]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - net/ipv4/tcp_input.c
tcp: early retransmit: tcp_enter_recovery()
[mirror_ubuntu-jammy-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
5ffc02a1 71#include <net/dst.h>
1da177e4
LT
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
1a2449a8 76#include <net/netdma.h>
1da177e4 77
ab32ea5d
BH
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 83EXPORT_SYMBOL(sysctl_tcp_reordering);
255cac91 84int sysctl_tcp_ecn __read_mostly = 2;
4bc2f18b 85EXPORT_SYMBOL(sysctl_tcp_ecn);
ab32ea5d
BH
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
88int sysctl_tcp_adv_win_scale __read_mostly = 2;
4bc2f18b 89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 90
ab32ea5d
BH
91int sysctl_tcp_stdurg __read_mostly;
92int sysctl_tcp_rfc1337 __read_mostly;
93int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 94int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 95int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 96int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 97
7e380175
AP
98int sysctl_tcp_thin_dupack __read_mostly;
99
ab32ea5d
BH
100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101int sysctl_tcp_abc __read_mostly;
1da177e4 102
1da177e4
LT
103#define FLAG_DATA 0x01 /* Incoming frame contained data. */
104#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
105#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
106#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
107#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
108#define FLAG_DATA_SACKED 0x20 /* New SACK. */
109#define FLAG_ECE 0x40 /* ECE in this ACK */
1da177e4 110#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 111#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 112#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 113#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
009a2e3e 114#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
cadbd031 115#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
1da177e4
LT
116
117#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 121#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 122
1da177e4 123#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 124#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 125
e905a9ed 126/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 127 * real world.
e905a9ed 128 */
056834d9 129static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 130{
463c84b9 131 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 132 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 133 unsigned int len;
1da177e4 134
e905a9ed 135 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
136
137 /* skb->len may jitter because of SACKs, even if peer
138 * sends good full-sized frames.
139 */
056834d9 140 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
141 if (len >= icsk->icsk_ack.rcv_mss) {
142 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
143 } else {
144 /* Otherwise, we make more careful check taking into account,
145 * that SACKs block is variable.
146 *
147 * "len" is invariant segment length, including TCP header.
148 */
9c70220b 149 len += skb->data - skb_transport_header(skb);
bee7ca9e 150 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
151 /* If PSH is not set, packet should be
152 * full sized, provided peer TCP is not badly broken.
153 * This observation (if it is correct 8)) allows
154 * to handle super-low mtu links fairly.
155 */
156 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 157 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
158 /* Subtract also invariant (if peer is RFC compliant),
159 * tcp header plus fixed timestamp option length.
160 * Resulting "len" is MSS free of SACK jitter.
161 */
463c84b9
ACM
162 len -= tcp_sk(sk)->tcp_header_len;
163 icsk->icsk_ack.last_seg_size = len;
1da177e4 164 if (len == lss) {
463c84b9 165 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
166 return;
167 }
168 }
1ef9696c
AK
169 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
172 }
173}
174
463c84b9 175static void tcp_incr_quickack(struct sock *sk)
1da177e4 176{
463c84b9 177 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 178 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 179
056834d9
IJ
180 if (quickacks == 0)
181 quickacks = 2;
463c84b9
ACM
182 if (quickacks > icsk->icsk_ack.quick)
183 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
184}
185
1b9f4092 186static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 187{
463c84b9
ACM
188 struct inet_connection_sock *icsk = inet_csk(sk);
189 tcp_incr_quickack(sk);
190 icsk->icsk_ack.pingpong = 0;
191 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
192}
193
194/* Send ACKs quickly, if "quick" count is not exhausted
195 * and the session is not interactive.
196 */
197
463c84b9 198static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 199{
463c84b9
ACM
200 const struct inet_connection_sock *icsk = inet_csk(sk);
201 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
202}
203
bdf1ee5d
IJ
204static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205{
056834d9 206 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
207 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208}
209
cf533ea5 210static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
211{
212 if (tcp_hdr(skb)->cwr)
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217{
218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219}
220
7a269ffa 221static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 222{
7a269ffa
ED
223 if (!(tp->ecn_flags & TCP_ECN_OK))
224 return;
225
b82d1bb4 226 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 227 case INET_ECN_NOT_ECT:
bdf1ee5d 228 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
229 * and we already seen ECT on a previous segment,
230 * it is probably a retransmit.
231 */
232 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 233 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
234 break;
235 case INET_ECN_CE:
236 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
237 /* fallinto */
238 default:
239 tp->ecn_flags |= TCP_ECN_SEEN;
bdf1ee5d
IJ
240 }
241}
242
cf533ea5 243static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 244{
056834d9 245 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
246 tp->ecn_flags &= ~TCP_ECN_OK;
247}
248
cf533ea5 249static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 250{
056834d9 251 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
252 tp->ecn_flags &= ~TCP_ECN_OK;
253}
254
cf533ea5 255static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 256{
056834d9 257 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
bdf1ee5d
IJ
258 return 1;
259 return 0;
260}
261
1da177e4
LT
262/* Buffer size and advertised window tuning.
263 *
264 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
265 */
266
267static void tcp_fixup_sndbuf(struct sock *sk)
268{
87fb4b7b 269 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
1da177e4 270
06a59ecb
ED
271 sndmem *= TCP_INIT_CWND;
272 if (sk->sk_sndbuf < sndmem)
273 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
274}
275
276/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
277 *
278 * All tcp_full_space() is split to two parts: "network" buffer, allocated
279 * forward and advertised in receiver window (tp->rcv_wnd) and
280 * "application buffer", required to isolate scheduling/application
281 * latencies from network.
282 * window_clamp is maximal advertised window. It can be less than
283 * tcp_full_space(), in this case tcp_full_space() - window_clamp
284 * is reserved for "application" buffer. The less window_clamp is
285 * the smoother our behaviour from viewpoint of network, but the lower
286 * throughput and the higher sensitivity of the connection to losses. 8)
287 *
288 * rcv_ssthresh is more strict window_clamp used at "slow start"
289 * phase to predict further behaviour of this connection.
290 * It is used for two goals:
291 * - to enforce header prediction at sender, even when application
292 * requires some significant "application buffer". It is check #1.
293 * - to prevent pruning of receive queue because of misprediction
294 * of receiver window. Check #2.
295 *
296 * The scheme does not work when sender sends good segments opening
caa20d9a 297 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
298 * in common situations. Otherwise, we have to rely on queue collapsing.
299 */
300
301/* Slow part of check#2. */
9e412ba7 302static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 303{
9e412ba7 304 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 305 /* Optimize this! */
dfd4f0ae
ED
306 int truesize = tcp_win_from_space(skb->truesize) >> 1;
307 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
308
309 while (tp->rcv_ssthresh <= window) {
310 if (truesize <= skb->len)
463c84b9 311 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
312
313 truesize >>= 1;
314 window >>= 1;
315 }
316 return 0;
317}
318
cf533ea5 319static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 320{
9e412ba7
IJ
321 struct tcp_sock *tp = tcp_sk(sk);
322
1da177e4
LT
323 /* Check #1 */
324 if (tp->rcv_ssthresh < tp->window_clamp &&
325 (int)tp->rcv_ssthresh < tcp_space(sk) &&
180d8cd9 326 !sk_under_memory_pressure(sk)) {
1da177e4
LT
327 int incr;
328
329 /* Check #2. Increase window, if skb with such overhead
330 * will fit to rcvbuf in future.
331 */
332 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 333 incr = 2 * tp->advmss;
1da177e4 334 else
9e412ba7 335 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
336
337 if (incr) {
4d846f02 338 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
339 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
340 tp->window_clamp);
463c84b9 341 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
342 }
343 }
344}
345
346/* 3. Tuning rcvbuf, when connection enters established state. */
347
348static void tcp_fixup_rcvbuf(struct sock *sk)
349{
e9266a02
ED
350 u32 mss = tcp_sk(sk)->advmss;
351 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
352 int rcvmem;
1da177e4 353
e9266a02
ED
354 /* Limit to 10 segments if mss <= 1460,
355 * or 14600/mss segments, with a minimum of two segments.
1da177e4 356 */
e9266a02
ED
357 if (mss > 1460)
358 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
359
360 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
361 while (tcp_win_from_space(rcvmem) < mss)
1da177e4 362 rcvmem += 128;
e9266a02
ED
363
364 rcvmem *= icwnd;
365
366 if (sk->sk_rcvbuf < rcvmem)
367 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
368}
369
caa20d9a 370/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
371 * established state.
372 */
373static void tcp_init_buffer_space(struct sock *sk)
374{
375 struct tcp_sock *tp = tcp_sk(sk);
376 int maxwin;
377
378 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
379 tcp_fixup_rcvbuf(sk);
380 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
381 tcp_fixup_sndbuf(sk);
382
383 tp->rcvq_space.space = tp->rcv_wnd;
384
385 maxwin = tcp_full_space(sk);
386
387 if (tp->window_clamp >= maxwin) {
388 tp->window_clamp = maxwin;
389
390 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
391 tp->window_clamp = max(maxwin -
392 (maxwin >> sysctl_tcp_app_win),
393 4 * tp->advmss);
394 }
395
396 /* Force reservation of one segment. */
397 if (sysctl_tcp_app_win &&
398 tp->window_clamp > 2 * tp->advmss &&
399 tp->window_clamp + tp->advmss > maxwin)
400 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
401
402 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
403 tp->snd_cwnd_stamp = tcp_time_stamp;
404}
405
1da177e4 406/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 407static void tcp_clamp_window(struct sock *sk)
1da177e4 408{
9e412ba7 409 struct tcp_sock *tp = tcp_sk(sk);
6687e988 410 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 411
6687e988 412 icsk->icsk_ack.quick = 0;
1da177e4 413
326f36e9
JH
414 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
415 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
180d8cd9
GC
416 !sk_under_memory_pressure(sk) &&
417 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
418 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
419 sysctl_tcp_rmem[2]);
1da177e4 420 }
326f36e9 421 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 422 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
423}
424
40efc6fa
SH
425/* Initialize RCV_MSS value.
426 * RCV_MSS is an our guess about MSS used by the peer.
427 * We haven't any direct information about the MSS.
428 * It's better to underestimate the RCV_MSS rather than overestimate.
429 * Overestimations make us ACKing less frequently than needed.
430 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
431 */
432void tcp_initialize_rcv_mss(struct sock *sk)
433{
cf533ea5 434 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
435 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
436
056834d9 437 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 438 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
439 hint = max(hint, TCP_MIN_MSS);
440
441 inet_csk(sk)->icsk_ack.rcv_mss = hint;
442}
4bc2f18b 443EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 444
1da177e4
LT
445/* Receiver "autotuning" code.
446 *
447 * The algorithm for RTT estimation w/o timestamps is based on
448 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 449 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
450 *
451 * More detail on this code can be found at
631dd1a8 452 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
453 * though this reference is out of date. A new paper
454 * is pending.
455 */
456static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
457{
458 u32 new_sample = tp->rcv_rtt_est.rtt;
459 long m = sample;
460
461 if (m == 0)
462 m = 1;
463
464 if (new_sample != 0) {
465 /* If we sample in larger samples in the non-timestamp
466 * case, we could grossly overestimate the RTT especially
467 * with chatty applications or bulk transfer apps which
468 * are stalled on filesystem I/O.
469 *
470 * Also, since we are only going for a minimum in the
31f34269 471 * non-timestamp case, we do not smooth things out
caa20d9a 472 * else with timestamps disabled convergence takes too
1da177e4
LT
473 * long.
474 */
475 if (!win_dep) {
476 m -= (new_sample >> 3);
477 new_sample += m;
18a223e0
NC
478 } else {
479 m <<= 3;
480 if (m < new_sample)
481 new_sample = m;
482 }
1da177e4 483 } else {
caa20d9a 484 /* No previous measure. */
1da177e4
LT
485 new_sample = m << 3;
486 }
487
488 if (tp->rcv_rtt_est.rtt != new_sample)
489 tp->rcv_rtt_est.rtt = new_sample;
490}
491
492static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
493{
494 if (tp->rcv_rtt_est.time == 0)
495 goto new_measure;
496 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
497 return;
056834d9 498 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
1da177e4
LT
499
500new_measure:
501 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
502 tp->rcv_rtt_est.time = tcp_time_stamp;
503}
504
056834d9
IJ
505static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
506 const struct sk_buff *skb)
1da177e4 507{
463c84b9 508 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
509 if (tp->rx_opt.rcv_tsecr &&
510 (TCP_SKB_CB(skb)->end_seq -
463c84b9 511 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
512 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
513}
514
515/*
516 * This function should be called every time data is copied to user space.
517 * It calculates the appropriate TCP receive buffer space.
518 */
519void tcp_rcv_space_adjust(struct sock *sk)
520{
521 struct tcp_sock *tp = tcp_sk(sk);
522 int time;
523 int space;
e905a9ed 524
1da177e4
LT
525 if (tp->rcvq_space.time == 0)
526 goto new_measure;
e905a9ed 527
1da177e4 528 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 529 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 530 return;
e905a9ed 531
1da177e4
LT
532 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
533
534 space = max(tp->rcvq_space.space, space);
535
536 if (tp->rcvq_space.space != space) {
537 int rcvmem;
538
539 tp->rcvq_space.space = space;
540
6fcf9412
JH
541 if (sysctl_tcp_moderate_rcvbuf &&
542 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
543 int new_clamp = space;
544
545 /* Receive space grows, normalize in order to
546 * take into account packet headers and sk_buff
547 * structure overhead.
548 */
549 space /= tp->advmss;
550 if (!space)
551 space = 1;
87fb4b7b 552 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
1da177e4
LT
553 while (tcp_win_from_space(rcvmem) < tp->advmss)
554 rcvmem += 128;
555 space *= rcvmem;
556 space = min(space, sysctl_tcp_rmem[2]);
557 if (space > sk->sk_rcvbuf) {
558 sk->sk_rcvbuf = space;
559
560 /* Make the window clamp follow along. */
561 tp->window_clamp = new_clamp;
562 }
563 }
564 }
e905a9ed 565
1da177e4
LT
566new_measure:
567 tp->rcvq_space.seq = tp->copied_seq;
568 tp->rcvq_space.time = tcp_time_stamp;
569}
570
571/* There is something which you must keep in mind when you analyze the
572 * behavior of the tp->ato delayed ack timeout interval. When a
573 * connection starts up, we want to ack as quickly as possible. The
574 * problem is that "good" TCP's do slow start at the beginning of data
575 * transmission. The means that until we send the first few ACK's the
576 * sender will sit on his end and only queue most of his data, because
577 * he can only send snd_cwnd unacked packets at any given time. For
578 * each ACK we send, he increments snd_cwnd and transmits more of his
579 * queue. -DaveM
580 */
9e412ba7 581static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 582{
9e412ba7 583 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 584 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
585 u32 now;
586
463c84b9 587 inet_csk_schedule_ack(sk);
1da177e4 588
463c84b9 589 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
590
591 tcp_rcv_rtt_measure(tp);
e905a9ed 592
1da177e4
LT
593 now = tcp_time_stamp;
594
463c84b9 595 if (!icsk->icsk_ack.ato) {
1da177e4
LT
596 /* The _first_ data packet received, initialize
597 * delayed ACK engine.
598 */
463c84b9
ACM
599 tcp_incr_quickack(sk);
600 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 601 } else {
463c84b9 602 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 603
056834d9 604 if (m <= TCP_ATO_MIN / 2) {
1da177e4 605 /* The fastest case is the first. */
463c84b9
ACM
606 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
607 } else if (m < icsk->icsk_ack.ato) {
608 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
609 if (icsk->icsk_ack.ato > icsk->icsk_rto)
610 icsk->icsk_ack.ato = icsk->icsk_rto;
611 } else if (m > icsk->icsk_rto) {
caa20d9a 612 /* Too long gap. Apparently sender failed to
1da177e4
LT
613 * restart window, so that we send ACKs quickly.
614 */
463c84b9 615 tcp_incr_quickack(sk);
3ab224be 616 sk_mem_reclaim(sk);
1da177e4
LT
617 }
618 }
463c84b9 619 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
620
621 TCP_ECN_check_ce(tp, skb);
622
623 if (skb->len >= 128)
9e412ba7 624 tcp_grow_window(sk, skb);
1da177e4
LT
625}
626
1da177e4
LT
627/* Called to compute a smoothed rtt estimate. The data fed to this
628 * routine either comes from timestamps, or from segments that were
629 * known _not_ to have been retransmitted [see Karn/Partridge
630 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
631 * piece by Van Jacobson.
632 * NOTE: the next three routines used to be one big routine.
633 * To save cycles in the RFC 1323 implementation it was better to break
634 * it up into three procedures. -- erics
635 */
2d2abbab 636static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 637{
6687e988 638 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
639 long m = mrtt; /* RTT */
640
1da177e4
LT
641 /* The following amusing code comes from Jacobson's
642 * article in SIGCOMM '88. Note that rtt and mdev
643 * are scaled versions of rtt and mean deviation.
e905a9ed 644 * This is designed to be as fast as possible
1da177e4
LT
645 * m stands for "measurement".
646 *
647 * On a 1990 paper the rto value is changed to:
648 * RTO = rtt + 4 * mdev
649 *
650 * Funny. This algorithm seems to be very broken.
651 * These formulae increase RTO, when it should be decreased, increase
31f34269 652 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
653 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
654 * does not matter how to _calculate_ it. Seems, it was trap
655 * that VJ failed to avoid. 8)
656 */
2de979bd 657 if (m == 0)
1da177e4
LT
658 m = 1;
659 if (tp->srtt != 0) {
660 m -= (tp->srtt >> 3); /* m is now error in rtt est */
661 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
662 if (m < 0) {
663 m = -m; /* m is now abs(error) */
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 /* This is similar to one of Eifel findings.
666 * Eifel blocks mdev updates when rtt decreases.
667 * This solution is a bit different: we use finer gain
668 * for mdev in this case (alpha*beta).
669 * Like Eifel it also prevents growth of rto,
670 * but also it limits too fast rto decreases,
671 * happening in pure Eifel.
672 */
673 if (m > 0)
674 m >>= 3;
675 } else {
676 m -= (tp->mdev >> 2); /* similar update on mdev */
677 }
678 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
679 if (tp->mdev > tp->mdev_max) {
680 tp->mdev_max = tp->mdev;
681 if (tp->mdev_max > tp->rttvar)
682 tp->rttvar = tp->mdev_max;
683 }
684 if (after(tp->snd_una, tp->rtt_seq)) {
685 if (tp->mdev_max < tp->rttvar)
056834d9 686 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
1da177e4 687 tp->rtt_seq = tp->snd_nxt;
05bb1fad 688 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
689 }
690 } else {
691 /* no previous measure. */
056834d9
IJ
692 tp->srtt = m << 3; /* take the measured time to be rtt */
693 tp->mdev = m << 1; /* make sure rto = 3*rtt */
05bb1fad 694 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
695 tp->rtt_seq = tp->snd_nxt;
696 }
1da177e4
LT
697}
698
699/* Calculate rto without backoff. This is the second half of Van Jacobson's
700 * routine referred to above.
701 */
463c84b9 702static inline void tcp_set_rto(struct sock *sk)
1da177e4 703{
463c84b9 704 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
705 /* Old crap is replaced with new one. 8)
706 *
707 * More seriously:
708 * 1. If rtt variance happened to be less 50msec, it is hallucination.
709 * It cannot be less due to utterly erratic ACK generation made
710 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
711 * to do with delayed acks, because at cwnd>2 true delack timeout
712 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 713 * ACKs in some circumstances.
1da177e4 714 */
f1ecd5d9 715 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
716
717 /* 2. Fixups made earlier cannot be right.
718 * If we do not estimate RTO correctly without them,
719 * all the algo is pure shit and should be replaced
caa20d9a 720 * with correct one. It is exactly, which we pretend to do.
1da177e4 721 */
1da177e4 722
ee6aac59
IJ
723 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
724 * guarantees that rto is higher.
725 */
f1ecd5d9 726 tcp_bound_rto(sk);
1da177e4
LT
727}
728
729/* Save metrics learned by this TCP session.
730 This function is called only, when TCP finishes successfully
731 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
732 */
733void tcp_update_metrics(struct sock *sk)
734{
735 struct tcp_sock *tp = tcp_sk(sk);
736 struct dst_entry *dst = __sk_dst_get(sk);
737
738 if (sysctl_tcp_nometrics_save)
739 return;
740
741 dst_confirm(dst);
742
056834d9 743 if (dst && (dst->flags & DST_HOST)) {
6687e988 744 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 745 int m;
c1e20f7c 746 unsigned long rtt;
1da177e4 747
6687e988 748 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
749 /* This session failed to estimate rtt. Why?
750 * Probably, no packets returned in time.
751 * Reset our results.
752 */
753 if (!(dst_metric_locked(dst, RTAX_RTT)))
defb3519 754 dst_metric_set(dst, RTAX_RTT, 0);
1da177e4
LT
755 return;
756 }
757
c1e20f7c
SH
758 rtt = dst_metric_rtt(dst, RTAX_RTT);
759 m = rtt - tp->srtt;
1da177e4
LT
760
761 /* If newly calculated rtt larger than stored one,
762 * store new one. Otherwise, use EWMA. Remember,
763 * rtt overestimation is always better than underestimation.
764 */
765 if (!(dst_metric_locked(dst, RTAX_RTT))) {
766 if (m <= 0)
c1e20f7c 767 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
1da177e4 768 else
c1e20f7c 769 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
1da177e4
LT
770 }
771
772 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
c1e20f7c 773 unsigned long var;
1da177e4
LT
774 if (m < 0)
775 m = -m;
776
777 /* Scale deviation to rttvar fixed point */
778 m >>= 1;
779 if (m < tp->mdev)
780 m = tp->mdev;
781
c1e20f7c
SH
782 var = dst_metric_rtt(dst, RTAX_RTTVAR);
783 if (m >= var)
784 var = m;
1da177e4 785 else
c1e20f7c
SH
786 var -= (var - m) >> 2;
787
788 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
1da177e4
LT
789 }
790
0b6a05c1 791 if (tcp_in_initial_slowstart(tp)) {
1da177e4
LT
792 /* Slow start still did not finish. */
793 if (dst_metric(dst, RTAX_SSTHRESH) &&
794 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
795 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
defb3519 796 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
1da177e4
LT
797 if (!dst_metric_locked(dst, RTAX_CWND) &&
798 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
defb3519 799 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
1da177e4 800 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 801 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
802 /* Cong. avoidance phase, cwnd is reliable. */
803 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
defb3519
DM
804 dst_metric_set(dst, RTAX_SSTHRESH,
805 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
1da177e4 806 if (!dst_metric_locked(dst, RTAX_CWND))
defb3519
DM
807 dst_metric_set(dst, RTAX_CWND,
808 (dst_metric(dst, RTAX_CWND) +
809 tp->snd_cwnd) >> 1);
1da177e4
LT
810 } else {
811 /* Else slow start did not finish, cwnd is non-sense,
812 ssthresh may be also invalid.
813 */
814 if (!dst_metric_locked(dst, RTAX_CWND))
defb3519
DM
815 dst_metric_set(dst, RTAX_CWND,
816 (dst_metric(dst, RTAX_CWND) +
817 tp->snd_ssthresh) >> 1);
5ffc02a1 818 if (dst_metric(dst, RTAX_SSTHRESH) &&
1da177e4 819 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
5ffc02a1 820 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
defb3519 821 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
1da177e4
LT
822 }
823
824 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
5ffc02a1 825 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
1da177e4 826 tp->reordering != sysctl_tcp_reordering)
defb3519 827 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
1da177e4
LT
828 }
829 }
830}
831
cf533ea5 832__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
833{
834 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
835
22b71c8f 836 if (!cwnd)
442b9635 837 cwnd = TCP_INIT_CWND;
1da177e4
LT
838 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
839}
840
40efc6fa 841/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 842void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
843{
844 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 845 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
846
847 tp->prior_ssthresh = 0;
848 tp->bytes_acked = 0;
e01f9d77 849 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 850 tp->undo_marker = 0;
3cfe3baa
IJ
851 if (set_ssthresh)
852 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
853 tp->snd_cwnd = min(tp->snd_cwnd,
854 tcp_packets_in_flight(tp) + 1U);
855 tp->snd_cwnd_cnt = 0;
856 tp->high_seq = tp->snd_nxt;
857 tp->snd_cwnd_stamp = tcp_time_stamp;
858 TCP_ECN_queue_cwr(tp);
859
860 tcp_set_ca_state(sk, TCP_CA_CWR);
861 }
862}
863
e60402d0
IJ
864/*
865 * Packet counting of FACK is based on in-order assumptions, therefore TCP
866 * disables it when reordering is detected
867 */
868static void tcp_disable_fack(struct tcp_sock *tp)
869{
85cc391c
IJ
870 /* RFC3517 uses different metric in lost marker => reset on change */
871 if (tcp_is_fack(tp))
872 tp->lost_skb_hint = NULL;
ab56222a 873 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
874}
875
564262c1 876/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
877static void tcp_dsack_seen(struct tcp_sock *tp)
878{
ab56222a 879 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
880}
881
1da177e4
LT
882/* Initialize metrics on socket. */
883
884static void tcp_init_metrics(struct sock *sk)
885{
886 struct tcp_sock *tp = tcp_sk(sk);
887 struct dst_entry *dst = __sk_dst_get(sk);
888
889 if (dst == NULL)
890 goto reset;
891
892 dst_confirm(dst);
893
894 if (dst_metric_locked(dst, RTAX_CWND))
895 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
896 if (dst_metric(dst, RTAX_SSTHRESH)) {
897 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
898 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
899 tp->snd_ssthresh = tp->snd_cwnd_clamp;
9ad7c049
JC
900 } else {
901 /* ssthresh may have been reduced unnecessarily during.
902 * 3WHS. Restore it back to its initial default.
903 */
904 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1da177e4
LT
905 }
906 if (dst_metric(dst, RTAX_REORDERING) &&
907 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 908 tcp_disable_fack(tp);
1da177e4
LT
909 tp->reordering = dst_metric(dst, RTAX_REORDERING);
910 }
911
9ad7c049 912 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
1da177e4
LT
913 goto reset;
914
915 /* Initial rtt is determined from SYN,SYN-ACK.
916 * The segment is small and rtt may appear much
917 * less than real one. Use per-dst memory
918 * to make it more realistic.
919 *
920 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 921 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
922 * packets force peer to delay ACKs and calculation is correct too.
923 * The algorithm is adaptive and, provided we follow specs, it
924 * NEVER underestimate RTT. BUT! If peer tries to make some clever
925 * tricks sort of "quick acks" for time long enough to decrease RTT
926 * to low value, and then abruptly stops to do it and starts to delay
927 * ACKs, wait for troubles.
928 */
c1e20f7c
SH
929 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
930 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
1da177e4
LT
931 tp->rtt_seq = tp->snd_nxt;
932 }
c1e20f7c
SH
933 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
934 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
488faa2a 935 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4 936 }
463c84b9 937 tcp_set_rto(sk);
1da177e4 938reset:
9ad7c049 939 if (tp->srtt == 0) {
fd4f2cea 940 /* RFC6298: 5.7 We've failed to get a valid RTT sample from
9ad7c049
JC
941 * 3WHS. This is most likely due to retransmission,
942 * including spurious one. Reset the RTO back to 3secs
943 * from the more aggressive 1sec to avoid more spurious
944 * retransmission.
d9f4fbaf 945 */
9ad7c049
JC
946 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
947 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
1da177e4 948 }
9ad7c049 949 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
fd4f2cea 950 * retransmitted. In light of RFC6298 more aggressive 1sec
9ad7c049
JC
951 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
952 * retransmission has occurred.
953 */
954 if (tp->total_retrans > 1)
955 tp->snd_cwnd = 1;
956 else
957 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
d9f4fbaf 958 tp->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
959}
960
6687e988
ACM
961static void tcp_update_reordering(struct sock *sk, const int metric,
962 const int ts)
1da177e4 963{
6687e988 964 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 965 if (metric > tp->reordering) {
40b215e5
PE
966 int mib_idx;
967
1da177e4
LT
968 tp->reordering = min(TCP_MAX_REORDERING, metric);
969
970 /* This exciting event is worth to be remembered. 8) */
971 if (ts)
40b215e5 972 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 973 else if (tcp_is_reno(tp))
40b215e5 974 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 975 else if (tcp_is_fack(tp))
40b215e5 976 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 977 else
40b215e5
PE
978 mib_idx = LINUX_MIB_TCPSACKREORDER;
979
de0744af 980 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4
LT
981#if FASTRETRANS_DEBUG > 1
982 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 983 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
984 tp->reordering,
985 tp->fackets_out,
986 tp->sacked_out,
987 tp->undo_marker ? tp->undo_retrans : 0);
988#endif
e60402d0 989 tcp_disable_fack(tp);
1da177e4
LT
990 }
991}
992
006f582c 993/* This must be called before lost_out is incremented */
c8c213f2
IJ
994static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
995{
006f582c 996 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
997 before(TCP_SKB_CB(skb)->seq,
998 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
999 tp->retransmit_skb_hint = skb;
1000
1001 if (!tp->lost_out ||
1002 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1003 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
1004}
1005
41ea36e3
IJ
1006static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1007{
1008 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1009 tcp_verify_retransmit_hint(tp, skb);
1010
1011 tp->lost_out += tcp_skb_pcount(skb);
1012 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013 }
1014}
1015
e1aa680f
IJ
1016static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1017 struct sk_buff *skb)
006f582c
IJ
1018{
1019 tcp_verify_retransmit_hint(tp, skb);
1020
1021 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1022 tp->lost_out += tcp_skb_pcount(skb);
1023 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1024 }
1025}
1026
1da177e4
LT
1027/* This procedure tags the retransmission queue when SACKs arrive.
1028 *
1029 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1030 * Packets in queue with these bits set are counted in variables
1031 * sacked_out, retrans_out and lost_out, correspondingly.
1032 *
1033 * Valid combinations are:
1034 * Tag InFlight Description
1035 * 0 1 - orig segment is in flight.
1036 * S 0 - nothing flies, orig reached receiver.
1037 * L 0 - nothing flies, orig lost by net.
1038 * R 2 - both orig and retransmit are in flight.
1039 * L|R 1 - orig is lost, retransmit is in flight.
1040 * S|R 1 - orig reached receiver, retrans is still in flight.
1041 * (L|S|R is logically valid, it could occur when L|R is sacked,
1042 * but it is equivalent to plain S and code short-curcuits it to S.
1043 * L|S is logically invalid, it would mean -1 packet in flight 8))
1044 *
1045 * These 6 states form finite state machine, controlled by the following events:
1046 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1047 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 1048 * 3. Loss detection event of two flavors:
1da177e4
LT
1049 * A. Scoreboard estimator decided the packet is lost.
1050 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
1051 * A''. Its FACK modification, head until snd.fack is lost.
1052 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
1053 * segment was retransmitted.
1054 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1055 *
1056 * It is pleasant to note, that state diagram turns out to be commutative,
1057 * so that we are allowed not to be bothered by order of our actions,
1058 * when multiple events arrive simultaneously. (see the function below).
1059 *
1060 * Reordering detection.
1061 * --------------------
1062 * Reordering metric is maximal distance, which a packet can be displaced
1063 * in packet stream. With SACKs we can estimate it:
1064 *
1065 * 1. SACK fills old hole and the corresponding segment was not
1066 * ever retransmitted -> reordering. Alas, we cannot use it
1067 * when segment was retransmitted.
1068 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1069 * for retransmitted and already SACKed segment -> reordering..
1070 * Both of these heuristics are not used in Loss state, when we cannot
1071 * account for retransmits accurately.
5b3c9882
IJ
1072 *
1073 * SACK block validation.
1074 * ----------------------
1075 *
1076 * SACK block range validation checks that the received SACK block fits to
1077 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1078 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1079 * it means that the receiver is rather inconsistent with itself reporting
1080 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1081 * perfectly valid, however, in light of RFC2018 which explicitly states
1082 * that "SACK block MUST reflect the newest segment. Even if the newest
1083 * segment is going to be discarded ...", not that it looks very clever
1084 * in case of head skb. Due to potentional receiver driven attacks, we
1085 * choose to avoid immediate execution of a walk in write queue due to
1086 * reneging and defer head skb's loss recovery to standard loss recovery
1087 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1088 *
1089 * Implements also blockage to start_seq wrap-around. Problem lies in the
1090 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1091 * there's no guarantee that it will be before snd_nxt (n). The problem
1092 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1093 * wrap (s_w):
1094 *
1095 * <- outs wnd -> <- wrapzone ->
1096 * u e n u_w e_w s n_w
1097 * | | | | | | |
1098 * |<------------+------+----- TCP seqno space --------------+---------->|
1099 * ...-- <2^31 ->| |<--------...
1100 * ...---- >2^31 ------>| |<--------...
1101 *
1102 * Current code wouldn't be vulnerable but it's better still to discard such
1103 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1104 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1105 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1106 * equal to the ideal case (infinite seqno space without wrap caused issues).
1107 *
1108 * With D-SACK the lower bound is extended to cover sequence space below
1109 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1110 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1111 * for the normal SACK blocks, explained above). But there all simplicity
1112 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1113 * fully below undo_marker they do not affect behavior in anyway and can
1114 * therefore be safely ignored. In rare cases (which are more or less
1115 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1116 * fragmentation and packet reordering past skb's retransmission. To consider
1117 * them correctly, the acceptable range must be extended even more though
1118 * the exact amount is rather hard to quantify. However, tp->max_window can
1119 * be used as an exaggerated estimate.
1da177e4 1120 */
5b3c9882
IJ
1121static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1122 u32 start_seq, u32 end_seq)
1123{
1124 /* Too far in future, or reversed (interpretation is ambiguous) */
1125 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1126 return 0;
1127
1128 /* Nasty start_seq wrap-around check (see comments above) */
1129 if (!before(start_seq, tp->snd_nxt))
1130 return 0;
1131
564262c1 1132 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1133 * start_seq == snd_una is non-sensical (see comments above)
1134 */
1135 if (after(start_seq, tp->snd_una))
1136 return 1;
1137
1138 if (!is_dsack || !tp->undo_marker)
1139 return 0;
1140
1141 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1142 if (after(end_seq, tp->snd_una))
5b3c9882
IJ
1143 return 0;
1144
1145 if (!before(start_seq, tp->undo_marker))
1146 return 1;
1147
1148 /* Too old */
1149 if (!after(end_seq, tp->undo_marker))
1150 return 0;
1151
1152 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1153 * start_seq < undo_marker and end_seq >= undo_marker.
1154 */
1155 return !before(start_seq, end_seq - tp->max_window);
1156}
1157
1c1e87ed 1158/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 1159 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 1160 * for reordering! Ugly, but should help.
f785a8e2
IJ
1161 *
1162 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1163 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1164 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1165 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1166 */
407ef1de 1167static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 1168{
9f58f3b7 1169 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1170 struct tcp_sock *tp = tcp_sk(sk);
1171 struct sk_buff *skb;
f785a8e2 1172 int cnt = 0;
df2e014b 1173 u32 new_low_seq = tp->snd_nxt;
6859d494 1174 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1175
1176 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1177 !after(received_upto, tp->lost_retrans_low) ||
1178 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1179 return;
1c1e87ed
IJ
1180
1181 tcp_for_write_queue(skb, sk) {
1182 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1183
1184 if (skb == tcp_send_head(sk))
1185 break;
f785a8e2 1186 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1187 break;
1188 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1189 continue;
1190
f785a8e2
IJ
1191 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1192 continue;
1193
d0af4160
IJ
1194 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1195 * constraint here (see above) but figuring out that at
1196 * least tp->reordering SACK blocks reside between ack_seq
1197 * and received_upto is not easy task to do cheaply with
1198 * the available datastructures.
1199 *
1200 * Whether FACK should check here for tp->reordering segs
1201 * in-between one could argue for either way (it would be
1202 * rather simple to implement as we could count fack_count
1203 * during the walk and do tp->fackets_out - fack_count).
1204 */
1205 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1206 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1207 tp->retrans_out -= tcp_skb_pcount(skb);
1208
006f582c 1209 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1210 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1211 } else {
df2e014b 1212 if (before(ack_seq, new_low_seq))
b08d6cb2 1213 new_low_seq = ack_seq;
f785a8e2 1214 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1215 }
1216 }
b08d6cb2
IJ
1217
1218 if (tp->retrans_out)
1219 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1220}
5b3c9882 1221
cf533ea5 1222static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
d06e021d
DM
1223 struct tcp_sack_block_wire *sp, int num_sacks,
1224 u32 prior_snd_una)
1225{
1ed83465 1226 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1227 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1228 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
d06e021d
DM
1229 int dup_sack = 0;
1230
1231 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1232 dup_sack = 1;
e60402d0 1233 tcp_dsack_seen(tp);
de0744af 1234 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1235 } else if (num_sacks > 1) {
d3e2ce3b
HH
1236 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1237 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1238
1239 if (!after(end_seq_0, end_seq_1) &&
1240 !before(start_seq_0, start_seq_1)) {
1241 dup_sack = 1;
e60402d0 1242 tcp_dsack_seen(tp);
de0744af
PE
1243 NET_INC_STATS_BH(sock_net(sk),
1244 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1245 }
1246 }
1247
1248 /* D-SACK for already forgotten data... Do dumb counting. */
c24f691b 1249 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
d06e021d
DM
1250 !after(end_seq_0, prior_snd_una) &&
1251 after(end_seq_0, tp->undo_marker))
1252 tp->undo_retrans--;
1253
1254 return dup_sack;
1255}
1256
a1197f5a
IJ
1257struct tcp_sacktag_state {
1258 int reord;
1259 int fack_count;
1260 int flag;
1261};
1262
d1935942
IJ
1263/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1264 * the incoming SACK may not exactly match but we can find smaller MSS
1265 * aligned portion of it that matches. Therefore we might need to fragment
1266 * which may fail and creates some hassle (caller must handle error case
1267 * returns).
832d11c5
IJ
1268 *
1269 * FIXME: this could be merged to shift decision code
d1935942 1270 */
0f79efdc
AB
1271static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1272 u32 start_seq, u32 end_seq)
d1935942
IJ
1273{
1274 int in_sack, err;
1275 unsigned int pkt_len;
adb92db8 1276 unsigned int mss;
d1935942
IJ
1277
1278 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1279 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1280
1281 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1282 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1283 mss = tcp_skb_mss(skb);
d1935942
IJ
1284 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1285
adb92db8 1286 if (!in_sack) {
d1935942 1287 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1288 if (pkt_len < mss)
1289 pkt_len = mss;
1290 } else {
d1935942 1291 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1292 if (pkt_len < mss)
1293 return -EINVAL;
1294 }
1295
1296 /* Round if necessary so that SACKs cover only full MSSes
1297 * and/or the remaining small portion (if present)
1298 */
1299 if (pkt_len > mss) {
1300 unsigned int new_len = (pkt_len / mss) * mss;
1301 if (!in_sack && new_len < pkt_len) {
1302 new_len += mss;
1303 if (new_len > skb->len)
1304 return 0;
1305 }
1306 pkt_len = new_len;
1307 }
1308 err = tcp_fragment(sk, skb, pkt_len, mss);
d1935942
IJ
1309 if (err < 0)
1310 return err;
1311 }
1312
1313 return in_sack;
1314}
1315
cc9a672e
NC
1316/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1317static u8 tcp_sacktag_one(struct sock *sk,
1318 struct tcp_sacktag_state *state, u8 sacked,
1319 u32 start_seq, u32 end_seq,
a1197f5a 1320 int dup_sack, int pcount)
9e10c47c 1321{
6859d494 1322 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1323 int fack_count = state->fack_count;
9e10c47c
IJ
1324
1325 /* Account D-SACK for retransmitted packet. */
1326 if (dup_sack && (sacked & TCPCB_RETRANS)) {
c24f691b 1327 if (tp->undo_marker && tp->undo_retrans &&
cc9a672e 1328 after(end_seq, tp->undo_marker))
9e10c47c 1329 tp->undo_retrans--;
ede9f3b1 1330 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1331 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1332 }
1333
1334 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1335 if (!after(end_seq, tp->snd_una))
a1197f5a 1336 return sacked;
9e10c47c
IJ
1337
1338 if (!(sacked & TCPCB_SACKED_ACKED)) {
1339 if (sacked & TCPCB_SACKED_RETRANS) {
1340 /* If the segment is not tagged as lost,
1341 * we do not clear RETRANS, believing
1342 * that retransmission is still in flight.
1343 */
1344 if (sacked & TCPCB_LOST) {
a1197f5a 1345 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1346 tp->lost_out -= pcount;
1347 tp->retrans_out -= pcount;
9e10c47c
IJ
1348 }
1349 } else {
1350 if (!(sacked & TCPCB_RETRANS)) {
1351 /* New sack for not retransmitted frame,
1352 * which was in hole. It is reordering.
1353 */
cc9a672e 1354 if (before(start_seq,
9e10c47c 1355 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1356 state->reord = min(fack_count,
1357 state->reord);
9e10c47c
IJ
1358
1359 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
cc9a672e 1360 if (!after(end_seq, tp->frto_highmark))
a1197f5a 1361 state->flag |= FLAG_ONLY_ORIG_SACKED;
9e10c47c
IJ
1362 }
1363
1364 if (sacked & TCPCB_LOST) {
a1197f5a 1365 sacked &= ~TCPCB_LOST;
f58b22fd 1366 tp->lost_out -= pcount;
9e10c47c
IJ
1367 }
1368 }
1369
a1197f5a
IJ
1370 sacked |= TCPCB_SACKED_ACKED;
1371 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1372 tp->sacked_out += pcount;
9e10c47c 1373
f58b22fd 1374 fack_count += pcount;
9e10c47c
IJ
1375
1376 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1377 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
cc9a672e 1378 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1379 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1380
1381 if (fack_count > tp->fackets_out)
1382 tp->fackets_out = fack_count;
9e10c47c
IJ
1383 }
1384
1385 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1386 * frames and clear it. undo_retrans is decreased above, L|R frames
1387 * are accounted above as well.
1388 */
a1197f5a
IJ
1389 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1390 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1391 tp->retrans_out -= pcount;
9e10c47c
IJ
1392 }
1393
a1197f5a 1394 return sacked;
9e10c47c
IJ
1395}
1396
daef52ba
NC
1397/* Shift newly-SACKed bytes from this skb to the immediately previous
1398 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1399 */
50133161 1400static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
a1197f5a 1401 struct tcp_sacktag_state *state,
9ec06ff5
IJ
1402 unsigned int pcount, int shifted, int mss,
1403 int dup_sack)
832d11c5
IJ
1404{
1405 struct tcp_sock *tp = tcp_sk(sk);
50133161 1406 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1407 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1408 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1409
1410 BUG_ON(!pcount);
1411
4c90d3b3
NC
1412 /* Adjust counters and hints for the newly sacked sequence
1413 * range but discard the return value since prev is already
1414 * marked. We must tag the range first because the seq
1415 * advancement below implicitly advances
1416 * tcp_highest_sack_seq() when skb is highest_sack.
1417 */
1418 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1419 start_seq, end_seq, dup_sack, pcount);
1420
1421 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1422 tp->lost_cnt_hint += pcount;
1423
832d11c5
IJ
1424 TCP_SKB_CB(prev)->end_seq += shifted;
1425 TCP_SKB_CB(skb)->seq += shifted;
1426
1427 skb_shinfo(prev)->gso_segs += pcount;
1428 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1429 skb_shinfo(skb)->gso_segs -= pcount;
1430
1431 /* When we're adding to gso_segs == 1, gso_size will be zero,
1432 * in theory this shouldn't be necessary but as long as DSACK
1433 * code can come after this skb later on it's better to keep
1434 * setting gso_size to something.
1435 */
1436 if (!skb_shinfo(prev)->gso_size) {
1437 skb_shinfo(prev)->gso_size = mss;
1438 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1439 }
1440
1441 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1442 if (skb_shinfo(skb)->gso_segs <= 1) {
1443 skb_shinfo(skb)->gso_size = 0;
1444 skb_shinfo(skb)->gso_type = 0;
1445 }
1446
832d11c5
IJ
1447 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1448 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1449
832d11c5
IJ
1450 if (skb->len > 0) {
1451 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1452 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
832d11c5
IJ
1453 return 0;
1454 }
1455
1456 /* Whole SKB was eaten :-) */
1457
92ee76b6
IJ
1458 if (skb == tp->retransmit_skb_hint)
1459 tp->retransmit_skb_hint = prev;
1460 if (skb == tp->scoreboard_skb_hint)
1461 tp->scoreboard_skb_hint = prev;
1462 if (skb == tp->lost_skb_hint) {
1463 tp->lost_skb_hint = prev;
1464 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1465 }
1466
4de075e0 1467 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
832d11c5
IJ
1468 if (skb == tcp_highest_sack(sk))
1469 tcp_advance_highest_sack(sk, skb);
1470
1471 tcp_unlink_write_queue(skb, sk);
1472 sk_wmem_free_skb(sk, skb);
1473
111cc8b9
IJ
1474 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1475
832d11c5
IJ
1476 return 1;
1477}
1478
1479/* I wish gso_size would have a bit more sane initialization than
1480 * something-or-zero which complicates things
1481 */
cf533ea5 1482static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1483{
775ffabf 1484 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1485}
1486
1487/* Shifting pages past head area doesn't work */
cf533ea5 1488static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1489{
1490 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1491}
1492
1493/* Try collapsing SACK blocks spanning across multiple skbs to a single
1494 * skb.
1495 */
1496static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1497 struct tcp_sacktag_state *state,
832d11c5 1498 u32 start_seq, u32 end_seq,
a1197f5a 1499 int dup_sack)
832d11c5
IJ
1500{
1501 struct tcp_sock *tp = tcp_sk(sk);
1502 struct sk_buff *prev;
1503 int mss;
1504 int pcount = 0;
1505 int len;
1506 int in_sack;
1507
1508 if (!sk_can_gso(sk))
1509 goto fallback;
1510
1511 /* Normally R but no L won't result in plain S */
1512 if (!dup_sack &&
9969ca5f 1513 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1514 goto fallback;
1515 if (!skb_can_shift(skb))
1516 goto fallback;
1517 /* This frame is about to be dropped (was ACKed). */
1518 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1519 goto fallback;
1520
1521 /* Can only happen with delayed DSACK + discard craziness */
1522 if (unlikely(skb == tcp_write_queue_head(sk)))
1523 goto fallback;
1524 prev = tcp_write_queue_prev(sk, skb);
1525
1526 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1527 goto fallback;
1528
1529 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1530 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1531
1532 if (in_sack) {
1533 len = skb->len;
1534 pcount = tcp_skb_pcount(skb);
775ffabf 1535 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1536
1537 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1538 * drop this restriction as unnecessary
1539 */
775ffabf 1540 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1541 goto fallback;
1542 } else {
1543 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1544 goto noop;
1545 /* CHECKME: This is non-MSS split case only?, this will
1546 * cause skipped skbs due to advancing loop btw, original
1547 * has that feature too
1548 */
1549 if (tcp_skb_pcount(skb) <= 1)
1550 goto noop;
1551
1552 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1553 if (!in_sack) {
1554 /* TODO: head merge to next could be attempted here
1555 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1556 * though it might not be worth of the additional hassle
1557 *
1558 * ...we can probably just fallback to what was done
1559 * previously. We could try merging non-SACKed ones
1560 * as well but it probably isn't going to buy off
1561 * because later SACKs might again split them, and
1562 * it would make skb timestamp tracking considerably
1563 * harder problem.
1564 */
1565 goto fallback;
1566 }
1567
1568 len = end_seq - TCP_SKB_CB(skb)->seq;
1569 BUG_ON(len < 0);
1570 BUG_ON(len > skb->len);
1571
1572 /* MSS boundaries should be honoured or else pcount will
1573 * severely break even though it makes things bit trickier.
1574 * Optimize common case to avoid most of the divides
1575 */
1576 mss = tcp_skb_mss(skb);
1577
1578 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1579 * drop this restriction as unnecessary
1580 */
775ffabf 1581 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1582 goto fallback;
1583
1584 if (len == mss) {
1585 pcount = 1;
1586 } else if (len < mss) {
1587 goto noop;
1588 } else {
1589 pcount = len / mss;
1590 len = pcount * mss;
1591 }
1592 }
1593
4648dc97
NC
1594 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1595 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1596 goto fallback;
1597
832d11c5
IJ
1598 if (!skb_shift(prev, skb, len))
1599 goto fallback;
9ec06ff5 1600 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1601 goto out;
1602
1603 /* Hole filled allows collapsing with the next as well, this is very
1604 * useful when hole on every nth skb pattern happens
1605 */
1606 if (prev == tcp_write_queue_tail(sk))
1607 goto out;
1608 skb = tcp_write_queue_next(sk, prev);
1609
f0bc52f3
IJ
1610 if (!skb_can_shift(skb) ||
1611 (skb == tcp_send_head(sk)) ||
1612 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1613 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1614 goto out;
1615
1616 len = skb->len;
1617 if (skb_shift(prev, skb, len)) {
1618 pcount += tcp_skb_pcount(skb);
9ec06ff5 1619 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1620 }
1621
1622out:
a1197f5a 1623 state->fack_count += pcount;
832d11c5
IJ
1624 return prev;
1625
1626noop:
1627 return skb;
1628
1629fallback:
111cc8b9 1630 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1631 return NULL;
1632}
1633
68f8353b
IJ
1634static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1635 struct tcp_sack_block *next_dup,
a1197f5a 1636 struct tcp_sacktag_state *state,
68f8353b 1637 u32 start_seq, u32 end_seq,
a1197f5a 1638 int dup_sack_in)
68f8353b 1639{
832d11c5
IJ
1640 struct tcp_sock *tp = tcp_sk(sk);
1641 struct sk_buff *tmp;
1642
68f8353b
IJ
1643 tcp_for_write_queue_from(skb, sk) {
1644 int in_sack = 0;
1645 int dup_sack = dup_sack_in;
1646
1647 if (skb == tcp_send_head(sk))
1648 break;
1649
1650 /* queue is in-order => we can short-circuit the walk early */
1651 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1652 break;
1653
1654 if ((next_dup != NULL) &&
1655 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1656 in_sack = tcp_match_skb_to_sack(sk, skb,
1657 next_dup->start_seq,
1658 next_dup->end_seq);
1659 if (in_sack > 0)
1660 dup_sack = 1;
1661 }
1662
832d11c5
IJ
1663 /* skb reference here is a bit tricky to get right, since
1664 * shifting can eat and free both this skb and the next,
1665 * so not even _safe variant of the loop is enough.
1666 */
1667 if (in_sack <= 0) {
a1197f5a
IJ
1668 tmp = tcp_shift_skb_data(sk, skb, state,
1669 start_seq, end_seq, dup_sack);
832d11c5
IJ
1670 if (tmp != NULL) {
1671 if (tmp != skb) {
1672 skb = tmp;
1673 continue;
1674 }
1675
1676 in_sack = 0;
1677 } else {
1678 in_sack = tcp_match_skb_to_sack(sk, skb,
1679 start_seq,
1680 end_seq);
1681 }
1682 }
1683
68f8353b
IJ
1684 if (unlikely(in_sack < 0))
1685 break;
1686
832d11c5 1687 if (in_sack) {
cc9a672e
NC
1688 TCP_SKB_CB(skb)->sacked =
1689 tcp_sacktag_one(sk,
1690 state,
1691 TCP_SKB_CB(skb)->sacked,
1692 TCP_SKB_CB(skb)->seq,
1693 TCP_SKB_CB(skb)->end_seq,
1694 dup_sack,
1695 tcp_skb_pcount(skb));
68f8353b 1696
832d11c5
IJ
1697 if (!before(TCP_SKB_CB(skb)->seq,
1698 tcp_highest_sack_seq(tp)))
1699 tcp_advance_highest_sack(sk, skb);
1700 }
1701
a1197f5a 1702 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1703 }
1704 return skb;
1705}
1706
1707/* Avoid all extra work that is being done by sacktag while walking in
1708 * a normal way
1709 */
1710static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1711 struct tcp_sacktag_state *state,
1712 u32 skip_to_seq)
68f8353b
IJ
1713{
1714 tcp_for_write_queue_from(skb, sk) {
1715 if (skb == tcp_send_head(sk))
1716 break;
1717
e8bae275 1718 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1719 break;
d152a7d8 1720
a1197f5a 1721 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1722 }
1723 return skb;
1724}
1725
1726static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1727 struct sock *sk,
1728 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1729 struct tcp_sacktag_state *state,
1730 u32 skip_to_seq)
68f8353b
IJ
1731{
1732 if (next_dup == NULL)
1733 return skb;
1734
1735 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1736 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1737 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1738 next_dup->start_seq, next_dup->end_seq,
1739 1);
68f8353b
IJ
1740 }
1741
1742 return skb;
1743}
1744
cf533ea5 1745static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1746{
1747 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1748}
1749
1da177e4 1750static int
cf533ea5 1751tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
056834d9 1752 u32 prior_snd_una)
1da177e4 1753{
6687e988 1754 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1755 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1756 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1757 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1758 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1759 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1760 struct tcp_sack_block *cache;
a1197f5a 1761 struct tcp_sacktag_state state;
68f8353b 1762 struct sk_buff *skb;
4389dded 1763 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1764 int used_sacks;
7769f406 1765 int found_dup_sack = 0;
68f8353b 1766 int i, j;
fda03fbb 1767 int first_sack_index;
1da177e4 1768
a1197f5a
IJ
1769 state.flag = 0;
1770 state.reord = tp->packets_out;
1771
d738cd8f 1772 if (!tp->sacked_out) {
de83c058
IJ
1773 if (WARN_ON(tp->fackets_out))
1774 tp->fackets_out = 0;
6859d494 1775 tcp_highest_sack_reset(sk);
d738cd8f 1776 }
1da177e4 1777
1ed83465 1778 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1779 num_sacks, prior_snd_una);
1780 if (found_dup_sack)
a1197f5a 1781 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1782
1783 /* Eliminate too old ACKs, but take into
1784 * account more or less fresh ones, they can
1785 * contain valid SACK info.
1786 */
1787 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1788 return 0;
1789