]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/ipv4/tcp_input.c
Merge branch 'mlx5-next'
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
83int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
dca145ff 84int sysctl_tcp_max_reordering __read_mostly = 300;
4bc2f18b 85EXPORT_SYMBOL(sysctl_tcp_reordering);
ab32ea5d
BH
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 88int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 90
282f23c6
ED
91/* rfc5961 challenge ack rate limiting */
92int sysctl_tcp_challenge_ack_limit = 100;
93
ab32ea5d
BH
94int sysctl_tcp_stdurg __read_mostly;
95int sysctl_tcp_rfc1337 __read_mostly;
96int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 97int sysctl_tcp_frto __read_mostly = 2;
1da177e4 98
7e380175
AP
99int sysctl_tcp_thin_dupack __read_mostly;
100
ab32ea5d 101int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 102int sysctl_tcp_early_retrans __read_mostly = 3;
032ee423 103int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
1da177e4 104
1da177e4
LT
105#define FLAG_DATA 0x01 /* Incoming frame contained data. */
106#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
107#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
108#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
109#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
110#define FLAG_DATA_SACKED 0x20 /* New SACK. */
111#define FLAG_ECE 0x40 /* ECE in this ACK */
1da177e4 112#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 113#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 114#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 115#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 116#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 117#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
118
119#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
123
1da177e4 124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 126
e905a9ed 127/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 128 * real world.
e905a9ed 129 */
056834d9 130static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 131{
463c84b9 132 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 133 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 134 unsigned int len;
1da177e4 135
e905a9ed 136 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
137
138 /* skb->len may jitter because of SACKs, even if peer
139 * sends good full-sized frames.
140 */
056834d9 141 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
142 if (len >= icsk->icsk_ack.rcv_mss) {
143 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
144 } else {
145 /* Otherwise, we make more careful check taking into account,
146 * that SACKs block is variable.
147 *
148 * "len" is invariant segment length, including TCP header.
149 */
9c70220b 150 len += skb->data - skb_transport_header(skb);
bee7ca9e 151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
152 /* If PSH is not set, packet should be
153 * full sized, provided peer TCP is not badly broken.
154 * This observation (if it is correct 8)) allows
155 * to handle super-low mtu links fairly.
156 */
157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
159 /* Subtract also invariant (if peer is RFC compliant),
160 * tcp header plus fixed timestamp option length.
161 * Resulting "len" is MSS free of SACK jitter.
162 */
463c84b9
ACM
163 len -= tcp_sk(sk)->tcp_header_len;
164 icsk->icsk_ack.last_seg_size = len;
1da177e4 165 if (len == lss) {
463c84b9 166 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
167 return;
168 }
169 }
1ef9696c
AK
170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
173 }
174}
175
463c84b9 176static void tcp_incr_quickack(struct sock *sk)
1da177e4 177{
463c84b9 178 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 180
056834d9
IJ
181 if (quickacks == 0)
182 quickacks = 2;
463c84b9
ACM
183 if (quickacks > icsk->icsk_ack.quick)
184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
185}
186
1b9f4092 187static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 188{
463c84b9
ACM
189 struct inet_connection_sock *icsk = inet_csk(sk);
190 tcp_incr_quickack(sk);
191 icsk->icsk_ack.pingpong = 0;
192 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
193}
194
195/* Send ACKs quickly, if "quick" count is not exhausted
196 * and the session is not interactive.
197 */
198
a2a385d6 199static inline bool tcp_in_quickack_mode(const struct sock *sk)
1da177e4 200{
463c84b9 201 const struct inet_connection_sock *icsk = inet_csk(sk);
a2a385d6 202
463c84b9 203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
204}
205
735d3831 206static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 207{
056834d9 208 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210}
211
735d3831 212static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
213{
214 if (tcp_hdr(skb)->cwr)
215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216}
217
735d3831 218static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
219{
220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221}
222
735d3831 223static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 224{
b82d1bb4 225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 226 case INET_ECN_NOT_ECT:
bdf1ee5d 227 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 232 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
233 break;
234 case INET_ECN_CE:
9890092e
FW
235 if (tcp_ca_needs_ecn((struct sock *)tp))
236 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
237
aae06bf5
ED
238 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
239 /* Better not delay acks, sender can have a very low cwnd */
240 tcp_enter_quickack_mode((struct sock *)tp);
241 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
242 }
9890092e
FW
243 tp->ecn_flags |= TCP_ECN_SEEN;
244 break;
7a269ffa 245 default:
9890092e
FW
246 if (tcp_ca_needs_ecn((struct sock *)tp))
247 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 248 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 249 break;
bdf1ee5d
IJ
250 }
251}
252
735d3831
FW
253static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
254{
255 if (tp->ecn_flags & TCP_ECN_OK)
256 __tcp_ecn_check_ce(tp, skb);
257}
258
259static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 260{
056834d9 261 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
262 tp->ecn_flags &= ~TCP_ECN_OK;
263}
264
735d3831 265static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 266{
056834d9 267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
268 tp->ecn_flags &= ~TCP_ECN_OK;
269}
270
735d3831 271static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 272{
056834d9 273 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
274 return true;
275 return false;
bdf1ee5d
IJ
276}
277
1da177e4
LT
278/* Buffer size and advertised window tuning.
279 *
280 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
281 */
282
6ae70532 283static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 284{
6ae70532
ED
285 const struct tcp_sock *tp = tcp_sk(sk);
286 int sndmem, per_mss;
287 u32 nr_segs;
288
289 /* Worst case is non GSO/TSO : each frame consumes one skb
290 * and skb->head is kmalloced using power of two area of memory
291 */
292 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
293 MAX_TCP_HEADER +
294 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
295
296 per_mss = roundup_pow_of_two(per_mss) +
297 SKB_DATA_ALIGN(sizeof(struct sk_buff));
298
299 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
300 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
301
302 /* Fast Recovery (RFC 5681 3.2) :
303 * Cubic needs 1.7 factor, rounded to 2 to include
304 * extra cushion (application might react slowly to POLLOUT)
305 */
306 sndmem = 2 * nr_segs * per_mss;
1da177e4 307
06a59ecb
ED
308 if (sk->sk_sndbuf < sndmem)
309 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
310}
311
312/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
313 *
314 * All tcp_full_space() is split to two parts: "network" buffer, allocated
315 * forward and advertised in receiver window (tp->rcv_wnd) and
316 * "application buffer", required to isolate scheduling/application
317 * latencies from network.
318 * window_clamp is maximal advertised window. It can be less than
319 * tcp_full_space(), in this case tcp_full_space() - window_clamp
320 * is reserved for "application" buffer. The less window_clamp is
321 * the smoother our behaviour from viewpoint of network, but the lower
322 * throughput and the higher sensitivity of the connection to losses. 8)
323 *
324 * rcv_ssthresh is more strict window_clamp used at "slow start"
325 * phase to predict further behaviour of this connection.
326 * It is used for two goals:
327 * - to enforce header prediction at sender, even when application
328 * requires some significant "application buffer". It is check #1.
329 * - to prevent pruning of receive queue because of misprediction
330 * of receiver window. Check #2.
331 *
332 * The scheme does not work when sender sends good segments opening
caa20d9a 333 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
334 * in common situations. Otherwise, we have to rely on queue collapsing.
335 */
336
337/* Slow part of check#2. */
9e412ba7 338static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 339{
9e412ba7 340 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 341 /* Optimize this! */
dfd4f0ae
ED
342 int truesize = tcp_win_from_space(skb->truesize) >> 1;
343 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
344
345 while (tp->rcv_ssthresh <= window) {
346 if (truesize <= skb->len)
463c84b9 347 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
348
349 truesize >>= 1;
350 window >>= 1;
351 }
352 return 0;
353}
354
cf533ea5 355static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 356{
9e412ba7
IJ
357 struct tcp_sock *tp = tcp_sk(sk);
358
1da177e4
LT
359 /* Check #1 */
360 if (tp->rcv_ssthresh < tp->window_clamp &&
361 (int)tp->rcv_ssthresh < tcp_space(sk) &&
180d8cd9 362 !sk_under_memory_pressure(sk)) {
1da177e4
LT
363 int incr;
364
365 /* Check #2. Increase window, if skb with such overhead
366 * will fit to rcvbuf in future.
367 */
368 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 369 incr = 2 * tp->advmss;
1da177e4 370 else
9e412ba7 371 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
372
373 if (incr) {
4d846f02 374 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
375 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
376 tp->window_clamp);
463c84b9 377 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
378 }
379 }
380}
381
382/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
383static void tcp_fixup_rcvbuf(struct sock *sk)
384{
e9266a02 385 u32 mss = tcp_sk(sk)->advmss;
e9266a02 386 int rcvmem;
1da177e4 387
85f16525
YC
388 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
389 tcp_default_init_rwnd(mss);
e9266a02 390
b0983d3c
ED
391 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
392 * Allow enough cushion so that sender is not limited by our window
393 */
394 if (sysctl_tcp_moderate_rcvbuf)
395 rcvmem <<= 2;
396
e9266a02
ED
397 if (sk->sk_rcvbuf < rcvmem)
398 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
399}
400
caa20d9a 401/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
402 * established state.
403 */
10467163 404void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
405{
406 struct tcp_sock *tp = tcp_sk(sk);
407 int maxwin;
408
409 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
410 tcp_fixup_rcvbuf(sk);
411 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 412 tcp_sndbuf_expand(sk);
1da177e4
LT
413
414 tp->rcvq_space.space = tp->rcv_wnd;
b0983d3c
ED
415 tp->rcvq_space.time = tcp_time_stamp;
416 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
417
418 maxwin = tcp_full_space(sk);
419
420 if (tp->window_clamp >= maxwin) {
421 tp->window_clamp = maxwin;
422
423 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
424 tp->window_clamp = max(maxwin -
425 (maxwin >> sysctl_tcp_app_win),
426 4 * tp->advmss);
427 }
428
429 /* Force reservation of one segment. */
430 if (sysctl_tcp_app_win &&
431 tp->window_clamp > 2 * tp->advmss &&
432 tp->window_clamp + tp->advmss > maxwin)
433 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
434
435 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
436 tp->snd_cwnd_stamp = tcp_time_stamp;
437}
438
1da177e4 439/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 440static void tcp_clamp_window(struct sock *sk)
1da177e4 441{
9e412ba7 442 struct tcp_sock *tp = tcp_sk(sk);
6687e988 443 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 444
6687e988 445 icsk->icsk_ack.quick = 0;
1da177e4 446
326f36e9
JH
447 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
448 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
180d8cd9
GC
449 !sk_under_memory_pressure(sk) &&
450 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
451 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
452 sysctl_tcp_rmem[2]);
1da177e4 453 }
326f36e9 454 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 455 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
456}
457
40efc6fa
SH
458/* Initialize RCV_MSS value.
459 * RCV_MSS is an our guess about MSS used by the peer.
460 * We haven't any direct information about the MSS.
461 * It's better to underestimate the RCV_MSS rather than overestimate.
462 * Overestimations make us ACKing less frequently than needed.
463 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
464 */
465void tcp_initialize_rcv_mss(struct sock *sk)
466{
cf533ea5 467 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
468 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
469
056834d9 470 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 471 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
472 hint = max(hint, TCP_MIN_MSS);
473
474 inet_csk(sk)->icsk_ack.rcv_mss = hint;
475}
4bc2f18b 476EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 477
1da177e4
LT
478/* Receiver "autotuning" code.
479 *
480 * The algorithm for RTT estimation w/o timestamps is based on
481 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 482 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
483 *
484 * More detail on this code can be found at
631dd1a8 485 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
486 * though this reference is out of date. A new paper
487 * is pending.
488 */
489static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
490{
491 u32 new_sample = tp->rcv_rtt_est.rtt;
492 long m = sample;
493
494 if (m == 0)
495 m = 1;
496
497 if (new_sample != 0) {
498 /* If we sample in larger samples in the non-timestamp
499 * case, we could grossly overestimate the RTT especially
500 * with chatty applications or bulk transfer apps which
501 * are stalled on filesystem I/O.
502 *
503 * Also, since we are only going for a minimum in the
31f34269 504 * non-timestamp case, we do not smooth things out
caa20d9a 505 * else with timestamps disabled convergence takes too
1da177e4
LT
506 * long.
507 */
508 if (!win_dep) {
509 m -= (new_sample >> 3);
510 new_sample += m;
18a223e0
NC
511 } else {
512 m <<= 3;
513 if (m < new_sample)
514 new_sample = m;
515 }
1da177e4 516 } else {
caa20d9a 517 /* No previous measure. */
1da177e4
LT
518 new_sample = m << 3;
519 }
520
521 if (tp->rcv_rtt_est.rtt != new_sample)
522 tp->rcv_rtt_est.rtt = new_sample;
523}
524
525static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
526{
527 if (tp->rcv_rtt_est.time == 0)
528 goto new_measure;
529 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
530 return;
651913ce 531 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
532
533new_measure:
534 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
535 tp->rcv_rtt_est.time = tcp_time_stamp;
536}
537
056834d9
IJ
538static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
539 const struct sk_buff *skb)
1da177e4 540{
463c84b9 541 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
542 if (tp->rx_opt.rcv_tsecr &&
543 (TCP_SKB_CB(skb)->end_seq -
463c84b9 544 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
545 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
546}
547
548/*
549 * This function should be called every time data is copied to user space.
550 * It calculates the appropriate TCP receive buffer space.
551 */
552void tcp_rcv_space_adjust(struct sock *sk)
553{
554 struct tcp_sock *tp = tcp_sk(sk);
555 int time;
b0983d3c 556 int copied;
e905a9ed 557
1da177e4 558 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 559 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 560 return;
e905a9ed 561
b0983d3c
ED
562 /* Number of bytes copied to user in last RTT */
563 copied = tp->copied_seq - tp->rcvq_space.seq;
564 if (copied <= tp->rcvq_space.space)
565 goto new_measure;
566
567 /* A bit of theory :
568 * copied = bytes received in previous RTT, our base window
569 * To cope with packet losses, we need a 2x factor
570 * To cope with slow start, and sender growing its cwin by 100 %
571 * every RTT, we need a 4x factor, because the ACK we are sending
572 * now is for the next RTT, not the current one :
573 * <prev RTT . ><current RTT .. ><next RTT .... >
574 */
575
576 if (sysctl_tcp_moderate_rcvbuf &&
577 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
578 int rcvwin, rcvmem, rcvbuf;
1da177e4 579
b0983d3c
ED
580 /* minimal window to cope with packet losses, assuming
581 * steady state. Add some cushion because of small variations.
582 */
583 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 584
b0983d3c
ED
585 /* If rate increased by 25%,
586 * assume slow start, rcvwin = 3 * copied
587 * If rate increased by 50%,
588 * assume sender can use 2x growth, rcvwin = 4 * copied
589 */
590 if (copied >=
591 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
592 if (copied >=
593 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
594 rcvwin <<= 1;
595 else
596 rcvwin += (rcvwin >> 1);
597 }
1da177e4 598
b0983d3c
ED
599 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
600 while (tcp_win_from_space(rcvmem) < tp->advmss)
601 rcvmem += 128;
1da177e4 602
b0983d3c
ED
603 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
604 if (rcvbuf > sk->sk_rcvbuf) {
605 sk->sk_rcvbuf = rcvbuf;
1da177e4 606
b0983d3c
ED
607 /* Make the window clamp follow along. */
608 tp->window_clamp = rcvwin;
1da177e4
LT
609 }
610 }
b0983d3c 611 tp->rcvq_space.space = copied;
e905a9ed 612
1da177e4
LT
613new_measure:
614 tp->rcvq_space.seq = tp->copied_seq;
615 tp->rcvq_space.time = tcp_time_stamp;
616}
617
618/* There is something which you must keep in mind when you analyze the
619 * behavior of the tp->ato delayed ack timeout interval. When a
620 * connection starts up, we want to ack as quickly as possible. The
621 * problem is that "good" TCP's do slow start at the beginning of data
622 * transmission. The means that until we send the first few ACK's the
623 * sender will sit on his end and only queue most of his data, because
624 * he can only send snd_cwnd unacked packets at any given time. For
625 * each ACK we send, he increments snd_cwnd and transmits more of his
626 * queue. -DaveM
627 */
9e412ba7 628static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 629{
9e412ba7 630 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 631 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
632 u32 now;
633
463c84b9 634 inet_csk_schedule_ack(sk);
1da177e4 635
463c84b9 636 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
637
638 tcp_rcv_rtt_measure(tp);
e905a9ed 639
1da177e4
LT
640 now = tcp_time_stamp;
641
463c84b9 642 if (!icsk->icsk_ack.ato) {
1da177e4
LT
643 /* The _first_ data packet received, initialize
644 * delayed ACK engine.
645 */
463c84b9
ACM
646 tcp_incr_quickack(sk);
647 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 648 } else {
463c84b9 649 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 650
056834d9 651 if (m <= TCP_ATO_MIN / 2) {
1da177e4 652 /* The fastest case is the first. */
463c84b9
ACM
653 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
654 } else if (m < icsk->icsk_ack.ato) {
655 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
656 if (icsk->icsk_ack.ato > icsk->icsk_rto)
657 icsk->icsk_ack.ato = icsk->icsk_rto;
658 } else if (m > icsk->icsk_rto) {
caa20d9a 659 /* Too long gap. Apparently sender failed to
1da177e4
LT
660 * restart window, so that we send ACKs quickly.
661 */
463c84b9 662 tcp_incr_quickack(sk);
3ab224be 663 sk_mem_reclaim(sk);
1da177e4
LT
664 }
665 }
463c84b9 666 icsk->icsk_ack.lrcvtime = now;
1da177e4 667
735d3831 668 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
669
670 if (skb->len >= 128)
9e412ba7 671 tcp_grow_window(sk, skb);
1da177e4
LT
672}
673
1da177e4
LT
674/* Called to compute a smoothed rtt estimate. The data fed to this
675 * routine either comes from timestamps, or from segments that were
676 * known _not_ to have been retransmitted [see Karn/Partridge
677 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
678 * piece by Van Jacobson.
679 * NOTE: the next three routines used to be one big routine.
680 * To save cycles in the RFC 1323 implementation it was better to break
681 * it up into three procedures. -- erics
682 */
740b0f18 683static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 684{
6687e988 685 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
686 long m = mrtt_us; /* RTT */
687 u32 srtt = tp->srtt_us;
1da177e4 688
1da177e4
LT
689 /* The following amusing code comes from Jacobson's
690 * article in SIGCOMM '88. Note that rtt and mdev
691 * are scaled versions of rtt and mean deviation.
e905a9ed 692 * This is designed to be as fast as possible
1da177e4
LT
693 * m stands for "measurement".
694 *
695 * On a 1990 paper the rto value is changed to:
696 * RTO = rtt + 4 * mdev
697 *
698 * Funny. This algorithm seems to be very broken.
699 * These formulae increase RTO, when it should be decreased, increase
31f34269 700 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
701 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
702 * does not matter how to _calculate_ it. Seems, it was trap
703 * that VJ failed to avoid. 8)
704 */
4a5ab4e2
ED
705 if (srtt != 0) {
706 m -= (srtt >> 3); /* m is now error in rtt est */
707 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
708 if (m < 0) {
709 m = -m; /* m is now abs(error) */
740b0f18 710 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
711 /* This is similar to one of Eifel findings.
712 * Eifel blocks mdev updates when rtt decreases.
713 * This solution is a bit different: we use finer gain
714 * for mdev in this case (alpha*beta).
715 * Like Eifel it also prevents growth of rto,
716 * but also it limits too fast rto decreases,
717 * happening in pure Eifel.
718 */
719 if (m > 0)
720 m >>= 3;
721 } else {
740b0f18 722 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 723 }
740b0f18
ED
724 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
725 if (tp->mdev_us > tp->mdev_max_us) {
726 tp->mdev_max_us = tp->mdev_us;
727 if (tp->mdev_max_us > tp->rttvar_us)
728 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
729 }
730 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
731 if (tp->mdev_max_us < tp->rttvar_us)
732 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 733 tp->rtt_seq = tp->snd_nxt;
740b0f18 734 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
735 }
736 } else {
737 /* no previous measure. */
4a5ab4e2 738 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
739 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
740 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
741 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
742 tp->rtt_seq = tp->snd_nxt;
743 }
740b0f18 744 tp->srtt_us = max(1U, srtt);
1da177e4
LT
745}
746
95bd09eb
ED
747/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
748 * Note: TCP stack does not yet implement pacing.
749 * FQ packet scheduler can be used to implement cheap but effective
750 * TCP pacing, to smooth the burst on large writes when packets
751 * in flight is significantly lower than cwnd (or rwin)
752 */
753static void tcp_update_pacing_rate(struct sock *sk)
754{
755 const struct tcp_sock *tp = tcp_sk(sk);
756 u64 rate;
757
758 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
740b0f18 759 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
95bd09eb
ED
760
761 rate *= max(tp->snd_cwnd, tp->packets_out);
762
740b0f18
ED
763 if (likely(tp->srtt_us))
764 do_div(rate, tp->srtt_us);
95bd09eb 765
ba537427
ED
766 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
767 * without any lock. We want to make sure compiler wont store
768 * intermediate values in this location.
769 */
770 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
771 sk->sk_max_pacing_rate);
95bd09eb
ED
772}
773
1da177e4
LT
774/* Calculate rto without backoff. This is the second half of Van Jacobson's
775 * routine referred to above.
776 */
f7e56a76 777static void tcp_set_rto(struct sock *sk)
1da177e4 778{
463c84b9 779 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
780 /* Old crap is replaced with new one. 8)
781 *
782 * More seriously:
783 * 1. If rtt variance happened to be less 50msec, it is hallucination.
784 * It cannot be less due to utterly erratic ACK generation made
785 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
786 * to do with delayed acks, because at cwnd>2 true delack timeout
787 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 788 * ACKs in some circumstances.
1da177e4 789 */
f1ecd5d9 790 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
791
792 /* 2. Fixups made earlier cannot be right.
793 * If we do not estimate RTO correctly without them,
794 * all the algo is pure shit and should be replaced
caa20d9a 795 * with correct one. It is exactly, which we pretend to do.
1da177e4 796 */
1da177e4 797
ee6aac59
IJ
798 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
799 * guarantees that rto is higher.
800 */
f1ecd5d9 801 tcp_bound_rto(sk);
1da177e4
LT
802}
803
cf533ea5 804__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
805{
806 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
807
22b71c8f 808 if (!cwnd)
442b9635 809 cwnd = TCP_INIT_CWND;
1da177e4
LT
810 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
811}
812
e60402d0
IJ
813/*
814 * Packet counting of FACK is based on in-order assumptions, therefore TCP
815 * disables it when reordering is detected
816 */
4aabd8ef 817void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 818{
85cc391c
IJ
819 /* RFC3517 uses different metric in lost marker => reset on change */
820 if (tcp_is_fack(tp))
821 tp->lost_skb_hint = NULL;
ab56222a 822 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
823}
824
564262c1 825/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
826static void tcp_dsack_seen(struct tcp_sock *tp)
827{
ab56222a 828 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
829}
830
6687e988
ACM
831static void tcp_update_reordering(struct sock *sk, const int metric,
832 const int ts)
1da177e4 833{
6687e988 834 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 835 if (metric > tp->reordering) {
40b215e5
PE
836 int mib_idx;
837
dca145ff 838 tp->reordering = min(sysctl_tcp_max_reordering, metric);
1da177e4
LT
839
840 /* This exciting event is worth to be remembered. 8) */
841 if (ts)
40b215e5 842 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 843 else if (tcp_is_reno(tp))
40b215e5 844 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 845 else if (tcp_is_fack(tp))
40b215e5 846 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 847 else
40b215e5
PE
848 mib_idx = LINUX_MIB_TCPSACKREORDER;
849
de0744af 850 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 851#if FASTRETRANS_DEBUG > 1
91df42be
JP
852 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
853 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
854 tp->reordering,
855 tp->fackets_out,
856 tp->sacked_out,
857 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 858#endif
e60402d0 859 tcp_disable_fack(tp);
1da177e4 860 }
eed530b6
YC
861
862 if (metric > 0)
863 tcp_disable_early_retrans(tp);
1da177e4
LT
864}
865
006f582c 866/* This must be called before lost_out is incremented */
c8c213f2
IJ
867static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
868{
006f582c 869 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
870 before(TCP_SKB_CB(skb)->seq,
871 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
872 tp->retransmit_skb_hint = skb;
873
874 if (!tp->lost_out ||
875 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
876 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
877}
878
41ea36e3
IJ
879static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
880{
881 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
882 tcp_verify_retransmit_hint(tp, skb);
883
884 tp->lost_out += tcp_skb_pcount(skb);
885 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
886 }
887}
888
e1aa680f
IJ
889static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
890 struct sk_buff *skb)
006f582c
IJ
891{
892 tcp_verify_retransmit_hint(tp, skb);
893
894 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
895 tp->lost_out += tcp_skb_pcount(skb);
896 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
897 }
898}
899
1da177e4
LT
900/* This procedure tags the retransmission queue when SACKs arrive.
901 *
902 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
903 * Packets in queue with these bits set are counted in variables
904 * sacked_out, retrans_out and lost_out, correspondingly.
905 *
906 * Valid combinations are:
907 * Tag InFlight Description
908 * 0 1 - orig segment is in flight.
909 * S 0 - nothing flies, orig reached receiver.
910 * L 0 - nothing flies, orig lost by net.
911 * R 2 - both orig and retransmit are in flight.
912 * L|R 1 - orig is lost, retransmit is in flight.
913 * S|R 1 - orig reached receiver, retrans is still in flight.
914 * (L|S|R is logically valid, it could occur when L|R is sacked,
915 * but it is equivalent to plain S and code short-curcuits it to S.
916 * L|S is logically invalid, it would mean -1 packet in flight 8))
917 *
918 * These 6 states form finite state machine, controlled by the following events:
919 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
920 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 921 * 3. Loss detection event of two flavors:
1da177e4
LT
922 * A. Scoreboard estimator decided the packet is lost.
923 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
924 * A''. Its FACK modification, head until snd.fack is lost.
925 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
926 * segment was retransmitted.
927 * 4. D-SACK added new rule: D-SACK changes any tag to S.
928 *
929 * It is pleasant to note, that state diagram turns out to be commutative,
930 * so that we are allowed not to be bothered by order of our actions,
931 * when multiple events arrive simultaneously. (see the function below).
932 *
933 * Reordering detection.
934 * --------------------
935 * Reordering metric is maximal distance, which a packet can be displaced
936 * in packet stream. With SACKs we can estimate it:
937 *
938 * 1. SACK fills old hole and the corresponding segment was not
939 * ever retransmitted -> reordering. Alas, we cannot use it
940 * when segment was retransmitted.
941 * 2. The last flaw is solved with D-SACK. D-SACK arrives
942 * for retransmitted and already SACKed segment -> reordering..
943 * Both of these heuristics are not used in Loss state, when we cannot
944 * account for retransmits accurately.
5b3c9882
IJ
945 *
946 * SACK block validation.
947 * ----------------------
948 *
949 * SACK block range validation checks that the received SACK block fits to
950 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
951 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
952 * it means that the receiver is rather inconsistent with itself reporting
953 * SACK reneging when it should advance SND.UNA. Such SACK block this is
954 * perfectly valid, however, in light of RFC2018 which explicitly states
955 * that "SACK block MUST reflect the newest segment. Even if the newest
956 * segment is going to be discarded ...", not that it looks very clever
957 * in case of head skb. Due to potentional receiver driven attacks, we
958 * choose to avoid immediate execution of a walk in write queue due to
959 * reneging and defer head skb's loss recovery to standard loss recovery
960 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
961 *
962 * Implements also blockage to start_seq wrap-around. Problem lies in the
963 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
964 * there's no guarantee that it will be before snd_nxt (n). The problem
965 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
966 * wrap (s_w):
967 *
968 * <- outs wnd -> <- wrapzone ->
969 * u e n u_w e_w s n_w
970 * | | | | | | |
971 * |<------------+------+----- TCP seqno space --------------+---------->|
972 * ...-- <2^31 ->| |<--------...
973 * ...---- >2^31 ------>| |<--------...
974 *
975 * Current code wouldn't be vulnerable but it's better still to discard such
976 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
977 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
978 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
979 * equal to the ideal case (infinite seqno space without wrap caused issues).
980 *
981 * With D-SACK the lower bound is extended to cover sequence space below
982 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 983 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
984 * for the normal SACK blocks, explained above). But there all simplicity
985 * ends, TCP might receive valid D-SACKs below that. As long as they reside
986 * fully below undo_marker they do not affect behavior in anyway and can
987 * therefore be safely ignored. In rare cases (which are more or less
988 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
989 * fragmentation and packet reordering past skb's retransmission. To consider
990 * them correctly, the acceptable range must be extended even more though
991 * the exact amount is rather hard to quantify. However, tp->max_window can
992 * be used as an exaggerated estimate.
1da177e4 993 */
a2a385d6
ED
994static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
995 u32 start_seq, u32 end_seq)
5b3c9882
IJ
996{
997 /* Too far in future, or reversed (interpretation is ambiguous) */
998 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 999 return false;
5b3c9882
IJ
1000
1001 /* Nasty start_seq wrap-around check (see comments above) */
1002 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1003 return false;
5b3c9882 1004
564262c1 1005 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1006 * start_seq == snd_una is non-sensical (see comments above)
1007 */
1008 if (after(start_seq, tp->snd_una))
a2a385d6 1009 return true;
5b3c9882
IJ
1010
1011 if (!is_dsack || !tp->undo_marker)
a2a385d6 1012 return false;
5b3c9882
IJ
1013
1014 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1015 if (after(end_seq, tp->snd_una))
a2a385d6 1016 return false;
5b3c9882
IJ
1017
1018 if (!before(start_seq, tp->undo_marker))
a2a385d6 1019 return true;
5b3c9882
IJ
1020
1021 /* Too old */
1022 if (!after(end_seq, tp->undo_marker))
a2a385d6 1023 return false;
5b3c9882
IJ
1024
1025 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1026 * start_seq < undo_marker and end_seq >= undo_marker.
1027 */
1028 return !before(start_seq, end_seq - tp->max_window);
1029}
1030
1c1e87ed 1031/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 1032 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 1033 * for reordering! Ugly, but should help.
f785a8e2
IJ
1034 *
1035 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1036 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1037 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1038 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1039 */
407ef1de 1040static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 1041{
9f58f3b7 1042 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1043 struct tcp_sock *tp = tcp_sk(sk);
1044 struct sk_buff *skb;
f785a8e2 1045 int cnt = 0;
df2e014b 1046 u32 new_low_seq = tp->snd_nxt;
6859d494 1047 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1048
1049 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1050 !after(received_upto, tp->lost_retrans_low) ||
1051 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1052 return;
1c1e87ed
IJ
1053
1054 tcp_for_write_queue(skb, sk) {
1055 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1056
1057 if (skb == tcp_send_head(sk))
1058 break;
f785a8e2 1059 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1060 break;
1061 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1062 continue;
1063
f785a8e2
IJ
1064 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1065 continue;
1066
d0af4160
IJ
1067 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1068 * constraint here (see above) but figuring out that at
1069 * least tp->reordering SACK blocks reside between ack_seq
1070 * and received_upto is not easy task to do cheaply with
1071 * the available datastructures.
1072 *
1073 * Whether FACK should check here for tp->reordering segs
1074 * in-between one could argue for either way (it would be
1075 * rather simple to implement as we could count fack_count
1076 * during the walk and do tp->fackets_out - fack_count).
1077 */
1078 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1079 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1080 tp->retrans_out -= tcp_skb_pcount(skb);
1081
006f582c 1082 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1083 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1084 } else {
df2e014b 1085 if (before(ack_seq, new_low_seq))
b08d6cb2 1086 new_low_seq = ack_seq;
f785a8e2 1087 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1088 }
1089 }
b08d6cb2
IJ
1090
1091 if (tp->retrans_out)
1092 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1093}
5b3c9882 1094
a2a385d6
ED
1095static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 struct tcp_sack_block_wire *sp, int num_sacks,
1097 u32 prior_snd_una)
d06e021d 1098{
1ed83465 1099 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1102 bool dup_sack = false;
d06e021d
DM
1103
1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1105 dup_sack = true;
e60402d0 1106 tcp_dsack_seen(tp);
de0744af 1107 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1108 } else if (num_sacks > 1) {
d3e2ce3b
HH
1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1111
1112 if (!after(end_seq_0, end_seq_1) &&
1113 !before(start_seq_0, start_seq_1)) {
a2a385d6 1114 dup_sack = true;
e60402d0 1115 tcp_dsack_seen(tp);
de0744af
PE
1116 NET_INC_STATS_BH(sock_net(sk),
1117 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1118 }
1119 }
1120
1121 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1123 !after(end_seq_0, prior_snd_una) &&
1124 after(end_seq_0, tp->undo_marker))
1125 tp->undo_retrans--;
1126
1127 return dup_sack;
1128}
1129
a1197f5a 1130struct tcp_sacktag_state {
740b0f18
ED
1131 int reord;
1132 int fack_count;
1133 long rtt_us; /* RTT measured by SACKing never-retransmitted data */
1134 int flag;
a1197f5a
IJ
1135};
1136
d1935942
IJ
1137/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1138 * the incoming SACK may not exactly match but we can find smaller MSS
1139 * aligned portion of it that matches. Therefore we might need to fragment
1140 * which may fail and creates some hassle (caller must handle error case
1141 * returns).
832d11c5
IJ
1142 *
1143 * FIXME: this could be merged to shift decision code
d1935942 1144 */
0f79efdc 1145static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1146 u32 start_seq, u32 end_seq)
d1935942 1147{
a2a385d6
ED
1148 int err;
1149 bool in_sack;
d1935942 1150 unsigned int pkt_len;
adb92db8 1151 unsigned int mss;
d1935942
IJ
1152
1153 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1154 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1155
1156 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1157 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1158 mss = tcp_skb_mss(skb);
d1935942
IJ
1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1160
adb92db8 1161 if (!in_sack) {
d1935942 1162 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1163 if (pkt_len < mss)
1164 pkt_len = mss;
1165 } else {
d1935942 1166 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1167 if (pkt_len < mss)
1168 return -EINVAL;
1169 }
1170
1171 /* Round if necessary so that SACKs cover only full MSSes
1172 * and/or the remaining small portion (if present)
1173 */
1174 if (pkt_len > mss) {
1175 unsigned int new_len = (pkt_len / mss) * mss;
1176 if (!in_sack && new_len < pkt_len) {
1177 new_len += mss;
2cd0d743 1178 if (new_len >= skb->len)
adb92db8
IJ
1179 return 0;
1180 }
1181 pkt_len = new_len;
1182 }
6cc55e09 1183 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1184 if (err < 0)
1185 return err;
1186 }
1187
1188 return in_sack;
1189}
1190
cc9a672e
NC
1191/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1192static u8 tcp_sacktag_one(struct sock *sk,
1193 struct tcp_sacktag_state *state, u8 sacked,
1194 u32 start_seq, u32 end_seq,
740b0f18
ED
1195 int dup_sack, int pcount,
1196 const struct skb_mstamp *xmit_time)
9e10c47c 1197{
6859d494 1198 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1199 int fack_count = state->fack_count;
9e10c47c
IJ
1200
1201 /* Account D-SACK for retransmitted packet. */
1202 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1203 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1204 after(end_seq, tp->undo_marker))
9e10c47c 1205 tp->undo_retrans--;
ede9f3b1 1206 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1207 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1208 }
1209
1210 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1211 if (!after(end_seq, tp->snd_una))
a1197f5a 1212 return sacked;
9e10c47c
IJ
1213
1214 if (!(sacked & TCPCB_SACKED_ACKED)) {
1215 if (sacked & TCPCB_SACKED_RETRANS) {
1216 /* If the segment is not tagged as lost,
1217 * we do not clear RETRANS, believing
1218 * that retransmission is still in flight.
1219 */
1220 if (sacked & TCPCB_LOST) {
a1197f5a 1221 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1222 tp->lost_out -= pcount;
1223 tp->retrans_out -= pcount;
9e10c47c
IJ
1224 }
1225 } else {
1226 if (!(sacked & TCPCB_RETRANS)) {
1227 /* New sack for not retransmitted frame,
1228 * which was in hole. It is reordering.
1229 */
cc9a672e 1230 if (before(start_seq,
9e10c47c 1231 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1232 state->reord = min(fack_count,
1233 state->reord);
e33099f9
YC
1234 if (!after(end_seq, tp->high_seq))
1235 state->flag |= FLAG_ORIG_SACK_ACKED;
59c9af42 1236 /* Pick the earliest sequence sacked for RTT */
740b0f18
ED
1237 if (state->rtt_us < 0) {
1238 struct skb_mstamp now;
1239
1240 skb_mstamp_get(&now);
1241 state->rtt_us = skb_mstamp_us_delta(&now,
1242 xmit_time);
1243 }
9e10c47c
IJ
1244 }
1245
1246 if (sacked & TCPCB_LOST) {
a1197f5a 1247 sacked &= ~TCPCB_LOST;
f58b22fd 1248 tp->lost_out -= pcount;
9e10c47c
IJ
1249 }
1250 }
1251
a1197f5a
IJ
1252 sacked |= TCPCB_SACKED_ACKED;
1253 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1254 tp->sacked_out += pcount;
9e10c47c 1255
f58b22fd 1256 fack_count += pcount;
9e10c47c
IJ
1257
1258 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1259 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
cc9a672e 1260 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1261 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1262
1263 if (fack_count > tp->fackets_out)
1264 tp->fackets_out = fack_count;
9e10c47c
IJ
1265 }
1266
1267 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1268 * frames and clear it. undo_retrans is decreased above, L|R frames
1269 * are accounted above as well.
1270 */
a1197f5a
IJ
1271 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1272 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1273 tp->retrans_out -= pcount;
9e10c47c
IJ
1274 }
1275
a1197f5a 1276 return sacked;
9e10c47c
IJ
1277}
1278
daef52ba
NC
1279/* Shift newly-SACKed bytes from this skb to the immediately previous
1280 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1281 */
a2a385d6
ED
1282static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1283 struct tcp_sacktag_state *state,
1284 unsigned int pcount, int shifted, int mss,
1285 bool dup_sack)
832d11c5
IJ
1286{
1287 struct tcp_sock *tp = tcp_sk(sk);
50133161 1288 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1289 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1290 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1291
1292 BUG_ON(!pcount);
1293
4c90d3b3
NC
1294 /* Adjust counters and hints for the newly sacked sequence
1295 * range but discard the return value since prev is already
1296 * marked. We must tag the range first because the seq
1297 * advancement below implicitly advances
1298 * tcp_highest_sack_seq() when skb is highest_sack.
1299 */
1300 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1301 start_seq, end_seq, dup_sack, pcount,
740b0f18 1302 &skb->skb_mstamp);
4c90d3b3
NC
1303
1304 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1305 tp->lost_cnt_hint += pcount;
1306
832d11c5
IJ
1307 TCP_SKB_CB(prev)->end_seq += shifted;
1308 TCP_SKB_CB(skb)->seq += shifted;
1309
cd7d8498
ED
1310 tcp_skb_pcount_add(prev, pcount);
1311 BUG_ON(tcp_skb_pcount(skb) < pcount);
1312 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1313
1314 /* When we're adding to gso_segs == 1, gso_size will be zero,
1315 * in theory this shouldn't be necessary but as long as DSACK
1316 * code can come after this skb later on it's better to keep
1317 * setting gso_size to something.
1318 */
1319 if (!skb_shinfo(prev)->gso_size) {
1320 skb_shinfo(prev)->gso_size = mss;
c9af6db4 1321 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
832d11c5
IJ
1322 }
1323
1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
cd7d8498 1325 if (tcp_skb_pcount(skb) <= 1) {
832d11c5 1326 skb_shinfo(skb)->gso_size = 0;
c9af6db4 1327 skb_shinfo(skb)->gso_type = 0;
832d11c5
IJ
1328 }
1329
832d11c5
IJ
1330 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1331 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1332
832d11c5
IJ
1333 if (skb->len > 0) {
1334 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1335 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1336 return false;
832d11c5
IJ
1337 }
1338
1339 /* Whole SKB was eaten :-) */
1340
92ee76b6
IJ
1341 if (skb == tp->retransmit_skb_hint)
1342 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1343 if (skb == tp->lost_skb_hint) {
1344 tp->lost_skb_hint = prev;
1345 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1346 }
1347
5e8a402f
ED
1348 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1349 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1350 TCP_SKB_CB(prev)->end_seq++;
1351
832d11c5
IJ
1352 if (skb == tcp_highest_sack(sk))
1353 tcp_advance_highest_sack(sk, skb);
1354
1355 tcp_unlink_write_queue(skb, sk);
1356 sk_wmem_free_skb(sk, skb);
1357
111cc8b9
IJ
1358 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1359
a2a385d6 1360 return true;
832d11c5
IJ
1361}
1362
1363/* I wish gso_size would have a bit more sane initialization than
1364 * something-or-zero which complicates things
1365 */
cf533ea5 1366static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1367{
775ffabf 1368 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1369}
1370
1371/* Shifting pages past head area doesn't work */
cf533ea5 1372static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1373{
1374 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1375}
1376
1377/* Try collapsing SACK blocks spanning across multiple skbs to a single
1378 * skb.
1379 */
1380static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1381 struct tcp_sacktag_state *state,
832d11c5 1382 u32 start_seq, u32 end_seq,
a2a385d6 1383 bool dup_sack)
832d11c5
IJ
1384{
1385 struct tcp_sock *tp = tcp_sk(sk);
1386 struct sk_buff *prev;
1387 int mss;
1388 int pcount = 0;
1389 int len;
1390 int in_sack;
1391
1392 if (!sk_can_gso(sk))
1393 goto fallback;
1394
1395 /* Normally R but no L won't result in plain S */
1396 if (!dup_sack &&
9969ca5f 1397 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1398 goto fallback;
1399 if (!skb_can_shift(skb))
1400 goto fallback;
1401 /* This frame is about to be dropped (was ACKed). */
1402 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1403 goto fallback;
1404
1405 /* Can only happen with delayed DSACK + discard craziness */
1406 if (unlikely(skb == tcp_write_queue_head(sk)))
1407 goto fallback;
1408 prev = tcp_write_queue_prev(sk, skb);
1409
1410 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1411 goto fallback;
1412
1413 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1414 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1415
1416 if (in_sack) {
1417 len = skb->len;
1418 pcount = tcp_skb_pcount(skb);
775ffabf 1419 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1420
1421 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1422 * drop this restriction as unnecessary
1423 */
775ffabf 1424 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1425 goto fallback;
1426 } else {
1427 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1428 goto noop;
1429 /* CHECKME: This is non-MSS split case only?, this will
1430 * cause skipped skbs due to advancing loop btw, original
1431 * has that feature too
1432 */
1433 if (tcp_skb_pcount(skb) <= 1)
1434 goto noop;
1435
1436 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1437 if (!in_sack) {
1438 /* TODO: head merge to next could be attempted here
1439 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1440 * though it might not be worth of the additional hassle
1441 *
1442 * ...we can probably just fallback to what was done
1443 * previously. We could try merging non-SACKed ones
1444 * as well but it probably isn't going to buy off
1445 * because later SACKs might again split them, and
1446 * it would make skb timestamp tracking considerably
1447 * harder problem.
1448 */
1449 goto fallback;
1450 }
1451
1452 len = end_seq - TCP_SKB_CB(skb)->seq;
1453 BUG_ON(len < 0);
1454 BUG_ON(len > skb->len);
1455
1456 /* MSS boundaries should be honoured or else pcount will
1457 * severely break even though it makes things bit trickier.
1458 * Optimize common case to avoid most of the divides
1459 */
1460 mss = tcp_skb_mss(skb);
1461
1462 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1463 * drop this restriction as unnecessary
1464 */
775ffabf 1465 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1466 goto fallback;
1467
1468 if (len == mss) {
1469 pcount = 1;
1470 } else if (len < mss) {
1471 goto noop;
1472 } else {
1473 pcount = len / mss;
1474 len = pcount * mss;
1475 }
1476 }
1477
4648dc97
NC
1478 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1479 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1480 goto fallback;
1481
832d11c5
IJ
1482 if (!skb_shift(prev, skb, len))
1483 goto fallback;
9ec06ff5 1484 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1485 goto out;
1486
1487 /* Hole filled allows collapsing with the next as well, this is very
1488 * useful when hole on every nth skb pattern happens
1489 */
1490 if (prev == tcp_write_queue_tail(sk))
1491 goto out;
1492 skb = tcp_write_queue_next(sk, prev);
1493
f0bc52f3
IJ
1494 if (!skb_can_shift(skb) ||
1495 (skb == tcp_send_head(sk)) ||
1496 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1497 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1498 goto out;
1499
1500 len = skb->len;
1501 if (skb_shift(prev, skb, len)) {
1502 pcount += tcp_skb_pcount(skb);
9ec06ff5 1503 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1504 }
1505
1506out:
a1197f5a 1507 state->fack_count += pcount;
832d11c5
IJ
1508 return prev;
1509
1510noop:
1511 return skb;
1512
1513fallback:
111cc8b9 1514 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1515 return NULL;
1516}
1517
68f8353b
IJ
1518static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1519 struct tcp_sack_block *next_dup,
a1197f5a 1520 struct tcp_sacktag_state *state,
68f8353b 1521 u32 start_seq, u32 end_seq,
a2a385d6 1522 bool dup_sack_in)
68f8353b 1523{
832d11c5
IJ
1524 struct tcp_sock *tp = tcp_sk(sk);
1525 struct sk_buff *tmp;
1526
68f8353b
IJ
1527 tcp_for_write_queue_from(skb, sk) {
1528 int in_sack = 0;
a2a385d6 1529 bool dup_sack = dup_sack_in;
68f8353b
IJ
1530
1531 if (skb == tcp_send_head(sk))
1532 break;
1533
1534 /* queue is in-order => we can short-circuit the walk early */
1535 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1536 break;
1537
1538 if ((next_dup != NULL) &&
1539 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1540 in_sack = tcp_match_skb_to_sack(sk, skb,
1541 next_dup->start_seq,
1542 next_dup->end_seq);
1543 if (in_sack > 0)
a2a385d6 1544 dup_sack = true;
68f8353b
IJ
1545 }
1546
832d11c5
IJ
1547 /* skb reference here is a bit tricky to get right, since
1548 * shifting can eat and free both this skb and the next,
1549 * so not even _safe variant of the loop is enough.
1550 */
1551 if (in_sack <= 0) {
a1197f5a
IJ
1552 tmp = tcp_shift_skb_data(sk, skb, state,
1553 start_seq, end_seq, dup_sack);
832d11c5
IJ
1554 if (tmp != NULL) {
1555 if (tmp != skb) {
1556 skb = tmp;
1557 continue;
1558 }
1559
1560 in_sack = 0;
1561 } else {
1562 in_sack = tcp_match_skb_to_sack(sk, skb,
1563 start_seq,
1564 end_seq);
1565 }
1566 }
1567
68f8353b
IJ
1568 if (unlikely(in_sack < 0))
1569 break;
1570
832d11c5 1571 if (in_sack) {
cc9a672e
NC
1572 TCP_SKB_CB(skb)->sacked =
1573 tcp_sacktag_one(sk,
1574 state,
1575 TCP_SKB_CB(skb)->sacked,
1576 TCP_SKB_CB(skb)->seq,
1577 TCP_SKB_CB(skb)->end_seq,
1578 dup_sack,
59c9af42 1579 tcp_skb_pcount(skb),
740b0f18 1580 &skb->skb_mstamp);
68f8353b 1581
832d11c5
IJ
1582 if (!before(TCP_SKB_CB(skb)->seq,
1583 tcp_highest_sack_seq(tp)))
1584 tcp_advance_highest_sack(sk, skb);
1585 }
1586
a1197f5a 1587 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1588 }
1589 return skb;
1590}
1591
1592/* Avoid all extra work that is being done by sacktag while walking in
1593 * a normal way
1594 */
1595static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1596 struct tcp_sacktag_state *state,
1597 u32 skip_to_seq)
68f8353b
IJ
1598{
1599 tcp_for_write_queue_from(skb, sk) {
1600 if (skb == tcp_send_head(sk))
1601 break;
1602
e8bae275 1603 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1604 break;
d152a7d8 1605
a1197f5a 1606 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1607 }
1608 return skb;
1609}
1610
1611static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1612 struct sock *sk,
1613 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1614 struct tcp_sacktag_state *state,
1615 u32 skip_to_seq)
68f8353b
IJ
1616{
1617 if (next_dup == NULL)
1618 return skb;
1619
1620 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1621 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1622 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1623 next_dup->start_seq, next_dup->end_seq,
1624 1);
68f8353b
IJ
1625 }
1626
1627 return skb;
1628}
1629
cf533ea5 1630static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1631{
1632 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1633}
1634
1da177e4 1635static int
cf533ea5 1636tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
740b0f18 1637 u32 prior_snd_una, long *sack_rtt_us)
1da177e4
LT
1638{
1639 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1640 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1641 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1642 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1643 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1644 struct tcp_sack_block *cache;
a1197f5a 1645 struct tcp_sacktag_state state;
68f8353b 1646 struct sk_buff *skb;
4389dded 1647 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1648 int used_sacks;
a2a385d6 1649 bool found_dup_sack = false;
68f8353b 1650 int i, j;
fda03fbb 1651 int first_sack_index;
1da177e4 1652
a1197f5a
IJ
1653 state.flag = 0;
1654 state.reord = tp->packets_out;
740b0f18 1655 state.rtt_us = -1L;
a1197f5a 1656
d738cd8f 1657 if (!tp->sacked_out) {
de83c058
IJ
1658 if (WARN_ON(tp->fackets_out))
1659 tp->fackets_out = 0;
6859d494 1660 tcp_highest_sack_reset(sk);
d738cd8f 1661 }
1da177e4 1662
1ed83465 1663 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1664 num_sacks, prior_snd_una);
1665 if (found_dup_sack)
a1197f5a 1666 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1667
1668 /* Eliminate too old ACKs, but take into
1669 * account more or less fresh ones, they can
1670 * contain valid SACK info.
1671 */
1672 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1673 return 0;
1674