]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/ipv4/tcp_input.c
smc: fix mutex unlocks during link group creation
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
5941521c 78#include <trace/events/tcp.h>
1da177e4 79
94bdc978 80int sysctl_tcp_fack __read_mostly;
dca145ff 81int sysctl_tcp_max_reordering __read_mostly = 300;
ab32ea5d
BH
82int sysctl_tcp_dsack __read_mostly = 1;
83int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 84int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 85EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 86
282f23c6 87/* rfc5961 challenge ack rate limiting */
75ff39cc 88int sysctl_tcp_challenge_ack_limit = 1000;
282f23c6 89
ab32ea5d
BH
90int sysctl_tcp_stdurg __read_mostly;
91int sysctl_tcp_rfc1337 __read_mostly;
92int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 93int sysctl_tcp_frto __read_mostly = 2;
f6722583 94int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
ab32ea5d 95int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 96int sysctl_tcp_early_retrans __read_mostly = 3;
032ee423 97int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
1da177e4 98
1da177e4
LT
99#define FLAG_DATA 0x01 /* Incoming frame contained data. */
100#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
101#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
102#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
103#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
104#define FLAG_DATA_SACKED 0x20 /* New SACK. */
105#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 106#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
31770e34 107#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 108#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 109#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 110#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
df92c839 111#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
cadbd031 112#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 113#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
d0e1a1b5 114#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
1da177e4
LT
115
116#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
1da177e4 121#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 122#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 123
e662ca40
YC
124#define REXMIT_NONE 0 /* no loss recovery to do */
125#define REXMIT_LOST 1 /* retransmit packets marked lost */
126#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
127
0b9aefea
MRL
128static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
129 unsigned int len)
dcb17d22
MRL
130{
131 static bool __once __read_mostly;
132
133 if (!__once) {
134 struct net_device *dev;
135
136 __once = true;
137
138 rcu_read_lock();
139 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
140 if (!dev || len >= dev->mtu)
141 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
142 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
143 rcu_read_unlock();
144 }
145}
146
e905a9ed 147/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 148 * real world.
e905a9ed 149 */
056834d9 150static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 151{
463c84b9 152 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 153 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 154 unsigned int len;
1da177e4 155
e905a9ed 156 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
157
158 /* skb->len may jitter because of SACKs, even if peer
159 * sends good full-sized frames.
160 */
056834d9 161 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 162 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
163 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
164 tcp_sk(sk)->advmss);
0b9aefea
MRL
165 /* Account for possibly-removed options */
166 if (unlikely(len > icsk->icsk_ack.rcv_mss +
167 MAX_TCP_OPTION_SPACE))
168 tcp_gro_dev_warn(sk, skb, len);
1da177e4
LT
169 } else {
170 /* Otherwise, we make more careful check taking into account,
171 * that SACKs block is variable.
172 *
173 * "len" is invariant segment length, including TCP header.
174 */
9c70220b 175 len += skb->data - skb_transport_header(skb);
bee7ca9e 176 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
177 /* If PSH is not set, packet should be
178 * full sized, provided peer TCP is not badly broken.
179 * This observation (if it is correct 8)) allows
180 * to handle super-low mtu links fairly.
181 */
182 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 183 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
184 /* Subtract also invariant (if peer is RFC compliant),
185 * tcp header plus fixed timestamp option length.
186 * Resulting "len" is MSS free of SACK jitter.
187 */
463c84b9
ACM
188 len -= tcp_sk(sk)->tcp_header_len;
189 icsk->icsk_ack.last_seg_size = len;
1da177e4 190 if (len == lss) {
463c84b9 191 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
192 return;
193 }
194 }
1ef9696c
AK
195 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
198 }
199}
200
463c84b9 201static void tcp_incr_quickack(struct sock *sk)
1da177e4 202{
463c84b9 203 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 204 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 205
056834d9
IJ
206 if (quickacks == 0)
207 quickacks = 2;
463c84b9
ACM
208 if (quickacks > icsk->icsk_ack.quick)
209 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
210}
211
1b9f4092 212static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 213{
463c84b9
ACM
214 struct inet_connection_sock *icsk = inet_csk(sk);
215 tcp_incr_quickack(sk);
216 icsk->icsk_ack.pingpong = 0;
217 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
218}
219
220/* Send ACKs quickly, if "quick" count is not exhausted
221 * and the session is not interactive.
222 */
223
2251ae46 224static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 225{
463c84b9 226 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 227 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 228
2251ae46
JM
229 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
230 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
231}
232
735d3831 233static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 234{
056834d9 235 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
236 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
237}
238
735d3831 239static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
240{
241 if (tcp_hdr(skb)->cwr)
242 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
243}
244
735d3831 245static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
246{
247 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
248}
249
735d3831 250static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 251{
b82d1bb4 252 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 253 case INET_ECN_NOT_ECT:
bdf1ee5d 254 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
255 * and we already seen ECT on a previous segment,
256 * it is probably a retransmit.
257 */
258 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 259 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
260 break;
261 case INET_ECN_CE:
9890092e
FW
262 if (tcp_ca_needs_ecn((struct sock *)tp))
263 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
264
aae06bf5
ED
265 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
266 /* Better not delay acks, sender can have a very low cwnd */
267 tcp_enter_quickack_mode((struct sock *)tp);
268 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
269 }
9890092e
FW
270 tp->ecn_flags |= TCP_ECN_SEEN;
271 break;
7a269ffa 272 default:
9890092e
FW
273 if (tcp_ca_needs_ecn((struct sock *)tp))
274 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 275 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 276 break;
bdf1ee5d
IJ
277 }
278}
279
735d3831
FW
280static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
281{
282 if (tp->ecn_flags & TCP_ECN_OK)
283 __tcp_ecn_check_ce(tp, skb);
284}
285
286static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 287{
056834d9 288 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
289 tp->ecn_flags &= ~TCP_ECN_OK;
290}
291
735d3831 292static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 293{
056834d9 294 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
295 tp->ecn_flags &= ~TCP_ECN_OK;
296}
297
735d3831 298static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 299{
056834d9 300 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
301 return true;
302 return false;
bdf1ee5d
IJ
303}
304
1da177e4
LT
305/* Buffer size and advertised window tuning.
306 *
307 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
308 */
309
6ae70532 310static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 311{
6ae70532 312 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 313 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
314 int sndmem, per_mss;
315 u32 nr_segs;
316
317 /* Worst case is non GSO/TSO : each frame consumes one skb
318 * and skb->head is kmalloced using power of two area of memory
319 */
320 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
321 MAX_TCP_HEADER +
322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
323
324 per_mss = roundup_pow_of_two(per_mss) +
325 SKB_DATA_ALIGN(sizeof(struct sk_buff));
326
327 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
328 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
329
330 /* Fast Recovery (RFC 5681 3.2) :
331 * Cubic needs 1.7 factor, rounded to 2 to include
332 * extra cushion (application might react slowly to POLLOUT)
333 */
77bfc174
YC
334 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
335 sndmem *= nr_segs * per_mss;
1da177e4 336
06a59ecb
ED
337 if (sk->sk_sndbuf < sndmem)
338 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
339}
340
341/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
342 *
343 * All tcp_full_space() is split to two parts: "network" buffer, allocated
344 * forward and advertised in receiver window (tp->rcv_wnd) and
345 * "application buffer", required to isolate scheduling/application
346 * latencies from network.
347 * window_clamp is maximal advertised window. It can be less than
348 * tcp_full_space(), in this case tcp_full_space() - window_clamp
349 * is reserved for "application" buffer. The less window_clamp is
350 * the smoother our behaviour from viewpoint of network, but the lower
351 * throughput and the higher sensitivity of the connection to losses. 8)
352 *
353 * rcv_ssthresh is more strict window_clamp used at "slow start"
354 * phase to predict further behaviour of this connection.
355 * It is used for two goals:
356 * - to enforce header prediction at sender, even when application
357 * requires some significant "application buffer". It is check #1.
358 * - to prevent pruning of receive queue because of misprediction
359 * of receiver window. Check #2.
360 *
361 * The scheme does not work when sender sends good segments opening
caa20d9a 362 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
363 * in common situations. Otherwise, we have to rely on queue collapsing.
364 */
365
366/* Slow part of check#2. */
9e412ba7 367static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 368{
9e412ba7 369 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 370 /* Optimize this! */
dfd4f0ae
ED
371 int truesize = tcp_win_from_space(skb->truesize) >> 1;
372 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
373
374 while (tp->rcv_ssthresh <= window) {
375 if (truesize <= skb->len)
463c84b9 376 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
377
378 truesize >>= 1;
379 window >>= 1;
380 }
381 return 0;
382}
383
cf533ea5 384static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 385{
9e412ba7
IJ
386 struct tcp_sock *tp = tcp_sk(sk);
387
1da177e4
LT
388 /* Check #1 */
389 if (tp->rcv_ssthresh < tp->window_clamp &&
390 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 391 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
392 int incr;
393
394 /* Check #2. Increase window, if skb with such overhead
395 * will fit to rcvbuf in future.
396 */
397 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 398 incr = 2 * tp->advmss;
1da177e4 399 else
9e412ba7 400 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
401
402 if (incr) {
4d846f02 403 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
404 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
405 tp->window_clamp);
463c84b9 406 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
407 }
408 }
409}
410
411/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
412static void tcp_fixup_rcvbuf(struct sock *sk)
413{
e9266a02 414 u32 mss = tcp_sk(sk)->advmss;
e9266a02 415 int rcvmem;
1da177e4 416
85f16525
YC
417 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
418 tcp_default_init_rwnd(mss);
e9266a02 419
b0983d3c
ED
420 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
421 * Allow enough cushion so that sender is not limited by our window
422 */
423 if (sysctl_tcp_moderate_rcvbuf)
424 rcvmem <<= 2;
425
e9266a02
ED
426 if (sk->sk_rcvbuf < rcvmem)
427 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
428}
429
caa20d9a 430/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
431 * established state.
432 */
10467163 433void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
434{
435 struct tcp_sock *tp = tcp_sk(sk);
436 int maxwin;
437
438 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
439 tcp_fixup_rcvbuf(sk);
440 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 441 tcp_sndbuf_expand(sk);
1da177e4
LT
442
443 tp->rcvq_space.space = tp->rcv_wnd;
9a568de4 444 tcp_mstamp_refresh(tp);
645f4c6f 445 tp->rcvq_space.time = tp->tcp_mstamp;
b0983d3c 446 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
447
448 maxwin = tcp_full_space(sk);
449
450 if (tp->window_clamp >= maxwin) {
451 tp->window_clamp = maxwin;
452
453 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
454 tp->window_clamp = max(maxwin -
455 (maxwin >> sysctl_tcp_app_win),
456 4 * tp->advmss);
457 }
458
459 /* Force reservation of one segment. */
460 if (sysctl_tcp_app_win &&
461 tp->window_clamp > 2 * tp->advmss &&
462 tp->window_clamp + tp->advmss > maxwin)
463 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
464
465 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
c2203cf7 466 tp->snd_cwnd_stamp = tcp_jiffies32;
1da177e4
LT
467}
468
1da177e4 469/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 470static void tcp_clamp_window(struct sock *sk)
1da177e4 471{
9e412ba7 472 struct tcp_sock *tp = tcp_sk(sk);
6687e988 473 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 474
6687e988 475 icsk->icsk_ack.quick = 0;
1da177e4 476
326f36e9
JH
477 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
478 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 479 !tcp_under_memory_pressure(sk) &&
180d8cd9 480 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
481 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
482 sysctl_tcp_rmem[2]);
1da177e4 483 }
326f36e9 484 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 485 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
486}
487
40efc6fa
SH
488/* Initialize RCV_MSS value.
489 * RCV_MSS is an our guess about MSS used by the peer.
490 * We haven't any direct information about the MSS.
491 * It's better to underestimate the RCV_MSS rather than overestimate.
492 * Overestimations make us ACKing less frequently than needed.
493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494 */
495void tcp_initialize_rcv_mss(struct sock *sk)
496{
cf533ea5 497 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
498 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499
056834d9 500 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 501 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
502 hint = max(hint, TCP_MIN_MSS);
503
504 inet_csk(sk)->icsk_ack.rcv_mss = hint;
505}
4bc2f18b 506EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 507
1da177e4
LT
508/* Receiver "autotuning" code.
509 *
510 * The algorithm for RTT estimation w/o timestamps is based on
511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 512 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
513 *
514 * More detail on this code can be found at
631dd1a8 515 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
516 * though this reference is out of date. A new paper
517 * is pending.
518 */
519static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520{
645f4c6f 521 u32 new_sample = tp->rcv_rtt_est.rtt_us;
1da177e4
LT
522 long m = sample;
523
524 if (m == 0)
525 m = 1;
526
527 if (new_sample != 0) {
528 /* If we sample in larger samples in the non-timestamp
529 * case, we could grossly overestimate the RTT especially
530 * with chatty applications or bulk transfer apps which
531 * are stalled on filesystem I/O.
532 *
533 * Also, since we are only going for a minimum in the
31f34269 534 * non-timestamp case, we do not smooth things out
caa20d9a 535 * else with timestamps disabled convergence takes too
1da177e4
LT
536 * long.
537 */
538 if (!win_dep) {
539 m -= (new_sample >> 3);
540 new_sample += m;
18a223e0
NC
541 } else {
542 m <<= 3;
543 if (m < new_sample)
544 new_sample = m;
545 }
1da177e4 546 } else {
caa20d9a 547 /* No previous measure. */
1da177e4
LT
548 new_sample = m << 3;
549 }
550
645f4c6f 551 tp->rcv_rtt_est.rtt_us = new_sample;
1da177e4
LT
552}
553
554static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
555{
645f4c6f
ED
556 u32 delta_us;
557
9a568de4 558 if (tp->rcv_rtt_est.time == 0)
1da177e4
LT
559 goto new_measure;
560 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
561 return;
9a568de4 562 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
645f4c6f 563 tcp_rcv_rtt_update(tp, delta_us, 1);
1da177e4
LT
564
565new_measure:
566 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
645f4c6f 567 tp->rcv_rtt_est.time = tp->tcp_mstamp;
1da177e4
LT
568}
569
056834d9
IJ
570static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
571 const struct sk_buff *skb)
1da177e4 572{
463c84b9 573 struct tcp_sock *tp = tcp_sk(sk);
9a568de4 574
1da177e4
LT
575 if (tp->rx_opt.rcv_tsecr &&
576 (TCP_SKB_CB(skb)->end_seq -
9a568de4
ED
577 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
578 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
579 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
580
581 tcp_rcv_rtt_update(tp, delta_us, 0);
582 }
1da177e4
LT
583}
584
585/*
586 * This function should be called every time data is copied to user space.
587 * It calculates the appropriate TCP receive buffer space.
588 */
589void tcp_rcv_space_adjust(struct sock *sk)
590{
591 struct tcp_sock *tp = tcp_sk(sk);
592 int time;
b0983d3c 593 int copied;
e905a9ed 594
9a568de4 595 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
645f4c6f 596 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
1da177e4 597 return;
e905a9ed 598
b0983d3c
ED
599 /* Number of bytes copied to user in last RTT */
600 copied = tp->copied_seq - tp->rcvq_space.seq;
601 if (copied <= tp->rcvq_space.space)
602 goto new_measure;
603
604 /* A bit of theory :
605 * copied = bytes received in previous RTT, our base window
606 * To cope with packet losses, we need a 2x factor
607 * To cope with slow start, and sender growing its cwin by 100 %
608 * every RTT, we need a 4x factor, because the ACK we are sending
609 * now is for the next RTT, not the current one :
610 * <prev RTT . ><current RTT .. ><next RTT .... >
611 */
612
613 if (sysctl_tcp_moderate_rcvbuf &&
614 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
615 int rcvwin, rcvmem, rcvbuf;
1da177e4 616
b0983d3c
ED
617 /* minimal window to cope with packet losses, assuming
618 * steady state. Add some cushion because of small variations.
619 */
620 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 621
b0983d3c
ED
622 /* If rate increased by 25%,
623 * assume slow start, rcvwin = 3 * copied
624 * If rate increased by 50%,
625 * assume sender can use 2x growth, rcvwin = 4 * copied
626 */
627 if (copied >=
628 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
629 if (copied >=
630 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
631 rcvwin <<= 1;
632 else
633 rcvwin += (rcvwin >> 1);
634 }
1da177e4 635
b0983d3c
ED
636 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
637 while (tcp_win_from_space(rcvmem) < tp->advmss)
638 rcvmem += 128;
1da177e4 639
b0983d3c
ED
640 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
641 if (rcvbuf > sk->sk_rcvbuf) {
642 sk->sk_rcvbuf = rcvbuf;
1da177e4 643
b0983d3c
ED
644 /* Make the window clamp follow along. */
645 tp->window_clamp = rcvwin;
1da177e4
LT
646 }
647 }
b0983d3c 648 tp->rcvq_space.space = copied;
e905a9ed 649
1da177e4
LT
650new_measure:
651 tp->rcvq_space.seq = tp->copied_seq;
645f4c6f 652 tp->rcvq_space.time = tp->tcp_mstamp;
1da177e4
LT
653}
654
655/* There is something which you must keep in mind when you analyze the
656 * behavior of the tp->ato delayed ack timeout interval. When a
657 * connection starts up, we want to ack as quickly as possible. The
658 * problem is that "good" TCP's do slow start at the beginning of data
659 * transmission. The means that until we send the first few ACK's the
660 * sender will sit on his end and only queue most of his data, because
661 * he can only send snd_cwnd unacked packets at any given time. For
662 * each ACK we send, he increments snd_cwnd and transmits more of his
663 * queue. -DaveM
664 */
9e412ba7 665static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 666{
9e412ba7 667 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 668 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
669 u32 now;
670
463c84b9 671 inet_csk_schedule_ack(sk);
1da177e4 672
463c84b9 673 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
674
675 tcp_rcv_rtt_measure(tp);
e905a9ed 676
70eabf0e 677 now = tcp_jiffies32;
1da177e4 678
463c84b9 679 if (!icsk->icsk_ack.ato) {
1da177e4
LT
680 /* The _first_ data packet received, initialize
681 * delayed ACK engine.
682 */
463c84b9
ACM
683 tcp_incr_quickack(sk);
684 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 685 } else {
463c84b9 686 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 687
056834d9 688 if (m <= TCP_ATO_MIN / 2) {
1da177e4 689 /* The fastest case is the first. */
463c84b9
ACM
690 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
691 } else if (m < icsk->icsk_ack.ato) {
692 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
693 if (icsk->icsk_ack.ato > icsk->icsk_rto)
694 icsk->icsk_ack.ato = icsk->icsk_rto;
695 } else if (m > icsk->icsk_rto) {
caa20d9a 696 /* Too long gap. Apparently sender failed to
1da177e4
LT
697 * restart window, so that we send ACKs quickly.
698 */
463c84b9 699 tcp_incr_quickack(sk);
3ab224be 700 sk_mem_reclaim(sk);
1da177e4
LT
701 }
702 }
463c84b9 703 icsk->icsk_ack.lrcvtime = now;
1da177e4 704
735d3831 705 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
706
707 if (skb->len >= 128)
9e412ba7 708 tcp_grow_window(sk, skb);
1da177e4
LT
709}
710
1da177e4
LT
711/* Called to compute a smoothed rtt estimate. The data fed to this
712 * routine either comes from timestamps, or from segments that were
713 * known _not_ to have been retransmitted [see Karn/Partridge
714 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
715 * piece by Van Jacobson.
716 * NOTE: the next three routines used to be one big routine.
717 * To save cycles in the RFC 1323 implementation it was better to break
718 * it up into three procedures. -- erics
719 */
740b0f18 720static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 721{
6687e988 722 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
723 long m = mrtt_us; /* RTT */
724 u32 srtt = tp->srtt_us;
1da177e4 725
1da177e4
LT
726 /* The following amusing code comes from Jacobson's
727 * article in SIGCOMM '88. Note that rtt and mdev
728 * are scaled versions of rtt and mean deviation.
e905a9ed 729 * This is designed to be as fast as possible
1da177e4
LT
730 * m stands for "measurement".
731 *
732 * On a 1990 paper the rto value is changed to:
733 * RTO = rtt + 4 * mdev
734 *
735 * Funny. This algorithm seems to be very broken.
736 * These formulae increase RTO, when it should be decreased, increase
31f34269 737 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
738 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
739 * does not matter how to _calculate_ it. Seems, it was trap
740 * that VJ failed to avoid. 8)
741 */
4a5ab4e2
ED
742 if (srtt != 0) {
743 m -= (srtt >> 3); /* m is now error in rtt est */
744 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
745 if (m < 0) {
746 m = -m; /* m is now abs(error) */
740b0f18 747 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
748 /* This is similar to one of Eifel findings.
749 * Eifel blocks mdev updates when rtt decreases.
750 * This solution is a bit different: we use finer gain
751 * for mdev in this case (alpha*beta).
752 * Like Eifel it also prevents growth of rto,
753 * but also it limits too fast rto decreases,
754 * happening in pure Eifel.
755 */
756 if (m > 0)
757 m >>= 3;
758 } else {
740b0f18 759 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 760 }
740b0f18
ED
761 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
762 if (tp->mdev_us > tp->mdev_max_us) {
763 tp->mdev_max_us = tp->mdev_us;
764 if (tp->mdev_max_us > tp->rttvar_us)
765 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
766 }
767 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
768 if (tp->mdev_max_us < tp->rttvar_us)
769 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 770 tp->rtt_seq = tp->snd_nxt;
740b0f18 771 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
772 }
773 } else {
774 /* no previous measure. */
4a5ab4e2 775 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
776 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
777 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
778 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
779 tp->rtt_seq = tp->snd_nxt;
780 }
740b0f18 781 tp->srtt_us = max(1U, srtt);
1da177e4
LT
782}
783
95bd09eb
ED
784/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
785 * Note: TCP stack does not yet implement pacing.
786 * FQ packet scheduler can be used to implement cheap but effective
787 * TCP pacing, to smooth the burst on large writes when packets
788 * in flight is significantly lower than cwnd (or rwin)
789 */
43e122b0
ED
790int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
791int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
792
95bd09eb
ED
793static void tcp_update_pacing_rate(struct sock *sk)
794{
795 const struct tcp_sock *tp = tcp_sk(sk);
796 u64 rate;
797
798 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
799 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
800
801 /* current rate is (cwnd * mss) / srtt
802 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
803 * In Congestion Avoidance phase, set it to 120 % the current rate.
804 *
805 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
806 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
807 * end of slow start and should slow down.
808 */
809 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
810 rate *= sysctl_tcp_pacing_ss_ratio;
811 else
812 rate *= sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
813
814 rate *= max(tp->snd_cwnd, tp->packets_out);
815
740b0f18
ED
816 if (likely(tp->srtt_us))
817 do_div(rate, tp->srtt_us);
95bd09eb 818
ba537427
ED
819 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
820 * without any lock. We want to make sure compiler wont store
821 * intermediate values in this location.
822 */
823 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
824 sk->sk_max_pacing_rate);
95bd09eb
ED
825}
826
1da177e4
LT
827/* Calculate rto without backoff. This is the second half of Van Jacobson's
828 * routine referred to above.
829 */
f7e56a76 830static void tcp_set_rto(struct sock *sk)
1da177e4 831{
463c84b9 832 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
833 /* Old crap is replaced with new one. 8)
834 *
835 * More seriously:
836 * 1. If rtt variance happened to be less 50msec, it is hallucination.
837 * It cannot be less due to utterly erratic ACK generation made
838 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
839 * to do with delayed acks, because at cwnd>2 true delack timeout
840 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 841 * ACKs in some circumstances.
1da177e4 842 */
f1ecd5d9 843 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
844
845 /* 2. Fixups made earlier cannot be right.
846 * If we do not estimate RTO correctly without them,
847 * all the algo is pure shit and should be replaced
caa20d9a 848 * with correct one. It is exactly, which we pretend to do.
1da177e4 849 */
1da177e4 850
ee6aac59
IJ
851 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
852 * guarantees that rto is higher.
853 */
f1ecd5d9 854 tcp_bound_rto(sk);
1da177e4
LT
855}
856
cf533ea5 857__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
858{
859 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
860
22b71c8f 861 if (!cwnd)
442b9635 862 cwnd = TCP_INIT_CWND;
1da177e4
LT
863 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
864}
865
e60402d0
IJ
866/*
867 * Packet counting of FACK is based on in-order assumptions, therefore TCP
868 * disables it when reordering is detected
869 */
4aabd8ef 870void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 871{
85cc391c
IJ
872 /* RFC3517 uses different metric in lost marker => reset on change */
873 if (tcp_is_fack(tp))
874 tp->lost_skb_hint = NULL;
ab56222a 875 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
876}
877
564262c1 878/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
879static void tcp_dsack_seen(struct tcp_sock *tp)
880{
ab56222a 881 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
882}
883
6687e988
ACM
884static void tcp_update_reordering(struct sock *sk, const int metric,
885 const int ts)
1da177e4 886{
6687e988 887 struct tcp_sock *tp = tcp_sk(sk);
2d2517ee 888 int mib_idx;
40b215e5 889
6f5b24ee
SHY
890 if (WARN_ON_ONCE(metric < 0))
891 return;
892
2d2517ee 893 if (metric > tp->reordering) {
dca145ff 894 tp->reordering = min(sysctl_tcp_max_reordering, metric);
1da177e4 895
1da177e4 896#if FASTRETRANS_DEBUG > 1
91df42be
JP
897 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
898 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
899 tp->reordering,
900 tp->fackets_out,
901 tp->sacked_out,
902 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 903#endif
e60402d0 904 tcp_disable_fack(tp);
1da177e4 905 }
eed530b6 906
4f41b1c5 907 tp->rack.reord = 1;
2d2517ee
YC
908
909 /* This exciting event is worth to be remembered. 8) */
910 if (ts)
911 mib_idx = LINUX_MIB_TCPTSREORDER;
912 else if (tcp_is_reno(tp))
913 mib_idx = LINUX_MIB_TCPRENOREORDER;
914 else if (tcp_is_fack(tp))
915 mib_idx = LINUX_MIB_TCPFACKREORDER;
916 else
917 mib_idx = LINUX_MIB_TCPSACKREORDER;
918
919 NET_INC_STATS(sock_net(sk), mib_idx);
1da177e4
LT
920}
921
006f582c 922/* This must be called before lost_out is incremented */
c8c213f2
IJ
923static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
924{
51456b29 925 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
926 before(TCP_SKB_CB(skb)->seq,
927 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c 928 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
929}
930
0682e690
NC
931/* Sum the number of packets on the wire we have marked as lost.
932 * There are two cases we care about here:
933 * a) Packet hasn't been marked lost (nor retransmitted),
934 * and this is the first loss.
935 * b) Packet has been marked both lost and retransmitted,
936 * and this means we think it was lost again.
937 */
938static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
939{
940 __u8 sacked = TCP_SKB_CB(skb)->sacked;
941
942 if (!(sacked & TCPCB_LOST) ||
943 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
944 tp->lost += tcp_skb_pcount(skb);
945}
946
41ea36e3
IJ
947static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
948{
949 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
950 tcp_verify_retransmit_hint(tp, skb);
951
952 tp->lost_out += tcp_skb_pcount(skb);
0682e690 953 tcp_sum_lost(tp, skb);
41ea36e3
IJ
954 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
955 }
956}
957
4f41b1c5 958void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
959{
960 tcp_verify_retransmit_hint(tp, skb);
961
0682e690 962 tcp_sum_lost(tp, skb);
006f582c
IJ
963 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
964 tp->lost_out += tcp_skb_pcount(skb);
965 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
966 }
967}
968
1da177e4
LT
969/* This procedure tags the retransmission queue when SACKs arrive.
970 *
971 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
972 * Packets in queue with these bits set are counted in variables
973 * sacked_out, retrans_out and lost_out, correspondingly.
974 *
975 * Valid combinations are:
976 * Tag InFlight Description
977 * 0 1 - orig segment is in flight.
978 * S 0 - nothing flies, orig reached receiver.
979 * L 0 - nothing flies, orig lost by net.
980 * R 2 - both orig and retransmit are in flight.
981 * L|R 1 - orig is lost, retransmit is in flight.
982 * S|R 1 - orig reached receiver, retrans is still in flight.
983 * (L|S|R is logically valid, it could occur when L|R is sacked,
984 * but it is equivalent to plain S and code short-curcuits it to S.
985 * L|S is logically invalid, it would mean -1 packet in flight 8))
986 *
987 * These 6 states form finite state machine, controlled by the following events:
988 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
989 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 990 * 3. Loss detection event of two flavors:
1da177e4
LT
991 * A. Scoreboard estimator decided the packet is lost.
992 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
993 * A''. Its FACK modification, head until snd.fack is lost.
994 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
995 * segment was retransmitted.
996 * 4. D-SACK added new rule: D-SACK changes any tag to S.
997 *
998 * It is pleasant to note, that state diagram turns out to be commutative,
999 * so that we are allowed not to be bothered by order of our actions,
1000 * when multiple events arrive simultaneously. (see the function below).
1001 *
1002 * Reordering detection.
1003 * --------------------
1004 * Reordering metric is maximal distance, which a packet can be displaced
1005 * in packet stream. With SACKs we can estimate it:
1006 *
1007 * 1. SACK fills old hole and the corresponding segment was not
1008 * ever retransmitted -> reordering. Alas, we cannot use it
1009 * when segment was retransmitted.
1010 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1011 * for retransmitted and already SACKed segment -> reordering..
1012 * Both of these heuristics are not used in Loss state, when we cannot
1013 * account for retransmits accurately.
5b3c9882
IJ
1014 *
1015 * SACK block validation.
1016 * ----------------------
1017 *
1018 * SACK block range validation checks that the received SACK block fits to
1019 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1020 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1021 * it means that the receiver is rather inconsistent with itself reporting
1022 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1023 * perfectly valid, however, in light of RFC2018 which explicitly states
1024 * that "SACK block MUST reflect the newest segment. Even if the newest
1025 * segment is going to be discarded ...", not that it looks very clever
1026 * in case of head skb. Due to potentional receiver driven attacks, we
1027 * choose to avoid immediate execution of a walk in write queue due to
1028 * reneging and defer head skb's loss recovery to standard loss recovery
1029 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1030 *
1031 * Implements also blockage to start_seq wrap-around. Problem lies in the
1032 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1033 * there's no guarantee that it will be before snd_nxt (n). The problem
1034 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1035 * wrap (s_w):
1036 *
1037 * <- outs wnd -> <- wrapzone ->
1038 * u e n u_w e_w s n_w
1039 * | | | | | | |
1040 * |<------------+------+----- TCP seqno space --------------+---------->|
1041 * ...-- <2^31 ->| |<--------...
1042 * ...---- >2^31 ------>| |<--------...
1043 *
1044 * Current code wouldn't be vulnerable but it's better still to discard such
1045 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1046 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1047 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1048 * equal to the ideal case (infinite seqno space without wrap caused issues).
1049 *
1050 * With D-SACK the lower bound is extended to cover sequence space below
1051 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1052 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1053 * for the normal SACK blocks, explained above). But there all simplicity
1054 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1055 * fully below undo_marker they do not affect behavior in anyway and can
1056 * therefore be safely ignored. In rare cases (which are more or less
1057 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1058 * fragmentation and packet reordering past skb's retransmission. To consider
1059 * them correctly, the acceptable range must be extended even more though
1060 * the exact amount is rather hard to quantify. However, tp->max_window can
1061 * be used as an exaggerated estimate.
1da177e4 1062 */
a2a385d6
ED
1063static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1064 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1065{
1066 /* Too far in future, or reversed (interpretation is ambiguous) */
1067 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1068 return false;
5b3c9882
IJ
1069
1070 /* Nasty start_seq wrap-around check (see comments above) */
1071 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1072 return false;
5b3c9882 1073
564262c1 1074 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1075 * start_seq == snd_una is non-sensical (see comments above)
1076 */
1077 if (after(start_seq, tp->snd_una))
a2a385d6 1078 return true;
5b3c9882
IJ
1079
1080 if (!is_dsack || !tp->undo_marker)
a2a385d6 1081 return false;
5b3c9882
IJ
1082
1083 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1084 if (after(end_seq, tp->snd_una))
a2a385d6 1085 return false;
5b3c9882
IJ
1086
1087 if (!before(start_seq, tp->undo_marker))
a2a385d6 1088 return true;
5b3c9882
IJ
1089
1090 /* Too old */
1091 if (!after(end_seq, tp->undo_marker))
a2a385d6 1092 return false;
5b3c9882
IJ
1093
1094 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1095 * start_seq < undo_marker and end_seq >= undo_marker.
1096 */
1097 return !before(start_seq, end_seq - tp->max_window);
1098}
1099
a2a385d6
ED
1100static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1101 struct tcp_sack_block_wire *sp, int num_sacks,
1102 u32 prior_snd_una)
d06e021d 1103{
1ed83465 1104 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1105 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1106 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1107 bool dup_sack = false;
d06e021d
DM
1108
1109 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1110 dup_sack = true;
e60402d0 1111 tcp_dsack_seen(tp);
c10d9310 1112 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1113 } else if (num_sacks > 1) {
d3e2ce3b
HH
1114 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1115 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1116
1117 if (!after(end_seq_0, end_seq_1) &&
1118 !before(start_seq_0, start_seq_1)) {
a2a385d6 1119 dup_sack = true;
e60402d0 1120 tcp_dsack_seen(tp);
c10d9310 1121 NET_INC_STATS(sock_net(sk),
de0744af 1122 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1123 }
1124 }
1125
1126 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1127 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1128 !after(end_seq_0, prior_snd_una) &&
1129 after(end_seq_0, tp->undo_marker))
1130 tp->undo_retrans--;
1131
1132 return dup_sack;
1133}
1134
a1197f5a 1135struct tcp_sacktag_state {
740b0f18
ED
1136 int reord;
1137 int fack_count;
31231a8a
KKJ
1138 /* Timestamps for earliest and latest never-retransmitted segment
1139 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1140 * but congestion control should still get an accurate delay signal.
1141 */
9a568de4
ED
1142 u64 first_sackt;
1143 u64 last_sackt;
b9f64820 1144 struct rate_sample *rate;
740b0f18 1145 int flag;
75c119af 1146 unsigned int mss_now;
a1197f5a
IJ
1147};
1148
d1935942
IJ
1149/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1150 * the incoming SACK may not exactly match but we can find smaller MSS
1151 * aligned portion of it that matches. Therefore we might need to fragment
1152 * which may fail and creates some hassle (caller must handle error case
1153 * returns).
832d11c5
IJ
1154 *
1155 * FIXME: this could be merged to shift decision code
d1935942 1156 */
0f79efdc 1157static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1158 u32 start_seq, u32 end_seq)
d1935942 1159{
a2a385d6
ED
1160 int err;
1161 bool in_sack;
d1935942 1162 unsigned int pkt_len;
adb92db8 1163 unsigned int mss;
d1935942
IJ
1164
1165 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1166 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1167
1168 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1169 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1170 mss = tcp_skb_mss(skb);
d1935942
IJ
1171 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1172
adb92db8 1173 if (!in_sack) {
d1935942 1174 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1175 if (pkt_len < mss)
1176 pkt_len = mss;
1177 } else {
d1935942 1178 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1179 if (pkt_len < mss)
1180 return -EINVAL;
1181 }
1182
1183 /* Round if necessary so that SACKs cover only full MSSes
1184 * and/or the remaining small portion (if present)
1185 */
1186 if (pkt_len > mss) {
1187 unsigned int new_len = (pkt_len / mss) * mss;
b451e5d2 1188 if (!in_sack && new_len < pkt_len)
adb92db8 1189 new_len += mss;
adb92db8
IJ
1190 pkt_len = new_len;
1191 }
b451e5d2
YC
1192
1193 if (pkt_len >= skb->len && !in_sack)
1194 return 0;
1195
75c119af
ED
1196 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1197 pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1198 if (err < 0)
1199 return err;
1200 }
1201
1202 return in_sack;
1203}
1204
cc9a672e
NC
1205/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1206static u8 tcp_sacktag_one(struct sock *sk,
1207 struct tcp_sacktag_state *state, u8 sacked,
1208 u32 start_seq, u32 end_seq,
740b0f18 1209 int dup_sack, int pcount,
9a568de4 1210 u64 xmit_time)
9e10c47c 1211{
6859d494 1212 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1213 int fack_count = state->fack_count;
9e10c47c
IJ
1214
1215 /* Account D-SACK for retransmitted packet. */
1216 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1217 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1218 after(end_seq, tp->undo_marker))
9e10c47c 1219 tp->undo_retrans--;
ede9f3b1 1220 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1221 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1222 }
1223
1224 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1225 if (!after(end_seq, tp->snd_una))
a1197f5a 1226 return sacked;
9e10c47c
IJ
1227
1228 if (!(sacked & TCPCB_SACKED_ACKED)) {
d2329f10 1229 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
659a8ad5 1230
9e10c47c
IJ
1231 if (sacked & TCPCB_SACKED_RETRANS) {
1232 /* If the segment is not tagged as lost,
1233 * we do not clear RETRANS, believing
1234 * that retransmission is still in flight.
1235 */
1236 if (sacked & TCPCB_LOST) {
a1197f5a 1237 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1238 tp->lost_out -= pcount;
1239 tp->retrans_out -= pcount;
9e10c47c
IJ
1240 }
1241 } else {
1242 if (!(sacked & TCPCB_RETRANS)) {
1243 /* New sack for not retransmitted frame,
1244 * which was in hole. It is reordering.
1245 */
cc9a672e 1246 if (before(start_seq,
9e10c47c 1247 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1248 state->reord = min(fack_count,
1249 state->reord);
e33099f9
YC
1250 if (!after(end_seq, tp->high_seq))
1251 state->flag |= FLAG_ORIG_SACK_ACKED;
9a568de4
ED
1252 if (state->first_sackt == 0)
1253 state->first_sackt = xmit_time;
1254 state->last_sackt = xmit_time;
9e10c47c
IJ
1255 }
1256
1257 if (sacked & TCPCB_LOST) {
a1197f5a 1258 sacked &= ~TCPCB_LOST;
f58b22fd 1259 tp->lost_out -= pcount;
9e10c47c
IJ
1260 }
1261 }
1262
a1197f5a
IJ
1263 sacked |= TCPCB_SACKED_ACKED;
1264 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1265 tp->sacked_out += pcount;
ddf1af6f 1266 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1267
f58b22fd 1268 fack_count += pcount;
9e10c47c
IJ
1269
1270 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
00db4124 1271 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
cc9a672e 1272 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1273 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1274
1275 if (fack_count > tp->fackets_out)
1276 tp->fackets_out = fack_count;
9e10c47c
IJ
1277 }
1278
1279 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1280 * frames and clear it. undo_retrans is decreased above, L|R frames
1281 * are accounted above as well.
1282 */
a1197f5a
IJ
1283 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1284 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1285 tp->retrans_out -= pcount;
9e10c47c
IJ
1286 }
1287
a1197f5a 1288 return sacked;
9e10c47c
IJ
1289}
1290
daef52ba
NC
1291/* Shift newly-SACKed bytes from this skb to the immediately previous
1292 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1293 */
f3319816
ED
1294static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1295 struct sk_buff *skb,
a2a385d6
ED
1296 struct tcp_sacktag_state *state,
1297 unsigned int pcount, int shifted, int mss,
1298 bool dup_sack)
832d11c5
IJ
1299{
1300 struct tcp_sock *tp = tcp_sk(sk);
daef52ba
NC
1301 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1302 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1303
1304 BUG_ON(!pcount);
1305
4c90d3b3
NC
1306 /* Adjust counters and hints for the newly sacked sequence
1307 * range but discard the return value since prev is already
1308 * marked. We must tag the range first because the seq
1309 * advancement below implicitly advances
1310 * tcp_highest_sack_seq() when skb is highest_sack.
1311 */
1312 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1313 start_seq, end_seq, dup_sack, pcount,
9a568de4 1314 skb->skb_mstamp);
b9f64820 1315 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1316
1317 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1318 tp->lost_cnt_hint += pcount;
1319
832d11c5
IJ
1320 TCP_SKB_CB(prev)->end_seq += shifted;
1321 TCP_SKB_CB(skb)->seq += shifted;
1322
cd7d8498
ED
1323 tcp_skb_pcount_add(prev, pcount);
1324 BUG_ON(tcp_skb_pcount(skb) < pcount);
1325 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1326
1327 /* When we're adding to gso_segs == 1, gso_size will be zero,
1328 * in theory this shouldn't be necessary but as long as DSACK
1329 * code can come after this skb later on it's better to keep
1330 * setting gso_size to something.
1331 */
f69ad292
ED
1332 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1333 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1334
1335 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1336 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1337 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1338
832d11c5
IJ
1339 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1340 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1341
832d11c5
IJ
1342 if (skb->len > 0) {
1343 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1344 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1345 return false;
832d11c5
IJ
1346 }
1347
1348 /* Whole SKB was eaten :-) */
1349
92ee76b6
IJ
1350 if (skb == tp->retransmit_skb_hint)
1351 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1352 if (skb == tp->lost_skb_hint) {
1353 tp->lost_skb_hint = prev;
1354 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1355 }
1356
5e8a402f 1357 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1358 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1359 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1360 TCP_SKB_CB(prev)->end_seq++;
1361
832d11c5
IJ
1362 if (skb == tcp_highest_sack(sk))
1363 tcp_advance_highest_sack(sk, skb);
1364
cfea5a68 1365 tcp_skb_collapse_tstamp(prev, skb);
9a568de4
ED
1366 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1367 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
b9f64820 1368
75c119af 1369 tcp_rtx_queue_unlink_and_free(skb, sk);
832d11c5 1370
c10d9310 1371 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1372
a2a385d6 1373 return true;
832d11c5
IJ
1374}
1375
1376/* I wish gso_size would have a bit more sane initialization than
1377 * something-or-zero which complicates things
1378 */
cf533ea5 1379static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1380{
775ffabf 1381 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1382}
1383
1384/* Shifting pages past head area doesn't work */
cf533ea5 1385static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1386{
1387 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1388}
1389
1390/* Try collapsing SACK blocks spanning across multiple skbs to a single
1391 * skb.
1392 */
1393static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1394 struct tcp_sacktag_state *state,
832d11c5 1395 u32 start_seq, u32 end_seq,
a2a385d6 1396 bool dup_sack)
832d11c5
IJ
1397{
1398 struct tcp_sock *tp = tcp_sk(sk);
1399 struct sk_buff *prev;
1400 int mss;
1401 int pcount = 0;
1402 int len;
1403 int in_sack;
1404
1405 if (!sk_can_gso(sk))
1406 goto fallback;
1407
1408 /* Normally R but no L won't result in plain S */
1409 if (!dup_sack &&
9969ca5f 1410 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1411 goto fallback;
1412 if (!skb_can_shift(skb))
1413 goto fallback;
1414 /* This frame is about to be dropped (was ACKed). */
1415 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1416 goto fallback;
1417
1418 /* Can only happen with delayed DSACK + discard craziness */
75c119af
ED
1419 prev = skb_rb_prev(skb);
1420 if (!prev)
832d11c5 1421 goto fallback;
832d11c5
IJ
1422
1423 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1424 goto fallback;
1425
a643b5d4
MKL
1426 if (!tcp_skb_can_collapse_to(prev))
1427 goto fallback;
1428
832d11c5
IJ
1429 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1430 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1431
1432 if (in_sack) {
1433 len = skb->len;
1434 pcount = tcp_skb_pcount(skb);
775ffabf 1435 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1436
1437 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1438 * drop this restriction as unnecessary
1439 */
775ffabf 1440 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1441 goto fallback;
1442 } else {
1443 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1444 goto noop;
1445 /* CHECKME: This is non-MSS split case only?, this will
1446 * cause skipped skbs due to advancing loop btw, original
1447 * has that feature too
1448 */
1449 if (tcp_skb_pcount(skb) <= 1)
1450 goto noop;
1451
1452 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1453 if (!in_sack) {
1454 /* TODO: head merge to next could be attempted here
1455 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1456 * though it might not be worth of the additional hassle
1457 *
1458 * ...we can probably just fallback to what was done
1459 * previously. We could try merging non-SACKed ones
1460 * as well but it probably isn't going to buy off
1461 * because later SACKs might again split them, and
1462 * it would make skb timestamp tracking considerably
1463 * harder problem.
1464 */
1465 goto fallback;
1466 }
1467
1468 len = end_seq - TCP_SKB_CB(skb)->seq;
1469 BUG_ON(len < 0);
1470 BUG_ON(len > skb->len);
1471
1472 /* MSS boundaries should be honoured or else pcount will
1473 * severely break even though it makes things bit trickier.
1474 * Optimize common case to avoid most of the divides
1475 */
1476 mss = tcp_skb_mss(skb);
1477
1478 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1479 * drop this restriction as unnecessary
1480 */
775ffabf 1481 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1482 goto fallback;
1483
1484 if (len == mss) {
1485 pcount = 1;
1486 } else if (len < mss) {
1487 goto noop;
1488 } else {
1489 pcount = len / mss;
1490 len = pcount * mss;
1491 }
1492 }
1493
4648dc97
NC
1494 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1495 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1496 goto fallback;
1497
832d11c5
IJ
1498 if (!skb_shift(prev, skb, len))
1499 goto fallback;
f3319816 1500 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1501 goto out;
1502
1503 /* Hole filled allows collapsing with the next as well, this is very
1504 * useful when hole on every nth skb pattern happens
1505 */
75c119af
ED
1506 skb = skb_rb_next(prev);
1507 if (!skb)
832d11c5 1508 goto out;
832d11c5 1509
f0bc52f3 1510 if (!skb_can_shift(skb) ||
f0bc52f3 1511 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1512 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1513 goto out;
1514
1515 len = skb->len;
1516 if (skb_shift(prev, skb, len)) {
1517 pcount += tcp_skb_pcount(skb);
f3319816
ED
1518 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1519 len, mss, 0);
832d11c5
IJ
1520 }
1521
1522out:
a1197f5a 1523 state->fack_count += pcount;
832d11c5
IJ
1524 return prev;
1525
1526noop:
1527 return skb;
1528
1529fallback:
c10d9310 1530 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1531 return NULL;
1532}
1533
68f8353b
IJ
1534static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1535 struct tcp_sack_block *next_dup,
a1197f5a 1536 struct tcp_sacktag_state *state,
68f8353b 1537 u32 start_seq, u32 end_seq,
a2a385d6 1538 bool dup_sack_in)
68f8353b 1539{
832d11c5
IJ
1540 struct tcp_sock *tp = tcp_sk(sk);
1541 struct sk_buff *tmp;
1542
75c119af 1543 skb_rbtree_walk_from(skb) {
68f8353b 1544 int in_sack = 0;
a2a385d6 1545 bool dup_sack = dup_sack_in;
68f8353b 1546
68f8353b
IJ
1547 /* queue is in-order => we can short-circuit the walk early */
1548 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1549 break;
1550
00db4124 1551 if (next_dup &&
68f8353b
IJ
1552 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1553 in_sack = tcp_match_skb_to_sack(sk, skb,
1554 next_dup->start_seq,
1555 next_dup->end_seq);
1556 if (in_sack > 0)
a2a385d6 1557 dup_sack = true;
68f8353b
IJ
1558 }
1559
832d11c5
IJ
1560 /* skb reference here is a bit tricky to get right, since
1561 * shifting can eat and free both this skb and the next,
1562 * so not even _safe variant of the loop is enough.
1563 */
1564 if (in_sack <= 0) {
a1197f5a
IJ
1565 tmp = tcp_shift_skb_data(sk, skb, state,
1566 start_seq, end_seq, dup_sack);
00db4124 1567 if (tmp) {
832d11c5
IJ
1568 if (tmp != skb) {
1569 skb = tmp;
1570 continue;
1571 }
1572
1573 in_sack = 0;
1574 } else {
1575 in_sack = tcp_match_skb_to_sack(sk, skb,
1576 start_seq,
1577 end_seq);
1578 }
1579 }
1580
68f8353b
IJ
1581 if (unlikely(in_sack < 0))
1582 break;
1583
832d11c5 1584 if (in_sack) {
cc9a672e
NC
1585 TCP_SKB_CB(skb)->sacked =
1586 tcp_sacktag_one(sk,
1587 state,
1588 TCP_SKB_CB(skb)->sacked,
1589 TCP_SKB_CB(skb)->seq,
1590 TCP_SKB_CB(skb)->end_seq,
1591 dup_sack,
59c9af42 1592 tcp_skb_pcount(skb),
9a568de4 1593 skb->skb_mstamp);
b9f64820 1594 tcp_rate_skb_delivered(sk, skb, state->rate);
e2080072
ED
1595 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1596 list_del_init(&skb->tcp_tsorted_anchor);
68f8353b 1597
832d11c5
IJ
1598 if (!before(TCP_SKB_CB(skb)->seq,
1599 tcp_highest_sack_seq(tp)))
1600 tcp_advance_highest_sack(sk, skb);
1601 }
1602
a1197f5a 1603 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1604 }
1605 return skb;
1606}
1607
75c119af
ED
1608static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1609 struct tcp_sacktag_state *state,
1610 u32 seq)
1611{
1612 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1613 struct sk_buff *skb;
1614 int unack_bytes;
1615
1616 while (*p) {
1617 parent = *p;
1618 skb = rb_to_skb(parent);
1619 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1620 p = &parent->rb_left;
1621 continue;
1622 }
1623 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1624 p = &parent->rb_right;
1625 continue;
1626 }
1627
1628 state->fack_count = 0;
1629 unack_bytes = TCP_SKB_CB(skb)->seq - tcp_sk(sk)->snd_una;
1630 if (state->mss_now && unack_bytes > 0)
1631 state->fack_count = unack_bytes / state->mss_now;
1632
1633 return skb;
1634 }
1635 return NULL;
1636}
1637
68f8353b 1638static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1639 struct tcp_sacktag_state *state,
1640 u32 skip_to_seq)
68f8353b 1641{
75c119af
ED
1642 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1643 return skb;
d152a7d8 1644
75c119af 1645 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
68f8353b
IJ
1646}
1647
1648static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1649 struct sock *sk,
1650 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1651 struct tcp_sacktag_state *state,
1652 u32 skip_to_seq)
68f8353b 1653{
51456b29 1654 if (!next_dup)
68f8353b
IJ
1655 return skb;
1656
1657 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1658 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1659 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1660 next_dup->start_seq, next_dup->end_seq,
1661 1);
68f8353b
IJ
1662 }
1663
1664 return skb;
1665}
1666
cf533ea5 1667static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1668{
1669 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1670}
1671
1da177e4 1672static int
cf533ea5 1673tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1674 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1675{
1676 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1677 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1678 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1679 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1680 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1681 struct tcp_sack_block *cache;
1682 struct sk_buff *skb;
4389dded 1683 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1684 int used_sacks;
a2a385d6 1685 bool found_dup_sack = false;
68f8353b 1686 int i, j;
fda03fbb 1687 int first_sack_index;
1da177e4 1688
196da974
KKJ
1689 state->flag = 0;
1690 state->reord = tp->packets_out;
a1197f5a 1691
d738cd8f 1692 if (!tp->sacked_out) {
de83c058
IJ
1693 if (WARN_ON(tp->fackets_out))
1694 tp->fackets_out = 0;
6859d494 1695 tcp_highest_sack_reset(sk);
d738cd8f 1696 }
1da177e4 1697
1ed83465 1698 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1699 num_sacks, prior_snd_una);
b9f64820 1700 if (found_dup_sack) {
196da974 1701 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1702 tp->delivered++; /* A spurious retransmission is delivered */
1703 }
6f74651a
BE
1704
1705 /* Eliminate too old ACKs, but take into
1706 * account more or less fresh ones, they can
1707 * contain valid SACK info.
1708 */
1709 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1710 return 0;
1711