]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - net/ipv4/fib_trie.c
tcp: tcp_tso_autosize() minimum is one packet
[mirror_ubuntu-jammy-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
8e05fd71 82#include <net/switchdev.h>
19baf839
RO
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
95f60ea3
AD
87#define KEYLENGTH (8*sizeof(t_key))
88#define KEY_MAX ((t_key)~0)
19baf839 89
19baf839
RO
90typedef unsigned int t_key;
91
88bae714
AD
92#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
93#define IS_TNODE(n) ((n)->bits)
94#define IS_LEAF(n) (!(n)->bits)
2373ce1c 95
35c6edac 96struct key_vector {
64c9b6fb 97 t_key key;
64c9b6fb 98 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 99 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 100 unsigned char slen;
adaf9816 101 union {
41b489fd 102 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 103 struct hlist_head leaf;
41b489fd 104 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 105 struct key_vector __rcu *tnode[0];
adaf9816 106 };
19baf839
RO
107};
108
dc35dbed 109struct tnode {
56ca2adf 110 struct rcu_head rcu;
6e22d174
AD
111 t_key empty_children; /* KEYLENGTH bits needed */
112 t_key full_children; /* KEYLENGTH bits needed */
f23e59fb 113 struct key_vector __rcu *parent;
dc35dbed 114 struct key_vector kv[1];
56ca2adf 115#define tn_bits kv[0].bits
dc35dbed
AD
116};
117
118#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
119#define LEAF_SIZE TNODE_SIZE(1)
120
19baf839
RO
121#ifdef CONFIG_IP_FIB_TRIE_STATS
122struct trie_use_stats {
123 unsigned int gets;
124 unsigned int backtrack;
125 unsigned int semantic_match_passed;
126 unsigned int semantic_match_miss;
127 unsigned int null_node_hit;
2f36895a 128 unsigned int resize_node_skipped;
19baf839
RO
129};
130#endif
131
132struct trie_stat {
133 unsigned int totdepth;
134 unsigned int maxdepth;
135 unsigned int tnodes;
136 unsigned int leaves;
137 unsigned int nullpointers;
93672292 138 unsigned int prefixes;
06ef921d 139 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 140};
19baf839
RO
141
142struct trie {
88bae714 143 struct key_vector kv[1];
19baf839 144#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 145 struct trie_use_stats __percpu *stats;
19baf839 146#endif
19baf839
RO
147};
148
88bae714 149static struct key_vector *resize(struct trie *t, struct key_vector *tn);
c3059477
JP
150static size_t tnode_free_size;
151
152/*
153 * synchronize_rcu after call_rcu for that many pages; it should be especially
154 * useful before resizing the root node with PREEMPT_NONE configs; the value was
155 * obtained experimentally, aiming to avoid visible slowdown.
156 */
157static const int sync_pages = 128;
19baf839 158
e18b890b 159static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 160static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 161
56ca2adf
AD
162static inline struct tnode *tn_info(struct key_vector *kv)
163{
164 return container_of(kv, struct tnode, kv[0]);
165}
166
64c9b6fb 167/* caller must hold RTNL */
f23e59fb 168#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
754baf8d 169#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 170
64c9b6fb 171/* caller must hold RCU read lock or RTNL */
f23e59fb 172#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
754baf8d 173#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 174
64c9b6fb 175/* wrapper for rcu_assign_pointer */
35c6edac 176static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 177{
adaf9816 178 if (n)
f23e59fb 179 rcu_assign_pointer(tn_info(n)->parent, tp);
06801916
SH
180}
181
f23e59fb 182#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
64c9b6fb
AD
183
184/* This provides us with the number of children in this node, in the case of a
185 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 186 */
2e1ac88a 187static inline unsigned long child_length(const struct key_vector *tn)
06801916 188{
64c9b6fb 189 return (1ul << tn->bits) & ~(1ul);
06801916 190}
2373ce1c 191
88bae714
AD
192#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
193
2e1ac88a
AD
194static inline unsigned long get_index(t_key key, struct key_vector *kv)
195{
196 unsigned long index = key ^ kv->key;
197
88bae714
AD
198 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
199 return 0;
200
2e1ac88a
AD
201 return index >> kv->pos;
202}
203
e9b44019
AD
204/* To understand this stuff, an understanding of keys and all their bits is
205 * necessary. Every node in the trie has a key associated with it, but not
206 * all of the bits in that key are significant.
207 *
208 * Consider a node 'n' and its parent 'tp'.
209 *
210 * If n is a leaf, every bit in its key is significant. Its presence is
211 * necessitated by path compression, since during a tree traversal (when
212 * searching for a leaf - unless we are doing an insertion) we will completely
213 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
214 * a potentially successful search, that we have indeed been walking the
215 * correct key path.
216 *
217 * Note that we can never "miss" the correct key in the tree if present by
218 * following the wrong path. Path compression ensures that segments of the key
219 * that are the same for all keys with a given prefix are skipped, but the
220 * skipped part *is* identical for each node in the subtrie below the skipped
221 * bit! trie_insert() in this implementation takes care of that.
222 *
223 * if n is an internal node - a 'tnode' here, the various parts of its key
224 * have many different meanings.
225 *
226 * Example:
227 * _________________________________________________________________
228 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
229 * -----------------------------------------------------------------
230 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
231 *
232 * _________________________________________________________________
233 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
234 * -----------------------------------------------------------------
235 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
236 *
237 * tp->pos = 22
238 * tp->bits = 3
239 * n->pos = 13
240 * n->bits = 4
241 *
242 * First, let's just ignore the bits that come before the parent tp, that is
243 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
244 * point we do not use them for anything.
245 *
246 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
247 * index into the parent's child array. That is, they will be used to find
248 * 'n' among tp's children.
249 *
250 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
251 * for the node n.
252 *
253 * All the bits we have seen so far are significant to the node n. The rest
254 * of the bits are really not needed or indeed known in n->key.
255 *
256 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
257 * n's child array, and will of course be different for each child.
258 *
259 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
260 * at this point.
261 */
19baf839 262
f5026fab
DL
263static const int halve_threshold = 25;
264static const int inflate_threshold = 50;
345aa031 265static const int halve_threshold_root = 15;
80b71b80 266static const int inflate_threshold_root = 30;
2373ce1c
RO
267
268static void __alias_free_mem(struct rcu_head *head)
19baf839 269{
2373ce1c
RO
270 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
271 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
272}
273
2373ce1c 274static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 275{
2373ce1c
RO
276 call_rcu(&fa->rcu, __alias_free_mem);
277}
91b9a277 278
37fd30f2 279#define TNODE_KMALLOC_MAX \
35c6edac 280 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 281#define TNODE_VMALLOC_MAX \
35c6edac 282 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 283
37fd30f2 284static void __node_free_rcu(struct rcu_head *head)
387a5487 285{
56ca2adf 286 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 287
56ca2adf 288 if (!n->tn_bits)
37fd30f2 289 kmem_cache_free(trie_leaf_kmem, n);
56ca2adf 290 else if (n->tn_bits <= TNODE_KMALLOC_MAX)
37fd30f2
AD
291 kfree(n);
292 else
293 vfree(n);
387a5487
SH
294}
295
56ca2adf 296#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 297
dc35dbed 298static struct tnode *tnode_alloc(int bits)
f0e36f8c 299{
1de3d87b
AD
300 size_t size;
301
302 /* verify bits is within bounds */
303 if (bits > TNODE_VMALLOC_MAX)
304 return NULL;
305
306 /* determine size and verify it is non-zero and didn't overflow */
307 size = TNODE_SIZE(1ul << bits);
308
2373ce1c 309 if (size <= PAGE_SIZE)
8d965444 310 return kzalloc(size, GFP_KERNEL);
15be75cd 311 else
7a1c8e5a 312 return vzalloc(size);
15be75cd 313}
2373ce1c 314
35c6edac 315static inline void empty_child_inc(struct key_vector *n)
95f60ea3 316{
6e22d174 317 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
95f60ea3
AD
318}
319
35c6edac 320static inline void empty_child_dec(struct key_vector *n)
95f60ea3 321{
6e22d174 322 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
95f60ea3
AD
323}
324
35c6edac 325static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 326{
dc35dbed
AD
327 struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
328 struct key_vector *l = kv->kv;
329
330 if (!kv)
331 return NULL;
332
333 /* initialize key vector */
334 l->key = key;
335 l->pos = 0;
336 l->bits = 0;
337 l->slen = fa->fa_slen;
338
339 /* link leaf to fib alias */
340 INIT_HLIST_HEAD(&l->leaf);
341 hlist_add_head(&fa->fa_list, &l->leaf);
342
2373ce1c
RO
343 return l;
344}
345
35c6edac 346static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 347{
dc35dbed 348 struct tnode *tnode = tnode_alloc(bits);
64c9b6fb 349 unsigned int shift = pos + bits;
dc35dbed 350 struct key_vector *tn = tnode->kv;
64c9b6fb
AD
351
352 /* verify bits and pos their msb bits clear and values are valid */
353 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 354
dc35dbed 355 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
35c6edac 356 sizeof(struct key_vector *) << bits);
dc35dbed
AD
357
358 if (!tnode)
359 return NULL;
360
361 if (bits == KEYLENGTH)
6e22d174 362 tnode->full_children = 1;
dc35dbed 363 else
6e22d174 364 tnode->empty_children = 1ul << bits;
dc35dbed
AD
365
366 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
367 tn->pos = pos;
368 tn->bits = bits;
369 tn->slen = pos;
370
19baf839
RO
371 return tn;
372}
373
e9b44019 374/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
375 * and no bits are skipped. See discussion in dyntree paper p. 6
376 */
35c6edac 377static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 378{
e9b44019 379 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
380}
381
ff181ed8
AD
382/* Add a child at position i overwriting the old value.
383 * Update the value of full_children and empty_children.
384 */
35c6edac
AD
385static void put_child(struct key_vector *tn, unsigned long i,
386 struct key_vector *n)
19baf839 387{
754baf8d 388 struct key_vector *chi = get_child(tn, i);
ff181ed8 389 int isfull, wasfull;
19baf839 390
2e1ac88a 391 BUG_ON(i >= child_length(tn));
0c7770c7 392
95f60ea3 393 /* update emptyChildren, overflow into fullChildren */
00db4124 394 if (!n && chi)
95f60ea3 395 empty_child_inc(tn);
00db4124 396 if (n && !chi)
95f60ea3 397 empty_child_dec(tn);
c877efb2 398
19baf839 399 /* update fullChildren */
ff181ed8 400 wasfull = tnode_full(tn, chi);
19baf839 401 isfull = tnode_full(tn, n);
ff181ed8 402
c877efb2 403 if (wasfull && !isfull)
6e22d174 404 tn_info(tn)->full_children--;
c877efb2 405 else if (!wasfull && isfull)
6e22d174 406 tn_info(tn)->full_children++;
91b9a277 407
5405afd1
AD
408 if (n && (tn->slen < n->slen))
409 tn->slen = n->slen;
410
41b489fd 411 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
412}
413
35c6edac 414static void update_children(struct key_vector *tn)
69fa57b1
AD
415{
416 unsigned long i;
417
418 /* update all of the child parent pointers */
2e1ac88a 419 for (i = child_length(tn); i;) {
754baf8d 420 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
421
422 if (!inode)
423 continue;
424
425 /* Either update the children of a tnode that
426 * already belongs to us or update the child
427 * to point to ourselves.
428 */
429 if (node_parent(inode) == tn)
430 update_children(inode);
431 else
432 node_set_parent(inode, tn);
433 }
434}
435
88bae714
AD
436static inline void put_child_root(struct key_vector *tp, t_key key,
437 struct key_vector *n)
836a0123 438{
88bae714
AD
439 if (IS_TRIE(tp))
440 rcu_assign_pointer(tp->tnode[0], n);
836a0123 441 else
88bae714 442 put_child(tp, get_index(key, tp), n);
836a0123
AD
443}
444
35c6edac 445static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 446{
56ca2adf 447 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
448}
449
35c6edac
AD
450static inline void tnode_free_append(struct key_vector *tn,
451 struct key_vector *n)
fc86a93b 452{
56ca2adf
AD
453 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
454 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 455}
0a5c0475 456
35c6edac 457static void tnode_free(struct key_vector *tn)
fc86a93b 458{
56ca2adf 459 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
460
461 while (head) {
462 head = head->next;
41b489fd 463 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
464 node_free(tn);
465
56ca2adf 466 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
467 }
468
469 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
470 tnode_free_size = 0;
471 synchronize_rcu();
0a5c0475 472 }
0a5c0475
ED
473}
474
88bae714
AD
475static struct key_vector *replace(struct trie *t,
476 struct key_vector *oldtnode,
477 struct key_vector *tn)
69fa57b1 478{
35c6edac 479 struct key_vector *tp = node_parent(oldtnode);
69fa57b1
AD
480 unsigned long i;
481
482 /* setup the parent pointer out of and back into this node */
483 NODE_INIT_PARENT(tn, tp);
88bae714 484 put_child_root(tp, tn->key, tn);
69fa57b1
AD
485
486 /* update all of the child parent pointers */
487 update_children(tn);
488
489 /* all pointers should be clean so we are done */
490 tnode_free(oldtnode);
491
492 /* resize children now that oldtnode is freed */
2e1ac88a 493 for (i = child_length(tn); i;) {
754baf8d 494 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
495
496 /* resize child node */
497 if (tnode_full(tn, inode))
88bae714 498 tn = resize(t, inode);
69fa57b1 499 }
8d8e810c 500
88bae714 501 return tp;
69fa57b1
AD
502}
503
88bae714
AD
504static struct key_vector *inflate(struct trie *t,
505 struct key_vector *oldtnode)
19baf839 506{
35c6edac 507 struct key_vector *tn;
69fa57b1 508 unsigned long i;
e9b44019 509 t_key m;
19baf839 510
0c7770c7 511 pr_debug("In inflate\n");
19baf839 512
e9b44019 513 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 514 if (!tn)
8d8e810c 515 goto notnode;
2f36895a 516
69fa57b1
AD
517 /* prepare oldtnode to be freed */
518 tnode_free_init(oldtnode);
519
12c081a5
AD
520 /* Assemble all of the pointers in our cluster, in this case that
521 * represents all of the pointers out of our allocated nodes that
522 * point to existing tnodes and the links between our allocated
523 * nodes.
2f36895a 524 */
2e1ac88a 525 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 526 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 527 struct key_vector *node0, *node1;
69fa57b1 528 unsigned long j, k;
c877efb2 529
19baf839 530 /* An empty child */
51456b29 531 if (!inode)
19baf839
RO
532 continue;
533
534 /* A leaf or an internal node with skipped bits */
adaf9816 535 if (!tnode_full(oldtnode, inode)) {
e9b44019 536 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
537 continue;
538 }
539
69fa57b1
AD
540 /* drop the node in the old tnode free list */
541 tnode_free_append(oldtnode, inode);
542
19baf839 543 /* An internal node with two children */
19baf839 544 if (inode->bits == 1) {
754baf8d
AD
545 put_child(tn, 2 * i + 1, get_child(inode, 1));
546 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 547 continue;
19baf839
RO
548 }
549
91b9a277 550 /* We will replace this node 'inode' with two new
12c081a5 551 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
552 * original children. The two new nodes will have
553 * a position one bit further down the key and this
554 * means that the "significant" part of their keys
555 * (see the discussion near the top of this file)
556 * will differ by one bit, which will be "0" in
12c081a5 557 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
558 * moving the key position by one step, the bit that
559 * we are moving away from - the bit at position
12c081a5
AD
560 * (tn->pos) - is the one that will differ between
561 * node0 and node1. So... we synthesize that bit in the
562 * two new keys.
91b9a277 563 */
12c081a5
AD
564 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
565 if (!node1)
566 goto nomem;
69fa57b1 567 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 568
69fa57b1 569 tnode_free_append(tn, node1);
12c081a5
AD
570 if (!node0)
571 goto nomem;
572 tnode_free_append(tn, node0);
573
574 /* populate child pointers in new nodes */
2e1ac88a 575 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
576 put_child(node1, --j, get_child(inode, --k));
577 put_child(node0, j, get_child(inode, j));
578 put_child(node1, --j, get_child(inode, --k));
579 put_child(node0, j, get_child(inode, j));
12c081a5 580 }
19baf839 581
12c081a5
AD
582 /* link new nodes to parent */
583 NODE_INIT_PARENT(node1, tn);
584 NODE_INIT_PARENT(node0, tn);
2f36895a 585
12c081a5
AD
586 /* link parent to nodes */
587 put_child(tn, 2 * i + 1, node1);
588 put_child(tn, 2 * i, node0);
589 }
2f36895a 590
69fa57b1 591 /* setup the parent pointers into and out of this node */
8d8e810c 592 return replace(t, oldtnode, tn);
2f80b3c8 593nomem:
fc86a93b
AD
594 /* all pointers should be clean so we are done */
595 tnode_free(tn);
8d8e810c
AD
596notnode:
597 return NULL;
19baf839
RO
598}
599
88bae714
AD
600static struct key_vector *halve(struct trie *t,
601 struct key_vector *oldtnode)
19baf839 602{
35c6edac 603 struct key_vector *tn;
12c081a5 604 unsigned long i;
19baf839 605
0c7770c7 606 pr_debug("In halve\n");
c877efb2 607
e9b44019 608 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 609 if (!tn)
8d8e810c 610 goto notnode;
2f36895a 611
69fa57b1
AD
612 /* prepare oldtnode to be freed */
613 tnode_free_init(oldtnode);
614
12c081a5
AD
615 /* Assemble all of the pointers in our cluster, in this case that
616 * represents all of the pointers out of our allocated nodes that
617 * point to existing tnodes and the links between our allocated
618 * nodes.
2f36895a 619 */
2e1ac88a 620 for (i = child_length(oldtnode); i;) {
754baf8d
AD
621 struct key_vector *node1 = get_child(oldtnode, --i);
622 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 623 struct key_vector *inode;
2f36895a 624
12c081a5
AD
625 /* At least one of the children is empty */
626 if (!node1 || !node0) {
627 put_child(tn, i / 2, node1 ? : node0);
628 continue;
629 }
c877efb2 630
2f36895a 631 /* Two nonempty children */
12c081a5 632 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
633 if (!inode)
634 goto nomem;
12c081a5 635 tnode_free_append(tn, inode);
2f36895a 636
12c081a5
AD
637 /* initialize pointers out of node */
638 put_child(inode, 1, node1);
639 put_child(inode, 0, node0);
640 NODE_INIT_PARENT(inode, tn);
641
642 /* link parent to node */
643 put_child(tn, i / 2, inode);
2f36895a 644 }
19baf839 645
69fa57b1 646 /* setup the parent pointers into and out of this node */
8d8e810c
AD
647 return replace(t, oldtnode, tn);
648nomem:
649 /* all pointers should be clean so we are done */
650 tnode_free(tn);
651notnode:
652 return NULL;
19baf839
RO
653}
654
88bae714
AD
655static struct key_vector *collapse(struct trie *t,
656 struct key_vector *oldtnode)
95f60ea3 657{
35c6edac 658 struct key_vector *n, *tp;
95f60ea3
AD
659 unsigned long i;
660
661 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 662 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 663 n = get_child(oldtnode, --i);
95f60ea3
AD
664
665 /* compress one level */
666 tp = node_parent(oldtnode);
88bae714 667 put_child_root(tp, oldtnode->key, n);
95f60ea3
AD
668 node_set_parent(n, tp);
669
670 /* drop dead node */
671 node_free(oldtnode);
88bae714
AD
672
673 return tp;
95f60ea3
AD
674}
675
35c6edac 676static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
677{
678 unsigned char slen = tn->pos;
679 unsigned long stride, i;
680
681 /* search though the list of children looking for nodes that might
682 * have a suffix greater than the one we currently have. This is
683 * why we start with a stride of 2 since a stride of 1 would
684 * represent the nodes with suffix length equal to tn->pos
685 */
2e1ac88a 686 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 687 struct key_vector *n = get_child(tn, i);
5405afd1
AD
688
689 if (!n || (n->slen <= slen))
690 continue;
691
692 /* update stride and slen based on new value */
693 stride <<= (n->slen - slen);
694 slen = n->slen;
695 i &= ~(stride - 1);
696
697 /* if slen covers all but the last bit we can stop here
698 * there will be nothing longer than that since only node
699 * 0 and 1 << (bits - 1) could have that as their suffix
700 * length.
701 */
702 if ((slen + 1) >= (tn->pos + tn->bits))
703 break;
704 }
705
706 tn->slen = slen;
707
708 return slen;
709}
710
f05a4819
AD
711/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
712 * the Helsinki University of Technology and Matti Tikkanen of Nokia
713 * Telecommunications, page 6:
714 * "A node is doubled if the ratio of non-empty children to all
715 * children in the *doubled* node is at least 'high'."
716 *
717 * 'high' in this instance is the variable 'inflate_threshold'. It
718 * is expressed as a percentage, so we multiply it with
2e1ac88a 719 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
720 * child array will be doubled by inflate()) and multiplying
721 * the left-hand side by 100 (to handle the percentage thing) we
722 * multiply the left-hand side by 50.
723 *
2e1ac88a 724 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
725 * - tn->empty_children is of course the number of non-null children
726 * in the current node. tn->full_children is the number of "full"
727 * children, that is non-null tnodes with a skip value of 0.
728 * All of those will be doubled in the resulting inflated tnode, so
729 * we just count them one extra time here.
730 *
731 * A clearer way to write this would be:
732 *
733 * to_be_doubled = tn->full_children;
2e1ac88a 734 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
735 * tn->full_children;
736 *
2e1ac88a 737 * new_child_length = child_length(tn) * 2;
f05a4819
AD
738 *
739 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
740 * new_child_length;
741 * if (new_fill_factor >= inflate_threshold)
742 *
743 * ...and so on, tho it would mess up the while () loop.
744 *
745 * anyway,
746 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
747 * inflate_threshold
748 *
749 * avoid a division:
750 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
751 * inflate_threshold * new_child_length
752 *
753 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 754 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
755 * tn->full_children) >= inflate_threshold * new_child_length
756 *
757 * expand new_child_length:
2e1ac88a 758 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 759 * tn->full_children) >=
2e1ac88a 760 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
761 *
762 * shorten again:
2e1ac88a 763 * 50 * (tn->full_children + child_length(tn) -
f05a4819 764 * tn->empty_children) >= inflate_threshold *
2e1ac88a 765 * child_length(tn)
f05a4819
AD
766 *
767 */
35c6edac 768static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 769{
2e1ac88a 770 unsigned long used = child_length(tn);
f05a4819
AD
771 unsigned long threshold = used;
772
773 /* Keep root node larger */
88bae714 774 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
6e22d174
AD
775 used -= tn_info(tn)->empty_children;
776 used += tn_info(tn)->full_children;
f05a4819 777
95f60ea3
AD
778 /* if bits == KEYLENGTH then pos = 0, and will fail below */
779
780 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
781}
782
35c6edac 783static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 784{
2e1ac88a 785 unsigned long used = child_length(tn);
f05a4819
AD
786 unsigned long threshold = used;
787
788 /* Keep root node larger */
88bae714 789 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
6e22d174 790 used -= tn_info(tn)->empty_children;
f05a4819 791
95f60ea3
AD
792 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
793
794 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
795}
796
35c6edac 797static inline bool should_collapse(struct key_vector *tn)
95f60ea3 798{
2e1ac88a 799 unsigned long used = child_length(tn);
95f60ea3 800
6e22d174 801 used -= tn_info(tn)->empty_children;
95f60ea3
AD
802
803 /* account for bits == KEYLENGTH case */
6e22d174 804 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
95f60ea3
AD
805 used -= KEY_MAX;
806
807 /* One child or none, time to drop us from the trie */
808 return used < 2;
f05a4819
AD
809}
810
cf3637bb 811#define MAX_WORK 10
88bae714 812static struct key_vector *resize(struct trie *t, struct key_vector *tn)
cf3637bb 813{
8d8e810c
AD
814#ifdef CONFIG_IP_FIB_TRIE_STATS
815 struct trie_use_stats __percpu *stats = t->stats;
816#endif
35c6edac 817 struct key_vector *tp = node_parent(tn);
88bae714 818 unsigned long cindex = get_index(tn->key, tp);
a80e89d4 819 int max_work = MAX_WORK;
cf3637bb 820
cf3637bb
AD
821 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
822 tn, inflate_threshold, halve_threshold);
823
ff181ed8
AD
824 /* track the tnode via the pointer from the parent instead of
825 * doing it ourselves. This way we can let RCU fully do its
826 * thing without us interfering
827 */
88bae714 828 BUG_ON(tn != get_child(tp, cindex));
ff181ed8 829
f05a4819
AD
830 /* Double as long as the resulting node has a number of
831 * nonempty nodes that are above the threshold.
cf3637bb 832 */
b6f15f82 833 while (should_inflate(tp, tn) && max_work) {
88bae714
AD
834 tp = inflate(t, tn);
835 if (!tp) {
cf3637bb 836#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 837 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
838#endif
839 break;
840 }
ff181ed8 841
b6f15f82 842 max_work--;
88bae714 843 tn = get_child(tp, cindex);
cf3637bb
AD
844 }
845
b6f15f82
AD
846 /* update parent in case inflate failed */
847 tp = node_parent(tn);
848
cf3637bb
AD
849 /* Return if at least one inflate is run */
850 if (max_work != MAX_WORK)
b6f15f82 851 return tp;
cf3637bb 852
f05a4819 853 /* Halve as long as the number of empty children in this
cf3637bb
AD
854 * node is above threshold.
855 */
b6f15f82 856 while (should_halve(tp, tn) && max_work) {
88bae714
AD
857 tp = halve(t, tn);
858 if (!tp) {
cf3637bb 859#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 860 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
861#endif
862 break;
863 }
cf3637bb 864
b6f15f82 865 max_work--;
88bae714 866 tn = get_child(tp, cindex);
ff181ed8 867 }
cf3637bb
AD
868
869 /* Only one child remains */
88bae714
AD
870 if (should_collapse(tn))
871 return collapse(t, tn);
872
b6f15f82 873 /* update parent in case halve failed */
88bae714 874 tp = node_parent(tn);
5405afd1
AD
875
876 /* Return if at least one deflate was run */
877 if (max_work != MAX_WORK)
88bae714 878 return tp;
5405afd1
AD
879
880 /* push the suffix length to the parent node */
881 if (tn->slen > tn->pos) {
882 unsigned char slen = update_suffix(tn);
883
88bae714 884 if (slen > tp->slen)
5405afd1 885 tp->slen = slen;
cf3637bb 886 }
8d8e810c 887
88bae714 888 return tp;
cf3637bb
AD
889}
890
35c6edac 891static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
5405afd1 892{
88bae714 893 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
5405afd1
AD
894 if (update_suffix(tp) > l->slen)
895 break;
896 tp = node_parent(tp);
897 }
898}
899
35c6edac 900static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
19baf839 901{
5405afd1
AD
902 /* if this is a new leaf then tn will be NULL and we can sort
903 * out parent suffix lengths as a part of trie_rebalance
904 */
88bae714 905 while (tn->slen < l->slen) {
5405afd1
AD
906 tn->slen = l->slen;
907 tn = node_parent(tn);
908 }
909}
910
2373ce1c 911/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
912static struct key_vector *fib_find_node(struct trie *t,
913 struct key_vector **tp, u32 key)
19baf839 914{
88bae714
AD
915 struct key_vector *pn, *n = t->kv;
916 unsigned long index = 0;
917
918 do {
919 pn = n;
920 n = get_child_rcu(n, index);
921
922 if (!n)
923 break;
939afb06 924
88bae714 925 index = get_cindex(key, n);
939afb06
AD
926
927 /* This bit of code is a bit tricky but it combines multiple
928 * checks into a single check. The prefix consists of the
929 * prefix plus zeros for the bits in the cindex. The index
930 * is the difference between the key and this value. From
931 * this we can actually derive several pieces of data.
d4a975e8 932 * if (index >= (1ul << bits))
939afb06 933 * we have a mismatch in skip bits and failed
b3832117
AD
934 * else
935 * we know the value is cindex
d4a975e8
AD
936 *
937 * This check is safe even if bits == KEYLENGTH due to the
938 * fact that we can only allocate a node with 32 bits if a
939 * long is greater than 32 bits.
939afb06 940 */
d4a975e8
AD
941 if (index >= (1ul << n->bits)) {
942 n = NULL;
943 break;
944 }
939afb06 945
88bae714
AD
946 /* keep searching until we find a perfect match leaf or NULL */
947 } while (IS_TNODE(n));
91b9a277 948
35c6edac 949 *tp = pn;
d4a975e8 950
939afb06 951 return n;
19baf839
RO
952}
953
02525368
AD
954/* Return the first fib alias matching TOS with
955 * priority less than or equal to PRIO.
956 */
79e5ad2c 957static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
0b65bd97 958 u8 tos, u32 prio, u32 tb_id)
02525368
AD
959{
960 struct fib_alias *fa;
961
962 if (!fah)
963 return NULL;
964
56315f9e 965 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
966 if (fa->fa_slen < slen)
967 continue;
968 if (fa->fa_slen != slen)
969 break;
0b65bd97
AD
970 if (fa->tb_id > tb_id)
971 continue;
972 if (fa->tb_id != tb_id)
973 break;
02525368
AD
974 if (fa->fa_tos > tos)
975 continue;
976 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
977 return fa;
978 }
979
980 return NULL;
981}
982
35c6edac 983static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 984{
88bae714
AD
985 while (!IS_TRIE(tn))
986 tn = resize(t, tn);
19baf839
RO
987}
988
35c6edac 989static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 990 struct fib_alias *new, t_key key)
19baf839 991{
35c6edac 992 struct key_vector *n, *l;
19baf839 993
d5d6487c 994 l = leaf_new(key, new);
79e5ad2c 995 if (!l)
8d8e810c 996 goto noleaf;
d5d6487c
AD
997
998 /* retrieve child from parent node */
88bae714 999 n = get_child(tp, get_index(key, tp));
19baf839 1000
836a0123
AD
1001 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1002 *
1003 * Add a new tnode here
1004 * first tnode need some special handling
1005 * leaves us in position for handling as case 3
1006 */
1007 if (n) {
35c6edac 1008 struct key_vector *tn;
19baf839 1009
e9b44019 1010 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1011 if (!tn)
1012 goto notnode;
91b9a277 1013
836a0123
AD
1014 /* initialize routes out of node */
1015 NODE_INIT_PARENT(tn, tp);
1016 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1017
836a0123 1018 /* start adding routes into the node */
88bae714 1019 put_child_root(tp, key, tn);
836a0123 1020 node_set_parent(n, tn);
e962f302 1021
836a0123 1022 /* parent now has a NULL spot where the leaf can go */
e962f302 1023 tp = tn;
19baf839 1024 }
91b9a277 1025
836a0123 1026 /* Case 3: n is NULL, and will just insert a new leaf */
d5d6487c 1027 NODE_INIT_PARENT(l, tp);
88bae714 1028 put_child_root(tp, key, l);
d5d6487c
AD
1029 trie_rebalance(t, tp);
1030
1031 return 0;
8d8e810c
AD
1032notnode:
1033 node_free(l);
1034noleaf:
1035 return -ENOMEM;
d5d6487c
AD
1036}
1037
35c6edac
AD
1038static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1039 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1040 struct fib_alias *fa, t_key key)
1041{
1042 if (!l)
1043 return fib_insert_node(t, tp, new, key);
1044
1045 if (fa) {
1046 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1047 } else {
d5d6487c
AD
1048 struct fib_alias *last;
1049
1050 hlist_for_each_entry(last, &l->leaf, fa_list) {
1051 if (new->fa_slen < last->fa_slen)
1052 break;
0b65bd97
AD
1053 if ((new->fa_slen == last->fa_slen) &&
1054 (new->tb_id > last->tb_id))
1055 break;
d5d6487c
AD
1056 fa = last;
1057 }
1058
1059 if (fa)
1060 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1061 else
1062 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1063 }
2373ce1c 1064
d5d6487c
AD
1065 /* if we added to the tail node then we need to update slen */
1066 if (l->slen < new->fa_slen) {
1067 l->slen = new->fa_slen;
1068 leaf_push_suffix(tp, l);
1069 }
1070
1071 return 0;
19baf839
RO
1072}
1073
d5d6487c 1074/* Caller must hold RTNL. */
16c6cf8b 1075int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839 1076{
d4a975e8 1077 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1078 struct fib_alias *fa, *new_fa;
35c6edac 1079 struct key_vector *l, *tp;
19baf839 1080 struct fib_info *fi;
79e5ad2c
AD
1081 u8 plen = cfg->fc_dst_len;
1082 u8 slen = KEYLENGTH - plen;
4e902c57 1083 u8 tos = cfg->fc_tos;
d4a975e8 1084 u32 key;
19baf839 1085 int err;
19baf839 1086
5786ec60 1087 if (plen > KEYLENGTH)
19baf839
RO
1088 return -EINVAL;
1089
4e902c57 1090 key = ntohl(cfg->fc_dst);
19baf839 1091
2dfe55b4 1092 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1093
d4a975e8 1094 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1095 return -EINVAL;
1096
4e902c57
TG
1097 fi = fib_create_info(cfg);
1098 if (IS_ERR(fi)) {
1099 err = PTR_ERR(fi);
19baf839 1100 goto err;
4e902c57 1101 }
19baf839 1102
d4a975e8 1103 l = fib_find_node(t, &tp, key);
0b65bd97
AD
1104 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1105 tb->tb_id) : NULL;
19baf839
RO
1106
1107 /* Now fa, if non-NULL, points to the first fib alias
1108 * with the same keys [prefix,tos,priority], if such key already
1109 * exists or to the node before which we will insert new one.
1110 *
1111 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1112 * insert to the tail of the section matching the suffix length
1113 * of the new alias.
19baf839
RO
1114 */
1115
936f6f8e
JA
1116 if (fa && fa->fa_tos == tos &&
1117 fa->fa_info->fib_priority == fi->fib_priority) {
1118 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1119
1120 err = -EEXIST;
4e902c57 1121 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1122 goto out;
1123
936f6f8e
JA
1124 /* We have 2 goals:
1125 * 1. Find exact match for type, scope, fib_info to avoid
1126 * duplicate routes
1127 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1128 */
1129 fa_match = NULL;
1130 fa_first = fa;
56315f9e 1131 hlist_for_each_entry_from(fa, fa_list) {
0b65bd97
AD
1132 if ((fa->fa_slen != slen) ||
1133 (fa->tb_id != tb->tb_id) ||
1134 (fa->fa_tos != tos))
936f6f8e
JA
1135 break;
1136 if (fa->fa_info->fib_priority != fi->fib_priority)
1137 break;
1138 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1139 fa->fa_info == fi) {
1140 fa_match = fa;
1141 break;
1142 }
1143 }
1144
4e902c57 1145 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1146 struct fib_info *fi_drop;
1147 u8 state;
1148
936f6f8e
JA
1149 fa = fa_first;
1150 if (fa_match) {
1151 if (fa == fa_match)
1152 err = 0;
6725033f 1153 goto out;
936f6f8e 1154 }
2373ce1c 1155 err = -ENOBUFS;
e94b1766 1156 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1157 if (!new_fa)
2373ce1c 1158 goto out;
19baf839
RO
1159
1160 fi_drop = fa->fa_info;
2373ce1c
RO
1161 new_fa->fa_tos = fa->fa_tos;
1162 new_fa->fa_info = fi;
4e902c57 1163 new_fa->fa_type = cfg->fc_type;
19baf839 1164 state = fa->fa_state;
936f6f8e 1165 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1166 new_fa->fa_slen = fa->fa_slen;
d4e64c29 1167 new_fa->tb_id = tb->tb_id;
19baf839 1168
ebb9a03a
JP
1169 err = switchdev_fib_ipv4_add(key, plen, fi,
1170 new_fa->fa_tos,
1171 cfg->fc_type,
1172 cfg->fc_nlflags,
1173 tb->tb_id);
8e05fd71 1174 if (err) {
ebb9a03a 1175 switchdev_fib_ipv4_abort(fi);
8e05fd71
SF
1176 kmem_cache_free(fn_alias_kmem, new_fa);
1177 goto out;
1178 }
1179
56315f9e 1180 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1181
2373ce1c 1182 alias_free_mem_rcu(fa);
19baf839
RO
1183
1184 fib_release_info(fi_drop);
1185 if (state & FA_S_ACCESSED)
4ccfe6d4 1186 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1187 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1188 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1189
91b9a277 1190 goto succeeded;
19baf839
RO
1191 }
1192 /* Error if we find a perfect match which
1193 * uses the same scope, type, and nexthop
1194 * information.
1195 */
936f6f8e
JA
1196 if (fa_match)
1197 goto out;
a07f5f50 1198
4e902c57 1199 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1200 fa = fa_first;
19baf839
RO
1201 }
1202 err = -ENOENT;
4e902c57 1203 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1204 goto out;
1205
1206 err = -ENOBUFS;
e94b1766 1207 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1208 if (!new_fa)
19baf839
RO
1209 goto out;
1210
1211 new_fa->fa_info = fi;
1212 new_fa->fa_tos = tos;
4e902c57 1213 new_fa->fa_type = cfg->fc_type;
19baf839 1214 new_fa->fa_state = 0;
79e5ad2c 1215 new_fa->fa_slen = slen;
0ddcf43d 1216 new_fa->tb_id = tb->tb_id;
19baf839 1217
8e05fd71 1218 /* (Optionally) offload fib entry to switch hardware. */
ebb9a03a
JP
1219 err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
1220 cfg->fc_nlflags, tb->tb_id);
8e05fd71 1221 if (err) {
ebb9a03a 1222 switchdev_fib_ipv4_abort(fi);
8e05fd71
SF
1223 goto out_free_new_fa;
1224 }
1225
9b6ebad5 1226 /* Insert new entry to the list. */
d5d6487c
AD
1227 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1228 if (err)
8e05fd71 1229 goto out_sw_fib_del;
19baf839 1230
21d8c49e
DM
1231 if (!plen)
1232 tb->tb_num_default++;
1233
4ccfe6d4 1234 rt_cache_flush(cfg->fc_nlinfo.nl_net);
0ddcf43d 1235 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
b8f55831 1236 &cfg->fc_nlinfo, 0);
19baf839
RO
1237succeeded:
1238 return 0;
f835e471 1239
8e05fd71 1240out_sw_fib_del:
ebb9a03a 1241 switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
f835e471
RO
1242out_free_new_fa:
1243 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1244out:
1245 fib_release_info(fi);
91b9a277 1246err:
19baf839
RO
1247 return err;
1248}
1249
35c6edac 1250static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1251{
1252 t_key prefix = n->key;
1253
1254 return (key ^ prefix) & (prefix | -prefix);
1255}
1256
345e9b54 1257/* should be called with rcu_read_lock */
22bd5b9b 1258int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1259 struct fib_result *res, int fib_flags)
19baf839 1260{
0ddcf43d 1261 struct trie *t = (struct trie *) tb->tb_data;
8274a97a
AD
1262#ifdef CONFIG_IP_FIB_TRIE_STATS
1263 struct trie_use_stats __percpu *stats = t->stats;
1264#endif
9f9e636d 1265 const t_key key = ntohl(flp->daddr);
35c6edac 1266 struct key_vector *n, *pn;
79e5ad2c 1267 struct fib_alias *fa;
71e8b67d 1268 unsigned long index;
9f9e636d 1269 t_key cindex;
91b9a277 1270
88bae714
AD
1271 pn = t->kv;
1272 cindex = 0;
1273
1274 n = get_child_rcu(pn, cindex);
c877efb2 1275 if (!n)
345e9b54 1276 return -EAGAIN;
19baf839
RO
1277
1278#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1279 this_cpu_inc(stats->gets);
19baf839
RO
1280#endif
1281
9f9e636d
AD
1282 /* Step 1: Travel to the longest prefix match in the trie */
1283 for (;;) {
88bae714 1284 index = get_cindex(key, n);
9f9e636d
AD
1285
1286 /* This bit of code is a bit tricky but it combines multiple
1287 * checks into a single check. The prefix consists of the
1288 * prefix plus zeros for the "bits" in the prefix. The index
1289 * is the difference between the key and this value. From
1290 * this we can actually derive several pieces of data.
71e8b67d 1291 * if (index >= (1ul << bits))
9f9e636d 1292 * we have a mismatch in skip bits and failed
b3832117
AD
1293 * else
1294 * we know the value is cindex
71e8b67d
AD
1295 *
1296 * This check is safe even if bits == KEYLENGTH due to the
1297 * fact that we can only allocate a node with 32 bits if a
1298 * long is greater than 32 bits.
9f9e636d 1299 */
71e8b67d 1300 if (index >= (1ul << n->bits))
9f9e636d 1301 break;
19baf839 1302
9f9e636d
AD
1303 /* we have found a leaf. Prefixes have already been compared */
1304 if (IS_LEAF(n))
a07f5f50 1305 goto found;
19baf839 1306
9f9e636d
AD
1307 /* only record pn and cindex if we are going to be chopping
1308 * bits later. Otherwise we are just wasting cycles.
91b9a277 1309 */
5405afd1 1310 if (n->slen > n->pos) {
9f9e636d
AD
1311 pn = n;
1312 cindex = index;
91b9a277 1313 }
19baf839 1314
754baf8d 1315 n = get_child_rcu(n, index);
9f9e636d
AD
1316 if (unlikely(!n))
1317 goto backtrace;
1318 }
19baf839 1319
9f9e636d
AD
1320 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1321 for (;;) {
1322 /* record the pointer where our next node pointer is stored */
35c6edac 1323 struct key_vector __rcu **cptr = n->tnode;
19baf839 1324
9f9e636d
AD
1325 /* This test verifies that none of the bits that differ
1326 * between the key and the prefix exist in the region of
1327 * the lsb and higher in the prefix.
91b9a277 1328 */
5405afd1 1329 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1330 goto backtrace;
91b9a277 1331
9f9e636d
AD
1332 /* exit out and process leaf */
1333 if (unlikely(IS_LEAF(n)))
1334 break;
91b9a277 1335
9f9e636d
AD
1336 /* Don't bother recording parent info. Since we are in
1337 * prefix match mode we will have to come back to wherever
1338 * we started this traversal anyway
91b9a277 1339 */
91b9a277 1340
9f9e636d 1341 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1342backtrace:
19baf839 1343#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1344 if (!n)
1345 this_cpu_inc(stats->null_node_hit);
19baf839 1346#endif
9f9e636d
AD
1347 /* If we are at cindex 0 there are no more bits for
1348 * us to strip at this level so we must ascend back
1349 * up one level to see if there are any more bits to
1350 * be stripped there.
1351 */
1352 while (!cindex) {
1353 t_key pkey = pn->key;
1354
88bae714
AD
1355 /* If we don't have a parent then there is
1356 * nothing for us to do as we do not have any
1357 * further nodes to parse.
1358 */
1359 if (IS_TRIE(pn))
345e9b54 1360 return -EAGAIN;
9f9e636d
AD
1361#ifdef CONFIG_IP_FIB_TRIE_STATS
1362 this_cpu_inc(stats->backtrack);
1363#endif
1364 /* Get Child's index */
88bae714 1365 pn = node_parent_rcu(pn);
9f9e636d
AD
1366 cindex = get_index(pkey, pn);
1367 }
1368
1369 /* strip the least significant bit from the cindex */
1370 cindex &= cindex - 1;
1371
1372 /* grab pointer for next child node */
41b489fd 1373 cptr = &pn->tnode[cindex];
c877efb2 1374 }
19baf839 1375 }
9f9e636d 1376
19baf839 1377found:
71e8b67d
AD
1378 /* this line carries forward the xor from earlier in the function */
1379 index = key ^ n->key;
1380
9f9e636d 1381 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1382 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1383 struct fib_info *fi = fa->fa_info;
1384 int nhsel, err;
345e9b54 1385
71e8b67d 1386 if ((index >= (1ul << fa->fa_slen)) &&
79e5ad2c 1387 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
71e8b67d 1388 continue;
79e5ad2c
AD
1389 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1390 continue;
1391 if (fi->fib_dead)
1392 continue;
1393 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1394 continue;
1395 fib_alias_accessed(fa);
1396 err = fib_props[fa->fa_type].error;
1397 if (unlikely(err < 0)) {
345e9b54 1398#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1399 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1400#endif
79e5ad2c
AD
1401 return err;
1402 }
1403 if (fi->fib_flags & RTNH_F_DEAD)
1404 continue;
1405 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1406 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1407
1408 if (nh->nh_flags & RTNH_F_DEAD)
1409 continue;
1410 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
345e9b54 1411 continue;
79e5ad2c
AD
1412
1413 if (!(fib_flags & FIB_LOOKUP_NOREF))
1414 atomic_inc(&fi->fib_clntref);
1415
1416 res->prefixlen = KEYLENGTH - fa->fa_slen;
1417 res->nh_sel = nhsel;
1418 res->type = fa->fa_type;
1419 res->scope = fi->fib_scope;
1420 res->fi = fi;
1421 res->table = tb;
1422 res->fa_head = &n->leaf;
345e9b54 1423#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1424 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1425#endif
79e5ad2c 1426 return err;
345e9b54 1427 }
9b6ebad5 1428 }
345e9b54 1429#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1430 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1431#endif
345e9b54 1432 goto backtrace;
19baf839 1433}
6fc01438 1434EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1435
35c6edac
AD
1436static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1437 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1438{
1439 /* record the location of the previous list_info entry */
1440 struct hlist_node **pprev = old->fa_list.pprev;
1441 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1442
1443 /* remove the fib_alias from the list */
1444 hlist_del_rcu(&old->fa_list);
1445
1446 /* if we emptied the list this leaf will be freed and we can sort
1447 * out parent suffix lengths as a part of trie_rebalance
1448 */
1449 if (hlist_empty(&l->leaf)) {
88bae714 1450 put_child_root(tp, l->key, NULL);
d5d6487c
AD
1451 node_free(l);
1452 trie_rebalance(t, tp);
1453 return;
1454 }
1455
1456 /* only access fa if it is pointing at the last valid hlist_node */
1457 if (*pprev)
1458 return;
1459
1460 /* update the trie with the latest suffix length */
1461 l->slen = fa->fa_slen;
1462 leaf_pull_suffix(tp, l);
1463}
1464
1465/* Caller must hold RTNL. */
16c6cf8b 1466int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1467{
1468 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1469 struct fib_alias *fa, *fa_to_delete;
35c6edac 1470 struct key_vector *l, *tp;
79e5ad2c 1471 u8 plen = cfg->fc_dst_len;
79e5ad2c 1472 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1473 u8 tos = cfg->fc_tos;
1474 u32 key;
91b9a277 1475
79e5ad2c 1476 if (plen > KEYLENGTH)
19baf839
RO
1477 return -EINVAL;
1478
4e902c57 1479 key = ntohl(cfg->fc_dst);
19baf839 1480
d4a975e8 1481 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1482 return -EINVAL;
1483
d4a975e8 1484 l = fib_find_node(t, &tp, key);
c877efb2 1485 if (!l)
19baf839
RO
1486 return -ESRCH;
1487
0b65bd97 1488 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
19baf839
RO
1489 if (!fa)
1490 return -ESRCH;
1491
0c7770c7 1492 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1493
1494 fa_to_delete = NULL;
56315f9e 1495 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1496 struct fib_info *fi = fa->fa_info;
1497
0b65bd97
AD
1498 if ((fa->fa_slen != slen) ||
1499 (fa->tb_id != tb->tb_id) ||
1500 (fa->fa_tos != tos))
19baf839
RO
1501 break;
1502
4e902c57
TG
1503 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1504 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1505 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1506 (!cfg->fc_prefsrc ||
1507 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1508 (!cfg->fc_protocol ||
1509 fi->fib_protocol == cfg->fc_protocol) &&
1510 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1511 fa_to_delete = fa;
1512 break;
1513 }
1514 }
1515
91b9a277
OJ
1516 if (!fa_to_delete)
1517 return -ESRCH;
19baf839 1518
ebb9a03a
JP
1519 switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1520 cfg->fc_type, tb->tb_id);
8e05fd71 1521
d5d6487c 1522 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1523 &cfg->fc_nlinfo, 0);
91b9a277 1524
21d8c49e
DM
1525 if (!plen)
1526 tb->tb_num_default--;
1527
d5d6487c 1528 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1529
d5d6487c 1530 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1531 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1532
d5d6487c
AD
1533 fib_release_info(fa_to_delete->fa_info);
1534 alias_free_mem_rcu(fa_to_delete);
91b9a277 1535 return 0;
19baf839
RO
1536}
1537
8be33e95 1538/* Scan for the next leaf starting at the provided key value */
35c6edac 1539static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1540{
35c6edac 1541 struct key_vector *pn, *n = *tn;
8be33e95 1542 unsigned long cindex;
82cfbb00 1543
8be33e95 1544 /* this loop is meant to try and find the key in the trie */
88bae714 1545 do {
8be33e95
AD
1546 /* record parent and next child index */
1547 pn = n;
3ec320dd 1548 cindex = key ? get_index(key, pn) : 0;
88bae714
AD
1549
1550 if (cindex >> pn->bits)
1551 break;
82cfbb00 1552
8be33e95 1553 /* descend into the next child */
754baf8d 1554 n = get_child_rcu(pn, cindex++);
88bae714
AD
1555 if (!n)
1556 break;
1557
1558 /* guarantee forward progress on the keys */
1559 if (IS_LEAF(n) && (n->key >= key))
1560 goto found;
1561 } while (IS_TNODE(n));
82cfbb00 1562
8be33e95 1563 /* this loop will search for the next leaf with a greater key */
88bae714 1564 while (!IS_TRIE(pn)) {
8be33e95
AD
1565 /* if we exhausted the parent node we will need to climb */
1566 if (cindex >= (1ul << pn->bits)) {
1567 t_key pkey = pn->key;
82cfbb00 1568
8be33e95 1569 pn = node_parent_rcu(pn);
8be33e95
AD
1570 cindex = get_index(pkey, pn) + 1;
1571 continue;
1572 }
82cfbb00 1573
8be33e95 1574 /* grab the next available node */
754baf8d 1575 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1576 if (!n)
1577 continue;
19baf839 1578
8be33e95
AD
1579 /* no need to compare keys since we bumped the index */
1580 if (IS_LEAF(n))
1581 goto found;
71d67e66 1582
8be33e95
AD
1583 /* Rescan start scanning in new node */
1584 pn = n;
1585 cindex = 0;
1586 }
ec28cf73 1587
8be33e95
AD
1588 *tn = pn;
1589 return NULL; /* Root of trie */
1590found:
1591 /* if we are at the limit for keys just return NULL for the tnode */
88bae714 1592 *tn = pn;
8be33e95 1593 return n;
71d67e66
SH
1594}
1595
0ddcf43d
AD
1596static void fib_trie_free(struct fib_table *tb)
1597{
1598 struct trie *t = (struct trie *)tb->tb_data;
1599 struct key_vector *pn = t->kv;
1600 unsigned long cindex = 1;
1601 struct hlist_node *tmp;
1602 struct fib_alias *fa;
1603
1604 /* walk trie in reverse order and free everything */
1605 for (;;) {
1606 struct key_vector *n;
1607
1608 if (!(cindex--)) {
1609 t_key pkey = pn->key;
1610
1611 if (IS_TRIE(pn))
1612 break;
1613
1614 n = pn;
1615 pn = node_parent(pn);
1616
1617 /* drop emptied tnode */
1618 put_child_root(pn, n->key, NULL);
1619 node_free(n);
1620
1621 cindex = get_index(pkey, pn);
1622
1623 continue;
1624 }
1625
1626 /* grab the next available node */
1627 n = get_child(pn, cindex);
1628 if (!n)
1629 continue;
1630
1631 if (IS_TNODE(n)) {
1632 /* record pn and cindex for leaf walking */
1633 pn = n;
1634 cindex = 1ul << n->bits;
1635
1636 continue;
1637 }
1638
1639 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1640 hlist_del_rcu(&fa->fa_list);
1641 alias_free_mem_rcu(fa);
1642 }
1643
1644 put_child_root(pn, n->key, NULL);
1645 node_free(n);
1646 }
1647
1648#ifdef CONFIG_IP_FIB_TRIE_STATS
1649 free_percpu(t->stats);
1650#endif
1651 kfree(tb);
1652}
1653
1654struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1655{
1656 struct trie *ot = (struct trie *)oldtb->tb_data;
1657 struct key_vector *l, *tp = ot->kv;
1658 struct fib_table *local_tb;
1659 struct fib_alias *fa;
1660 struct trie *lt;
1661 t_key key = 0;
1662
1663 if (oldtb->tb_data == oldtb->__data)
1664 return oldtb;
1665
1666 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1667 if (!local_tb)
1668 return NULL;
1669
1670 lt = (struct trie *)local_tb->tb_data;
1671
1672 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1673 struct key_vector *local_l = NULL, *local_tp;
1674
1675 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1676 struct fib_alias *new_fa;
1677
1678 if (local_tb->tb_id != fa->tb_id)
1679 continue;
1680
1681 /* clone fa for new local table */
1682 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1683 if (!new_fa)
1684 goto out;
1685
1686 memcpy(new_fa, fa, sizeof(*fa));
1687
1688 /* insert clone into table */
1689 if (!local_l)
1690 local_l = fib_find_node(lt, &local_tp, l->key);
1691
1692 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1693 NULL, l->key))
1694 goto out;
1695 }
1696
1697 /* stop loop if key wrapped back to 0 */
1698 key = l->key + 1;
1699 if (key < l->key)
1700 break;
1701 }
1702
1703 return local_tb;
1704out:
1705 fib_trie_free(local_tb);
1706
1707 return NULL;
1708}
1709
104616e7
SF
1710/* Caller must hold RTNL */
1711void fib_table_flush_external(struct fib_table *tb)
1712{
1713 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1714 struct key_vector *pn = t->kv;
1715 unsigned long cindex = 1;
1716 struct hlist_node *tmp;
104616e7 1717 struct fib_alias *fa;
104616e7 1718
88bae714
AD
1719 /* walk trie in reverse order */
1720 for (;;) {
0ddcf43d 1721 unsigned char slen = 0;
88bae714 1722 struct key_vector *n;
104616e7 1723
88bae714
AD
1724 if (!(cindex--)) {
1725 t_key pkey = pn->key;
104616e7 1726
88bae714
AD
1727 /* cannot resize the trie vector */
1728 if (IS_TRIE(pn))
1729 break;
104616e7 1730
0ddcf43d
AD
1731 /* resize completed node */
1732 pn = resize(t, pn);
88bae714 1733 cindex = get_index(pkey, pn);
104616e7 1734
88bae714
AD
1735 continue;
1736 }
104616e7 1737
88bae714
AD
1738 /* grab the next available node */
1739 n = get_child(pn, cindex);
1740 if (!n)
1741 continue;
104616e7 1742
88bae714
AD
1743 if (IS_TNODE(n)) {
1744 /* record pn and cindex for leaf walking */
1745 pn = n;
1746 cindex = 1ul << n->bits;
104616e7 1747
72be7260 1748 continue;
88bae714 1749 }
72be7260 1750
88bae714
AD
1751 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1752 struct fib_info *fi = fa->fa_info;
1753
0ddcf43d
AD
1754 /* if alias was cloned to local then we just
1755 * need to remove the local copy from main
1756 */
1757 if (tb->tb_id != fa->tb_id) {
1758 hlist_del_rcu(&fa->fa_list);
1759 alias_free_mem_rcu(fa);
1760 continue;
1761 }
1762
1763 /* record local slen */
1764 slen = fa->fa_slen;
1765
eea39946 1766 if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
88bae714 1767 continue;
104616e7 1768
ebb9a03a
JP
1769 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1770 fi, fa->fa_tos, fa->fa_type,
1771 tb->tb_id);
88bae714 1772 }
0ddcf43d
AD
1773
1774 /* update leaf slen */
1775 n->slen = slen;
1776
1777 if (hlist_empty(&n->leaf)) {
1778 put_child_root(pn, n->key, NULL);
1779 node_free(n);
1780 } else {
1781 leaf_pull_suffix(pn, n);
1782 }
88bae714 1783 }
104616e7
SF
1784}
1785
8be33e95 1786/* Caller must hold RTNL. */
16c6cf8b 1787int fib_table_flush(struct fib_table *tb)
19baf839 1788{
7289e6dd 1789 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1790 struct key_vector *pn = t->kv;
1791 unsigned long cindex = 1;
7289e6dd
AD
1792 struct hlist_node *tmp;
1793 struct fib_alias *fa;
82cfbb00 1794 int found = 0;
19baf839 1795
88bae714
AD
1796 /* walk trie in reverse order */
1797 for (;;) {
1798 unsigned char slen = 0;
1799 struct key_vector *n;
19baf839 1800
88bae714
AD
1801 if (!(cindex--)) {
1802 t_key pkey = pn->key;
7289e6dd 1803
88bae714
AD
1804 /* cannot resize the trie vector */
1805 if (IS_TRIE(pn))
1806 break;
7289e6dd 1807
88bae714
AD
1808 /* resize completed node */
1809 pn = resize(t, pn);
1810 cindex = get_index(pkey, pn);
7289e6dd 1811
88bae714
AD
1812 continue;
1813 }
7289e6dd 1814
88bae714
AD
1815 /* grab the next available node */
1816 n = get_child(pn, cindex);
1817 if (!n)
1818 continue;
7289e6dd 1819
88bae714
AD
1820 if (IS_TNODE(n)) {
1821 /* record pn and cindex for leaf walking */
1822 pn = n;
1823 cindex = 1ul << n->bits;
7289e6dd 1824
88bae714
AD
1825 continue;
1826 }
7289e6dd 1827
88bae714
AD
1828 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1829 struct fib_info *fi = fa->fa_info;
7289e6dd 1830
88bae714
AD
1831 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1832 slen = fa->fa_slen;
1833 continue;
1834 }
7289e6dd 1835
ebb9a03a
JP
1836 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1837 fi, fa->fa_tos, fa->fa_type,
1838 tb->tb_id);
7289e6dd
AD
1839 hlist_del_rcu(&fa->fa_list);
1840 fib_release_info(fa->fa_info);
1841 alias_free_mem_rcu(fa);
1842 found++;
64c62723
AD
1843 }
1844
88bae714
AD
1845 /* update leaf slen */
1846 n->slen = slen;
7289e6dd 1847
88bae714
AD
1848 if (hlist_empty(&n->leaf)) {
1849 put_child_root(pn, n->key, NULL);
1850 node_free(n);
1851 } else {
1852 leaf_pull_suffix(pn, n);
1853 }
64c62723 1854 }
19baf839 1855
0c7770c7 1856 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1857 return found;
1858}
1859
a7e53531 1860static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1861{
a7e53531 1862 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1863#ifdef CONFIG_IP_FIB_TRIE_STATS
1864 struct trie *t = (struct trie *)tb->tb_data;
1865
0ddcf43d
AD
1866 if (tb->tb_data == tb->__data)
1867 free_percpu(t->stats);
8274a97a 1868#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1869 kfree(tb);
1870}
1871
a7e53531
AD
1872void fib_free_table(struct fib_table *tb)
1873{
1874 call_rcu(&tb->rcu, __trie_free_rcu);
1875}
1876
35c6edac 1877static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1878 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1879{
79e5ad2c 1880 __be32 xkey = htonl(l->key);
19baf839 1881 struct fib_alias *fa;
79e5ad2c 1882 int i, s_i;
19baf839 1883
79e5ad2c 1884 s_i = cb->args[4];
19baf839
RO
1885 i = 0;
1886
2373ce1c 1887 /* rcu_read_lock is hold by caller */
79e5ad2c 1888 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1889 if (i < s_i) {
1890 i++;
1891 continue;
1892 }
19baf839 1893
0ddcf43d
AD
1894 if (tb->tb_id != fa->tb_id) {
1895 i++;
1896 continue;
1897 }
1898
15e47304 1899 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1900 cb->nlh->nlmsg_seq,
1901 RTM_NEWROUTE,
1902 tb->tb_id,
1903 fa->fa_type,
be403ea1 1904 xkey,
9b6ebad5 1905 KEYLENGTH - fa->fa_slen,
19baf839 1906 fa->fa_tos,
64347f78 1907 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1908 cb->args[4] = i;
19baf839
RO
1909 return -1;
1910 }
a88ee229 1911 i++;
19baf839 1912 }
a88ee229 1913
71d67e66 1914 cb->args[4] = i;
19baf839
RO
1915 return skb->len;
1916}
1917
a7e53531 1918/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
1919int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1920 struct netlink_callback *cb)
19baf839 1921{
8be33e95 1922 struct trie *t = (struct trie *)tb->tb_data;
88bae714 1923 struct key_vector *l, *tp = t->kv;
d5ce8a0e
SH
1924 /* Dump starting at last key.
1925 * Note: 0.0.0.0/0 (ie default) is first key.
1926 */
8be33e95
AD
1927 int count = cb->args[2];
1928 t_key key = cb->args[3];
a88ee229 1929
8be33e95 1930 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1931 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1932 cb->args[3] = key;
1933 cb->args[2] = count;
a88ee229 1934 return -1;
19baf839 1935 }
d5ce8a0e 1936
71d67e66 1937 ++count;
8be33e95
AD
1938 key = l->key + 1;
1939
71d67e66
SH
1940 memset(&cb->args[4], 0,
1941 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1942
1943 /* stop loop if key wrapped back to 0 */
1944 if (key < l->key)
1945 break;
19baf839 1946 }
8be33e95 1947
8be33e95
AD
1948 cb->args[3] = key;
1949 cb->args[2] = count;
1950
19baf839 1951 return skb->len;
19baf839
RO
1952}
1953
5348ba85 1954void __init fib_trie_init(void)
7f9b8052 1955{
a07f5f50
SH
1956 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1957 sizeof(struct fib_alias),
bc3c8c1e
SH
1958 0, SLAB_PANIC, NULL);
1959
1960 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 1961 LEAF_SIZE,
bc3c8c1e 1962 0, SLAB_PANIC, NULL);
7f9b8052 1963}
19baf839 1964
0ddcf43d 1965struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
19baf839
RO
1966{
1967 struct fib_table *tb;
1968 struct trie *t;
0ddcf43d
AD
1969 size_t sz = sizeof(*tb);
1970
1971 if (!alias)
1972 sz += sizeof(struct trie);
19baf839 1973
0ddcf43d 1974 tb = kzalloc(sz, GFP_KERNEL);
51456b29 1975 if (!tb)
19baf839
RO
1976 return NULL;
1977
1978 tb->tb_id = id;
971b893e 1979 tb->tb_default = -1;
21d8c49e 1980 tb->tb_num_default = 0;
0ddcf43d
AD
1981 tb->tb_data = (alias ? alias->__data : tb->__data);
1982
1983 if (alias)
1984 return tb;
19baf839
RO
1985
1986 t = (struct trie *) tb->tb_data;
88bae714
AD
1987 t->kv[0].pos = KEYLENGTH;
1988 t->kv[0].slen = KEYLENGTH;
8274a97a
AD
1989#ifdef CONFIG_IP_FIB_TRIE_STATS
1990 t->stats = alloc_percpu(struct trie_use_stats);
1991 if (!t->stats) {
1992 kfree(tb);
1993 tb = NULL;
1994 }
1995#endif
19baf839 1996
19baf839
RO
1997 return tb;
1998}
1999
cb7b593c
SH
2000#ifdef CONFIG_PROC_FS
2001/* Depth first Trie walk iterator */
2002struct fib_trie_iter {
1c340b2f 2003 struct seq_net_private p;
3d3b2d25 2004 struct fib_table *tb;
35c6edac 2005 struct key_vector *tnode;
a034ee3c
ED
2006 unsigned int index;
2007 unsigned int depth;
cb7b593c 2008};
19baf839 2009
35c6edac 2010static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2011{
98293e8d 2012 unsigned long cindex = iter->index;
88bae714
AD
2013 struct key_vector *pn = iter->tnode;
2014 t_key pkey;
6640e697 2015
cb7b593c
SH
2016 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2017 iter->tnode, iter->index, iter->depth);
19baf839 2018
88bae714
AD
2019 while (!IS_TRIE(pn)) {
2020 while (cindex < child_length(pn)) {
2021 struct key_vector *n = get_child_rcu(pn, cindex++);
2022
2023 if (!n)
2024 continue;
2025
cb7b593c 2026 if (IS_LEAF(n)) {
88bae714
AD
2027 iter->tnode = pn;
2028 iter->index = cindex;
cb7b593c
SH
2029 } else {
2030 /* push down one level */
adaf9816 2031 iter->tnode = n;
cb7b593c
SH
2032 iter->index = 0;
2033 ++iter->depth;
2034 }
88bae714 2035
cb7b593c
SH
2036 return n;
2037 }
19baf839 2038
88bae714
AD
2039 /* Current node exhausted, pop back up */
2040 pkey = pn->key;
2041 pn = node_parent_rcu(pn);
2042 cindex = get_index(pkey, pn) + 1;
cb7b593c 2043 --iter->depth;
19baf839 2044 }
cb7b593c 2045
88bae714
AD
2046 /* record root node so further searches know we are done */
2047 iter->tnode = pn;
2048 iter->index = 0;
2049
cb7b593c 2050 return NULL;
19baf839
RO
2051}
2052
35c6edac
AD
2053static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2054 struct trie *t)
19baf839 2055{
88bae714 2056 struct key_vector *n, *pn = t->kv;
5ddf0eb2 2057
132adf54 2058 if (!t)
5ddf0eb2
RO
2059 return NULL;
2060
88bae714 2061 n = rcu_dereference(pn->tnode[0]);
3d3b2d25 2062 if (!n)
5ddf0eb2 2063 return NULL;
19baf839 2064
3d3b2d25 2065 if (IS_TNODE(n)) {
adaf9816 2066 iter->tnode = n;
3d3b2d25
SH
2067 iter->index = 0;
2068 iter->depth = 1;
2069 } else {
88bae714 2070 iter->tnode = pn;
3d3b2d25
SH
2071 iter->index = 0;
2072 iter->depth = 0;
91b9a277 2073 }
3d3b2d25
SH
2074
2075 return n;
cb7b593c 2076}
91b9a277 2077
cb7b593c
SH
2078static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2079{
35c6edac 2080 struct key_vector *n;
cb7b593c 2081 struct fib_trie_iter iter;
91b9a277 2082
cb7b593c 2083 memset(s, 0, sizeof(*s));
91b9a277 2084
cb7b593c 2085 rcu_read_lock();
3d3b2d25 2086 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2087 if (IS_LEAF(n)) {
79e5ad2c 2088 struct fib_alias *fa;
93672292 2089
cb7b593c
SH
2090 s->leaves++;
2091 s->totdepth += iter.depth;
2092 if (iter.depth > s->maxdepth)
2093 s->maxdepth = iter.depth;
93672292 2094
79e5ad2c 2095 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 2096 ++s->prefixes;
cb7b593c 2097 } else {
cb7b593c 2098 s->tnodes++;
adaf9816
AD
2099 if (n->bits < MAX_STAT_DEPTH)
2100 s->nodesizes[n->bits]++;
6e22d174 2101 s->nullpointers += tn_info(n)->empty_children;
19baf839 2102 }
19baf839 2103 }
2373ce1c 2104 rcu_read_unlock();
19baf839
RO
2105}
2106
cb7b593c
SH
2107/*
2108 * This outputs /proc/net/fib_triestats
2109 */
2110static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2111{
a034ee3c 2112 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2113
cb7b593c
SH
2114 if (stat->leaves)
2115 avdepth = stat->totdepth*100 / stat->leaves;
2116 else
2117 avdepth = 0;
91b9a277 2118
a07f5f50
SH
2119 seq_printf(seq, "\tAver depth: %u.%02d\n",
2120 avdepth / 100, avdepth % 100);
cb7b593c 2121 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2122
cb7b593c 2123 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 2124 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
2125
2126 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 2127 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 2128
187b5188 2129 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 2130 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 2131
06ef921d
RO
2132 max = MAX_STAT_DEPTH;
2133 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2134 max--;
19baf839 2135
cb7b593c 2136 pointers = 0;
f585a991 2137 for (i = 1; i < max; i++)
cb7b593c 2138 if (stat->nodesizes[i] != 0) {
187b5188 2139 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2140 pointers += (1<<i) * stat->nodesizes[i];
2141 }
2142 seq_putc(seq, '\n');
187b5188 2143 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2144
35c6edac 2145 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2146 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2147 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2148}
2373ce1c 2149
cb7b593c 2150#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2151static void trie_show_usage(struct seq_file *seq,
8274a97a 2152 const struct trie_use_stats __percpu *stats)
66a2f7fd 2153{
8274a97a
AD
2154 struct trie_use_stats s = { 0 };
2155 int cpu;
2156
2157 /* loop through all of the CPUs and gather up the stats */
2158 for_each_possible_cpu(cpu) {
2159 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2160
2161 s.gets += pcpu->gets;
2162 s.backtrack += pcpu->backtrack;
2163 s.semantic_match_passed += pcpu->semantic_match_passed;
2164 s.semantic_match_miss += pcpu->semantic_match_miss;
2165 s.null_node_hit += pcpu->null_node_hit;
2166 s.resize_node_skipped += pcpu->resize_node_skipped;
2167 }
2168
66a2f7fd 2169 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2170 seq_printf(seq, "gets = %u\n", s.gets);
2171 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2172 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2173 s.semantic_match_passed);
2174 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2175 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2176 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2177}
66a2f7fd
SH
2178#endif /* CONFIG_IP_FIB_TRIE_STATS */
2179
3d3b2d25 2180static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2181{
3d3b2d25
SH
2182 if (tb->tb_id == RT_TABLE_LOCAL)
2183 seq_puts(seq, "Local:\n");
2184 else if (tb->tb_id == RT_TABLE_MAIN)
2185 seq_puts(seq, "Main:\n");
2186 else
2187 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2188}
19baf839 2189
3d3b2d25 2190
cb7b593c
SH
2191static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2192{
1c340b2f 2193 struct net *net = (struct net *)seq->private;
3d3b2d25 2194 unsigned int h;
877a9bff 2195
d717a9a6 2196 seq_printf(seq,
a07f5f50
SH
2197 "Basic info: size of leaf:"
2198 " %Zd bytes, size of tnode: %Zd bytes.\n",
41b489fd 2199 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2200
3d3b2d25
SH
2201 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2202 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2203 struct fib_table *tb;
2204
b67bfe0d 2205 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2206 struct trie *t = (struct trie *) tb->tb_data;
2207 struct trie_stat stat;
877a9bff 2208
3d3b2d25
SH
2209 if (!t)
2210 continue;
2211
2212 fib_table_print(seq, tb);
2213
2214 trie_collect_stats(t, &stat);
2215 trie_show_stats(seq, &stat);
2216#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2217 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2218#endif
2219 }
2220 }
19baf839 2221
cb7b593c 2222 return 0;
19baf839
RO
2223}
2224
cb7b593c 2225static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2226{
de05c557 2227 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2228}
2229
9a32144e 2230static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2231 .owner = THIS_MODULE,
2232 .open = fib_triestat_seq_open,
2233 .read = seq_read,
2234 .llseek = seq_lseek,
b6fcbdb4 2235 .release = single_release_net,
cb7b593c
SH
2236};
2237
35c6edac 2238static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2239{
1218854a
YH
2240 struct fib_trie_iter *iter = seq->private;
2241 struct net *net = seq_file_net(seq);
cb7b593c 2242 loff_t idx = 0;
3d3b2d25 2243 unsigned int h;
cb7b593c 2244
3d3b2d25
SH
2245 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2246 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2247 struct fib_table *tb;
cb7b593c 2248
b67bfe0d 2249 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2250 struct key_vector *n;
3d3b2d25
SH
2251
2252 for (n = fib_trie_get_first(iter,
2253 (struct trie *) tb->tb_data);
2254 n; n = fib_trie_get_next(iter))
2255 if (pos == idx++) {
2256 iter->tb = tb;
2257 return n;
2258 }
2259 }
cb7b593c 2260 }
3d3b2d25 2261
19baf839
RO
2262 return NULL;
2263}
2264
cb7b593c 2265static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2266 __acquires(RCU)
19baf839 2267{
cb7b593c 2268 rcu_read_lock();
1218854a 2269 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2270}
2271
cb7b593c 2272static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2273{
cb7b593c 2274 struct fib_trie_iter *iter = seq->private;
1218854a 2275 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2276 struct fib_table *tb = iter->tb;
2277 struct hlist_node *tb_node;
2278 unsigned int h;
35c6edac 2279 struct key_vector *n;
cb7b593c 2280
19baf839 2281 ++*pos;
3d3b2d25
SH
2282 /* next node in same table */
2283 n = fib_trie_get_next(iter);
2284 if (n)
2285 return n;
19baf839 2286
3d3b2d25
SH
2287 /* walk rest of this hash chain */
2288 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2289 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2290 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2291 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2292 if (n)
2293 goto found;
2294 }
19baf839 2295
3d3b2d25
SH
2296 /* new hash chain */
2297 while (++h < FIB_TABLE_HASHSZ) {
2298 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2299 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2300 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2301 if (n)
2302 goto found;
2303 }
2304 }
cb7b593c 2305 return NULL;
3d3b2d25
SH
2306
2307found:
2308 iter->tb = tb;
2309 return n;
cb7b593c 2310}
19baf839 2311
cb7b593c 2312static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2313 __releases(RCU)
19baf839 2314{
cb7b593c
SH
2315 rcu_read_unlock();
2316}
91b9a277 2317
cb7b593c
SH
2318static void seq_indent(struct seq_file *seq, int n)
2319{
a034ee3c
ED
2320 while (n-- > 0)
2321 seq_puts(seq, " ");
cb7b593c 2322}
19baf839 2323
28d36e37 2324static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2325{
132adf54 2326 switch (s) {
cb7b593c
SH
2327 case RT_SCOPE_UNIVERSE: return "universe";
2328 case RT_SCOPE_SITE: return "site";
2329 case RT_SCOPE_LINK: return "link";
2330 case RT_SCOPE_HOST: return "host";
2331 case RT_SCOPE_NOWHERE: return "nowhere";
2332 default:
28d36e37 2333 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2334 return buf;
2335 }
2336}
19baf839 2337
36cbd3dc 2338static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2339 [RTN_UNSPEC] = "UNSPEC",
2340 [RTN_UNICAST] = "UNICAST",
2341 [RTN_LOCAL] = "LOCAL",
2342 [RTN_BROADCAST] = "BROADCAST",
2343 [RTN_ANYCAST] = "ANYCAST",
2344 [RTN_MULTICAST] = "MULTICAST",
2345 [RTN_BLACKHOLE] = "BLACKHOLE",
2346 [RTN_UNREACHABLE] = "UNREACHABLE",
2347 [RTN_PROHIBIT] = "PROHIBIT",
2348 [RTN_THROW] = "THROW",
2349 [RTN_NAT] = "NAT",
2350 [RTN_XRESOLVE] = "XRESOLVE",
2351};
19baf839 2352
a034ee3c 2353static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2354{
cb7b593c
SH
2355 if (t < __RTN_MAX && rtn_type_names[t])
2356 return rtn_type_names[t];
28d36e37 2357 snprintf(buf, len, "type %u", t);
cb7b593c 2358 return buf;
19baf839
RO
2359}
2360
cb7b593c
SH
2361/* Pretty print the trie */
2362static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2363{
cb7b593c 2364 const struct fib_trie_iter *iter = seq->private;
35c6edac 2365 struct key_vector *n = v;
c877efb2 2366
88bae714 2367 if (IS_TRIE(node_parent_rcu(n)))
3d3b2d25 2368 fib_table_print(seq, iter->tb);
095b8501 2369
cb7b593c 2370 if (IS_TNODE(n)) {
adaf9816 2371 __be32 prf = htonl(n->key);
91b9a277 2372
e9b44019
AD
2373 seq_indent(seq, iter->depth-1);
2374 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2375 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
6e22d174
AD
2376 tn_info(n)->full_children,
2377 tn_info(n)->empty_children);
cb7b593c 2378 } else {
adaf9816 2379 __be32 val = htonl(n->key);
79e5ad2c 2380 struct fib_alias *fa;
cb7b593c
SH
2381
2382 seq_indent(seq, iter->depth);
673d57e7 2383 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2384
79e5ad2c
AD
2385 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2386 char buf1[32], buf2[32];
2387
2388 seq_indent(seq, iter->depth + 1);
2389 seq_printf(seq, " /%zu %s %s",
2390 KEYLENGTH - fa->fa_slen,
2391 rtn_scope(buf1, sizeof(buf1),
2392 fa->fa_info->fib_scope),
2393 rtn_type(buf2, sizeof(buf2),
2394 fa->fa_type));
2395 if (fa->fa_tos)
2396 seq_printf(seq, " tos=%d", fa->fa_tos);
2397 seq_putc(seq, '\n');
cb7b593c 2398 }
19baf839 2399 }
cb7b593c 2400
19baf839
RO
2401 return 0;
2402}
2403
f690808e 2404static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2405 .start = fib_trie_seq_start,
2406 .next = fib_trie_seq_next,
2407 .stop = fib_trie_seq_stop,
2408 .show = fib_trie_seq_show,
19baf839
RO
2409};
2410
cb7b593c 2411static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2412{
1c340b2f
DL
2413 return seq_open_net(inode, file, &fib_trie_seq_ops,
2414 sizeof(struct fib_trie_iter));
19baf839
RO
2415}
2416
9a32144e 2417static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2418 .owner = THIS_MODULE,
2419 .open = fib_trie_seq_open,
2420 .read = seq_read,
2421 .llseek = seq_lseek,
1c340b2f 2422 .release = seq_release_net,
19baf839
RO
2423};
2424
8315f5d8
SH
2425struct fib_route_iter {
2426 struct seq_net_private p;
8be33e95 2427 struct fib_table *main_tb;
35c6edac 2428 struct key_vector *tnode;
8315f5d8
SH
2429 loff_t pos;
2430 t_key key;
2431};
2432
35c6edac
AD
2433static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2434 loff_t pos)
8315f5d8 2435{
8be33e95 2436 struct fib_table *tb = iter->main_tb;
35c6edac 2437 struct key_vector *l, **tp = &iter->tnode;
8be33e95
AD
2438 struct trie *t;
2439 t_key key;
8315f5d8 2440
8be33e95
AD
2441 /* use cache location of next-to-find key */
2442 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2443 pos -= iter->pos;
8be33e95
AD
2444 key = iter->key;
2445 } else {
2446 t = (struct trie *)tb->tb_data;
88bae714 2447 iter->tnode = t->kv;
8315f5d8 2448 iter->pos = 0;
8be33e95 2449 key = 0;
8315f5d8
SH
2450 }
2451
8be33e95
AD
2452 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2453 key = l->key + 1;
8315f5d8 2454 iter->pos++;
8be33e95
AD
2455
2456 if (pos-- <= 0)
2457 break;
2458
2459 l = NULL;
2460
2461 /* handle unlikely case of a key wrap */
2462 if (!key)
2463 break;
8315f5d8
SH
2464 }
2465
2466 if (l)
8be33e95 2467 iter->key = key; /* remember it */
8315f5d8
SH
2468 else
2469 iter->pos = 0; /* forget it */
2470
2471 return l;
2472}
2473
2474static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2475 __acquires(RCU)
2476{
2477 struct fib_route_iter *iter = seq->private;
2478 struct fib_table *tb;
8be33e95 2479 struct trie *t;
8315f5d8
SH
2480
2481 rcu_read_lock();
8be33e95 2482
1218854a 2483 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2484 if (!tb)
2485 return NULL;
2486
8be33e95
AD
2487 iter->main_tb = tb;
2488
2489 if (*pos != 0)
2490 return fib_route_get_idx(iter, *pos);
2491
2492 t = (struct trie *)tb->tb_data;
88bae714 2493 iter->tnode = t->kv;
8be33e95
AD
2494 iter->pos = 0;
2495 iter->key = 0;
2496
2497 return SEQ_START_TOKEN;
8315f5d8
SH
2498}
2499
2500static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2501{
2502 struct fib_route_iter *iter = seq->private;
35c6edac 2503 struct key_vector *l = NULL;
8be33e95 2504 t_key key = iter->key;
8315f5d8
SH
2505
2506 ++*pos;
8be33e95
AD
2507
2508 /* only allow key of 0 for start of sequence */
2509 if ((v == SEQ_START_TOKEN) || key)
2510 l = leaf_walk_rcu(&iter->tnode, key);
2511
2512 if (l) {
2513 iter->key = l->key + 1;
8315f5d8 2514 iter->pos++;
8be33e95
AD
2515 } else {
2516 iter->pos = 0;
8315f5d8
SH
2517 }
2518
8315f5d8
SH
2519 return l;
2520}
2521
2522static void fib_route_seq_stop(struct seq_file *seq, void *v)
2523 __releases(RCU)
2524{
2525 rcu_read_unlock();
2526}
2527
a034ee3c 2528static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2529{
a034ee3c 2530 unsigned int flags = 0;
19baf839 2531
a034ee3c
ED
2532 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2533 flags = RTF_REJECT;
cb7b593c
SH
2534 if (fi && fi->fib_nh->nh_gw)
2535 flags |= RTF_GATEWAY;
32ab5f80 2536 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2537 flags |= RTF_HOST;
2538 flags |= RTF_UP;
2539 return flags;
19baf839
RO
2540}
2541
cb7b593c
SH
2542/*
2543 * This outputs /proc/net/route.
2544 * The format of the file is not supposed to be changed
a034ee3c 2545 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2546 * legacy utilities
2547 */
2548static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2549{
654eff45
AD
2550 struct fib_route_iter *iter = seq->private;
2551 struct fib_table *tb = iter->main_tb;
79e5ad2c 2552 struct fib_alias *fa;
35c6edac 2553 struct key_vector *l = v;
9b6ebad5 2554 __be32 prefix;
19baf839 2555
cb7b593c
SH
2556 if (v == SEQ_START_TOKEN) {
2557 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2558 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2559 "\tWindow\tIRTT");
2560 return 0;
2561 }
19baf839 2562
9b6ebad5
AD
2563 prefix = htonl(l->key);
2564
79e5ad2c
AD
2565 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2566 const struct fib_info *fi = fa->fa_info;
2567 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2568 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2569
79e5ad2c
AD
2570 if ((fa->fa_type == RTN_BROADCAST) ||
2571 (fa->fa_type == RTN_MULTICAST))
2572 continue;
19baf839 2573
654eff45
AD
2574 if (fa->tb_id != tb->tb_id)
2575 continue;
2576
79e5ad2c
AD
2577 seq_setwidth(seq, 127);
2578
2579 if (fi)
2580 seq_printf(seq,
2581 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2582 "%d\t%08X\t%d\t%u\t%u",
2583 fi->fib_dev ? fi->fib_dev->name : "*",
2584 prefix,
2585 fi->fib_nh->nh_gw, flags, 0, 0,
2586 fi->fib_priority,
2587 mask,
2588 (fi->fib_advmss ?
2589 fi->fib_advmss + 40 : 0),
2590 fi->fib_window,
2591 fi->fib_rtt >> 3);
2592 else
2593 seq_printf(seq,
2594 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2595 "%d\t%08X\t%d\t%u\t%u",
2596 prefix, 0, flags, 0, 0, 0,
2597 mask, 0, 0, 0);
19baf839 2598
79e5ad2c 2599 seq_pad(seq, '\n');
19baf839
RO
2600 }
2601
2602 return 0;
2603}
2604
f690808e 2605static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2606 .start = fib_route_seq_start,
2607 .next = fib_route_seq_next,
2608 .stop = fib_route_seq_stop,
cb7b593c 2609 .show = fib_route_seq_show,
19baf839
RO
2610};
2611
cb7b593c 2612static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2613{
1c340b2f 2614 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2615 sizeof(struct fib_route_iter));
19baf839
RO
2616}
2617
9a32144e 2618static const struct file_operations fib_route_fops = {
cb7b593c
SH
2619 .owner = THIS_MODULE,
2620 .open = fib_route_seq_open,
2621 .read = seq_read,
2622 .llseek = seq_lseek,
1c340b2f 2623 .release = seq_release_net,
19baf839
RO
2624};
2625
61a02653 2626int __net_init fib_proc_init(struct net *net)
19baf839 2627{
d4beaa66 2628 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2629 goto out1;
2630
d4beaa66
G
2631 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2632 &fib_triestat_fops))
cb7b593c
SH
2633 goto out2;
2634
d4beaa66 2635 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2636 goto out3;
2637
19baf839 2638 return 0;
cb7b593c
SH
2639
2640out3:
ece31ffd 2641 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2642out2:
ece31ffd 2643 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2644out1:
2645 return -ENOMEM;
19baf839
RO
2646}
2647
61a02653 2648void __net_exit fib_proc_exit(struct net *net)
19baf839 2649{
ece31ffd
G
2650 remove_proc_entry("fib_trie", net->proc_net);
2651 remove_proc_entry("fib_triestat", net->proc_net);
2652 remove_proc_entry("route", net->proc_net);
19baf839
RO
2653}
2654
2655#endif /* CONFIG_PROC_FS */