]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/ipv4/tcp_input.c
tcp: track the packet timings in RACK
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
83int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
dca145ff 84int sysctl_tcp_max_reordering __read_mostly = 300;
4bc2f18b 85EXPORT_SYMBOL(sysctl_tcp_reordering);
ab32ea5d
BH
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 88int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 90
282f23c6
ED
91/* rfc5961 challenge ack rate limiting */
92int sysctl_tcp_challenge_ack_limit = 100;
93
ab32ea5d
BH
94int sysctl_tcp_stdurg __read_mostly;
95int sysctl_tcp_rfc1337 __read_mostly;
96int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 97int sysctl_tcp_frto __read_mostly = 2;
f6722583 98int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
1da177e4 99
7e380175
AP
100int sysctl_tcp_thin_dupack __read_mostly;
101
ab32ea5d 102int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 103int sysctl_tcp_early_retrans __read_mostly = 3;
032ee423 104int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
1da177e4 105
1da177e4
LT
106#define FLAG_DATA 0x01 /* Incoming frame contained data. */
107#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111#define FLAG_DATA_SACKED 0x20 /* New SACK. */
112#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 113#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
1da177e4 114#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 115#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 116#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 117#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 118#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 119#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
120
121#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
122#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
123#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
124#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
125
1da177e4 126#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 127#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 128
e905a9ed 129/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 130 * real world.
e905a9ed 131 */
056834d9 132static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 133{
463c84b9 134 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 135 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 136 unsigned int len;
1da177e4 137
e905a9ed 138 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
139
140 /* skb->len may jitter because of SACKs, even if peer
141 * sends good full-sized frames.
142 */
056834d9 143 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
144 if (len >= icsk->icsk_ack.rcv_mss) {
145 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
146 } else {
147 /* Otherwise, we make more careful check taking into account,
148 * that SACKs block is variable.
149 *
150 * "len" is invariant segment length, including TCP header.
151 */
9c70220b 152 len += skb->data - skb_transport_header(skb);
bee7ca9e 153 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
154 /* If PSH is not set, packet should be
155 * full sized, provided peer TCP is not badly broken.
156 * This observation (if it is correct 8)) allows
157 * to handle super-low mtu links fairly.
158 */
159 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 160 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
161 /* Subtract also invariant (if peer is RFC compliant),
162 * tcp header plus fixed timestamp option length.
163 * Resulting "len" is MSS free of SACK jitter.
164 */
463c84b9
ACM
165 len -= tcp_sk(sk)->tcp_header_len;
166 icsk->icsk_ack.last_seg_size = len;
1da177e4 167 if (len == lss) {
463c84b9 168 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
169 return;
170 }
171 }
1ef9696c
AK
172 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 174 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
175 }
176}
177
463c84b9 178static void tcp_incr_quickack(struct sock *sk)
1da177e4 179{
463c84b9 180 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 181 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 182
056834d9
IJ
183 if (quickacks == 0)
184 quickacks = 2;
463c84b9
ACM
185 if (quickacks > icsk->icsk_ack.quick)
186 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
187}
188
1b9f4092 189static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 190{
463c84b9
ACM
191 struct inet_connection_sock *icsk = inet_csk(sk);
192 tcp_incr_quickack(sk);
193 icsk->icsk_ack.pingpong = 0;
194 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
195}
196
197/* Send ACKs quickly, if "quick" count is not exhausted
198 * and the session is not interactive.
199 */
200
2251ae46 201static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 202{
463c84b9 203 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 204 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 205
2251ae46
JM
206 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
207 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
208}
209
735d3831 210static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 211{
056834d9 212 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
213 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
214}
215
735d3831 216static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
217{
218 if (tcp_hdr(skb)->cwr)
219 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220}
221
735d3831 222static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
223{
224 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
225}
226
735d3831 227static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 228{
b82d1bb4 229 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 230 case INET_ECN_NOT_ECT:
bdf1ee5d 231 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
232 * and we already seen ECT on a previous segment,
233 * it is probably a retransmit.
234 */
235 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 236 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
237 break;
238 case INET_ECN_CE:
9890092e
FW
239 if (tcp_ca_needs_ecn((struct sock *)tp))
240 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
241
aae06bf5
ED
242 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
243 /* Better not delay acks, sender can have a very low cwnd */
244 tcp_enter_quickack_mode((struct sock *)tp);
245 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
246 }
9890092e
FW
247 tp->ecn_flags |= TCP_ECN_SEEN;
248 break;
7a269ffa 249 default:
9890092e
FW
250 if (tcp_ca_needs_ecn((struct sock *)tp))
251 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 252 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 253 break;
bdf1ee5d
IJ
254 }
255}
256
735d3831
FW
257static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
258{
259 if (tp->ecn_flags & TCP_ECN_OK)
260 __tcp_ecn_check_ce(tp, skb);
261}
262
263static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 264{
056834d9 265 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
266 tp->ecn_flags &= ~TCP_ECN_OK;
267}
268
735d3831 269static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 270{
056834d9 271 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
272 tp->ecn_flags &= ~TCP_ECN_OK;
273}
274
735d3831 275static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 276{
056834d9 277 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
278 return true;
279 return false;
bdf1ee5d
IJ
280}
281
1da177e4
LT
282/* Buffer size and advertised window tuning.
283 *
284 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
285 */
286
6ae70532 287static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 288{
6ae70532
ED
289 const struct tcp_sock *tp = tcp_sk(sk);
290 int sndmem, per_mss;
291 u32 nr_segs;
292
293 /* Worst case is non GSO/TSO : each frame consumes one skb
294 * and skb->head is kmalloced using power of two area of memory
295 */
296 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
297 MAX_TCP_HEADER +
298 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
299
300 per_mss = roundup_pow_of_two(per_mss) +
301 SKB_DATA_ALIGN(sizeof(struct sk_buff));
302
303 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
304 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
305
306 /* Fast Recovery (RFC 5681 3.2) :
307 * Cubic needs 1.7 factor, rounded to 2 to include
308 * extra cushion (application might react slowly to POLLOUT)
309 */
310 sndmem = 2 * nr_segs * per_mss;
1da177e4 311
06a59ecb
ED
312 if (sk->sk_sndbuf < sndmem)
313 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
314}
315
316/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
317 *
318 * All tcp_full_space() is split to two parts: "network" buffer, allocated
319 * forward and advertised in receiver window (tp->rcv_wnd) and
320 * "application buffer", required to isolate scheduling/application
321 * latencies from network.
322 * window_clamp is maximal advertised window. It can be less than
323 * tcp_full_space(), in this case tcp_full_space() - window_clamp
324 * is reserved for "application" buffer. The less window_clamp is
325 * the smoother our behaviour from viewpoint of network, but the lower
326 * throughput and the higher sensitivity of the connection to losses. 8)
327 *
328 * rcv_ssthresh is more strict window_clamp used at "slow start"
329 * phase to predict further behaviour of this connection.
330 * It is used for two goals:
331 * - to enforce header prediction at sender, even when application
332 * requires some significant "application buffer". It is check #1.
333 * - to prevent pruning of receive queue because of misprediction
334 * of receiver window. Check #2.
335 *
336 * The scheme does not work when sender sends good segments opening
caa20d9a 337 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
338 * in common situations. Otherwise, we have to rely on queue collapsing.
339 */
340
341/* Slow part of check#2. */
9e412ba7 342static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 343{
9e412ba7 344 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 345 /* Optimize this! */
dfd4f0ae
ED
346 int truesize = tcp_win_from_space(skb->truesize) >> 1;
347 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
348
349 while (tp->rcv_ssthresh <= window) {
350 if (truesize <= skb->len)
463c84b9 351 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
352
353 truesize >>= 1;
354 window >>= 1;
355 }
356 return 0;
357}
358
cf533ea5 359static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 360{
9e412ba7
IJ
361 struct tcp_sock *tp = tcp_sk(sk);
362
1da177e4
LT
363 /* Check #1 */
364 if (tp->rcv_ssthresh < tp->window_clamp &&
365 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 366 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
367 int incr;
368
369 /* Check #2. Increase window, if skb with such overhead
370 * will fit to rcvbuf in future.
371 */
372 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 373 incr = 2 * tp->advmss;
1da177e4 374 else
9e412ba7 375 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
376
377 if (incr) {
4d846f02 378 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
379 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
380 tp->window_clamp);
463c84b9 381 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
382 }
383 }
384}
385
386/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
387static void tcp_fixup_rcvbuf(struct sock *sk)
388{
e9266a02 389 u32 mss = tcp_sk(sk)->advmss;
e9266a02 390 int rcvmem;
1da177e4 391
85f16525
YC
392 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
393 tcp_default_init_rwnd(mss);
e9266a02 394
b0983d3c
ED
395 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
396 * Allow enough cushion so that sender is not limited by our window
397 */
398 if (sysctl_tcp_moderate_rcvbuf)
399 rcvmem <<= 2;
400
e9266a02
ED
401 if (sk->sk_rcvbuf < rcvmem)
402 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
403}
404
caa20d9a 405/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
406 * established state.
407 */
10467163 408void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
409{
410 struct tcp_sock *tp = tcp_sk(sk);
411 int maxwin;
412
413 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
414 tcp_fixup_rcvbuf(sk);
415 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 416 tcp_sndbuf_expand(sk);
1da177e4
LT
417
418 tp->rcvq_space.space = tp->rcv_wnd;
b0983d3c
ED
419 tp->rcvq_space.time = tcp_time_stamp;
420 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
421
422 maxwin = tcp_full_space(sk);
423
424 if (tp->window_clamp >= maxwin) {
425 tp->window_clamp = maxwin;
426
427 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
428 tp->window_clamp = max(maxwin -
429 (maxwin >> sysctl_tcp_app_win),
430 4 * tp->advmss);
431 }
432
433 /* Force reservation of one segment. */
434 if (sysctl_tcp_app_win &&
435 tp->window_clamp > 2 * tp->advmss &&
436 tp->window_clamp + tp->advmss > maxwin)
437 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
438
439 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
440 tp->snd_cwnd_stamp = tcp_time_stamp;
441}
442
1da177e4 443/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 444static void tcp_clamp_window(struct sock *sk)
1da177e4 445{
9e412ba7 446 struct tcp_sock *tp = tcp_sk(sk);
6687e988 447 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 448
6687e988 449 icsk->icsk_ack.quick = 0;
1da177e4 450
326f36e9
JH
451 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
452 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 453 !tcp_under_memory_pressure(sk) &&
180d8cd9 454 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
455 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
456 sysctl_tcp_rmem[2]);
1da177e4 457 }
326f36e9 458 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 459 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
460}
461
40efc6fa
SH
462/* Initialize RCV_MSS value.
463 * RCV_MSS is an our guess about MSS used by the peer.
464 * We haven't any direct information about the MSS.
465 * It's better to underestimate the RCV_MSS rather than overestimate.
466 * Overestimations make us ACKing less frequently than needed.
467 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
468 */
469void tcp_initialize_rcv_mss(struct sock *sk)
470{
cf533ea5 471 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
472 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
473
056834d9 474 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 475 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
476 hint = max(hint, TCP_MIN_MSS);
477
478 inet_csk(sk)->icsk_ack.rcv_mss = hint;
479}
4bc2f18b 480EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 481
1da177e4
LT
482/* Receiver "autotuning" code.
483 *
484 * The algorithm for RTT estimation w/o timestamps is based on
485 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 486 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
487 *
488 * More detail on this code can be found at
631dd1a8 489 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
490 * though this reference is out of date. A new paper
491 * is pending.
492 */
493static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
494{
495 u32 new_sample = tp->rcv_rtt_est.rtt;
496 long m = sample;
497
498 if (m == 0)
499 m = 1;
500
501 if (new_sample != 0) {
502 /* If we sample in larger samples in the non-timestamp
503 * case, we could grossly overestimate the RTT especially
504 * with chatty applications or bulk transfer apps which
505 * are stalled on filesystem I/O.
506 *
507 * Also, since we are only going for a minimum in the
31f34269 508 * non-timestamp case, we do not smooth things out
caa20d9a 509 * else with timestamps disabled convergence takes too
1da177e4
LT
510 * long.
511 */
512 if (!win_dep) {
513 m -= (new_sample >> 3);
514 new_sample += m;
18a223e0
NC
515 } else {
516 m <<= 3;
517 if (m < new_sample)
518 new_sample = m;
519 }
1da177e4 520 } else {
caa20d9a 521 /* No previous measure. */
1da177e4
LT
522 new_sample = m << 3;
523 }
524
525 if (tp->rcv_rtt_est.rtt != new_sample)
526 tp->rcv_rtt_est.rtt = new_sample;
527}
528
529static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
530{
531 if (tp->rcv_rtt_est.time == 0)
532 goto new_measure;
533 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
534 return;
651913ce 535 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
536
537new_measure:
538 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
539 tp->rcv_rtt_est.time = tcp_time_stamp;
540}
541
056834d9
IJ
542static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
543 const struct sk_buff *skb)
1da177e4 544{
463c84b9 545 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
546 if (tp->rx_opt.rcv_tsecr &&
547 (TCP_SKB_CB(skb)->end_seq -
463c84b9 548 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
549 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
550}
551
552/*
553 * This function should be called every time data is copied to user space.
554 * It calculates the appropriate TCP receive buffer space.
555 */
556void tcp_rcv_space_adjust(struct sock *sk)
557{
558 struct tcp_sock *tp = tcp_sk(sk);
559 int time;
b0983d3c 560 int copied;
e905a9ed 561
1da177e4 562 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 563 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 564 return;
e905a9ed 565
b0983d3c
ED
566 /* Number of bytes copied to user in last RTT */
567 copied = tp->copied_seq - tp->rcvq_space.seq;
568 if (copied <= tp->rcvq_space.space)
569 goto new_measure;
570
571 /* A bit of theory :
572 * copied = bytes received in previous RTT, our base window
573 * To cope with packet losses, we need a 2x factor
574 * To cope with slow start, and sender growing its cwin by 100 %
575 * every RTT, we need a 4x factor, because the ACK we are sending
576 * now is for the next RTT, not the current one :
577 * <prev RTT . ><current RTT .. ><next RTT .... >
578 */
579
580 if (sysctl_tcp_moderate_rcvbuf &&
581 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
582 int rcvwin, rcvmem, rcvbuf;
1da177e4 583
b0983d3c
ED
584 /* minimal window to cope with packet losses, assuming
585 * steady state. Add some cushion because of small variations.
586 */
587 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 588
b0983d3c
ED
589 /* If rate increased by 25%,
590 * assume slow start, rcvwin = 3 * copied
591 * If rate increased by 50%,
592 * assume sender can use 2x growth, rcvwin = 4 * copied
593 */
594 if (copied >=
595 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
596 if (copied >=
597 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
598 rcvwin <<= 1;
599 else
600 rcvwin += (rcvwin >> 1);
601 }
1da177e4 602
b0983d3c
ED
603 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
604 while (tcp_win_from_space(rcvmem) < tp->advmss)
605 rcvmem += 128;
1da177e4 606
b0983d3c
ED
607 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
608 if (rcvbuf > sk->sk_rcvbuf) {
609 sk->sk_rcvbuf = rcvbuf;
1da177e4 610
b0983d3c
ED
611 /* Make the window clamp follow along. */
612 tp->window_clamp = rcvwin;
1da177e4
LT
613 }
614 }
b0983d3c 615 tp->rcvq_space.space = copied;
e905a9ed 616
1da177e4
LT
617new_measure:
618 tp->rcvq_space.seq = tp->copied_seq;
619 tp->rcvq_space.time = tcp_time_stamp;
620}
621
622/* There is something which you must keep in mind when you analyze the
623 * behavior of the tp->ato delayed ack timeout interval. When a
624 * connection starts up, we want to ack as quickly as possible. The
625 * problem is that "good" TCP's do slow start at the beginning of data
626 * transmission. The means that until we send the first few ACK's the
627 * sender will sit on his end and only queue most of his data, because
628 * he can only send snd_cwnd unacked packets at any given time. For
629 * each ACK we send, he increments snd_cwnd and transmits more of his
630 * queue. -DaveM
631 */
9e412ba7 632static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 633{
9e412ba7 634 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 635 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
636 u32 now;
637
463c84b9 638 inet_csk_schedule_ack(sk);
1da177e4 639
463c84b9 640 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
641
642 tcp_rcv_rtt_measure(tp);
e905a9ed 643
1da177e4
LT
644 now = tcp_time_stamp;
645
463c84b9 646 if (!icsk->icsk_ack.ato) {
1da177e4
LT
647 /* The _first_ data packet received, initialize
648 * delayed ACK engine.
649 */
463c84b9
ACM
650 tcp_incr_quickack(sk);
651 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 652 } else {
463c84b9 653 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 654
056834d9 655 if (m <= TCP_ATO_MIN / 2) {
1da177e4 656 /* The fastest case is the first. */
463c84b9
ACM
657 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
658 } else if (m < icsk->icsk_ack.ato) {
659 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
660 if (icsk->icsk_ack.ato > icsk->icsk_rto)
661 icsk->icsk_ack.ato = icsk->icsk_rto;
662 } else if (m > icsk->icsk_rto) {
caa20d9a 663 /* Too long gap. Apparently sender failed to
1da177e4
LT
664 * restart window, so that we send ACKs quickly.
665 */
463c84b9 666 tcp_incr_quickack(sk);
3ab224be 667 sk_mem_reclaim(sk);
1da177e4
LT
668 }
669 }
463c84b9 670 icsk->icsk_ack.lrcvtime = now;
1da177e4 671
735d3831 672 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
673
674 if (skb->len >= 128)
9e412ba7 675 tcp_grow_window(sk, skb);
1da177e4
LT
676}
677
1da177e4
LT
678/* Called to compute a smoothed rtt estimate. The data fed to this
679 * routine either comes from timestamps, or from segments that were
680 * known _not_ to have been retransmitted [see Karn/Partridge
681 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
682 * piece by Van Jacobson.
683 * NOTE: the next three routines used to be one big routine.
684 * To save cycles in the RFC 1323 implementation it was better to break
685 * it up into three procedures. -- erics
686 */
740b0f18 687static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 688{
6687e988 689 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
690 long m = mrtt_us; /* RTT */
691 u32 srtt = tp->srtt_us;
1da177e4 692
1da177e4
LT
693 /* The following amusing code comes from Jacobson's
694 * article in SIGCOMM '88. Note that rtt and mdev
695 * are scaled versions of rtt and mean deviation.
e905a9ed 696 * This is designed to be as fast as possible
1da177e4
LT
697 * m stands for "measurement".
698 *
699 * On a 1990 paper the rto value is changed to:
700 * RTO = rtt + 4 * mdev
701 *
702 * Funny. This algorithm seems to be very broken.
703 * These formulae increase RTO, when it should be decreased, increase
31f34269 704 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
705 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
706 * does not matter how to _calculate_ it. Seems, it was trap
707 * that VJ failed to avoid. 8)
708 */
4a5ab4e2
ED
709 if (srtt != 0) {
710 m -= (srtt >> 3); /* m is now error in rtt est */
711 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
712 if (m < 0) {
713 m = -m; /* m is now abs(error) */
740b0f18 714 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
715 /* This is similar to one of Eifel findings.
716 * Eifel blocks mdev updates when rtt decreases.
717 * This solution is a bit different: we use finer gain
718 * for mdev in this case (alpha*beta).
719 * Like Eifel it also prevents growth of rto,
720 * but also it limits too fast rto decreases,
721 * happening in pure Eifel.
722 */
723 if (m > 0)
724 m >>= 3;
725 } else {
740b0f18 726 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 727 }
740b0f18
ED
728 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
729 if (tp->mdev_us > tp->mdev_max_us) {
730 tp->mdev_max_us = tp->mdev_us;
731 if (tp->mdev_max_us > tp->rttvar_us)
732 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
733 }
734 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
735 if (tp->mdev_max_us < tp->rttvar_us)
736 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 737 tp->rtt_seq = tp->snd_nxt;
740b0f18 738 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
739 }
740 } else {
741 /* no previous measure. */
4a5ab4e2 742 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
743 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
744 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
745 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
746 tp->rtt_seq = tp->snd_nxt;
747 }
740b0f18 748 tp->srtt_us = max(1U, srtt);
1da177e4
LT
749}
750
95bd09eb
ED
751/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
752 * Note: TCP stack does not yet implement pacing.
753 * FQ packet scheduler can be used to implement cheap but effective
754 * TCP pacing, to smooth the burst on large writes when packets
755 * in flight is significantly lower than cwnd (or rwin)
756 */
43e122b0
ED
757int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
758int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
759
95bd09eb
ED
760static void tcp_update_pacing_rate(struct sock *sk)
761{
762 const struct tcp_sock *tp = tcp_sk(sk);
763 u64 rate;
764
765 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
766 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
767
768 /* current rate is (cwnd * mss) / srtt
769 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
770 * In Congestion Avoidance phase, set it to 120 % the current rate.
771 *
772 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
773 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
774 * end of slow start and should slow down.
775 */
776 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
777 rate *= sysctl_tcp_pacing_ss_ratio;
778 else
779 rate *= sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
780
781 rate *= max(tp->snd_cwnd, tp->packets_out);
782
740b0f18
ED
783 if (likely(tp->srtt_us))
784 do_div(rate, tp->srtt_us);
95bd09eb 785
ba537427
ED
786 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
787 * without any lock. We want to make sure compiler wont store
788 * intermediate values in this location.
789 */
790 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
791 sk->sk_max_pacing_rate);
95bd09eb
ED
792}
793
1da177e4
LT
794/* Calculate rto without backoff. This is the second half of Van Jacobson's
795 * routine referred to above.
796 */
f7e56a76 797static void tcp_set_rto(struct sock *sk)
1da177e4 798{
463c84b9 799 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
800 /* Old crap is replaced with new one. 8)
801 *
802 * More seriously:
803 * 1. If rtt variance happened to be less 50msec, it is hallucination.
804 * It cannot be less due to utterly erratic ACK generation made
805 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
806 * to do with delayed acks, because at cwnd>2 true delack timeout
807 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 808 * ACKs in some circumstances.
1da177e4 809 */
f1ecd5d9 810 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
811
812 /* 2. Fixups made earlier cannot be right.
813 * If we do not estimate RTO correctly without them,
814 * all the algo is pure shit and should be replaced
caa20d9a 815 * with correct one. It is exactly, which we pretend to do.
1da177e4 816 */
1da177e4 817
ee6aac59
IJ
818 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
819 * guarantees that rto is higher.
820 */
f1ecd5d9 821 tcp_bound_rto(sk);
1da177e4
LT
822}
823
cf533ea5 824__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
825{
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
22b71c8f 828 if (!cwnd)
442b9635 829 cwnd = TCP_INIT_CWND;
1da177e4
LT
830 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831}
832
e60402d0
IJ
833/*
834 * Packet counting of FACK is based on in-order assumptions, therefore TCP
835 * disables it when reordering is detected
836 */
4aabd8ef 837void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 838{
85cc391c
IJ
839 /* RFC3517 uses different metric in lost marker => reset on change */
840 if (tcp_is_fack(tp))
841 tp->lost_skb_hint = NULL;
ab56222a 842 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
843}
844
564262c1 845/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
846static void tcp_dsack_seen(struct tcp_sock *tp)
847{
ab56222a 848 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
849}
850
6687e988
ACM
851static void tcp_update_reordering(struct sock *sk, const int metric,
852 const int ts)
1da177e4 853{
6687e988 854 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 855 if (metric > tp->reordering) {
40b215e5
PE
856 int mib_idx;
857
dca145ff 858 tp->reordering = min(sysctl_tcp_max_reordering, metric);
1da177e4
LT
859
860 /* This exciting event is worth to be remembered. 8) */
861 if (ts)
40b215e5 862 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 863 else if (tcp_is_reno(tp))
40b215e5 864 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 865 else if (tcp_is_fack(tp))
40b215e5 866 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 867 else
40b215e5
PE
868 mib_idx = LINUX_MIB_TCPSACKREORDER;
869
de0744af 870 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 871#if FASTRETRANS_DEBUG > 1
91df42be
JP
872 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
873 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 tp->reordering,
875 tp->fackets_out,
876 tp->sacked_out,
877 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 878#endif
e60402d0 879 tcp_disable_fack(tp);
1da177e4 880 }
eed530b6
YC
881
882 if (metric > 0)
883 tcp_disable_early_retrans(tp);
1da177e4
LT
884}
885
006f582c 886/* This must be called before lost_out is incremented */
c8c213f2
IJ
887static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
888{
51456b29 889 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
890 before(TCP_SKB_CB(skb)->seq,
891 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
892 tp->retransmit_skb_hint = skb;
893
894 if (!tp->lost_out ||
895 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
896 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
897}
898
41ea36e3
IJ
899static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
900{
901 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
902 tcp_verify_retransmit_hint(tp, skb);
903
904 tp->lost_out += tcp_skb_pcount(skb);
905 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
906 }
907}
908
e1aa680f
IJ
909static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
910 struct sk_buff *skb)
006f582c
IJ
911{
912 tcp_verify_retransmit_hint(tp, skb);
913
914 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
915 tp->lost_out += tcp_skb_pcount(skb);
916 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
917 }
918}
919
1da177e4
LT
920/* This procedure tags the retransmission queue when SACKs arrive.
921 *
922 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
923 * Packets in queue with these bits set are counted in variables
924 * sacked_out, retrans_out and lost_out, correspondingly.
925 *
926 * Valid combinations are:
927 * Tag InFlight Description
928 * 0 1 - orig segment is in flight.
929 * S 0 - nothing flies, orig reached receiver.
930 * L 0 - nothing flies, orig lost by net.
931 * R 2 - both orig and retransmit are in flight.
932 * L|R 1 - orig is lost, retransmit is in flight.
933 * S|R 1 - orig reached receiver, retrans is still in flight.
934 * (L|S|R is logically valid, it could occur when L|R is sacked,
935 * but it is equivalent to plain S and code short-curcuits it to S.
936 * L|S is logically invalid, it would mean -1 packet in flight 8))
937 *
938 * These 6 states form finite state machine, controlled by the following events:
939 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
940 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 941 * 3. Loss detection event of two flavors:
1da177e4
LT
942 * A. Scoreboard estimator decided the packet is lost.
943 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
944 * A''. Its FACK modification, head until snd.fack is lost.
945 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
946 * segment was retransmitted.
947 * 4. D-SACK added new rule: D-SACK changes any tag to S.
948 *
949 * It is pleasant to note, that state diagram turns out to be commutative,
950 * so that we are allowed not to be bothered by order of our actions,
951 * when multiple events arrive simultaneously. (see the function below).
952 *
953 * Reordering detection.
954 * --------------------
955 * Reordering metric is maximal distance, which a packet can be displaced
956 * in packet stream. With SACKs we can estimate it:
957 *
958 * 1. SACK fills old hole and the corresponding segment was not
959 * ever retransmitted -> reordering. Alas, we cannot use it
960 * when segment was retransmitted.
961 * 2. The last flaw is solved with D-SACK. D-SACK arrives
962 * for retransmitted and already SACKed segment -> reordering..
963 * Both of these heuristics are not used in Loss state, when we cannot
964 * account for retransmits accurately.
5b3c9882
IJ
965 *
966 * SACK block validation.
967 * ----------------------
968 *
969 * SACK block range validation checks that the received SACK block fits to
970 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
971 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
972 * it means that the receiver is rather inconsistent with itself reporting
973 * SACK reneging when it should advance SND.UNA. Such SACK block this is
974 * perfectly valid, however, in light of RFC2018 which explicitly states
975 * that "SACK block MUST reflect the newest segment. Even if the newest
976 * segment is going to be discarded ...", not that it looks very clever
977 * in case of head skb. Due to potentional receiver driven attacks, we
978 * choose to avoid immediate execution of a walk in write queue due to
979 * reneging and defer head skb's loss recovery to standard loss recovery
980 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
981 *
982 * Implements also blockage to start_seq wrap-around. Problem lies in the
983 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
984 * there's no guarantee that it will be before snd_nxt (n). The problem
985 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
986 * wrap (s_w):
987 *
988 * <- outs wnd -> <- wrapzone ->
989 * u e n u_w e_w s n_w
990 * | | | | | | |
991 * |<------------+------+----- TCP seqno space --------------+---------->|
992 * ...-- <2^31 ->| |<--------...
993 * ...---- >2^31 ------>| |<--------...
994 *
995 * Current code wouldn't be vulnerable but it's better still to discard such
996 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
997 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
998 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
999 * equal to the ideal case (infinite seqno space without wrap caused issues).
1000 *
1001 * With D-SACK the lower bound is extended to cover sequence space below
1002 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1003 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1004 * for the normal SACK blocks, explained above). But there all simplicity
1005 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1006 * fully below undo_marker they do not affect behavior in anyway and can
1007 * therefore be safely ignored. In rare cases (which are more or less
1008 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1009 * fragmentation and packet reordering past skb's retransmission. To consider
1010 * them correctly, the acceptable range must be extended even more though
1011 * the exact amount is rather hard to quantify. However, tp->max_window can
1012 * be used as an exaggerated estimate.
1da177e4 1013 */
a2a385d6
ED
1014static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1015 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1016{
1017 /* Too far in future, or reversed (interpretation is ambiguous) */
1018 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1019 return false;
5b3c9882
IJ
1020
1021 /* Nasty start_seq wrap-around check (see comments above) */
1022 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1023 return false;
5b3c9882 1024
564262c1 1025 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1026 * start_seq == snd_una is non-sensical (see comments above)
1027 */
1028 if (after(start_seq, tp->snd_una))
a2a385d6 1029 return true;
5b3c9882
IJ
1030
1031 if (!is_dsack || !tp->undo_marker)
a2a385d6 1032 return false;
5b3c9882
IJ
1033
1034 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1035 if (after(end_seq, tp->snd_una))
a2a385d6 1036 return false;
5b3c9882
IJ
1037
1038 if (!before(start_seq, tp->undo_marker))
a2a385d6 1039 return true;
5b3c9882
IJ
1040
1041 /* Too old */
1042 if (!after(end_seq, tp->undo_marker))
a2a385d6 1043 return false;
5b3c9882
IJ
1044
1045 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1046 * start_seq < undo_marker and end_seq >= undo_marker.
1047 */
1048 return !before(start_seq, end_seq - tp->max_window);
1049}
1050
a2a385d6
ED
1051static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1052 struct tcp_sack_block_wire *sp, int num_sacks,
1053 u32 prior_snd_una)
d06e021d 1054{
1ed83465 1055 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1056 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1057 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1058 bool dup_sack = false;
d06e021d
DM
1059
1060 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1061 dup_sack = true;
e60402d0 1062 tcp_dsack_seen(tp);
de0744af 1063 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1064 } else if (num_sacks > 1) {
d3e2ce3b
HH
1065 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1066 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1067
1068 if (!after(end_seq_0, end_seq_1) &&
1069 !before(start_seq_0, start_seq_1)) {
a2a385d6 1070 dup_sack = true;
e60402d0 1071 tcp_dsack_seen(tp);
de0744af
PE
1072 NET_INC_STATS_BH(sock_net(sk),
1073 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1074 }
1075 }
1076
1077 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1078 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1079 !after(end_seq_0, prior_snd_una) &&
1080 after(end_seq_0, tp->undo_marker))
1081 tp->undo_retrans--;
1082
1083 return dup_sack;
1084}
1085
a1197f5a 1086struct tcp_sacktag_state {
740b0f18
ED
1087 int reord;
1088 int fack_count;
31231a8a
KKJ
1089 /* Timestamps for earliest and latest never-retransmitted segment
1090 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1091 * but congestion control should still get an accurate delay signal.
1092 */
1093 struct skb_mstamp first_sackt;
1094 struct skb_mstamp last_sackt;
740b0f18 1095 int flag;
a1197f5a
IJ
1096};
1097
d1935942
IJ
1098/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1099 * the incoming SACK may not exactly match but we can find smaller MSS
1100 * aligned portion of it that matches. Therefore we might need to fragment
1101 * which may fail and creates some hassle (caller must handle error case
1102 * returns).
832d11c5
IJ
1103 *
1104 * FIXME: this could be merged to shift decision code
d1935942 1105 */
0f79efdc 1106static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1107 u32 start_seq, u32 end_seq)
d1935942 1108{
a2a385d6
ED
1109 int err;
1110 bool in_sack;
d1935942 1111 unsigned int pkt_len;
adb92db8 1112 unsigned int mss;
d1935942
IJ
1113
1114 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1115 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1116
1117 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1118 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1119 mss = tcp_skb_mss(skb);
d1935942
IJ
1120 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1121
adb92db8 1122 if (!in_sack) {
d1935942 1123 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1124 if (pkt_len < mss)
1125 pkt_len = mss;
1126 } else {
d1935942 1127 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1128 if (pkt_len < mss)
1129 return -EINVAL;
1130 }
1131
1132 /* Round if necessary so that SACKs cover only full MSSes
1133 * and/or the remaining small portion (if present)
1134 */
1135 if (pkt_len > mss) {
1136 unsigned int new_len = (pkt_len / mss) * mss;
1137 if (!in_sack && new_len < pkt_len) {
1138 new_len += mss;
2cd0d743 1139 if (new_len >= skb->len)
adb92db8
IJ
1140 return 0;
1141 }
1142 pkt_len = new_len;
1143 }
6cc55e09 1144 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1145 if (err < 0)
1146 return err;
1147 }
1148
1149 return in_sack;
1150}
1151
cc9a672e
NC
1152/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1153static u8 tcp_sacktag_one(struct sock *sk,
1154 struct tcp_sacktag_state *state, u8 sacked,
1155 u32 start_seq, u32 end_seq,
740b0f18
ED
1156 int dup_sack, int pcount,
1157 const struct skb_mstamp *xmit_time)
9e10c47c 1158{
6859d494 1159 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1160 int fack_count = state->fack_count;
9e10c47c
IJ
1161
1162 /* Account D-SACK for retransmitted packet. */
1163 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1164 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1165 after(end_seq, tp->undo_marker))
9e10c47c 1166 tp->undo_retrans--;
ede9f3b1 1167 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1168 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1169 }
1170
1171 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1172 if (!after(end_seq, tp->snd_una))
a1197f5a 1173 return sacked;
9e10c47c
IJ
1174
1175 if (!(sacked & TCPCB_SACKED_ACKED)) {
659a8ad5
YC
1176 tcp_rack_advance(tp, xmit_time, sacked);
1177
9e10c47c
IJ
1178 if (sacked & TCPCB_SACKED_RETRANS) {
1179 /* If the segment is not tagged as lost,
1180 * we do not clear RETRANS, believing
1181 * that retransmission is still in flight.
1182 */
1183 if (sacked & TCPCB_LOST) {
a1197f5a 1184 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1185 tp->lost_out -= pcount;
1186 tp->retrans_out -= pcount;
9e10c47c
IJ
1187 }
1188 } else {
1189 if (!(sacked & TCPCB_RETRANS)) {
1190 /* New sack for not retransmitted frame,
1191 * which was in hole. It is reordering.
1192 */
cc9a672e 1193 if (before(start_seq,
9e10c47c 1194 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1195 state->reord = min(fack_count,
1196 state->reord);
e33099f9
YC
1197 if (!after(end_seq, tp->high_seq))
1198 state->flag |= FLAG_ORIG_SACK_ACKED;
31231a8a
KKJ
1199 if (state->first_sackt.v64 == 0)
1200 state->first_sackt = *xmit_time;
1201 state->last_sackt = *xmit_time;
9e10c47c
IJ
1202 }
1203
1204 if (sacked & TCPCB_LOST) {
a1197f5a 1205 sacked &= ~TCPCB_LOST;
f58b22fd 1206 tp->lost_out -= pcount;
9e10c47c
IJ
1207 }
1208 }
1209
a1197f5a
IJ
1210 sacked |= TCPCB_SACKED_ACKED;
1211 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1212 tp->sacked_out += pcount;
9e10c47c 1213
f58b22fd 1214 fack_count += pcount;
9e10c47c
IJ
1215
1216 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
00db4124 1217 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
cc9a672e 1218 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1219 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1220
1221 if (fack_count > tp->fackets_out)
1222 tp->fackets_out = fack_count;
9e10c47c
IJ
1223 }
1224
1225 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1226 * frames and clear it. undo_retrans is decreased above, L|R frames
1227 * are accounted above as well.
1228 */
a1197f5a
IJ
1229 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1230 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1231 tp->retrans_out -= pcount;
9e10c47c
IJ
1232 }
1233
a1197f5a 1234 return sacked;
9e10c47c
IJ
1235}
1236
daef52ba
NC
1237/* Shift newly-SACKed bytes from this skb to the immediately previous
1238 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1239 */
a2a385d6
ED
1240static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1241 struct tcp_sacktag_state *state,
1242 unsigned int pcount, int shifted, int mss,
1243 bool dup_sack)
832d11c5
IJ
1244{
1245 struct tcp_sock *tp = tcp_sk(sk);
50133161 1246 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1247 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1248 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1249
1250 BUG_ON(!pcount);
1251
4c90d3b3
NC
1252 /* Adjust counters and hints for the newly sacked sequence
1253 * range but discard the return value since prev is already
1254 * marked. We must tag the range first because the seq
1255 * advancement below implicitly advances
1256 * tcp_highest_sack_seq() when skb is highest_sack.
1257 */
1258 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1259 start_seq, end_seq, dup_sack, pcount,
740b0f18 1260 &skb->skb_mstamp);
4c90d3b3
NC
1261
1262 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1263 tp->lost_cnt_hint += pcount;
1264
832d11c5
IJ
1265 TCP_SKB_CB(prev)->end_seq += shifted;
1266 TCP_SKB_CB(skb)->seq += shifted;
1267
cd7d8498
ED
1268 tcp_skb_pcount_add(prev, pcount);
1269 BUG_ON(tcp_skb_pcount(skb) < pcount);
1270 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1271
1272 /* When we're adding to gso_segs == 1, gso_size will be zero,
1273 * in theory this shouldn't be necessary but as long as DSACK
1274 * code can come after this skb later on it's better to keep
1275 * setting gso_size to something.
1276 */
f69ad292
ED
1277 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1278 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1279
1280 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1281 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1282 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1283
832d11c5
IJ
1284 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1285 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1286
832d11c5
IJ
1287 if (skb->len > 0) {
1288 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1289 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1290 return false;
832d11c5
IJ
1291 }
1292
1293 /* Whole SKB was eaten :-) */
1294
92ee76b6
IJ
1295 if (skb == tp->retransmit_skb_hint)
1296 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1297 if (skb == tp->lost_skb_hint) {
1298 tp->lost_skb_hint = prev;
1299 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1300 }
1301
5e8a402f
ED
1302 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1303 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1304 TCP_SKB_CB(prev)->end_seq++;
1305
832d11c5
IJ
1306 if (skb == tcp_highest_sack(sk))
1307 tcp_advance_highest_sack(sk, skb);
1308
1309 tcp_unlink_write_queue(skb, sk);
1310 sk_wmem_free_skb(sk, skb);
1311
111cc8b9
IJ
1312 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1313
a2a385d6 1314 return true;
832d11c5
IJ
1315}
1316
1317/* I wish gso_size would have a bit more sane initialization than
1318 * something-or-zero which complicates things
1319 */
cf533ea5 1320static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1321{
775ffabf 1322 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1323}
1324
1325/* Shifting pages past head area doesn't work */
cf533ea5 1326static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1327{
1328 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1329}
1330
1331/* Try collapsing SACK blocks spanning across multiple skbs to a single
1332 * skb.
1333 */
1334static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1335 struct tcp_sacktag_state *state,
832d11c5 1336 u32 start_seq, u32 end_seq,
a2a385d6 1337 bool dup_sack)
832d11c5
IJ
1338{
1339 struct tcp_sock *tp = tcp_sk(sk);
1340 struct sk_buff *prev;
1341 int mss;
1342 int pcount = 0;
1343 int len;
1344 int in_sack;
1345
1346 if (!sk_can_gso(sk))
1347 goto fallback;
1348
1349 /* Normally R but no L won't result in plain S */
1350 if (!dup_sack &&
9969ca5f 1351 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1352 goto fallback;
1353 if (!skb_can_shift(skb))
1354 goto fallback;
1355 /* This frame is about to be dropped (was ACKed). */
1356 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1357 goto fallback;
1358
1359 /* Can only happen with delayed DSACK + discard craziness */
1360 if (unlikely(skb == tcp_write_queue_head(sk)))
1361 goto fallback;
1362 prev = tcp_write_queue_prev(sk, skb);
1363
1364 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1365 goto fallback;
1366
1367 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1368 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1369
1370 if (in_sack) {
1371 len = skb->len;
1372 pcount = tcp_skb_pcount(skb);
775ffabf 1373 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1374
1375 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1376 * drop this restriction as unnecessary
1377 */
775ffabf 1378 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1379 goto fallback;
1380 } else {
1381 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1382 goto noop;
1383 /* CHECKME: This is non-MSS split case only?, this will
1384 * cause skipped skbs due to advancing loop btw, original
1385 * has that feature too
1386 */
1387 if (tcp_skb_pcount(skb) <= 1)
1388 goto noop;
1389
1390 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1391 if (!in_sack) {
1392 /* TODO: head merge to next could be attempted here
1393 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1394 * though it might not be worth of the additional hassle
1395 *
1396 * ...we can probably just fallback to what was done
1397 * previously. We could try merging non-SACKed ones
1398 * as well but it probably isn't going to buy off
1399 * because later SACKs might again split them, and
1400 * it would make skb timestamp tracking considerably
1401 * harder problem.
1402 */
1403 goto fallback;
1404 }
1405
1406 len = end_seq - TCP_SKB_CB(skb)->seq;
1407 BUG_ON(len < 0);
1408 BUG_ON(len > skb->len);
1409
1410 /* MSS boundaries should be honoured or else pcount will
1411 * severely break even though it makes things bit trickier.
1412 * Optimize common case to avoid most of the divides
1413 */
1414 mss = tcp_skb_mss(skb);
1415
1416 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1417 * drop this restriction as unnecessary
1418 */
775ffabf 1419 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1420 goto fallback;
1421
1422 if (len == mss) {
1423 pcount = 1;
1424 } else if (len < mss) {
1425 goto noop;
1426 } else {
1427 pcount = len / mss;
1428 len = pcount * mss;
1429 }
1430 }
1431
4648dc97
NC
1432 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1433 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1434 goto fallback;
1435
832d11c5
IJ
1436 if (!skb_shift(prev, skb, len))
1437 goto fallback;
9ec06ff5 1438 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1439 goto out;
1440
1441 /* Hole filled allows collapsing with the next as well, this is very
1442 * useful when hole on every nth skb pattern happens
1443 */
1444 if (prev == tcp_write_queue_tail(sk))
1445 goto out;
1446 skb = tcp_write_queue_next(sk, prev);
1447
f0bc52f3
IJ
1448 if (!skb_can_shift(skb) ||
1449 (skb == tcp_send_head(sk)) ||
1450 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1451 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1452 goto out;
1453
1454 len = skb->len;
1455 if (skb_shift(prev, skb, len)) {
1456 pcount += tcp_skb_pcount(skb);
9ec06ff5 1457 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1458 }
1459
1460out:
a1197f5a 1461 state->fack_count += pcount;
832d11c5
IJ
1462 return prev;
1463
1464noop:
1465 return skb;
1466
1467fallback:
111cc8b9 1468 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1469 return NULL;
1470}
1471
68f8353b
IJ
1472static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1473 struct tcp_sack_block *next_dup,
a1197f5a 1474 struct tcp_sacktag_state *state,
68f8353b 1475 u32 start_seq, u32 end_seq,
a2a385d6 1476 bool dup_sack_in)
68f8353b 1477{
832d11c5
IJ
1478 struct tcp_sock *tp = tcp_sk(sk);
1479 struct sk_buff *tmp;
1480
68f8353b
IJ
1481 tcp_for_write_queue_from(skb, sk) {
1482 int in_sack = 0;
a2a385d6 1483 bool dup_sack = dup_sack_in;
68f8353b
IJ
1484
1485 if (skb == tcp_send_head(sk))
1486 break;
1487
1488 /* queue is in-order => we can short-circuit the walk early */
1489 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1490 break;
1491
00db4124 1492 if (next_dup &&
68f8353b
IJ
1493 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1494 in_sack = tcp_match_skb_to_sack(sk, skb,
1495 next_dup->start_seq,
1496 next_dup->end_seq);
1497 if (in_sack > 0)
a2a385d6 1498 dup_sack = true;
68f8353b
IJ
1499 }
1500
832d11c5
IJ
1501 /* skb reference here is a bit tricky to get right, since
1502 * shifting can eat and free both this skb and the next,
1503 * so not even _safe variant of the loop is enough.
1504 */
1505 if (in_sack <= 0) {
a1197f5a
IJ
1506 tmp = tcp_shift_skb_data(sk, skb, state,
1507 start_seq, end_seq, dup_sack);
00db4124 1508 if (tmp) {
832d11c5
IJ
1509 if (tmp != skb) {
1510 skb = tmp;
1511 continue;
1512 }
1513
1514 in_sack = 0;
1515 } else {
1516 in_sack = tcp_match_skb_to_sack(sk, skb,
1517 start_seq,
1518 end_seq);
1519 }
1520 }
1521
68f8353b
IJ
1522 if (unlikely(in_sack < 0))
1523 break;
1524
832d11c5 1525 if (in_sack) {
cc9a672e
NC
1526 TCP_SKB_CB(skb)->sacked =
1527 tcp_sacktag_one(sk,
1528 state,
1529 TCP_SKB_CB(skb)->sacked,
1530 TCP_SKB_CB(skb)->seq,
1531 TCP_SKB_CB(skb)->end_seq,
1532 dup_sack,
59c9af42 1533 tcp_skb_pcount(skb),
740b0f18 1534 &skb->skb_mstamp);
68f8353b 1535
832d11c5
IJ
1536 if (!before(TCP_SKB_CB(skb)->seq,
1537 tcp_highest_sack_seq(tp)))
1538 tcp_advance_highest_sack(sk, skb);
1539 }
1540
a1197f5a 1541 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1542 }
1543 return skb;
1544}
1545
1546/* Avoid all extra work that is being done by sacktag while walking in
1547 * a normal way
1548 */
1549static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1550 struct tcp_sacktag_state *state,
1551 u32 skip_to_seq)
68f8353b
IJ
1552{
1553 tcp_for_write_queue_from(skb, sk) {
1554 if (skb == tcp_send_head(sk))
1555 break;
1556
e8bae275 1557 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1558 break;
d152a7d8 1559
a1197f5a 1560 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1561 }
1562 return skb;
1563}
1564
1565static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1566 struct sock *sk,
1567 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1568 struct tcp_sacktag_state *state,
1569 u32 skip_to_seq)
68f8353b 1570{
51456b29 1571 if (!next_dup)
68f8353b
IJ
1572 return skb;
1573
1574 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1575 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1576 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1577 next_dup->start_seq, next_dup->end_seq,
1578 1);
68f8353b
IJ
1579 }
1580
1581 return skb;
1582}
1583
cf533ea5 1584static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1585{
1586 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1587}
1588
1da177e4 1589static int
cf533ea5 1590tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1591 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1592{
1593 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1594 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1595 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1596 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1597 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1598 struct tcp_sack_block *cache;
1599 struct sk_buff *skb;
4389dded 1600 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1601 int used_sacks;
a2a385d6 1602 bool found_dup_sack = false;
68f8353b 1603 int i, j;
fda03fbb 1604 int first_sack_index;
1da177e4 1605
196da974
KKJ
1606 state->flag = 0;
1607 state->reord = tp->packets_out;
a1197f5a 1608
d738cd8f 1609 if (!tp->sacked_out) {
de83c058
IJ
1610 if (WARN_ON(tp->fackets_out))
1611 tp->fackets_out = 0;
6859d494 1612 tcp_highest_sack_reset(sk);
d738cd8f 1613 }
1da177e4 1614
1ed83465 1615 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1616 num_sacks, prior_snd_una);
1617 if (found_dup_sack)
196da974 1618 state->flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1619
1620 /* Eliminate too old ACKs, but take into
1621 * account more or less fresh ones, they can
1622 * contain valid SACK info.
1623 */
1624 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1625 return 0;
1626