]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/ipv4/tcp_input.c
Merge branch 'overlayfs-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszer...
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
94bdc978 82int sysctl_tcp_fack __read_mostly;
dca145ff 83int sysctl_tcp_max_reordering __read_mostly = 300;
ab32ea5d
BH
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 86int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 88
282f23c6 89/* rfc5961 challenge ack rate limiting */
75ff39cc 90int sysctl_tcp_challenge_ack_limit = 1000;
282f23c6 91
ab32ea5d
BH
92int sysctl_tcp_stdurg __read_mostly;
93int sysctl_tcp_rfc1337 __read_mostly;
94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 95int sysctl_tcp_frto __read_mostly = 2;
f6722583 96int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
ab32ea5d 97int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 98int sysctl_tcp_early_retrans __read_mostly = 3;
032ee423 99int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
1da177e4 100
1da177e4
LT
101#define FLAG_DATA 0x01 /* Incoming frame contained data. */
102#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106#define FLAG_DATA_SACKED 0x20 /* New SACK. */
107#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 108#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
1da177e4 109#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 110#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 111#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 112#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 113#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 114#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
115
116#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
1da177e4 121#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 122#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 123
e662ca40
YC
124#define REXMIT_NONE 0 /* no loss recovery to do */
125#define REXMIT_LOST 1 /* retransmit packets marked lost */
126#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
127
0b9aefea
MRL
128static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
129 unsigned int len)
dcb17d22
MRL
130{
131 static bool __once __read_mostly;
132
133 if (!__once) {
134 struct net_device *dev;
135
136 __once = true;
137
138 rcu_read_lock();
139 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
140 if (!dev || len >= dev->mtu)
141 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
142 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
143 rcu_read_unlock();
144 }
145}
146
e905a9ed 147/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 148 * real world.
e905a9ed 149 */
056834d9 150static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 151{
463c84b9 152 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 153 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 154 unsigned int len;
1da177e4 155
e905a9ed 156 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
157
158 /* skb->len may jitter because of SACKs, even if peer
159 * sends good full-sized frames.
160 */
056834d9 161 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 162 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
163 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
164 tcp_sk(sk)->advmss);
0b9aefea
MRL
165 /* Account for possibly-removed options */
166 if (unlikely(len > icsk->icsk_ack.rcv_mss +
167 MAX_TCP_OPTION_SPACE))
168 tcp_gro_dev_warn(sk, skb, len);
1da177e4
LT
169 } else {
170 /* Otherwise, we make more careful check taking into account,
171 * that SACKs block is variable.
172 *
173 * "len" is invariant segment length, including TCP header.
174 */
9c70220b 175 len += skb->data - skb_transport_header(skb);
bee7ca9e 176 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
177 /* If PSH is not set, packet should be
178 * full sized, provided peer TCP is not badly broken.
179 * This observation (if it is correct 8)) allows
180 * to handle super-low mtu links fairly.
181 */
182 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 183 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
184 /* Subtract also invariant (if peer is RFC compliant),
185 * tcp header plus fixed timestamp option length.
186 * Resulting "len" is MSS free of SACK jitter.
187 */
463c84b9
ACM
188 len -= tcp_sk(sk)->tcp_header_len;
189 icsk->icsk_ack.last_seg_size = len;
1da177e4 190 if (len == lss) {
463c84b9 191 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
192 return;
193 }
194 }
1ef9696c
AK
195 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
198 }
199}
200
463c84b9 201static void tcp_incr_quickack(struct sock *sk)
1da177e4 202{
463c84b9 203 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 204 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 205
056834d9
IJ
206 if (quickacks == 0)
207 quickacks = 2;
463c84b9
ACM
208 if (quickacks > icsk->icsk_ack.quick)
209 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
210}
211
1b9f4092 212static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 213{
463c84b9
ACM
214 struct inet_connection_sock *icsk = inet_csk(sk);
215 tcp_incr_quickack(sk);
216 icsk->icsk_ack.pingpong = 0;
217 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
218}
219
220/* Send ACKs quickly, if "quick" count is not exhausted
221 * and the session is not interactive.
222 */
223
2251ae46 224static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 225{
463c84b9 226 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 227 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 228
2251ae46
JM
229 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
230 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
231}
232
735d3831 233static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 234{
056834d9 235 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
236 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
237}
238
735d3831 239static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
240{
241 if (tcp_hdr(skb)->cwr)
242 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
243}
244
735d3831 245static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
246{
247 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
248}
249
735d3831 250static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 251{
b82d1bb4 252 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 253 case INET_ECN_NOT_ECT:
bdf1ee5d 254 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
255 * and we already seen ECT on a previous segment,
256 * it is probably a retransmit.
257 */
258 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 259 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
260 break;
261 case INET_ECN_CE:
9890092e
FW
262 if (tcp_ca_needs_ecn((struct sock *)tp))
263 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
264
aae06bf5
ED
265 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
266 /* Better not delay acks, sender can have a very low cwnd */
267 tcp_enter_quickack_mode((struct sock *)tp);
268 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
269 }
9890092e
FW
270 tp->ecn_flags |= TCP_ECN_SEEN;
271 break;
7a269ffa 272 default:
9890092e
FW
273 if (tcp_ca_needs_ecn((struct sock *)tp))
274 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 275 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 276 break;
bdf1ee5d
IJ
277 }
278}
279
735d3831
FW
280static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
281{
282 if (tp->ecn_flags & TCP_ECN_OK)
283 __tcp_ecn_check_ce(tp, skb);
284}
285
286static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 287{
056834d9 288 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
289 tp->ecn_flags &= ~TCP_ECN_OK;
290}
291
735d3831 292static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 293{
056834d9 294 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
295 tp->ecn_flags &= ~TCP_ECN_OK;
296}
297
735d3831 298static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 299{
056834d9 300 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
301 return true;
302 return false;
bdf1ee5d
IJ
303}
304
1da177e4
LT
305/* Buffer size and advertised window tuning.
306 *
307 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
308 */
309
6ae70532 310static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 311{
6ae70532 312 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 313 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
314 int sndmem, per_mss;
315 u32 nr_segs;
316
317 /* Worst case is non GSO/TSO : each frame consumes one skb
318 * and skb->head is kmalloced using power of two area of memory
319 */
320 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
321 MAX_TCP_HEADER +
322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
323
324 per_mss = roundup_pow_of_two(per_mss) +
325 SKB_DATA_ALIGN(sizeof(struct sk_buff));
326
327 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
328 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
329
330 /* Fast Recovery (RFC 5681 3.2) :
331 * Cubic needs 1.7 factor, rounded to 2 to include
332 * extra cushion (application might react slowly to POLLOUT)
333 */
77bfc174
YC
334 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
335 sndmem *= nr_segs * per_mss;
1da177e4 336
06a59ecb
ED
337 if (sk->sk_sndbuf < sndmem)
338 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
339}
340
341/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
342 *
343 * All tcp_full_space() is split to two parts: "network" buffer, allocated
344 * forward and advertised in receiver window (tp->rcv_wnd) and
345 * "application buffer", required to isolate scheduling/application
346 * latencies from network.
347 * window_clamp is maximal advertised window. It can be less than
348 * tcp_full_space(), in this case tcp_full_space() - window_clamp
349 * is reserved for "application" buffer. The less window_clamp is
350 * the smoother our behaviour from viewpoint of network, but the lower
351 * throughput and the higher sensitivity of the connection to losses. 8)
352 *
353 * rcv_ssthresh is more strict window_clamp used at "slow start"
354 * phase to predict further behaviour of this connection.
355 * It is used for two goals:
356 * - to enforce header prediction at sender, even when application
357 * requires some significant "application buffer". It is check #1.
358 * - to prevent pruning of receive queue because of misprediction
359 * of receiver window. Check #2.
360 *
361 * The scheme does not work when sender sends good segments opening
caa20d9a 362 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
363 * in common situations. Otherwise, we have to rely on queue collapsing.
364 */
365
366/* Slow part of check#2. */
9e412ba7 367static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 368{
9e412ba7 369 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 370 /* Optimize this! */
dfd4f0ae
ED
371 int truesize = tcp_win_from_space(skb->truesize) >> 1;
372 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
373
374 while (tp->rcv_ssthresh <= window) {
375 if (truesize <= skb->len)
463c84b9 376 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
377
378 truesize >>= 1;
379 window >>= 1;
380 }
381 return 0;
382}
383
cf533ea5 384static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 385{
9e412ba7
IJ
386 struct tcp_sock *tp = tcp_sk(sk);
387
1da177e4
LT
388 /* Check #1 */
389 if (tp->rcv_ssthresh < tp->window_clamp &&
390 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 391 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
392 int incr;
393
394 /* Check #2. Increase window, if skb with such overhead
395 * will fit to rcvbuf in future.
396 */
397 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 398 incr = 2 * tp->advmss;
1da177e4 399 else
9e412ba7 400 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
401
402 if (incr) {
4d846f02 403 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
404 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
405 tp->window_clamp);
463c84b9 406 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
407 }
408 }
409}
410
411/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
412static void tcp_fixup_rcvbuf(struct sock *sk)
413{
e9266a02 414 u32 mss = tcp_sk(sk)->advmss;
e9266a02 415 int rcvmem;
1da177e4 416
85f16525
YC
417 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
418 tcp_default_init_rwnd(mss);
e9266a02 419
b0983d3c
ED
420 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
421 * Allow enough cushion so that sender is not limited by our window
422 */
423 if (sysctl_tcp_moderate_rcvbuf)
424 rcvmem <<= 2;
425
e9266a02
ED
426 if (sk->sk_rcvbuf < rcvmem)
427 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
428}
429
caa20d9a 430/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
431 * established state.
432 */
10467163 433void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
434{
435 struct tcp_sock *tp = tcp_sk(sk);
436 int maxwin;
437
438 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
439 tcp_fixup_rcvbuf(sk);
440 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 441 tcp_sndbuf_expand(sk);
1da177e4
LT
442
443 tp->rcvq_space.space = tp->rcv_wnd;
645f4c6f
ED
444 skb_mstamp_get(&tp->tcp_mstamp);
445 tp->rcvq_space.time = tp->tcp_mstamp;
b0983d3c 446 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
447
448 maxwin = tcp_full_space(sk);
449
450 if (tp->window_clamp >= maxwin) {
451 tp->window_clamp = maxwin;
452
453 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
454 tp->window_clamp = max(maxwin -
455 (maxwin >> sysctl_tcp_app_win),
456 4 * tp->advmss);
457 }
458
459 /* Force reservation of one segment. */
460 if (sysctl_tcp_app_win &&
461 tp->window_clamp > 2 * tp->advmss &&
462 tp->window_clamp + tp->advmss > maxwin)
463 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
464
465 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
466 tp->snd_cwnd_stamp = tcp_time_stamp;
467}
468
1da177e4 469/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 470static void tcp_clamp_window(struct sock *sk)
1da177e4 471{
9e412ba7 472 struct tcp_sock *tp = tcp_sk(sk);
6687e988 473 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 474
6687e988 475 icsk->icsk_ack.quick = 0;
1da177e4 476
326f36e9
JH
477 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
478 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 479 !tcp_under_memory_pressure(sk) &&
180d8cd9 480 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
481 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
482 sysctl_tcp_rmem[2]);
1da177e4 483 }
326f36e9 484 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 485 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
486}
487
40efc6fa
SH
488/* Initialize RCV_MSS value.
489 * RCV_MSS is an our guess about MSS used by the peer.
490 * We haven't any direct information about the MSS.
491 * It's better to underestimate the RCV_MSS rather than overestimate.
492 * Overestimations make us ACKing less frequently than needed.
493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494 */
495void tcp_initialize_rcv_mss(struct sock *sk)
496{
cf533ea5 497 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
498 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499
056834d9 500 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 501 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
502 hint = max(hint, TCP_MIN_MSS);
503
504 inet_csk(sk)->icsk_ack.rcv_mss = hint;
505}
4bc2f18b 506EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 507
1da177e4
LT
508/* Receiver "autotuning" code.
509 *
510 * The algorithm for RTT estimation w/o timestamps is based on
511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 512 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
513 *
514 * More detail on this code can be found at
631dd1a8 515 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
516 * though this reference is out of date. A new paper
517 * is pending.
518 */
519static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520{
645f4c6f 521 u32 new_sample = tp->rcv_rtt_est.rtt_us;
1da177e4
LT
522 long m = sample;
523
524 if (m == 0)
525 m = 1;
526
527 if (new_sample != 0) {
528 /* If we sample in larger samples in the non-timestamp
529 * case, we could grossly overestimate the RTT especially
530 * with chatty applications or bulk transfer apps which
531 * are stalled on filesystem I/O.
532 *
533 * Also, since we are only going for a minimum in the
31f34269 534 * non-timestamp case, we do not smooth things out
caa20d9a 535 * else with timestamps disabled convergence takes too
1da177e4
LT
536 * long.
537 */
538 if (!win_dep) {
539 m -= (new_sample >> 3);
540 new_sample += m;
18a223e0
NC
541 } else {
542 m <<= 3;
543 if (m < new_sample)
544 new_sample = m;
545 }
1da177e4 546 } else {
caa20d9a 547 /* No previous measure. */
1da177e4
LT
548 new_sample = m << 3;
549 }
550
645f4c6f 551 tp->rcv_rtt_est.rtt_us = new_sample;
1da177e4
LT
552}
553
554static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
555{
645f4c6f
ED
556 u32 delta_us;
557
558 if (tp->rcv_rtt_est.time.v64 == 0)
1da177e4
LT
559 goto new_measure;
560 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
561 return;
645f4c6f
ED
562 delta_us = skb_mstamp_us_delta(&tp->tcp_mstamp, &tp->rcv_rtt_est.time);
563 tcp_rcv_rtt_update(tp, delta_us, 1);
1da177e4
LT
564
565new_measure:
566 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
645f4c6f 567 tp->rcv_rtt_est.time = tp->tcp_mstamp;
1da177e4
LT
568}
569
056834d9
IJ
570static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
571 const struct sk_buff *skb)
1da177e4 572{
463c84b9 573 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
574 if (tp->rx_opt.rcv_tsecr &&
575 (TCP_SKB_CB(skb)->end_seq -
463c84b9 576 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
645f4c6f
ED
577 tcp_rcv_rtt_update(tp,
578 jiffies_to_usecs(tcp_time_stamp -
579 tp->rx_opt.rcv_tsecr),
580 0);
1da177e4
LT
581}
582
583/*
584 * This function should be called every time data is copied to user space.
585 * It calculates the appropriate TCP receive buffer space.
586 */
587void tcp_rcv_space_adjust(struct sock *sk)
588{
589 struct tcp_sock *tp = tcp_sk(sk);
590 int time;
b0983d3c 591 int copied;
e905a9ed 592
645f4c6f
ED
593 time = skb_mstamp_us_delta(&tp->tcp_mstamp, &tp->rcvq_space.time);
594 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
1da177e4 595 return;
e905a9ed 596
b0983d3c
ED
597 /* Number of bytes copied to user in last RTT */
598 copied = tp->copied_seq - tp->rcvq_space.seq;
599 if (copied <= tp->rcvq_space.space)
600 goto new_measure;
601
602 /* A bit of theory :
603 * copied = bytes received in previous RTT, our base window
604 * To cope with packet losses, we need a 2x factor
605 * To cope with slow start, and sender growing its cwin by 100 %
606 * every RTT, we need a 4x factor, because the ACK we are sending
607 * now is for the next RTT, not the current one :
608 * <prev RTT . ><current RTT .. ><next RTT .... >
609 */
610
611 if (sysctl_tcp_moderate_rcvbuf &&
612 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
613 int rcvwin, rcvmem, rcvbuf;
1da177e4 614
b0983d3c
ED
615 /* minimal window to cope with packet losses, assuming
616 * steady state. Add some cushion because of small variations.
617 */
618 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 619
b0983d3c
ED
620 /* If rate increased by 25%,
621 * assume slow start, rcvwin = 3 * copied
622 * If rate increased by 50%,
623 * assume sender can use 2x growth, rcvwin = 4 * copied
624 */
625 if (copied >=
626 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
627 if (copied >=
628 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
629 rcvwin <<= 1;
630 else
631 rcvwin += (rcvwin >> 1);
632 }
1da177e4 633
b0983d3c
ED
634 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
635 while (tcp_win_from_space(rcvmem) < tp->advmss)
636 rcvmem += 128;
1da177e4 637
b0983d3c
ED
638 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
639 if (rcvbuf > sk->sk_rcvbuf) {
640 sk->sk_rcvbuf = rcvbuf;
1da177e4 641
b0983d3c
ED
642 /* Make the window clamp follow along. */
643 tp->window_clamp = rcvwin;
1da177e4
LT
644 }
645 }
b0983d3c 646 tp->rcvq_space.space = copied;
e905a9ed 647
1da177e4
LT
648new_measure:
649 tp->rcvq_space.seq = tp->copied_seq;
645f4c6f 650 tp->rcvq_space.time = tp->tcp_mstamp;
1da177e4
LT
651}
652
653/* There is something which you must keep in mind when you analyze the
654 * behavior of the tp->ato delayed ack timeout interval. When a
655 * connection starts up, we want to ack as quickly as possible. The
656 * problem is that "good" TCP's do slow start at the beginning of data
657 * transmission. The means that until we send the first few ACK's the
658 * sender will sit on his end and only queue most of his data, because
659 * he can only send snd_cwnd unacked packets at any given time. For
660 * each ACK we send, he increments snd_cwnd and transmits more of his
661 * queue. -DaveM
662 */
9e412ba7 663static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 664{
9e412ba7 665 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 666 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
667 u32 now;
668
463c84b9 669 inet_csk_schedule_ack(sk);
1da177e4 670
463c84b9 671 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
672
673 tcp_rcv_rtt_measure(tp);
e905a9ed 674
1da177e4
LT
675 now = tcp_time_stamp;
676
463c84b9 677 if (!icsk->icsk_ack.ato) {
1da177e4
LT
678 /* The _first_ data packet received, initialize
679 * delayed ACK engine.
680 */
463c84b9
ACM
681 tcp_incr_quickack(sk);
682 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 683 } else {
463c84b9 684 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 685
056834d9 686 if (m <= TCP_ATO_MIN / 2) {
1da177e4 687 /* The fastest case is the first. */
463c84b9
ACM
688 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
689 } else if (m < icsk->icsk_ack.ato) {
690 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
691 if (icsk->icsk_ack.ato > icsk->icsk_rto)
692 icsk->icsk_ack.ato = icsk->icsk_rto;
693 } else if (m > icsk->icsk_rto) {
caa20d9a 694 /* Too long gap. Apparently sender failed to
1da177e4
LT
695 * restart window, so that we send ACKs quickly.
696 */
463c84b9 697 tcp_incr_quickack(sk);
3ab224be 698 sk_mem_reclaim(sk);
1da177e4
LT
699 }
700 }
463c84b9 701 icsk->icsk_ack.lrcvtime = now;
1da177e4 702
735d3831 703 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
704
705 if (skb->len >= 128)
9e412ba7 706 tcp_grow_window(sk, skb);
1da177e4
LT
707}
708
1da177e4
LT
709/* Called to compute a smoothed rtt estimate. The data fed to this
710 * routine either comes from timestamps, or from segments that were
711 * known _not_ to have been retransmitted [see Karn/Partridge
712 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
713 * piece by Van Jacobson.
714 * NOTE: the next three routines used to be one big routine.
715 * To save cycles in the RFC 1323 implementation it was better to break
716 * it up into three procedures. -- erics
717 */
740b0f18 718static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 719{
6687e988 720 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
721 long m = mrtt_us; /* RTT */
722 u32 srtt = tp->srtt_us;
1da177e4 723
1da177e4
LT
724 /* The following amusing code comes from Jacobson's
725 * article in SIGCOMM '88. Note that rtt and mdev
726 * are scaled versions of rtt and mean deviation.
e905a9ed 727 * This is designed to be as fast as possible
1da177e4
LT
728 * m stands for "measurement".
729 *
730 * On a 1990 paper the rto value is changed to:
731 * RTO = rtt + 4 * mdev
732 *
733 * Funny. This algorithm seems to be very broken.
734 * These formulae increase RTO, when it should be decreased, increase
31f34269 735 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
736 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
737 * does not matter how to _calculate_ it. Seems, it was trap
738 * that VJ failed to avoid. 8)
739 */
4a5ab4e2
ED
740 if (srtt != 0) {
741 m -= (srtt >> 3); /* m is now error in rtt est */
742 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
743 if (m < 0) {
744 m = -m; /* m is now abs(error) */
740b0f18 745 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
746 /* This is similar to one of Eifel findings.
747 * Eifel blocks mdev updates when rtt decreases.
748 * This solution is a bit different: we use finer gain
749 * for mdev in this case (alpha*beta).
750 * Like Eifel it also prevents growth of rto,
751 * but also it limits too fast rto decreases,
752 * happening in pure Eifel.
753 */
754 if (m > 0)
755 m >>= 3;
756 } else {
740b0f18 757 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 758 }
740b0f18
ED
759 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
760 if (tp->mdev_us > tp->mdev_max_us) {
761 tp->mdev_max_us = tp->mdev_us;
762 if (tp->mdev_max_us > tp->rttvar_us)
763 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
764 }
765 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
766 if (tp->mdev_max_us < tp->rttvar_us)
767 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 768 tp->rtt_seq = tp->snd_nxt;
740b0f18 769 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
770 }
771 } else {
772 /* no previous measure. */
4a5ab4e2 773 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
774 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
775 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
776 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
777 tp->rtt_seq = tp->snd_nxt;
778 }
740b0f18 779 tp->srtt_us = max(1U, srtt);
1da177e4
LT
780}
781
95bd09eb
ED
782/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
783 * Note: TCP stack does not yet implement pacing.
784 * FQ packet scheduler can be used to implement cheap but effective
785 * TCP pacing, to smooth the burst on large writes when packets
786 * in flight is significantly lower than cwnd (or rwin)
787 */
43e122b0
ED
788int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
789int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
790
95bd09eb
ED
791static void tcp_update_pacing_rate(struct sock *sk)
792{
793 const struct tcp_sock *tp = tcp_sk(sk);
794 u64 rate;
795
796 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
797 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
798
799 /* current rate is (cwnd * mss) / srtt
800 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
801 * In Congestion Avoidance phase, set it to 120 % the current rate.
802 *
803 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
804 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
805 * end of slow start and should slow down.
806 */
807 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
808 rate *= sysctl_tcp_pacing_ss_ratio;
809 else
810 rate *= sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
811
812 rate *= max(tp->snd_cwnd, tp->packets_out);
813
740b0f18
ED
814 if (likely(tp->srtt_us))
815 do_div(rate, tp->srtt_us);
95bd09eb 816
ba537427
ED
817 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
818 * without any lock. We want to make sure compiler wont store
819 * intermediate values in this location.
820 */
821 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
822 sk->sk_max_pacing_rate);
95bd09eb
ED
823}
824
1da177e4
LT
825/* Calculate rto without backoff. This is the second half of Van Jacobson's
826 * routine referred to above.
827 */
f7e56a76 828static void tcp_set_rto(struct sock *sk)
1da177e4 829{
463c84b9 830 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
831 /* Old crap is replaced with new one. 8)
832 *
833 * More seriously:
834 * 1. If rtt variance happened to be less 50msec, it is hallucination.
835 * It cannot be less due to utterly erratic ACK generation made
836 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
837 * to do with delayed acks, because at cwnd>2 true delack timeout
838 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 839 * ACKs in some circumstances.
1da177e4 840 */
f1ecd5d9 841 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
842
843 /* 2. Fixups made earlier cannot be right.
844 * If we do not estimate RTO correctly without them,
845 * all the algo is pure shit and should be replaced
caa20d9a 846 * with correct one. It is exactly, which we pretend to do.
1da177e4 847 */
1da177e4 848
ee6aac59
IJ
849 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
850 * guarantees that rto is higher.
851 */
f1ecd5d9 852 tcp_bound_rto(sk);
1da177e4
LT
853}
854
cf533ea5 855__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
856{
857 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
858
22b71c8f 859 if (!cwnd)
442b9635 860 cwnd = TCP_INIT_CWND;
1da177e4
LT
861 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
862}
863
e60402d0
IJ
864/*
865 * Packet counting of FACK is based on in-order assumptions, therefore TCP
866 * disables it when reordering is detected
867 */
4aabd8ef 868void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 869{
85cc391c
IJ
870 /* RFC3517 uses different metric in lost marker => reset on change */
871 if (tcp_is_fack(tp))
872 tp->lost_skb_hint = NULL;
ab56222a 873 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
874}
875
564262c1 876/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
877static void tcp_dsack_seen(struct tcp_sock *tp)
878{
ab56222a 879 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
880}
881
6687e988
ACM
882static void tcp_update_reordering(struct sock *sk, const int metric,
883 const int ts)
1da177e4 884{
6687e988 885 struct tcp_sock *tp = tcp_sk(sk);
2d2517ee 886 int mib_idx;
40b215e5 887
2d2517ee 888 if (metric > tp->reordering) {
dca145ff 889 tp->reordering = min(sysctl_tcp_max_reordering, metric);
1da177e4 890
1da177e4 891#if FASTRETRANS_DEBUG > 1
91df42be
JP
892 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
893 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
894 tp->reordering,
895 tp->fackets_out,
896 tp->sacked_out,
897 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 898#endif
e60402d0 899 tcp_disable_fack(tp);
1da177e4 900 }
eed530b6 901
4f41b1c5 902 tp->rack.reord = 1;
2d2517ee
YC
903
904 /* This exciting event is worth to be remembered. 8) */
905 if (ts)
906 mib_idx = LINUX_MIB_TCPTSREORDER;
907 else if (tcp_is_reno(tp))
908 mib_idx = LINUX_MIB_TCPRENOREORDER;
909 else if (tcp_is_fack(tp))
910 mib_idx = LINUX_MIB_TCPFACKREORDER;
911 else
912 mib_idx = LINUX_MIB_TCPSACKREORDER;
913
914 NET_INC_STATS(sock_net(sk), mib_idx);
1da177e4
LT
915}
916
006f582c 917/* This must be called before lost_out is incremented */
c8c213f2
IJ
918static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
919{
51456b29 920 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
921 before(TCP_SKB_CB(skb)->seq,
922 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c 923 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
924}
925
0682e690
NC
926/* Sum the number of packets on the wire we have marked as lost.
927 * There are two cases we care about here:
928 * a) Packet hasn't been marked lost (nor retransmitted),
929 * and this is the first loss.
930 * b) Packet has been marked both lost and retransmitted,
931 * and this means we think it was lost again.
932 */
933static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
934{
935 __u8 sacked = TCP_SKB_CB(skb)->sacked;
936
937 if (!(sacked & TCPCB_LOST) ||
938 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
939 tp->lost += tcp_skb_pcount(skb);
940}
941
41ea36e3
IJ
942static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
943{
944 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 tcp_verify_retransmit_hint(tp, skb);
946
947 tp->lost_out += tcp_skb_pcount(skb);
0682e690 948 tcp_sum_lost(tp, skb);
41ea36e3
IJ
949 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
950 }
951}
952
4f41b1c5 953void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
954{
955 tcp_verify_retransmit_hint(tp, skb);
956
0682e690 957 tcp_sum_lost(tp, skb);
006f582c
IJ
958 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
959 tp->lost_out += tcp_skb_pcount(skb);
960 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
961 }
962}
963
1da177e4
LT
964/* This procedure tags the retransmission queue when SACKs arrive.
965 *
966 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
967 * Packets in queue with these bits set are counted in variables
968 * sacked_out, retrans_out and lost_out, correspondingly.
969 *
970 * Valid combinations are:
971 * Tag InFlight Description
972 * 0 1 - orig segment is in flight.
973 * S 0 - nothing flies, orig reached receiver.
974 * L 0 - nothing flies, orig lost by net.
975 * R 2 - both orig and retransmit are in flight.
976 * L|R 1 - orig is lost, retransmit is in flight.
977 * S|R 1 - orig reached receiver, retrans is still in flight.
978 * (L|S|R is logically valid, it could occur when L|R is sacked,
979 * but it is equivalent to plain S and code short-curcuits it to S.
980 * L|S is logically invalid, it would mean -1 packet in flight 8))
981 *
982 * These 6 states form finite state machine, controlled by the following events:
983 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
984 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 985 * 3. Loss detection event of two flavors:
1da177e4
LT
986 * A. Scoreboard estimator decided the packet is lost.
987 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
988 * A''. Its FACK modification, head until snd.fack is lost.
989 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
990 * segment was retransmitted.
991 * 4. D-SACK added new rule: D-SACK changes any tag to S.
992 *
993 * It is pleasant to note, that state diagram turns out to be commutative,
994 * so that we are allowed not to be bothered by order of our actions,
995 * when multiple events arrive simultaneously. (see the function below).
996 *
997 * Reordering detection.
998 * --------------------
999 * Reordering metric is maximal distance, which a packet can be displaced
1000 * in packet stream. With SACKs we can estimate it:
1001 *
1002 * 1. SACK fills old hole and the corresponding segment was not
1003 * ever retransmitted -> reordering. Alas, we cannot use it
1004 * when segment was retransmitted.
1005 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1006 * for retransmitted and already SACKed segment -> reordering..
1007 * Both of these heuristics are not used in Loss state, when we cannot
1008 * account for retransmits accurately.
5b3c9882
IJ
1009 *
1010 * SACK block validation.
1011 * ----------------------
1012 *
1013 * SACK block range validation checks that the received SACK block fits to
1014 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1015 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1016 * it means that the receiver is rather inconsistent with itself reporting
1017 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1018 * perfectly valid, however, in light of RFC2018 which explicitly states
1019 * that "SACK block MUST reflect the newest segment. Even if the newest
1020 * segment is going to be discarded ...", not that it looks very clever
1021 * in case of head skb. Due to potentional receiver driven attacks, we
1022 * choose to avoid immediate execution of a walk in write queue due to
1023 * reneging and defer head skb's loss recovery to standard loss recovery
1024 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1025 *
1026 * Implements also blockage to start_seq wrap-around. Problem lies in the
1027 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1028 * there's no guarantee that it will be before snd_nxt (n). The problem
1029 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1030 * wrap (s_w):
1031 *
1032 * <- outs wnd -> <- wrapzone ->
1033 * u e n u_w e_w s n_w
1034 * | | | | | | |
1035 * |<------------+------+----- TCP seqno space --------------+---------->|
1036 * ...-- <2^31 ->| |<--------...
1037 * ...---- >2^31 ------>| |<--------...
1038 *
1039 * Current code wouldn't be vulnerable but it's better still to discard such
1040 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1041 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1042 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1043 * equal to the ideal case (infinite seqno space without wrap caused issues).
1044 *
1045 * With D-SACK the lower bound is extended to cover sequence space below
1046 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1047 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1048 * for the normal SACK blocks, explained above). But there all simplicity
1049 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1050 * fully below undo_marker they do not affect behavior in anyway and can
1051 * therefore be safely ignored. In rare cases (which are more or less
1052 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1053 * fragmentation and packet reordering past skb's retransmission. To consider
1054 * them correctly, the acceptable range must be extended even more though
1055 * the exact amount is rather hard to quantify. However, tp->max_window can
1056 * be used as an exaggerated estimate.
1da177e4 1057 */
a2a385d6
ED
1058static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1059 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1060{
1061 /* Too far in future, or reversed (interpretation is ambiguous) */
1062 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1063 return false;
5b3c9882
IJ
1064
1065 /* Nasty start_seq wrap-around check (see comments above) */
1066 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1067 return false;
5b3c9882 1068
564262c1 1069 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1070 * start_seq == snd_una is non-sensical (see comments above)
1071 */
1072 if (after(start_seq, tp->snd_una))
a2a385d6 1073 return true;
5b3c9882
IJ
1074
1075 if (!is_dsack || !tp->undo_marker)
a2a385d6 1076 return false;
5b3c9882
IJ
1077
1078 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1079 if (after(end_seq, tp->snd_una))
a2a385d6 1080 return false;
5b3c9882
IJ
1081
1082 if (!before(start_seq, tp->undo_marker))
a2a385d6 1083 return true;
5b3c9882
IJ
1084
1085 /* Too old */
1086 if (!after(end_seq, tp->undo_marker))
a2a385d6 1087 return false;
5b3c9882
IJ
1088
1089 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1090 * start_seq < undo_marker and end_seq >= undo_marker.
1091 */
1092 return !before(start_seq, end_seq - tp->max_window);
1093}
1094
a2a385d6
ED
1095static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 struct tcp_sack_block_wire *sp, int num_sacks,
1097 u32 prior_snd_una)
d06e021d 1098{
1ed83465 1099 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1102 bool dup_sack = false;
d06e021d
DM
1103
1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1105 dup_sack = true;
e60402d0 1106 tcp_dsack_seen(tp);
c10d9310 1107 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1108 } else if (num_sacks > 1) {
d3e2ce3b
HH
1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1111
1112 if (!after(end_seq_0, end_seq_1) &&
1113 !before(start_seq_0, start_seq_1)) {
a2a385d6 1114 dup_sack = true;
e60402d0 1115 tcp_dsack_seen(tp);
c10d9310 1116 NET_INC_STATS(sock_net(sk),
de0744af 1117 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1118 }
1119 }
1120
1121 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1123 !after(end_seq_0, prior_snd_una) &&
1124 after(end_seq_0, tp->undo_marker))
1125 tp->undo_retrans--;
1126
1127 return dup_sack;
1128}
1129
a1197f5a 1130struct tcp_sacktag_state {
740b0f18
ED
1131 int reord;
1132 int fack_count;
31231a8a
KKJ
1133 /* Timestamps for earliest and latest never-retransmitted segment
1134 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1135 * but congestion control should still get an accurate delay signal.
1136 */
1137 struct skb_mstamp first_sackt;
1138 struct skb_mstamp last_sackt;
b9f64820 1139 struct rate_sample *rate;
740b0f18 1140 int flag;
a1197f5a
IJ
1141};
1142
d1935942
IJ
1143/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1144 * the incoming SACK may not exactly match but we can find smaller MSS
1145 * aligned portion of it that matches. Therefore we might need to fragment
1146 * which may fail and creates some hassle (caller must handle error case
1147 * returns).
832d11c5
IJ
1148 *
1149 * FIXME: this could be merged to shift decision code
d1935942 1150 */
0f79efdc 1151static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1152 u32 start_seq, u32 end_seq)
d1935942 1153{
a2a385d6
ED
1154 int err;
1155 bool in_sack;
d1935942 1156 unsigned int pkt_len;
adb92db8 1157 unsigned int mss;
d1935942
IJ
1158
1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1160 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1161
1162 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1163 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1164 mss = tcp_skb_mss(skb);
d1935942
IJ
1165 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1166
adb92db8 1167 if (!in_sack) {
d1935942 1168 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1169 if (pkt_len < mss)
1170 pkt_len = mss;
1171 } else {
d1935942 1172 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1173 if (pkt_len < mss)
1174 return -EINVAL;
1175 }
1176
1177 /* Round if necessary so that SACKs cover only full MSSes
1178 * and/or the remaining small portion (if present)
1179 */
1180 if (pkt_len > mss) {
1181 unsigned int new_len = (pkt_len / mss) * mss;
b451e5d2 1182 if (!in_sack && new_len < pkt_len)
adb92db8 1183 new_len += mss;
adb92db8
IJ
1184 pkt_len = new_len;
1185 }
b451e5d2
YC
1186
1187 if (pkt_len >= skb->len && !in_sack)
1188 return 0;
1189
6cc55e09 1190 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1191 if (err < 0)
1192 return err;
1193 }
1194
1195 return in_sack;
1196}
1197
cc9a672e
NC
1198/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1199static u8 tcp_sacktag_one(struct sock *sk,
1200 struct tcp_sacktag_state *state, u8 sacked,
1201 u32 start_seq, u32 end_seq,
740b0f18
ED
1202 int dup_sack, int pcount,
1203 const struct skb_mstamp *xmit_time)
9e10c47c 1204{
6859d494 1205 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1206 int fack_count = state->fack_count;
9e10c47c
IJ
1207
1208 /* Account D-SACK for retransmitted packet. */
1209 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1210 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1211 after(end_seq, tp->undo_marker))
9e10c47c 1212 tp->undo_retrans--;
ede9f3b1 1213 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1214 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1215 }
1216
1217 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1218 if (!after(end_seq, tp->snd_una))
a1197f5a 1219 return sacked;
9e10c47c
IJ
1220
1221 if (!(sacked & TCPCB_SACKED_ACKED)) {
d2329f10 1222 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
659a8ad5 1223
9e10c47c
IJ
1224 if (sacked & TCPCB_SACKED_RETRANS) {
1225 /* If the segment is not tagged as lost,
1226 * we do not clear RETRANS, believing
1227 * that retransmission is still in flight.
1228 */
1229 if (sacked & TCPCB_LOST) {
a1197f5a 1230 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1231 tp->lost_out -= pcount;
1232 tp->retrans_out -= pcount;
9e10c47c
IJ
1233 }
1234 } else {
1235 if (!(sacked & TCPCB_RETRANS)) {
1236 /* New sack for not retransmitted frame,
1237 * which was in hole. It is reordering.
1238 */
cc9a672e 1239 if (before(start_seq,
9e10c47c 1240 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1241 state->reord = min(fack_count,
1242 state->reord);
e33099f9
YC
1243 if (!after(end_seq, tp->high_seq))
1244 state->flag |= FLAG_ORIG_SACK_ACKED;
31231a8a
KKJ
1245 if (state->first_sackt.v64 == 0)
1246 state->first_sackt = *xmit_time;
1247 state->last_sackt = *xmit_time;
9e10c47c
IJ
1248 }
1249
1250 if (sacked & TCPCB_LOST) {
a1197f5a 1251 sacked &= ~TCPCB_LOST;
f58b22fd 1252 tp->lost_out -= pcount;
9e10c47c
IJ
1253 }
1254 }
1255
a1197f5a
IJ
1256 sacked |= TCPCB_SACKED_ACKED;
1257 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1258 tp->sacked_out += pcount;
ddf1af6f 1259 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1260
f58b22fd 1261 fack_count += pcount;
9e10c47c
IJ
1262
1263 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
00db4124 1264 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
cc9a672e 1265 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1266 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1267
1268 if (fack_count > tp->fackets_out)
1269 tp->fackets_out = fack_count;
9e10c47c
IJ
1270 }
1271
1272 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1273 * frames and clear it. undo_retrans is decreased above, L|R frames
1274 * are accounted above as well.
1275 */
a1197f5a
IJ
1276 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1277 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1278 tp->retrans_out -= pcount;
9e10c47c
IJ
1279 }
1280
a1197f5a 1281 return sacked;
9e10c47c
IJ
1282}
1283
daef52ba
NC
1284/* Shift newly-SACKed bytes from this skb to the immediately previous
1285 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1286 */
a2a385d6
ED
1287static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1288 struct tcp_sacktag_state *state,
1289 unsigned int pcount, int shifted, int mss,
1290 bool dup_sack)
832d11c5
IJ
1291{
1292 struct tcp_sock *tp = tcp_sk(sk);
50133161 1293 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1294 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1295 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1296
1297 BUG_ON(!pcount);
1298
4c90d3b3
NC
1299 /* Adjust counters and hints for the newly sacked sequence
1300 * range but discard the return value since prev is already
1301 * marked. We must tag the range first because the seq
1302 * advancement below implicitly advances
1303 * tcp_highest_sack_seq() when skb is highest_sack.
1304 */
1305 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1306 start_seq, end_seq, dup_sack, pcount,
740b0f18 1307 &skb->skb_mstamp);
b9f64820 1308 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1309
1310 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1311 tp->lost_cnt_hint += pcount;
1312
832d11c5
IJ
1313 TCP_SKB_CB(prev)->end_seq += shifted;
1314 TCP_SKB_CB(skb)->seq += shifted;
1315
cd7d8498
ED
1316 tcp_skb_pcount_add(prev, pcount);
1317 BUG_ON(tcp_skb_pcount(skb) < pcount);
1318 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1319
1320 /* When we're adding to gso_segs == 1, gso_size will be zero,
1321 * in theory this shouldn't be necessary but as long as DSACK
1322 * code can come after this skb later on it's better to keep
1323 * setting gso_size to something.
1324 */
f69ad292
ED
1325 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1326 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1327
1328 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1329 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1330 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1331
832d11c5
IJ
1332 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1333 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1334
832d11c5
IJ
1335 if (skb->len > 0) {
1336 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1337 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1338 return false;
832d11c5
IJ
1339 }
1340
1341 /* Whole SKB was eaten :-) */
1342
92ee76b6
IJ
1343 if (skb == tp->retransmit_skb_hint)
1344 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1345 if (skb == tp->lost_skb_hint) {
1346 tp->lost_skb_hint = prev;
1347 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1348 }
1349
5e8a402f 1350 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1351 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1352 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1353 TCP_SKB_CB(prev)->end_seq++;
1354
832d11c5
IJ
1355 if (skb == tcp_highest_sack(sk))
1356 tcp_advance_highest_sack(sk, skb);
1357
cfea5a68 1358 tcp_skb_collapse_tstamp(prev, skb);
b9f64820
YC
1359 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1360 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1361
832d11c5
IJ
1362 tcp_unlink_write_queue(skb, sk);
1363 sk_wmem_free_skb(sk, skb);
1364
c10d9310 1365 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1366
a2a385d6 1367 return true;
832d11c5
IJ
1368}
1369
1370/* I wish gso_size would have a bit more sane initialization than
1371 * something-or-zero which complicates things
1372 */
cf533ea5 1373static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1374{
775ffabf 1375 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1376}
1377
1378/* Shifting pages past head area doesn't work */
cf533ea5 1379static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1380{
1381 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1382}
1383
1384/* Try collapsing SACK blocks spanning across multiple skbs to a single
1385 * skb.
1386 */
1387static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1388 struct tcp_sacktag_state *state,
832d11c5 1389 u32 start_seq, u32 end_seq,
a2a385d6 1390 bool dup_sack)
832d11c5
IJ
1391{
1392 struct tcp_sock *tp = tcp_sk(sk);
1393 struct sk_buff *prev;
1394 int mss;
1395 int pcount = 0;
1396 int len;
1397 int in_sack;
1398
1399 if (!sk_can_gso(sk))
1400 goto fallback;
1401
1402 /* Normally R but no L won't result in plain S */
1403 if (!dup_sack &&
9969ca5f 1404 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1405 goto fallback;
1406 if (!skb_can_shift(skb))
1407 goto fallback;
1408 /* This frame is about to be dropped (was ACKed). */
1409 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1410 goto fallback;
1411
1412 /* Can only happen with delayed DSACK + discard craziness */
1413 if (unlikely(skb == tcp_write_queue_head(sk)))
1414 goto fallback;
1415 prev = tcp_write_queue_prev(sk, skb);
1416
1417 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1418 goto fallback;
1419
a643b5d4
MKL
1420 if (!tcp_skb_can_collapse_to(prev))
1421 goto fallback;
1422
832d11c5
IJ
1423 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1424 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1425
1426 if (in_sack) {
1427 len = skb->len;
1428 pcount = tcp_skb_pcount(skb);
775ffabf 1429 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1430
1431 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1432 * drop this restriction as unnecessary
1433 */
775ffabf 1434 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1435 goto fallback;
1436 } else {
1437 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1438 goto noop;
1439 /* CHECKME: This is non-MSS split case only?, this will
1440 * cause skipped skbs due to advancing loop btw, original
1441 * has that feature too
1442 */
1443 if (tcp_skb_pcount(skb) <= 1)
1444 goto noop;
1445
1446 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1447 if (!in_sack) {
1448 /* TODO: head merge to next could be attempted here
1449 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1450 * though it might not be worth of the additional hassle
1451 *
1452 * ...we can probably just fallback to what was done
1453 * previously. We could try merging non-SACKed ones
1454 * as well but it probably isn't going to buy off
1455 * because later SACKs might again split them, and
1456 * it would make skb timestamp tracking considerably
1457 * harder problem.
1458 */
1459 goto fallback;
1460 }
1461
1462 len = end_seq - TCP_SKB_CB(skb)->seq;
1463 BUG_ON(len < 0);
1464 BUG_ON(len > skb->len);
1465
1466 /* MSS boundaries should be honoured or else pcount will
1467 * severely break even though it makes things bit trickier.
1468 * Optimize common case to avoid most of the divides
1469 */
1470 mss = tcp_skb_mss(skb);
1471
1472 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1473 * drop this restriction as unnecessary
1474 */
775ffabf 1475 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1476 goto fallback;
1477
1478 if (len == mss) {
1479 pcount = 1;
1480 } else if (len < mss) {
1481 goto noop;
1482 } else {
1483 pcount = len / mss;
1484 len = pcount * mss;
1485 }
1486 }
1487
4648dc97
NC
1488 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1489 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1490 goto fallback;
1491
832d11c5
IJ
1492 if (!skb_shift(prev, skb, len))
1493 goto fallback;
9ec06ff5 1494 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1495 goto out;
1496
1497 /* Hole filled allows collapsing with the next as well, this is very
1498 * useful when hole on every nth skb pattern happens
1499 */
1500 if (prev == tcp_write_queue_tail(sk))
1501 goto out;
1502 skb = tcp_write_queue_next(sk, prev);
1503
f0bc52f3
IJ
1504 if (!skb_can_shift(skb) ||
1505 (skb == tcp_send_head(sk)) ||
1506 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1507 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1508 goto out;
1509
1510 len = skb->len;
1511 if (skb_shift(prev, skb, len)) {
1512 pcount += tcp_skb_pcount(skb);
9ec06ff5 1513 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1514 }
1515
1516out:
a1197f5a 1517 state->fack_count += pcount;
832d11c5
IJ
1518 return prev;
1519
1520noop:
1521 return skb;
1522
1523fallback:
c10d9310 1524 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1525 return NULL;
1526}
1527
68f8353b
IJ
1528static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1529 struct tcp_sack_block *next_dup,
a1197f5a 1530 struct tcp_sacktag_state *state,
68f8353b 1531 u32 start_seq, u32 end_seq,
a2a385d6 1532 bool dup_sack_in)
68f8353b 1533{
832d11c5
IJ
1534 struct tcp_sock *tp = tcp_sk(sk);
1535 struct sk_buff *tmp;
1536
68f8353b
IJ
1537 tcp_for_write_queue_from(skb, sk) {
1538 int in_sack = 0;
a2a385d6 1539 bool dup_sack = dup_sack_in;
68f8353b
IJ
1540
1541 if (skb == tcp_send_head(sk))
1542 break;
1543
1544 /* queue is in-order => we can short-circuit the walk early */
1545 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1546 break;
1547
00db4124 1548 if (next_dup &&
68f8353b
IJ
1549 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1550 in_sack = tcp_match_skb_to_sack(sk, skb,
1551 next_dup->start_seq,
1552 next_dup->end_seq);
1553 if (in_sack > 0)
a2a385d6 1554 dup_sack = true;
68f8353b
IJ
1555 }
1556
832d11c5
IJ
1557 /* skb reference here is a bit tricky to get right, since
1558 * shifting can eat and free both this skb and the next,
1559 * so not even _safe variant of the loop is enough.
1560 */
1561 if (in_sack <= 0) {
a1197f5a
IJ
1562 tmp = tcp_shift_skb_data(sk, skb, state,
1563 start_seq, end_seq, dup_sack);
00db4124 1564 if (tmp) {
832d11c5
IJ
1565 if (tmp != skb) {
1566 skb = tmp;
1567 continue;
1568 }
1569
1570 in_sack = 0;
1571 } else {
1572 in_sack = tcp_match_skb_to_sack(sk, skb,
1573 start_seq,
1574 end_seq);
1575 }
1576 }
1577
68f8353b
IJ
1578 if (unlikely(in_sack < 0))
1579 break;
1580
832d11c5 1581 if (in_sack) {
cc9a672e
NC
1582 TCP_SKB_CB(skb)->sacked =
1583 tcp_sacktag_one(sk,
1584 state,
1585 TCP_SKB_CB(skb)->sacked,
1586 TCP_SKB_CB(skb)->seq,
1587 TCP_SKB_CB(skb)->end_seq,
1588 dup_sack,
59c9af42 1589 tcp_skb_pcount(skb),
740b0f18 1590 &skb->skb_mstamp);
b9f64820 1591 tcp_rate_skb_delivered(sk, skb, state->rate);
68f8353b 1592
832d11c5
IJ
1593 if (!before(TCP_SKB_CB(skb)->seq,
1594 tcp_highest_sack_seq(tp)))
1595 tcp_advance_highest_sack(sk, skb);
1596 }
1597
a1197f5a 1598 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1599 }
1600 return skb;
1601}
1602
1603/* Avoid all extra work that is being done by sacktag while walking in
1604 * a normal way
1605 */
1606static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1607 struct tcp_sacktag_state *state,
1608 u32 skip_to_seq)
68f8353b
IJ
1609{
1610 tcp_for_write_queue_from(skb, sk) {
1611 if (skb == tcp_send_head(sk))
1612 break;
1613
e8bae275 1614 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1615 break;
d152a7d8 1616
a1197f5a 1617 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1618 }
1619 return skb;
1620}
1621
1622static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1623 struct sock *sk,
1624 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1625 struct tcp_sacktag_state *state,
1626 u32 skip_to_seq)
68f8353b 1627{
51456b29 1628 if (!next_dup)
68f8353b
IJ
1629 return skb;
1630
1631 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1632 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1633 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1634 next_dup->start_seq, next_dup->end_seq,
1635 1);
68f8353b
IJ
1636 }
1637
1638 return skb;
1639}
1640
cf533ea5 1641static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1642{
1643 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1644}
1645
1da177e4 1646static int
cf533ea5 1647tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1648 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1649{
1650 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1651 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1652 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1653 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1654 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1655 struct tcp_sack_block *cache;
1656 struct sk_buff *skb;
4389dded 1657 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1658 int used_sacks;
a2a385d6 1659 bool found_dup_sack = false;
68f8353b 1660 int i, j;
fda03fbb 1661 int first_sack_index;
1da177e4 1662
196da974
KKJ
1663 state->flag = 0;
1664 state->reord = tp->packets_out;
a1197f5a 1665
d738cd8f 1666 if (!tp->sacked_out) {
de83c058
IJ
1667 if (WARN_ON(tp->fackets_out))
1668 tp->fackets_out = 0;
6859d494 1669 tcp_highest_sack_reset(sk);
d738cd8f 1670 }
1da177e4 1671
1ed83465 1672 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1673 num_sacks, prior_snd_una);
b9f64820 1674 if (found_dup_sack) {
196da974 1675 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1676 tp->delivered++; /* A spurious retransmission is delivered */
1677 }
6f74651a
BE
1678
1679 /* Eliminate too old ACKs, but take into
1680 * account more or less fresh ones, they can
1681 * contain valid SACK info.
1682 */
1683 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1684 return 0;
1685