]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - net/ipv4/fib_trie.c
wan: dscc4: use msecs_to_jiffies for conversions
[mirror_ubuntu-jammy-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
ffa915d0 75#include <linux/vmalloc.h>
457c4cbc 76#include <net/net_namespace.h>
19baf839
RO
77#include <net/ip.h>
78#include <net/protocol.h>
79#include <net/route.h>
80#include <net/tcp.h>
81#include <net/sock.h>
82#include <net/ip_fib.h>
8e05fd71 83#include <net/switchdev.h>
19baf839
RO
84#include "fib_lookup.h"
85
06ef921d 86#define MAX_STAT_DEPTH 32
19baf839 87
95f60ea3
AD
88#define KEYLENGTH (8*sizeof(t_key))
89#define KEY_MAX ((t_key)~0)
19baf839 90
19baf839
RO
91typedef unsigned int t_key;
92
88bae714
AD
93#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
94#define IS_TNODE(n) ((n)->bits)
95#define IS_LEAF(n) (!(n)->bits)
2373ce1c 96
35c6edac 97struct key_vector {
64c9b6fb 98 t_key key;
64c9b6fb 99 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 100 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 101 unsigned char slen;
adaf9816 102 union {
41b489fd 103 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 104 struct hlist_head leaf;
41b489fd 105 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 106 struct key_vector __rcu *tnode[0];
adaf9816 107 };
19baf839
RO
108};
109
dc35dbed 110struct tnode {
56ca2adf 111 struct rcu_head rcu;
6e22d174
AD
112 t_key empty_children; /* KEYLENGTH bits needed */
113 t_key full_children; /* KEYLENGTH bits needed */
f23e59fb 114 struct key_vector __rcu *parent;
dc35dbed 115 struct key_vector kv[1];
56ca2adf 116#define tn_bits kv[0].bits
dc35dbed
AD
117};
118
119#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
120#define LEAF_SIZE TNODE_SIZE(1)
121
19baf839
RO
122#ifdef CONFIG_IP_FIB_TRIE_STATS
123struct trie_use_stats {
124 unsigned int gets;
125 unsigned int backtrack;
126 unsigned int semantic_match_passed;
127 unsigned int semantic_match_miss;
128 unsigned int null_node_hit;
2f36895a 129 unsigned int resize_node_skipped;
19baf839
RO
130};
131#endif
132
133struct trie_stat {
134 unsigned int totdepth;
135 unsigned int maxdepth;
136 unsigned int tnodes;
137 unsigned int leaves;
138 unsigned int nullpointers;
93672292 139 unsigned int prefixes;
06ef921d 140 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 141};
19baf839
RO
142
143struct trie {
88bae714 144 struct key_vector kv[1];
19baf839 145#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 146 struct trie_use_stats __percpu *stats;
19baf839 147#endif
19baf839
RO
148};
149
88bae714 150static struct key_vector *resize(struct trie *t, struct key_vector *tn);
c3059477
JP
151static size_t tnode_free_size;
152
153/*
154 * synchronize_rcu after call_rcu for that many pages; it should be especially
155 * useful before resizing the root node with PREEMPT_NONE configs; the value was
156 * obtained experimentally, aiming to avoid visible slowdown.
157 */
158static const int sync_pages = 128;
19baf839 159
e18b890b 160static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 161static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 162
56ca2adf
AD
163static inline struct tnode *tn_info(struct key_vector *kv)
164{
165 return container_of(kv, struct tnode, kv[0]);
166}
167
64c9b6fb 168/* caller must hold RTNL */
f23e59fb 169#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
754baf8d 170#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 171
64c9b6fb 172/* caller must hold RCU read lock or RTNL */
f23e59fb 173#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
754baf8d 174#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 175
64c9b6fb 176/* wrapper for rcu_assign_pointer */
35c6edac 177static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 178{
adaf9816 179 if (n)
f23e59fb 180 rcu_assign_pointer(tn_info(n)->parent, tp);
06801916
SH
181}
182
f23e59fb 183#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
64c9b6fb
AD
184
185/* This provides us with the number of children in this node, in the case of a
186 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 187 */
2e1ac88a 188static inline unsigned long child_length(const struct key_vector *tn)
06801916 189{
64c9b6fb 190 return (1ul << tn->bits) & ~(1ul);
06801916 191}
2373ce1c 192
88bae714
AD
193#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
194
2e1ac88a
AD
195static inline unsigned long get_index(t_key key, struct key_vector *kv)
196{
197 unsigned long index = key ^ kv->key;
198
88bae714
AD
199 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
200 return 0;
201
2e1ac88a
AD
202 return index >> kv->pos;
203}
204
e9b44019
AD
205/* To understand this stuff, an understanding of keys and all their bits is
206 * necessary. Every node in the trie has a key associated with it, but not
207 * all of the bits in that key are significant.
208 *
209 * Consider a node 'n' and its parent 'tp'.
210 *
211 * If n is a leaf, every bit in its key is significant. Its presence is
212 * necessitated by path compression, since during a tree traversal (when
213 * searching for a leaf - unless we are doing an insertion) we will completely
214 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
215 * a potentially successful search, that we have indeed been walking the
216 * correct key path.
217 *
218 * Note that we can never "miss" the correct key in the tree if present by
219 * following the wrong path. Path compression ensures that segments of the key
220 * that are the same for all keys with a given prefix are skipped, but the
221 * skipped part *is* identical for each node in the subtrie below the skipped
222 * bit! trie_insert() in this implementation takes care of that.
223 *
224 * if n is an internal node - a 'tnode' here, the various parts of its key
225 * have many different meanings.
226 *
227 * Example:
228 * _________________________________________________________________
229 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
230 * -----------------------------------------------------------------
231 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
232 *
233 * _________________________________________________________________
234 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
235 * -----------------------------------------------------------------
236 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
237 *
238 * tp->pos = 22
239 * tp->bits = 3
240 * n->pos = 13
241 * n->bits = 4
242 *
243 * First, let's just ignore the bits that come before the parent tp, that is
244 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
245 * point we do not use them for anything.
246 *
247 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
248 * index into the parent's child array. That is, they will be used to find
249 * 'n' among tp's children.
250 *
251 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
252 * for the node n.
253 *
254 * All the bits we have seen so far are significant to the node n. The rest
255 * of the bits are really not needed or indeed known in n->key.
256 *
257 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
258 * n's child array, and will of course be different for each child.
259 *
260 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
261 * at this point.
262 */
19baf839 263
f5026fab
DL
264static const int halve_threshold = 25;
265static const int inflate_threshold = 50;
345aa031 266static const int halve_threshold_root = 15;
80b71b80 267static const int inflate_threshold_root = 30;
2373ce1c
RO
268
269static void __alias_free_mem(struct rcu_head *head)
19baf839 270{
2373ce1c
RO
271 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
272 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
273}
274
2373ce1c 275static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 276{
2373ce1c
RO
277 call_rcu(&fa->rcu, __alias_free_mem);
278}
91b9a277 279
37fd30f2 280#define TNODE_KMALLOC_MAX \
35c6edac 281 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 282#define TNODE_VMALLOC_MAX \
35c6edac 283 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 284
37fd30f2 285static void __node_free_rcu(struct rcu_head *head)
387a5487 286{
56ca2adf 287 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 288
56ca2adf 289 if (!n->tn_bits)
37fd30f2 290 kmem_cache_free(trie_leaf_kmem, n);
56ca2adf 291 else if (n->tn_bits <= TNODE_KMALLOC_MAX)
37fd30f2
AD
292 kfree(n);
293 else
294 vfree(n);
387a5487
SH
295}
296
56ca2adf 297#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 298
dc35dbed 299static struct tnode *tnode_alloc(int bits)
f0e36f8c 300{
1de3d87b
AD
301 size_t size;
302
303 /* verify bits is within bounds */
304 if (bits > TNODE_VMALLOC_MAX)
305 return NULL;
306
307 /* determine size and verify it is non-zero and didn't overflow */
308 size = TNODE_SIZE(1ul << bits);
309
2373ce1c 310 if (size <= PAGE_SIZE)
8d965444 311 return kzalloc(size, GFP_KERNEL);
15be75cd 312 else
7a1c8e5a 313 return vzalloc(size);
15be75cd 314}
2373ce1c 315
35c6edac 316static inline void empty_child_inc(struct key_vector *n)
95f60ea3 317{
6e22d174 318 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
95f60ea3
AD
319}
320
35c6edac 321static inline void empty_child_dec(struct key_vector *n)
95f60ea3 322{
6e22d174 323 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
95f60ea3
AD
324}
325
35c6edac 326static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 327{
dc35dbed
AD
328 struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
329 struct key_vector *l = kv->kv;
330
331 if (!kv)
332 return NULL;
333
334 /* initialize key vector */
335 l->key = key;
336 l->pos = 0;
337 l->bits = 0;
338 l->slen = fa->fa_slen;
339
340 /* link leaf to fib alias */
341 INIT_HLIST_HEAD(&l->leaf);
342 hlist_add_head(&fa->fa_list, &l->leaf);
343
2373ce1c
RO
344 return l;
345}
346
35c6edac 347static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 348{
dc35dbed 349 struct tnode *tnode = tnode_alloc(bits);
64c9b6fb 350 unsigned int shift = pos + bits;
dc35dbed 351 struct key_vector *tn = tnode->kv;
64c9b6fb
AD
352
353 /* verify bits and pos their msb bits clear and values are valid */
354 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 355
dc35dbed 356 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
35c6edac 357 sizeof(struct key_vector *) << bits);
dc35dbed
AD
358
359 if (!tnode)
360 return NULL;
361
362 if (bits == KEYLENGTH)
6e22d174 363 tnode->full_children = 1;
dc35dbed 364 else
6e22d174 365 tnode->empty_children = 1ul << bits;
dc35dbed
AD
366
367 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
368 tn->pos = pos;
369 tn->bits = bits;
370 tn->slen = pos;
371
19baf839
RO
372 return tn;
373}
374
e9b44019 375/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
376 * and no bits are skipped. See discussion in dyntree paper p. 6
377 */
35c6edac 378static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 379{
e9b44019 380 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
381}
382
ff181ed8
AD
383/* Add a child at position i overwriting the old value.
384 * Update the value of full_children and empty_children.
385 */
35c6edac
AD
386static void put_child(struct key_vector *tn, unsigned long i,
387 struct key_vector *n)
19baf839 388{
754baf8d 389 struct key_vector *chi = get_child(tn, i);
ff181ed8 390 int isfull, wasfull;
19baf839 391
2e1ac88a 392 BUG_ON(i >= child_length(tn));
0c7770c7 393
95f60ea3 394 /* update emptyChildren, overflow into fullChildren */
00db4124 395 if (!n && chi)
95f60ea3 396 empty_child_inc(tn);
00db4124 397 if (n && !chi)
95f60ea3 398 empty_child_dec(tn);
c877efb2 399
19baf839 400 /* update fullChildren */
ff181ed8 401 wasfull = tnode_full(tn, chi);
19baf839 402 isfull = tnode_full(tn, n);
ff181ed8 403
c877efb2 404 if (wasfull && !isfull)
6e22d174 405 tn_info(tn)->full_children--;
c877efb2 406 else if (!wasfull && isfull)
6e22d174 407 tn_info(tn)->full_children++;
91b9a277 408
5405afd1
AD
409 if (n && (tn->slen < n->slen))
410 tn->slen = n->slen;
411
41b489fd 412 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
413}
414
35c6edac 415static void update_children(struct key_vector *tn)
69fa57b1
AD
416{
417 unsigned long i;
418
419 /* update all of the child parent pointers */
2e1ac88a 420 for (i = child_length(tn); i;) {
754baf8d 421 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
422
423 if (!inode)
424 continue;
425
426 /* Either update the children of a tnode that
427 * already belongs to us or update the child
428 * to point to ourselves.
429 */
430 if (node_parent(inode) == tn)
431 update_children(inode);
432 else
433 node_set_parent(inode, tn);
434 }
435}
436
88bae714
AD
437static inline void put_child_root(struct key_vector *tp, t_key key,
438 struct key_vector *n)
836a0123 439{
88bae714
AD
440 if (IS_TRIE(tp))
441 rcu_assign_pointer(tp->tnode[0], n);
836a0123 442 else
88bae714 443 put_child(tp, get_index(key, tp), n);
836a0123
AD
444}
445
35c6edac 446static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 447{
56ca2adf 448 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
449}
450
35c6edac
AD
451static inline void tnode_free_append(struct key_vector *tn,
452 struct key_vector *n)
fc86a93b 453{
56ca2adf
AD
454 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
455 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 456}
0a5c0475 457
35c6edac 458static void tnode_free(struct key_vector *tn)
fc86a93b 459{
56ca2adf 460 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
461
462 while (head) {
463 head = head->next;
41b489fd 464 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
465 node_free(tn);
466
56ca2adf 467 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
468 }
469
470 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
471 tnode_free_size = 0;
472 synchronize_rcu();
0a5c0475 473 }
0a5c0475
ED
474}
475
88bae714
AD
476static struct key_vector *replace(struct trie *t,
477 struct key_vector *oldtnode,
478 struct key_vector *tn)
69fa57b1 479{
35c6edac 480 struct key_vector *tp = node_parent(oldtnode);
69fa57b1
AD
481 unsigned long i;
482
483 /* setup the parent pointer out of and back into this node */
484 NODE_INIT_PARENT(tn, tp);
88bae714 485 put_child_root(tp, tn->key, tn);
69fa57b1
AD
486
487 /* update all of the child parent pointers */
488 update_children(tn);
489
490 /* all pointers should be clean so we are done */
491 tnode_free(oldtnode);
492
493 /* resize children now that oldtnode is freed */
2e1ac88a 494 for (i = child_length(tn); i;) {
754baf8d 495 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
496
497 /* resize child node */
498 if (tnode_full(tn, inode))
88bae714 499 tn = resize(t, inode);
69fa57b1 500 }
8d8e810c 501
88bae714 502 return tp;
69fa57b1
AD
503}
504
88bae714
AD
505static struct key_vector *inflate(struct trie *t,
506 struct key_vector *oldtnode)
19baf839 507{
35c6edac 508 struct key_vector *tn;
69fa57b1 509 unsigned long i;
e9b44019 510 t_key m;
19baf839 511
0c7770c7 512 pr_debug("In inflate\n");
19baf839 513
e9b44019 514 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 515 if (!tn)
8d8e810c 516 goto notnode;
2f36895a 517
69fa57b1
AD
518 /* prepare oldtnode to be freed */
519 tnode_free_init(oldtnode);
520
12c081a5
AD
521 /* Assemble all of the pointers in our cluster, in this case that
522 * represents all of the pointers out of our allocated nodes that
523 * point to existing tnodes and the links between our allocated
524 * nodes.
2f36895a 525 */
2e1ac88a 526 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 527 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 528 struct key_vector *node0, *node1;
69fa57b1 529 unsigned long j, k;
c877efb2 530
19baf839 531 /* An empty child */
51456b29 532 if (!inode)
19baf839
RO
533 continue;
534
535 /* A leaf or an internal node with skipped bits */
adaf9816 536 if (!tnode_full(oldtnode, inode)) {
e9b44019 537 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
538 continue;
539 }
540
69fa57b1
AD
541 /* drop the node in the old tnode free list */
542 tnode_free_append(oldtnode, inode);
543
19baf839 544 /* An internal node with two children */
19baf839 545 if (inode->bits == 1) {
754baf8d
AD
546 put_child(tn, 2 * i + 1, get_child(inode, 1));
547 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 548 continue;
19baf839
RO
549 }
550
91b9a277 551 /* We will replace this node 'inode' with two new
12c081a5 552 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
553 * original children. The two new nodes will have
554 * a position one bit further down the key and this
555 * means that the "significant" part of their keys
556 * (see the discussion near the top of this file)
557 * will differ by one bit, which will be "0" in
12c081a5 558 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
559 * moving the key position by one step, the bit that
560 * we are moving away from - the bit at position
12c081a5
AD
561 * (tn->pos) - is the one that will differ between
562 * node0 and node1. So... we synthesize that bit in the
563 * two new keys.
91b9a277 564 */
12c081a5
AD
565 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
566 if (!node1)
567 goto nomem;
69fa57b1 568 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 569
69fa57b1 570 tnode_free_append(tn, node1);
12c081a5
AD
571 if (!node0)
572 goto nomem;
573 tnode_free_append(tn, node0);
574
575 /* populate child pointers in new nodes */
2e1ac88a 576 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
577 put_child(node1, --j, get_child(inode, --k));
578 put_child(node0, j, get_child(inode, j));
579 put_child(node1, --j, get_child(inode, --k));
580 put_child(node0, j, get_child(inode, j));
12c081a5 581 }
19baf839 582
12c081a5
AD
583 /* link new nodes to parent */
584 NODE_INIT_PARENT(node1, tn);
585 NODE_INIT_PARENT(node0, tn);
2f36895a 586
12c081a5
AD
587 /* link parent to nodes */
588 put_child(tn, 2 * i + 1, node1);
589 put_child(tn, 2 * i, node0);
590 }
2f36895a 591
69fa57b1 592 /* setup the parent pointers into and out of this node */
8d8e810c 593 return replace(t, oldtnode, tn);
2f80b3c8 594nomem:
fc86a93b
AD
595 /* all pointers should be clean so we are done */
596 tnode_free(tn);
8d8e810c
AD
597notnode:
598 return NULL;
19baf839
RO
599}
600
88bae714
AD
601static struct key_vector *halve(struct trie *t,
602 struct key_vector *oldtnode)
19baf839 603{
35c6edac 604 struct key_vector *tn;
12c081a5 605 unsigned long i;
19baf839 606
0c7770c7 607 pr_debug("In halve\n");
c877efb2 608
e9b44019 609 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 610 if (!tn)
8d8e810c 611 goto notnode;
2f36895a 612
69fa57b1
AD
613 /* prepare oldtnode to be freed */
614 tnode_free_init(oldtnode);
615
12c081a5
AD
616 /* Assemble all of the pointers in our cluster, in this case that
617 * represents all of the pointers out of our allocated nodes that
618 * point to existing tnodes and the links between our allocated
619 * nodes.
2f36895a 620 */
2e1ac88a 621 for (i = child_length(oldtnode); i;) {
754baf8d
AD
622 struct key_vector *node1 = get_child(oldtnode, --i);
623 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 624 struct key_vector *inode;
2f36895a 625
12c081a5
AD
626 /* At least one of the children is empty */
627 if (!node1 || !node0) {
628 put_child(tn, i / 2, node1 ? : node0);
629 continue;
630 }
c877efb2 631
2f36895a 632 /* Two nonempty children */
12c081a5 633 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
634 if (!inode)
635 goto nomem;
12c081a5 636 tnode_free_append(tn, inode);
2f36895a 637
12c081a5
AD
638 /* initialize pointers out of node */
639 put_child(inode, 1, node1);
640 put_child(inode, 0, node0);
641 NODE_INIT_PARENT(inode, tn);
642
643 /* link parent to node */
644 put_child(tn, i / 2, inode);
2f36895a 645 }
19baf839 646
69fa57b1 647 /* setup the parent pointers into and out of this node */
8d8e810c
AD
648 return replace(t, oldtnode, tn);
649nomem:
650 /* all pointers should be clean so we are done */
651 tnode_free(tn);
652notnode:
653 return NULL;
19baf839
RO
654}
655
88bae714
AD
656static struct key_vector *collapse(struct trie *t,
657 struct key_vector *oldtnode)
95f60ea3 658{
35c6edac 659 struct key_vector *n, *tp;
95f60ea3
AD
660 unsigned long i;
661
662 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 663 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 664 n = get_child(oldtnode, --i);
95f60ea3
AD
665
666 /* compress one level */
667 tp = node_parent(oldtnode);
88bae714 668 put_child_root(tp, oldtnode->key, n);
95f60ea3
AD
669 node_set_parent(n, tp);
670
671 /* drop dead node */
672 node_free(oldtnode);
88bae714
AD
673
674 return tp;
95f60ea3
AD
675}
676
35c6edac 677static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
678{
679 unsigned char slen = tn->pos;
680 unsigned long stride, i;
681
682 /* search though the list of children looking for nodes that might
683 * have a suffix greater than the one we currently have. This is
684 * why we start with a stride of 2 since a stride of 1 would
685 * represent the nodes with suffix length equal to tn->pos
686 */
2e1ac88a 687 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 688 struct key_vector *n = get_child(tn, i);
5405afd1
AD
689
690 if (!n || (n->slen <= slen))
691 continue;
692
693 /* update stride and slen based on new value */
694 stride <<= (n->slen - slen);
695 slen = n->slen;
696 i &= ~(stride - 1);
697
698 /* if slen covers all but the last bit we can stop here
699 * there will be nothing longer than that since only node
700 * 0 and 1 << (bits - 1) could have that as their suffix
701 * length.
702 */
703 if ((slen + 1) >= (tn->pos + tn->bits))
704 break;
705 }
706
707 tn->slen = slen;
708
709 return slen;
710}
711
f05a4819
AD
712/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
713 * the Helsinki University of Technology and Matti Tikkanen of Nokia
714 * Telecommunications, page 6:
715 * "A node is doubled if the ratio of non-empty children to all
716 * children in the *doubled* node is at least 'high'."
717 *
718 * 'high' in this instance is the variable 'inflate_threshold'. It
719 * is expressed as a percentage, so we multiply it with
2e1ac88a 720 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
721 * child array will be doubled by inflate()) and multiplying
722 * the left-hand side by 100 (to handle the percentage thing) we
723 * multiply the left-hand side by 50.
724 *
2e1ac88a 725 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
726 * - tn->empty_children is of course the number of non-null children
727 * in the current node. tn->full_children is the number of "full"
728 * children, that is non-null tnodes with a skip value of 0.
729 * All of those will be doubled in the resulting inflated tnode, so
730 * we just count them one extra time here.
731 *
732 * A clearer way to write this would be:
733 *
734 * to_be_doubled = tn->full_children;
2e1ac88a 735 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
736 * tn->full_children;
737 *
2e1ac88a 738 * new_child_length = child_length(tn) * 2;
f05a4819
AD
739 *
740 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
741 * new_child_length;
742 * if (new_fill_factor >= inflate_threshold)
743 *
744 * ...and so on, tho it would mess up the while () loop.
745 *
746 * anyway,
747 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
748 * inflate_threshold
749 *
750 * avoid a division:
751 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
752 * inflate_threshold * new_child_length
753 *
754 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 755 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
756 * tn->full_children) >= inflate_threshold * new_child_length
757 *
758 * expand new_child_length:
2e1ac88a 759 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 760 * tn->full_children) >=
2e1ac88a 761 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
762 *
763 * shorten again:
2e1ac88a 764 * 50 * (tn->full_children + child_length(tn) -
f05a4819 765 * tn->empty_children) >= inflate_threshold *
2e1ac88a 766 * child_length(tn)
f05a4819
AD
767 *
768 */
35c6edac 769static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 770{
2e1ac88a 771 unsigned long used = child_length(tn);
f05a4819
AD
772 unsigned long threshold = used;
773
774 /* Keep root node larger */
88bae714 775 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
6e22d174
AD
776 used -= tn_info(tn)->empty_children;
777 used += tn_info(tn)->full_children;
f05a4819 778
95f60ea3
AD
779 /* if bits == KEYLENGTH then pos = 0, and will fail below */
780
781 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
782}
783
35c6edac 784static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 785{
2e1ac88a 786 unsigned long used = child_length(tn);
f05a4819
AD
787 unsigned long threshold = used;
788
789 /* Keep root node larger */
88bae714 790 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
6e22d174 791 used -= tn_info(tn)->empty_children;
f05a4819 792
95f60ea3
AD
793 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
794
795 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
796}
797
35c6edac 798static inline bool should_collapse(struct key_vector *tn)
95f60ea3 799{
2e1ac88a 800 unsigned long used = child_length(tn);
95f60ea3 801
6e22d174 802 used -= tn_info(tn)->empty_children;
95f60ea3
AD
803
804 /* account for bits == KEYLENGTH case */
6e22d174 805 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
95f60ea3
AD
806 used -= KEY_MAX;
807
808 /* One child or none, time to drop us from the trie */
809 return used < 2;
f05a4819
AD
810}
811
cf3637bb 812#define MAX_WORK 10
88bae714 813static struct key_vector *resize(struct trie *t, struct key_vector *tn)
cf3637bb 814{
8d8e810c
AD
815#ifdef CONFIG_IP_FIB_TRIE_STATS
816 struct trie_use_stats __percpu *stats = t->stats;
817#endif
35c6edac 818 struct key_vector *tp = node_parent(tn);
88bae714 819 unsigned long cindex = get_index(tn->key, tp);
a80e89d4 820 int max_work = MAX_WORK;
cf3637bb 821
cf3637bb
AD
822 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
823 tn, inflate_threshold, halve_threshold);
824
ff181ed8
AD
825 /* track the tnode via the pointer from the parent instead of
826 * doing it ourselves. This way we can let RCU fully do its
827 * thing without us interfering
828 */
88bae714 829 BUG_ON(tn != get_child(tp, cindex));
ff181ed8 830
f05a4819
AD
831 /* Double as long as the resulting node has a number of
832 * nonempty nodes that are above the threshold.
cf3637bb 833 */
b6f15f82 834 while (should_inflate(tp, tn) && max_work) {
88bae714
AD
835 tp = inflate(t, tn);
836 if (!tp) {
cf3637bb 837#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 838 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
839#endif
840 break;
841 }
ff181ed8 842
b6f15f82 843 max_work--;
88bae714 844 tn = get_child(tp, cindex);
cf3637bb
AD
845 }
846
b6f15f82
AD
847 /* update parent in case inflate failed */
848 tp = node_parent(tn);
849
cf3637bb
AD
850 /* Return if at least one inflate is run */
851 if (max_work != MAX_WORK)
b6f15f82 852 return tp;
cf3637bb 853
f05a4819 854 /* Halve as long as the number of empty children in this
cf3637bb
AD
855 * node is above threshold.
856 */
b6f15f82 857 while (should_halve(tp, tn) && max_work) {
88bae714
AD
858 tp = halve(t, tn);
859 if (!tp) {
cf3637bb 860#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 861 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
862#endif
863 break;
864 }
cf3637bb 865
b6f15f82 866 max_work--;
88bae714 867 tn = get_child(tp, cindex);
ff181ed8 868 }
cf3637bb
AD
869
870 /* Only one child remains */
88bae714
AD
871 if (should_collapse(tn))
872 return collapse(t, tn);
873
b6f15f82 874 /* update parent in case halve failed */
88bae714 875 tp = node_parent(tn);
5405afd1
AD
876
877 /* Return if at least one deflate was run */
878 if (max_work != MAX_WORK)
88bae714 879 return tp;
5405afd1
AD
880
881 /* push the suffix length to the parent node */
882 if (tn->slen > tn->pos) {
883 unsigned char slen = update_suffix(tn);
884
88bae714 885 if (slen > tp->slen)
5405afd1 886 tp->slen = slen;
cf3637bb 887 }
8d8e810c 888
88bae714 889 return tp;
cf3637bb
AD
890}
891
35c6edac 892static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
5405afd1 893{
88bae714 894 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
5405afd1
AD
895 if (update_suffix(tp) > l->slen)
896 break;
897 tp = node_parent(tp);
898 }
899}
900
35c6edac 901static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
19baf839 902{
5405afd1
AD
903 /* if this is a new leaf then tn will be NULL and we can sort
904 * out parent suffix lengths as a part of trie_rebalance
905 */
88bae714 906 while (tn->slen < l->slen) {
5405afd1
AD
907 tn->slen = l->slen;
908 tn = node_parent(tn);
909 }
910}
911
2373ce1c 912/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
913static struct key_vector *fib_find_node(struct trie *t,
914 struct key_vector **tp, u32 key)
19baf839 915{
88bae714
AD
916 struct key_vector *pn, *n = t->kv;
917 unsigned long index = 0;
918
919 do {
920 pn = n;
921 n = get_child_rcu(n, index);
922
923 if (!n)
924 break;
939afb06 925
88bae714 926 index = get_cindex(key, n);
939afb06
AD
927
928 /* This bit of code is a bit tricky but it combines multiple
929 * checks into a single check. The prefix consists of the
930 * prefix plus zeros for the bits in the cindex. The index
931 * is the difference between the key and this value. From
932 * this we can actually derive several pieces of data.
d4a975e8 933 * if (index >= (1ul << bits))
939afb06 934 * we have a mismatch in skip bits and failed
b3832117
AD
935 * else
936 * we know the value is cindex
d4a975e8
AD
937 *
938 * This check is safe even if bits == KEYLENGTH due to the
939 * fact that we can only allocate a node with 32 bits if a
940 * long is greater than 32 bits.
939afb06 941 */
d4a975e8
AD
942 if (index >= (1ul << n->bits)) {
943 n = NULL;
944 break;
945 }
939afb06 946
88bae714
AD
947 /* keep searching until we find a perfect match leaf or NULL */
948 } while (IS_TNODE(n));
91b9a277 949
35c6edac 950 *tp = pn;
d4a975e8 951
939afb06 952 return n;
19baf839
RO
953}
954
02525368
AD
955/* Return the first fib alias matching TOS with
956 * priority less than or equal to PRIO.
957 */
79e5ad2c 958static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
0b65bd97 959 u8 tos, u32 prio, u32 tb_id)
02525368
AD
960{
961 struct fib_alias *fa;
962
963 if (!fah)
964 return NULL;
965
56315f9e 966 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
967 if (fa->fa_slen < slen)
968 continue;
969 if (fa->fa_slen != slen)
970 break;
0b65bd97
AD
971 if (fa->tb_id > tb_id)
972 continue;
973 if (fa->tb_id != tb_id)
974 break;
02525368
AD
975 if (fa->fa_tos > tos)
976 continue;
977 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
978 return fa;
979 }
980
981 return NULL;
982}
983
35c6edac 984static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 985{
88bae714
AD
986 while (!IS_TRIE(tn))
987 tn = resize(t, tn);
19baf839
RO
988}
989
35c6edac 990static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 991 struct fib_alias *new, t_key key)
19baf839 992{
35c6edac 993 struct key_vector *n, *l;
19baf839 994
d5d6487c 995 l = leaf_new(key, new);
79e5ad2c 996 if (!l)
8d8e810c 997 goto noleaf;
d5d6487c
AD
998
999 /* retrieve child from parent node */
88bae714 1000 n = get_child(tp, get_index(key, tp));
19baf839 1001
836a0123
AD
1002 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1003 *
1004 * Add a new tnode here
1005 * first tnode need some special handling
1006 * leaves us in position for handling as case 3
1007 */
1008 if (n) {
35c6edac 1009 struct key_vector *tn;
19baf839 1010
e9b44019 1011 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1012 if (!tn)
1013 goto notnode;
91b9a277 1014
836a0123
AD
1015 /* initialize routes out of node */
1016 NODE_INIT_PARENT(tn, tp);
1017 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1018
836a0123 1019 /* start adding routes into the node */
88bae714 1020 put_child_root(tp, key, tn);
836a0123 1021 node_set_parent(n, tn);
e962f302 1022
836a0123 1023 /* parent now has a NULL spot where the leaf can go */
e962f302 1024 tp = tn;
19baf839 1025 }
91b9a277 1026
836a0123 1027 /* Case 3: n is NULL, and will just insert a new leaf */
d5d6487c 1028 NODE_INIT_PARENT(l, tp);
88bae714 1029 put_child_root(tp, key, l);
d5d6487c
AD
1030 trie_rebalance(t, tp);
1031
1032 return 0;
8d8e810c
AD
1033notnode:
1034 node_free(l);
1035noleaf:
1036 return -ENOMEM;
d5d6487c
AD
1037}
1038
35c6edac
AD
1039static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1040 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1041 struct fib_alias *fa, t_key key)
1042{
1043 if (!l)
1044 return fib_insert_node(t, tp, new, key);
1045
1046 if (fa) {
1047 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1048 } else {
d5d6487c
AD
1049 struct fib_alias *last;
1050
1051 hlist_for_each_entry(last, &l->leaf, fa_list) {
1052 if (new->fa_slen < last->fa_slen)
1053 break;
0b65bd97
AD
1054 if ((new->fa_slen == last->fa_slen) &&
1055 (new->tb_id > last->tb_id))
1056 break;
d5d6487c
AD
1057 fa = last;
1058 }
1059
1060 if (fa)
1061 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1062 else
1063 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1064 }
2373ce1c 1065
d5d6487c
AD
1066 /* if we added to the tail node then we need to update slen */
1067 if (l->slen < new->fa_slen) {
1068 l->slen = new->fa_slen;
1069 leaf_push_suffix(tp, l);
1070 }
1071
1072 return 0;
19baf839
RO
1073}
1074
d5d6487c 1075/* Caller must hold RTNL. */
16c6cf8b 1076int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839 1077{
d4a975e8 1078 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1079 struct fib_alias *fa, *new_fa;
35c6edac 1080 struct key_vector *l, *tp;
19baf839 1081 struct fib_info *fi;
79e5ad2c
AD
1082 u8 plen = cfg->fc_dst_len;
1083 u8 slen = KEYLENGTH - plen;
4e902c57 1084 u8 tos = cfg->fc_tos;
d4a975e8 1085 u32 key;
19baf839 1086 int err;
19baf839 1087
5786ec60 1088 if (plen > KEYLENGTH)
19baf839
RO
1089 return -EINVAL;
1090
4e902c57 1091 key = ntohl(cfg->fc_dst);
19baf839 1092
2dfe55b4 1093 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1094
d4a975e8 1095 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1096 return -EINVAL;
1097
4e902c57
TG
1098 fi = fib_create_info(cfg);
1099 if (IS_ERR(fi)) {
1100 err = PTR_ERR(fi);
19baf839 1101 goto err;
4e902c57 1102 }
19baf839 1103
d4a975e8 1104 l = fib_find_node(t, &tp, key);
0b65bd97
AD
1105 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1106 tb->tb_id) : NULL;
19baf839
RO
1107
1108 /* Now fa, if non-NULL, points to the first fib alias
1109 * with the same keys [prefix,tos,priority], if such key already
1110 * exists or to the node before which we will insert new one.
1111 *
1112 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1113 * insert to the tail of the section matching the suffix length
1114 * of the new alias.
19baf839
RO
1115 */
1116
936f6f8e
JA
1117 if (fa && fa->fa_tos == tos &&
1118 fa->fa_info->fib_priority == fi->fib_priority) {
1119 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1120
1121 err = -EEXIST;
4e902c57 1122 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1123 goto out;
1124
936f6f8e
JA
1125 /* We have 2 goals:
1126 * 1. Find exact match for type, scope, fib_info to avoid
1127 * duplicate routes
1128 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1129 */
1130 fa_match = NULL;
1131 fa_first = fa;
56315f9e 1132 hlist_for_each_entry_from(fa, fa_list) {
0b65bd97
AD
1133 if ((fa->fa_slen != slen) ||
1134 (fa->tb_id != tb->tb_id) ||
1135 (fa->fa_tos != tos))
936f6f8e
JA
1136 break;
1137 if (fa->fa_info->fib_priority != fi->fib_priority)
1138 break;
1139 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1140 fa->fa_info == fi) {
1141 fa_match = fa;
1142 break;
1143 }
1144 }
1145
4e902c57 1146 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1147 struct fib_info *fi_drop;
1148 u8 state;
1149
936f6f8e
JA
1150 fa = fa_first;
1151 if (fa_match) {
1152 if (fa == fa_match)
1153 err = 0;
6725033f 1154 goto out;
936f6f8e 1155 }
2373ce1c 1156 err = -ENOBUFS;
e94b1766 1157 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1158 if (!new_fa)
2373ce1c 1159 goto out;
19baf839
RO
1160
1161 fi_drop = fa->fa_info;
2373ce1c
RO
1162 new_fa->fa_tos = fa->fa_tos;
1163 new_fa->fa_info = fi;
4e902c57 1164 new_fa->fa_type = cfg->fc_type;
19baf839 1165 state = fa->fa_state;
936f6f8e 1166 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1167 new_fa->fa_slen = fa->fa_slen;
d4e64c29 1168 new_fa->tb_id = tb->tb_id;
19baf839 1169
ebb9a03a
JP
1170 err = switchdev_fib_ipv4_add(key, plen, fi,
1171 new_fa->fa_tos,
1172 cfg->fc_type,
1173 cfg->fc_nlflags,
1174 tb->tb_id);
8e05fd71 1175 if (err) {
ebb9a03a 1176 switchdev_fib_ipv4_abort(fi);
8e05fd71
SF
1177 kmem_cache_free(fn_alias_kmem, new_fa);
1178 goto out;
1179 }
1180
56315f9e 1181 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1182
2373ce1c 1183 alias_free_mem_rcu(fa);
19baf839
RO
1184
1185 fib_release_info(fi_drop);
1186 if (state & FA_S_ACCESSED)
4ccfe6d4 1187 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1188 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1189 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1190
91b9a277 1191 goto succeeded;
19baf839
RO
1192 }
1193 /* Error if we find a perfect match which
1194 * uses the same scope, type, and nexthop
1195 * information.
1196 */
936f6f8e
JA
1197 if (fa_match)
1198 goto out;
a07f5f50 1199
4e902c57 1200 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1201 fa = fa_first;
19baf839
RO
1202 }
1203 err = -ENOENT;
4e902c57 1204 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1205 goto out;
1206
1207 err = -ENOBUFS;
e94b1766 1208 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1209 if (!new_fa)
19baf839
RO
1210 goto out;
1211
1212 new_fa->fa_info = fi;
1213 new_fa->fa_tos = tos;
4e902c57 1214 new_fa->fa_type = cfg->fc_type;
19baf839 1215 new_fa->fa_state = 0;
79e5ad2c 1216 new_fa->fa_slen = slen;
0ddcf43d 1217 new_fa->tb_id = tb->tb_id;
19baf839 1218
8e05fd71 1219 /* (Optionally) offload fib entry to switch hardware. */
ebb9a03a
JP
1220 err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
1221 cfg->fc_nlflags, tb->tb_id);
8e05fd71 1222 if (err) {
ebb9a03a 1223 switchdev_fib_ipv4_abort(fi);
8e05fd71
SF
1224 goto out_free_new_fa;
1225 }
1226
9b6ebad5 1227 /* Insert new entry to the list. */
d5d6487c
AD
1228 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1229 if (err)
8e05fd71 1230 goto out_sw_fib_del;
19baf839 1231
21d8c49e
DM
1232 if (!plen)
1233 tb->tb_num_default++;
1234
4ccfe6d4 1235 rt_cache_flush(cfg->fc_nlinfo.nl_net);
0ddcf43d 1236 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
b8f55831 1237 &cfg->fc_nlinfo, 0);
19baf839
RO
1238succeeded:
1239 return 0;
f835e471 1240
8e05fd71 1241out_sw_fib_del:
ebb9a03a 1242 switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
f835e471
RO
1243out_free_new_fa:
1244 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1245out:
1246 fib_release_info(fi);
91b9a277 1247err:
19baf839
RO
1248 return err;
1249}
1250
35c6edac 1251static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1252{
1253 t_key prefix = n->key;
1254
1255 return (key ^ prefix) & (prefix | -prefix);
1256}
1257
345e9b54 1258/* should be called with rcu_read_lock */
22bd5b9b 1259int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1260 struct fib_result *res, int fib_flags)
19baf839 1261{
0ddcf43d 1262 struct trie *t = (struct trie *) tb->tb_data;
8274a97a
AD
1263#ifdef CONFIG_IP_FIB_TRIE_STATS
1264 struct trie_use_stats __percpu *stats = t->stats;
1265#endif
9f9e636d 1266 const t_key key = ntohl(flp->daddr);
35c6edac 1267 struct key_vector *n, *pn;
79e5ad2c 1268 struct fib_alias *fa;
71e8b67d 1269 unsigned long index;
9f9e636d 1270 t_key cindex;
91b9a277 1271
88bae714
AD
1272 pn = t->kv;
1273 cindex = 0;
1274
1275 n = get_child_rcu(pn, cindex);
c877efb2 1276 if (!n)
345e9b54 1277 return -EAGAIN;
19baf839
RO
1278
1279#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1280 this_cpu_inc(stats->gets);
19baf839
RO
1281#endif
1282
9f9e636d
AD
1283 /* Step 1: Travel to the longest prefix match in the trie */
1284 for (;;) {
88bae714 1285 index = get_cindex(key, n);
9f9e636d
AD
1286
1287 /* This bit of code is a bit tricky but it combines multiple
1288 * checks into a single check. The prefix consists of the
1289 * prefix plus zeros for the "bits" in the prefix. The index
1290 * is the difference between the key and this value. From
1291 * this we can actually derive several pieces of data.
71e8b67d 1292 * if (index >= (1ul << bits))
9f9e636d 1293 * we have a mismatch in skip bits and failed
b3832117
AD
1294 * else
1295 * we know the value is cindex
71e8b67d
AD
1296 *
1297 * This check is safe even if bits == KEYLENGTH due to the
1298 * fact that we can only allocate a node with 32 bits if a
1299 * long is greater than 32 bits.
9f9e636d 1300 */
71e8b67d 1301 if (index >= (1ul << n->bits))
9f9e636d 1302 break;
19baf839 1303
9f9e636d
AD
1304 /* we have found a leaf. Prefixes have already been compared */
1305 if (IS_LEAF(n))
a07f5f50 1306 goto found;
19baf839 1307
9f9e636d
AD
1308 /* only record pn and cindex if we are going to be chopping
1309 * bits later. Otherwise we are just wasting cycles.
91b9a277 1310 */
5405afd1 1311 if (n->slen > n->pos) {
9f9e636d
AD
1312 pn = n;
1313 cindex = index;
91b9a277 1314 }
19baf839 1315
754baf8d 1316 n = get_child_rcu(n, index);
9f9e636d
AD
1317 if (unlikely(!n))
1318 goto backtrace;
1319 }
19baf839 1320
9f9e636d
AD
1321 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1322 for (;;) {
1323 /* record the pointer where our next node pointer is stored */
35c6edac 1324 struct key_vector __rcu **cptr = n->tnode;
19baf839 1325
9f9e636d
AD
1326 /* This test verifies that none of the bits that differ
1327 * between the key and the prefix exist in the region of
1328 * the lsb and higher in the prefix.
91b9a277 1329 */
5405afd1 1330 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1331 goto backtrace;
91b9a277 1332
9f9e636d
AD
1333 /* exit out and process leaf */
1334 if (unlikely(IS_LEAF(n)))
1335 break;
91b9a277 1336
9f9e636d
AD
1337 /* Don't bother recording parent info. Since we are in
1338 * prefix match mode we will have to come back to wherever
1339 * we started this traversal anyway
91b9a277 1340 */
91b9a277 1341
9f9e636d 1342 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1343backtrace:
19baf839 1344#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1345 if (!n)
1346 this_cpu_inc(stats->null_node_hit);
19baf839 1347#endif
9f9e636d
AD
1348 /* If we are at cindex 0 there are no more bits for
1349 * us to strip at this level so we must ascend back
1350 * up one level to see if there are any more bits to
1351 * be stripped there.
1352 */
1353 while (!cindex) {
1354 t_key pkey = pn->key;
1355
88bae714
AD
1356 /* If we don't have a parent then there is
1357 * nothing for us to do as we do not have any
1358 * further nodes to parse.
1359 */
1360 if (IS_TRIE(pn))
345e9b54 1361 return -EAGAIN;
9f9e636d
AD
1362#ifdef CONFIG_IP_FIB_TRIE_STATS
1363 this_cpu_inc(stats->backtrack);
1364#endif
1365 /* Get Child's index */
88bae714 1366 pn = node_parent_rcu(pn);
9f9e636d
AD
1367 cindex = get_index(pkey, pn);
1368 }
1369
1370 /* strip the least significant bit from the cindex */
1371 cindex &= cindex - 1;
1372
1373 /* grab pointer for next child node */
41b489fd 1374 cptr = &pn->tnode[cindex];
c877efb2 1375 }
19baf839 1376 }
9f9e636d 1377
19baf839 1378found:
71e8b67d
AD
1379 /* this line carries forward the xor from earlier in the function */
1380 index = key ^ n->key;
1381
9f9e636d 1382 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1383 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1384 struct fib_info *fi = fa->fa_info;
1385 int nhsel, err;
345e9b54 1386
71e8b67d 1387 if ((index >= (1ul << fa->fa_slen)) &&
79e5ad2c 1388 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
71e8b67d 1389 continue;
79e5ad2c
AD
1390 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1391 continue;
1392 if (fi->fib_dead)
1393 continue;
1394 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1395 continue;
1396 fib_alias_accessed(fa);
1397 err = fib_props[fa->fa_type].error;
1398 if (unlikely(err < 0)) {
345e9b54 1399#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1400 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1401#endif
79e5ad2c
AD
1402 return err;
1403 }
1404 if (fi->fib_flags & RTNH_F_DEAD)
1405 continue;
1406 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1407 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1408
1409 if (nh->nh_flags & RTNH_F_DEAD)
1410 continue;
1411 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
345e9b54 1412 continue;
79e5ad2c
AD
1413
1414 if (!(fib_flags & FIB_LOOKUP_NOREF))
1415 atomic_inc(&fi->fib_clntref);
1416
1417 res->prefixlen = KEYLENGTH - fa->fa_slen;
1418 res->nh_sel = nhsel;
1419 res->type = fa->fa_type;
1420 res->scope = fi->fib_scope;
1421 res->fi = fi;
1422 res->table = tb;
1423 res->fa_head = &n->leaf;
345e9b54 1424#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1425 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1426#endif
79e5ad2c 1427 return err;
345e9b54 1428 }
9b6ebad5 1429 }
345e9b54 1430#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1431 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1432#endif
345e9b54 1433 goto backtrace;
19baf839 1434}
6fc01438 1435EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1436
35c6edac
AD
1437static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1438 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1439{
1440 /* record the location of the previous list_info entry */
1441 struct hlist_node **pprev = old->fa_list.pprev;
1442 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1443
1444 /* remove the fib_alias from the list */
1445 hlist_del_rcu(&old->fa_list);
1446
1447 /* if we emptied the list this leaf will be freed and we can sort
1448 * out parent suffix lengths as a part of trie_rebalance
1449 */
1450 if (hlist_empty(&l->leaf)) {
88bae714 1451 put_child_root(tp, l->key, NULL);
d5d6487c
AD
1452 node_free(l);
1453 trie_rebalance(t, tp);
1454 return;
1455 }
1456
1457 /* only access fa if it is pointing at the last valid hlist_node */
1458 if (*pprev)
1459 return;
1460
1461 /* update the trie with the latest suffix length */
1462 l->slen = fa->fa_slen;
1463 leaf_pull_suffix(tp, l);
1464}
1465
1466/* Caller must hold RTNL. */
16c6cf8b 1467int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1468{
1469 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1470 struct fib_alias *fa, *fa_to_delete;
35c6edac 1471 struct key_vector *l, *tp;
79e5ad2c 1472 u8 plen = cfg->fc_dst_len;
79e5ad2c 1473 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1474 u8 tos = cfg->fc_tos;
1475 u32 key;
91b9a277 1476
79e5ad2c 1477 if (plen > KEYLENGTH)
19baf839
RO
1478 return -EINVAL;
1479
4e902c57 1480 key = ntohl(cfg->fc_dst);
19baf839 1481
d4a975e8 1482 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1483 return -EINVAL;
1484
d4a975e8 1485 l = fib_find_node(t, &tp, key);
c877efb2 1486 if (!l)
19baf839
RO
1487 return -ESRCH;
1488
0b65bd97 1489 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
19baf839
RO
1490 if (!fa)
1491 return -ESRCH;
1492
0c7770c7 1493 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1494
1495 fa_to_delete = NULL;
56315f9e 1496 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1497 struct fib_info *fi = fa->fa_info;
1498
0b65bd97
AD
1499 if ((fa->fa_slen != slen) ||
1500 (fa->tb_id != tb->tb_id) ||
1501 (fa->fa_tos != tos))
19baf839
RO
1502 break;
1503
4e902c57
TG
1504 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1505 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1506 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1507 (!cfg->fc_prefsrc ||
1508 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1509 (!cfg->fc_protocol ||
1510 fi->fib_protocol == cfg->fc_protocol) &&
1511 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1512 fa_to_delete = fa;
1513 break;
1514 }
1515 }
1516
91b9a277
OJ
1517 if (!fa_to_delete)
1518 return -ESRCH;
19baf839 1519
ebb9a03a
JP
1520 switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1521 cfg->fc_type, tb->tb_id);
8e05fd71 1522
d5d6487c 1523 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1524 &cfg->fc_nlinfo, 0);
91b9a277 1525
21d8c49e
DM
1526 if (!plen)
1527 tb->tb_num_default--;
1528
d5d6487c 1529 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1530
d5d6487c 1531 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1532 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1533
d5d6487c
AD
1534 fib_release_info(fa_to_delete->fa_info);
1535 alias_free_mem_rcu(fa_to_delete);
91b9a277 1536 return 0;
19baf839
RO
1537}
1538
8be33e95 1539/* Scan for the next leaf starting at the provided key value */
35c6edac 1540static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1541{
35c6edac 1542 struct key_vector *pn, *n = *tn;
8be33e95 1543 unsigned long cindex;
82cfbb00 1544
8be33e95 1545 /* this loop is meant to try and find the key in the trie */
88bae714 1546 do {
8be33e95
AD
1547 /* record parent and next child index */
1548 pn = n;
3ec320dd 1549 cindex = key ? get_index(key, pn) : 0;
88bae714
AD
1550
1551 if (cindex >> pn->bits)
1552 break;
82cfbb00 1553
8be33e95 1554 /* descend into the next child */
754baf8d 1555 n = get_child_rcu(pn, cindex++);
88bae714
AD
1556 if (!n)
1557 break;
1558
1559 /* guarantee forward progress on the keys */
1560 if (IS_LEAF(n) && (n->key >= key))
1561 goto found;
1562 } while (IS_TNODE(n));
82cfbb00 1563
8be33e95 1564 /* this loop will search for the next leaf with a greater key */
88bae714 1565 while (!IS_TRIE(pn)) {
8be33e95
AD
1566 /* if we exhausted the parent node we will need to climb */
1567 if (cindex >= (1ul << pn->bits)) {
1568 t_key pkey = pn->key;
82cfbb00 1569
8be33e95 1570 pn = node_parent_rcu(pn);
8be33e95
AD
1571 cindex = get_index(pkey, pn) + 1;
1572 continue;
1573 }
82cfbb00 1574
8be33e95 1575 /* grab the next available node */
754baf8d 1576 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1577 if (!n)
1578 continue;
19baf839 1579
8be33e95
AD
1580 /* no need to compare keys since we bumped the index */
1581 if (IS_LEAF(n))
1582 goto found;
71d67e66 1583
8be33e95
AD
1584 /* Rescan start scanning in new node */
1585 pn = n;
1586 cindex = 0;
1587 }
ec28cf73 1588
8be33e95
AD
1589 *tn = pn;
1590 return NULL; /* Root of trie */
1591found:
1592 /* if we are at the limit for keys just return NULL for the tnode */
88bae714 1593 *tn = pn;
8be33e95 1594 return n;
71d67e66
SH
1595}
1596
0ddcf43d
AD
1597static void fib_trie_free(struct fib_table *tb)
1598{
1599 struct trie *t = (struct trie *)tb->tb_data;
1600 struct key_vector *pn = t->kv;
1601 unsigned long cindex = 1;
1602 struct hlist_node *tmp;
1603 struct fib_alias *fa;
1604
1605 /* walk trie in reverse order and free everything */
1606 for (;;) {
1607 struct key_vector *n;
1608
1609 if (!(cindex--)) {
1610 t_key pkey = pn->key;
1611
1612 if (IS_TRIE(pn))
1613 break;
1614
1615 n = pn;
1616 pn = node_parent(pn);
1617
1618 /* drop emptied tnode */
1619 put_child_root(pn, n->key, NULL);
1620 node_free(n);
1621
1622 cindex = get_index(pkey, pn);
1623
1624 continue;
1625 }
1626
1627 /* grab the next available node */
1628 n = get_child(pn, cindex);
1629 if (!n)
1630 continue;
1631
1632 if (IS_TNODE(n)) {
1633 /* record pn and cindex for leaf walking */
1634 pn = n;
1635 cindex = 1ul << n->bits;
1636
1637 continue;
1638 }
1639
1640 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1641 hlist_del_rcu(&fa->fa_list);
1642 alias_free_mem_rcu(fa);
1643 }
1644
1645 put_child_root(pn, n->key, NULL);
1646 node_free(n);
1647 }
1648
1649#ifdef CONFIG_IP_FIB_TRIE_STATS
1650 free_percpu(t->stats);
1651#endif
1652 kfree(tb);
1653}
1654
1655struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1656{
1657 struct trie *ot = (struct trie *)oldtb->tb_data;
1658 struct key_vector *l, *tp = ot->kv;
1659 struct fib_table *local_tb;
1660 struct fib_alias *fa;
1661 struct trie *lt;
1662 t_key key = 0;
1663
1664 if (oldtb->tb_data == oldtb->__data)
1665 return oldtb;
1666
1667 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1668 if (!local_tb)
1669 return NULL;
1670
1671 lt = (struct trie *)local_tb->tb_data;
1672
1673 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1674 struct key_vector *local_l = NULL, *local_tp;
1675
1676 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1677 struct fib_alias *new_fa;
1678
1679 if (local_tb->tb_id != fa->tb_id)
1680 continue;
1681
1682 /* clone fa for new local table */
1683 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1684 if (!new_fa)
1685 goto out;
1686
1687 memcpy(new_fa, fa, sizeof(*fa));
1688
1689 /* insert clone into table */
1690 if (!local_l)
1691 local_l = fib_find_node(lt, &local_tp, l->key);
1692
1693 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1694 NULL, l->key))
1695 goto out;
1696 }
1697
1698 /* stop loop if key wrapped back to 0 */
1699 key = l->key + 1;
1700 if (key < l->key)
1701 break;
1702 }
1703
1704 return local_tb;
1705out:
1706 fib_trie_free(local_tb);
1707
1708 return NULL;
1709}
1710
104616e7
SF
1711/* Caller must hold RTNL */
1712void fib_table_flush_external(struct fib_table *tb)
1713{
1714 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1715 struct key_vector *pn = t->kv;
1716 unsigned long cindex = 1;
1717 struct hlist_node *tmp;
104616e7 1718 struct fib_alias *fa;
104616e7 1719
88bae714
AD
1720 /* walk trie in reverse order */
1721 for (;;) {
0ddcf43d 1722 unsigned char slen = 0;
88bae714 1723 struct key_vector *n;
104616e7 1724
88bae714
AD
1725 if (!(cindex--)) {
1726 t_key pkey = pn->key;
104616e7 1727
88bae714
AD
1728 /* cannot resize the trie vector */
1729 if (IS_TRIE(pn))
1730 break;
104616e7 1731
0ddcf43d
AD
1732 /* resize completed node */
1733 pn = resize(t, pn);
88bae714 1734 cindex = get_index(pkey, pn);
104616e7 1735
88bae714
AD
1736 continue;
1737 }
104616e7 1738
88bae714
AD
1739 /* grab the next available node */
1740 n = get_child(pn, cindex);
1741 if (!n)
1742 continue;
104616e7 1743
88bae714
AD
1744 if (IS_TNODE(n)) {
1745 /* record pn and cindex for leaf walking */
1746 pn = n;
1747 cindex = 1ul << n->bits;
104616e7 1748
72be7260 1749 continue;
88bae714 1750 }
72be7260 1751
88bae714
AD
1752 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1753 struct fib_info *fi = fa->fa_info;
1754
0ddcf43d
AD
1755 /* if alias was cloned to local then we just
1756 * need to remove the local copy from main
1757 */
1758 if (tb->tb_id != fa->tb_id) {
1759 hlist_del_rcu(&fa->fa_list);
1760 alias_free_mem_rcu(fa);
1761 continue;
1762 }
1763
1764 /* record local slen */
1765 slen = fa->fa_slen;
1766
eea39946 1767 if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
88bae714 1768 continue;
104616e7 1769
ebb9a03a
JP
1770 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1771 fi, fa->fa_tos, fa->fa_type,
1772 tb->tb_id);
88bae714 1773 }
0ddcf43d
AD
1774
1775 /* update leaf slen */
1776 n->slen = slen;
1777
1778 if (hlist_empty(&n->leaf)) {
1779 put_child_root(pn, n->key, NULL);
1780 node_free(n);
1781 } else {
1782 leaf_pull_suffix(pn, n);
1783 }
88bae714 1784 }
104616e7
SF
1785}
1786
8be33e95 1787/* Caller must hold RTNL. */
16c6cf8b 1788int fib_table_flush(struct fib_table *tb)
19baf839 1789{
7289e6dd 1790 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1791 struct key_vector *pn = t->kv;
1792 unsigned long cindex = 1;
7289e6dd
AD
1793 struct hlist_node *tmp;
1794 struct fib_alias *fa;
82cfbb00 1795 int found = 0;
19baf839 1796
88bae714
AD
1797 /* walk trie in reverse order */
1798 for (;;) {
1799 unsigned char slen = 0;
1800 struct key_vector *n;
19baf839 1801
88bae714
AD
1802 if (!(cindex--)) {
1803 t_key pkey = pn->key;
7289e6dd 1804
88bae714
AD
1805 /* cannot resize the trie vector */
1806 if (IS_TRIE(pn))
1807 break;
7289e6dd 1808
88bae714
AD
1809 /* resize completed node */
1810 pn = resize(t, pn);
1811 cindex = get_index(pkey, pn);
7289e6dd 1812
88bae714
AD
1813 continue;
1814 }
7289e6dd 1815
88bae714
AD
1816 /* grab the next available node */
1817 n = get_child(pn, cindex);
1818 if (!n)
1819 continue;
7289e6dd 1820
88bae714
AD
1821 if (IS_TNODE(n)) {
1822 /* record pn and cindex for leaf walking */
1823 pn = n;
1824 cindex = 1ul << n->bits;
7289e6dd 1825
88bae714
AD
1826 continue;
1827 }
7289e6dd 1828
88bae714
AD
1829 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1830 struct fib_info *fi = fa->fa_info;
7289e6dd 1831
88bae714
AD
1832 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1833 slen = fa->fa_slen;
1834 continue;
1835 }
7289e6dd 1836
ebb9a03a
JP
1837 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1838 fi, fa->fa_tos, fa->fa_type,
1839 tb->tb_id);
7289e6dd
AD
1840 hlist_del_rcu(&fa->fa_list);
1841 fib_release_info(fa->fa_info);
1842 alias_free_mem_rcu(fa);
1843 found++;
64c62723
AD
1844 }
1845
88bae714
AD
1846 /* update leaf slen */
1847 n->slen = slen;
7289e6dd 1848
88bae714
AD
1849 if (hlist_empty(&n->leaf)) {
1850 put_child_root(pn, n->key, NULL);
1851 node_free(n);
1852 } else {
1853 leaf_pull_suffix(pn, n);
1854 }
64c62723 1855 }
19baf839 1856
0c7770c7 1857 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1858 return found;
1859}
1860
a7e53531 1861static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1862{
a7e53531 1863 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1864#ifdef CONFIG_IP_FIB_TRIE_STATS
1865 struct trie *t = (struct trie *)tb->tb_data;
1866
0ddcf43d
AD
1867 if (tb->tb_data == tb->__data)
1868 free_percpu(t->stats);
8274a97a 1869#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1870 kfree(tb);
1871}
1872
a7e53531
AD
1873void fib_free_table(struct fib_table *tb)
1874{
1875 call_rcu(&tb->rcu, __trie_free_rcu);
1876}
1877
35c6edac 1878static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1879 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1880{
79e5ad2c 1881 __be32 xkey = htonl(l->key);
19baf839 1882 struct fib_alias *fa;
79e5ad2c 1883 int i, s_i;
19baf839 1884
79e5ad2c 1885 s_i = cb->args[4];
19baf839
RO
1886 i = 0;
1887
2373ce1c 1888 /* rcu_read_lock is hold by caller */
79e5ad2c 1889 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1890 if (i < s_i) {
1891 i++;
1892 continue;
1893 }
19baf839 1894
0ddcf43d
AD
1895 if (tb->tb_id != fa->tb_id) {
1896 i++;
1897 continue;
1898 }
1899
15e47304 1900 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1901 cb->nlh->nlmsg_seq,
1902 RTM_NEWROUTE,
1903 tb->tb_id,
1904 fa->fa_type,
be403ea1 1905 xkey,
9b6ebad5 1906 KEYLENGTH - fa->fa_slen,
19baf839 1907 fa->fa_tos,
64347f78 1908 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1909 cb->args[4] = i;
19baf839
RO
1910 return -1;
1911 }
a88ee229 1912 i++;
19baf839 1913 }
a88ee229 1914
71d67e66 1915 cb->args[4] = i;
19baf839
RO
1916 return skb->len;
1917}
1918
a7e53531 1919/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
1920int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1921 struct netlink_callback *cb)
19baf839 1922{
8be33e95 1923 struct trie *t = (struct trie *)tb->tb_data;
88bae714 1924 struct key_vector *l, *tp = t->kv;
d5ce8a0e
SH
1925 /* Dump starting at last key.
1926 * Note: 0.0.0.0/0 (ie default) is first key.
1927 */
8be33e95
AD
1928 int count = cb->args[2];
1929 t_key key = cb->args[3];
a88ee229 1930
8be33e95 1931 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1932 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1933 cb->args[3] = key;
1934 cb->args[2] = count;
a88ee229 1935 return -1;
19baf839 1936 }
d5ce8a0e 1937
71d67e66 1938 ++count;
8be33e95
AD
1939 key = l->key + 1;
1940
71d67e66
SH
1941 memset(&cb->args[4], 0,
1942 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1943
1944 /* stop loop if key wrapped back to 0 */
1945 if (key < l->key)
1946 break;
19baf839 1947 }
8be33e95 1948
8be33e95
AD
1949 cb->args[3] = key;
1950 cb->args[2] = count;
1951
19baf839 1952 return skb->len;
19baf839
RO
1953}
1954
5348ba85 1955void __init fib_trie_init(void)
7f9b8052 1956{
a07f5f50
SH
1957 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1958 sizeof(struct fib_alias),
bc3c8c1e
SH
1959 0, SLAB_PANIC, NULL);
1960
1961 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 1962 LEAF_SIZE,
bc3c8c1e 1963 0, SLAB_PANIC, NULL);
7f9b8052 1964}
19baf839 1965
0ddcf43d 1966struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
19baf839
RO
1967{
1968 struct fib_table *tb;
1969 struct trie *t;
0ddcf43d
AD
1970 size_t sz = sizeof(*tb);
1971
1972 if (!alias)
1973 sz += sizeof(struct trie);
19baf839 1974
0ddcf43d 1975 tb = kzalloc(sz, GFP_KERNEL);
51456b29 1976 if (!tb)
19baf839
RO
1977 return NULL;
1978
1979 tb->tb_id = id;
971b893e 1980 tb->tb_default = -1;
21d8c49e 1981 tb->tb_num_default = 0;
0ddcf43d
AD
1982 tb->tb_data = (alias ? alias->__data : tb->__data);
1983
1984 if (alias)
1985 return tb;
19baf839
RO
1986
1987 t = (struct trie *) tb->tb_data;
88bae714
AD
1988 t->kv[0].pos = KEYLENGTH;
1989 t->kv[0].slen = KEYLENGTH;
8274a97a
AD
1990#ifdef CONFIG_IP_FIB_TRIE_STATS
1991 t->stats = alloc_percpu(struct trie_use_stats);
1992 if (!t->stats) {
1993 kfree(tb);
1994 tb = NULL;
1995 }
1996#endif
19baf839 1997
19baf839
RO
1998 return tb;
1999}
2000
cb7b593c
SH
2001#ifdef CONFIG_PROC_FS
2002/* Depth first Trie walk iterator */
2003struct fib_trie_iter {
1c340b2f 2004 struct seq_net_private p;
3d3b2d25 2005 struct fib_table *tb;
35c6edac 2006 struct key_vector *tnode;
a034ee3c
ED
2007 unsigned int index;
2008 unsigned int depth;
cb7b593c 2009};
19baf839 2010
35c6edac 2011static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2012{
98293e8d 2013 unsigned long cindex = iter->index;
88bae714
AD
2014 struct key_vector *pn = iter->tnode;
2015 t_key pkey;
6640e697 2016
cb7b593c
SH
2017 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2018 iter->tnode, iter->index, iter->depth);
19baf839 2019
88bae714
AD
2020 while (!IS_TRIE(pn)) {
2021 while (cindex < child_length(pn)) {
2022 struct key_vector *n = get_child_rcu(pn, cindex++);
2023
2024 if (!n)
2025 continue;
2026
cb7b593c 2027 if (IS_LEAF(n)) {
88bae714
AD
2028 iter->tnode = pn;
2029 iter->index = cindex;
cb7b593c
SH
2030 } else {
2031 /* push down one level */
adaf9816 2032 iter->tnode = n;
cb7b593c
SH
2033 iter->index = 0;
2034 ++iter->depth;
2035 }
88bae714 2036
cb7b593c
SH
2037 return n;
2038 }
19baf839 2039
88bae714
AD
2040 /* Current node exhausted, pop back up */
2041 pkey = pn->key;
2042 pn = node_parent_rcu(pn);
2043 cindex = get_index(pkey, pn) + 1;
cb7b593c 2044 --iter->depth;
19baf839 2045 }
cb7b593c 2046
88bae714
AD
2047 /* record root node so further searches know we are done */
2048 iter->tnode = pn;
2049 iter->index = 0;
2050
cb7b593c 2051 return NULL;
19baf839
RO
2052}
2053
35c6edac
AD
2054static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2055 struct trie *t)
19baf839 2056{
88bae714 2057 struct key_vector *n, *pn = t->kv;
5ddf0eb2 2058
132adf54 2059 if (!t)
5ddf0eb2
RO
2060 return NULL;
2061
88bae714 2062 n = rcu_dereference(pn->tnode[0]);
3d3b2d25 2063 if (!n)
5ddf0eb2 2064 return NULL;
19baf839 2065
3d3b2d25 2066 if (IS_TNODE(n)) {
adaf9816 2067 iter->tnode = n;
3d3b2d25
SH
2068 iter->index = 0;
2069 iter->depth = 1;
2070 } else {
88bae714 2071 iter->tnode = pn;
3d3b2d25
SH
2072 iter->index = 0;
2073 iter->depth = 0;
91b9a277 2074 }
3d3b2d25
SH
2075
2076 return n;
cb7b593c 2077}
91b9a277 2078
cb7b593c
SH
2079static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2080{
35c6edac 2081 struct key_vector *n;
cb7b593c 2082 struct fib_trie_iter iter;
91b9a277 2083
cb7b593c 2084 memset(s, 0, sizeof(*s));
91b9a277 2085
cb7b593c 2086 rcu_read_lock();
3d3b2d25 2087 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2088 if (IS_LEAF(n)) {
79e5ad2c 2089 struct fib_alias *fa;
93672292 2090
cb7b593c
SH
2091 s->leaves++;
2092 s->totdepth += iter.depth;
2093 if (iter.depth > s->maxdepth)
2094 s->maxdepth = iter.depth;
93672292 2095
79e5ad2c 2096 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 2097 ++s->prefixes;
cb7b593c 2098 } else {
cb7b593c 2099 s->tnodes++;
adaf9816
AD
2100 if (n->bits < MAX_STAT_DEPTH)
2101 s->nodesizes[n->bits]++;
6e22d174 2102 s->nullpointers += tn_info(n)->empty_children;
19baf839 2103 }
19baf839 2104 }
2373ce1c 2105 rcu_read_unlock();
19baf839
RO
2106}
2107
cb7b593c
SH
2108/*
2109 * This outputs /proc/net/fib_triestats
2110 */
2111static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2112{
a034ee3c 2113 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2114
cb7b593c
SH
2115 if (stat->leaves)
2116 avdepth = stat->totdepth*100 / stat->leaves;
2117 else
2118 avdepth = 0;
91b9a277 2119
a07f5f50
SH
2120 seq_printf(seq, "\tAver depth: %u.%02d\n",
2121 avdepth / 100, avdepth % 100);
cb7b593c 2122 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2123
cb7b593c 2124 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 2125 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
2126
2127 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 2128 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 2129
187b5188 2130 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 2131 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 2132
06ef921d
RO
2133 max = MAX_STAT_DEPTH;
2134 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2135 max--;
19baf839 2136
cb7b593c 2137 pointers = 0;
f585a991 2138 for (i = 1; i < max; i++)
cb7b593c 2139 if (stat->nodesizes[i] != 0) {
187b5188 2140 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2141 pointers += (1<<i) * stat->nodesizes[i];
2142 }
2143 seq_putc(seq, '\n');
187b5188 2144 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2145
35c6edac 2146 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2147 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2148 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2149}
2373ce1c 2150
cb7b593c 2151#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2152static void trie_show_usage(struct seq_file *seq,
8274a97a 2153 const struct trie_use_stats __percpu *stats)
66a2f7fd 2154{
8274a97a
AD
2155 struct trie_use_stats s = { 0 };
2156 int cpu;
2157
2158 /* loop through all of the CPUs and gather up the stats */
2159 for_each_possible_cpu(cpu) {
2160 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2161
2162 s.gets += pcpu->gets;
2163 s.backtrack += pcpu->backtrack;
2164 s.semantic_match_passed += pcpu->semantic_match_passed;
2165 s.semantic_match_miss += pcpu->semantic_match_miss;
2166 s.null_node_hit += pcpu->null_node_hit;
2167 s.resize_node_skipped += pcpu->resize_node_skipped;
2168 }
2169
66a2f7fd 2170 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2171 seq_printf(seq, "gets = %u\n", s.gets);
2172 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2173 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2174 s.semantic_match_passed);
2175 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2176 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2177 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2178}
66a2f7fd
SH
2179#endif /* CONFIG_IP_FIB_TRIE_STATS */
2180
3d3b2d25 2181static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2182{
3d3b2d25
SH
2183 if (tb->tb_id == RT_TABLE_LOCAL)
2184 seq_puts(seq, "Local:\n");
2185 else if (tb->tb_id == RT_TABLE_MAIN)
2186 seq_puts(seq, "Main:\n");
2187 else
2188 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2189}
19baf839 2190
3d3b2d25 2191
cb7b593c
SH
2192static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2193{
1c340b2f 2194 struct net *net = (struct net *)seq->private;
3d3b2d25 2195 unsigned int h;
877a9bff 2196
d717a9a6 2197 seq_printf(seq,
a07f5f50
SH
2198 "Basic info: size of leaf:"
2199 " %Zd bytes, size of tnode: %Zd bytes.\n",
41b489fd 2200 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2201
3d3b2d25
SH
2202 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2203 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2204 struct fib_table *tb;
2205
b67bfe0d 2206 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2207 struct trie *t = (struct trie *) tb->tb_data;
2208 struct trie_stat stat;
877a9bff 2209
3d3b2d25
SH
2210 if (!t)
2211 continue;
2212
2213 fib_table_print(seq, tb);
2214
2215 trie_collect_stats(t, &stat);
2216 trie_show_stats(seq, &stat);
2217#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2218 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2219#endif
2220 }
2221 }
19baf839 2222
cb7b593c 2223 return 0;
19baf839
RO
2224}
2225
cb7b593c 2226static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2227{
de05c557 2228 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2229}
2230
9a32144e 2231static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2232 .owner = THIS_MODULE,
2233 .open = fib_triestat_seq_open,
2234 .read = seq_read,
2235 .llseek = seq_lseek,
b6fcbdb4 2236 .release = single_release_net,
cb7b593c
SH
2237};
2238
35c6edac 2239static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2240{
1218854a
YH
2241 struct fib_trie_iter *iter = seq->private;
2242 struct net *net = seq_file_net(seq);
cb7b593c 2243 loff_t idx = 0;
3d3b2d25 2244 unsigned int h;
cb7b593c 2245
3d3b2d25
SH
2246 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2247 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2248 struct fib_table *tb;
cb7b593c 2249
b67bfe0d 2250 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2251 struct key_vector *n;
3d3b2d25
SH
2252
2253 for (n = fib_trie_get_first(iter,
2254 (struct trie *) tb->tb_data);
2255 n; n = fib_trie_get_next(iter))
2256 if (pos == idx++) {
2257 iter->tb = tb;
2258 return n;
2259 }
2260 }
cb7b593c 2261 }
3d3b2d25 2262
19baf839
RO
2263 return NULL;
2264}
2265
cb7b593c 2266static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2267 __acquires(RCU)
19baf839 2268{
cb7b593c 2269 rcu_read_lock();
1218854a 2270 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2271}
2272
cb7b593c 2273static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2274{
cb7b593c 2275 struct fib_trie_iter *iter = seq->private;
1218854a 2276 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2277 struct fib_table *tb = iter->tb;
2278 struct hlist_node *tb_node;
2279 unsigned int h;
35c6edac 2280 struct key_vector *n;
cb7b593c 2281
19baf839 2282 ++*pos;
3d3b2d25
SH
2283 /* next node in same table */
2284 n = fib_trie_get_next(iter);
2285 if (n)
2286 return n;
19baf839 2287
3d3b2d25
SH
2288 /* walk rest of this hash chain */
2289 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2290 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2291 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2292 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2293 if (n)
2294 goto found;
2295 }
19baf839 2296
3d3b2d25
SH
2297 /* new hash chain */
2298 while (++h < FIB_TABLE_HASHSZ) {
2299 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2300 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2301 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2302 if (n)
2303 goto found;
2304 }
2305 }
cb7b593c 2306 return NULL;
3d3b2d25
SH
2307
2308found:
2309 iter->tb = tb;
2310 return n;
cb7b593c 2311}
19baf839 2312
cb7b593c 2313static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2314 __releases(RCU)
19baf839 2315{
cb7b593c
SH
2316 rcu_read_unlock();
2317}
91b9a277 2318
cb7b593c
SH
2319static void seq_indent(struct seq_file *seq, int n)
2320{
a034ee3c
ED
2321 while (n-- > 0)
2322 seq_puts(seq, " ");
cb7b593c 2323}
19baf839 2324
28d36e37 2325static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2326{
132adf54 2327 switch (s) {
cb7b593c
SH
2328 case RT_SCOPE_UNIVERSE: return "universe";
2329 case RT_SCOPE_SITE: return "site";
2330 case RT_SCOPE_LINK: return "link";
2331 case RT_SCOPE_HOST: return "host";
2332 case RT_SCOPE_NOWHERE: return "nowhere";
2333 default:
28d36e37 2334 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2335 return buf;
2336 }
2337}
19baf839 2338
36cbd3dc 2339static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2340 [RTN_UNSPEC] = "UNSPEC",
2341 [RTN_UNICAST] = "UNICAST",
2342 [RTN_LOCAL] = "LOCAL",
2343 [RTN_BROADCAST] = "BROADCAST",
2344 [RTN_ANYCAST] = "ANYCAST",
2345 [RTN_MULTICAST] = "MULTICAST",
2346 [RTN_BLACKHOLE] = "BLACKHOLE",
2347 [RTN_UNREACHABLE] = "UNREACHABLE",
2348 [RTN_PROHIBIT] = "PROHIBIT",
2349 [RTN_THROW] = "THROW",
2350 [RTN_NAT] = "NAT",
2351 [RTN_XRESOLVE] = "XRESOLVE",
2352};
19baf839 2353
a034ee3c 2354static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2355{
cb7b593c
SH
2356 if (t < __RTN_MAX && rtn_type_names[t])
2357 return rtn_type_names[t];
28d36e37 2358 snprintf(buf, len, "type %u", t);
cb7b593c 2359 return buf;
19baf839
RO
2360}
2361
cb7b593c
SH
2362/* Pretty print the trie */
2363static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2364{
cb7b593c 2365 const struct fib_trie_iter *iter = seq->private;
35c6edac 2366 struct key_vector *n = v;
c877efb2 2367
88bae714 2368 if (IS_TRIE(node_parent_rcu(n)))
3d3b2d25 2369 fib_table_print(seq, iter->tb);
095b8501 2370
cb7b593c 2371 if (IS_TNODE(n)) {
adaf9816 2372 __be32 prf = htonl(n->key);
91b9a277 2373
e9b44019
AD
2374 seq_indent(seq, iter->depth-1);
2375 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2376 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
6e22d174
AD
2377 tn_info(n)->full_children,
2378 tn_info(n)->empty_children);
cb7b593c 2379 } else {
adaf9816 2380 __be32 val = htonl(n->key);
79e5ad2c 2381 struct fib_alias *fa;
cb7b593c
SH
2382
2383 seq_indent(seq, iter->depth);
673d57e7 2384 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2385
79e5ad2c
AD
2386 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2387 char buf1[32], buf2[32];
2388
2389 seq_indent(seq, iter->depth + 1);
2390 seq_printf(seq, " /%zu %s %s",
2391 KEYLENGTH - fa->fa_slen,
2392 rtn_scope(buf1, sizeof(buf1),
2393 fa->fa_info->fib_scope),
2394 rtn_type(buf2, sizeof(buf2),
2395 fa->fa_type));
2396 if (fa->fa_tos)
2397 seq_printf(seq, " tos=%d", fa->fa_tos);
2398 seq_putc(seq, '\n');
cb7b593c 2399 }
19baf839 2400 }
cb7b593c 2401
19baf839
RO
2402 return 0;
2403}
2404
f690808e 2405static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2406 .start = fib_trie_seq_start,
2407 .next = fib_trie_seq_next,
2408 .stop = fib_trie_seq_stop,
2409 .show = fib_trie_seq_show,
19baf839
RO
2410};
2411
cb7b593c 2412static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2413{
1c340b2f
DL
2414 return seq_open_net(inode, file, &fib_trie_seq_ops,
2415 sizeof(struct fib_trie_iter));
19baf839
RO
2416}
2417
9a32144e 2418static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2419 .owner = THIS_MODULE,
2420 .open = fib_trie_seq_open,
2421 .read = seq_read,
2422 .llseek = seq_lseek,
1c340b2f 2423 .release = seq_release_net,
19baf839
RO
2424};
2425
8315f5d8
SH
2426struct fib_route_iter {
2427 struct seq_net_private p;
8be33e95 2428 struct fib_table *main_tb;
35c6edac 2429 struct key_vector *tnode;
8315f5d8
SH
2430 loff_t pos;
2431 t_key key;
2432};
2433
35c6edac
AD
2434static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2435 loff_t pos)
8315f5d8 2436{
8be33e95 2437 struct fib_table *tb = iter->main_tb;
35c6edac 2438 struct key_vector *l, **tp = &iter->tnode;
8be33e95
AD
2439 struct trie *t;
2440 t_key key;
8315f5d8 2441
8be33e95
AD
2442 /* use cache location of next-to-find key */
2443 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2444 pos -= iter->pos;
8be33e95
AD
2445 key = iter->key;
2446 } else {
2447 t = (struct trie *)tb->tb_data;
88bae714 2448 iter->tnode = t->kv;
8315f5d8 2449 iter->pos = 0;
8be33e95 2450 key = 0;
8315f5d8
SH
2451 }
2452
8be33e95
AD
2453 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2454 key = l->key + 1;
8315f5d8 2455 iter->pos++;
8be33e95
AD
2456
2457 if (pos-- <= 0)
2458 break;
2459
2460 l = NULL;
2461
2462 /* handle unlikely case of a key wrap */
2463 if (!key)
2464 break;
8315f5d8
SH
2465 }
2466
2467 if (l)
8be33e95 2468 iter->key = key; /* remember it */
8315f5d8
SH
2469 else
2470 iter->pos = 0; /* forget it */
2471
2472 return l;
2473}
2474
2475static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2476 __acquires(RCU)
2477{
2478 struct fib_route_iter *iter = seq->private;
2479 struct fib_table *tb;
8be33e95 2480 struct trie *t;
8315f5d8
SH
2481
2482 rcu_read_lock();
8be33e95 2483
1218854a 2484 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2485 if (!tb)
2486 return NULL;
2487
8be33e95
AD
2488 iter->main_tb = tb;
2489
2490 if (*pos != 0)
2491 return fib_route_get_idx(iter, *pos);
2492
2493 t = (struct trie *)tb->tb_data;
88bae714 2494 iter->tnode = t->kv;
8be33e95
AD
2495 iter->pos = 0;
2496 iter->key = 0;
2497
2498 return SEQ_START_TOKEN;
8315f5d8
SH
2499}
2500
2501static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2502{
2503 struct fib_route_iter *iter = seq->private;
35c6edac 2504 struct key_vector *l = NULL;
8be33e95 2505 t_key key = iter->key;
8315f5d8
SH
2506
2507 ++*pos;
8be33e95
AD
2508
2509 /* only allow key of 0 for start of sequence */
2510 if ((v == SEQ_START_TOKEN) || key)
2511 l = leaf_walk_rcu(&iter->tnode, key);
2512
2513 if (l) {
2514 iter->key = l->key + 1;
8315f5d8 2515 iter->pos++;
8be33e95
AD
2516 } else {
2517 iter->pos = 0;
8315f5d8
SH
2518 }
2519
8315f5d8
SH
2520 return l;
2521}
2522
2523static void fib_route_seq_stop(struct seq_file *seq, void *v)
2524 __releases(RCU)
2525{
2526 rcu_read_unlock();
2527}
2528
a034ee3c 2529static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2530{
a034ee3c 2531 unsigned int flags = 0;
19baf839 2532
a034ee3c
ED
2533 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2534 flags = RTF_REJECT;
cb7b593c
SH
2535 if (fi && fi->fib_nh->nh_gw)
2536 flags |= RTF_GATEWAY;
32ab5f80 2537 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2538 flags |= RTF_HOST;
2539 flags |= RTF_UP;
2540 return flags;
19baf839
RO
2541}
2542
cb7b593c
SH
2543/*
2544 * This outputs /proc/net/route.
2545 * The format of the file is not supposed to be changed
a034ee3c 2546 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2547 * legacy utilities
2548 */
2549static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2550{
654eff45
AD
2551 struct fib_route_iter *iter = seq->private;
2552 struct fib_table *tb = iter->main_tb;
79e5ad2c 2553 struct fib_alias *fa;
35c6edac 2554 struct key_vector *l = v;
9b6ebad5 2555 __be32 prefix;
19baf839 2556
cb7b593c
SH
2557 if (v == SEQ_START_TOKEN) {
2558 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2559 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2560 "\tWindow\tIRTT");
2561 return 0;
2562 }
19baf839 2563
9b6ebad5
AD
2564 prefix = htonl(l->key);
2565
79e5ad2c
AD
2566 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2567 const struct fib_info *fi = fa->fa_info;
2568 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2569 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2570
79e5ad2c
AD
2571 if ((fa->fa_type == RTN_BROADCAST) ||
2572 (fa->fa_type == RTN_MULTICAST))
2573 continue;
19baf839 2574
654eff45
AD
2575 if (fa->tb_id != tb->tb_id)
2576 continue;
2577
79e5ad2c
AD
2578 seq_setwidth(seq, 127);
2579
2580 if (fi)
2581 seq_printf(seq,
2582 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2583 "%d\t%08X\t%d\t%u\t%u",
2584 fi->fib_dev ? fi->fib_dev->name : "*",
2585 prefix,
2586 fi->fib_nh->nh_gw, flags, 0, 0,
2587 fi->fib_priority,
2588 mask,
2589 (fi->fib_advmss ?
2590 fi->fib_advmss + 40 : 0),
2591 fi->fib_window,
2592 fi->fib_rtt >> 3);
2593 else
2594 seq_printf(seq,
2595 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2596 "%d\t%08X\t%d\t%u\t%u",
2597 prefix, 0, flags, 0, 0, 0,
2598 mask, 0, 0, 0);
19baf839 2599
79e5ad2c 2600 seq_pad(seq, '\n');
19baf839
RO
2601 }
2602
2603 return 0;
2604}
2605
f690808e 2606static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2607 .start = fib_route_seq_start,
2608 .next = fib_route_seq_next,
2609 .stop = fib_route_seq_stop,
cb7b593c 2610 .show = fib_route_seq_show,
19baf839
RO
2611};
2612
cb7b593c 2613static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2614{
1c340b2f 2615 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2616 sizeof(struct fib_route_iter));
19baf839
RO
2617}
2618
9a32144e 2619static const struct file_operations fib_route_fops = {
cb7b593c
SH
2620 .owner = THIS_MODULE,
2621 .open = fib_route_seq_open,
2622 .read = seq_read,
2623 .llseek = seq_lseek,
1c340b2f 2624 .release = seq_release_net,
19baf839
RO
2625};
2626
61a02653 2627int __net_init fib_proc_init(struct net *net)
19baf839 2628{
d4beaa66 2629 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2630 goto out1;
2631
d4beaa66
G
2632 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2633 &fib_triestat_fops))
cb7b593c
SH
2634 goto out2;
2635
d4beaa66 2636 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2637 goto out3;
2638
19baf839 2639 return 0;
cb7b593c
SH
2640
2641out3:
ece31ffd 2642 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2643out2:
ece31ffd 2644 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2645out1:
2646 return -ENOMEM;
19baf839
RO
2647}
2648
61a02653 2649void __net_exit fib_proc_exit(struct net *net)
19baf839 2650{
ece31ffd
G
2651 remove_proc_entry("fib_trie", net->proc_net);
2652 remove_proc_entry("fib_triestat", net->proc_net);
2653 remove_proc_entry("route", net->proc_net);
19baf839
RO
2654}
2655
2656#endif /* CONFIG_PROC_FS */