]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/ipv4/fib_trie.c
fib_trie: Move parent from key_vector to tnode
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
8e05fd71 82#include <net/switchdev.h>
19baf839
RO
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
95f60ea3
AD
87#define KEYLENGTH (8*sizeof(t_key))
88#define KEY_MAX ((t_key)~0)
19baf839 89
19baf839
RO
90typedef unsigned int t_key;
91
64c9b6fb
AD
92#define IS_TNODE(n) ((n)->bits)
93#define IS_LEAF(n) (!(n)->bits)
2373ce1c 94
35c6edac 95struct key_vector {
64c9b6fb 96 t_key key;
64c9b6fb 97 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 98 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 99 unsigned char slen;
adaf9816 100 union {
41b489fd 101 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 102 struct hlist_head leaf;
41b489fd 103 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 104 struct key_vector __rcu *tnode[0];
adaf9816 105 };
19baf839
RO
106};
107
dc35dbed 108struct tnode {
56ca2adf 109 struct rcu_head rcu;
6e22d174
AD
110 t_key empty_children; /* KEYLENGTH bits needed */
111 t_key full_children; /* KEYLENGTH bits needed */
f23e59fb 112 struct key_vector __rcu *parent;
dc35dbed 113 struct key_vector kv[1];
56ca2adf 114#define tn_bits kv[0].bits
dc35dbed
AD
115};
116
117#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
118#define LEAF_SIZE TNODE_SIZE(1)
119
19baf839
RO
120#ifdef CONFIG_IP_FIB_TRIE_STATS
121struct trie_use_stats {
122 unsigned int gets;
123 unsigned int backtrack;
124 unsigned int semantic_match_passed;
125 unsigned int semantic_match_miss;
126 unsigned int null_node_hit;
2f36895a 127 unsigned int resize_node_skipped;
19baf839
RO
128};
129#endif
130
131struct trie_stat {
132 unsigned int totdepth;
133 unsigned int maxdepth;
134 unsigned int tnodes;
135 unsigned int leaves;
136 unsigned int nullpointers;
93672292 137 unsigned int prefixes;
06ef921d 138 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 139};
19baf839
RO
140
141struct trie {
35c6edac 142 struct key_vector __rcu *tnode[1];
19baf839 143#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 144 struct trie_use_stats __percpu *stats;
19baf839 145#endif
19baf839
RO
146};
147
35c6edac 148static struct key_vector **resize(struct trie *t, struct key_vector *tn);
c3059477
JP
149static size_t tnode_free_size;
150
151/*
152 * synchronize_rcu after call_rcu for that many pages; it should be especially
153 * useful before resizing the root node with PREEMPT_NONE configs; the value was
154 * obtained experimentally, aiming to avoid visible slowdown.
155 */
156static const int sync_pages = 128;
19baf839 157
e18b890b 158static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 159static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 160
56ca2adf
AD
161static inline struct tnode *tn_info(struct key_vector *kv)
162{
163 return container_of(kv, struct tnode, kv[0]);
164}
165
64c9b6fb 166/* caller must hold RTNL */
f23e59fb 167#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
754baf8d 168#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 169
64c9b6fb 170/* caller must hold RCU read lock or RTNL */
f23e59fb 171#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
754baf8d 172#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 173
64c9b6fb 174/* wrapper for rcu_assign_pointer */
35c6edac 175static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 176{
adaf9816 177 if (n)
f23e59fb 178 rcu_assign_pointer(tn_info(n)->parent, tp);
06801916
SH
179}
180
f23e59fb 181#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
64c9b6fb
AD
182
183/* This provides us with the number of children in this node, in the case of a
184 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 185 */
2e1ac88a 186static inline unsigned long child_length(const struct key_vector *tn)
06801916 187{
64c9b6fb 188 return (1ul << tn->bits) & ~(1ul);
06801916 189}
2373ce1c 190
2e1ac88a
AD
191static inline unsigned long get_index(t_key key, struct key_vector *kv)
192{
193 unsigned long index = key ^ kv->key;
194
195 return index >> kv->pos;
196}
197
e9b44019
AD
198/* To understand this stuff, an understanding of keys and all their bits is
199 * necessary. Every node in the trie has a key associated with it, but not
200 * all of the bits in that key are significant.
201 *
202 * Consider a node 'n' and its parent 'tp'.
203 *
204 * If n is a leaf, every bit in its key is significant. Its presence is
205 * necessitated by path compression, since during a tree traversal (when
206 * searching for a leaf - unless we are doing an insertion) we will completely
207 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
208 * a potentially successful search, that we have indeed been walking the
209 * correct key path.
210 *
211 * Note that we can never "miss" the correct key in the tree if present by
212 * following the wrong path. Path compression ensures that segments of the key
213 * that are the same for all keys with a given prefix are skipped, but the
214 * skipped part *is* identical for each node in the subtrie below the skipped
215 * bit! trie_insert() in this implementation takes care of that.
216 *
217 * if n is an internal node - a 'tnode' here, the various parts of its key
218 * have many different meanings.
219 *
220 * Example:
221 * _________________________________________________________________
222 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
223 * -----------------------------------------------------------------
224 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
225 *
226 * _________________________________________________________________
227 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
228 * -----------------------------------------------------------------
229 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
230 *
231 * tp->pos = 22
232 * tp->bits = 3
233 * n->pos = 13
234 * n->bits = 4
235 *
236 * First, let's just ignore the bits that come before the parent tp, that is
237 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
238 * point we do not use them for anything.
239 *
240 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
241 * index into the parent's child array. That is, they will be used to find
242 * 'n' among tp's children.
243 *
244 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
245 * for the node n.
246 *
247 * All the bits we have seen so far are significant to the node n. The rest
248 * of the bits are really not needed or indeed known in n->key.
249 *
250 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
251 * n's child array, and will of course be different for each child.
252 *
253 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
254 * at this point.
255 */
19baf839 256
f5026fab
DL
257static const int halve_threshold = 25;
258static const int inflate_threshold = 50;
345aa031 259static const int halve_threshold_root = 15;
80b71b80 260static const int inflate_threshold_root = 30;
2373ce1c
RO
261
262static void __alias_free_mem(struct rcu_head *head)
19baf839 263{
2373ce1c
RO
264 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
265 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
266}
267
2373ce1c 268static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 269{
2373ce1c
RO
270 call_rcu(&fa->rcu, __alias_free_mem);
271}
91b9a277 272
37fd30f2 273#define TNODE_KMALLOC_MAX \
35c6edac 274 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 275#define TNODE_VMALLOC_MAX \
35c6edac 276 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 277
37fd30f2 278static void __node_free_rcu(struct rcu_head *head)
387a5487 279{
56ca2adf 280 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 281
56ca2adf 282 if (!n->tn_bits)
37fd30f2 283 kmem_cache_free(trie_leaf_kmem, n);
56ca2adf 284 else if (n->tn_bits <= TNODE_KMALLOC_MAX)
37fd30f2
AD
285 kfree(n);
286 else
287 vfree(n);
387a5487
SH
288}
289
56ca2adf 290#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 291
dc35dbed 292static struct tnode *tnode_alloc(int bits)
f0e36f8c 293{
1de3d87b
AD
294 size_t size;
295
296 /* verify bits is within bounds */
297 if (bits > TNODE_VMALLOC_MAX)
298 return NULL;
299
300 /* determine size and verify it is non-zero and didn't overflow */
301 size = TNODE_SIZE(1ul << bits);
302
2373ce1c 303 if (size <= PAGE_SIZE)
8d965444 304 return kzalloc(size, GFP_KERNEL);
15be75cd 305 else
7a1c8e5a 306 return vzalloc(size);
15be75cd 307}
2373ce1c 308
35c6edac 309static inline void empty_child_inc(struct key_vector *n)
95f60ea3 310{
6e22d174 311 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
95f60ea3
AD
312}
313
35c6edac 314static inline void empty_child_dec(struct key_vector *n)
95f60ea3 315{
6e22d174 316 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
95f60ea3
AD
317}
318
35c6edac 319static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 320{
dc35dbed
AD
321 struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
322 struct key_vector *l = kv->kv;
323
324 if (!kv)
325 return NULL;
326
327 /* initialize key vector */
328 l->key = key;
329 l->pos = 0;
330 l->bits = 0;
331 l->slen = fa->fa_slen;
332
333 /* link leaf to fib alias */
334 INIT_HLIST_HEAD(&l->leaf);
335 hlist_add_head(&fa->fa_list, &l->leaf);
336
2373ce1c
RO
337 return l;
338}
339
35c6edac 340static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 341{
dc35dbed 342 struct tnode *tnode = tnode_alloc(bits);
64c9b6fb 343 unsigned int shift = pos + bits;
dc35dbed 344 struct key_vector *tn = tnode->kv;
64c9b6fb
AD
345
346 /* verify bits and pos their msb bits clear and values are valid */
347 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 348
dc35dbed 349 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
35c6edac 350 sizeof(struct key_vector *) << bits);
dc35dbed
AD
351
352 if (!tnode)
353 return NULL;
354
355 if (bits == KEYLENGTH)
6e22d174 356 tnode->full_children = 1;
dc35dbed 357 else
6e22d174 358 tnode->empty_children = 1ul << bits;
dc35dbed
AD
359
360 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
361 tn->pos = pos;
362 tn->bits = bits;
363 tn->slen = pos;
364
19baf839
RO
365 return tn;
366}
367
e9b44019 368/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
369 * and no bits are skipped. See discussion in dyntree paper p. 6
370 */
35c6edac 371static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 372{
e9b44019 373 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
374}
375
ff181ed8
AD
376/* Add a child at position i overwriting the old value.
377 * Update the value of full_children and empty_children.
378 */
35c6edac
AD
379static void put_child(struct key_vector *tn, unsigned long i,
380 struct key_vector *n)
19baf839 381{
754baf8d 382 struct key_vector *chi = get_child(tn, i);
ff181ed8 383 int isfull, wasfull;
19baf839 384
2e1ac88a 385 BUG_ON(i >= child_length(tn));
0c7770c7 386
95f60ea3 387 /* update emptyChildren, overflow into fullChildren */
19baf839 388 if (n == NULL && chi != NULL)
95f60ea3
AD
389 empty_child_inc(tn);
390 if (n != NULL && chi == NULL)
391 empty_child_dec(tn);
c877efb2 392
19baf839 393 /* update fullChildren */
ff181ed8 394 wasfull = tnode_full(tn, chi);
19baf839 395 isfull = tnode_full(tn, n);
ff181ed8 396
c877efb2 397 if (wasfull && !isfull)
6e22d174 398 tn_info(tn)->full_children--;
c877efb2 399 else if (!wasfull && isfull)
6e22d174 400 tn_info(tn)->full_children++;
91b9a277 401
5405afd1
AD
402 if (n && (tn->slen < n->slen))
403 tn->slen = n->slen;
404
41b489fd 405 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
406}
407
35c6edac 408static void update_children(struct key_vector *tn)
69fa57b1
AD
409{
410 unsigned long i;
411
412 /* update all of the child parent pointers */
2e1ac88a 413 for (i = child_length(tn); i;) {
754baf8d 414 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
415
416 if (!inode)
417 continue;
418
419 /* Either update the children of a tnode that
420 * already belongs to us or update the child
421 * to point to ourselves.
422 */
423 if (node_parent(inode) == tn)
424 update_children(inode);
425 else
426 node_set_parent(inode, tn);
427 }
428}
429
35c6edac
AD
430static inline void put_child_root(struct key_vector *tp, struct trie *t,
431 t_key key, struct key_vector *n)
836a0123
AD
432{
433 if (tp)
434 put_child(tp, get_index(key, tp), n);
435 else
35c6edac 436 rcu_assign_pointer(t->tnode[0], n);
836a0123
AD
437}
438
35c6edac 439static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 440{
56ca2adf 441 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
442}
443
35c6edac
AD
444static inline void tnode_free_append(struct key_vector *tn,
445 struct key_vector *n)
fc86a93b 446{
56ca2adf
AD
447 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
448 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 449}
0a5c0475 450
35c6edac 451static void tnode_free(struct key_vector *tn)
fc86a93b 452{
56ca2adf 453 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
454
455 while (head) {
456 head = head->next;
41b489fd 457 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
458 node_free(tn);
459
56ca2adf 460 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
461 }
462
463 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
464 tnode_free_size = 0;
465 synchronize_rcu();
0a5c0475 466 }
0a5c0475
ED
467}
468
35c6edac
AD
469static struct key_vector __rcu **replace(struct trie *t,
470 struct key_vector *oldtnode,
471 struct key_vector *tn)
69fa57b1 472{
35c6edac
AD
473 struct key_vector *tp = node_parent(oldtnode);
474 struct key_vector **cptr;
69fa57b1
AD
475 unsigned long i;
476
477 /* setup the parent pointer out of and back into this node */
478 NODE_INIT_PARENT(tn, tp);
479 put_child_root(tp, t, tn->key, tn);
480
481 /* update all of the child parent pointers */
482 update_children(tn);
483
484 /* all pointers should be clean so we are done */
485 tnode_free(oldtnode);
486
8d8e810c 487 /* record the pointer that is pointing to this node */
35c6edac 488 cptr = tp ? tp->tnode : t->tnode;
8d8e810c 489
69fa57b1 490 /* resize children now that oldtnode is freed */
2e1ac88a 491 for (i = child_length(tn); i;) {
754baf8d 492 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
493
494 /* resize child node */
495 if (tnode_full(tn, inode))
496 resize(t, inode);
497 }
8d8e810c
AD
498
499 return cptr;
69fa57b1
AD
500}
501
35c6edac
AD
502static struct key_vector __rcu **inflate(struct trie *t,
503 struct key_vector *oldtnode)
19baf839 504{
35c6edac 505 struct key_vector *tn;
69fa57b1 506 unsigned long i;
e9b44019 507 t_key m;
19baf839 508
0c7770c7 509 pr_debug("In inflate\n");
19baf839 510
e9b44019 511 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 512 if (!tn)
8d8e810c 513 goto notnode;
2f36895a 514
69fa57b1
AD
515 /* prepare oldtnode to be freed */
516 tnode_free_init(oldtnode);
517
12c081a5
AD
518 /* Assemble all of the pointers in our cluster, in this case that
519 * represents all of the pointers out of our allocated nodes that
520 * point to existing tnodes and the links between our allocated
521 * nodes.
2f36895a 522 */
2e1ac88a 523 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 524 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 525 struct key_vector *node0, *node1;
69fa57b1 526 unsigned long j, k;
c877efb2 527
19baf839 528 /* An empty child */
adaf9816 529 if (inode == NULL)
19baf839
RO
530 continue;
531
532 /* A leaf or an internal node with skipped bits */
adaf9816 533 if (!tnode_full(oldtnode, inode)) {
e9b44019 534 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
535 continue;
536 }
537
69fa57b1
AD
538 /* drop the node in the old tnode free list */
539 tnode_free_append(oldtnode, inode);
540
19baf839 541 /* An internal node with two children */
19baf839 542 if (inode->bits == 1) {
754baf8d
AD
543 put_child(tn, 2 * i + 1, get_child(inode, 1));
544 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 545 continue;
19baf839
RO
546 }
547
91b9a277 548 /* We will replace this node 'inode' with two new
12c081a5 549 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
550 * original children. The two new nodes will have
551 * a position one bit further down the key and this
552 * means that the "significant" part of their keys
553 * (see the discussion near the top of this file)
554 * will differ by one bit, which will be "0" in
12c081a5 555 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
556 * moving the key position by one step, the bit that
557 * we are moving away from - the bit at position
12c081a5
AD
558 * (tn->pos) - is the one that will differ between
559 * node0 and node1. So... we synthesize that bit in the
560 * two new keys.
91b9a277 561 */
12c081a5
AD
562 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
563 if (!node1)
564 goto nomem;
69fa57b1 565 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 566
69fa57b1 567 tnode_free_append(tn, node1);
12c081a5
AD
568 if (!node0)
569 goto nomem;
570 tnode_free_append(tn, node0);
571
572 /* populate child pointers in new nodes */
2e1ac88a 573 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
574 put_child(node1, --j, get_child(inode, --k));
575 put_child(node0, j, get_child(inode, j));
576 put_child(node1, --j, get_child(inode, --k));
577 put_child(node0, j, get_child(inode, j));
12c081a5 578 }
19baf839 579
12c081a5
AD
580 /* link new nodes to parent */
581 NODE_INIT_PARENT(node1, tn);
582 NODE_INIT_PARENT(node0, tn);
2f36895a 583
12c081a5
AD
584 /* link parent to nodes */
585 put_child(tn, 2 * i + 1, node1);
586 put_child(tn, 2 * i, node0);
587 }
2f36895a 588
69fa57b1 589 /* setup the parent pointers into and out of this node */
8d8e810c 590 return replace(t, oldtnode, tn);
2f80b3c8 591nomem:
fc86a93b
AD
592 /* all pointers should be clean so we are done */
593 tnode_free(tn);
8d8e810c
AD
594notnode:
595 return NULL;
19baf839
RO
596}
597
35c6edac
AD
598static struct key_vector __rcu **halve(struct trie *t,
599 struct key_vector *oldtnode)
19baf839 600{
35c6edac 601 struct key_vector *tn;
12c081a5 602 unsigned long i;
19baf839 603
0c7770c7 604 pr_debug("In halve\n");
c877efb2 605
e9b44019 606 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 607 if (!tn)
8d8e810c 608 goto notnode;
2f36895a 609
69fa57b1
AD
610 /* prepare oldtnode to be freed */
611 tnode_free_init(oldtnode);
612
12c081a5
AD
613 /* Assemble all of the pointers in our cluster, in this case that
614 * represents all of the pointers out of our allocated nodes that
615 * point to existing tnodes and the links between our allocated
616 * nodes.
2f36895a 617 */
2e1ac88a 618 for (i = child_length(oldtnode); i;) {
754baf8d
AD
619 struct key_vector *node1 = get_child(oldtnode, --i);
620 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 621 struct key_vector *inode;
2f36895a 622
12c081a5
AD
623 /* At least one of the children is empty */
624 if (!node1 || !node0) {
625 put_child(tn, i / 2, node1 ? : node0);
626 continue;
627 }
c877efb2 628
2f36895a 629 /* Two nonempty children */
12c081a5 630 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
631 if (!inode)
632 goto nomem;
12c081a5 633 tnode_free_append(tn, inode);
2f36895a 634
12c081a5
AD
635 /* initialize pointers out of node */
636 put_child(inode, 1, node1);
637 put_child(inode, 0, node0);
638 NODE_INIT_PARENT(inode, tn);
639
640 /* link parent to node */
641 put_child(tn, i / 2, inode);
2f36895a 642 }
19baf839 643
69fa57b1 644 /* setup the parent pointers into and out of this node */
8d8e810c
AD
645 return replace(t, oldtnode, tn);
646nomem:
647 /* all pointers should be clean so we are done */
648 tnode_free(tn);
649notnode:
650 return NULL;
19baf839
RO
651}
652
35c6edac 653static void collapse(struct trie *t, struct key_vector *oldtnode)
95f60ea3 654{
35c6edac 655 struct key_vector *n, *tp;
95f60ea3
AD
656 unsigned long i;
657
658 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 659 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 660 n = get_child(oldtnode, --i);
95f60ea3
AD
661
662 /* compress one level */
663 tp = node_parent(oldtnode);
664 put_child_root(tp, t, oldtnode->key, n);
665 node_set_parent(n, tp);
666
667 /* drop dead node */
668 node_free(oldtnode);
669}
670
35c6edac 671static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
672{
673 unsigned char slen = tn->pos;
674 unsigned long stride, i;
675
676 /* search though the list of children looking for nodes that might
677 * have a suffix greater than the one we currently have. This is
678 * why we start with a stride of 2 since a stride of 1 would
679 * represent the nodes with suffix length equal to tn->pos
680 */
2e1ac88a 681 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 682 struct key_vector *n = get_child(tn, i);
5405afd1
AD
683
684 if (!n || (n->slen <= slen))
685 continue;
686
687 /* update stride and slen based on new value */
688 stride <<= (n->slen - slen);
689 slen = n->slen;
690 i &= ~(stride - 1);
691
692 /* if slen covers all but the last bit we can stop here
693 * there will be nothing longer than that since only node
694 * 0 and 1 << (bits - 1) could have that as their suffix
695 * length.
696 */
697 if ((slen + 1) >= (tn->pos + tn->bits))
698 break;
699 }
700
701 tn->slen = slen;
702
703 return slen;
704}
705
f05a4819
AD
706/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
707 * the Helsinki University of Technology and Matti Tikkanen of Nokia
708 * Telecommunications, page 6:
709 * "A node is doubled if the ratio of non-empty children to all
710 * children in the *doubled* node is at least 'high'."
711 *
712 * 'high' in this instance is the variable 'inflate_threshold'. It
713 * is expressed as a percentage, so we multiply it with
2e1ac88a 714 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
715 * child array will be doubled by inflate()) and multiplying
716 * the left-hand side by 100 (to handle the percentage thing) we
717 * multiply the left-hand side by 50.
718 *
2e1ac88a 719 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
720 * - tn->empty_children is of course the number of non-null children
721 * in the current node. tn->full_children is the number of "full"
722 * children, that is non-null tnodes with a skip value of 0.
723 * All of those will be doubled in the resulting inflated tnode, so
724 * we just count them one extra time here.
725 *
726 * A clearer way to write this would be:
727 *
728 * to_be_doubled = tn->full_children;
2e1ac88a 729 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
730 * tn->full_children;
731 *
2e1ac88a 732 * new_child_length = child_length(tn) * 2;
f05a4819
AD
733 *
734 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
735 * new_child_length;
736 * if (new_fill_factor >= inflate_threshold)
737 *
738 * ...and so on, tho it would mess up the while () loop.
739 *
740 * anyway,
741 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
742 * inflate_threshold
743 *
744 * avoid a division:
745 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
746 * inflate_threshold * new_child_length
747 *
748 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 749 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
750 * tn->full_children) >= inflate_threshold * new_child_length
751 *
752 * expand new_child_length:
2e1ac88a 753 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 754 * tn->full_children) >=
2e1ac88a 755 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
756 *
757 * shorten again:
2e1ac88a 758 * 50 * (tn->full_children + child_length(tn) -
f05a4819 759 * tn->empty_children) >= inflate_threshold *
2e1ac88a 760 * child_length(tn)
f05a4819
AD
761 *
762 */
35c6edac 763static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 764{
2e1ac88a 765 unsigned long used = child_length(tn);
f05a4819
AD
766 unsigned long threshold = used;
767
768 /* Keep root node larger */
ff181ed8 769 threshold *= tp ? inflate_threshold : inflate_threshold_root;
6e22d174
AD
770 used -= tn_info(tn)->empty_children;
771 used += tn_info(tn)->full_children;
f05a4819 772
95f60ea3
AD
773 /* if bits == KEYLENGTH then pos = 0, and will fail below */
774
775 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
776}
777
35c6edac 778static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 779{
2e1ac88a 780 unsigned long used = child_length(tn);
f05a4819
AD
781 unsigned long threshold = used;
782
783 /* Keep root node larger */
ff181ed8 784 threshold *= tp ? halve_threshold : halve_threshold_root;
6e22d174 785 used -= tn_info(tn)->empty_children;
f05a4819 786
95f60ea3
AD
787 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
788
789 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
790}
791
35c6edac 792static inline bool should_collapse(struct key_vector *tn)
95f60ea3 793{
2e1ac88a 794 unsigned long used = child_length(tn);
95f60ea3 795
6e22d174 796 used -= tn_info(tn)->empty_children;
95f60ea3
AD
797
798 /* account for bits == KEYLENGTH case */
6e22d174 799 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
95f60ea3
AD
800 used -= KEY_MAX;
801
802 /* One child or none, time to drop us from the trie */
803 return used < 2;
f05a4819
AD
804}
805
cf3637bb 806#define MAX_WORK 10
35c6edac
AD
807static struct key_vector __rcu **resize(struct trie *t,
808 struct key_vector *tn)
cf3637bb 809{
8d8e810c
AD
810#ifdef CONFIG_IP_FIB_TRIE_STATS
811 struct trie_use_stats __percpu *stats = t->stats;
812#endif
35c6edac 813 struct key_vector *tp = node_parent(tn);
8d8e810c 814 unsigned long cindex = tp ? get_index(tn->key, tp) : 0;
35c6edac 815 struct key_vector __rcu **cptr = tp ? tp->tnode : t->tnode;
a80e89d4 816 int max_work = MAX_WORK;
cf3637bb 817
cf3637bb
AD
818 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
819 tn, inflate_threshold, halve_threshold);
820
ff181ed8
AD
821 /* track the tnode via the pointer from the parent instead of
822 * doing it ourselves. This way we can let RCU fully do its
823 * thing without us interfering
824 */
8d8e810c 825 BUG_ON(tn != rtnl_dereference(cptr[cindex]));
ff181ed8 826
f05a4819
AD
827 /* Double as long as the resulting node has a number of
828 * nonempty nodes that are above the threshold.
cf3637bb 829 */
a80e89d4 830 while (should_inflate(tp, tn) && max_work) {
35c6edac 831 struct key_vector __rcu **tcptr = inflate(t, tn);
8d8e810c
AD
832
833 if (!tcptr) {
cf3637bb 834#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 835 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
836#endif
837 break;
838 }
ff181ed8 839
a80e89d4 840 max_work--;
8d8e810c
AD
841 cptr = tcptr;
842 tn = rtnl_dereference(cptr[cindex]);
cf3637bb
AD
843 }
844
845 /* Return if at least one inflate is run */
846 if (max_work != MAX_WORK)
8d8e810c 847 return cptr;
cf3637bb 848
f05a4819 849 /* Halve as long as the number of empty children in this
cf3637bb
AD
850 * node is above threshold.
851 */
a80e89d4 852 while (should_halve(tp, tn) && max_work) {
35c6edac 853 struct key_vector __rcu **tcptr = halve(t, tn);
8d8e810c
AD
854
855 if (!tcptr) {
cf3637bb 856#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 857 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
858#endif
859 break;
860 }
cf3637bb 861
a80e89d4 862 max_work--;
8d8e810c
AD
863 cptr = tcptr;
864 tn = rtnl_dereference(cptr[cindex]);
ff181ed8 865 }
cf3637bb
AD
866
867 /* Only one child remains */
95f60ea3
AD
868 if (should_collapse(tn)) {
869 collapse(t, tn);
8d8e810c 870 return cptr;
5405afd1
AD
871 }
872
873 /* Return if at least one deflate was run */
874 if (max_work != MAX_WORK)
8d8e810c 875 return cptr;
5405afd1
AD
876
877 /* push the suffix length to the parent node */
878 if (tn->slen > tn->pos) {
879 unsigned char slen = update_suffix(tn);
880
881 if (tp && (slen > tp->slen))
882 tp->slen = slen;
cf3637bb 883 }
8d8e810c
AD
884
885 return cptr;
cf3637bb
AD
886}
887
35c6edac 888static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
5405afd1 889{
5405afd1
AD
890 while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
891 if (update_suffix(tp) > l->slen)
892 break;
893 tp = node_parent(tp);
894 }
895}
896
35c6edac 897static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
19baf839 898{
5405afd1
AD
899 /* if this is a new leaf then tn will be NULL and we can sort
900 * out parent suffix lengths as a part of trie_rebalance
901 */
902 while (tn && (tn->slen < l->slen)) {
903 tn->slen = l->slen;
904 tn = node_parent(tn);
905 }
906}
907
2373ce1c 908/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
909static struct key_vector *fib_find_node(struct trie *t,
910 struct key_vector **tp, u32 key)
19baf839 911{
35c6edac 912 struct key_vector *pn = NULL, *n = rcu_dereference_rtnl(t->tnode[0]);
939afb06
AD
913
914 while (n) {
915 unsigned long index = get_index(key, n);
916
917 /* This bit of code is a bit tricky but it combines multiple
918 * checks into a single check. The prefix consists of the
919 * prefix plus zeros for the bits in the cindex. The index
920 * is the difference between the key and this value. From
921 * this we can actually derive several pieces of data.
d4a975e8 922 * if (index >= (1ul << bits))
939afb06 923 * we have a mismatch in skip bits and failed
b3832117
AD
924 * else
925 * we know the value is cindex
d4a975e8
AD
926 *
927 * This check is safe even if bits == KEYLENGTH due to the
928 * fact that we can only allocate a node with 32 bits if a
929 * long is greater than 32 bits.
939afb06 930 */
d4a975e8
AD
931 if (index >= (1ul << n->bits)) {
932 n = NULL;
933 break;
934 }
939afb06
AD
935
936 /* we have found a leaf. Prefixes have already been compared */
937 if (IS_LEAF(n))
19baf839 938 break;
19baf839 939
d4a975e8 940 pn = n;
754baf8d 941 n = get_child_rcu(n, index);
939afb06 942 }
91b9a277 943
35c6edac 944 *tp = pn;
d4a975e8 945
939afb06 946 return n;
19baf839
RO
947}
948
02525368
AD
949/* Return the first fib alias matching TOS with
950 * priority less than or equal to PRIO.
951 */
79e5ad2c
AD
952static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
953 u8 tos, u32 prio)
02525368
AD
954{
955 struct fib_alias *fa;
956
957 if (!fah)
958 return NULL;
959
56315f9e 960 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
961 if (fa->fa_slen < slen)
962 continue;
963 if (fa->fa_slen != slen)
964 break;
02525368
AD
965 if (fa->fa_tos > tos)
966 continue;
967 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
968 return fa;
969 }
970
971 return NULL;
972}
973
35c6edac 974static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 975{
35c6edac 976 struct key_vector __rcu **cptr = t->tnode;
19baf839 977
d5d6487c 978 while (tn) {
35c6edac 979 struct key_vector *tp = node_parent(tn);
8d8e810c
AD
980
981 cptr = resize(t, tn);
982 if (!tp)
983 break;
35c6edac 984 tn = container_of(cptr, struct key_vector, tnode[0]);
19baf839 985 }
19baf839
RO
986}
987
35c6edac 988static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 989 struct fib_alias *new, t_key key)
19baf839 990{
35c6edac 991 struct key_vector *n, *l;
19baf839 992
d5d6487c 993 l = leaf_new(key, new);
79e5ad2c 994 if (!l)
8d8e810c 995 goto noleaf;
d5d6487c
AD
996
997 /* retrieve child from parent node */
998 if (tp)
754baf8d 999 n = get_child(tp, get_index(key, tp));
d5d6487c 1000 else
35c6edac 1001 n = rcu_dereference_rtnl(t->tnode[0]);
19baf839 1002
836a0123
AD
1003 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1004 *
1005 * Add a new tnode here
1006 * first tnode need some special handling
1007 * leaves us in position for handling as case 3
1008 */
1009 if (n) {
35c6edac 1010 struct key_vector *tn;
19baf839 1011
e9b44019 1012 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1013 if (!tn)
1014 goto notnode;
91b9a277 1015
836a0123
AD
1016 /* initialize routes out of node */
1017 NODE_INIT_PARENT(tn, tp);
1018 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1019
836a0123
AD
1020 /* start adding routes into the node */
1021 put_child_root(tp, t, key, tn);
1022 node_set_parent(n, tn);
e962f302 1023
836a0123 1024 /* parent now has a NULL spot where the leaf can go */
e962f302 1025 tp = tn;
19baf839 1026 }
91b9a277 1027
836a0123 1028 /* Case 3: n is NULL, and will just insert a new leaf */
d5d6487c
AD
1029 NODE_INIT_PARENT(l, tp);
1030 put_child_root(tp, t, key, l);
1031 trie_rebalance(t, tp);
1032
1033 return 0;
8d8e810c
AD
1034notnode:
1035 node_free(l);
1036noleaf:
1037 return -ENOMEM;
d5d6487c
AD
1038}
1039
35c6edac
AD
1040static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1041 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1042 struct fib_alias *fa, t_key key)
1043{
1044 if (!l)
1045 return fib_insert_node(t, tp, new, key);
1046
1047 if (fa) {
1048 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1049 } else {
d5d6487c
AD
1050 struct fib_alias *last;
1051
1052 hlist_for_each_entry(last, &l->leaf, fa_list) {
1053 if (new->fa_slen < last->fa_slen)
1054 break;
1055 fa = last;
1056 }
1057
1058 if (fa)
1059 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1060 else
1061 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1062 }
2373ce1c 1063
d5d6487c
AD
1064 /* if we added to the tail node then we need to update slen */
1065 if (l->slen < new->fa_slen) {
1066 l->slen = new->fa_slen;
1067 leaf_push_suffix(tp, l);
1068 }
1069
1070 return 0;
19baf839
RO
1071}
1072
d5d6487c 1073/* Caller must hold RTNL. */
16c6cf8b 1074int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839 1075{
d4a975e8 1076 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1077 struct fib_alias *fa, *new_fa;
35c6edac 1078 struct key_vector *l, *tp;
19baf839 1079 struct fib_info *fi;
79e5ad2c
AD
1080 u8 plen = cfg->fc_dst_len;
1081 u8 slen = KEYLENGTH - plen;
4e902c57 1082 u8 tos = cfg->fc_tos;
d4a975e8 1083 u32 key;
19baf839 1084 int err;
19baf839 1085
5786ec60 1086 if (plen > KEYLENGTH)
19baf839
RO
1087 return -EINVAL;
1088
4e902c57 1089 key = ntohl(cfg->fc_dst);
19baf839 1090
2dfe55b4 1091 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1092
d4a975e8 1093 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1094 return -EINVAL;
1095
4e902c57
TG
1096 fi = fib_create_info(cfg);
1097 if (IS_ERR(fi)) {
1098 err = PTR_ERR(fi);
19baf839 1099 goto err;
4e902c57 1100 }
19baf839 1101
d4a975e8 1102 l = fib_find_node(t, &tp, key);
79e5ad2c 1103 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
19baf839
RO
1104
1105 /* Now fa, if non-NULL, points to the first fib alias
1106 * with the same keys [prefix,tos,priority], if such key already
1107 * exists or to the node before which we will insert new one.
1108 *
1109 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1110 * insert to the tail of the section matching the suffix length
1111 * of the new alias.
19baf839
RO
1112 */
1113
936f6f8e
JA
1114 if (fa && fa->fa_tos == tos &&
1115 fa->fa_info->fib_priority == fi->fib_priority) {
1116 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1117
1118 err = -EEXIST;
4e902c57 1119 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1120 goto out;
1121
936f6f8e
JA
1122 /* We have 2 goals:
1123 * 1. Find exact match for type, scope, fib_info to avoid
1124 * duplicate routes
1125 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1126 */
1127 fa_match = NULL;
1128 fa_first = fa;
56315f9e 1129 hlist_for_each_entry_from(fa, fa_list) {
79e5ad2c 1130 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
936f6f8e
JA
1131 break;
1132 if (fa->fa_info->fib_priority != fi->fib_priority)
1133 break;
1134 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1135 fa->fa_info == fi) {
1136 fa_match = fa;
1137 break;
1138 }
1139 }
1140
4e902c57 1141 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1142 struct fib_info *fi_drop;
1143 u8 state;
1144
936f6f8e
JA
1145 fa = fa_first;
1146 if (fa_match) {
1147 if (fa == fa_match)
1148 err = 0;
6725033f 1149 goto out;
936f6f8e 1150 }
2373ce1c 1151 err = -ENOBUFS;
e94b1766 1152 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1153 if (new_fa == NULL)
1154 goto out;
19baf839
RO
1155
1156 fi_drop = fa->fa_info;
2373ce1c
RO
1157 new_fa->fa_tos = fa->fa_tos;
1158 new_fa->fa_info = fi;
4e902c57 1159 new_fa->fa_type = cfg->fc_type;
19baf839 1160 state = fa->fa_state;
936f6f8e 1161 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1162 new_fa->fa_slen = fa->fa_slen;
19baf839 1163
8e05fd71
SF
1164 err = netdev_switch_fib_ipv4_add(key, plen, fi,
1165 new_fa->fa_tos,
1166 cfg->fc_type,
1167 tb->tb_id);
1168 if (err) {
1169 netdev_switch_fib_ipv4_abort(fi);
1170 kmem_cache_free(fn_alias_kmem, new_fa);
1171 goto out;
1172 }
1173
56315f9e 1174 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1175
2373ce1c 1176 alias_free_mem_rcu(fa);
19baf839
RO
1177
1178 fib_release_info(fi_drop);
1179 if (state & FA_S_ACCESSED)
4ccfe6d4 1180 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1181 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1182 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1183
91b9a277 1184 goto succeeded;
19baf839
RO
1185 }
1186 /* Error if we find a perfect match which
1187 * uses the same scope, type, and nexthop
1188 * information.
1189 */
936f6f8e
JA
1190 if (fa_match)
1191 goto out;
a07f5f50 1192
4e902c57 1193 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1194 fa = fa_first;
19baf839
RO
1195 }
1196 err = -ENOENT;
4e902c57 1197 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1198 goto out;
1199
1200 err = -ENOBUFS;
e94b1766 1201 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1202 if (new_fa == NULL)
1203 goto out;
1204
1205 new_fa->fa_info = fi;
1206 new_fa->fa_tos = tos;
4e902c57 1207 new_fa->fa_type = cfg->fc_type;
19baf839 1208 new_fa->fa_state = 0;
79e5ad2c 1209 new_fa->fa_slen = slen;
19baf839 1210
8e05fd71
SF
1211 /* (Optionally) offload fib entry to switch hardware. */
1212 err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1213 cfg->fc_type, tb->tb_id);
1214 if (err) {
1215 netdev_switch_fib_ipv4_abort(fi);
1216 goto out_free_new_fa;
1217 }
1218
9b6ebad5 1219 /* Insert new entry to the list. */
d5d6487c
AD
1220 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1221 if (err)
8e05fd71 1222 goto out_sw_fib_del;
19baf839 1223
21d8c49e
DM
1224 if (!plen)
1225 tb->tb_num_default++;
1226
4ccfe6d4 1227 rt_cache_flush(cfg->fc_nlinfo.nl_net);
4e902c57 1228 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1229 &cfg->fc_nlinfo, 0);
19baf839
RO
1230succeeded:
1231 return 0;
f835e471 1232
8e05fd71
SF
1233out_sw_fib_del:
1234 netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
f835e471
RO
1235out_free_new_fa:
1236 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1237out:
1238 fib_release_info(fi);
91b9a277 1239err:
19baf839
RO
1240 return err;
1241}
1242
35c6edac 1243static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1244{
1245 t_key prefix = n->key;
1246
1247 return (key ^ prefix) & (prefix | -prefix);
1248}
1249
345e9b54 1250/* should be called with rcu_read_lock */
22bd5b9b 1251int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1252 struct fib_result *res, int fib_flags)
19baf839 1253{
9f9e636d 1254 struct trie *t = (struct trie *)tb->tb_data;
8274a97a
AD
1255#ifdef CONFIG_IP_FIB_TRIE_STATS
1256 struct trie_use_stats __percpu *stats = t->stats;
1257#endif
9f9e636d 1258 const t_key key = ntohl(flp->daddr);
35c6edac 1259 struct key_vector *n, *pn;
79e5ad2c 1260 struct fib_alias *fa;
71e8b67d 1261 unsigned long index;
9f9e636d 1262 t_key cindex;
91b9a277 1263
35c6edac 1264 n = rcu_dereference(t->tnode[0]);
c877efb2 1265 if (!n)
345e9b54 1266 return -EAGAIN;
19baf839
RO
1267
1268#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1269 this_cpu_inc(stats->gets);
19baf839
RO
1270#endif
1271
adaf9816 1272 pn = n;
9f9e636d
AD
1273 cindex = 0;
1274
1275 /* Step 1: Travel to the longest prefix match in the trie */
1276 for (;;) {
71e8b67d 1277 index = get_index(key, n);
9f9e636d
AD
1278
1279 /* This bit of code is a bit tricky but it combines multiple
1280 * checks into a single check. The prefix consists of the
1281 * prefix plus zeros for the "bits" in the prefix. The index
1282 * is the difference between the key and this value. From
1283 * this we can actually derive several pieces of data.
71e8b67d 1284 * if (index >= (1ul << bits))
9f9e636d 1285 * we have a mismatch in skip bits and failed
b3832117
AD
1286 * else
1287 * we know the value is cindex
71e8b67d
AD
1288 *
1289 * This check is safe even if bits == KEYLENGTH due to the
1290 * fact that we can only allocate a node with 32 bits if a
1291 * long is greater than 32 bits.
9f9e636d 1292 */
71e8b67d 1293 if (index >= (1ul << n->bits))
9f9e636d 1294 break;
19baf839 1295
9f9e636d
AD
1296 /* we have found a leaf. Prefixes have already been compared */
1297 if (IS_LEAF(n))
a07f5f50 1298 goto found;
19baf839 1299
9f9e636d
AD
1300 /* only record pn and cindex if we are going to be chopping
1301 * bits later. Otherwise we are just wasting cycles.
91b9a277 1302 */
5405afd1 1303 if (n->slen > n->pos) {
9f9e636d
AD
1304 pn = n;
1305 cindex = index;
91b9a277 1306 }
19baf839 1307
754baf8d 1308 n = get_child_rcu(n, index);
9f9e636d
AD
1309 if (unlikely(!n))
1310 goto backtrace;
1311 }
19baf839 1312
9f9e636d
AD
1313 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1314 for (;;) {
1315 /* record the pointer where our next node pointer is stored */
35c6edac 1316 struct key_vector __rcu **cptr = n->tnode;
19baf839 1317
9f9e636d
AD
1318 /* This test verifies that none of the bits that differ
1319 * between the key and the prefix exist in the region of
1320 * the lsb and higher in the prefix.
91b9a277 1321 */
5405afd1 1322 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1323 goto backtrace;
91b9a277 1324
9f9e636d
AD
1325 /* exit out and process leaf */
1326 if (unlikely(IS_LEAF(n)))
1327 break;
91b9a277 1328
9f9e636d
AD
1329 /* Don't bother recording parent info. Since we are in
1330 * prefix match mode we will have to come back to wherever
1331 * we started this traversal anyway
91b9a277 1332 */
91b9a277 1333
9f9e636d 1334 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1335backtrace:
19baf839 1336#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1337 if (!n)
1338 this_cpu_inc(stats->null_node_hit);
19baf839 1339#endif
9f9e636d
AD
1340 /* If we are at cindex 0 there are no more bits for
1341 * us to strip at this level so we must ascend back
1342 * up one level to see if there are any more bits to
1343 * be stripped there.
1344 */
1345 while (!cindex) {
1346 t_key pkey = pn->key;
1347
1348 pn = node_parent_rcu(pn);
1349 if (unlikely(!pn))
345e9b54 1350 return -EAGAIN;
9f9e636d
AD
1351#ifdef CONFIG_IP_FIB_TRIE_STATS
1352 this_cpu_inc(stats->backtrack);
1353#endif
1354 /* Get Child's index */
1355 cindex = get_index(pkey, pn);
1356 }
1357
1358 /* strip the least significant bit from the cindex */
1359 cindex &= cindex - 1;
1360
1361 /* grab pointer for next child node */
41b489fd 1362 cptr = &pn->tnode[cindex];
c877efb2 1363 }
19baf839 1364 }
9f9e636d 1365
19baf839 1366found:
71e8b67d
AD
1367 /* this line carries forward the xor from earlier in the function */
1368 index = key ^ n->key;
1369
9f9e636d 1370 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1371 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1372 struct fib_info *fi = fa->fa_info;
1373 int nhsel, err;
345e9b54 1374
71e8b67d 1375 if ((index >= (1ul << fa->fa_slen)) &&
79e5ad2c 1376 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
71e8b67d 1377 continue;
79e5ad2c
AD
1378 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1379 continue;
1380 if (fi->fib_dead)
1381 continue;
1382 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1383 continue;
1384 fib_alias_accessed(fa);
1385 err = fib_props[fa->fa_type].error;
1386 if (unlikely(err < 0)) {
345e9b54 1387#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1388 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1389#endif
79e5ad2c
AD
1390 return err;
1391 }
1392 if (fi->fib_flags & RTNH_F_DEAD)
1393 continue;
1394 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1395 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1396
1397 if (nh->nh_flags & RTNH_F_DEAD)
1398 continue;
1399 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
345e9b54 1400 continue;
79e5ad2c
AD
1401
1402 if (!(fib_flags & FIB_LOOKUP_NOREF))
1403 atomic_inc(&fi->fib_clntref);
1404
1405 res->prefixlen = KEYLENGTH - fa->fa_slen;
1406 res->nh_sel = nhsel;
1407 res->type = fa->fa_type;
1408 res->scope = fi->fib_scope;
1409 res->fi = fi;
1410 res->table = tb;
1411 res->fa_head = &n->leaf;
345e9b54 1412#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1413 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1414#endif
79e5ad2c 1415 return err;
345e9b54 1416 }
9b6ebad5 1417 }
345e9b54 1418#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1419 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1420#endif
345e9b54 1421 goto backtrace;
19baf839 1422}
6fc01438 1423EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1424
35c6edac
AD
1425static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1426 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1427{
1428 /* record the location of the previous list_info entry */
1429 struct hlist_node **pprev = old->fa_list.pprev;
1430 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1431
1432 /* remove the fib_alias from the list */
1433 hlist_del_rcu(&old->fa_list);
1434
1435 /* if we emptied the list this leaf will be freed and we can sort
1436 * out parent suffix lengths as a part of trie_rebalance
1437 */
1438 if (hlist_empty(&l->leaf)) {
1439 put_child_root(tp, t, l->key, NULL);
1440 node_free(l);
1441 trie_rebalance(t, tp);
1442 return;
1443 }
1444
1445 /* only access fa if it is pointing at the last valid hlist_node */
1446 if (*pprev)
1447 return;
1448
1449 /* update the trie with the latest suffix length */
1450 l->slen = fa->fa_slen;
1451 leaf_pull_suffix(tp, l);
1452}
1453
1454/* Caller must hold RTNL. */
16c6cf8b 1455int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1456{
1457 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1458 struct fib_alias *fa, *fa_to_delete;
35c6edac 1459 struct key_vector *l, *tp;
79e5ad2c 1460 u8 plen = cfg->fc_dst_len;
79e5ad2c 1461 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1462 u8 tos = cfg->fc_tos;
1463 u32 key;
91b9a277 1464
79e5ad2c 1465 if (plen > KEYLENGTH)
19baf839
RO
1466 return -EINVAL;
1467
4e902c57 1468 key = ntohl(cfg->fc_dst);
19baf839 1469
d4a975e8 1470 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1471 return -EINVAL;
1472
d4a975e8 1473 l = fib_find_node(t, &tp, key);
c877efb2 1474 if (!l)
19baf839
RO
1475 return -ESRCH;
1476
79e5ad2c 1477 fa = fib_find_alias(&l->leaf, slen, tos, 0);
19baf839
RO
1478 if (!fa)
1479 return -ESRCH;
1480
0c7770c7 1481 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1482
1483 fa_to_delete = NULL;
56315f9e 1484 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1485 struct fib_info *fi = fa->fa_info;
1486
79e5ad2c 1487 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
19baf839
RO
1488 break;
1489
4e902c57
TG
1490 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1491 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1492 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1493 (!cfg->fc_prefsrc ||
1494 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1495 (!cfg->fc_protocol ||
1496 fi->fib_protocol == cfg->fc_protocol) &&
1497 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1498 fa_to_delete = fa;
1499 break;
1500 }
1501 }
1502
91b9a277
OJ
1503 if (!fa_to_delete)
1504 return -ESRCH;
19baf839 1505
8e05fd71
SF
1506 netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1507 cfg->fc_type, tb->tb_id);
1508
d5d6487c 1509 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1510 &cfg->fc_nlinfo, 0);
91b9a277 1511
21d8c49e
DM
1512 if (!plen)
1513 tb->tb_num_default--;
1514
d5d6487c 1515 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1516
d5d6487c 1517 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1518 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1519
d5d6487c
AD
1520 fib_release_info(fa_to_delete->fa_info);
1521 alias_free_mem_rcu(fa_to_delete);
91b9a277 1522 return 0;
19baf839
RO
1523}
1524
8be33e95 1525/* Scan for the next leaf starting at the provided key value */
35c6edac 1526static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1527{
35c6edac 1528 struct key_vector *pn, *n = *tn;
8be33e95 1529 unsigned long cindex;
82cfbb00 1530
8be33e95
AD
1531 /* record parent node for backtracing */
1532 pn = n;
1533 cindex = n ? get_index(key, n) : 0;
82cfbb00 1534
8be33e95
AD
1535 /* this loop is meant to try and find the key in the trie */
1536 while (n) {
1537 unsigned long idx = get_index(key, n);
82cfbb00 1538
8be33e95
AD
1539 /* guarantee forward progress on the keys */
1540 if (IS_LEAF(n) && (n->key >= key))
1541 goto found;
1542 if (idx >= (1ul << n->bits))
1543 break;
82cfbb00 1544
8be33e95
AD
1545 /* record parent and next child index */
1546 pn = n;
1547 cindex = idx;
82cfbb00 1548
8be33e95 1549 /* descend into the next child */
754baf8d 1550 n = get_child_rcu(pn, cindex++);
8be33e95 1551 }
82cfbb00 1552
8be33e95
AD
1553 /* this loop will search for the next leaf with a greater key */
1554 while (pn) {
1555 /* if we exhausted the parent node we will need to climb */
1556 if (cindex >= (1ul << pn->bits)) {
1557 t_key pkey = pn->key;
82cfbb00 1558
8be33e95
AD
1559 pn = node_parent_rcu(pn);
1560 if (!pn)
1561 break;
82cfbb00 1562
8be33e95
AD
1563 cindex = get_index(pkey, pn) + 1;
1564 continue;
1565 }
82cfbb00 1566
8be33e95 1567 /* grab the next available node */
754baf8d 1568 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1569 if (!n)
1570 continue;
19baf839 1571
8be33e95
AD
1572 /* no need to compare keys since we bumped the index */
1573 if (IS_LEAF(n))
1574 goto found;
71d67e66 1575
8be33e95
AD
1576 /* Rescan start scanning in new node */
1577 pn = n;
1578 cindex = 0;
1579 }
ec28cf73 1580
8be33e95
AD
1581 *tn = pn;
1582 return NULL; /* Root of trie */
1583found:
1584 /* if we are at the limit for keys just return NULL for the tnode */
1585 *tn = (n->key == KEY_MAX) ? NULL : pn;
1586 return n;
71d67e66
SH
1587}
1588
104616e7
SF
1589/* Caller must hold RTNL */
1590void fib_table_flush_external(struct fib_table *tb)
1591{
1592 struct trie *t = (struct trie *)tb->tb_data;
1593 struct fib_alias *fa;
35c6edac 1594 struct key_vector *n, *pn;
104616e7 1595 unsigned long cindex;
104616e7 1596
35c6edac 1597 n = rcu_dereference(t->tnode[0]);
104616e7
SF
1598 if (!n)
1599 return;
1600
1601 pn = NULL;
1602 cindex = 0;
1603
1604 while (IS_TNODE(n)) {
1605 /* record pn and cindex for leaf walking */
1606 pn = n;
1607 cindex = 1ul << n->bits;
1608backtrace:
1609 /* walk trie in reverse order */
1610 do {
1611 while (!(cindex--)) {
1612 t_key pkey = pn->key;
1613
104616e7 1614 /* if we got the root we are done */
72be7260 1615 pn = node_parent(pn);
104616e7
SF
1616 if (!pn)
1617 return;
1618
1619 cindex = get_index(pkey, pn);
1620 }
1621
1622 /* grab the next available node */
754baf8d 1623 n = get_child(pn, cindex);
104616e7
SF
1624 } while (!n);
1625 }
1626
1627 hlist_for_each_entry(fa, &n->leaf, fa_list) {
1628 struct fib_info *fi = fa->fa_info;
1629
72be7260
AD
1630 if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
1631 continue;
1632
1633 netdev_switch_fib_ipv4_del(n->key,
1634 KEYLENGTH - fa->fa_slen,
1635 fi, fa->fa_tos,
1636 fa->fa_type, tb->tb_id);
104616e7
SF
1637 }
1638
1639 /* if trie is leaf only loop is completed */
1640 if (pn)
1641 goto backtrace;
1642}
1643
8be33e95 1644/* Caller must hold RTNL. */
16c6cf8b 1645int fib_table_flush(struct fib_table *tb)
19baf839 1646{
7289e6dd 1647 struct trie *t = (struct trie *)tb->tb_data;
35c6edac 1648 struct key_vector *n, *pn;
7289e6dd
AD
1649 struct hlist_node *tmp;
1650 struct fib_alias *fa;
7289e6dd
AD
1651 unsigned long cindex;
1652 unsigned char slen;
82cfbb00 1653 int found = 0;
19baf839 1654
35c6edac 1655 n = rcu_dereference(t->tnode[0]);
7289e6dd
AD
1656 if (!n)
1657 goto flush_complete;
19baf839 1658
7289e6dd
AD
1659 pn = NULL;
1660 cindex = 0;
1661
1662 while (IS_TNODE(n)) {
1663 /* record pn and cindex for leaf walking */
1664 pn = n;
1665 cindex = 1ul << n->bits;
1666backtrace:
1667 /* walk trie in reverse order */
1668 do {
1669 while (!(cindex--)) {
35c6edac 1670 struct key_vector __rcu **cptr;
7289e6dd
AD
1671 t_key pkey = pn->key;
1672
1673 n = pn;
1674 pn = node_parent(n);
1675
1676 /* resize completed node */
8d8e810c 1677 cptr = resize(t, n);
7289e6dd
AD
1678
1679 /* if we got the root we are done */
1680 if (!pn)
1681 goto flush_complete;
1682
35c6edac
AD
1683 pn = container_of(cptr, struct key_vector,
1684 tnode[0]);
7289e6dd
AD
1685 cindex = get_index(pkey, pn);
1686 }
1687
1688 /* grab the next available node */
754baf8d 1689 n = get_child(pn, cindex);
7289e6dd
AD
1690 } while (!n);
1691 }
1692
1693 /* track slen in case any prefixes survive */
1694 slen = 0;
1695
1696 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1697 struct fib_info *fi = fa->fa_info;
1698
1699 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
8e05fd71
SF
1700 netdev_switch_fib_ipv4_del(n->key,
1701 KEYLENGTH - fa->fa_slen,
1702 fi, fa->fa_tos,
1703 fa->fa_type, tb->tb_id);
7289e6dd
AD
1704 hlist_del_rcu(&fa->fa_list);
1705 fib_release_info(fa->fa_info);
1706 alias_free_mem_rcu(fa);
1707 found++;
1708
1709 continue;
64c62723
AD
1710 }
1711
7289e6dd 1712 slen = fa->fa_slen;
19baf839
RO
1713 }
1714
7289e6dd
AD
1715 /* update leaf slen */
1716 n->slen = slen;
1717
1718 if (hlist_empty(&n->leaf)) {
1719 put_child_root(pn, t, n->key, NULL);
1720 node_free(n);
1721 } else {
d5d6487c 1722 leaf_pull_suffix(pn, n);
64c62723 1723 }
19baf839 1724
7289e6dd
AD
1725 /* if trie is leaf only loop is completed */
1726 if (pn)
1727 goto backtrace;
1728flush_complete:
0c7770c7 1729 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1730 return found;
1731}
1732
a7e53531 1733static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1734{
a7e53531 1735 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1736#ifdef CONFIG_IP_FIB_TRIE_STATS
1737 struct trie *t = (struct trie *)tb->tb_data;
1738
1739 free_percpu(t->stats);
1740#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1741 kfree(tb);
1742}
1743
a7e53531
AD
1744void fib_free_table(struct fib_table *tb)
1745{
1746 call_rcu(&tb->rcu, __trie_free_rcu);
1747}
1748
35c6edac 1749static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1750 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1751{
79e5ad2c 1752 __be32 xkey = htonl(l->key);
19baf839 1753 struct fib_alias *fa;
79e5ad2c 1754 int i, s_i;
19baf839 1755
79e5ad2c 1756 s_i = cb->args[4];
19baf839
RO
1757 i = 0;
1758
2373ce1c 1759 /* rcu_read_lock is hold by caller */
79e5ad2c 1760 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1761 if (i < s_i) {
1762 i++;
1763 continue;
1764 }
19baf839 1765
15e47304 1766 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1767 cb->nlh->nlmsg_seq,
1768 RTM_NEWROUTE,
1769 tb->tb_id,
1770 fa->fa_type,
be403ea1 1771 xkey,
9b6ebad5 1772 KEYLENGTH - fa->fa_slen,
19baf839 1773 fa->fa_tos,
64347f78 1774 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1775 cb->args[4] = i;
19baf839
RO
1776 return -1;
1777 }
a88ee229 1778 i++;
19baf839 1779 }
a88ee229 1780
71d67e66 1781 cb->args[4] = i;
19baf839
RO
1782 return skb->len;
1783}
1784
a7e53531 1785/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
1786int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1787 struct netlink_callback *cb)
19baf839 1788{
8be33e95 1789 struct trie *t = (struct trie *)tb->tb_data;
35c6edac 1790 struct key_vector *l, *tp;
d5ce8a0e
SH
1791 /* Dump starting at last key.
1792 * Note: 0.0.0.0/0 (ie default) is first key.
1793 */
8be33e95
AD
1794 int count = cb->args[2];
1795 t_key key = cb->args[3];
a88ee229 1796
35c6edac 1797 tp = rcu_dereference_rtnl(t->tnode[0]);
8be33e95
AD
1798
1799 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1800 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1801 cb->args[3] = key;
1802 cb->args[2] = count;
a88ee229 1803 return -1;
19baf839 1804 }
d5ce8a0e 1805
71d67e66 1806 ++count;
8be33e95
AD
1807 key = l->key + 1;
1808
71d67e66
SH
1809 memset(&cb->args[4], 0,
1810 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1811
1812 /* stop loop if key wrapped back to 0 */
1813 if (key < l->key)
1814 break;
19baf839 1815 }
8be33e95 1816
8be33e95
AD
1817 cb->args[3] = key;
1818 cb->args[2] = count;
1819
19baf839 1820 return skb->len;
19baf839
RO
1821}
1822
5348ba85 1823void __init fib_trie_init(void)
7f9b8052 1824{
a07f5f50
SH
1825 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1826 sizeof(struct fib_alias),
bc3c8c1e
SH
1827 0, SLAB_PANIC, NULL);
1828
1829 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 1830 LEAF_SIZE,
bc3c8c1e 1831 0, SLAB_PANIC, NULL);
7f9b8052 1832}
19baf839 1833
7f9b8052 1834
5348ba85 1835struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1836{
1837 struct fib_table *tb;
1838 struct trie *t;
1839
19baf839
RO
1840 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1841 GFP_KERNEL);
1842 if (tb == NULL)
1843 return NULL;
1844
1845 tb->tb_id = id;
971b893e 1846 tb->tb_default = -1;
21d8c49e 1847 tb->tb_num_default = 0;
19baf839
RO
1848
1849 t = (struct trie *) tb->tb_data;
35c6edac 1850 RCU_INIT_POINTER(t->tnode[0], NULL);
8274a97a
AD
1851#ifdef CONFIG_IP_FIB_TRIE_STATS
1852 t->stats = alloc_percpu(struct trie_use_stats);
1853 if (!t->stats) {
1854 kfree(tb);
1855 tb = NULL;
1856 }
1857#endif
19baf839 1858
19baf839
RO
1859 return tb;
1860}
1861
cb7b593c
SH
1862#ifdef CONFIG_PROC_FS
1863/* Depth first Trie walk iterator */
1864struct fib_trie_iter {
1c340b2f 1865 struct seq_net_private p;
3d3b2d25 1866 struct fib_table *tb;
35c6edac 1867 struct key_vector *tnode;
a034ee3c
ED
1868 unsigned int index;
1869 unsigned int depth;
cb7b593c 1870};
19baf839 1871
35c6edac 1872static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1873{
98293e8d 1874 unsigned long cindex = iter->index;
35c6edac
AD
1875 struct key_vector *tn = iter->tnode;
1876 struct key_vector *p;
19baf839 1877
6640e697
EB
1878 /* A single entry routing table */
1879 if (!tn)
1880 return NULL;
1881
cb7b593c
SH
1882 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1883 iter->tnode, iter->index, iter->depth);
1884rescan:
2e1ac88a 1885 while (cindex < child_length(tn)) {
754baf8d 1886 struct key_vector *n = get_child_rcu(tn, cindex);
19baf839 1887
cb7b593c
SH
1888 if (n) {
1889 if (IS_LEAF(n)) {
1890 iter->tnode = tn;
1891 iter->index = cindex + 1;
1892 } else {
1893 /* push down one level */
adaf9816 1894 iter->tnode = n;
cb7b593c
SH
1895 iter->index = 0;
1896 ++iter->depth;
1897 }
1898 return n;
1899 }
19baf839 1900
cb7b593c
SH
1901 ++cindex;
1902 }
91b9a277 1903
cb7b593c 1904 /* Current node exhausted, pop back up */
adaf9816 1905 p = node_parent_rcu(tn);
cb7b593c 1906 if (p) {
e9b44019 1907 cindex = get_index(tn->key, p) + 1;
cb7b593c
SH
1908 tn = p;
1909 --iter->depth;
1910 goto rescan;
19baf839 1911 }
cb7b593c
SH
1912
1913 /* got root? */
1914 return NULL;
19baf839
RO
1915}
1916
35c6edac
AD
1917static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
1918 struct trie *t)
19baf839 1919{
35c6edac 1920 struct key_vector *n;
5ddf0eb2 1921
132adf54 1922 if (!t)
5ddf0eb2
RO
1923 return NULL;
1924
35c6edac 1925 n = rcu_dereference(t->tnode[0]);
3d3b2d25 1926 if (!n)
5ddf0eb2 1927 return NULL;
19baf839 1928
3d3b2d25 1929 if (IS_TNODE(n)) {
adaf9816 1930 iter->tnode = n;
3d3b2d25
SH
1931 iter->index = 0;
1932 iter->depth = 1;
1933 } else {
1934 iter->tnode = NULL;
1935 iter->index = 0;
1936 iter->depth = 0;
91b9a277 1937 }
3d3b2d25
SH
1938
1939 return n;
cb7b593c 1940}
91b9a277 1941
cb7b593c
SH
1942static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1943{
35c6edac 1944 struct key_vector *n;
cb7b593c 1945 struct fib_trie_iter iter;
91b9a277 1946
cb7b593c 1947 memset(s, 0, sizeof(*s));
91b9a277 1948
cb7b593c 1949 rcu_read_lock();
3d3b2d25 1950 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 1951 if (IS_LEAF(n)) {
79e5ad2c 1952 struct fib_alias *fa;
93672292 1953
cb7b593c
SH
1954 s->leaves++;
1955 s->totdepth += iter.depth;
1956 if (iter.depth > s->maxdepth)
1957 s->maxdepth = iter.depth;
93672292 1958
79e5ad2c 1959 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 1960 ++s->prefixes;
cb7b593c 1961 } else {
cb7b593c 1962 s->tnodes++;
adaf9816
AD
1963 if (n->bits < MAX_STAT_DEPTH)
1964 s->nodesizes[n->bits]++;
6e22d174 1965 s->nullpointers += tn_info(n)->empty_children;
19baf839 1966 }
19baf839 1967 }
2373ce1c 1968 rcu_read_unlock();
19baf839
RO
1969}
1970
cb7b593c
SH
1971/*
1972 * This outputs /proc/net/fib_triestats
1973 */
1974static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 1975{
a034ee3c 1976 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 1977
cb7b593c
SH
1978 if (stat->leaves)
1979 avdepth = stat->totdepth*100 / stat->leaves;
1980 else
1981 avdepth = 0;
91b9a277 1982
a07f5f50
SH
1983 seq_printf(seq, "\tAver depth: %u.%02d\n",
1984 avdepth / 100, avdepth % 100);
cb7b593c 1985 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 1986
cb7b593c 1987 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 1988 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
1989
1990 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 1991 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 1992
187b5188 1993 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 1994 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 1995
06ef921d
RO
1996 max = MAX_STAT_DEPTH;
1997 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 1998 max--;
19baf839 1999
cb7b593c 2000 pointers = 0;
f585a991 2001 for (i = 1; i < max; i++)
cb7b593c 2002 if (stat->nodesizes[i] != 0) {
187b5188 2003 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2004 pointers += (1<<i) * stat->nodesizes[i];
2005 }
2006 seq_putc(seq, '\n');
187b5188 2007 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2008
35c6edac 2009 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2010 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2011 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2012}
2373ce1c 2013
cb7b593c 2014#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2015static void trie_show_usage(struct seq_file *seq,
8274a97a 2016 const struct trie_use_stats __percpu *stats)
66a2f7fd 2017{
8274a97a
AD
2018 struct trie_use_stats s = { 0 };
2019 int cpu;
2020
2021 /* loop through all of the CPUs and gather up the stats */
2022 for_each_possible_cpu(cpu) {
2023 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2024
2025 s.gets += pcpu->gets;
2026 s.backtrack += pcpu->backtrack;
2027 s.semantic_match_passed += pcpu->semantic_match_passed;
2028 s.semantic_match_miss += pcpu->semantic_match_miss;
2029 s.null_node_hit += pcpu->null_node_hit;
2030 s.resize_node_skipped += pcpu->resize_node_skipped;
2031 }
2032
66a2f7fd 2033 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2034 seq_printf(seq, "gets = %u\n", s.gets);
2035 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2036 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2037 s.semantic_match_passed);
2038 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2039 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2040 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2041}
66a2f7fd
SH
2042#endif /* CONFIG_IP_FIB_TRIE_STATS */
2043
3d3b2d25 2044static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2045{
3d3b2d25
SH
2046 if (tb->tb_id == RT_TABLE_LOCAL)
2047 seq_puts(seq, "Local:\n");
2048 else if (tb->tb_id == RT_TABLE_MAIN)
2049 seq_puts(seq, "Main:\n");
2050 else
2051 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2052}
19baf839 2053
3d3b2d25 2054
cb7b593c
SH
2055static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2056{
1c340b2f 2057 struct net *net = (struct net *)seq->private;
3d3b2d25 2058 unsigned int h;
877a9bff 2059
d717a9a6 2060 seq_printf(seq,
a07f5f50
SH
2061 "Basic info: size of leaf:"
2062 " %Zd bytes, size of tnode: %Zd bytes.\n",
41b489fd 2063 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2064
3d3b2d25
SH
2065 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2066 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2067 struct fib_table *tb;
2068
b67bfe0d 2069 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2070 struct trie *t = (struct trie *) tb->tb_data;
2071 struct trie_stat stat;
877a9bff 2072
3d3b2d25
SH
2073 if (!t)
2074 continue;
2075
2076 fib_table_print(seq, tb);
2077
2078 trie_collect_stats(t, &stat);
2079 trie_show_stats(seq, &stat);
2080#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2081 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2082#endif
2083 }
2084 }
19baf839 2085
cb7b593c 2086 return 0;
19baf839
RO
2087}
2088
cb7b593c 2089static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2090{
de05c557 2091 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2092}
2093
9a32144e 2094static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2095 .owner = THIS_MODULE,
2096 .open = fib_triestat_seq_open,
2097 .read = seq_read,
2098 .llseek = seq_lseek,
b6fcbdb4 2099 .release = single_release_net,
cb7b593c
SH
2100};
2101
35c6edac 2102static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2103{
1218854a
YH
2104 struct fib_trie_iter *iter = seq->private;
2105 struct net *net = seq_file_net(seq);
cb7b593c 2106 loff_t idx = 0;
3d3b2d25 2107 unsigned int h;
cb7b593c 2108
3d3b2d25
SH
2109 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2110 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2111 struct fib_table *tb;
cb7b593c 2112
b67bfe0d 2113 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2114 struct key_vector *n;
3d3b2d25
SH
2115
2116 for (n = fib_trie_get_first(iter,
2117 (struct trie *) tb->tb_data);
2118 n; n = fib_trie_get_next(iter))
2119 if (pos == idx++) {
2120 iter->tb = tb;
2121 return n;
2122 }
2123 }
cb7b593c 2124 }
3d3b2d25 2125
19baf839
RO
2126 return NULL;
2127}
2128
cb7b593c 2129static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2130 __acquires(RCU)
19baf839 2131{
cb7b593c 2132 rcu_read_lock();
1218854a 2133 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2134}
2135
cb7b593c 2136static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2137{
cb7b593c 2138 struct fib_trie_iter *iter = seq->private;
1218854a 2139 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2140 struct fib_table *tb = iter->tb;
2141 struct hlist_node *tb_node;
2142 unsigned int h;
35c6edac 2143 struct key_vector *n;
cb7b593c 2144
19baf839 2145 ++*pos;
3d3b2d25
SH
2146 /* next node in same table */
2147 n = fib_trie_get_next(iter);
2148 if (n)
2149 return n;
19baf839 2150
3d3b2d25
SH
2151 /* walk rest of this hash chain */
2152 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2153 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2154 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2155 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2156 if (n)
2157 goto found;
2158 }
19baf839 2159
3d3b2d25
SH
2160 /* new hash chain */
2161 while (++h < FIB_TABLE_HASHSZ) {
2162 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2163 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2164 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2165 if (n)
2166 goto found;
2167 }
2168 }
cb7b593c 2169 return NULL;
3d3b2d25
SH
2170
2171found:
2172 iter->tb = tb;
2173 return n;
cb7b593c 2174}
19baf839 2175
cb7b593c 2176static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2177 __releases(RCU)
19baf839 2178{
cb7b593c
SH
2179 rcu_read_unlock();
2180}
91b9a277 2181
cb7b593c
SH
2182static void seq_indent(struct seq_file *seq, int n)
2183{
a034ee3c
ED
2184 while (n-- > 0)
2185 seq_puts(seq, " ");
cb7b593c 2186}
19baf839 2187
28d36e37 2188static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2189{
132adf54 2190 switch (s) {
cb7b593c
SH
2191 case RT_SCOPE_UNIVERSE: return "universe";
2192 case RT_SCOPE_SITE: return "site";
2193 case RT_SCOPE_LINK: return "link";
2194 case RT_SCOPE_HOST: return "host";
2195 case RT_SCOPE_NOWHERE: return "nowhere";
2196 default:
28d36e37 2197 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2198 return buf;
2199 }
2200}
19baf839 2201
36cbd3dc 2202static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2203 [RTN_UNSPEC] = "UNSPEC",
2204 [RTN_UNICAST] = "UNICAST",
2205 [RTN_LOCAL] = "LOCAL",
2206 [RTN_BROADCAST] = "BROADCAST",
2207 [RTN_ANYCAST] = "ANYCAST",
2208 [RTN_MULTICAST] = "MULTICAST",
2209 [RTN_BLACKHOLE] = "BLACKHOLE",
2210 [RTN_UNREACHABLE] = "UNREACHABLE",
2211 [RTN_PROHIBIT] = "PROHIBIT",
2212 [RTN_THROW] = "THROW",
2213 [RTN_NAT] = "NAT",
2214 [RTN_XRESOLVE] = "XRESOLVE",
2215};
19baf839 2216
a034ee3c 2217static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2218{
cb7b593c
SH
2219 if (t < __RTN_MAX && rtn_type_names[t])
2220 return rtn_type_names[t];
28d36e37 2221 snprintf(buf, len, "type %u", t);
cb7b593c 2222 return buf;
19baf839
RO
2223}
2224
cb7b593c
SH
2225/* Pretty print the trie */
2226static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2227{
cb7b593c 2228 const struct fib_trie_iter *iter = seq->private;
35c6edac 2229 struct key_vector *n = v;
c877efb2 2230
3d3b2d25
SH
2231 if (!node_parent_rcu(n))
2232 fib_table_print(seq, iter->tb);
095b8501 2233
cb7b593c 2234 if (IS_TNODE(n)) {
adaf9816 2235 __be32 prf = htonl(n->key);
91b9a277 2236
e9b44019
AD
2237 seq_indent(seq, iter->depth-1);
2238 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2239 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
6e22d174
AD
2240 tn_info(n)->full_children,
2241 tn_info(n)->empty_children);
cb7b593c 2242 } else {
adaf9816 2243 __be32 val = htonl(n->key);
79e5ad2c 2244 struct fib_alias *fa;
cb7b593c
SH
2245
2246 seq_indent(seq, iter->depth);
673d57e7 2247 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2248
79e5ad2c
AD
2249 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2250 char buf1[32], buf2[32];
2251
2252 seq_indent(seq, iter->depth + 1);
2253 seq_printf(seq, " /%zu %s %s",
2254 KEYLENGTH - fa->fa_slen,
2255 rtn_scope(buf1, sizeof(buf1),
2256 fa->fa_info->fib_scope),
2257 rtn_type(buf2, sizeof(buf2),
2258 fa->fa_type));
2259 if (fa->fa_tos)
2260 seq_printf(seq, " tos=%d", fa->fa_tos);
2261 seq_putc(seq, '\n');
cb7b593c 2262 }
19baf839 2263 }
cb7b593c 2264
19baf839
RO
2265 return 0;
2266}
2267
f690808e 2268static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2269 .start = fib_trie_seq_start,
2270 .next = fib_trie_seq_next,
2271 .stop = fib_trie_seq_stop,
2272 .show = fib_trie_seq_show,
19baf839
RO
2273};
2274
cb7b593c 2275static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2276{
1c340b2f
DL
2277 return seq_open_net(inode, file, &fib_trie_seq_ops,
2278 sizeof(struct fib_trie_iter));
19baf839
RO
2279}
2280
9a32144e 2281static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2282 .owner = THIS_MODULE,
2283 .open = fib_trie_seq_open,
2284 .read = seq_read,
2285 .llseek = seq_lseek,
1c340b2f 2286 .release = seq_release_net,
19baf839
RO
2287};
2288
8315f5d8
SH
2289struct fib_route_iter {
2290 struct seq_net_private p;
8be33e95 2291 struct fib_table *main_tb;
35c6edac 2292 struct key_vector *tnode;
8315f5d8
SH
2293 loff_t pos;
2294 t_key key;
2295};
2296
35c6edac
AD
2297static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2298 loff_t pos)
8315f5d8 2299{
8be33e95 2300 struct fib_table *tb = iter->main_tb;
35c6edac 2301 struct key_vector *l, **tp = &iter->tnode;
8be33e95
AD
2302 struct trie *t;
2303 t_key key;
8315f5d8 2304
8be33e95
AD
2305 /* use cache location of next-to-find key */
2306 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2307 pos -= iter->pos;
8be33e95
AD
2308 key = iter->key;
2309 } else {
2310 t = (struct trie *)tb->tb_data;
35c6edac 2311 iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
8315f5d8 2312 iter->pos = 0;
8be33e95 2313 key = 0;
8315f5d8
SH
2314 }
2315
8be33e95
AD
2316 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2317 key = l->key + 1;
8315f5d8 2318 iter->pos++;
8be33e95
AD
2319
2320 if (pos-- <= 0)
2321 break;
2322
2323 l = NULL;
2324
2325 /* handle unlikely case of a key wrap */
2326 if (!key)
2327 break;
8315f5d8
SH
2328 }
2329
2330 if (l)
8be33e95 2331 iter->key = key; /* remember it */
8315f5d8
SH
2332 else
2333 iter->pos = 0; /* forget it */
2334
2335 return l;
2336}
2337
2338static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2339 __acquires(RCU)
2340{
2341 struct fib_route_iter *iter = seq->private;
2342 struct fib_table *tb;
8be33e95 2343 struct trie *t;
8315f5d8
SH
2344
2345 rcu_read_lock();
8be33e95 2346
1218854a 2347 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2348 if (!tb)
2349 return NULL;
2350
8be33e95
AD
2351 iter->main_tb = tb;
2352
2353 if (*pos != 0)
2354 return fib_route_get_idx(iter, *pos);
2355
2356 t = (struct trie *)tb->tb_data;
35c6edac 2357 iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
8be33e95
AD
2358 iter->pos = 0;
2359 iter->key = 0;
2360
2361 return SEQ_START_TOKEN;
8315f5d8
SH
2362}
2363
2364static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2365{
2366 struct fib_route_iter *iter = seq->private;
35c6edac 2367 struct key_vector *l = NULL;
8be33e95 2368 t_key key = iter->key;
8315f5d8
SH
2369
2370 ++*pos;
8be33e95
AD
2371
2372 /* only allow key of 0 for start of sequence */
2373 if ((v == SEQ_START_TOKEN) || key)
2374 l = leaf_walk_rcu(&iter->tnode, key);
2375
2376 if (l) {
2377 iter->key = l->key + 1;
8315f5d8 2378 iter->pos++;
8be33e95
AD
2379 } else {
2380 iter->pos = 0;
8315f5d8
SH
2381 }
2382
8315f5d8
SH
2383 return l;
2384}
2385
2386static void fib_route_seq_stop(struct seq_file *seq, void *v)
2387 __releases(RCU)
2388{
2389 rcu_read_unlock();
2390}
2391
a034ee3c 2392static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2393{
a034ee3c 2394 unsigned int flags = 0;
19baf839 2395
a034ee3c
ED
2396 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2397 flags = RTF_REJECT;
cb7b593c
SH
2398 if (fi && fi->fib_nh->nh_gw)
2399 flags |= RTF_GATEWAY;
32ab5f80 2400 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2401 flags |= RTF_HOST;
2402 flags |= RTF_UP;
2403 return flags;
19baf839
RO
2404}
2405
cb7b593c
SH
2406/*
2407 * This outputs /proc/net/route.
2408 * The format of the file is not supposed to be changed
a034ee3c 2409 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2410 * legacy utilities
2411 */
2412static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2413{
79e5ad2c 2414 struct fib_alias *fa;
35c6edac 2415 struct key_vector *l = v;
9b6ebad5 2416 __be32 prefix;
19baf839 2417
cb7b593c
SH
2418 if (v == SEQ_START_TOKEN) {
2419 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2420 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2421 "\tWindow\tIRTT");
2422 return 0;
2423 }
19baf839 2424
9b6ebad5
AD
2425 prefix = htonl(l->key);
2426
79e5ad2c
AD
2427 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2428 const struct fib_info *fi = fa->fa_info;
2429 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2430 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2431
79e5ad2c
AD
2432 if ((fa->fa_type == RTN_BROADCAST) ||
2433 (fa->fa_type == RTN_MULTICAST))
2434 continue;
19baf839 2435
79e5ad2c
AD
2436 seq_setwidth(seq, 127);
2437
2438 if (fi)
2439 seq_printf(seq,
2440 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2441 "%d\t%08X\t%d\t%u\t%u",
2442 fi->fib_dev ? fi->fib_dev->name : "*",
2443 prefix,
2444 fi->fib_nh->nh_gw, flags, 0, 0,
2445 fi->fib_priority,
2446 mask,
2447 (fi->fib_advmss ?
2448 fi->fib_advmss + 40 : 0),
2449 fi->fib_window,
2450 fi->fib_rtt >> 3);
2451 else
2452 seq_printf(seq,
2453 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2454 "%d\t%08X\t%d\t%u\t%u",
2455 prefix, 0, flags, 0, 0, 0,
2456 mask, 0, 0, 0);
19baf839 2457
79e5ad2c 2458 seq_pad(seq, '\n');
19baf839
RO
2459 }
2460
2461 return 0;
2462}
2463
f690808e 2464static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2465 .start = fib_route_seq_start,
2466 .next = fib_route_seq_next,
2467 .stop = fib_route_seq_stop,
cb7b593c 2468 .show = fib_route_seq_show,
19baf839
RO
2469};
2470
cb7b593c 2471static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2472{
1c340b2f 2473 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2474 sizeof(struct fib_route_iter));
19baf839
RO
2475}
2476
9a32144e 2477static const struct file_operations fib_route_fops = {
cb7b593c
SH
2478 .owner = THIS_MODULE,
2479 .open = fib_route_seq_open,
2480 .read = seq_read,
2481 .llseek = seq_lseek,
1c340b2f 2482 .release = seq_release_net,
19baf839
RO
2483};
2484
61a02653 2485int __net_init fib_proc_init(struct net *net)
19baf839 2486{
d4beaa66 2487 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2488 goto out1;
2489
d4beaa66
G
2490 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2491 &fib_triestat_fops))
cb7b593c
SH
2492 goto out2;
2493
d4beaa66 2494 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2495 goto out3;
2496
19baf839 2497 return 0;
cb7b593c
SH
2498
2499out3:
ece31ffd 2500 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2501out2:
ece31ffd 2502 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2503out1:
2504 return -ENOMEM;
19baf839
RO
2505}
2506
61a02653 2507void __net_exit fib_proc_exit(struct net *net)
19baf839 2508{
ece31ffd
G
2509 remove_proc_entry("fib_trie", net->proc_net);
2510 remove_proc_entry("fib_triestat", net->proc_net);
2511 remove_proc_entry("route", net->proc_net);
19baf839
RO
2512}
2513
2514#endif /* CONFIG_PROC_FS */