]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - net/ipv4/tcp_input.c
tcp: remove thin_dupack feature
[mirror_ubuntu-focal-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
dca145ff 83int sysctl_tcp_max_reordering __read_mostly = 300;
ab32ea5d
BH
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 86int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
25429d7b 88EXPORT_SYMBOL(sysctl_tcp_timestamps);
1da177e4 89
282f23c6 90/* rfc5961 challenge ack rate limiting */
75ff39cc 91int sysctl_tcp_challenge_ack_limit = 1000;
282f23c6 92
ab32ea5d
BH
93int sysctl_tcp_stdurg __read_mostly;
94int sysctl_tcp_rfc1337 __read_mostly;
95int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 96int sysctl_tcp_frto __read_mostly = 2;
f6722583 97int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
ab32ea5d 98int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 99int sysctl_tcp_early_retrans __read_mostly = 3;
032ee423 100int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
1da177e4 101
1da177e4
LT
102#define FLAG_DATA 0x01 /* Incoming frame contained data. */
103#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107#define FLAG_DATA_SACKED 0x20 /* New SACK. */
108#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 109#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
1da177e4 110#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 111#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 112#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 113#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 114#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 115#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
116
117#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121
1da177e4 122#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 123#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 124
e662ca40
YC
125#define REXMIT_NONE 0 /* no loss recovery to do */
126#define REXMIT_LOST 1 /* retransmit packets marked lost */
127#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
128
dcb17d22
MRL
129static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb)
130{
131 static bool __once __read_mostly;
132
133 if (!__once) {
134 struct net_device *dev;
135
136 __once = true;
137
138 rcu_read_lock();
139 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
140 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
141 dev ? dev->name : "Unknown driver");
142 rcu_read_unlock();
143 }
144}
145
e905a9ed 146/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 147 * real world.
e905a9ed 148 */
056834d9 149static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 150{
463c84b9 151 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 152 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 153 unsigned int len;
1da177e4 154
e905a9ed 155 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
156
157 /* skb->len may jitter because of SACKs, even if peer
158 * sends good full-sized frames.
159 */
056834d9 160 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 161 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
162 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
163 tcp_sk(sk)->advmss);
164 if (unlikely(icsk->icsk_ack.rcv_mss != len))
165 tcp_gro_dev_warn(sk, skb);
1da177e4
LT
166 } else {
167 /* Otherwise, we make more careful check taking into account,
168 * that SACKs block is variable.
169 *
170 * "len" is invariant segment length, including TCP header.
171 */
9c70220b 172 len += skb->data - skb_transport_header(skb);
bee7ca9e 173 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
174 /* If PSH is not set, packet should be
175 * full sized, provided peer TCP is not badly broken.
176 * This observation (if it is correct 8)) allows
177 * to handle super-low mtu links fairly.
178 */
179 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 180 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
181 /* Subtract also invariant (if peer is RFC compliant),
182 * tcp header plus fixed timestamp option length.
183 * Resulting "len" is MSS free of SACK jitter.
184 */
463c84b9
ACM
185 len -= tcp_sk(sk)->tcp_header_len;
186 icsk->icsk_ack.last_seg_size = len;
1da177e4 187 if (len == lss) {
463c84b9 188 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
189 return;
190 }
191 }
1ef9696c
AK
192 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
193 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 194 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
195 }
196}
197
463c84b9 198static void tcp_incr_quickack(struct sock *sk)
1da177e4 199{
463c84b9 200 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 201 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 202
056834d9
IJ
203 if (quickacks == 0)
204 quickacks = 2;
463c84b9
ACM
205 if (quickacks > icsk->icsk_ack.quick)
206 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
207}
208
1b9f4092 209static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 210{
463c84b9
ACM
211 struct inet_connection_sock *icsk = inet_csk(sk);
212 tcp_incr_quickack(sk);
213 icsk->icsk_ack.pingpong = 0;
214 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
215}
216
217/* Send ACKs quickly, if "quick" count is not exhausted
218 * and the session is not interactive.
219 */
220
2251ae46 221static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 222{
463c84b9 223 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 224 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 225
2251ae46
JM
226 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
227 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
228}
229
735d3831 230static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 231{
056834d9 232 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
233 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
234}
235
735d3831 236static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
237{
238 if (tcp_hdr(skb)->cwr)
239 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
240}
241
735d3831 242static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
243{
244 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
245}
246
735d3831 247static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 248{
b82d1bb4 249 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 250 case INET_ECN_NOT_ECT:
bdf1ee5d 251 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
252 * and we already seen ECT on a previous segment,
253 * it is probably a retransmit.
254 */
255 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 256 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
257 break;
258 case INET_ECN_CE:
9890092e
FW
259 if (tcp_ca_needs_ecn((struct sock *)tp))
260 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
261
aae06bf5
ED
262 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
263 /* Better not delay acks, sender can have a very low cwnd */
264 tcp_enter_quickack_mode((struct sock *)tp);
265 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
266 }
9890092e
FW
267 tp->ecn_flags |= TCP_ECN_SEEN;
268 break;
7a269ffa 269 default:
9890092e
FW
270 if (tcp_ca_needs_ecn((struct sock *)tp))
271 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 272 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 273 break;
bdf1ee5d
IJ
274 }
275}
276
735d3831
FW
277static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
278{
279 if (tp->ecn_flags & TCP_ECN_OK)
280 __tcp_ecn_check_ce(tp, skb);
281}
282
283static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 284{
056834d9 285 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
286 tp->ecn_flags &= ~TCP_ECN_OK;
287}
288
735d3831 289static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 290{
056834d9 291 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
292 tp->ecn_flags &= ~TCP_ECN_OK;
293}
294
735d3831 295static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 296{
056834d9 297 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
298 return true;
299 return false;
bdf1ee5d
IJ
300}
301
1da177e4
LT
302/* Buffer size and advertised window tuning.
303 *
304 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
305 */
306
6ae70532 307static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 308{
6ae70532 309 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 310 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
311 int sndmem, per_mss;
312 u32 nr_segs;
313
314 /* Worst case is non GSO/TSO : each frame consumes one skb
315 * and skb->head is kmalloced using power of two area of memory
316 */
317 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
318 MAX_TCP_HEADER +
319 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
320
321 per_mss = roundup_pow_of_two(per_mss) +
322 SKB_DATA_ALIGN(sizeof(struct sk_buff));
323
324 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
325 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
326
327 /* Fast Recovery (RFC 5681 3.2) :
328 * Cubic needs 1.7 factor, rounded to 2 to include
329 * extra cushion (application might react slowly to POLLOUT)
330 */
77bfc174
YC
331 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
332 sndmem *= nr_segs * per_mss;
1da177e4 333
06a59ecb
ED
334 if (sk->sk_sndbuf < sndmem)
335 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
336}
337
338/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
339 *
340 * All tcp_full_space() is split to two parts: "network" buffer, allocated
341 * forward and advertised in receiver window (tp->rcv_wnd) and
342 * "application buffer", required to isolate scheduling/application
343 * latencies from network.
344 * window_clamp is maximal advertised window. It can be less than
345 * tcp_full_space(), in this case tcp_full_space() - window_clamp
346 * is reserved for "application" buffer. The less window_clamp is
347 * the smoother our behaviour from viewpoint of network, but the lower
348 * throughput and the higher sensitivity of the connection to losses. 8)
349 *
350 * rcv_ssthresh is more strict window_clamp used at "slow start"
351 * phase to predict further behaviour of this connection.
352 * It is used for two goals:
353 * - to enforce header prediction at sender, even when application
354 * requires some significant "application buffer". It is check #1.
355 * - to prevent pruning of receive queue because of misprediction
356 * of receiver window. Check #2.
357 *
358 * The scheme does not work when sender sends good segments opening
caa20d9a 359 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
360 * in common situations. Otherwise, we have to rely on queue collapsing.
361 */
362
363/* Slow part of check#2. */
9e412ba7 364static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 365{
9e412ba7 366 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 367 /* Optimize this! */
dfd4f0ae
ED
368 int truesize = tcp_win_from_space(skb->truesize) >> 1;
369 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
370
371 while (tp->rcv_ssthresh <= window) {
372 if (truesize <= skb->len)
463c84b9 373 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
374
375 truesize >>= 1;
376 window >>= 1;
377 }
378 return 0;
379}
380
cf533ea5 381static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 382{
9e412ba7
IJ
383 struct tcp_sock *tp = tcp_sk(sk);
384
1da177e4
LT
385 /* Check #1 */
386 if (tp->rcv_ssthresh < tp->window_clamp &&
387 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 388 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
389 int incr;
390
391 /* Check #2. Increase window, if skb with such overhead
392 * will fit to rcvbuf in future.
393 */
394 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 395 incr = 2 * tp->advmss;
1da177e4 396 else
9e412ba7 397 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
398
399 if (incr) {
4d846f02 400 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
401 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
402 tp->window_clamp);
463c84b9 403 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
404 }
405 }
406}
407
408/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
409static void tcp_fixup_rcvbuf(struct sock *sk)
410{
e9266a02 411 u32 mss = tcp_sk(sk)->advmss;
e9266a02 412 int rcvmem;
1da177e4 413
85f16525
YC
414 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
415 tcp_default_init_rwnd(mss);
e9266a02 416
b0983d3c
ED
417 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
418 * Allow enough cushion so that sender is not limited by our window
419 */
420 if (sysctl_tcp_moderate_rcvbuf)
421 rcvmem <<= 2;
422
e9266a02
ED
423 if (sk->sk_rcvbuf < rcvmem)
424 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
425}
426
caa20d9a 427/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
428 * established state.
429 */
10467163 430void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
431{
432 struct tcp_sock *tp = tcp_sk(sk);
433 int maxwin;
434
435 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
436 tcp_fixup_rcvbuf(sk);
437 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 438 tcp_sndbuf_expand(sk);
1da177e4
LT
439
440 tp->rcvq_space.space = tp->rcv_wnd;
b0983d3c
ED
441 tp->rcvq_space.time = tcp_time_stamp;
442 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
443
444 maxwin = tcp_full_space(sk);
445
446 if (tp->window_clamp >= maxwin) {
447 tp->window_clamp = maxwin;
448
449 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
450 tp->window_clamp = max(maxwin -
451 (maxwin >> sysctl_tcp_app_win),
452 4 * tp->advmss);
453 }
454
455 /* Force reservation of one segment. */
456 if (sysctl_tcp_app_win &&
457 tp->window_clamp > 2 * tp->advmss &&
458 tp->window_clamp + tp->advmss > maxwin)
459 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
460
461 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
462 tp->snd_cwnd_stamp = tcp_time_stamp;
463}
464
1da177e4 465/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 466static void tcp_clamp_window(struct sock *sk)
1da177e4 467{
9e412ba7 468 struct tcp_sock *tp = tcp_sk(sk);
6687e988 469 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 470
6687e988 471 icsk->icsk_ack.quick = 0;
1da177e4 472
326f36e9
JH
473 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
474 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 475 !tcp_under_memory_pressure(sk) &&
180d8cd9 476 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
477 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
478 sysctl_tcp_rmem[2]);
1da177e4 479 }
326f36e9 480 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 481 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
482}
483
40efc6fa
SH
484/* Initialize RCV_MSS value.
485 * RCV_MSS is an our guess about MSS used by the peer.
486 * We haven't any direct information about the MSS.
487 * It's better to underestimate the RCV_MSS rather than overestimate.
488 * Overestimations make us ACKing less frequently than needed.
489 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
490 */
491void tcp_initialize_rcv_mss(struct sock *sk)
492{
cf533ea5 493 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
494 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
495
056834d9 496 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 497 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
498 hint = max(hint, TCP_MIN_MSS);
499
500 inet_csk(sk)->icsk_ack.rcv_mss = hint;
501}
4bc2f18b 502EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 503
1da177e4
LT
504/* Receiver "autotuning" code.
505 *
506 * The algorithm for RTT estimation w/o timestamps is based on
507 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 508 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
509 *
510 * More detail on this code can be found at
631dd1a8 511 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
512 * though this reference is out of date. A new paper
513 * is pending.
514 */
515static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
516{
517 u32 new_sample = tp->rcv_rtt_est.rtt;
518 long m = sample;
519
520 if (m == 0)
521 m = 1;
522
523 if (new_sample != 0) {
524 /* If we sample in larger samples in the non-timestamp
525 * case, we could grossly overestimate the RTT especially
526 * with chatty applications or bulk transfer apps which
527 * are stalled on filesystem I/O.
528 *
529 * Also, since we are only going for a minimum in the
31f34269 530 * non-timestamp case, we do not smooth things out
caa20d9a 531 * else with timestamps disabled convergence takes too
1da177e4
LT
532 * long.
533 */
534 if (!win_dep) {
535 m -= (new_sample >> 3);
536 new_sample += m;
18a223e0
NC
537 } else {
538 m <<= 3;
539 if (m < new_sample)
540 new_sample = m;
541 }
1da177e4 542 } else {
caa20d9a 543 /* No previous measure. */
1da177e4
LT
544 new_sample = m << 3;
545 }
546
547 if (tp->rcv_rtt_est.rtt != new_sample)
548 tp->rcv_rtt_est.rtt = new_sample;
549}
550
551static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
552{
553 if (tp->rcv_rtt_est.time == 0)
554 goto new_measure;
555 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
556 return;
651913ce 557 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
558
559new_measure:
560 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
561 tp->rcv_rtt_est.time = tcp_time_stamp;
562}
563
056834d9
IJ
564static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
565 const struct sk_buff *skb)
1da177e4 566{
463c84b9 567 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
568 if (tp->rx_opt.rcv_tsecr &&
569 (TCP_SKB_CB(skb)->end_seq -
463c84b9 570 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
571 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
572}
573
574/*
575 * This function should be called every time data is copied to user space.
576 * It calculates the appropriate TCP receive buffer space.
577 */
578void tcp_rcv_space_adjust(struct sock *sk)
579{
580 struct tcp_sock *tp = tcp_sk(sk);
581 int time;
b0983d3c 582 int copied;
e905a9ed 583
1da177e4 584 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 585 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 586 return;
e905a9ed 587
b0983d3c
ED
588 /* Number of bytes copied to user in last RTT */
589 copied = tp->copied_seq - tp->rcvq_space.seq;
590 if (copied <= tp->rcvq_space.space)
591 goto new_measure;
592
593 /* A bit of theory :
594 * copied = bytes received in previous RTT, our base window
595 * To cope with packet losses, we need a 2x factor
596 * To cope with slow start, and sender growing its cwin by 100 %
597 * every RTT, we need a 4x factor, because the ACK we are sending
598 * now is for the next RTT, not the current one :
599 * <prev RTT . ><current RTT .. ><next RTT .... >
600 */
601
602 if (sysctl_tcp_moderate_rcvbuf &&
603 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
604 int rcvwin, rcvmem, rcvbuf;
1da177e4 605
b0983d3c
ED
606 /* minimal window to cope with packet losses, assuming
607 * steady state. Add some cushion because of small variations.
608 */
609 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 610
b0983d3c
ED
611 /* If rate increased by 25%,
612 * assume slow start, rcvwin = 3 * copied
613 * If rate increased by 50%,
614 * assume sender can use 2x growth, rcvwin = 4 * copied
615 */
616 if (copied >=
617 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
618 if (copied >=
619 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
620 rcvwin <<= 1;
621 else
622 rcvwin += (rcvwin >> 1);
623 }
1da177e4 624
b0983d3c
ED
625 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
626 while (tcp_win_from_space(rcvmem) < tp->advmss)
627 rcvmem += 128;
1da177e4 628
b0983d3c
ED
629 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
630 if (rcvbuf > sk->sk_rcvbuf) {
631 sk->sk_rcvbuf = rcvbuf;
1da177e4 632
b0983d3c
ED
633 /* Make the window clamp follow along. */
634 tp->window_clamp = rcvwin;
1da177e4
LT
635 }
636 }
b0983d3c 637 tp->rcvq_space.space = copied;
e905a9ed 638
1da177e4
LT
639new_measure:
640 tp->rcvq_space.seq = tp->copied_seq;
641 tp->rcvq_space.time = tcp_time_stamp;
642}
643
644/* There is something which you must keep in mind when you analyze the
645 * behavior of the tp->ato delayed ack timeout interval. When a
646 * connection starts up, we want to ack as quickly as possible. The
647 * problem is that "good" TCP's do slow start at the beginning of data
648 * transmission. The means that until we send the first few ACK's the
649 * sender will sit on his end and only queue most of his data, because
650 * he can only send snd_cwnd unacked packets at any given time. For
651 * each ACK we send, he increments snd_cwnd and transmits more of his
652 * queue. -DaveM
653 */
9e412ba7 654static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 655{
9e412ba7 656 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 657 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
658 u32 now;
659
463c84b9 660 inet_csk_schedule_ack(sk);
1da177e4 661
463c84b9 662 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
663
664 tcp_rcv_rtt_measure(tp);
e905a9ed 665
1da177e4
LT
666 now = tcp_time_stamp;
667
463c84b9 668 if (!icsk->icsk_ack.ato) {
1da177e4
LT
669 /* The _first_ data packet received, initialize
670 * delayed ACK engine.
671 */
463c84b9
ACM
672 tcp_incr_quickack(sk);
673 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 674 } else {
463c84b9 675 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 676
056834d9 677 if (m <= TCP_ATO_MIN / 2) {
1da177e4 678 /* The fastest case is the first. */
463c84b9
ACM
679 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
680 } else if (m < icsk->icsk_ack.ato) {
681 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
682 if (icsk->icsk_ack.ato > icsk->icsk_rto)
683 icsk->icsk_ack.ato = icsk->icsk_rto;
684 } else if (m > icsk->icsk_rto) {
caa20d9a 685 /* Too long gap. Apparently sender failed to
1da177e4
LT
686 * restart window, so that we send ACKs quickly.
687 */
463c84b9 688 tcp_incr_quickack(sk);
3ab224be 689 sk_mem_reclaim(sk);
1da177e4
LT
690 }
691 }
463c84b9 692 icsk->icsk_ack.lrcvtime = now;
1da177e4 693
735d3831 694 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
695
696 if (skb->len >= 128)
9e412ba7 697 tcp_grow_window(sk, skb);
1da177e4
LT
698}
699
1da177e4
LT
700/* Called to compute a smoothed rtt estimate. The data fed to this
701 * routine either comes from timestamps, or from segments that were
702 * known _not_ to have been retransmitted [see Karn/Partridge
703 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
704 * piece by Van Jacobson.
705 * NOTE: the next three routines used to be one big routine.
706 * To save cycles in the RFC 1323 implementation it was better to break
707 * it up into three procedures. -- erics
708 */
740b0f18 709static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 710{
6687e988 711 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
712 long m = mrtt_us; /* RTT */
713 u32 srtt = tp->srtt_us;
1da177e4 714
1da177e4
LT
715 /* The following amusing code comes from Jacobson's
716 * article in SIGCOMM '88. Note that rtt and mdev
717 * are scaled versions of rtt and mean deviation.
e905a9ed 718 * This is designed to be as fast as possible
1da177e4
LT
719 * m stands for "measurement".
720 *
721 * On a 1990 paper the rto value is changed to:
722 * RTO = rtt + 4 * mdev
723 *
724 * Funny. This algorithm seems to be very broken.
725 * These formulae increase RTO, when it should be decreased, increase
31f34269 726 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
727 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
728 * does not matter how to _calculate_ it. Seems, it was trap
729 * that VJ failed to avoid. 8)
730 */
4a5ab4e2
ED
731 if (srtt != 0) {
732 m -= (srtt >> 3); /* m is now error in rtt est */
733 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
734 if (m < 0) {
735 m = -m; /* m is now abs(error) */
740b0f18 736 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
737 /* This is similar to one of Eifel findings.
738 * Eifel blocks mdev updates when rtt decreases.
739 * This solution is a bit different: we use finer gain
740 * for mdev in this case (alpha*beta).
741 * Like Eifel it also prevents growth of rto,
742 * but also it limits too fast rto decreases,
743 * happening in pure Eifel.
744 */
745 if (m > 0)
746 m >>= 3;
747 } else {
740b0f18 748 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 749 }
740b0f18
ED
750 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
751 if (tp->mdev_us > tp->mdev_max_us) {
752 tp->mdev_max_us = tp->mdev_us;
753 if (tp->mdev_max_us > tp->rttvar_us)
754 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
755 }
756 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
757 if (tp->mdev_max_us < tp->rttvar_us)
758 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 759 tp->rtt_seq = tp->snd_nxt;
740b0f18 760 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
761 }
762 } else {
763 /* no previous measure. */
4a5ab4e2 764 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
765 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
766 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
767 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
768 tp->rtt_seq = tp->snd_nxt;
769 }
740b0f18 770 tp->srtt_us = max(1U, srtt);
1da177e4
LT
771}
772
95bd09eb
ED
773/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
774 * Note: TCP stack does not yet implement pacing.
775 * FQ packet scheduler can be used to implement cheap but effective
776 * TCP pacing, to smooth the burst on large writes when packets
777 * in flight is significantly lower than cwnd (or rwin)
778 */
43e122b0
ED
779int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
780int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
781
95bd09eb
ED
782static void tcp_update_pacing_rate(struct sock *sk)
783{
784 const struct tcp_sock *tp = tcp_sk(sk);
785 u64 rate;
786
787 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
788 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
789
790 /* current rate is (cwnd * mss) / srtt
791 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
792 * In Congestion Avoidance phase, set it to 120 % the current rate.
793 *
794 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
795 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
796 * end of slow start and should slow down.
797 */
798 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
799 rate *= sysctl_tcp_pacing_ss_ratio;
800 else
801 rate *= sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
802
803 rate *= max(tp->snd_cwnd, tp->packets_out);
804
740b0f18
ED
805 if (likely(tp->srtt_us))
806 do_div(rate, tp->srtt_us);
95bd09eb 807
ba537427
ED
808 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
809 * without any lock. We want to make sure compiler wont store
810 * intermediate values in this location.
811 */
812 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
813 sk->sk_max_pacing_rate);
95bd09eb
ED
814}
815
1da177e4
LT
816/* Calculate rto without backoff. This is the second half of Van Jacobson's
817 * routine referred to above.
818 */
f7e56a76 819static void tcp_set_rto(struct sock *sk)
1da177e4 820{
463c84b9 821 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
822 /* Old crap is replaced with new one. 8)
823 *
824 * More seriously:
825 * 1. If rtt variance happened to be less 50msec, it is hallucination.
826 * It cannot be less due to utterly erratic ACK generation made
827 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
828 * to do with delayed acks, because at cwnd>2 true delack timeout
829 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 830 * ACKs in some circumstances.
1da177e4 831 */
f1ecd5d9 832 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
833
834 /* 2. Fixups made earlier cannot be right.
835 * If we do not estimate RTO correctly without them,
836 * all the algo is pure shit and should be replaced
caa20d9a 837 * with correct one. It is exactly, which we pretend to do.
1da177e4 838 */
1da177e4 839
ee6aac59
IJ
840 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
841 * guarantees that rto is higher.
842 */
f1ecd5d9 843 tcp_bound_rto(sk);
1da177e4
LT
844}
845
cf533ea5 846__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
847{
848 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
849
22b71c8f 850 if (!cwnd)
442b9635 851 cwnd = TCP_INIT_CWND;
1da177e4
LT
852 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
853}
854
e60402d0
IJ
855/*
856 * Packet counting of FACK is based on in-order assumptions, therefore TCP
857 * disables it when reordering is detected
858 */
4aabd8ef 859void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 860{
85cc391c
IJ
861 /* RFC3517 uses different metric in lost marker => reset on change */
862 if (tcp_is_fack(tp))
863 tp->lost_skb_hint = NULL;
ab56222a 864 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
865}
866
564262c1 867/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
868static void tcp_dsack_seen(struct tcp_sock *tp)
869{
ab56222a 870 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
871}
872
6687e988
ACM
873static void tcp_update_reordering(struct sock *sk, const int metric,
874 const int ts)
1da177e4 875{
6687e988 876 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 877 if (metric > tp->reordering) {
40b215e5
PE
878 int mib_idx;
879
dca145ff 880 tp->reordering = min(sysctl_tcp_max_reordering, metric);
1da177e4
LT
881
882 /* This exciting event is worth to be remembered. 8) */
883 if (ts)
40b215e5 884 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 885 else if (tcp_is_reno(tp))
40b215e5 886 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 887 else if (tcp_is_fack(tp))
40b215e5 888 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 889 else
40b215e5
PE
890 mib_idx = LINUX_MIB_TCPSACKREORDER;
891
c10d9310 892 NET_INC_STATS(sock_net(sk), mib_idx);
1da177e4 893#if FASTRETRANS_DEBUG > 1
91df42be
JP
894 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
895 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
896 tp->reordering,
897 tp->fackets_out,
898 tp->sacked_out,
899 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 900#endif
e60402d0 901 tcp_disable_fack(tp);
1da177e4 902 }
eed530b6 903
4f41b1c5 904 tp->rack.reord = 1;
1da177e4
LT
905}
906
006f582c 907/* This must be called before lost_out is incremented */
c8c213f2
IJ
908static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
909{
51456b29 910 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
911 before(TCP_SKB_CB(skb)->seq,
912 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c 913 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
914}
915
0682e690
NC
916/* Sum the number of packets on the wire we have marked as lost.
917 * There are two cases we care about here:
918 * a) Packet hasn't been marked lost (nor retransmitted),
919 * and this is the first loss.
920 * b) Packet has been marked both lost and retransmitted,
921 * and this means we think it was lost again.
922 */
923static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
924{
925 __u8 sacked = TCP_SKB_CB(skb)->sacked;
926
927 if (!(sacked & TCPCB_LOST) ||
928 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
929 tp->lost += tcp_skb_pcount(skb);
930}
931
41ea36e3
IJ
932static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
933{
934 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
935 tcp_verify_retransmit_hint(tp, skb);
936
937 tp->lost_out += tcp_skb_pcount(skb);
0682e690 938 tcp_sum_lost(tp, skb);
41ea36e3
IJ
939 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
940 }
941}
942
4f41b1c5 943void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
944{
945 tcp_verify_retransmit_hint(tp, skb);
946
0682e690 947 tcp_sum_lost(tp, skb);
006f582c
IJ
948 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
949 tp->lost_out += tcp_skb_pcount(skb);
950 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
951 }
952}
953
1da177e4
LT
954/* This procedure tags the retransmission queue when SACKs arrive.
955 *
956 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
957 * Packets in queue with these bits set are counted in variables
958 * sacked_out, retrans_out and lost_out, correspondingly.
959 *
960 * Valid combinations are:
961 * Tag InFlight Description
962 * 0 1 - orig segment is in flight.
963 * S 0 - nothing flies, orig reached receiver.
964 * L 0 - nothing flies, orig lost by net.
965 * R 2 - both orig and retransmit are in flight.
966 * L|R 1 - orig is lost, retransmit is in flight.
967 * S|R 1 - orig reached receiver, retrans is still in flight.
968 * (L|S|R is logically valid, it could occur when L|R is sacked,
969 * but it is equivalent to plain S and code short-curcuits it to S.
970 * L|S is logically invalid, it would mean -1 packet in flight 8))
971 *
972 * These 6 states form finite state machine, controlled by the following events:
973 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
974 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 975 * 3. Loss detection event of two flavors:
1da177e4
LT
976 * A. Scoreboard estimator decided the packet is lost.
977 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
978 * A''. Its FACK modification, head until snd.fack is lost.
979 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
980 * segment was retransmitted.
981 * 4. D-SACK added new rule: D-SACK changes any tag to S.
982 *
983 * It is pleasant to note, that state diagram turns out to be commutative,
984 * so that we are allowed not to be bothered by order of our actions,
985 * when multiple events arrive simultaneously. (see the function below).
986 *
987 * Reordering detection.
988 * --------------------
989 * Reordering metric is maximal distance, which a packet can be displaced
990 * in packet stream. With SACKs we can estimate it:
991 *
992 * 1. SACK fills old hole and the corresponding segment was not
993 * ever retransmitted -> reordering. Alas, we cannot use it
994 * when segment was retransmitted.
995 * 2. The last flaw is solved with D-SACK. D-SACK arrives
996 * for retransmitted and already SACKed segment -> reordering..
997 * Both of these heuristics are not used in Loss state, when we cannot
998 * account for retransmits accurately.
5b3c9882
IJ
999 *
1000 * SACK block validation.
1001 * ----------------------
1002 *
1003 * SACK block range validation checks that the received SACK block fits to
1004 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1005 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1006 * it means that the receiver is rather inconsistent with itself reporting
1007 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1008 * perfectly valid, however, in light of RFC2018 which explicitly states
1009 * that "SACK block MUST reflect the newest segment. Even if the newest
1010 * segment is going to be discarded ...", not that it looks very clever
1011 * in case of head skb. Due to potentional receiver driven attacks, we
1012 * choose to avoid immediate execution of a walk in write queue due to
1013 * reneging and defer head skb's loss recovery to standard loss recovery
1014 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1015 *
1016 * Implements also blockage to start_seq wrap-around. Problem lies in the
1017 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1018 * there's no guarantee that it will be before snd_nxt (n). The problem
1019 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1020 * wrap (s_w):
1021 *
1022 * <- outs wnd -> <- wrapzone ->
1023 * u e n u_w e_w s n_w
1024 * | | | | | | |
1025 * |<------------+------+----- TCP seqno space --------------+---------->|
1026 * ...-- <2^31 ->| |<--------...
1027 * ...---- >2^31 ------>| |<--------...
1028 *
1029 * Current code wouldn't be vulnerable but it's better still to discard such
1030 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1031 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1032 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1033 * equal to the ideal case (infinite seqno space without wrap caused issues).
1034 *
1035 * With D-SACK the lower bound is extended to cover sequence space below
1036 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1037 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1038 * for the normal SACK blocks, explained above). But there all simplicity
1039 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1040 * fully below undo_marker they do not affect behavior in anyway and can
1041 * therefore be safely ignored. In rare cases (which are more or less
1042 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1043 * fragmentation and packet reordering past skb's retransmission. To consider
1044 * them correctly, the acceptable range must be extended even more though
1045 * the exact amount is rather hard to quantify. However, tp->max_window can
1046 * be used as an exaggerated estimate.
1da177e4 1047 */
a2a385d6
ED
1048static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1049 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1050{
1051 /* Too far in future, or reversed (interpretation is ambiguous) */
1052 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1053 return false;
5b3c9882
IJ
1054
1055 /* Nasty start_seq wrap-around check (see comments above) */
1056 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1057 return false;
5b3c9882 1058
564262c1 1059 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1060 * start_seq == snd_una is non-sensical (see comments above)
1061 */
1062 if (after(start_seq, tp->snd_una))
a2a385d6 1063 return true;
5b3c9882
IJ
1064
1065 if (!is_dsack || !tp->undo_marker)
a2a385d6 1066 return false;
5b3c9882
IJ
1067
1068 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1069 if (after(end_seq, tp->snd_una))
a2a385d6 1070 return false;
5b3c9882
IJ
1071
1072 if (!before(start_seq, tp->undo_marker))
a2a385d6 1073 return true;
5b3c9882
IJ
1074
1075 /* Too old */
1076 if (!after(end_seq, tp->undo_marker))
a2a385d6 1077 return false;
5b3c9882
IJ
1078
1079 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1080 * start_seq < undo_marker and end_seq >= undo_marker.
1081 */
1082 return !before(start_seq, end_seq - tp->max_window);
1083}
1084
a2a385d6
ED
1085static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1086 struct tcp_sack_block_wire *sp, int num_sacks,
1087 u32 prior_snd_una)
d06e021d 1088{
1ed83465 1089 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1090 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1091 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1092 bool dup_sack = false;
d06e021d
DM
1093
1094 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1095 dup_sack = true;
e60402d0 1096 tcp_dsack_seen(tp);
c10d9310 1097 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1098 } else if (num_sacks > 1) {
d3e2ce3b
HH
1099 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1100 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1101
1102 if (!after(end_seq_0, end_seq_1) &&
1103 !before(start_seq_0, start_seq_1)) {
a2a385d6 1104 dup_sack = true;
e60402d0 1105 tcp_dsack_seen(tp);
c10d9310 1106 NET_INC_STATS(sock_net(sk),
de0744af 1107 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1108 }
1109 }
1110
1111 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1112 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1113 !after(end_seq_0, prior_snd_una) &&
1114 after(end_seq_0, tp->undo_marker))
1115 tp->undo_retrans--;
1116
1117 return dup_sack;
1118}
1119
a1197f5a 1120struct tcp_sacktag_state {
740b0f18
ED
1121 int reord;
1122 int fack_count;
31231a8a
KKJ
1123 /* Timestamps for earliest and latest never-retransmitted segment
1124 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1125 * but congestion control should still get an accurate delay signal.
1126 */
1127 struct skb_mstamp first_sackt;
1128 struct skb_mstamp last_sackt;
deed7be7 1129 struct skb_mstamp ack_time; /* Timestamp when the S/ACK was received */
b9f64820 1130 struct rate_sample *rate;
740b0f18 1131 int flag;
a1197f5a
IJ
1132};
1133
d1935942
IJ
1134/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1135 * the incoming SACK may not exactly match but we can find smaller MSS
1136 * aligned portion of it that matches. Therefore we might need to fragment
1137 * which may fail and creates some hassle (caller must handle error case
1138 * returns).
832d11c5
IJ
1139 *
1140 * FIXME: this could be merged to shift decision code
d1935942 1141 */
0f79efdc 1142static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1143 u32 start_seq, u32 end_seq)
d1935942 1144{
a2a385d6
ED
1145 int err;
1146 bool in_sack;
d1935942 1147 unsigned int pkt_len;
adb92db8 1148 unsigned int mss;
d1935942
IJ
1149
1150 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1151 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1152
1153 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1154 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1155 mss = tcp_skb_mss(skb);
d1935942
IJ
1156 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1157
adb92db8 1158 if (!in_sack) {
d1935942 1159 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1160 if (pkt_len < mss)
1161 pkt_len = mss;
1162 } else {
d1935942 1163 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1164 if (pkt_len < mss)
1165 return -EINVAL;
1166 }
1167
1168 /* Round if necessary so that SACKs cover only full MSSes
1169 * and/or the remaining small portion (if present)
1170 */
1171 if (pkt_len > mss) {
1172 unsigned int new_len = (pkt_len / mss) * mss;
1173 if (!in_sack && new_len < pkt_len) {
1174 new_len += mss;
2cd0d743 1175 if (new_len >= skb->len)
adb92db8
IJ
1176 return 0;
1177 }
1178 pkt_len = new_len;
1179 }
6cc55e09 1180 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1181 if (err < 0)
1182 return err;
1183 }
1184
1185 return in_sack;
1186}
1187
cc9a672e
NC
1188/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1189static u8 tcp_sacktag_one(struct sock *sk,
1190 struct tcp_sacktag_state *state, u8 sacked,
1191 u32 start_seq, u32 end_seq,
740b0f18
ED
1192 int dup_sack, int pcount,
1193 const struct skb_mstamp *xmit_time)
9e10c47c 1194{
6859d494 1195 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1196 int fack_count = state->fack_count;
9e10c47c
IJ
1197
1198 /* Account D-SACK for retransmitted packet. */
1199 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1200 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1201 after(end_seq, tp->undo_marker))
9e10c47c 1202 tp->undo_retrans--;
ede9f3b1 1203 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1204 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1205 }
1206
1207 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1208 if (!after(end_seq, tp->snd_una))
a1197f5a 1209 return sacked;
9e10c47c
IJ
1210
1211 if (!(sacked & TCPCB_SACKED_ACKED)) {
1d0833df
YC
1212 tcp_rack_advance(tp, sacked, end_seq,
1213 xmit_time, &state->ack_time);
659a8ad5 1214
9e10c47c
IJ
1215 if (sacked & TCPCB_SACKED_RETRANS) {
1216 /* If the segment is not tagged as lost,
1217 * we do not clear RETRANS, believing
1218 * that retransmission is still in flight.
1219 */
1220 if (sacked & TCPCB_LOST) {
a1197f5a 1221 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1222 tp->lost_out -= pcount;
1223 tp->retrans_out -= pcount;
9e10c47c
IJ
1224 }
1225 } else {
1226 if (!(sacked & TCPCB_RETRANS)) {
1227 /* New sack for not retransmitted frame,
1228 * which was in hole. It is reordering.
1229 */
cc9a672e 1230 if (before(start_seq,
9e10c47c 1231 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1232 state->reord = min(fack_count,
1233 state->reord);
e33099f9
YC
1234 if (!after(end_seq, tp->high_seq))
1235 state->flag |= FLAG_ORIG_SACK_ACKED;
31231a8a
KKJ
1236 if (state->first_sackt.v64 == 0)
1237 state->first_sackt = *xmit_time;
1238 state->last_sackt = *xmit_time;
9e10c47c
IJ
1239 }
1240
1241 if (sacked & TCPCB_LOST) {
a1197f5a 1242 sacked &= ~TCPCB_LOST;
f58b22fd 1243 tp->lost_out -= pcount;
9e10c47c
IJ
1244 }
1245 }
1246
a1197f5a
IJ
1247 sacked |= TCPCB_SACKED_ACKED;
1248 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1249 tp->sacked_out += pcount;
ddf1af6f 1250 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1251
f58b22fd 1252 fack_count += pcount;
9e10c47c
IJ
1253
1254 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
00db4124 1255 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
cc9a672e 1256 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1257 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1258
1259 if (fack_count > tp->fackets_out)
1260 tp->fackets_out = fack_count;
9e10c47c
IJ
1261 }
1262
1263 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1264 * frames and clear it. undo_retrans is decreased above, L|R frames
1265 * are accounted above as well.
1266 */
a1197f5a
IJ
1267 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1268 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1269 tp->retrans_out -= pcount;
9e10c47c
IJ
1270 }
1271
a1197f5a 1272 return sacked;
9e10c47c
IJ
1273}
1274
daef52ba
NC
1275/* Shift newly-SACKed bytes from this skb to the immediately previous
1276 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1277 */
a2a385d6
ED
1278static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1279 struct tcp_sacktag_state *state,
1280 unsigned int pcount, int shifted, int mss,
1281 bool dup_sack)
832d11c5
IJ
1282{
1283 struct tcp_sock *tp = tcp_sk(sk);
50133161 1284 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1285 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1286 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1287
1288 BUG_ON(!pcount);
1289
4c90d3b3
NC
1290 /* Adjust counters and hints for the newly sacked sequence
1291 * range but discard the return value since prev is already
1292 * marked. We must tag the range first because the seq
1293 * advancement below implicitly advances
1294 * tcp_highest_sack_seq() when skb is highest_sack.
1295 */
1296 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1297 start_seq, end_seq, dup_sack, pcount,
740b0f18 1298 &skb->skb_mstamp);
b9f64820 1299 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1300
1301 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1302 tp->lost_cnt_hint += pcount;
1303
832d11c5
IJ
1304 TCP_SKB_CB(prev)->end_seq += shifted;
1305 TCP_SKB_CB(skb)->seq += shifted;
1306
cd7d8498
ED
1307 tcp_skb_pcount_add(prev, pcount);
1308 BUG_ON(tcp_skb_pcount(skb) < pcount);
1309 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1310
1311 /* When we're adding to gso_segs == 1, gso_size will be zero,
1312 * in theory this shouldn't be necessary but as long as DSACK
1313 * code can come after this skb later on it's better to keep
1314 * setting gso_size to something.
1315 */
f69ad292
ED
1316 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1317 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1318
1319 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1320 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1321 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1322
832d11c5
IJ
1323 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1324 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1325
832d11c5
IJ
1326 if (skb->len > 0) {
1327 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1328 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1329 return false;
832d11c5
IJ
1330 }
1331
1332 /* Whole SKB was eaten :-) */
1333
92ee76b6
IJ
1334 if (skb == tp->retransmit_skb_hint)
1335 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1336 if (skb == tp->lost_skb_hint) {
1337 tp->lost_skb_hint = prev;
1338 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1339 }
1340
5e8a402f 1341 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1342 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1343 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1344 TCP_SKB_CB(prev)->end_seq++;
1345
832d11c5
IJ
1346 if (skb == tcp_highest_sack(sk))
1347 tcp_advance_highest_sack(sk, skb);
1348
cfea5a68 1349 tcp_skb_collapse_tstamp(prev, skb);
b9f64820
YC
1350 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1351 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1352
832d11c5
IJ
1353 tcp_unlink_write_queue(skb, sk);
1354 sk_wmem_free_skb(sk, skb);
1355
c10d9310 1356 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1357
a2a385d6 1358 return true;
832d11c5
IJ
1359}
1360
1361/* I wish gso_size would have a bit more sane initialization than
1362 * something-or-zero which complicates things
1363 */
cf533ea5 1364static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1365{
775ffabf 1366 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1367}
1368
1369/* Shifting pages past head area doesn't work */
cf533ea5 1370static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1371{
1372 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1373}
1374
1375/* Try collapsing SACK blocks spanning across multiple skbs to a single
1376 * skb.
1377 */
1378static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1379 struct tcp_sacktag_state *state,
832d11c5 1380 u32 start_seq, u32 end_seq,
a2a385d6 1381 bool dup_sack)
832d11c5
IJ
1382{
1383 struct tcp_sock *tp = tcp_sk(sk);
1384 struct sk_buff *prev;
1385 int mss;
1386 int pcount = 0;
1387 int len;
1388 int in_sack;
1389
1390 if (!sk_can_gso(sk))
1391 goto fallback;
1392
1393 /* Normally R but no L won't result in plain S */
1394 if (!dup_sack &&
9969ca5f 1395 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1396 goto fallback;
1397 if (!skb_can_shift(skb))
1398 goto fallback;
1399 /* This frame is about to be dropped (was ACKed). */
1400 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1401 goto fallback;
1402
1403 /* Can only happen with delayed DSACK + discard craziness */
1404 if (unlikely(skb == tcp_write_queue_head(sk)))
1405 goto fallback;
1406 prev = tcp_write_queue_prev(sk, skb);
1407
1408 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1409 goto fallback;
1410
a643b5d4
MKL
1411 if (!tcp_skb_can_collapse_to(prev))
1412 goto fallback;
1413
832d11c5
IJ
1414 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1415 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1416
1417 if (in_sack) {
1418 len = skb->len;
1419 pcount = tcp_skb_pcount(skb);
775ffabf 1420 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1421
1422 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1423 * drop this restriction as unnecessary
1424 */
775ffabf 1425 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1426 goto fallback;
1427 } else {
1428 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1429 goto noop;
1430 /* CHECKME: This is non-MSS split case only?, this will
1431 * cause skipped skbs due to advancing loop btw, original
1432 * has that feature too
1433 */
1434 if (tcp_skb_pcount(skb) <= 1)
1435 goto noop;
1436
1437 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1438 if (!in_sack) {
1439 /* TODO: head merge to next could be attempted here
1440 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1441 * though it might not be worth of the additional hassle
1442 *
1443 * ...we can probably just fallback to what was done
1444 * previously. We could try merging non-SACKed ones
1445 * as well but it probably isn't going to buy off
1446 * because later SACKs might again split them, and
1447 * it would make skb timestamp tracking considerably
1448 * harder problem.
1449 */
1450 goto fallback;
1451 }
1452
1453 len = end_seq - TCP_SKB_CB(skb)->seq;
1454 BUG_ON(len < 0);
1455 BUG_ON(len > skb->len);
1456
1457 /* MSS boundaries should be honoured or else pcount will
1458 * severely break even though it makes things bit trickier.
1459 * Optimize common case to avoid most of the divides
1460 */
1461 mss = tcp_skb_mss(skb);
1462
1463 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1464 * drop this restriction as unnecessary
1465 */
775ffabf 1466 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1467 goto fallback;
1468
1469 if (len == mss) {
1470 pcount = 1;
1471 } else if (len < mss) {
1472 goto noop;
1473 } else {
1474 pcount = len / mss;
1475 len = pcount * mss;
1476 }
1477 }
1478
4648dc97
NC
1479 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1480 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1481 goto fallback;
1482
832d11c5
IJ
1483 if (!skb_shift(prev, skb, len))
1484 goto fallback;
9ec06ff5 1485 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1486 goto out;
1487
1488 /* Hole filled allows collapsing with the next as well, this is very
1489 * useful when hole on every nth skb pattern happens
1490 */
1491 if (prev == tcp_write_queue_tail(sk))
1492 goto out;
1493 skb = tcp_write_queue_next(sk, prev);
1494
f0bc52f3
IJ
1495 if (!skb_can_shift(skb) ||
1496 (skb == tcp_send_head(sk)) ||
1497 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1498 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1499 goto out;
1500
1501 len = skb->len;
1502 if (skb_shift(prev, skb, len)) {
1503 pcount += tcp_skb_pcount(skb);
9ec06ff5 1504 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1505 }
1506
1507out:
a1197f5a 1508 state->fack_count += pcount;
832d11c5
IJ
1509 return prev;
1510
1511noop:
1512 return skb;
1513
1514fallback:
c10d9310 1515 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1516 return NULL;
1517}
1518
68f8353b
IJ
1519static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1520 struct tcp_sack_block *next_dup,
a1197f5a 1521 struct tcp_sacktag_state *state,
68f8353b 1522 u32 start_seq, u32 end_seq,
a2a385d6 1523 bool dup_sack_in)
68f8353b 1524{
832d11c5
IJ
1525 struct tcp_sock *tp = tcp_sk(sk);
1526 struct sk_buff *tmp;
1527
68f8353b
IJ
1528 tcp_for_write_queue_from(skb, sk) {
1529 int in_sack = 0;
a2a385d6 1530 bool dup_sack = dup_sack_in;
68f8353b
IJ
1531
1532 if (skb == tcp_send_head(sk))
1533 break;
1534
1535 /* queue is in-order => we can short-circuit the walk early */
1536 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1537 break;
1538
00db4124 1539 if (next_dup &&
68f8353b
IJ
1540 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1541 in_sack = tcp_match_skb_to_sack(sk, skb,
1542 next_dup->start_seq,
1543 next_dup->end_seq);
1544 if (in_sack > 0)
a2a385d6 1545 dup_sack = true;
68f8353b
IJ
1546 }
1547
832d11c5
IJ
1548 /* skb reference here is a bit tricky to get right, since
1549 * shifting can eat and free both this skb and the next,
1550 * so not even _safe variant of the loop is enough.
1551 */
1552 if (in_sack <= 0) {
a1197f5a
IJ
1553 tmp = tcp_shift_skb_data(sk, skb, state,
1554 start_seq, end_seq, dup_sack);
00db4124 1555 if (tmp) {
832d11c5
IJ
1556 if (tmp != skb) {
1557 skb = tmp;
1558 continue;
1559 }
1560
1561 in_sack = 0;
1562 } else {
1563 in_sack = tcp_match_skb_to_sack(sk, skb,
1564 start_seq,
1565 end_seq);
1566 }
1567 }
1568
68f8353b
IJ
1569 if (unlikely(in_sack < 0))
1570 break;
1571
832d11c5 1572 if (in_sack) {
cc9a672e
NC
1573 TCP_SKB_CB(skb)->sacked =
1574 tcp_sacktag_one(sk,
1575 state,
1576 TCP_SKB_CB(skb)->sacked,
1577 TCP_SKB_CB(skb)->seq,
1578 TCP_SKB_CB(skb)->end_seq,
1579 dup_sack,
59c9af42 1580 tcp_skb_pcount(skb),
740b0f18 1581 &skb->skb_mstamp);
b9f64820 1582 tcp_rate_skb_delivered(sk, skb, state->rate);
68f8353b 1583
832d11c5
IJ
1584 if (!before(TCP_SKB_CB(skb)->seq,
1585 tcp_highest_sack_seq(tp)))
1586 tcp_advance_highest_sack(sk, skb);
1587 }
1588
a1197f5a 1589 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1590 }
1591 return skb;
1592}
1593
1594/* Avoid all extra work that is being done by sacktag while walking in
1595 * a normal way
1596 */
1597static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1598 struct tcp_sacktag_state *state,
1599 u32 skip_to_seq)
68f8353b
IJ
1600{
1601 tcp_for_write_queue_from(skb, sk) {
1602 if (skb == tcp_send_head(sk))
1603 break;
1604
e8bae275 1605 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1606 break;
d152a7d8 1607
a1197f5a 1608 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1609 }
1610 return skb;
1611}
1612
1613static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1614 struct sock *sk,
1615 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1616 struct tcp_sacktag_state *state,
1617 u32 skip_to_seq)
68f8353b 1618{
51456b29 1619 if (!next_dup)
68f8353b
IJ
1620 return skb;
1621
1622 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1623 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1624 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1625 next_dup->start_seq, next_dup->end_seq,
1626 1);
68f8353b
IJ
1627 }
1628
1629 return skb;
1630}
1631
cf533ea5 1632static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1633{
1634 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1635}
1636
1da177e4 1637static int
cf533ea5 1638tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1639 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1640{
1641 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1642 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1643 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1644 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1645 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1646 struct tcp_sack_block *cache;
1647 struct sk_buff *skb;
4389dded 1648 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1649 int used_sacks;
a2a385d6 1650 bool found_dup_sack = false;
68f8353b 1651 int i, j;
fda03fbb 1652 int first_sack_index;
1da177e4 1653
196da974
KKJ
1654 state->flag = 0;
1655 state->reord = tp->packets_out;
a1197f5a 1656
d738cd8f 1657 if (!tp->sacked_out) {
de83c058
IJ
1658 if (WARN_ON(tp->fackets_out))
1659 tp->fackets_out = 0;
6859d494 1660 tcp_highest_sack_reset(sk);
d738cd8f 1661 }
1da177e4 1662
1ed83465 1663 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1664 num_sacks, prior_snd_una);
b9f64820 1665 if (found_dup_sack) {
196da974 1666 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1667 tp->delivered++; /* A spurious retransmission is delivered */
1668 }
6f74651a
BE
1669
1670 /* Eliminate too old ACKs, but take into
1671 * account more or less fresh ones, they can
1672 * contain valid SACK info.
1673 */
1674 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1675 return 0;
1676