;
305
306 /* determine size and verify it is non-zero and didn't overflow */
307 size = TNODE_SIZE(1ul << bits);
308
2373ce1c 309 if (size <= PAGE_SIZE)
8d965444 310 return kzalloc(size, GFP_KERNEL);
15be75cd 311 else
7a1c8e5a 312 return vzalloc(size);
15be75cd 313}
2373ce1c 314
35c6edac 315static inline void empty_child_inc(struct key_vector *n)
95f60ea3 316{
6e22d174 317 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
95f60ea3
AD
318}
319
35c6edac 320static inline void empty_child_dec(struct key_vector *n)
95f60ea3 321{
6e22d174 322 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
95f60ea3
AD
323}
324
35c6edac 325static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 326{
dc35dbed
AD
327 struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
328 struct key_vector *l = kv->kv;
329
330 if (!kv)
331 return NULL;
332
333 /* initialize key vector */
334 l->key = key;
335 l->pos = 0;
336 l->bits = 0;
337 l->slen = fa->fa_slen;
338
339 /* link leaf to fib alias */
340 INIT_HLIST_HEAD(&l->leaf);
341 hlist_add_head(&fa->fa_list, &l->leaf);
342
2373ce1c
RO
343 return l;
344}
345
35c6edac 346static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 347{
dc35dbed 348 struct tnode *tnode = tnode_alloc(bits);
64c9b6fb 349 unsigned int shift = pos + bits;
dc35dbed 350 struct key_vector *tn = tnode->kv;
64c9b6fb
AD
351
352 /* verify bits and pos their msb bits clear and values are valid */
353 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 354
dc35dbed 355 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
35c6edac 356 sizeof(struct key_vector *) << bits);
dc35dbed
AD
357
358 if (!tnode)
359 return NULL;
360
361 if (bits == KEYLENGTH)
6e22d174 362 tnode->full_children = 1;
dc35dbed 363 else
6e22d174 364 tnode->empty_children = 1ul << bits;
dc35dbed
AD
365
366 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
367 tn->pos = pos;
368 tn->bits = bits;
369 tn->slen = pos;
370
19baf839
RO
371 return tn;
372}
373
e9b44019 374/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
375 * and no bits are skipped. See discussion in dyntree paper p. 6
376 */
35c6edac 377static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 378{
e9b44019 379 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
380}
381
ff181ed8
AD
382/* Add a child at position i overwriting the old value.
383 * Update the value of full_children and empty_children.
384 */
35c6edac
AD
385static void put_child(struct key_vector *tn, unsigned long i,
386 struct key_vector *n)
19baf839 387{
754baf8d 388 struct key_vector *chi = get_child(tn, i);
ff181ed8 389 int isfull, wasfull;
19baf839 390
2e1ac88a 391 BUG_ON(i >= child_length(tn));
0c7770c7 392
95f60ea3 393 /* update emptyChildren, overflow into fullChildren */
19baf839 394 if (n == NULL && chi != NULL)
95f60ea3
AD
395 empty_child_inc(tn);
396 if (n != NULL && chi == NULL)
397 empty_child_dec(tn);
c877efb2 398
19baf839 399 /* update fullChildren */
ff181ed8 400 wasfull = tnode_full(tn, chi);
19baf839 401 isfull = tnode_full(tn, n);
ff181ed8 402
c877efb2 403 if (wasfull && !isfull)
6e22d174 404 tn_info(tn)->full_children--;
c877efb2 405 else if (!wasfull && isfull)
6e22d174 406 tn_info(tn)->full_children++;
91b9a277 407
5405afd1
AD
408 if (n && (tn->slen < n->slen))
409 tn->slen = n->slen;
410
41b489fd 411 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
412}
413
35c6edac 414static void update_children(struct key_vector *tn)
69fa57b1
AD
415{
416 unsigned long i;
417
418 /* update all of the child parent pointers */
2e1ac88a 419 for (i = child_length(tn); i;) {
754baf8d 420 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
421
422 if (!inode)
423 continue;
424
425 /* Either update the children of a tnode that
426 * already belongs to us or update the child
427 * to point to ourselves.
428 */
429 if (node_parent(inode) == tn)
430 update_children(inode);
431 else
432 node_set_parent(inode, tn);
433 }
434}
435
88bae714
AD
436static inline void put_child_root(struct key_vector *tp, t_key key,
437 struct key_vector *n)
836a0123 438{
88bae714
AD
439 if (IS_TRIE(tp))
440 rcu_assign_pointer(tp->tnode[0], n);
836a0123 441 else
88bae714 442 put_child(tp, get_index(key, tp), n);
836a0123
AD
443}
444
35c6edac 445static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 446{
56ca2adf 447 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
448}
449
35c6edac
AD
450static inline void tnode_free_append(struct key_vector *tn,
451 struct key_vector *n)
fc86a93b 452{
56ca2adf
AD
453 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
454 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 455}
0a5c0475 456
35c6edac 457static void tnode_free(struct key_vector *tn)
fc86a93b 458{
56ca2adf 459 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
460
461 while (head) {
462 head = head->next;
41b489fd 463 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
464 node_free(tn);
465
56ca2adf 466 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
467 }
468
469 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
470 tnode_free_size = 0;
471 synchronize_rcu();
0a5c0475 472 }
0a5c0475
ED
473}
474
88bae714
AD
475static struct key_vector *replace(struct trie *t,
476 struct key_vector *oldtnode,
477 struct key_vector *tn)
69fa57b1 478{
35c6edac 479 struct key_vector *tp = node_parent(oldtnode);
69fa57b1
AD
480 unsigned long i;
481
482 /* setup the parent pointer out of and back into this node */
483 NODE_INIT_PARENT(tn, tp);
88bae714 484 put_child_root(tp, tn->key, tn);
69fa57b1
AD
485
486 /* update all of the child parent pointers */
487 update_children(tn);
488
489 /* all pointers should be clean so we are done */
490 tnode_free(oldtnode);
491
492 /* resize children now that oldtnode is freed */
2e1ac88a 493 for (i = child_length(tn); i;) {
754baf8d 494 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
495
496 /* resize child node */
497 if (tnode_full(tn, inode))
88bae714 498 tn = resize(t, inode);
69fa57b1 499 }
8d8e810c 500
88bae714 501 return tp;
69fa57b1
AD
502}
503
88bae714
AD
504static struct key_vector *inflate(struct trie *t,
505 struct key_vector *oldtnode)
19baf839 506{
35c6edac 507 struct key_vector *tn;
69fa57b1 508 unsigned long i;
e9b44019 509 t_key m;
19baf839 510
0c7770c7 511 pr_debug("In inflate\n");
19baf839 512
e9b44019 513 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 514 if (!tn)
8d8e810c 515 goto notnode;
2f36895a 516
69fa57b1
AD
517 /* prepare oldtnode to be freed */
518 tnode_free_init(oldtnode);
519
12c081a5
AD
520 /* Assemble all of the pointers in our cluster, in this case that
521 * represents all of the pointers out of our allocated nodes that
522 * point to existing tnodes and the links between our allocated
523 * nodes.
2f36895a 524 */
2e1ac88a 525 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 526 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 527 struct key_vector *node0, *node1;
69fa57b1 528 unsigned long j, k;
c877efb2 529
19baf839 530 /* An empty child */
adaf9816 531 if (inode == NULL)
19baf839
RO
532 continue;
533
534 /* A leaf or an internal node with skipped bits */
adaf9816 535 if (!tnode_full(oldtnode, inode)) {
e9b44019 536 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
537 continue;
538 }
539
69fa57b1
AD
540 /* drop the node in the old tnode free list */
541 tnode_free_append(oldtnode, inode);
542
19baf839 543 /* An internal node with two children */
19baf839 544 if (inode->bits == 1) {
754baf8d
AD
545 put_child(tn, 2 * i + 1, get_child(inode, 1));
546 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 547 continue;
19baf839
RO
548 }
549
91b9a277 550 /* We will replace this node 'inode' with two new
12c081a5 551 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
552 * original children. The two new nodes will have
553 * a position one bit further down the key and this
554 * means that the "significant" part of their keys
555 * (see the discussion near the top of this file)
556 * will differ by one bit, which will be "0" in
12c081a5 557 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
558 * moving the key position by one step, the bit that
559 * we are moving away from - the bit at position
12c081a5
AD
560 * (tn->pos) - is the one that will differ between
561 * node0 and node1. So... we synthesize that bit in the
562 * two new keys.
91b9a277 563 */
12c081a5
AD
564 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
565 if (!node1)
566 goto nomem;
69fa57b1 567 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 568
69fa57b1 569 tnode_free_append(tn, node1);
12c081a5
AD
570 if (!node0)
571 goto nomem;
572 tnode_free_append(tn, node0);
573
574 /* populate child pointers in new nodes */
2e1ac88a 575 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
576 put_child(node1, --j, get_child(inode, --k));
577 put_child(node0, j, get_child(inode, j));
578 put_child(node1, --j, get_child(inode, --k));
579 put_child(node0, j, get_child(inode, j));
12c081a5 580 }
19baf839 581
12c081a5
AD
582 /* link new nodes to parent */
583 NODE_INIT_PARENT(node1, tn);
584 NODE_INIT_PARENT(node0, tn);
2f36895a 585
12c081a5
AD
586 /* link parent to nodes */
587 put_child(tn, 2 * i + 1, node1);
588 put_child(tn, 2 * i, node0);
589 }
2f36895a 590
69fa57b1 591 /* setup the parent pointers into and out of this node */
8d8e810c 592 return replace(t, oldtnode, tn);
2f80b3c8 593nomem:
fc86a93b
AD
594 /* all pointers should be clean so we are done */
595 tnode_free(tn);
8d8e810c
AD
596notnode:
597 return NULL;
19baf839
RO
598}
599
88bae714
AD
600static struct key_vector *halve(struct trie *t,
601 struct key_vector *oldtnode)
19baf839 602{
35c6edac 603 struct key_vector *tn;
12c081a5 604 unsigned long i;
19baf839 605
0c7770c7 606 pr_debug("In halve\n");
c877efb2 607
e9b44019 608 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 609 if (!tn)
8d8e810c 610 goto notnode;
2f36895a 611
69fa57b1
AD
612 /* prepare oldtnode to be freed */
613 tnode_free_init(oldtnode);
614
12c081a5
AD
615 /* Assemble all of the pointers in our cluster, in this case that
616 * represents all of the pointers out of our allocated nodes that
617 * point to existing tnodes and the links between our allocated
618 * nodes.
2f36895a 619 */
2e1ac88a 620 for (i = child_length(oldtnode); i;) {
754baf8d
AD
621 struct key_vector *node1 = get_child(oldtnode, --i);
622 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 623 struct key_vector *inode;
2f36895a 624
12c081a5
AD
625 /* At least one of the children is empty */
626 if (!node1 || !node0) {
627 put_child(tn, i / 2, node1 ? : node0);
628 continue;
629 }
c877efb2 630
2f36895a 631 /* Two nonempty children */
12c081a5 632 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
633 if (!inode)
634 goto nomem;
12c081a5 635 tnode_free_append(tn, inode);
2f36895a 636
12c081a5
AD
637 /* initialize pointers out of node */
638 put_child(inode, 1, node1);
639 put_child(inode, 0, node0);
640 NODE_INIT_PARENT(inode, tn);
641
642 /* link parent to node */
643 put_child(tn, i / 2, inode);
2f36895a 644 }
19baf839 645
69fa57b1 646 /* setup the parent pointers into and out of this node */
8d8e810c
AD
647 return replace(t, oldtnode, tn);
648nomem:
649 /* all pointers should be clean so we are done */
650 tnode_free(tn);
651notnode:
652 return NULL;
19baf839
RO
653}
654
88bae714
AD
655static struct key_vector *collapse(struct trie *t,
656 struct key_vector *oldtnode)
95f60ea3 657{
35c6edac 658 struct key_vector *n, *tp;
95f60ea3
AD
659 unsigned long i;
660
661 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 662 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 663 n = get_child(oldtnode, --i);
95f60ea3
AD
664
665 /* compress one level */
666 tp = node_parent(oldtnode);
88bae714 667 put_child_root(tp, oldtnode->key, n);
95f60ea3
AD
668 node_set_parent(n, tp);
669
670 /* drop dead node */
671 node_free(oldtnode);
88bae714
AD
672
673 return tp;
95f60ea3
AD
674}
675
35c6edac 676static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
677{
678 unsigned char slen = tn->pos;
679 unsigned long stride, i;
680
681 /* search though the list of children looking for nodes that might
682 * have a suffix greater than the one we currently have. This is
683 * why we start with a stride of 2 since a stride of 1 would
684 * represent the nodes with suffix length equal to tn->pos
685 */
2e1ac88a 686 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 687 struct key_vector *n = get_child(tn, i);
5405afd1
AD
688
689 if (!n || (n->slen <= slen))
690 continue;
691
692 /* update stride and slen based on new value */
693 stride <<= (n->slen - slen);
694 slen = n->slen;
695 i &= ~(stride - 1);
696
697 /* if slen covers all but the last bit we can stop here
698 * there will be nothing longer than that since only node
699 * 0 and 1 << (bits - 1) could have that as their suffix
700 * length.
701 */
702 if ((slen + 1) >= (tn->pos + tn->bits))
703 break;
704 }
705
706 tn->slen = slen;
707
708 return slen;
709}
710
f05a4819
AD
711/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
712 * the Helsinki University of Technology and Matti Tikkanen of Nokia
713 * Telecommunications, page 6:
714 * "A node is doubled if the ratio of non-empty children to all
715 * children in the *doubled* node is at least 'high'."
716 *
717 * 'high' in this instance is the variable 'inflate_threshold'. It
718 * is expressed as a percentage, so we multiply it with
2e1ac88a 719 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
720 * child array will be doubled by inflate()) and multiplying
721 * the left-hand side by 100 (to handle the percentage thing) we
722 * multiply the left-hand side by 50.
723 *
2e1ac88a 724 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
725 * - tn->empty_children is of course the number of non-null children
726 * in the current node. tn->full_children is the number of "full"
727 * children, that is non-null tnodes with a skip value of 0.
728 * All of those will be doubled in the resulting inflated tnode, so
729 * we just count them one extra time here.
730 *
731 * A clearer way to write this would be:
732 *
733 * to_be_doubled = tn->full_children;
2e1ac88a 734 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
735 * tn->full_children;
736 *
2e1ac88a 737 * new_child_length = child_length(tn) * 2;
f05a4819
AD
738 *
739 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
740 * new_child_length;
741 * if (new_fill_factor >= inflate_threshold)
742 *
743 * ...and so on, tho it would mess up the while () loop.
744 *
745 * anyway,
746 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
747 * inflate_threshold
748 *
749 * avoid a division:
750 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
751 * inflate_threshold * new_child_length
752 *
753 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 754 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
755 * tn->full_children) >= inflate_threshold * new_child_length
756 *
757 * expand new_child_length:
2e1ac88a 758 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 759 * tn->full_children) >=
2e1ac88a 760 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
761 *
762 * shorten again:
2e1ac88a 763 * 50 * (tn->full_children + child_length(tn) -
f05a4819 764 * tn->empty_children) >= inflate_threshold *
2e1ac88a 765 * child_length(tn)
f05a4819
AD
766 *
767 */
35c6edac 768static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 769{
2e1ac88a 770 unsigned long used = child_length(tn);
f05a4819
AD
771 unsigned long threshold = used;
772
773 /* Keep root node larger */
88bae714 774 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
6e22d174
AD
775 used -= tn_info(tn)->empty_children;
776 used += tn_info(tn)->full_children;
f05a4819 777
95f60ea3
AD
778 /* if bits == KEYLENGTH then pos = 0, and will fail below */
779
780 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
781}
782
35c6edac 783static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 784{
2e1ac88a 785 unsigned long used = child_length(tn);
f05a4819
AD
786 unsigned long threshold = used;
787
788 /* Keep root node larger */
88bae714 789 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
6e22d174 790 used -= tn_info(tn)->empty_children;
f05a4819 791
95f60ea3
AD
792 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
793
794 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
795}
796
35c6edac 797static inline bool should_collapse(struct key_vector *tn)
95f60ea3 798{
2e1ac88a 799 unsigned long used = child_length(tn);
95f60ea3 800
6e22d174 801 used -= tn_info(tn)->empty_children;
95f60ea3
AD
802
803 /* account for bits == KEYLENGTH case */
6e22d174 804 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
95f60ea3
AD
805 used -= KEY_MAX;
806
807 /* One child or none, time to drop us from the trie */
808 return used < 2;
f05a4819
AD
809}
810
cf3637bb 811#define MAX_WORK 10
88bae714 812static struct key_vector *resize(struct trie *t, struct key_vector *tn)
cf3637bb 813{
8d8e810c
AD
814#ifdef CONFIG_IP_FIB_TRIE_STATS
815 struct trie_use_stats __percpu *stats = t->stats;
816#endif
35c6edac 817 struct key_vector *tp = node_parent(tn);
88bae714 818 unsigned long cindex = get_index(tn->key, tp);
a80e89d4 819 int max_work = MAX_WORK;
cf3637bb 820
cf3637bb
AD
821 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
822 tn, inflate_threshold, halve_threshold);
823
ff181ed8
AD
824 /* track the tnode via the pointer from the parent instead of
825 * doing it ourselves. This way we can let RCU fully do its
826 * thing without us interfering
827 */
88bae714 828 BUG_ON(tn != get_child(tp, cindex));
ff181ed8 829
f05a4819
AD
830 /* Double as long as the resulting node has a number of
831 * nonempty nodes that are above the threshold.
cf3637bb 832 */
a80e89d4 833 while (should_inflate(tp, tn) && max_work) {
88bae714
AD
834 tp = inflate(t, tn);
835 if (!tp) {
cf3637bb 836#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 837 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
838#endif
839 break;
840 }
ff181ed8 841
a80e89d4 842 max_work--;
88bae714 843 tn = get_child(tp, cindex);
cf3637bb
AD
844 }
845
846 /* Return if at least one inflate is run */
847 if (max_work != MAX_WORK)
88bae714 848 return node_parent(tn);
cf3637bb 849
f05a4819 850 /* Halve as long as the number of empty children in this
cf3637bb
AD
851 * node is above threshold.
852 */
a80e89d4 853 while (should_halve(tp, tn) && max_work) {
88bae714
AD
854 tp = halve(t, tn);
855 if (!tp) {
cf3637bb 856#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 857 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
858#endif
859 break;
860 }
cf3637bb 861
a80e89d4 862 max_work--;
88bae714 863 tn = get_child(tp, cindex);
ff181ed8 864 }
cf3637bb
AD
865
866 /* Only one child remains */
88bae714
AD
867 if (should_collapse(tn))
868 return collapse(t, tn);
869
870 /* update parent in case inflate or halve failed */
871 tp = node_parent(tn);
5405afd1
AD
872
873 /* Return if at least one deflate was run */
874 if (max_work != MAX_WORK)
88bae714 875 return tp;
5405afd1
AD
876
877 /* push the suffix length to the parent node */
878 if (tn->slen > tn->pos) {
879 unsigned char slen = update_suffix(tn);
880
88bae714 881 if (slen > tp->slen)
5405afd1 882 tp->slen = slen;
cf3637bb 883 }
8d8e810c 884
88bae714 885 return tp;
cf3637bb
AD
886}
887
35c6edac 888static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
5405afd1 889{
88bae714 890 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
5405afd1
AD
891 if (update_suffix(tp) > l->slen)
892 break;
893 tp = node_parent(tp);
894 }
895}
896
35c6edac 897static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
19baf839 898{
5405afd1
AD
899 /* if this is a new leaf then tn will be NULL and we can sort
900 * out parent suffix lengths as a part of trie_rebalance
901 */
88bae714 902 while (tn->slen < l->slen) {
5405afd1
AD
903 tn->slen = l->slen;
904 tn = node_parent(tn);
905 }
906}
907
2373ce1c 908/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
909static struct key_vector *fib_find_node(struct trie *t,
910 struct key_vector **tp, u32 key)
19baf839 911{
88bae714
AD
912 struct key_vector *pn, *n = t->kv;
913 unsigned long index = 0;
914
915 do {
916 pn = n;
917 n = get_child_rcu(n, index);
918
919 if (!n)
920 break;
939afb06 921
88bae714 922 index = get_cindex(key, n);
939afb06
AD
923
924 /* This bit of code is a bit tricky but it combines multiple
925 * checks into a single check. The prefix consists of the
926 * prefix plus zeros for the bits in the cindex. The index
927 * is the difference between the key and this value. From
928 * this we can actually derive several pieces of data.
d4a975e8 929 * if (index >= (1ul << bits))
939afb06 930 * we have a mismatch in skip bits and failed
b3832117
AD
931 * else
932 * we know the value is cindex
d4a975e8
AD
933 *
934 * This check is safe even if bits == KEYLENGTH due to the
935 * fact that we can only allocate a node with 32 bits if a
936 * long is greater than 32 bits.
939afb06 937 */
d4a975e8
AD
938 if (index >= (1ul << n->bits)) {
939 n = NULL;
940 break;
941 }
939afb06 942
88bae714
AD
943 /* keep searching until we find a perfect match leaf or NULL */
944 } while (IS_TNODE(n));
91b9a277 945
35c6edac 946 *tp = pn;
d4a975e8 947
939afb06 948 return n;
19baf839
RO
949}
950
02525368
AD
951/* Return the first fib alias matching TOS with
952 * priority less than or equal to PRIO.
953 */
79e5ad2c
AD
954static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
955 u8 tos, u32 prio)
02525368
AD
956{
957 struct fib_alias *fa;
958
959 if (!fah)
960 return NULL;
961
56315f9e 962 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
963 if (fa->fa_slen < slen)
964 continue;
965 if (fa->fa_slen != slen)
966 break;
02525368
AD
967 if (fa->fa_tos > tos)
968 continue;
969 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
970 return fa;
971 }
972
973 return NULL;
974}
975
35c6edac 976static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 977{
88bae714
AD
978 while (!IS_TRIE(tn))
979 tn = resize(t, tn);
19baf839
RO
980}
981
35c6edac 982static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 983 struct fib_alias *new, t_key key)
19baf839 984{
35c6edac 985 struct key_vector *n, *l;
19baf839 986
d5d6487c 987 l = leaf_new(key, new);
79e5ad2c 988 if (!l)
8d8e810c 989 goto noleaf;
d5d6487c
AD
990
991 /* retrieve child from parent node */
88bae714 992 n = get_child(tp, get_index(key, tp));
19baf839 993
836a0123
AD
994 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
995 *
996 * Add a new tnode here
997 * first tnode need some special handling
998 * leaves us in position for handling as case 3
999 */
1000 if (n) {
35c6edac 1001 struct key_vector *tn;
19baf839 1002
e9b44019 1003 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1004 if (!tn)
1005 goto notnode;
91b9a277 1006
836a0123
AD
1007 /* initialize routes out of node */
1008 NODE_INIT_PARENT(tn, tp);
1009 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1010
836a0123 1011 /* start adding routes into the node */
88bae714 1012 put_child_root(tp, key, tn);
836a0123 1013 node_set_parent(n, tn);
e962f302 1014
836a0123 1015 /* parent now has a NULL spot where the leaf can go */
e962f302 1016 tp = tn;
19baf839 1017 }
91b9a277 1018
836a0123 1019 /* Case 3: n is NULL, and will just insert a new leaf */
d5d6487c 1020 NODE_INIT_PARENT(l, tp);
88bae714 1021 put_child_root(tp, key, l);
d5d6487c
AD
1022 trie_rebalance(t, tp);
1023
1024 return 0;
8d8e810c
AD
1025notnode:
1026 node_free(l);
1027noleaf:
1028 return -ENOMEM;
d5d6487c
AD
1029}
1030
35c6edac
AD
1031static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1032 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1033 struct fib_alias *fa, t_key key)
1034{
1035 if (!l)
1036 return fib_insert_node(t, tp, new, key);
1037
1038 if (fa) {
1039 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1040 } else {
d5d6487c
AD
1041 struct fib_alias *last;
1042
1043 hlist_for_each_entry(last, &l->leaf, fa_list) {
1044 if (new->fa_slen < last->fa_slen)
1045 break;
1046 fa = last;
1047 }
1048
1049 if (fa)
1050 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1051 else
1052 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1053 }
2373ce1c 1054
d5d6487c
AD
1055 /* if we added to the tail node then we need to update slen */
1056 if (l->slen < new->fa_slen) {
1057 l->slen = new->fa_slen;
1058 leaf_push_suffix(tp, l);
1059 }
1060
1061 return 0;
19baf839
RO
1062}
1063
d5d6487c 1064/* Caller must hold RTNL. */
16c6cf8b 1065int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839 1066{
d4a975e8 1067 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1068 struct fib_alias *fa, *new_fa;
35c6edac 1069 struct key_vector *l, *tp;
19baf839 1070 struct fib_info *fi;
79e5ad2c
AD
1071 u8 plen = cfg->fc_dst_len;
1072 u8 slen = KEYLENGTH - plen;
4e902c57 1073 u8 tos = cfg->fc_tos;
d4a975e8 1074 u32 key;
19baf839 1075 int err;
19baf839 1076
5786ec60 1077 if (plen > KEYLENGTH)
19baf839
RO
1078 return -EINVAL;
1079
4e902c57 1080 key = ntohl(cfg->fc_dst);
19baf839 1081
2dfe55b4 1082 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1083
d4a975e8 1084 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1085 return -EINVAL;
1086
4e902c57
TG
1087 fi = fib_create_info(cfg);
1088 if (IS_ERR(fi)) {
1089 err = PTR_ERR(fi);
19baf839 1090 goto err;
4e902c57 1091 }
19baf839 1092
d4a975e8 1093 l = fib_find_node(t, &tp, key);
79e5ad2c 1094 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
19baf839
RO
1095
1096 /* Now fa, if non-NULL, points to the first fib alias
1097 * with the same keys [prefix,tos,priority], if such key already
1098 * exists or to the node before which we will insert new one.
1099 *
1100 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1101 * insert to the tail of the section matching the suffix length
1102 * of the new alias.
19baf839
RO
1103 */
1104
936f6f8e
JA
1105 if (fa && fa->fa_tos == tos &&
1106 fa->fa_info->fib_priority == fi->fib_priority) {
1107 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1108
1109 err = -EEXIST;
4e902c57 1110 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1111 goto out;
1112
936f6f8e
JA
1113 /* We have 2 goals:
1114 * 1. Find exact match for type, scope, fib_info to avoid
1115 * duplicate routes
1116 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1117 */
1118 fa_match = NULL;
1119 fa_first = fa;
56315f9e 1120 hlist_for_each_entry_from(fa, fa_list) {
79e5ad2c 1121 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
936f6f8e
JA
1122 break;
1123 if (fa->fa_info->fib_priority != fi->fib_priority)
1124 break;
1125 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1126 fa->fa_info == fi) {
1127 fa_match = fa;
1128 break;
1129 }
1130 }
1131
4e902c57 1132 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1133 struct fib_info *fi_drop;
1134 u8 state;
1135
936f6f8e
JA
1136 fa = fa_first;
1137 if (fa_match) {
1138 if (fa == fa_match)
1139 err = 0;
6725033f 1140 goto out;
936f6f8e 1141 }
2373ce1c 1142 err = -ENOBUFS;
e94b1766 1143 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1144 if (new_fa == NULL)
1145 goto out;
19baf839
RO
1146
1147 fi_drop = fa->fa_info;
2373ce1c
RO
1148 new_fa->fa_tos = fa->fa_tos;
1149 new_fa->fa_info = fi;
4e902c57 1150 new_fa->fa_type = cfg->fc_type;
19baf839 1151 state = fa->fa_state;
936f6f8e 1152 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1153 new_fa->fa_slen = fa->fa_slen;
19baf839 1154
8e05fd71
SF
1155 err = netdev_switch_fib_ipv4_add(key, plen, fi,
1156 new_fa->fa_tos,
1157 cfg->fc_type,
1158 tb->tb_id);
1159 if (err) {
1160 netdev_switch_fib_ipv4_abort(fi);
1161 kmem_cache_free(fn_alias_kmem, new_fa);
1162 goto out;
1163 }
1164
56315f9e 1165 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1166
2373ce1c 1167 alias_free_mem_rcu(fa);
19baf839
RO
1168
1169 fib_release_info(fi_drop);
1170 if (state & FA_S_ACCESSED)
4ccfe6d4 1171 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1172 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1173 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1174
91b9a277 1175 goto succeeded;
19baf839
RO
1176 }
1177 /* Error if we find a perfect match which
1178 * uses the same scope, type, and nexthop
1179 * information.
1180 */
936f6f8e
JA
1181 if (fa_match)
1182 goto out;
a07f5f50 1183
4e902c57 1184 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1185 fa = fa_first;
19baf839
RO
1186 }
1187 err = -ENOENT;
4e902c57 1188 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1189 goto out;
1190
1191 err = -ENOBUFS;
e94b1766 1192 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1193 if (new_fa == NULL)
1194 goto out;
1195
1196 new_fa->fa_info = fi;
1197 new_fa->fa_tos = tos;
4e902c57 1198 new_fa->fa_type = cfg->fc_type;
19baf839 1199 new_fa->fa_state = 0;
79e5ad2c 1200 new_fa->fa_slen = slen;
19baf839 1201
8e05fd71
SF
1202 /* (Optionally) offload fib entry to switch hardware. */
1203 err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1204 cfg->fc_type, tb->tb_id);
1205 if (err) {
1206 netdev_switch_fib_ipv4_abort(fi);
1207 goto out_free_new_fa;
1208 }
1209
9b6ebad5 1210 /* Insert new entry to the list. */
d5d6487c
AD
1211 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1212 if (err)
8e05fd71 1213 goto out_sw_fib_del;
19baf839 1214
21d8c49e
DM
1215 if (!plen)
1216 tb->tb_num_default++;
1217
4ccfe6d4 1218 rt_cache_flush(cfg->fc_nlinfo.nl_net);
4e902c57 1219 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1220 &cfg->fc_nlinfo, 0);
19baf839
RO
1221succeeded:
1222 return 0;
f835e471 1223
8e05fd71
SF
1224out_sw_fib_del:
1225 netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
f835e471
RO
1226out_free_new_fa:
1227 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1228out:
1229 fib_release_info(fi);
91b9a277 1230err:
19baf839
RO
1231 return err;
1232}
1233
35c6edac 1234static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1235{
1236 t_key prefix = n->key;
1237
1238 return (key ^ prefix) & (prefix | -prefix);
1239}
1240
345e9b54 1241/* should be called with rcu_read_lock */
22bd5b9b 1242int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1243 struct fib_result *res, int fib_flags)
19baf839 1244{
9f9e636d 1245 struct trie *t = (struct trie *)tb->tb_data;
8274a97a
AD
1246#ifdef CONFIG_IP_FIB_TRIE_STATS
1247 struct trie_use_stats __percpu *stats = t->stats;
1248#endif
9f9e636d 1249 const t_key key = ntohl(flp->daddr);
35c6edac 1250 struct key_vector *n, *pn;
79e5ad2c 1251 struct fib_alias *fa;
71e8b67d 1252 unsigned long index;
9f9e636d 1253 t_key cindex;
91b9a277 1254
88bae714
AD
1255 pn = t->kv;
1256 cindex = 0;
1257
1258 n = get_child_rcu(pn, cindex);
c877efb2 1259 if (!n)
345e9b54 1260 return -EAGAIN;
19baf839
RO
1261
1262#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1263 this_cpu_inc(stats->gets);
19baf839
RO
1264#endif
1265
9f9e636d
AD
1266 /* Step 1: Travel to the longest prefix match in the trie */
1267 for (;;) {
88bae714 1268 index = get_cindex(key, n);
9f9e636d
AD
1269
1270 /* This bit of code is a bit tricky but it combines multiple
1271 * checks into a single check. The prefix consists of the
1272 * prefix plus zeros for the "bits" in the prefix. The index
1273 * is the difference between the key and this value. From
1274 * this we can actually derive several pieces of data.
71e8b67d 1275 * if (index >= (1ul << bits))
9f9e636d 1276 * we have a mismatch in skip bits and failed
b3832117
AD
1277 * else
1278 * we know the value is cindex
71e8b67d
AD
1279 *
1280 * This check is safe even if bits == KEYLENGTH due to the
1281 * fact that we can only allocate a node with 32 bits if a
1282 * long is greater than 32 bits.
9f9e636d 1283 */
71e8b67d 1284 if (index >= (1ul << n->bits))
9f9e636d 1285 break;
19baf839 1286
9f9e636d
AD
1287 /* we have found a leaf. Prefixes have already been compared */
1288 if (IS_LEAF(n))
a07f5f50 1289 goto found;
19baf839 1290
9f9e636d
AD
1291 /* only record pn and cindex if we are going to be chopping
1292 * bits later. Otherwise we are just wasting cycles.
91b9a277 1293 */
5405afd1 1294 if (n->slen > n->pos) {
9f9e636d
AD
1295 pn = n;
1296 cindex = index;
91b9a277 1297 }
19baf839 1298
754baf8d 1299 n = get_child_rcu(n, index);
9f9e636d
AD
1300 if (unlikely(!n))
1301 goto backtrace;
1302 }
19baf839 1303
9f9e636d
AD
1304 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1305 for (;;) {
1306 /* record the pointer where our next node pointer is stored */
35c6edac 1307 struct key_vector __rcu **cptr = n->tnode;
19baf839 1308
9f9e636d
AD
1309 /* This test verifies that none of the bits that differ
1310 * between the key and the prefix exist in the region of
1311 * the lsb and higher in the prefix.
91b9a277 1312 */
5405afd1 1313 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1314 goto backtrace;
91b9a277 1315
9f9e636d
AD
1316 /* exit out and process leaf */
1317 if (unlikely(IS_LEAF(n)))
1318 break;
91b9a277 1319
9f9e636d
AD
1320 /* Don't bother recording parent info. Since we are in
1321 * prefix match mode we will have to come back to wherever
1322 * we started this traversal anyway
91b9a277 1323 */
91b9a277 1324
9f9e636d 1325 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1326backtrace:
19baf839 1327#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1328 if (!n)
1329 this_cpu_inc(stats->null_node_hit);
19baf839 1330#endif
9f9e636d
AD
1331 /* If we are at cindex 0 there are no more bits for
1332 * us to strip at this level so we must ascend back
1333 * up one level to see if there are any more bits to
1334 * be stripped there.
1335 */
1336 while (!cindex) {
1337 t_key pkey = pn->key;
1338
88bae714
AD
1339 /* If we don't have a parent then there is
1340 * nothing for us to do as we do not have any
1341 * further nodes to parse.
1342 */
1343 if (IS_TRIE(pn))
345e9b54 1344 return -EAGAIN;
9f9e636d
AD
1345#ifdef CONFIG_IP_FIB_TRIE_STATS
1346 this_cpu_inc(stats->backtrack);
1347#endif
1348 /* Get Child's index */
88bae714 1349 pn = node_parent_rcu(pn);
9f9e636d
AD
1350 cindex = get_index(pkey, pn);
1351 }
1352
1353 /* strip the least significant bit from the cindex */
1354 cindex &= cindex - 1;
1355
1356 /* grab pointer for next child node */
41b489fd 1357 cptr = &pn->tnode[cindex];
c877efb2 1358 }
19baf839 1359 }
9f9e636d 1360
19baf839 1361found:
71e8b67d
AD
1362 /* this line carries forward the xor from earlier in the function */
1363 index = key ^ n->key;
1364
9f9e636d 1365 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1366 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1367 struct fib_info *fi = fa->fa_info;
1368 int nhsel, err;
345e9b54 1369
71e8b67d 1370 if ((index >= (1ul << fa->fa_slen)) &&
79e5ad2c 1371 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
71e8b67d 1372 continue;
79e5ad2c
AD
1373 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1374 continue;
1375 if (fi->fib_dead)
1376 continue;
1377 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1378 continue;
1379 fib_alias_accessed(fa);
1380 err = fib_props[fa->fa_type].error;
1381 if (unlikely(err < 0)) {
345e9b54 1382#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1383 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1384#endif
79e5ad2c
AD
1385 return err;
1386 }
1387 if (fi->fib_flags & RTNH_F_DEAD)
1388 continue;
1389 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1390 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1391
1392 if (nh->nh_flags & RTNH_F_DEAD)
1393 continue;
1394 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
345e9b54 1395 continue;
79e5ad2c
AD
1396
1397 if (!(fib_flags & FIB_LOOKUP_NOREF))
1398 atomic_inc(&fi->fib_clntref);
1399
1400 res->prefixlen = KEYLENGTH - fa->fa_slen;
1401 res->nh_sel = nhsel;
1402 res->type = fa->fa_type;
1403 res->scope = fi->fib_scope;
1404 res->fi = fi;
1405 res->table = tb;
1406 res->fa_head = &n->leaf;
345e9b54 1407#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1408 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1409#endif
79e5ad2c 1410 return err;
345e9b54 1411 }
9b6ebad5 1412 }
345e9b54 1413#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1414 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1415#endif
345e9b54 1416 goto backtrace;
19baf839 1417}
6fc01438 1418EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1419
35c6edac
AD
1420static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1421 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1422{
1423 /* record the location of the previous list_info entry */
1424 struct hlist_node **pprev = old->fa_list.pprev;
1425 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1426
1427 /* remove the fib_alias from the list */
1428 hlist_del_rcu(&old->fa_list);
1429
1430 /* if we emptied the list this leaf will be freed and we can sort
1431 * out parent suffix lengths as a part of trie_rebalance
1432 */
1433 if (hlist_empty(&l->leaf)) {
88bae714 1434 put_child_root(tp, l->key, NULL);
d5d6487c
AD
1435 node_free(l);
1436 trie_rebalance(t, tp);
1437 return;
1438 }
1439
1440 /* only access fa if it is pointing at the last valid hlist_node */
1441 if (*pprev)
1442 return;
1443
1444 /* update the trie with the latest suffix length */
1445 l->slen = fa->fa_slen;
1446 leaf_pull_suffix(tp, l);
1447}
1448
1449/* Caller must hold RTNL. */
16c6cf8b 1450int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1451{
1452 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1453 struct fib_alias *fa, *fa_to_delete;
35c6edac 1454 struct key_vector *l, *tp;
79e5ad2c 1455 u8 plen = cfg->fc_dst_len;
79e5ad2c 1456 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1457 u8 tos = cfg->fc_tos;
1458 u32 key;
91b9a277 1459
79e5ad2c 1460 if (plen > KEYLENGTH)
19baf839
RO
1461 return -EINVAL;
1462
4e902c57 1463 key = ntohl(cfg->fc_dst);
19baf839 1464
d4a975e8 1465 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1466 return -EINVAL;
1467
d4a975e8 1468 l = fib_find_node(t, &tp, key);
c877efb2 1469 if (!l)
19baf839
RO
1470 return -ESRCH;
1471
79e5ad2c 1472 fa = fib_find_alias(&l->leaf, slen, tos, 0);
19baf839
RO
1473 if (!fa)
1474 return -ESRCH;
1475
0c7770c7 1476 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1477
1478 fa_to_delete = NULL;
56315f9e 1479 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1480 struct fib_info *fi = fa->fa_info;
1481
79e5ad2c 1482 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
19baf839
RO
1483 break;
1484
4e902c57
TG
1485 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1486 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1487 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1488 (!cfg->fc_prefsrc ||
1489 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1490 (!cfg->fc_protocol ||
1491 fi->fib_protocol == cfg->fc_protocol) &&
1492 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1493 fa_to_delete = fa;
1494 break;
1495 }
1496 }
1497
91b9a277
OJ
1498 if (!fa_to_delete)
1499 return -ESRCH;
19baf839 1500
8e05fd71
SF
1501 netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1502 cfg->fc_type, tb->tb_id);
1503
d5d6487c 1504 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1505 &cfg->fc_nlinfo, 0);
91b9a277 1506
21d8c49e
DM
1507 if (!plen)
1508 tb->tb_num_default--;
1509
d5d6487c 1510 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1511
d5d6487c 1512 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1513 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1514
d5d6487c
AD
1515 fib_release_info(fa_to_delete->fa_info);
1516 alias_free_mem_rcu(fa_to_delete);
91b9a277 1517 return 0;
19baf839
RO
1518}
1519
8be33e95 1520/* Scan for the next leaf starting at the provided key value */
35c6edac 1521static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1522{
35c6edac 1523 struct key_vector *pn, *n = *tn;
8be33e95 1524 unsigned long cindex;
82cfbb00 1525
8be33e95 1526 /* this loop is meant to try and find the key in the trie */
88bae714 1527 do {
8be33e95
AD
1528 /* record parent and next child index */
1529 pn = n;
88bae714
AD
1530 cindex = get_index(key, pn);
1531
1532 if (cindex >> pn->bits)
1533 break;
82cfbb00 1534
8be33e95 1535 /* descend into the next child */
754baf8d 1536 n = get_child_rcu(pn, cindex++);
88bae714
AD
1537 if (!n)
1538 break;
1539
1540 /* guarantee forward progress on the keys */
1541 if (IS_LEAF(n) && (n->key >= key))
1542 goto found;
1543 } while (IS_TNODE(n));
82cfbb00 1544
8be33e95 1545 /* this loop will search for the next leaf with a greater key */
88bae714 1546 while (!IS_TRIE(pn)) {
8be33e95
AD
1547 /* if we exhausted the parent node we will need to climb */
1548 if (cindex >= (1ul << pn->bits)) {
1549 t_key pkey = pn->key;
82cfbb00 1550
8be33e95 1551 pn = node_parent_rcu(pn);
8be33e95
AD
1552 cindex = get_index(pkey, pn) + 1;
1553 continue;
1554 }
82cfbb00 1555
8be33e95 1556 /* grab the next available node */
754baf8d 1557 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1558 if (!n)
1559 continue;
19baf839 1560
8be33e95
AD
1561 /* no need to compare keys since we bumped the index */
1562 if (IS_LEAF(n))
1563 goto found;
71d67e66 1564
8be33e95
AD
1565 /* Rescan start scanning in new node */
1566 pn = n;
1567 cindex = 0;
1568 }
ec28cf73 1569
8be33e95
AD
1570 *tn = pn;
1571 return NULL; /* Root of trie */
1572found:
1573 /* if we are at the limit for keys just return NULL for the tnode */
88bae714 1574 *tn = pn;
8be33e95 1575 return n;
71d67e66
SH
1576}
1577
104616e7
SF
1578/* Caller must hold RTNL */
1579void fib_table_flush_external(struct fib_table *tb)
1580{
1581 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1582 struct key_vector *pn = t->kv;
1583 unsigned long cindex = 1;
1584 struct hlist_node *tmp;
104616e7 1585 struct fib_alias *fa;
104616e7 1586
88bae714
AD
1587 /* walk trie in reverse order */
1588 for (;;) {
1589 struct key_vector *n;
104616e7 1590
88bae714
AD
1591 if (!(cindex--)) {
1592 t_key pkey = pn->key;
104616e7 1593
88bae714
AD
1594 /* cannot resize the trie vector */
1595 if (IS_TRIE(pn))
1596 break;
104616e7 1597
88bae714
AD
1598 /* no need to resize like in flush below */
1599 pn = node_parent(pn);
1600 cindex = get_index(pkey, pn);
104616e7 1601
88bae714
AD
1602 continue;
1603 }
104616e7 1604
88bae714
AD
1605 /* grab the next available node */
1606 n = get_child(pn, cindex);
1607 if (!n)
1608 continue;
104616e7 1609
88bae714
AD
1610 if (IS_TNODE(n)) {
1611 /* record pn and cindex for leaf walking */
1612 pn = n;
1613 cindex = 1ul << n->bits;
104616e7 1614
72be7260 1615 continue;
88bae714 1616 }
72be7260 1617
88bae714
AD
1618 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1619 struct fib_info *fi = fa->fa_info;
1620
1621 if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
1622 continue;
104616e7 1623
88bae714
AD
1624 netdev_switch_fib_ipv4_del(n->key,
1625 KEYLENGTH - fa->fa_slen,
1626 fi, fa->fa_tos,
1627 fa->fa_type, tb->tb_id);
1628 }
1629 }
104616e7
SF
1630}
1631
8be33e95 1632/* Caller must hold RTNL. */
16c6cf8b 1633int fib_table_flush(struct fib_table *tb)
19baf839 1634{
7289e6dd 1635 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1636 struct key_vector *pn = t->kv;
1637 unsigned long cindex = 1;
7289e6dd
AD
1638 struct hlist_node *tmp;
1639 struct fib_alias *fa;
82cfbb00 1640 int found = 0;
19baf839 1641
88bae714
AD
1642 /* walk trie in reverse order */
1643 for (;;) {
1644 unsigned char slen = 0;
1645 struct key_vector *n;
19baf839 1646
88bae714
AD
1647 if (!(cindex--)) {
1648 t_key pkey = pn->key;
7289e6dd 1649
88bae714
AD
1650 /* cannot resize the trie vector */
1651 if (IS_TRIE(pn))
1652 break;
7289e6dd 1653
88bae714
AD
1654 /* resize completed node */
1655 pn = resize(t, pn);
1656 cindex = get_index(pkey, pn);
7289e6dd 1657
88bae714
AD
1658 continue;
1659 }
7289e6dd 1660
88bae714
AD
1661 /* grab the next available node */
1662 n = get_child(pn, cindex);
1663 if (!n)
1664 continue;
7289e6dd 1665
88bae714
AD
1666 if (IS_TNODE(n)) {
1667 /* record pn and cindex for leaf walking */
1668 pn = n;
1669 cindex = 1ul << n->bits;
7289e6dd 1670
88bae714
AD
1671 continue;
1672 }
7289e6dd 1673
88bae714
AD
1674 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1675 struct fib_info *fi = fa->fa_info;
7289e6dd 1676
88bae714
AD
1677 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1678 slen = fa->fa_slen;
1679 continue;
1680 }
7289e6dd 1681
8e05fd71
SF
1682 netdev_switch_fib_ipv4_del(n->key,
1683 KEYLENGTH - fa->fa_slen,
1684 fi, fa->fa_tos,
1685 fa->fa_type, tb->tb_id);
7289e6dd
AD
1686 hlist_del_rcu(&fa->fa_list);
1687 fib_release_info(fa->fa_info);
1688 alias_free_mem_rcu(fa);
1689 found++;
64c62723
AD
1690 }
1691
88bae714
AD
1692 /* update leaf slen */
1693 n->slen = slen;
7289e6dd 1694
88bae714
AD
1695 if (hlist_empty(&n->leaf)) {
1696 put_child_root(pn, n->key, NULL);
1697 node_free(n);
1698 } else {
1699 leaf_pull_suffix(pn, n);
1700 }
64c62723 1701 }
19baf839 1702
0c7770c7 1703 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1704 return found;
1705}
1706
a7e53531 1707static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1708{
a7e53531 1709 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1710#ifdef CONFIG_IP_FIB_TRIE_STATS
1711 struct trie *t = (struct trie *)tb->tb_data;
1712
1713 free_percpu(t->stats);
1714#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1715 kfree(tb);
1716}
1717
a7e53531
AD
1718void fib_free_table(struct fib_table *tb)
1719{
1720 call_rcu(&tb->rcu, __trie_free_rcu);
1721}
1722
35c6edac 1723static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1724 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1725{
79e5ad2c 1726 __be32 xkey = htonl(l->key);
19baf839 1727 struct fib_alias *fa;
79e5ad2c 1728 int i, s_i;
19baf839 1729
79e5ad2c 1730 s_i = cb->args[4];
19baf839
RO
1731 i = 0;
1732
2373ce1c 1733 /* rcu_read_lock is hold by caller */
79e5ad2c 1734 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1735 if (i < s_i) {
1736 i++;
1737 continue;
1738 }
19baf839 1739
15e47304 1740 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1741 cb->nlh->nlmsg_seq,
1742 RTM_NEWROUTE,
1743 tb->tb_id,
1744 fa->fa_type,
be403ea1 1745 xkey,
9b6ebad5 1746 KEYLENGTH - fa->fa_slen,
19baf839 1747 fa->fa_tos,
64347f78 1748 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1749 cb->args[4] = i;
19baf839
RO
1750 return -1;
1751 }
a88ee229 1752 i++;
19baf839 1753 }
a88ee229 1754
71d67e66 1755 cb->args[4] = i;
19baf839
RO
1756 return skb->len;
1757}
1758
a7e53531 1759/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
1760int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1761 struct netlink_callback *cb)
19baf839 1762{
8be33e95 1763 struct trie *t = (struct trie *)tb->tb_data;
88bae714 1764 struct key_vector *l, *tp = t->kv;
d5ce8a0e
SH
1765 /* Dump starting at last key.
1766 * Note: 0.0.0.0/0 (ie default) is first key.
1767 */
8be33e95
AD
1768 int count = cb->args[2];
1769 t_key key = cb->args[3];
a88ee229 1770
8be33e95 1771 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1772 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1773 cb->args[3] = key;
1774 cb->args[2] = count;
a88ee229 1775 return -1;
19baf839 1776 }
d5ce8a0e 1777
71d67e66 1778 ++count;
8be33e95
AD
1779 key = l->key + 1;
1780
71d67e66
SH
1781 memset(&cb->args[4], 0,
1782 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1783
1784 /* stop loop if key wrapped back to 0 */
1785 if (key < l->key)
1786 break;
19baf839 1787 }
8be33e95 1788
8be33e95
AD
1789 cb->args[3] = key;
1790 cb->args[2] = count;
1791
19baf839 1792 return skb->len;
19baf839
RO
1793}
1794
5348ba85 1795void __init fib_trie_init(void)
7f9b8052 1796{
a07f5f50
SH
1797 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1798 sizeof(struct fib_alias),
bc3c8c1e
SH
1799 0, SLAB_PANIC, NULL);
1800
1801 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 1802 LEAF_SIZE,
bc3c8c1e 1803 0, SLAB_PANIC, NULL);
7f9b8052 1804}
19baf839 1805
5348ba85 1806struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1807{
1808 struct fib_table *tb;
1809 struct trie *t;
1810
88bae714 1811 tb = kzalloc(sizeof(*tb) + sizeof(struct trie), GFP_KERNEL);
19baf839
RO
1812 if (tb == NULL)
1813 return NULL;
1814
1815 tb->tb_id = id;
971b893e 1816 tb->tb_default = -1;
21d8c49e 1817 tb->tb_num_default = 0;
19baf839
RO
1818
1819 t = (struct trie *) tb->tb_data;
88bae714
AD
1820 t->kv[0].pos = KEYLENGTH;
1821 t->kv[0].slen = KEYLENGTH;
8274a97a
AD
1822#ifdef CONFIG_IP_FIB_TRIE_STATS
1823 t->stats = alloc_percpu(struct trie_use_stats);
1824 if (!t->stats) {
1825 kfree(tb);
1826 tb = NULL;
1827 }
1828#endif
19baf839 1829
19baf839
RO
1830 return tb;
1831}
1832
cb7b593c
SH
1833#ifdef CONFIG_PROC_FS
1834/* Depth first Trie walk iterator */
1835struct fib_trie_iter {
1c340b2f 1836 struct seq_net_private p;
3d3b2d25 1837 struct fib_table *tb;
35c6edac 1838 struct key_vector *tnode;
a034ee3c
ED
1839 unsigned int index;
1840 unsigned int depth;
cb7b593c 1841};
19baf839 1842
35c6edac 1843static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1844{
98293e8d 1845 unsigned long cindex = iter->index;
88bae714
AD
1846 struct key_vector *pn = iter->tnode;
1847 t_key pkey;
6640e697 1848
cb7b593c
SH
1849 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1850 iter->tnode, iter->index, iter->depth);
19baf839 1851
88bae714
AD
1852 while (!IS_TRIE(pn)) {
1853 while (cindex < child_length(pn)) {
1854 struct key_vector *n = get_child_rcu(pn, cindex++);
1855
1856 if (!n)
1857 continue;
1858
cb7b593c 1859 if (IS_LEAF(n)) {
88bae714
AD
1860 iter->tnode = pn;
1861 iter->index = cindex;
cb7b593c
SH
1862 } else {
1863 /* push down one level */
adaf9816 1864 iter->tnode = n;
cb7b593c
SH
1865 iter->index = 0;
1866 ++iter->depth;
1867 }
88bae714 1868
cb7b593c
SH
1869 return n;
1870 }
19baf839 1871
88bae714
AD
1872 /* Current node exhausted, pop back up */
1873 pkey = pn->key;
1874 pn = node_parent_rcu(pn);
1875 cindex = get_index(pkey, pn) + 1;
cb7b593c 1876 --iter->depth;
19baf839 1877 }
cb7b593c 1878
88bae714
AD
1879 /* record root node so further searches know we are done */
1880 iter->tnode = pn;
1881 iter->index = 0;
1882
cb7b593c 1883 return NULL;
19baf839
RO
1884}
1885
35c6edac
AD
1886static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
1887 struct trie *t)
19baf839 1888{
88bae714 1889 struct key_vector *n, *pn = t->kv;
5ddf0eb2 1890
132adf54 1891 if (!t)
5ddf0eb2
RO
1892 return NULL;
1893
88bae714 1894 n = rcu_dereference(pn->tnode[0]);
3d3b2d25 1895 if (!n)
5ddf0eb2 1896 return NULL;
19baf839 1897
3d3b2d25 1898 if (IS_TNODE(n)) {
adaf9816 1899 iter->tnode = n;
3d3b2d25
SH
1900 iter->index = 0;
1901 iter->depth = 1;
1902 } else {
88bae714 1903 iter->tnode = pn;
3d3b2d25
SH
1904 iter->index = 0;
1905 iter->depth = 0;
91b9a277 1906 }
3d3b2d25
SH
1907
1908 return n;
cb7b593c 1909}
91b9a277 1910
cb7b593c
SH
1911static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1912{
35c6edac 1913 struct key_vector *n;
cb7b593c 1914 struct fib_trie_iter iter;
91b9a277 1915
cb7b593c 1916 memset(s, 0, sizeof(*s));
91b9a277 1917
cb7b593c 1918 rcu_read_lock();
3d3b2d25 1919 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 1920 if (IS_LEAF(n)) {
79e5ad2c 1921 struct fib_alias *fa;
93672292 1922
cb7b593c
SH
1923 s->leaves++;
1924 s->totdepth += iter.depth;
1925 if (iter.depth > s->maxdepth)
1926 s->maxdepth = iter.depth;
93672292 1927
79e5ad2c 1928 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 1929 ++s->prefixes;
cb7b593c 1930 } else {
cb7b593c 1931 s->tnodes++;
adaf9816
AD
1932 if (n->bits < MAX_STAT_DEPTH)
1933 s->nodesizes[n->bits]++;
6e22d174 1934 s->nullpointers += tn_info(n)->empty_children;
19baf839 1935 }
19baf839 1936 }
2373ce1c 1937 rcu_read_unlock();
19baf839
RO
1938}
1939
cb7b593c
SH
1940/*
1941 * This outputs /proc/net/fib_triestats
1942 */
1943static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 1944{
a034ee3c 1945 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 1946
cb7b593c
SH
1947 if (stat->leaves)
1948 avdepth = stat->totdepth*100 / stat->leaves;
1949 else
1950 avdepth = 0;
91b9a277 1951
a07f5f50
SH
1952 seq_printf(seq, "\tAver depth: %u.%02d\n",
1953 avdepth / 100, avdepth % 100);
cb7b593c 1954 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 1955
cb7b593c 1956 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 1957 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
1958
1959 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 1960 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 1961
187b5188 1962 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 1963 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 1964
06ef921d
RO
1965 max = MAX_STAT_DEPTH;
1966 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 1967 max--;
19baf839 1968
cb7b593c 1969 pointers = 0;
f585a991 1970 for (i = 1; i < max; i++)
cb7b593c 1971 if (stat->nodesizes[i] != 0) {
187b5188 1972 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
1973 pointers += (1<<i) * stat->nodesizes[i];
1974 }
1975 seq_putc(seq, '\n');
187b5188 1976 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 1977
35c6edac 1978 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
1979 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
1980 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 1981}
2373ce1c 1982
cb7b593c 1983#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 1984static void trie_show_usage(struct seq_file *seq,
8274a97a 1985 const struct trie_use_stats __percpu *stats)
66a2f7fd 1986{
8274a97a
AD
1987 struct trie_use_stats s = { 0 };
1988 int cpu;
1989
1990 /* loop through all of the CPUs and gather up the stats */
1991 for_each_possible_cpu(cpu) {
1992 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
1993
1994 s.gets += pcpu->gets;
1995 s.backtrack += pcpu->backtrack;
1996 s.semantic_match_passed += pcpu->semantic_match_passed;
1997 s.semantic_match_miss += pcpu->semantic_match_miss;
1998 s.null_node_hit += pcpu->null_node_hit;
1999 s.resize_node_skipped += pcpu->resize_node_skipped;
2000 }
2001
66a2f7fd 2002 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2003 seq_printf(seq, "gets = %u\n", s.gets);
2004 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2005 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2006 s.semantic_match_passed);
2007 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2008 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2009 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2010}
66a2f7fd
SH
2011#endif /* CONFIG_IP_FIB_TRIE_STATS */
2012
3d3b2d25 2013static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2014{
3d3b2d25
SH
2015 if (tb->tb_id == RT_TABLE_LOCAL)
2016 seq_puts(seq, "Local:\n");
2017 else if (tb->tb_id == RT_TABLE_MAIN)
2018 seq_puts(seq, "Main:\n");
2019 else
2020 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2021}
19baf839 2022
3d3b2d25 2023
cb7b593c
SH
2024static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2025{
1c340b2f 2026 struct net *net = (struct net *)seq->private;
3d3b2d25 2027 unsigned int h;
877a9bff 2028
d717a9a6 2029 seq_printf(seq,
a07f5f50
SH
2030 "Basic info: size of leaf:"
2031 " %Zd bytes, size of tnode: %Zd bytes.\n",
41b489fd 2032 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2033
3d3b2d25
SH
2034 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2035 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2036 struct fib_table *tb;
2037
b67bfe0d 2038 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2039 struct trie *t = (struct trie *) tb->tb_data;
2040 struct trie_stat stat;
877a9bff 2041
3d3b2d25
SH
2042 if (!t)
2043 continue;
2044
2045 fib_table_print(seq, tb);
2046
2047 trie_collect_stats(t, &stat);
2048 trie_show_stats(seq, &stat);
2049#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2050 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2051#endif
2052 }
2053 }
19baf839 2054
cb7b593c 2055 return 0;
19baf839
RO
2056}
2057
cb7b593c 2058static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2059{
de05c557 2060 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2061}
2062
9a32144e 2063static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2064 .owner = THIS_MODULE,
2065 .open = fib_triestat_seq_open,
2066 .read = seq_read,
2067 .llseek = seq_lseek,
b6fcbdb4 2068 .release = single_release_net,
cb7b593c
SH
2069};
2070
35c6edac 2071static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2072{
1218854a
YH
2073 struct fib_trie_iter *iter = seq->private;
2074 struct net *net = seq_file_net(seq);
cb7b593c 2075 loff_t idx = 0;
3d3b2d25 2076 unsigned int h;
cb7b593c 2077
3d3b2d25
SH
2078 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2079 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2080 struct fib_table *tb;
cb7b593c 2081
b67bfe0d 2082 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2083 struct key_vector *n;
3d3b2d25
SH
2084
2085 for (n = fib_trie_get_first(iter,
2086 (struct trie *) tb->tb_data);
2087 n; n = fib_trie_get_next(iter))
2088 if (pos == idx++) {
2089 iter->tb = tb;
2090 return n;
2091 }
2092 }
cb7b593c 2093 }
3d3b2d25 2094
19baf839
RO
2095 return NULL;
2096}
2097
cb7b593c 2098static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2099 __acquires(RCU)
19baf839 2100{
cb7b593c 2101 rcu_read_lock();
1218854a 2102 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2103}
2104
cb7b593c 2105static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2106{
cb7b593c 2107 struct fib_trie_iter *iter = seq->private;
1218854a 2108 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2109 struct fib_table *tb = iter->tb;
2110 struct hlist_node *tb_node;
2111 unsigned int h;
35c6edac 2112 struct key_vector *n;
cb7b593c 2113
19baf839 2114 ++*pos;
3d3b2d25
SH
2115 /* next node in same table */
2116 n = fib_trie_get_next(iter);
2117 if (n)
2118 return n;
19baf839 2119
3d3b2d25
SH
2120 /* walk rest of this hash chain */
2121 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2122 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2123 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2124 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2125 if (n)
2126 goto found;
2127 }
19baf839 2128
3d3b2d25
SH
2129 /* new hash chain */
2130 while (++h < FIB_TABLE_HASHSZ) {
2131 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2132 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2133 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2134 if (n)
2135 goto found;
2136 }
2137 }
cb7b593c 2138 return NULL;
3d3b2d25
SH
2139
2140found:
2141 iter->tb = tb;
2142 return n;
cb7b593c 2143}
19baf839 2144
cb7b593c 2145static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2146 __releases(RCU)
19baf839 2147{
cb7b593c
SH
2148 rcu_read_unlock();
2149}
91b9a277 2150
cb7b593c
SH
2151static void seq_indent(struct seq_file *seq, int n)
2152{
a034ee3c
ED
2153 while (n-- > 0)
2154 seq_puts(seq, " ");
cb7b593c 2155}
19baf839 2156
28d36e37 2157static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2158{
132adf54 2159 switch (s) {
cb7b593c
SH
2160 case RT_SCOPE_UNIVERSE: return "universe";
2161 case RT_SCOPE_SITE: return "site";
2162 case RT_SCOPE_LINK: return "link";
2163 case RT_SCOPE_HOST: return "host";
2164 case RT_SCOPE_NOWHERE: return "nowhere";
2165 default:
28d36e37 2166 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2167 return buf;
2168 }
2169}
19baf839 2170
36cbd3dc 2171static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2172 [RTN_UNSPEC] = "UNSPEC",
2173 [RTN_UNICAST] = "UNICAST",
2174 [RTN_LOCAL] = "LOCAL",
2175 [RTN_BROADCAST] = "BROADCAST",
2176 [RTN_ANYCAST] = "ANYCAST",
2177 [RTN_MULTICAST] = "MULTICAST",
2178 [RTN_BLACKHOLE] = "BLACKHOLE",
2179 [RTN_UNREACHABLE] = "UNREACHABLE",
2180 [RTN_PROHIBIT] = "PROHIBIT",
2181 [RTN_THROW] = "THROW",
2182 [RTN_NAT] = "NAT",
2183 [RTN_XRESOLVE] = "XRESOLVE",
2184};
19baf839 2185
a034ee3c 2186static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2187{
cb7b593c
SH
2188 if (t < __RTN_MAX && rtn_type_names[t])
2189 return rtn_type_names[t];
28d36e37 2190 snprintf(buf, len, "type %u", t);
cb7b593c 2191 return buf;
19baf839
RO
2192}
2193
cb7b593c
SH
2194/* Pretty print the trie */
2195static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2196{
cb7b593c 2197 const struct fib_trie_iter *iter = seq->private;
35c6edac 2198 struct key_vector *n = v;
c877efb2 2199
88bae714 2200 if (IS_TRIE(node_parent_rcu(n)))
3d3b2d25 2201 fib_table_print(seq, iter->tb);
095b8501 2202
cb7b593c 2203 if (IS_TNODE(n)) {
adaf9816 2204 __be32 prf = htonl(n->key);
91b9a277 2205
e9b44019
AD
2206 seq_indent(seq, iter->depth-1);
2207 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2208 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
6e22d174
AD
2209 tn_info(n)->full_children,
2210 tn_info(n)->empty_children);
cb7b593c 2211 } else {
adaf9816 2212 __be32 val = htonl(n->key);
79e5ad2c 2213 struct fib_alias *fa;
cb7b593c
SH
2214
2215 seq_indent(seq, iter->depth);
673d57e7 2216 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2217
79e5ad2c
AD
2218 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2219 char buf1[32], buf2[32];
2220
2221 seq_indent(seq, iter->depth + 1);
2222 seq_printf(seq, " /%zu %s %s",
2223 KEYLENGTH - fa->fa_slen,
2224 rtn_scope(buf1, sizeof(buf1),
2225 fa->fa_info->fib_scope),
2226 rtn_type(buf2, sizeof(buf2),
2227 fa->fa_type));
2228 if (fa->fa_tos)
2229 seq_printf(seq, " tos=%d", fa->fa_tos);
2230 seq_putc(seq, '\n');
cb7b593c 2231 }
19baf839 2232 }
cb7b593c 2233
19baf839
RO
2234 return 0;
2235}
2236
f690808e 2237static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2238 .start = fib_trie_seq_start,
2239 .next = fib_trie_seq_next,
2240 .stop = fib_trie_seq_stop,
2241 .show = fib_trie_seq_show,
19baf839
RO
2242};
2243
cb7b593c 2244static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2245{
1c340b2f
DL
2246 return seq_open_net(inode, file, &fib_trie_seq_ops,
2247 sizeof(struct fib_trie_iter));
19baf839
RO
2248}
2249
9a32144e 2250static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2251 .owner = THIS_MODULE,
2252 .open = fib_trie_seq_open,
2253 .read = seq_read,
2254 .llseek = seq_lseek,
1c340b2f 2255 .release = seq_release_net,
19baf839
RO
2256};
2257
8315f5d8
SH
2258struct fib_route_iter {
2259 struct seq_net_private p;
8be33e95 2260 struct fib_table *main_tb;
35c6edac 2261 struct key_vector *tnode;
8315f5d8
SH
2262 loff_t pos;
2263 t_key key;
2264};
2265
35c6edac
AD
2266static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2267 loff_t pos)
8315f5d8 2268{
8be33e95 2269 struct fib_table *tb = iter->main_tb;
35c6edac 2270 struct key_vector *l, **tp = &iter->tnode;
8be33e95
AD
2271 struct trie *t;
2272 t_key key;
8315f5d8 2273
8be33e95
AD
2274 /* use cache location of next-to-find key */
2275 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2276 pos -= iter->pos;
8be33e95
AD
2277 key = iter->key;
2278 } else {
2279 t = (struct trie *)tb->tb_data;
88bae714 2280 iter->tnode = t->kv;
8315f5d8 2281 iter->pos = 0;
8be33e95 2282 key = 0;
8315f5d8
SH
2283 }
2284
8be33e95
AD
2285 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2286 key = l->key + 1;
8315f5d8 2287 iter->pos++;
8be33e95
AD
2288
2289 if (pos-- <= 0)
2290 break;
2291
2292 l = NULL;
2293
2294 /* handle unlikely case of a key wrap */
2295 if (!key)
2296 break;
8315f5d8
SH
2297 }
2298
2299 if (l)
8be33e95 2300 iter->key = key; /* remember it */
8315f5d8
SH
2301 else
2302 iter->pos = 0; /* forget it */
2303
2304 return l;
2305}
2306
2307static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2308 __acquires(RCU)
2309{
2310 struct fib_route_iter *iter = seq->private;
2311 struct fib_table *tb;
8be33e95 2312 struct trie *t;
8315f5d8
SH
2313
2314 rcu_read_lock();
8be33e95 2315
1218854a 2316 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2317 if (!tb)
2318 return NULL;
2319
8be33e95
AD
2320 iter->main_tb = tb;
2321
2322 if (*pos != 0)
2323 return fib_route_get_idx(iter, *pos);
2324
2325 t = (struct trie *)tb->tb_data;
88bae714 2326 iter->tnode = t->kv;
8be33e95
AD
2327 iter->pos = 0;
2328 iter->key = 0;
2329
2330 return SEQ_START_TOKEN;
8315f5d8
SH
2331}
2332
2333static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2334{
2335 struct fib_route_iter *iter = seq->private;
35c6edac 2336 struct key_vector *l = NULL;
8be33e95 2337 t_key key = iter->key;
8315f5d8
SH
2338
2339 ++*pos;
8be33e95
AD
2340
2341 /* only allow key of 0 for start of sequence */
2342 if ((v == SEQ_START_TOKEN) || key)
2343 l = leaf_walk_rcu(&iter->tnode, key);
2344
2345 if (l) {
2346 iter->key = l->key + 1;
8315f5d8 2347 iter->pos++;
8be33e95
AD
2348 } else {
2349 iter->pos = 0;
8315f5d8
SH
2350 }
2351
8315f5d8
SH
2352 return l;
2353}
2354
2355static void fib_route_seq_stop(struct seq_file *seq, void *v)
2356 __releases(RCU)
2357{
2358 rcu_read_unlock();
2359}
2360
a034ee3c 2361static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2362{
a034ee3c 2363 unsigned int flags = 0;
19baf839 2364
a034ee3c
ED
2365 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2366 flags = RTF_REJECT;
cb7b593c
SH
2367 if (fi && fi->fib_nh->nh_gw)
2368 flags |= RTF_GATEWAY;
32ab5f80 2369 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2370 flags |= RTF_HOST;
2371 flags |= RTF_UP;
2372 return flags;
19baf839
RO
2373}
2374
cb7b593c
SH
2375/*
2376 * This outputs /proc/net/route.
2377 * The format of the file is not supposed to be changed
a034ee3c 2378 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2379 * legacy utilities
2380 */
2381static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2382{
79e5ad2c 2383 struct fib_alias *fa;
35c6edac 2384 struct key_vector *l = v;
9b6ebad5 2385 __be32 prefix;
19baf839 2386
cb7b593c
SH
2387 if (v == SEQ_START_TOKEN) {
2388 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2389 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2390 "\tWindow\tIRTT");
2391 return 0;
2392 }
19baf839 2393
9b6ebad5
AD
2394 prefix = htonl(l->key);
2395
79e5ad2c
AD
2396 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2397 const struct fib_info *fi = fa->fa_info;
2398 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2399 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2400
79e5ad2c
AD
2401 if ((fa->fa_type == RTN_BROADCAST) ||
2402 (fa->fa_type == RTN_MULTICAST))
2403 continue;
19baf839 2404
79e5ad2c
AD
2405 seq_setwidth(seq, 127);
2406
2407 if (fi)
2408 seq_printf(seq,
2409 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2410 "%d\t%08X\t%d\t%u\t%u",
2411 fi->fib_dev ? fi->fib_dev->name : "*",
2412 prefix,
2413 fi->fib_nh->nh_gw, flags, 0, 0,
2414 fi->fib_priority,
2415 mask,
2416 (fi->fib_advmss ?
2417 fi->fib_advmss + 40 : 0),
2418 fi->fib_window,
2419 fi->fib_rtt >> 3);
2420 else
2421 seq_printf(seq,
2422 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2423 "%d\t%08X\t%d\t%u\t%u",
2424 prefix, 0, flags, 0, 0, 0,
2425 mask, 0, 0, 0);
19baf839 2426
79e5ad2c 2427 seq_pad(seq, '\n');
19baf839
RO
2428 }
2429
2430 return 0;
2431}
2432
f690808e 2433static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2434 .start = fib_route_seq_start,
2435 .next = fib_route_seq_next,
2436 .stop = fib_route_seq_stop,
cb7b593c 2437 .show = fib_route_seq_show,
19baf839
RO
2438};
2439
cb7b593c 2440static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2441{
1c340b2f 2442 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2443 sizeof(struct fib_route_iter));
19baf839
RO
2444}
2445
9a32144e 2446static const struct file_operations fib_route_fops = {
cb7b593c
SH
2447 .owner = THIS_MODULE,
2448 .open = fib_route_seq_open,
2449 .read = seq_read,
2450 .llseek = seq_lseek,
1c340b2f 2451 .release = seq_release_net,
19baf839
RO
2452};
2453
61a02653 2454int __net_init fib_proc_init(struct net *net)
19baf839 2455{
d4beaa66 2456 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2457 goto out1;
2458
d4beaa66
G
2459 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2460 &fib_triestat_fops))
cb7b593c
SH
2461 goto out2;
2462
d4beaa66 2463 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2464 goto out3;
2465
19baf839 2466 return 0;
cb7b593c
SH
2467
2468out3:
ece31ffd 2469 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2470out2:
ece31ffd 2471 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2472out1:
2473 return -ENOMEM;
19baf839
RO
2474}
2475
61a02653 2476void __net_exit fib_proc_exit(struct net *net)
19baf839 2477{
ece31ffd
G
2478 remove_proc_entry("fib_trie", net->proc_net);
2479 remove_proc_entry("fib_triestat", net->proc_net);
2480 remove_proc_entry("route", net->proc_net);
19baf839
RO
2481}
2482
2483#endif /* CONFIG_PROC_FS */