]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/ipv4/tcp_input.c
[TCP]: Seperate DSACK from SACK fast path
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
1da177e4
LT
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly;
89int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 90
ab32ea5d
BH
91int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92int sysctl_tcp_abc __read_mostly;
1da177e4 93
1da177e4
LT
94#define FLAG_DATA 0x01 /* Incoming frame contained data. */
95#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99#define FLAG_DATA_SACKED 0x20 /* New SACK. */
100#define FLAG_ECE 0x40 /* ECE in this ACK */
101#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103
104#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108
109#define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110#define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111#define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112
113#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114
115/* Adapt the MSS value used to make delayed ack decision to the
116 * real world.
117 */
40efc6fa
SH
118static void tcp_measure_rcv_mss(struct sock *sk,
119 const struct sk_buff *skb)
1da177e4 120{
463c84b9
ACM
121 struct inet_connection_sock *icsk = inet_csk(sk);
122 const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 unsigned int len;
1da177e4 124
463c84b9 125 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
126
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
129 */
ff9b5e0f 130 len = skb_shinfo(skb)->gso_size ?: skb->len;
463c84b9
ACM
131 if (len >= icsk->icsk_ack.rcv_mss) {
132 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
133 } else {
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
136 *
137 * "len" is invariant segment length, including TCP header.
138 */
139 len += skb->data - skb->h.raw;
140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
145 */
146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
151 */
463c84b9
ACM
152 len -= tcp_sk(sk)->tcp_header_len;
153 icsk->icsk_ack.last_seg_size = len;
1da177e4 154 if (len == lss) {
463c84b9 155 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
156 return;
157 }
158 }
1ef9696c
AK
159 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
160 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 161 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
162 }
163}
164
463c84b9 165static void tcp_incr_quickack(struct sock *sk)
1da177e4 166{
463c84b9
ACM
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
169
170 if (quickacks==0)
171 quickacks=2;
463c84b9
ACM
172 if (quickacks > icsk->icsk_ack.quick)
173 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
174}
175
463c84b9 176void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 177{
463c84b9
ACM
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 tcp_incr_quickack(sk);
180 icsk->icsk_ack.pingpong = 0;
181 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
182}
183
184/* Send ACKs quickly, if "quick" count is not exhausted
185 * and the session is not interactive.
186 */
187
463c84b9 188static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 189{
463c84b9
ACM
190 const struct inet_connection_sock *icsk = inet_csk(sk);
191 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
192}
193
194/* Buffer size and advertised window tuning.
195 *
196 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197 */
198
199static void tcp_fixup_sndbuf(struct sock *sk)
200{
201 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
202 sizeof(struct sk_buff);
203
204 if (sk->sk_sndbuf < 3 * sndmem)
205 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206}
207
208/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209 *
210 * All tcp_full_space() is split to two parts: "network" buffer, allocated
211 * forward and advertised in receiver window (tp->rcv_wnd) and
212 * "application buffer", required to isolate scheduling/application
213 * latencies from network.
214 * window_clamp is maximal advertised window. It can be less than
215 * tcp_full_space(), in this case tcp_full_space() - window_clamp
216 * is reserved for "application" buffer. The less window_clamp is
217 * the smoother our behaviour from viewpoint of network, but the lower
218 * throughput and the higher sensitivity of the connection to losses. 8)
219 *
220 * rcv_ssthresh is more strict window_clamp used at "slow start"
221 * phase to predict further behaviour of this connection.
222 * It is used for two goals:
223 * - to enforce header prediction at sender, even when application
224 * requires some significant "application buffer". It is check #1.
225 * - to prevent pruning of receive queue because of misprediction
226 * of receiver window. Check #2.
227 *
228 * The scheme does not work when sender sends good segments opening
caa20d9a 229 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
230 * in common situations. Otherwise, we have to rely on queue collapsing.
231 */
232
233/* Slow part of check#2. */
463c84b9
ACM
234static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
235 const struct sk_buff *skb)
1da177e4
LT
236{
237 /* Optimize this! */
238 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 239 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
240
241 while (tp->rcv_ssthresh <= window) {
242 if (truesize <= skb->len)
463c84b9 243 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
244
245 truesize >>= 1;
246 window >>= 1;
247 }
248 return 0;
249}
250
40efc6fa
SH
251static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
252 struct sk_buff *skb)
1da177e4
LT
253{
254 /* Check #1 */
255 if (tp->rcv_ssthresh < tp->window_clamp &&
256 (int)tp->rcv_ssthresh < tcp_space(sk) &&
257 !tcp_memory_pressure) {
258 int incr;
259
260 /* Check #2. Increase window, if skb with such overhead
261 * will fit to rcvbuf in future.
262 */
263 if (tcp_win_from_space(skb->truesize) <= skb->len)
264 incr = 2*tp->advmss;
265 else
266 incr = __tcp_grow_window(sk, tp, skb);
267
268 if (incr) {
269 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 270 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
271 }
272 }
273}
274
275/* 3. Tuning rcvbuf, when connection enters established state. */
276
277static void tcp_fixup_rcvbuf(struct sock *sk)
278{
279 struct tcp_sock *tp = tcp_sk(sk);
280 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281
282 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 283 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
284 * (was 3; 4 is minimum to allow fast retransmit to work.)
285 */
286 while (tcp_win_from_space(rcvmem) < tp->advmss)
287 rcvmem += 128;
288 if (sk->sk_rcvbuf < 4 * rcvmem)
289 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290}
291
caa20d9a 292/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
293 * established state.
294 */
295static void tcp_init_buffer_space(struct sock *sk)
296{
297 struct tcp_sock *tp = tcp_sk(sk);
298 int maxwin;
299
300 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
301 tcp_fixup_rcvbuf(sk);
302 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
303 tcp_fixup_sndbuf(sk);
304
305 tp->rcvq_space.space = tp->rcv_wnd;
306
307 maxwin = tcp_full_space(sk);
308
309 if (tp->window_clamp >= maxwin) {
310 tp->window_clamp = maxwin;
311
312 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
313 tp->window_clamp = max(maxwin -
314 (maxwin >> sysctl_tcp_app_win),
315 4 * tp->advmss);
316 }
317
318 /* Force reservation of one segment. */
319 if (sysctl_tcp_app_win &&
320 tp->window_clamp > 2 * tp->advmss &&
321 tp->window_clamp + tp->advmss > maxwin)
322 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323
324 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
325 tp->snd_cwnd_stamp = tcp_time_stamp;
326}
327
1da177e4
LT
328/* 5. Recalculate window clamp after socket hit its memory bounds. */
329static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330{
6687e988 331 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 332
6687e988 333 icsk->icsk_ack.quick = 0;
1da177e4 334
326f36e9
JH
335 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
336 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
337 !tcp_memory_pressure &&
338 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
339 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340 sysctl_tcp_rmem[2]);
1da177e4 341 }
326f36e9 342 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 343 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
344}
345
40efc6fa
SH
346
347/* Initialize RCV_MSS value.
348 * RCV_MSS is an our guess about MSS used by the peer.
349 * We haven't any direct information about the MSS.
350 * It's better to underestimate the RCV_MSS rather than overestimate.
351 * Overestimations make us ACKing less frequently than needed.
352 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353 */
354void tcp_initialize_rcv_mss(struct sock *sk)
355{
356 struct tcp_sock *tp = tcp_sk(sk);
357 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358
359 hint = min(hint, tp->rcv_wnd/2);
360 hint = min(hint, TCP_MIN_RCVMSS);
361 hint = max(hint, TCP_MIN_MSS);
362
363 inet_csk(sk)->icsk_ack.rcv_mss = hint;
364}
365
1da177e4
LT
366/* Receiver "autotuning" code.
367 *
368 * The algorithm for RTT estimation w/o timestamps is based on
369 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371 *
372 * More detail on this code can be found at
373 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374 * though this reference is out of date. A new paper
375 * is pending.
376 */
377static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378{
379 u32 new_sample = tp->rcv_rtt_est.rtt;
380 long m = sample;
381
382 if (m == 0)
383 m = 1;
384
385 if (new_sample != 0) {
386 /* If we sample in larger samples in the non-timestamp
387 * case, we could grossly overestimate the RTT especially
388 * with chatty applications or bulk transfer apps which
389 * are stalled on filesystem I/O.
390 *
391 * Also, since we are only going for a minimum in the
31f34269 392 * non-timestamp case, we do not smooth things out
caa20d9a 393 * else with timestamps disabled convergence takes too
1da177e4
LT
394 * long.
395 */
396 if (!win_dep) {
397 m -= (new_sample >> 3);
398 new_sample += m;
399 } else if (m < new_sample)
400 new_sample = m << 3;
401 } else {
caa20d9a 402 /* No previous measure. */
1da177e4
LT
403 new_sample = m << 3;
404 }
405
406 if (tp->rcv_rtt_est.rtt != new_sample)
407 tp->rcv_rtt_est.rtt = new_sample;
408}
409
410static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411{
412 if (tp->rcv_rtt_est.time == 0)
413 goto new_measure;
414 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
415 return;
416 tcp_rcv_rtt_update(tp,
417 jiffies - tp->rcv_rtt_est.time,
418 1);
419
420new_measure:
421 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
422 tp->rcv_rtt_est.time = tcp_time_stamp;
423}
424
463c84b9 425static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 426{
463c84b9 427 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
428 if (tp->rx_opt.rcv_tsecr &&
429 (TCP_SKB_CB(skb)->end_seq -
463c84b9 430 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
431 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
432}
433
434/*
435 * This function should be called every time data is copied to user space.
436 * It calculates the appropriate TCP receive buffer space.
437 */
438void tcp_rcv_space_adjust(struct sock *sk)
439{
440 struct tcp_sock *tp = tcp_sk(sk);
441 int time;
442 int space;
443
444 if (tp->rcvq_space.time == 0)
445 goto new_measure;
446
447 time = tcp_time_stamp - tp->rcvq_space.time;
448 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
449 tp->rcv_rtt_est.rtt == 0)
450 return;
451
452 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453
454 space = max(tp->rcvq_space.space, space);
455
456 if (tp->rcvq_space.space != space) {
457 int rcvmem;
458
459 tp->rcvq_space.space = space;
460
6fcf9412
JH
461 if (sysctl_tcp_moderate_rcvbuf &&
462 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
463 int new_clamp = space;
464
465 /* Receive space grows, normalize in order to
466 * take into account packet headers and sk_buff
467 * structure overhead.
468 */
469 space /= tp->advmss;
470 if (!space)
471 space = 1;
472 rcvmem = (tp->advmss + MAX_TCP_HEADER +
473 16 + sizeof(struct sk_buff));
474 while (tcp_win_from_space(rcvmem) < tp->advmss)
475 rcvmem += 128;
476 space *= rcvmem;
477 space = min(space, sysctl_tcp_rmem[2]);
478 if (space > sk->sk_rcvbuf) {
479 sk->sk_rcvbuf = space;
480
481 /* Make the window clamp follow along. */
482 tp->window_clamp = new_clamp;
483 }
484 }
485 }
486
487new_measure:
488 tp->rcvq_space.seq = tp->copied_seq;
489 tp->rcvq_space.time = tcp_time_stamp;
490}
491
492/* There is something which you must keep in mind when you analyze the
493 * behavior of the tp->ato delayed ack timeout interval. When a
494 * connection starts up, we want to ack as quickly as possible. The
495 * problem is that "good" TCP's do slow start at the beginning of data
496 * transmission. The means that until we send the first few ACK's the
497 * sender will sit on his end and only queue most of his data, because
498 * he can only send snd_cwnd unacked packets at any given time. For
499 * each ACK we send, he increments snd_cwnd and transmits more of his
500 * queue. -DaveM
501 */
502static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503{
463c84b9 504 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
505 u32 now;
506
463c84b9 507 inet_csk_schedule_ack(sk);
1da177e4 508
463c84b9 509 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
510
511 tcp_rcv_rtt_measure(tp);
512
513 now = tcp_time_stamp;
514
463c84b9 515 if (!icsk->icsk_ack.ato) {
1da177e4
LT
516 /* The _first_ data packet received, initialize
517 * delayed ACK engine.
518 */
463c84b9
ACM
519 tcp_incr_quickack(sk);
520 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 521 } else {
463c84b9 522 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
523
524 if (m <= TCP_ATO_MIN/2) {
525 /* The fastest case is the first. */
463c84b9
ACM
526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
527 } else if (m < icsk->icsk_ack.ato) {
528 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
529 if (icsk->icsk_ack.ato > icsk->icsk_rto)
530 icsk->icsk_ack.ato = icsk->icsk_rto;
531 } else if (m > icsk->icsk_rto) {
caa20d9a 532 /* Too long gap. Apparently sender failed to
1da177e4
LT
533 * restart window, so that we send ACKs quickly.
534 */
463c84b9 535 tcp_incr_quickack(sk);
1da177e4
LT
536 sk_stream_mem_reclaim(sk);
537 }
538 }
463c84b9 539 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
540
541 TCP_ECN_check_ce(tp, skb);
542
543 if (skb->len >= 128)
544 tcp_grow_window(sk, tp, skb);
545}
546
1da177e4
LT
547/* Called to compute a smoothed rtt estimate. The data fed to this
548 * routine either comes from timestamps, or from segments that were
549 * known _not_ to have been retransmitted [see Karn/Partridge
550 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551 * piece by Van Jacobson.
552 * NOTE: the next three routines used to be one big routine.
553 * To save cycles in the RFC 1323 implementation it was better to break
554 * it up into three procedures. -- erics
555 */
2d2abbab 556static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 557{
6687e988 558 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
559 long m = mrtt; /* RTT */
560
1da177e4
LT
561 /* The following amusing code comes from Jacobson's
562 * article in SIGCOMM '88. Note that rtt and mdev
563 * are scaled versions of rtt and mean deviation.
564 * This is designed to be as fast as possible
565 * m stands for "measurement".
566 *
567 * On a 1990 paper the rto value is changed to:
568 * RTO = rtt + 4 * mdev
569 *
570 * Funny. This algorithm seems to be very broken.
571 * These formulae increase RTO, when it should be decreased, increase
31f34269 572 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
573 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574 * does not matter how to _calculate_ it. Seems, it was trap
575 * that VJ failed to avoid. 8)
576 */
577 if(m == 0)
578 m = 1;
579 if (tp->srtt != 0) {
580 m -= (tp->srtt >> 3); /* m is now error in rtt est */
581 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
582 if (m < 0) {
583 m = -m; /* m is now abs(error) */
584 m -= (tp->mdev >> 2); /* similar update on mdev */
585 /* This is similar to one of Eifel findings.
586 * Eifel blocks mdev updates when rtt decreases.
587 * This solution is a bit different: we use finer gain
588 * for mdev in this case (alpha*beta).
589 * Like Eifel it also prevents growth of rto,
590 * but also it limits too fast rto decreases,
591 * happening in pure Eifel.
592 */
593 if (m > 0)
594 m >>= 3;
595 } else {
596 m -= (tp->mdev >> 2); /* similar update on mdev */
597 }
598 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
599 if (tp->mdev > tp->mdev_max) {
600 tp->mdev_max = tp->mdev;
601 if (tp->mdev_max > tp->rttvar)
602 tp->rttvar = tp->mdev_max;
603 }
604 if (after(tp->snd_una, tp->rtt_seq)) {
605 if (tp->mdev_max < tp->rttvar)
606 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
607 tp->rtt_seq = tp->snd_nxt;
608 tp->mdev_max = TCP_RTO_MIN;
609 }
610 } else {
611 /* no previous measure. */
612 tp->srtt = m<<3; /* take the measured time to be rtt */
613 tp->mdev = m<<1; /* make sure rto = 3*rtt */
614 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
615 tp->rtt_seq = tp->snd_nxt;
616 }
1da177e4
LT
617}
618
619/* Calculate rto without backoff. This is the second half of Van Jacobson's
620 * routine referred to above.
621 */
463c84b9 622static inline void tcp_set_rto(struct sock *sk)
1da177e4 623{
463c84b9 624 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
625 /* Old crap is replaced with new one. 8)
626 *
627 * More seriously:
628 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629 * It cannot be less due to utterly erratic ACK generation made
630 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631 * to do with delayed acks, because at cwnd>2 true delack timeout
632 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 633 * ACKs in some circumstances.
1da177e4 634 */
463c84b9 635 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
636
637 /* 2. Fixups made earlier cannot be right.
638 * If we do not estimate RTO correctly without them,
639 * all the algo is pure shit and should be replaced
caa20d9a 640 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
641 */
642}
643
644/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645 * guarantees that rto is higher.
646 */
463c84b9 647static inline void tcp_bound_rto(struct sock *sk)
1da177e4 648{
463c84b9
ACM
649 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
650 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
651}
652
653/* Save metrics learned by this TCP session.
654 This function is called only, when TCP finishes successfully
655 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656 */
657void tcp_update_metrics(struct sock *sk)
658{
659 struct tcp_sock *tp = tcp_sk(sk);
660 struct dst_entry *dst = __sk_dst_get(sk);
661
662 if (sysctl_tcp_nometrics_save)
663 return;
664
665 dst_confirm(dst);
666
667 if (dst && (dst->flags&DST_HOST)) {
6687e988 668 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
669 int m;
670
6687e988 671 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
672 /* This session failed to estimate rtt. Why?
673 * Probably, no packets returned in time.
674 * Reset our results.
675 */
676 if (!(dst_metric_locked(dst, RTAX_RTT)))
677 dst->metrics[RTAX_RTT-1] = 0;
678 return;
679 }
680
681 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682
683 /* If newly calculated rtt larger than stored one,
684 * store new one. Otherwise, use EWMA. Remember,
685 * rtt overestimation is always better than underestimation.
686 */
687 if (!(dst_metric_locked(dst, RTAX_RTT))) {
688 if (m <= 0)
689 dst->metrics[RTAX_RTT-1] = tp->srtt;
690 else
691 dst->metrics[RTAX_RTT-1] -= (m>>3);
692 }
693
694 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695 if (m < 0)
696 m = -m;
697
698 /* Scale deviation to rttvar fixed point */
699 m >>= 1;
700 if (m < tp->mdev)
701 m = tp->mdev;
702
703 if (m >= dst_metric(dst, RTAX_RTTVAR))
704 dst->metrics[RTAX_RTTVAR-1] = m;
705 else
706 dst->metrics[RTAX_RTTVAR-1] -=
707 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708 }
709
710 if (tp->snd_ssthresh >= 0xFFFF) {
711 /* Slow start still did not finish. */
712 if (dst_metric(dst, RTAX_SSTHRESH) &&
713 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
714 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
715 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
716 if (!dst_metric_locked(dst, RTAX_CWND) &&
717 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
718 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
719 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 720 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
721 /* Cong. avoidance phase, cwnd is reliable. */
722 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
723 dst->metrics[RTAX_SSTHRESH-1] =
724 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
725 if (!dst_metric_locked(dst, RTAX_CWND))
726 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
727 } else {
728 /* Else slow start did not finish, cwnd is non-sense,
729 ssthresh may be also invalid.
730 */
731 if (!dst_metric_locked(dst, RTAX_CWND))
732 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
733 if (dst->metrics[RTAX_SSTHRESH-1] &&
734 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
736 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737 }
738
739 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
740 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
741 tp->reordering != sysctl_tcp_reordering)
742 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
743 }
744 }
745}
746
747/* Numbers are taken from RFC2414. */
748__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749{
750 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751
752 if (!cwnd) {
c1b4a7e6 753 if (tp->mss_cache > 1460)
1da177e4
LT
754 cwnd = 2;
755 else
c1b4a7e6 756 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
757 }
758 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759}
760
40efc6fa
SH
761/* Set slow start threshold and cwnd not falling to slow start */
762void tcp_enter_cwr(struct sock *sk)
763{
764 struct tcp_sock *tp = tcp_sk(sk);
765
766 tp->prior_ssthresh = 0;
767 tp->bytes_acked = 0;
768 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
769 tp->undo_marker = 0;
770 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
771 tp->snd_cwnd = min(tp->snd_cwnd,
772 tcp_packets_in_flight(tp) + 1U);
773 tp->snd_cwnd_cnt = 0;
774 tp->high_seq = tp->snd_nxt;
775 tp->snd_cwnd_stamp = tcp_time_stamp;
776 TCP_ECN_queue_cwr(tp);
777
778 tcp_set_ca_state(sk, TCP_CA_CWR);
779 }
780}
781
1da177e4
LT
782/* Initialize metrics on socket. */
783
784static void tcp_init_metrics(struct sock *sk)
785{
786 struct tcp_sock *tp = tcp_sk(sk);
787 struct dst_entry *dst = __sk_dst_get(sk);
788
789 if (dst == NULL)
790 goto reset;
791
792 dst_confirm(dst);
793
794 if (dst_metric_locked(dst, RTAX_CWND))
795 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
796 if (dst_metric(dst, RTAX_SSTHRESH)) {
797 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
798 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
799 tp->snd_ssthresh = tp->snd_cwnd_clamp;
800 }
801 if (dst_metric(dst, RTAX_REORDERING) &&
802 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
803 tp->rx_opt.sack_ok &= ~2;
804 tp->reordering = dst_metric(dst, RTAX_REORDERING);
805 }
806
807 if (dst_metric(dst, RTAX_RTT) == 0)
808 goto reset;
809
810 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
811 goto reset;
812
813 /* Initial rtt is determined from SYN,SYN-ACK.
814 * The segment is small and rtt may appear much
815 * less than real one. Use per-dst memory
816 * to make it more realistic.
817 *
818 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 819 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
820 * packets force peer to delay ACKs and calculation is correct too.
821 * The algorithm is adaptive and, provided we follow specs, it
822 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823 * tricks sort of "quick acks" for time long enough to decrease RTT
824 * to low value, and then abruptly stops to do it and starts to delay
825 * ACKs, wait for troubles.
826 */
827 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
828 tp->srtt = dst_metric(dst, RTAX_RTT);
829 tp->rtt_seq = tp->snd_nxt;
830 }
831 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
832 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
833 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834 }
463c84b9
ACM
835 tcp_set_rto(sk);
836 tcp_bound_rto(sk);
837 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
838 goto reset;
839 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 return;
842
843reset:
844 /* Play conservative. If timestamps are not
845 * supported, TCP will fail to recalculate correct
846 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847 */
848 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
849 tp->srtt = 0;
850 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 851 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
852 }
853}
854
6687e988
ACM
855static void tcp_update_reordering(struct sock *sk, const int metric,
856 const int ts)
1da177e4 857{
6687e988 858 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
859 if (metric > tp->reordering) {
860 tp->reordering = min(TCP_MAX_REORDERING, metric);
861
862 /* This exciting event is worth to be remembered. 8) */
863 if (ts)
864 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
865 else if (IsReno(tp))
866 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
867 else if (IsFack(tp))
868 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
869 else
870 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
871#if FASTRETRANS_DEBUG > 1
872 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 873 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
874 tp->reordering,
875 tp->fackets_out,
876 tp->sacked_out,
877 tp->undo_marker ? tp->undo_retrans : 0);
878#endif
879 /* Disable FACK yet. */
880 tp->rx_opt.sack_ok &= ~2;
881 }
882}
883
884/* This procedure tags the retransmission queue when SACKs arrive.
885 *
886 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887 * Packets in queue with these bits set are counted in variables
888 * sacked_out, retrans_out and lost_out, correspondingly.
889 *
890 * Valid combinations are:
891 * Tag InFlight Description
892 * 0 1 - orig segment is in flight.
893 * S 0 - nothing flies, orig reached receiver.
894 * L 0 - nothing flies, orig lost by net.
895 * R 2 - both orig and retransmit are in flight.
896 * L|R 1 - orig is lost, retransmit is in flight.
897 * S|R 1 - orig reached receiver, retrans is still in flight.
898 * (L|S|R is logically valid, it could occur when L|R is sacked,
899 * but it is equivalent to plain S and code short-curcuits it to S.
900 * L|S is logically invalid, it would mean -1 packet in flight 8))
901 *
902 * These 6 states form finite state machine, controlled by the following events:
903 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905 * 3. Loss detection event of one of three flavors:
906 * A. Scoreboard estimator decided the packet is lost.
907 * A'. Reno "three dupacks" marks head of queue lost.
908 * A''. Its FACK modfication, head until snd.fack is lost.
909 * B. SACK arrives sacking data transmitted after never retransmitted
910 * hole was sent out.
911 * C. SACK arrives sacking SND.NXT at the moment, when the
912 * segment was retransmitted.
913 * 4. D-SACK added new rule: D-SACK changes any tag to S.
914 *
915 * It is pleasant to note, that state diagram turns out to be commutative,
916 * so that we are allowed not to be bothered by order of our actions,
917 * when multiple events arrive simultaneously. (see the function below).
918 *
919 * Reordering detection.
920 * --------------------
921 * Reordering metric is maximal distance, which a packet can be displaced
922 * in packet stream. With SACKs we can estimate it:
923 *
924 * 1. SACK fills old hole and the corresponding segment was not
925 * ever retransmitted -> reordering. Alas, we cannot use it
926 * when segment was retransmitted.
927 * 2. The last flaw is solved with D-SACK. D-SACK arrives
928 * for retransmitted and already SACKed segment -> reordering..
929 * Both of these heuristics are not used in Loss state, when we cannot
930 * account for retransmits accurately.
931 */
932static int
933tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934{
6687e988 935 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
936 struct tcp_sock *tp = tcp_sk(sk);
937 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
269bd27e 938 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
fda03fbb 939 struct sk_buff *cached_skb;
1da177e4
LT
940 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
941 int reord = tp->packets_out;
942 int prior_fackets;
943 u32 lost_retrans = 0;
944 int flag = 0;
6a438bbe 945 int dup_sack = 0;
fda03fbb 946 int cached_fack_count;
1da177e4 947 int i;
fda03fbb 948 int first_sack_index;
1da177e4 949
1da177e4
LT
950 if (!tp->sacked_out)
951 tp->fackets_out = 0;
952 prior_fackets = tp->fackets_out;
953
6f74651a
BE
954 /* Check for D-SACK. */
955 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
956 dup_sack = 1;
957 tp->rx_opt.sack_ok |= 4;
958 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
959 } else if (num_sacks > 1 &&
960 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
961 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
962 dup_sack = 1;
963 tp->rx_opt.sack_ok |= 4;
964 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
965 }
966
967 /* D-SACK for already forgotten data...
968 * Do dumb counting. */
969 if (dup_sack &&
970 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
971 after(ntohl(sp[0].end_seq), tp->undo_marker))
972 tp->undo_retrans--;
973
974 /* Eliminate too old ACKs, but take into
975 * account more or less fresh ones, they can
976 * contain valid SACK info.
977 */
978 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
979 return 0;
980
6a438bbe
SH
981 /* SACK fastpath:
982 * if the only SACK change is the increase of the end_seq of
983 * the first block then only apply that SACK block
984 * and use retrans queue hinting otherwise slowpath */
985 flag = 1;
6f74651a
BE
986 for (i = 0; i < num_sacks; i++) {
987 __be32 start_seq = sp[i].start_seq;
988 __be32 end_seq = sp[i].end_seq;
6a438bbe 989
6f74651a 990 if (i == 0) {
6a438bbe
SH
991 if (tp->recv_sack_cache[i].start_seq != start_seq)
992 flag = 0;
993 } else {
994 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
995 (tp->recv_sack_cache[i].end_seq != end_seq))
996 flag = 0;
997 }
998 tp->recv_sack_cache[i].start_seq = start_seq;
999 tp->recv_sack_cache[i].end_seq = end_seq;
6a438bbe
SH
1000 }
1001
fda03fbb 1002 first_sack_index = 0;
6a438bbe
SH
1003 if (flag)
1004 num_sacks = 1;
1005 else {
1006 int j;
1007 tp->fastpath_skb_hint = NULL;
1008
1009 /* order SACK blocks to allow in order walk of the retrans queue */
1010 for (i = num_sacks-1; i > 0; i--) {
1011 for (j = 0; j < i; j++){
1012 if (after(ntohl(sp[j].start_seq),
1013 ntohl(sp[j+1].start_seq))){
db3ccdac
BE
1014 struct tcp_sack_block_wire tmp;
1015
1016 tmp = sp[j];
1017 sp[j] = sp[j+1];
1018 sp[j+1] = tmp;
fda03fbb
BE
1019
1020 /* Track where the first SACK block goes to */
1021 if (j == first_sack_index)
1022 first_sack_index = j+1;
6a438bbe
SH
1023 }
1024
1025 }
1026 }
1027 }
1028
1029 /* clear flag as used for different purpose in following code */
1030 flag = 0;
1031
fda03fbb
BE
1032 /* Use SACK fastpath hint if valid */
1033 cached_skb = tp->fastpath_skb_hint;
1034 cached_fack_count = tp->fastpath_cnt_hint;
1035 if (!cached_skb) {
1036 cached_skb = sk->sk_write_queue.next;
1037 cached_fack_count = 0;
1038 }
1039
6a438bbe
SH
1040 for (i=0; i<num_sacks; i++, sp++) {
1041 struct sk_buff *skb;
1042 __u32 start_seq = ntohl(sp->start_seq);
1043 __u32 end_seq = ntohl(sp->end_seq);
1044 int fack_count;
1045
fda03fbb
BE
1046 skb = cached_skb;
1047 fack_count = cached_fack_count;
1da177e4
LT
1048
1049 /* Event "B" in the comment above. */
1050 if (after(end_seq, tp->high_seq))
1051 flag |= FLAG_DATA_LOST;
1052
6a438bbe 1053 sk_stream_for_retrans_queue_from(skb, sk) {
6475be16
DM
1054 int in_sack, pcount;
1055 u8 sacked;
1da177e4 1056
fda03fbb
BE
1057 cached_skb = skb;
1058 cached_fack_count = fack_count;
1059 if (i == first_sack_index) {
1060 tp->fastpath_skb_hint = skb;
1061 tp->fastpath_cnt_hint = fack_count;
1062 }
6a438bbe 1063
1da177e4
LT
1064 /* The retransmission queue is always in order, so
1065 * we can short-circuit the walk early.
1066 */
6475be16 1067 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1068 break;
1069
3c05d92e
HX
1070 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1071 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1072
6475be16
DM
1073 pcount = tcp_skb_pcount(skb);
1074
3c05d92e
HX
1075 if (pcount > 1 && !in_sack &&
1076 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
6475be16
DM
1077 unsigned int pkt_len;
1078
3c05d92e
HX
1079 in_sack = !after(start_seq,
1080 TCP_SKB_CB(skb)->seq);
1081
1082 if (!in_sack)
6475be16
DM
1083 pkt_len = (start_seq -
1084 TCP_SKB_CB(skb)->seq);
1085 else
1086 pkt_len = (end_seq -
1087 TCP_SKB_CB(skb)->seq);
7967168c 1088 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
6475be16
DM
1089 break;
1090 pcount = tcp_skb_pcount(skb);
1091 }
1092
1093 fack_count += pcount;
1da177e4 1094
6475be16
DM
1095 sacked = TCP_SKB_CB(skb)->sacked;
1096
1da177e4
LT
1097 /* Account D-SACK for retransmitted packet. */
1098 if ((dup_sack && in_sack) &&
1099 (sacked & TCPCB_RETRANS) &&
1100 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1101 tp->undo_retrans--;
1102
1103 /* The frame is ACKed. */
1104 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1105 if (sacked&TCPCB_RETRANS) {
1106 if ((dup_sack && in_sack) &&
1107 (sacked&TCPCB_SACKED_ACKED))
1108 reord = min(fack_count, reord);
1109 } else {
1110 /* If it was in a hole, we detected reordering. */
1111 if (fack_count < prior_fackets &&
1112 !(sacked&TCPCB_SACKED_ACKED))
1113 reord = min(fack_count, reord);
1114 }
1115
1116 /* Nothing to do; acked frame is about to be dropped. */
1117 continue;
1118 }
1119
1120 if ((sacked&TCPCB_SACKED_RETRANS) &&
1121 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1122 (!lost_retrans || after(end_seq, lost_retrans)))
1123 lost_retrans = end_seq;
1124
1125 if (!in_sack)
1126 continue;
1127
1128 if (!(sacked&TCPCB_SACKED_ACKED)) {
1129 if (sacked & TCPCB_SACKED_RETRANS) {
1130 /* If the segment is not tagged as lost,
1131 * we do not clear RETRANS, believing
1132 * that retransmission is still in flight.
1133 */
1134 if (sacked & TCPCB_LOST) {
1135 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1136 tp->lost_out -= tcp_skb_pcount(skb);
1137 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1138
1139 /* clear lost hint */
1140 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1141 }
1142 } else {
1143 /* New sack for not retransmitted frame,
1144 * which was in hole. It is reordering.
1145 */
1146 if (!(sacked & TCPCB_RETRANS) &&
1147 fack_count < prior_fackets)
1148 reord = min(fack_count, reord);
1149
1150 if (sacked & TCPCB_LOST) {
1151 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1152 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1153
1154 /* clear lost hint */
1155 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1156 }
1157 }
1158
1159 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1160 flag |= FLAG_DATA_SACKED;
1161 tp->sacked_out += tcp_skb_pcount(skb);
1162
1163 if (fack_count > tp->fackets_out)
1164 tp->fackets_out = fack_count;
1165 } else {
1166 if (dup_sack && (sacked&TCPCB_RETRANS))
1167 reord = min(fack_count, reord);
1168 }
1169
1170 /* D-SACK. We can detect redundant retransmission
1171 * in S|R and plain R frames and clear it.
1172 * undo_retrans is decreased above, L|R frames
1173 * are accounted above as well.
1174 */
1175 if (dup_sack &&
1176 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1177 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1178 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1179 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1180 }
1181 }
1182 }
1183
1184 /* Check for lost retransmit. This superb idea is
1185 * borrowed from "ratehalving". Event "C".
1186 * Later note: FACK people cheated me again 8),
1187 * we have to account for reordering! Ugly,
1188 * but should help.
1189 */
6687e988 1190 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1da177e4
LT
1191 struct sk_buff *skb;
1192
1193 sk_stream_for_retrans_queue(skb, sk) {
1194 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1195 break;
1196 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1197 continue;
1198 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1199 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1200 (IsFack(tp) ||
1201 !before(lost_retrans,
1202 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
c1b4a7e6 1203 tp->mss_cache))) {
1da177e4
LT
1204 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1205 tp->retrans_out -= tcp_skb_pcount(skb);
1206
6a438bbe
SH
1207 /* clear lost hint */
1208 tp->retransmit_skb_hint = NULL;
1209
1da177e4
LT
1210 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1211 tp->lost_out += tcp_skb_pcount(skb);
1212 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1213 flag |= FLAG_DATA_SACKED;
1214 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1215 }
1216 }
1217 }
1218 }
1219
1220 tp->left_out = tp->sacked_out + tp->lost_out;
1221
6687e988
ACM
1222 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1223 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1224
1225#if FASTRETRANS_DEBUG > 0
1226 BUG_TRAP((int)tp->sacked_out >= 0);
1227 BUG_TRAP((int)tp->lost_out >= 0);
1228 BUG_TRAP((int)tp->retrans_out >= 0);
1229 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1230#endif
1231 return flag;
1232}
1233
1234/* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1235 * segments to see from the next ACKs whether any data was really missing.
1236 * If the RTO was spurious, new ACKs should arrive.
1237 */
1238void tcp_enter_frto(struct sock *sk)
1239{
6687e988 1240 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1241 struct tcp_sock *tp = tcp_sk(sk);
1242 struct sk_buff *skb;
1243
1244 tp->frto_counter = 1;
1245
6687e988 1246 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1da177e4 1247 tp->snd_una == tp->high_seq ||
6687e988
ACM
1248 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1249 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1250 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1251 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1252 }
1253
1254 /* Have to clear retransmission markers here to keep the bookkeeping
1255 * in shape, even though we are not yet in Loss state.
1256 * If something was really lost, it is eventually caught up
1257 * in tcp_enter_frto_loss.
1258 */
1259 tp->retrans_out = 0;
1260 tp->undo_marker = tp->snd_una;
1261 tp->undo_retrans = 0;
1262
1263 sk_stream_for_retrans_queue(skb, sk) {
1264 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1265 }
1266 tcp_sync_left_out(tp);
1267
6687e988 1268 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1269 tp->frto_highmark = tp->snd_nxt;
1270}
1271
1272/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1273 * which indicates that we should follow the traditional RTO recovery,
1274 * i.e. mark everything lost and do go-back-N retransmission.
1275 */
1276static void tcp_enter_frto_loss(struct sock *sk)
1277{
1278 struct tcp_sock *tp = tcp_sk(sk);
1279 struct sk_buff *skb;
1280 int cnt = 0;
1281
1282 tp->sacked_out = 0;
1283 tp->lost_out = 0;
1284 tp->fackets_out = 0;
1285
1286 sk_stream_for_retrans_queue(skb, sk) {
1287 cnt += tcp_skb_pcount(skb);
1288 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1289 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1290
1291 /* Do not mark those segments lost that were
1292 * forward transmitted after RTO
1293 */
1294 if (!after(TCP_SKB_CB(skb)->end_seq,
1295 tp->frto_highmark)) {
1296 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1297 tp->lost_out += tcp_skb_pcount(skb);
1298 }
1299 } else {
1300 tp->sacked_out += tcp_skb_pcount(skb);
1301 tp->fackets_out = cnt;
1302 }
1303 }
1304 tcp_sync_left_out(tp);
1305
1306 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1307 tp->snd_cwnd_cnt = 0;
1308 tp->snd_cwnd_stamp = tcp_time_stamp;
1309 tp->undo_marker = 0;
1310 tp->frto_counter = 0;
1311
1312 tp->reordering = min_t(unsigned int, tp->reordering,
1313 sysctl_tcp_reordering);
6687e988 1314 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1315 tp->high_seq = tp->frto_highmark;
1316 TCP_ECN_queue_cwr(tp);
6a438bbe
SH
1317
1318 clear_all_retrans_hints(tp);
1da177e4
LT
1319}
1320
1321void tcp_clear_retrans(struct tcp_sock *tp)
1322{
1323 tp->left_out = 0;
1324 tp->retrans_out = 0;
1325
1326 tp->fackets_out = 0;
1327 tp->sacked_out = 0;
1328 tp->lost_out = 0;
1329
1330 tp->undo_marker = 0;
1331 tp->undo_retrans = 0;
1332}
1333
1334/* Enter Loss state. If "how" is not zero, forget all SACK information
1335 * and reset tags completely, otherwise preserve SACKs. If receiver
1336 * dropped its ofo queue, we will know this due to reneging detection.
1337 */
1338void tcp_enter_loss(struct sock *sk, int how)
1339{
6687e988 1340 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1341 struct tcp_sock *tp = tcp_sk(sk);
1342 struct sk_buff *skb;
1343 int cnt = 0;
1344
1345 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1346 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1347 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1348 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1349 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1350 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1351 }
1352 tp->snd_cwnd = 1;
1353 tp->snd_cwnd_cnt = 0;
1354 tp->snd_cwnd_stamp = tcp_time_stamp;
1355
9772efb9 1356 tp->bytes_acked = 0;
1da177e4
LT
1357 tcp_clear_retrans(tp);
1358
1359 /* Push undo marker, if it was plain RTO and nothing
1360 * was retransmitted. */
1361 if (!how)
1362 tp->undo_marker = tp->snd_una;
1363
1364 sk_stream_for_retrans_queue(skb, sk) {
1365 cnt += tcp_skb_pcount(skb);
1366 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1367 tp->undo_marker = 0;
1368 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1369 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1370 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1371 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1372 tp->lost_out += tcp_skb_pcount(skb);
1373 } else {
1374 tp->sacked_out += tcp_skb_pcount(skb);
1375 tp->fackets_out = cnt;
1376 }
1377 }
1378 tcp_sync_left_out(tp);
1379
1380 tp->reordering = min_t(unsigned int, tp->reordering,
1381 sysctl_tcp_reordering);
6687e988 1382 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1383 tp->high_seq = tp->snd_nxt;
1384 TCP_ECN_queue_cwr(tp);
6a438bbe
SH
1385
1386 clear_all_retrans_hints(tp);
1da177e4
LT
1387}
1388
463c84b9 1389static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1390{
1391 struct sk_buff *skb;
1392
1393 /* If ACK arrived pointing to a remembered SACK,
1394 * it means that our remembered SACKs do not reflect
1395 * real state of receiver i.e.
1396 * receiver _host_ is heavily congested (or buggy).
1397 * Do processing similar to RTO timeout.
1398 */
1399 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1400 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1401 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1402 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1403
1404 tcp_enter_loss(sk, 1);
6687e988 1405 icsk->icsk_retransmits++;
1da177e4 1406 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
463c84b9 1407 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1408 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1409 return 1;
1410 }
1411 return 0;
1412}
1413
1414static inline int tcp_fackets_out(struct tcp_sock *tp)
1415{
1416 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1417}
1418
463c84b9 1419static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1420{
463c84b9 1421 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1422}
1423
1424static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1425{
1426 return tp->packets_out &&
463c84b9 1427 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1da177e4
LT
1428}
1429
1430/* Linux NewReno/SACK/FACK/ECN state machine.
1431 * --------------------------------------
1432 *
1433 * "Open" Normal state, no dubious events, fast path.
1434 * "Disorder" In all the respects it is "Open",
1435 * but requires a bit more attention. It is entered when
1436 * we see some SACKs or dupacks. It is split of "Open"
1437 * mainly to move some processing from fast path to slow one.
1438 * "CWR" CWND was reduced due to some Congestion Notification event.
1439 * It can be ECN, ICMP source quench, local device congestion.
1440 * "Recovery" CWND was reduced, we are fast-retransmitting.
1441 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1442 *
1443 * tcp_fastretrans_alert() is entered:
1444 * - each incoming ACK, if state is not "Open"
1445 * - when arrived ACK is unusual, namely:
1446 * * SACK
1447 * * Duplicate ACK.
1448 * * ECN ECE.
1449 *
1450 * Counting packets in flight is pretty simple.
1451 *
1452 * in_flight = packets_out - left_out + retrans_out
1453 *
1454 * packets_out is SND.NXT-SND.UNA counted in packets.
1455 *
1456 * retrans_out is number of retransmitted segments.
1457 *
1458 * left_out is number of segments left network, but not ACKed yet.
1459 *
1460 * left_out = sacked_out + lost_out
1461 *
1462 * sacked_out: Packets, which arrived to receiver out of order
1463 * and hence not ACKed. With SACKs this number is simply
1464 * amount of SACKed data. Even without SACKs
1465 * it is easy to give pretty reliable estimate of this number,
1466 * counting duplicate ACKs.
1467 *
1468 * lost_out: Packets lost by network. TCP has no explicit
1469 * "loss notification" feedback from network (for now).
1470 * It means that this number can be only _guessed_.
1471 * Actually, it is the heuristics to predict lossage that
1472 * distinguishes different algorithms.
1473 *
1474 * F.e. after RTO, when all the queue is considered as lost,
1475 * lost_out = packets_out and in_flight = retrans_out.
1476 *
1477 * Essentially, we have now two algorithms counting
1478 * lost packets.
1479 *
1480 * FACK: It is the simplest heuristics. As soon as we decided
1481 * that something is lost, we decide that _all_ not SACKed
1482 * packets until the most forward SACK are lost. I.e.
1483 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1484 * It is absolutely correct estimate, if network does not reorder
1485 * packets. And it loses any connection to reality when reordering
1486 * takes place. We use FACK by default until reordering
1487 * is suspected on the path to this destination.
1488 *
1489 * NewReno: when Recovery is entered, we assume that one segment
1490 * is lost (classic Reno). While we are in Recovery and
1491 * a partial ACK arrives, we assume that one more packet
1492 * is lost (NewReno). This heuristics are the same in NewReno
1493 * and SACK.
1494 *
1495 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1496 * deflation etc. CWND is real congestion window, never inflated, changes
1497 * only according to classic VJ rules.
1498 *
1499 * Really tricky (and requiring careful tuning) part of algorithm
1500 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1501 * The first determines the moment _when_ we should reduce CWND and,
1502 * hence, slow down forward transmission. In fact, it determines the moment
1503 * when we decide that hole is caused by loss, rather than by a reorder.
1504 *
1505 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1506 * holes, caused by lost packets.
1507 *
1508 * And the most logically complicated part of algorithm is undo
1509 * heuristics. We detect false retransmits due to both too early
1510 * fast retransmit (reordering) and underestimated RTO, analyzing
1511 * timestamps and D-SACKs. When we detect that some segments were
1512 * retransmitted by mistake and CWND reduction was wrong, we undo
1513 * window reduction and abort recovery phase. This logic is hidden
1514 * inside several functions named tcp_try_undo_<something>.
1515 */
1516
1517/* This function decides, when we should leave Disordered state
1518 * and enter Recovery phase, reducing congestion window.
1519 *
1520 * Main question: may we further continue forward transmission
1521 * with the same cwnd?
1522 */
1523static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1524{
1525 __u32 packets_out;
1526
1527 /* Trick#1: The loss is proven. */
1528 if (tp->lost_out)
1529 return 1;
1530
1531 /* Not-A-Trick#2 : Classic rule... */
1532 if (tcp_fackets_out(tp) > tp->reordering)
1533 return 1;
1534
1535 /* Trick#3 : when we use RFC2988 timer restart, fast
1536 * retransmit can be triggered by timeout of queue head.
1537 */
1538 if (tcp_head_timedout(sk, tp))
1539 return 1;
1540
1541 /* Trick#4: It is still not OK... But will it be useful to delay
1542 * recovery more?
1543 */
1544 packets_out = tp->packets_out;
1545 if (packets_out <= tp->reordering &&
1546 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1547 !tcp_may_send_now(sk, tp)) {
1548 /* We have nothing to send. This connection is limited
1549 * either by receiver window or by application.
1550 */
1551 return 1;
1552 }
1553
1554 return 0;
1555}
1556
1557/* If we receive more dupacks than we expected counting segments
1558 * in assumption of absent reordering, interpret this as reordering.
1559 * The only another reason could be bug in receiver TCP.
1560 */
6687e988 1561static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1da177e4 1562{
6687e988 1563 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1564 u32 holes;
1565
1566 holes = max(tp->lost_out, 1U);
1567 holes = min(holes, tp->packets_out);
1568
1569 if ((tp->sacked_out + holes) > tp->packets_out) {
1570 tp->sacked_out = tp->packets_out - holes;
6687e988 1571 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1da177e4
LT
1572 }
1573}
1574
1575/* Emulate SACKs for SACKless connection: account for a new dupack. */
1576
6687e988 1577static void tcp_add_reno_sack(struct sock *sk)
1da177e4 1578{
6687e988 1579 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1580 tp->sacked_out++;
6687e988 1581 tcp_check_reno_reordering(sk, 0);
1da177e4
LT
1582 tcp_sync_left_out(tp);
1583}
1584
1585/* Account for ACK, ACKing some data in Reno Recovery phase. */
1586
1587static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1588{
1589 if (acked > 0) {
1590 /* One ACK acked hole. The rest eat duplicate ACKs. */
1591 if (acked-1 >= tp->sacked_out)
1592 tp->sacked_out = 0;
1593 else
1594 tp->sacked_out -= acked-1;
1595 }
6687e988 1596 tcp_check_reno_reordering(sk, acked);
1da177e4
LT
1597 tcp_sync_left_out(tp);
1598}
1599
1600static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1601{
1602 tp->sacked_out = 0;
1603 tp->left_out = tp->lost_out;
1604}
1605
1606/* Mark head of queue up as lost. */
1607static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1608 int packets, u32 high_seq)
1609{
1610 struct sk_buff *skb;
6a438bbe 1611 int cnt;
1da177e4 1612
6a438bbe
SH
1613 BUG_TRAP(packets <= tp->packets_out);
1614 if (tp->lost_skb_hint) {
1615 skb = tp->lost_skb_hint;
1616 cnt = tp->lost_cnt_hint;
1617 } else {
1618 skb = sk->sk_write_queue.next;
1619 cnt = 0;
1620 }
1da177e4 1621
6a438bbe
SH
1622 sk_stream_for_retrans_queue_from(skb, sk) {
1623 /* TODO: do this better */
1624 /* this is not the most efficient way to do this... */
1625 tp->lost_skb_hint = skb;
1626 tp->lost_cnt_hint = cnt;
1627 cnt += tcp_skb_pcount(skb);
1628 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4
LT
1629 break;
1630 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1631 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1632 tp->lost_out += tcp_skb_pcount(skb);
6a438bbe
SH
1633
1634 /* clear xmit_retransmit_queue hints
1635 * if this is beyond hint */
1636 if(tp->retransmit_skb_hint != NULL &&
1637 before(TCP_SKB_CB(skb)->seq,
1638 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1639
1640 tp->retransmit_skb_hint = NULL;
1641 }
1da177e4
LT
1642 }
1643 }
1644 tcp_sync_left_out(tp);
1645}
1646
1647/* Account newly detected lost packet(s) */
1648
1649static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1650{
1651 if (IsFack(tp)) {
1652 int lost = tp->fackets_out - tp->reordering;
1653 if (lost <= 0)
1654 lost = 1;
1655 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1656 } else {
1657 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1658 }
1659
1660 /* New heuristics: it is possible only after we switched
1661 * to restart timer each time when something is ACKed.
1662 * Hence, we can detect timed out packets during fast
1663 * retransmit without falling to slow start.
1664 */
79320d7e 1665 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1da177e4
LT
1666 struct sk_buff *skb;
1667
6a438bbe
SH
1668 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1669 : sk->sk_write_queue.next;
1670
1671 sk_stream_for_retrans_queue_from(skb, sk) {
1672 if (!tcp_skb_timedout(sk, skb))
1673 break;
1674
1675 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
1676 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1677 tp->lost_out += tcp_skb_pcount(skb);
6a438bbe
SH
1678
1679 /* clear xmit_retrans hint */
1680 if (tp->retransmit_skb_hint &&
1681 before(TCP_SKB_CB(skb)->seq,
1682 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1683
1684 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1685 }
1686 }
6a438bbe
SH
1687
1688 tp->scoreboard_skb_hint = skb;
1689
1da177e4
LT
1690 tcp_sync_left_out(tp);
1691 }
1692}
1693
1694/* CWND moderation, preventing bursts due to too big ACKs
1695 * in dubious situations.
1696 */
1697static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1698{
1699 tp->snd_cwnd = min(tp->snd_cwnd,
1700 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1701 tp->snd_cwnd_stamp = tcp_time_stamp;
1702}
1703
72dc5b92
SH
1704/* Lower bound on congestion window is slow start threshold
1705 * unless congestion avoidance choice decides to overide it.
1706 */
1707static inline u32 tcp_cwnd_min(const struct sock *sk)
1708{
1709 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1710
1711 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1712}
1713
1da177e4 1714/* Decrease cwnd each second ack. */
6687e988 1715static void tcp_cwnd_down(struct sock *sk)
1da177e4 1716{
6687e988 1717 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1718 int decr = tp->snd_cwnd_cnt + 1;
1da177e4
LT
1719
1720 tp->snd_cwnd_cnt = decr&1;
1721 decr >>= 1;
1722
72dc5b92 1723 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1da177e4
LT
1724 tp->snd_cwnd -= decr;
1725
1726 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1727 tp->snd_cwnd_stamp = tcp_time_stamp;
1728}
1729
1730/* Nothing was retransmitted or returned timestamp is less
1731 * than timestamp of the first retransmission.
1732 */
1733static inline int tcp_packet_delayed(struct tcp_sock *tp)
1734{
1735 return !tp->retrans_stamp ||
1736 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1737 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1738}
1739
1740/* Undo procedures. */
1741
1742#if FASTRETRANS_DEBUG > 1
1743static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1744{
1745 struct inet_sock *inet = inet_sk(sk);
1746 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1747 msg,
1748 NIPQUAD(inet->daddr), ntohs(inet->dport),
1749 tp->snd_cwnd, tp->left_out,
1750 tp->snd_ssthresh, tp->prior_ssthresh,
1751 tp->packets_out);
1752}
1753#else
1754#define DBGUNDO(x...) do { } while (0)
1755#endif
1756
6687e988 1757static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 1758{
6687e988
ACM
1759 struct tcp_sock *tp = tcp_sk(sk);
1760
1da177e4 1761 if (tp->prior_ssthresh) {
6687e988
ACM
1762 const struct inet_connection_sock *icsk = inet_csk(sk);
1763
1764 if (icsk->icsk_ca_ops->undo_cwnd)
1765 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
1766 else
1767 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1768
1769 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1770 tp->snd_ssthresh = tp->prior_ssthresh;
1771 TCP_ECN_withdraw_cwr(tp);
1772 }
1773 } else {
1774 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1775 }
1776 tcp_moderate_cwnd(tp);
1777 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
1778
1779 /* There is something screwy going on with the retrans hints after
1780 an undo */
1781 clear_all_retrans_hints(tp);
1da177e4
LT
1782}
1783
1784static inline int tcp_may_undo(struct tcp_sock *tp)
1785{
1786 return tp->undo_marker &&
1787 (!tp->undo_retrans || tcp_packet_delayed(tp));
1788}
1789
1790/* People celebrate: "We love our President!" */
1791static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1792{
1793 if (tcp_may_undo(tp)) {
1794 /* Happy end! We did not retransmit anything
1795 * or our original transmission succeeded.
1796 */
6687e988
ACM
1797 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1798 tcp_undo_cwr(sk, 1);
1799 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
1800 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1801 else
1802 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1803 tp->undo_marker = 0;
1804 }
1805 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1806 /* Hold old state until something *above* high_seq
1807 * is ACKed. For Reno it is MUST to prevent false
1808 * fast retransmits (RFC2582). SACK TCP is safe. */
1809 tcp_moderate_cwnd(tp);
1810 return 1;
1811 }
6687e988 1812 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1813 return 0;
1814}
1815
1816/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1817static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1818{
1819 if (tp->undo_marker && !tp->undo_retrans) {
1820 DBGUNDO(sk, tp, "D-SACK");
6687e988 1821 tcp_undo_cwr(sk, 1);
1da177e4
LT
1822 tp->undo_marker = 0;
1823 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1824 }
1825}
1826
1827/* Undo during fast recovery after partial ACK. */
1828
1829static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1830 int acked)
1831{
1832 /* Partial ACK arrived. Force Hoe's retransmit. */
1833 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1834
1835 if (tcp_may_undo(tp)) {
1836 /* Plain luck! Hole if filled with delayed
1837 * packet, rather than with a retransmit.
1838 */
1839 if (tp->retrans_out == 0)
1840 tp->retrans_stamp = 0;
1841
6687e988 1842 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4
LT
1843
1844 DBGUNDO(sk, tp, "Hoe");
6687e988 1845 tcp_undo_cwr(sk, 0);
1da177e4
LT
1846 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1847
1848 /* So... Do not make Hoe's retransmit yet.
1849 * If the first packet was delayed, the rest
1850 * ones are most probably delayed as well.
1851 */
1852 failed = 0;
1853 }
1854 return failed;
1855}
1856
1857/* Undo during loss recovery after partial ACK. */
1858static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1859{
1860 if (tcp_may_undo(tp)) {
1861 struct sk_buff *skb;
1862 sk_stream_for_retrans_queue(skb, sk) {
1863 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1864 }
6a438bbe
SH
1865
1866 clear_all_retrans_hints(tp);
1867
1da177e4
LT
1868 DBGUNDO(sk, tp, "partial loss");
1869 tp->lost_out = 0;
1870 tp->left_out = tp->sacked_out;
6687e988 1871 tcp_undo_cwr(sk, 1);
1da177e4 1872 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 1873 inet_csk(sk)->icsk_retransmits = 0;
1da177e4
LT
1874 tp->undo_marker = 0;
1875 if (!IsReno(tp))
6687e988 1876 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1877 return 1;
1878 }
1879 return 0;
1880}
1881
6687e988 1882static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 1883{
6687e988 1884 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 1885 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 1886 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 1887 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
1888}
1889
1890static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1891{
1892 tp->left_out = tp->sacked_out;
1893
1894 if (tp->retrans_out == 0)
1895 tp->retrans_stamp = 0;
1896
1897 if (flag&FLAG_ECE)
6687e988 1898 tcp_enter_cwr(sk);
1da177e4 1899
6687e988 1900 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
1901 int state = TCP_CA_Open;
1902
1903 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1904 state = TCP_CA_Disorder;
1905
6687e988
ACM
1906 if (inet_csk(sk)->icsk_ca_state != state) {
1907 tcp_set_ca_state(sk, state);
1da177e4
LT
1908 tp->high_seq = tp->snd_nxt;
1909 }
1910 tcp_moderate_cwnd(tp);
1911 } else {
6687e988 1912 tcp_cwnd_down(sk);
1da177e4
LT
1913 }
1914}
1915
5d424d5a
JH
1916static void tcp_mtup_probe_failed(struct sock *sk)
1917{
1918 struct inet_connection_sock *icsk = inet_csk(sk);
1919
1920 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1921 icsk->icsk_mtup.probe_size = 0;
1922}
1923
1924static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1925{
1926 struct tcp_sock *tp = tcp_sk(sk);
1927 struct inet_connection_sock *icsk = inet_csk(sk);
1928
1929 /* FIXME: breaks with very large cwnd */
1930 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1931 tp->snd_cwnd = tp->snd_cwnd *
1932 tcp_mss_to_mtu(sk, tp->mss_cache) /
1933 icsk->icsk_mtup.probe_size;
1934 tp->snd_cwnd_cnt = 0;
1935 tp->snd_cwnd_stamp = tcp_time_stamp;
1936 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1937
1938 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1939 icsk->icsk_mtup.probe_size = 0;
1940 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1941}
1942
1943
1da177e4
LT
1944/* Process an event, which can update packets-in-flight not trivially.
1945 * Main goal of this function is to calculate new estimate for left_out,
1946 * taking into account both packets sitting in receiver's buffer and
1947 * packets lost by network.
1948 *
1949 * Besides that it does CWND reduction, when packet loss is detected
1950 * and changes state of machine.
1951 *
1952 * It does _not_ decide what to send, it is made in function
1953 * tcp_xmit_retransmit_queue().
1954 */
1955static void
1956tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1957 int prior_packets, int flag)
1958{
6687e988 1959 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1960 struct tcp_sock *tp = tcp_sk(sk);
1961 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1962
1963 /* Some technical things:
1964 * 1. Reno does not count dupacks (sacked_out) automatically. */
1965 if (!tp->packets_out)
1966 tp->sacked_out = 0;
1967 /* 2. SACK counts snd_fack in packets inaccurately. */
1968 if (tp->sacked_out == 0)
1969 tp->fackets_out = 0;
1970
1971 /* Now state machine starts.
1972 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1973 if (flag&FLAG_ECE)
1974 tp->prior_ssthresh = 0;
1975
1976 /* B. In all the states check for reneging SACKs. */
463c84b9 1977 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
1978 return;
1979
1980 /* C. Process data loss notification, provided it is valid. */
1981 if ((flag&FLAG_DATA_LOST) &&
1982 before(tp->snd_una, tp->high_seq) &&
6687e988 1983 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4
LT
1984 tp->fackets_out > tp->reordering) {
1985 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1986 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1987 }
1988
1989 /* D. Synchronize left_out to current state. */
1990 tcp_sync_left_out(tp);
1991
1992 /* E. Check state exit conditions. State can be terminated
1993 * when high_seq is ACKed. */
6687e988 1994 if (icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
1995 if (!sysctl_tcp_frto)
1996 BUG_TRAP(tp->retrans_out == 0);
1997 tp->retrans_stamp = 0;
1998 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 1999 switch (icsk->icsk_ca_state) {
1da177e4 2000 case TCP_CA_Loss:
6687e988 2001 icsk->icsk_retransmits = 0;
1da177e4
LT
2002 if (tcp_try_undo_recovery(sk, tp))
2003 return;
2004 break;
2005
2006 case TCP_CA_CWR:
2007 /* CWR is to be held something *above* high_seq
2008 * is ACKed for CWR bit to reach receiver. */
2009 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
2010 tcp_complete_cwr(sk);
2011 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2012 }
2013 break;
2014
2015 case TCP_CA_Disorder:
2016 tcp_try_undo_dsack(sk, tp);
2017 if (!tp->undo_marker ||
2018 /* For SACK case do not Open to allow to undo
2019 * catching for all duplicate ACKs. */
2020 IsReno(tp) || tp->snd_una != tp->high_seq) {
2021 tp->undo_marker = 0;
6687e988 2022 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2023 }
2024 break;
2025
2026 case TCP_CA_Recovery:
2027 if (IsReno(tp))
2028 tcp_reset_reno_sack(tp);
2029 if (tcp_try_undo_recovery(sk, tp))
2030 return;
6687e988 2031 tcp_complete_cwr(sk);
1da177e4
LT
2032 break;
2033 }
2034 }
2035
2036 /* F. Process state. */
6687e988 2037 switch (icsk->icsk_ca_state) {
1da177e4
LT
2038 case TCP_CA_Recovery:
2039 if (prior_snd_una == tp->snd_una) {
2040 if (IsReno(tp) && is_dupack)
6687e988 2041 tcp_add_reno_sack(sk);
1da177e4
LT
2042 } else {
2043 int acked = prior_packets - tp->packets_out;
2044 if (IsReno(tp))
2045 tcp_remove_reno_sacks(sk, tp, acked);
2046 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2047 }
2048 break;
2049 case TCP_CA_Loss:
2050 if (flag&FLAG_DATA_ACKED)
6687e988 2051 icsk->icsk_retransmits = 0;
1da177e4
LT
2052 if (!tcp_try_undo_loss(sk, tp)) {
2053 tcp_moderate_cwnd(tp);
2054 tcp_xmit_retransmit_queue(sk);
2055 return;
2056 }
6687e988 2057 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2058 return;
2059 /* Loss is undone; fall through to processing in Open state. */
2060 default:
2061 if (IsReno(tp)) {
2062 if (tp->snd_una != prior_snd_una)
2063 tcp_reset_reno_sack(tp);
2064 if (is_dupack)
6687e988 2065 tcp_add_reno_sack(sk);
1da177e4
LT
2066 }
2067
6687e988 2068 if (icsk->icsk_ca_state == TCP_CA_Disorder)
1da177e4
LT
2069 tcp_try_undo_dsack(sk, tp);
2070
2071 if (!tcp_time_to_recover(sk, tp)) {
2072 tcp_try_to_open(sk, tp, flag);
2073 return;
2074 }
2075
5d424d5a
JH
2076 /* MTU probe failure: don't reduce cwnd */
2077 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2078 icsk->icsk_mtup.probe_size &&
0e7b1368 2079 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2080 tcp_mtup_probe_failed(sk);
2081 /* Restores the reduction we did in tcp_mtup_probe() */
2082 tp->snd_cwnd++;
2083 tcp_simple_retransmit(sk);
2084 return;
2085 }
2086
1da177e4
LT
2087 /* Otherwise enter Recovery state */
2088
2089 if (IsReno(tp))
2090 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2091 else
2092 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2093
2094 tp->high_seq = tp->snd_nxt;
2095 tp->prior_ssthresh = 0;
2096 tp->undo_marker = tp->snd_una;
2097 tp->undo_retrans = tp->retrans_out;
2098
6687e988 2099 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2100 if (!(flag&FLAG_ECE))
6687e988
ACM
2101 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2102 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2103 TCP_ECN_queue_cwr(tp);
2104 }
2105
9772efb9 2106 tp->bytes_acked = 0;
1da177e4 2107 tp->snd_cwnd_cnt = 0;
6687e988 2108 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2109 }
2110
2111 if (is_dupack || tcp_head_timedout(sk, tp))
2112 tcp_update_scoreboard(sk, tp);
6687e988 2113 tcp_cwnd_down(sk);
1da177e4
LT
2114 tcp_xmit_retransmit_queue(sk);
2115}
2116
2117/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2118 * with this code. (Supersedes RFC1323)
1da177e4 2119 */
2d2abbab 2120static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2121{
1da177e4
LT
2122 /* RTTM Rule: A TSecr value received in a segment is used to
2123 * update the averaged RTT measurement only if the segment
2124 * acknowledges some new data, i.e., only if it advances the
2125 * left edge of the send window.
2126 *
2127 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2128 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2129 *
2130 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2131 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2132 * samples are accepted even from very old segments: f.e., when rtt=1
2133 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2134 * answer arrives rto becomes 120 seconds! If at least one of segments
2135 * in window is lost... Voila. --ANK (010210)
2136 */
463c84b9
ACM
2137 struct tcp_sock *tp = tcp_sk(sk);
2138 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2139 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2140 tcp_set_rto(sk);
2141 inet_csk(sk)->icsk_backoff = 0;
2142 tcp_bound_rto(sk);
1da177e4
LT
2143}
2144
2d2abbab 2145static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2146{
2147 /* We don't have a timestamp. Can only use
2148 * packets that are not retransmitted to determine
2149 * rtt estimates. Also, we must not reset the
2150 * backoff for rto until we get a non-retransmitted
2151 * packet. This allows us to deal with a situation
2152 * where the network delay has increased suddenly.
2153 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2154 */
2155
2156 if (flag & FLAG_RETRANS_DATA_ACKED)
2157 return;
2158
2d2abbab 2159 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2160 tcp_set_rto(sk);
2161 inet_csk(sk)->icsk_backoff = 0;
2162 tcp_bound_rto(sk);
1da177e4
LT
2163}
2164
463c84b9 2165static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2166 const s32 seq_rtt)
1da177e4 2167{
463c84b9 2168 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2169 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2170 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2171 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2172 else if (seq_rtt >= 0)
2d2abbab 2173 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2174}
2175
40efc6fa
SH
2176static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2177 u32 in_flight, int good)
1da177e4 2178{
6687e988
ACM
2179 const struct inet_connection_sock *icsk = inet_csk(sk);
2180 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2181 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2182}
2183
1da177e4
LT
2184/* Restart timer after forward progress on connection.
2185 * RFC2988 recommends to restart timer to now+rto.
2186 */
2187
40efc6fa 2188static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1da177e4
LT
2189{
2190 if (!tp->packets_out) {
463c84b9 2191 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2192 } else {
3f421baa 2193 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2194 }
2195}
2196
1da177e4
LT
2197static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2198 __u32 now, __s32 *seq_rtt)
2199{
2200 struct tcp_sock *tp = tcp_sk(sk);
2201 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2202 __u32 seq = tp->snd_una;
2203 __u32 packets_acked;
2204 int acked = 0;
2205
2206 /* If we get here, the whole TSO packet has not been
2207 * acked.
2208 */
2209 BUG_ON(!after(scb->end_seq, seq));
2210
2211 packets_acked = tcp_skb_pcount(skb);
2212 if (tcp_trim_head(sk, skb, seq - scb->seq))
2213 return 0;
2214 packets_acked -= tcp_skb_pcount(skb);
2215
2216 if (packets_acked) {
2217 __u8 sacked = scb->sacked;
2218
2219 acked |= FLAG_DATA_ACKED;
2220 if (sacked) {
2221 if (sacked & TCPCB_RETRANS) {
2222 if (sacked & TCPCB_SACKED_RETRANS)
2223 tp->retrans_out -= packets_acked;
2224 acked |= FLAG_RETRANS_DATA_ACKED;
2225 *seq_rtt = -1;
2226 } else if (*seq_rtt < 0)
2227 *seq_rtt = now - scb->when;
2228 if (sacked & TCPCB_SACKED_ACKED)
2229 tp->sacked_out -= packets_acked;
2230 if (sacked & TCPCB_LOST)
2231 tp->lost_out -= packets_acked;
2232 if (sacked & TCPCB_URG) {
2233 if (tp->urg_mode &&
2234 !before(seq, tp->snd_up))
2235 tp->urg_mode = 0;
2236 }
2237 } else if (*seq_rtt < 0)
2238 *seq_rtt = now - scb->when;
2239
2240 if (tp->fackets_out) {
2241 __u32 dval = min(tp->fackets_out, packets_acked);
2242 tp->fackets_out -= dval;
2243 }
2244 tp->packets_out -= packets_acked;
2245
2246 BUG_ON(tcp_skb_pcount(skb) == 0);
2247 BUG_ON(!before(scb->seq, scb->end_seq));
2248 }
2249
2250 return acked;
2251}
2252
8ea333eb 2253static u32 tcp_usrtt(struct timeval *tv)
2d2abbab 2254{
8ea333eb 2255 struct timeval now;
2d2abbab
SH
2256
2257 do_gettimeofday(&now);
8ea333eb 2258 return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2d2abbab 2259}
1da177e4
LT
2260
2261/* Remove acknowledged frames from the retransmission queue. */
2d2abbab 2262static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
1da177e4
LT
2263{
2264 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2265 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2266 struct sk_buff *skb;
2267 __u32 now = tcp_time_stamp;
2268 int acked = 0;
2269 __s32 seq_rtt = -1;
317a76f9 2270 u32 pkts_acked = 0;
2d2abbab
SH
2271 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2272 = icsk->icsk_ca_ops->rtt_sample;
80246ab3 2273 struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
1da177e4
LT
2274
2275 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2276 skb != sk->sk_send_head) {
2277 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2278 __u8 sacked = scb->sacked;
2279
2280 /* If our packet is before the ack sequence we can
2281 * discard it as it's confirmed to have arrived at
2282 * the other end.
2283 */
2284 if (after(scb->end_seq, tp->snd_una)) {
cb83199a
DM
2285 if (tcp_skb_pcount(skb) > 1 &&
2286 after(tp->snd_una, scb->seq))
1da177e4
LT
2287 acked |= tcp_tso_acked(sk, skb,
2288 now, &seq_rtt);
2289 break;
2290 }
2291
2292 /* Initial outgoing SYN's get put onto the write_queue
2293 * just like anything else we transmit. It is not
2294 * true data, and if we misinform our callers that
2295 * this ACK acks real data, we will erroneously exit
2296 * connection startup slow start one packet too
2297 * quickly. This is severely frowned upon behavior.
2298 */
2299 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2300 acked |= FLAG_DATA_ACKED;
317a76f9 2301 ++pkts_acked;
1da177e4
LT
2302 } else {
2303 acked |= FLAG_SYN_ACKED;
2304 tp->retrans_stamp = 0;
2305 }
2306
5d424d5a
JH
2307 /* MTU probing checks */
2308 if (icsk->icsk_mtup.probe_size) {
0e7b1368 2309 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
5d424d5a
JH
2310 tcp_mtup_probe_success(sk, skb);
2311 }
2312 }
2313
1da177e4
LT
2314 if (sacked) {
2315 if (sacked & TCPCB_RETRANS) {
2316 if(sacked & TCPCB_SACKED_RETRANS)
2317 tp->retrans_out -= tcp_skb_pcount(skb);
2318 acked |= FLAG_RETRANS_DATA_ACKED;
2319 seq_rtt = -1;
2d2abbab 2320 } else if (seq_rtt < 0) {
1da177e4 2321 seq_rtt = now - scb->when;
8ea333eb 2322 skb_get_timestamp(skb, &tv);
a61bbcf2 2323 }
1da177e4
LT
2324 if (sacked & TCPCB_SACKED_ACKED)
2325 tp->sacked_out -= tcp_skb_pcount(skb);
2326 if (sacked & TCPCB_LOST)
2327 tp->lost_out -= tcp_skb_pcount(skb);
2328 if (sacked & TCPCB_URG) {
2329 if (tp->urg_mode &&
2330 !before(scb->end_seq, tp->snd_up))
2331 tp->urg_mode = 0;
2332 }
2d2abbab 2333 } else if (seq_rtt < 0) {
1da177e4 2334 seq_rtt = now - scb->when;
8ea333eb 2335 skb_get_timestamp(skb, &tv);
2d2abbab 2336 }
1da177e4
LT
2337 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2338 tcp_packets_out_dec(tp, skb);
8728b834 2339 __skb_unlink(skb, &sk->sk_write_queue);
1da177e4 2340 sk_stream_free_skb(sk, skb);
6a438bbe 2341 clear_all_retrans_hints(tp);
1da177e4
LT
2342 }
2343
2344 if (acked&FLAG_ACKED) {
2d2abbab 2345 tcp_ack_update_rtt(sk, acked, seq_rtt);
1da177e4 2346 tcp_ack_packets_out(sk, tp);
8ea333eb
JH
2347 if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2348 (*rtt_sample)(sk, tcp_usrtt(&tv));
317a76f9 2349
6687e988
ACM
2350 if (icsk->icsk_ca_ops->pkts_acked)
2351 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
1da177e4
LT
2352 }
2353
2354#if FASTRETRANS_DEBUG > 0
2355 BUG_TRAP((int)tp->sacked_out >= 0);
2356 BUG_TRAP((int)tp->lost_out >= 0);
2357 BUG_TRAP((int)tp->retrans_out >= 0);
2358 if (!tp->packets_out && tp->rx_opt.sack_ok) {
6687e988 2359 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2360 if (tp->lost_out) {
2361 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2362 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2363 tp->lost_out = 0;
2364 }
2365 if (tp->sacked_out) {
2366 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2367 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2368 tp->sacked_out = 0;
2369 }
2370 if (tp->retrans_out) {
2371 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2372 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2373 tp->retrans_out = 0;
2374 }
2375 }
2376#endif
2377 *seq_rtt_p = seq_rtt;
2378 return acked;
2379}
2380
2381static void tcp_ack_probe(struct sock *sk)
2382{
463c84b9
ACM
2383 const struct tcp_sock *tp = tcp_sk(sk);
2384 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2385
2386 /* Was it a usable window open? */
2387
2388 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2389 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2390 icsk->icsk_backoff = 0;
2391 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2392 /* Socket must be waked up by subsequent tcp_data_snd_check().
2393 * This function is not for random using!
2394 */
2395 } else {
463c84b9 2396 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2397 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2398 TCP_RTO_MAX);
1da177e4
LT
2399 }
2400}
2401
6687e988 2402static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2403{
2404 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2405 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2406}
2407
6687e988 2408static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2409{
6687e988 2410 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2411 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2412 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2413}
2414
2415/* Check that window update is acceptable.
2416 * The function assumes that snd_una<=ack<=snd_next.
2417 */
463c84b9
ACM
2418static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2419 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2420{
2421 return (after(ack, tp->snd_una) ||
2422 after(ack_seq, tp->snd_wl1) ||
2423 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2424}
2425
2426/* Update our send window.
2427 *
2428 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2429 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2430 */
2431static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2432 struct sk_buff *skb, u32 ack, u32 ack_seq)
2433{
2434 int flag = 0;
2435 u32 nwin = ntohs(skb->h.th->window);
2436
2437 if (likely(!skb->h.th->syn))
2438 nwin <<= tp->rx_opt.snd_wscale;
2439
2440 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2441 flag |= FLAG_WIN_UPDATE;
2442 tcp_update_wl(tp, ack, ack_seq);
2443
2444 if (tp->snd_wnd != nwin) {
2445 tp->snd_wnd = nwin;
2446
2447 /* Note, it is the only place, where
2448 * fast path is recovered for sending TCP.
2449 */
2ad41065 2450 tp->pred_flags = 0;
1da177e4
LT
2451 tcp_fast_path_check(sk, tp);
2452
2453 if (nwin > tp->max_window) {
2454 tp->max_window = nwin;
d83d8461 2455 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2456 }
2457 }
2458 }
2459
2460 tp->snd_una = ack;
2461
2462 return flag;
2463}
2464
2465static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2466{
2467 struct tcp_sock *tp = tcp_sk(sk);
2468
2469 tcp_sync_left_out(tp);
2470
2471 if (tp->snd_una == prior_snd_una ||
2472 !before(tp->snd_una, tp->frto_highmark)) {
2473 /* RTO was caused by loss, start retransmitting in
2474 * go-back-N slow start
2475 */
2476 tcp_enter_frto_loss(sk);
2477 return;
2478 }
2479
2480 if (tp->frto_counter == 1) {
2481 /* First ACK after RTO advances the window: allow two new
2482 * segments out.
2483 */
2484 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2485 } else {
2486 /* Also the second ACK after RTO advances the window.
2487 * The RTO was likely spurious. Reduce cwnd and continue
2488 * in congestion avoidance
2489 */
2490 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2491 tcp_moderate_cwnd(tp);
2492 }
2493
2494 /* F-RTO affects on two new ACKs following RTO.
caa20d9a 2495 * At latest on third ACK the TCP behavior is back to normal.
1da177e4
LT
2496 */
2497 tp->frto_counter = (tp->frto_counter + 1) % 3;
2498}
2499
1da177e4
LT
2500/* This routine deals with incoming acks, but not outgoing ones. */
2501static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2502{
6687e988 2503 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2504 struct tcp_sock *tp = tcp_sk(sk);
2505 u32 prior_snd_una = tp->snd_una;
2506 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2507 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2508 u32 prior_in_flight;
2509 s32 seq_rtt;
2510 int prior_packets;
2511
2512 /* If the ack is newer than sent or older than previous acks
2513 * then we can probably ignore it.
2514 */
2515 if (after(ack, tp->snd_nxt))
2516 goto uninteresting_ack;
2517
2518 if (before(ack, prior_snd_una))
2519 goto old_ack;
2520
3fdf3f0c
DO
2521 if (sysctl_tcp_abc) {
2522 if (icsk->icsk_ca_state < TCP_CA_CWR)
2523 tp->bytes_acked += ack - prior_snd_una;
2524 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2525 /* we assume just one segment left network */
2526 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2527 }
9772efb9 2528
1da177e4
LT
2529 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2530 /* Window is constant, pure forward advance.
2531 * No more checks are required.
2532 * Note, we use the fact that SND.UNA>=SND.WL2.
2533 */
2534 tcp_update_wl(tp, ack, ack_seq);
2535 tp->snd_una = ack;
1da177e4
LT
2536 flag |= FLAG_WIN_UPDATE;
2537
6687e988 2538 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 2539
1da177e4
LT
2540 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2541 } else {
2542 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2543 flag |= FLAG_DATA;
2544 else
2545 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2546
2547 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2548
2549 if (TCP_SKB_CB(skb)->sacked)
2550 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2551
2552 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2553 flag |= FLAG_ECE;
2554
6687e988 2555 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
2556 }
2557
2558 /* We passed data and got it acked, remove any soft error
2559 * log. Something worked...
2560 */
2561 sk->sk_err_soft = 0;
2562 tp->rcv_tstamp = tcp_time_stamp;
2563 prior_packets = tp->packets_out;
2564 if (!prior_packets)
2565 goto no_queue;
2566
2567 prior_in_flight = tcp_packets_in_flight(tp);
2568
2569 /* See if we can take anything off of the retransmit queue. */
2d2abbab 2570 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4
LT
2571
2572 if (tp->frto_counter)
2573 tcp_process_frto(sk, prior_snd_una);
2574
6687e988 2575 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 2576 /* Advance CWND, if state allows this. */
6687e988
ACM
2577 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2578 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
1da177e4
LT
2579 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2580 } else {
317a76f9 2581 if ((flag & FLAG_DATA_ACKED))
6687e988 2582 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
1da177e4
LT
2583 }
2584
2585 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2586 dst_confirm(sk->sk_dst_cache);
2587
2588 return 1;
2589
2590no_queue:
6687e988 2591 icsk->icsk_probes_out = 0;
1da177e4
LT
2592
2593 /* If this ack opens up a zero window, clear backoff. It was
2594 * being used to time the probes, and is probably far higher than
2595 * it needs to be for normal retransmission.
2596 */
2597 if (sk->sk_send_head)
2598 tcp_ack_probe(sk);
2599 return 1;
2600
2601old_ack:
2602 if (TCP_SKB_CB(skb)->sacked)
2603 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2604
2605uninteresting_ack:
2606 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2607 return 0;
2608}
2609
2610
2611/* Look for tcp options. Normally only called on SYN and SYNACK packets.
2612 * But, this can also be called on packets in the established flow when
2613 * the fast version below fails.
2614 */
2615void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2616{
2617 unsigned char *ptr;
2618 struct tcphdr *th = skb->h.th;
2619 int length=(th->doff*4)-sizeof(struct tcphdr);
2620
2621 ptr = (unsigned char *)(th + 1);
2622 opt_rx->saw_tstamp = 0;
2623
2624 while(length>0) {
2625 int opcode=*ptr++;
2626 int opsize;
2627
2628 switch (opcode) {
2629 case TCPOPT_EOL:
2630 return;
2631 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2632 length--;
2633 continue;
2634 default:
2635 opsize=*ptr++;
2636 if (opsize < 2) /* "silly options" */
2637 return;
2638 if (opsize > length)
2639 return; /* don't parse partial options */
2640 switch(opcode) {
2641 case TCPOPT_MSS:
2642 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
4f3608b7 2643 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
1da177e4
LT
2644 if (in_mss) {
2645 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2646 in_mss = opt_rx->user_mss;
2647 opt_rx->mss_clamp = in_mss;
2648 }
2649 }
2650 break;
2651 case TCPOPT_WINDOW:
2652 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2653 if (sysctl_tcp_window_scaling) {
2654 __u8 snd_wscale = *(__u8 *) ptr;
2655 opt_rx->wscale_ok = 1;
2656 if (snd_wscale > 14) {
2657 if(net_ratelimit())
2658 printk(KERN_INFO "tcp_parse_options: Illegal window "
2659 "scaling value %d >14 received.\n",
2660 snd_wscale);
2661 snd_wscale = 14;
2662 }
2663 opt_rx->snd_wscale = snd_wscale;
2664 }
2665 break;
2666 case TCPOPT_TIMESTAMP:
2667 if(opsize==TCPOLEN_TIMESTAMP) {
2668 if ((estab && opt_rx->tstamp_ok) ||
2669 (!estab && sysctl_tcp_timestamps)) {
2670 opt_rx->saw_tstamp = 1;
4f3608b7
AV
2671 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2672 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
1da177e4
LT
2673 }
2674 }
2675 break;
2676 case TCPOPT_SACK_PERM:
2677 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2678 if (sysctl_tcp_sack) {
2679 opt_rx->sack_ok = 1;
2680 tcp_sack_reset(opt_rx);
2681 }
2682 }
2683 break;
2684
2685 case TCPOPT_SACK:
2686 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2687 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2688 opt_rx->sack_ok) {
2689 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2690 }
cfb6eeb4
YH
2691#ifdef CONFIG_TCP_MD5SIG
2692 case TCPOPT_MD5SIG:
2693 /*
2694 * The MD5 Hash has already been
2695 * checked (see tcp_v{4,6}_do_rcv()).
2696 */
2697 break;
2698#endif
1da177e4
LT
2699 };
2700 ptr+=opsize-2;
2701 length-=opsize;
2702 };
2703 }
2704}
2705
2706/* Fast parse options. This hopes to only see timestamps.
2707 * If it is wrong it falls back on tcp_parse_options().
2708 */
40efc6fa
SH
2709static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2710 struct tcp_sock *tp)
1da177e4
LT
2711{
2712 if (th->doff == sizeof(struct tcphdr)>>2) {
2713 tp->rx_opt.saw_tstamp = 0;
2714 return 0;
2715 } else if (tp->rx_opt.tstamp_ok &&
2716 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
4f3608b7
AV
2717 __be32 *ptr = (__be32 *)(th + 1);
2718 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
2719 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2720 tp->rx_opt.saw_tstamp = 1;
2721 ++ptr;
2722 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2723 ++ptr;
2724 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2725 return 1;
2726 }
2727 }
2728 tcp_parse_options(skb, &tp->rx_opt, 1);
2729 return 1;
2730}
2731
2732static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2733{
2734 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2735 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2736}
2737
2738static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2739{
2740 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2741 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2742 * extra check below makes sure this can only happen
2743 * for pure ACK frames. -DaveM
2744 *
2745 * Not only, also it occurs for expired timestamps.
2746 */
2747
2748 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2749 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2750 tcp_store_ts_recent(tp);
2751 }
2752}
2753
2754/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2755 *
2756 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2757 * it can pass through stack. So, the following predicate verifies that
2758 * this segment is not used for anything but congestion avoidance or
2759 * fast retransmit. Moreover, we even are able to eliminate most of such
2760 * second order effects, if we apply some small "replay" window (~RTO)
2761 * to timestamp space.
2762 *
2763 * All these measures still do not guarantee that we reject wrapped ACKs
2764 * on networks with high bandwidth, when sequence space is recycled fastly,
2765 * but it guarantees that such events will be very rare and do not affect
2766 * connection seriously. This doesn't look nice, but alas, PAWS is really
2767 * buggy extension.
2768 *
2769 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2770 * states that events when retransmit arrives after original data are rare.
2771 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2772 * the biggest problem on large power networks even with minor reordering.
2773 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2774 * up to bandwidth of 18Gigabit/sec. 8) ]
2775 */
2776
463c84b9 2777static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 2778{
463c84b9 2779 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2780 struct tcphdr *th = skb->h.th;
2781 u32 seq = TCP_SKB_CB(skb)->seq;
2782 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2783
2784 return (/* 1. Pure ACK with correct sequence number. */
2785 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2786
2787 /* 2. ... and duplicate ACK. */
2788 ack == tp->snd_una &&
2789
2790 /* 3. ... and does not update window. */
2791 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2792
2793 /* 4. ... and sits in replay window. */
463c84b9 2794 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
2795}
2796
463c84b9 2797static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 2798{
463c84b9 2799 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2800 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2801 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 2802 !tcp_disordered_ack(sk, skb));
1da177e4
LT
2803}
2804
2805/* Check segment sequence number for validity.
2806 *
2807 * Segment controls are considered valid, if the segment
2808 * fits to the window after truncation to the window. Acceptability
2809 * of data (and SYN, FIN, of course) is checked separately.
2810 * See tcp_data_queue(), for example.
2811 *
2812 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2813 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2814 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2815 * (borrowed from freebsd)
2816 */
2817
2818static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2819{
2820 return !before(end_seq, tp->rcv_wup) &&
2821 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2822}
2823
2824/* When we get a reset we do this. */
2825static void tcp_reset(struct sock *sk)
2826{
2827 /* We want the right error as BSD sees it (and indeed as we do). */
2828 switch (sk->sk_state) {
2829 case TCP_SYN_SENT:
2830 sk->sk_err = ECONNREFUSED;
2831 break;
2832 case TCP_CLOSE_WAIT:
2833 sk->sk_err = EPIPE;
2834 break;
2835 case TCP_CLOSE:
2836 return;
2837 default:
2838 sk->sk_err = ECONNRESET;
2839 }
2840
2841 if (!sock_flag(sk, SOCK_DEAD))
2842 sk->sk_error_report(sk);
2843
2844 tcp_done(sk);
2845}
2846
2847/*
2848 * Process the FIN bit. This now behaves as it is supposed to work
2849 * and the FIN takes effect when it is validly part of sequence
2850 * space. Not before when we get holes.
2851 *
2852 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2853 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2854 * TIME-WAIT)
2855 *
2856 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2857 * close and we go into CLOSING (and later onto TIME-WAIT)
2858 *
2859 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2860 */
2861static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2862{
2863 struct tcp_sock *tp = tcp_sk(sk);
2864
463c84b9 2865 inet_csk_schedule_ack(sk);
1da177e4
LT
2866
2867 sk->sk_shutdown |= RCV_SHUTDOWN;
2868 sock_set_flag(sk, SOCK_DONE);
2869
2870 switch (sk->sk_state) {
2871 case TCP_SYN_RECV:
2872 case TCP_ESTABLISHED:
2873 /* Move to CLOSE_WAIT */
2874 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 2875 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
2876 break;
2877
2878 case TCP_CLOSE_WAIT:
2879 case TCP_CLOSING:
2880 /* Received a retransmission of the FIN, do
2881 * nothing.
2882 */
2883 break;
2884 case TCP_LAST_ACK:
2885 /* RFC793: Remain in the LAST-ACK state. */
2886 break;
2887
2888 case TCP_FIN_WAIT1:
2889 /* This case occurs when a simultaneous close
2890 * happens, we must ack the received FIN and
2891 * enter the CLOSING state.
2892 */
2893 tcp_send_ack(sk);
2894 tcp_set_state(sk, TCP_CLOSING);
2895 break;
2896 case TCP_FIN_WAIT2:
2897 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2898 tcp_send_ack(sk);
2899 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2900 break;
2901 default:
2902 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2903 * cases we should never reach this piece of code.
2904 */
2905 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2906 __FUNCTION__, sk->sk_state);
2907 break;
2908 };
2909
2910 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2911 * Probably, we should reset in this case. For now drop them.
2912 */
2913 __skb_queue_purge(&tp->out_of_order_queue);
2914 if (tp->rx_opt.sack_ok)
2915 tcp_sack_reset(&tp->rx_opt);
2916 sk_stream_mem_reclaim(sk);
2917
2918 if (!sock_flag(sk, SOCK_DEAD)) {
2919 sk->sk_state_change(sk);
2920
2921 /* Do not send POLL_HUP for half duplex close. */
2922 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2923 sk->sk_state == TCP_CLOSE)
2924 sk_wake_async(sk, 1, POLL_HUP);
2925 else
2926 sk_wake_async(sk, 1, POLL_IN);
2927 }
2928}
2929
40efc6fa 2930static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
2931{
2932 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2933 if (before(seq, sp->start_seq))
2934 sp->start_seq = seq;
2935 if (after(end_seq, sp->end_seq))
2936 sp->end_seq = end_seq;
2937 return 1;
2938 }
2939 return 0;
2940}
2941
40efc6fa 2942static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
2943{
2944 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2945 if (before(seq, tp->rcv_nxt))
2946 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2947 else
2948 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2949
2950 tp->rx_opt.dsack = 1;
2951 tp->duplicate_sack[0].start_seq = seq;
2952 tp->duplicate_sack[0].end_seq = end_seq;
2953 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2954 }
2955}
2956
40efc6fa 2957static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
2958{
2959 if (!tp->rx_opt.dsack)
2960 tcp_dsack_set(tp, seq, end_seq);
2961 else
2962 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2963}
2964
2965static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2966{
2967 struct tcp_sock *tp = tcp_sk(sk);
2968
2969 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2970 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2971 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 2972 tcp_enter_quickack_mode(sk);
1da177e4
LT
2973
2974 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2975 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2976
2977 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2978 end_seq = tp->rcv_nxt;
2979 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2980 }
2981 }
2982
2983 tcp_send_ack(sk);
2984}
2985
2986/* These routines update the SACK block as out-of-order packets arrive or
2987 * in-order packets close up the sequence space.
2988 */
2989static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2990{
2991 int this_sack;
2992 struct tcp_sack_block *sp = &tp->selective_acks[0];
2993 struct tcp_sack_block *swalk = sp+1;
2994
2995 /* See if the recent change to the first SACK eats into
2996 * or hits the sequence space of other SACK blocks, if so coalesce.
2997 */
2998 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2999 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3000 int i;
3001
3002 /* Zap SWALK, by moving every further SACK up by one slot.
3003 * Decrease num_sacks.
3004 */
3005 tp->rx_opt.num_sacks--;
3006 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3007 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
3008 sp[i] = sp[i+1];
3009 continue;
3010 }
3011 this_sack++, swalk++;
3012 }
3013}
3014
40efc6fa 3015static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
3016{
3017 __u32 tmp;
3018
3019 tmp = sack1->start_seq;
3020 sack1->start_seq = sack2->start_seq;
3021 sack2->start_seq = tmp;
3022
3023 tmp = sack1->end_seq;
3024 sack1->end_seq = sack2->end_seq;
3025 sack2->end_seq = tmp;
3026}
3027
3028static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3029{
3030 struct tcp_sock *tp = tcp_sk(sk);
3031 struct tcp_sack_block *sp = &tp->selective_acks[0];
3032 int cur_sacks = tp->rx_opt.num_sacks;
3033 int this_sack;
3034
3035 if (!cur_sacks)
3036 goto new_sack;
3037
3038 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3039 if (tcp_sack_extend(sp, seq, end_seq)) {
3040 /* Rotate this_sack to the first one. */
3041 for (; this_sack>0; this_sack--, sp--)
3042 tcp_sack_swap(sp, sp-1);
3043 if (cur_sacks > 1)
3044 tcp_sack_maybe_coalesce(tp);
3045 return;
3046 }
3047 }
3048
3049 /* Could not find an adjacent existing SACK, build a new one,
3050 * put it at the front, and shift everyone else down. We
3051 * always know there is at least one SACK present already here.
3052 *
3053 * If the sack array is full, forget about the last one.
3054 */
3055 if (this_sack >= 4) {
3056 this_sack--;
3057 tp->rx_opt.num_sacks--;
3058 sp--;
3059 }
3060 for(; this_sack > 0; this_sack--, sp--)
3061 *sp = *(sp-1);
3062
3063new_sack:
3064 /* Build the new head SACK, and we're done. */
3065 sp->start_seq = seq;
3066 sp->end_seq = end_seq;
3067 tp->rx_opt.num_sacks++;
3068 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3069}
3070
3071/* RCV.NXT advances, some SACKs should be eaten. */
3072
3073static void tcp_sack_remove(struct tcp_sock *tp)
3074{
3075 struct tcp_sack_block *sp = &tp->selective_acks[0];
3076 int num_sacks = tp->rx_opt.num_sacks;
3077 int this_sack;
3078
3079 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3080 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3081 tp->rx_opt.num_sacks = 0;
3082 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3083 return;
3084 }
3085
3086 for(this_sack = 0; this_sack < num_sacks; ) {
3087 /* Check if the start of the sack is covered by RCV.NXT. */
3088 if (!before(tp->rcv_nxt, sp->start_seq)) {
3089 int i;
3090
3091 /* RCV.NXT must cover all the block! */
3092 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3093
3094 /* Zap this SACK, by moving forward any other SACKS. */
3095 for (i=this_sack+1; i < num_sacks; i++)
3096 tp->selective_acks[i-1] = tp->selective_acks[i];
3097 num_sacks--;
3098 continue;
3099 }
3100 this_sack++;
3101 sp++;
3102 }
3103 if (num_sacks != tp->rx_opt.num_sacks) {
3104 tp->rx_opt.num_sacks = num_sacks;
3105 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3106 }
3107}
3108
3109/* This one checks to see if we can put data from the
3110 * out_of_order queue into the receive_queue.
3111 */
3112static void tcp_ofo_queue(struct sock *sk)
3113{
3114 struct tcp_sock *tp = tcp_sk(sk);
3115 __u32 dsack_high = tp->rcv_nxt;
3116 struct sk_buff *skb;
3117
3118 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3119 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3120 break;
3121
3122 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3123 __u32 dsack = dsack_high;
3124 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3125 dsack_high = TCP_SKB_CB(skb)->end_seq;
3126 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3127 }
3128
3129 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3130 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3131 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3132 __kfree_skb(skb);
3133 continue;
3134 }
3135 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3136 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3137 TCP_SKB_CB(skb)->end_seq);
3138
8728b834 3139 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3140 __skb_queue_tail(&sk->sk_receive_queue, skb);
3141 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3142 if(skb->h.th->fin)
3143 tcp_fin(skb, sk, skb->h.th);
3144 }
3145}
3146
3147static int tcp_prune_queue(struct sock *sk);
3148
3149static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3150{
3151 struct tcphdr *th = skb->h.th;
3152 struct tcp_sock *tp = tcp_sk(sk);
3153 int eaten = -1;
3154
3155 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3156 goto drop;
3157
1da177e4
LT
3158 __skb_pull(skb, th->doff*4);
3159
3160 TCP_ECN_accept_cwr(tp, skb);
3161
3162 if (tp->rx_opt.dsack) {
3163 tp->rx_opt.dsack = 0;
3164 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3165 4 - tp->rx_opt.tstamp_ok);
3166 }
3167
3168 /* Queue data for delivery to the user.
3169 * Packets in sequence go to the receive queue.
3170 * Out of sequence packets to the out_of_order_queue.
3171 */
3172 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3173 if (tcp_receive_window(tp) == 0)
3174 goto out_of_window;
3175
3176 /* Ok. In sequence. In window. */
3177 if (tp->ucopy.task == current &&
3178 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3179 sock_owned_by_user(sk) && !tp->urg_data) {
3180 int chunk = min_t(unsigned int, skb->len,
3181 tp->ucopy.len);
3182
3183 __set_current_state(TASK_RUNNING);
3184
3185 local_bh_enable();
3186 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3187 tp->ucopy.len -= chunk;
3188 tp->copied_seq += chunk;
3189 eaten = (chunk == skb->len && !th->fin);
3190 tcp_rcv_space_adjust(sk);
3191 }
3192 local_bh_disable();
3193 }
3194
3195 if (eaten <= 0) {
3196queue_and_out:
3197 if (eaten < 0 &&
3198 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3199 !sk_stream_rmem_schedule(sk, skb))) {
3200 if (tcp_prune_queue(sk) < 0 ||
3201 !sk_stream_rmem_schedule(sk, skb))
3202 goto drop;
3203 }
3204 sk_stream_set_owner_r(skb, sk);
3205 __skb_queue_tail(&sk->sk_receive_queue, skb);
3206 }
3207 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3208 if(skb->len)
3209 tcp_event_data_recv(sk, tp, skb);
3210 if(th->fin)
3211 tcp_fin(skb, sk, th);
3212
b03efcfb 3213 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3214 tcp_ofo_queue(sk);
3215
3216 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3217 * gap in queue is filled.
3218 */
b03efcfb 3219 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3220 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3221 }
3222
3223 if (tp->rx_opt.num_sacks)
3224 tcp_sack_remove(tp);
3225
3226 tcp_fast_path_check(sk, tp);
3227
3228 if (eaten > 0)
3229 __kfree_skb(skb);
3230 else if (!sock_flag(sk, SOCK_DEAD))
3231 sk->sk_data_ready(sk, 0);
3232 return;
3233 }
3234
3235 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3236 /* A retransmit, 2nd most common case. Force an immediate ack. */
3237 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3238 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3239
3240out_of_window:
463c84b9
ACM
3241 tcp_enter_quickack_mode(sk);
3242 inet_csk_schedule_ack(sk);
1da177e4
LT
3243drop:
3244 __kfree_skb(skb);
3245 return;
3246 }
3247
3248 /* Out of window. F.e. zero window probe. */
3249 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3250 goto out_of_window;
3251
463c84b9 3252 tcp_enter_quickack_mode(sk);
1da177e4
LT
3253
3254 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3255 /* Partial packet, seq < rcv_next < end_seq */
3256 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3257 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3258 TCP_SKB_CB(skb)->end_seq);
3259
3260 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3261
3262 /* If window is closed, drop tail of packet. But after
3263 * remembering D-SACK for its head made in previous line.
3264 */
3265 if (!tcp_receive_window(tp))
3266 goto out_of_window;
3267 goto queue_and_out;
3268 }
3269
3270 TCP_ECN_check_ce(tp, skb);
3271
3272 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3273 !sk_stream_rmem_schedule(sk, skb)) {
3274 if (tcp_prune_queue(sk) < 0 ||
3275 !sk_stream_rmem_schedule(sk, skb))
3276 goto drop;
3277 }
3278
3279 /* Disable header prediction. */
3280 tp->pred_flags = 0;
463c84b9 3281 inet_csk_schedule_ack(sk);
1da177e4
LT
3282
3283 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3284 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3285
3286 sk_stream_set_owner_r(skb, sk);
3287
3288 if (!skb_peek(&tp->out_of_order_queue)) {
3289 /* Initial out of order segment, build 1 SACK. */
3290 if (tp->rx_opt.sack_ok) {
3291 tp->rx_opt.num_sacks = 1;
3292 tp->rx_opt.dsack = 0;
3293 tp->rx_opt.eff_sacks = 1;
3294 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3295 tp->selective_acks[0].end_seq =
3296 TCP_SKB_CB(skb)->end_seq;
3297 }
3298 __skb_queue_head(&tp->out_of_order_queue,skb);
3299 } else {
3300 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3301 u32 seq = TCP_SKB_CB(skb)->seq;
3302 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3303
3304 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3305 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3306
3307 if (!tp->rx_opt.num_sacks ||
3308 tp->selective_acks[0].end_seq != seq)
3309 goto add_sack;
3310
3311 /* Common case: data arrive in order after hole. */
3312 tp->selective_acks[0].end_seq = end_seq;
3313 return;
3314 }
3315
3316 /* Find place to insert this segment. */
3317 do {
3318 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3319 break;
3320 } while ((skb1 = skb1->prev) !=
3321 (struct sk_buff*)&tp->out_of_order_queue);
3322
3323 /* Do skb overlap to previous one? */
3324 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3325 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3326 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3327 /* All the bits are present. Drop. */
3328 __kfree_skb(skb);
3329 tcp_dsack_set(tp, seq, end_seq);
3330 goto add_sack;
3331 }
3332 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3333 /* Partial overlap. */
3334 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3335 } else {
3336 skb1 = skb1->prev;
3337 }
3338 }
3339 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3340
3341 /* And clean segments covered by new one as whole. */
3342 while ((skb1 = skb->next) !=
3343 (struct sk_buff*)&tp->out_of_order_queue &&
3344 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3345 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3346 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3347 break;
3348 }
8728b834 3349 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3350 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3351 __kfree_skb(skb1);
3352 }
3353
3354add_sack:
3355 if (tp->rx_opt.sack_ok)
3356 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3357 }
3358}
3359
3360/* Collapse contiguous sequence of skbs head..tail with
3361 * sequence numbers start..end.
3362 * Segments with FIN/SYN are not collapsed (only because this
3363 * simplifies code)
3364 */
3365static void
8728b834
DM
3366tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3367 struct sk_buff *head, struct sk_buff *tail,
3368 u32 start, u32 end)
1da177e4
LT
3369{
3370 struct sk_buff *skb;
3371
caa20d9a 3372 /* First, check that queue is collapsible and find
1da177e4
LT
3373 * the point where collapsing can be useful. */
3374 for (skb = head; skb != tail; ) {
3375 /* No new bits? It is possible on ofo queue. */
3376 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3377 struct sk_buff *next = skb->next;
8728b834 3378 __skb_unlink(skb, list);
1da177e4
LT
3379 __kfree_skb(skb);
3380 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3381 skb = next;
3382 continue;
3383 }
3384
3385 /* The first skb to collapse is:
3386 * - not SYN/FIN and
3387 * - bloated or contains data before "start" or
3388 * overlaps to the next one.
3389 */
3390 if (!skb->h.th->syn && !skb->h.th->fin &&
3391 (tcp_win_from_space(skb->truesize) > skb->len ||
3392 before(TCP_SKB_CB(skb)->seq, start) ||
3393 (skb->next != tail &&
3394 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3395 break;
3396
3397 /* Decided to skip this, advance start seq. */
3398 start = TCP_SKB_CB(skb)->end_seq;
3399 skb = skb->next;
3400 }
3401 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3402 return;
3403
3404 while (before(start, end)) {
3405 struct sk_buff *nskb;
3406 int header = skb_headroom(skb);
3407 int copy = SKB_MAX_ORDER(header, 0);
3408
3409 /* Too big header? This can happen with IPv6. */
3410 if (copy < 0)
3411 return;
3412 if (end-start < copy)
3413 copy = end-start;
3414 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3415 if (!nskb)
3416 return;
3417 skb_reserve(nskb, header);
3418 memcpy(nskb->head, skb->head, header);
3419 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3420 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3421 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3422 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3423 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3424 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3425 sk_stream_set_owner_r(nskb, sk);
3426
3427 /* Copy data, releasing collapsed skbs. */
3428 while (copy > 0) {
3429 int offset = start - TCP_SKB_CB(skb)->seq;
3430 int size = TCP_SKB_CB(skb)->end_seq - start;
3431
09a62660 3432 BUG_ON(offset < 0);
1da177e4
LT
3433 if (size > 0) {
3434 size = min(copy, size);
3435 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3436 BUG();
3437 TCP_SKB_CB(nskb)->end_seq += size;
3438 copy -= size;
3439 start += size;
3440 }
3441 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3442 struct sk_buff *next = skb->next;
8728b834 3443 __skb_unlink(skb, list);
1da177e4
LT
3444 __kfree_skb(skb);
3445 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3446 skb = next;
3447 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3448 return;
3449 }
3450 }
3451 }
3452}
3453
3454/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3455 * and tcp_collapse() them until all the queue is collapsed.
3456 */
3457static void tcp_collapse_ofo_queue(struct sock *sk)
3458{
3459 struct tcp_sock *tp = tcp_sk(sk);
3460 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3461 struct sk_buff *head;
3462 u32 start, end;
3463
3464 if (skb == NULL)
3465 return;
3466
3467 start = TCP_SKB_CB(skb)->seq;
3468 end = TCP_SKB_CB(skb)->end_seq;
3469 head = skb;
3470
3471 for (;;) {
3472 skb = skb->next;
3473
3474 /* Segment is terminated when we see gap or when
3475 * we are at the end of all the queue. */
3476 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3477 after(TCP_SKB_CB(skb)->seq, end) ||
3478 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3479 tcp_collapse(sk, &tp->out_of_order_queue,
3480 head, skb, start, end);
1da177e4
LT
3481 head = skb;
3482 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3483 break;
3484 /* Start new segment */
3485 start = TCP_SKB_CB(skb)->seq;
3486 end = TCP_SKB_CB(skb)->end_seq;
3487 } else {
3488 if (before(TCP_SKB_CB(skb)->seq, start))
3489 start = TCP_SKB_CB(skb)->seq;
3490 if (after(TCP_SKB_CB(skb)->end_seq, end))
3491 end = TCP_SKB_CB(skb)->end_seq;
3492 }
3493 }
3494}
3495
3496/* Reduce allocated memory if we can, trying to get
3497 * the socket within its memory limits again.
3498 *
3499 * Return less than zero if we should start dropping frames
3500 * until the socket owning process reads some of the data
3501 * to stabilize the situation.
3502 */
3503static int tcp_prune_queue(struct sock *sk)
3504{
3505 struct tcp_sock *tp = tcp_sk(sk);
3506
3507 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3508
3509 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3510
3511 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3512 tcp_clamp_window(sk, tp);
3513 else if (tcp_memory_pressure)
3514 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3515
3516 tcp_collapse_ofo_queue(sk);
8728b834
DM
3517 tcp_collapse(sk, &sk->sk_receive_queue,
3518 sk->sk_receive_queue.next,
1da177e4
LT
3519 (struct sk_buff*)&sk->sk_receive_queue,
3520 tp->copied_seq, tp->rcv_nxt);
3521 sk_stream_mem_reclaim(sk);
3522
3523 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3524 return 0;
3525
3526 /* Collapsing did not help, destructive actions follow.
3527 * This must not ever occur. */
3528
3529 /* First, purge the out_of_order queue. */
b03efcfb
DM
3530 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3531 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
3532 __skb_queue_purge(&tp->out_of_order_queue);
3533
3534 /* Reset SACK state. A conforming SACK implementation will
3535 * do the same at a timeout based retransmit. When a connection
3536 * is in a sad state like this, we care only about integrity
3537 * of the connection not performance.
3538 */
3539 if (tp->rx_opt.sack_ok)
3540 tcp_sack_reset(&tp->rx_opt);
3541 sk_stream_mem_reclaim(sk);
3542 }
3543
3544 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3545 return 0;
3546
3547 /* If we are really being abused, tell the caller to silently
3548 * drop receive data on the floor. It will get retransmitted
3549 * and hopefully then we'll have sufficient space.
3550 */
3551 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3552
3553 /* Massive buffer overcommit. */
3554 tp->pred_flags = 0;
3555 return -1;
3556}
3557
3558
3559/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3560 * As additional protections, we do not touch cwnd in retransmission phases,
3561 * and if application hit its sndbuf limit recently.
3562 */
3563void tcp_cwnd_application_limited(struct sock *sk)
3564{
3565 struct tcp_sock *tp = tcp_sk(sk);
3566
6687e988 3567 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
3568 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3569 /* Limited by application or receiver window. */
d254bcdb
IJ
3570 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3571 u32 win_used = max(tp->snd_cwnd_used, init_win);
1da177e4 3572 if (win_used < tp->snd_cwnd) {
6687e988 3573 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
3574 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3575 }
3576 tp->snd_cwnd_used = 0;
3577 }
3578 tp->snd_cwnd_stamp = tcp_time_stamp;
3579}
3580
40efc6fa 3581static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
0d9901df
DM
3582{
3583 /* If the user specified a specific send buffer setting, do
3584 * not modify it.
3585 */
3586 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3587 return 0;
3588
3589 /* If we are under global TCP memory pressure, do not expand. */
3590 if (tcp_memory_pressure)
3591 return 0;
3592
3593 /* If we are under soft global TCP memory pressure, do not expand. */
3594 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3595 return 0;
3596
3597 /* If we filled the congestion window, do not expand. */
3598 if (tp->packets_out >= tp->snd_cwnd)
3599 return 0;
3600
3601 return 1;
3602}
1da177e4
LT
3603
3604/* When incoming ACK allowed to free some skb from write_queue,
3605 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3606 * on the exit from tcp input handler.
3607 *
3608 * PROBLEM: sndbuf expansion does not work well with largesend.
3609 */
3610static void tcp_new_space(struct sock *sk)
3611{
3612 struct tcp_sock *tp = tcp_sk(sk);
3613
0d9901df 3614 if (tcp_should_expand_sndbuf(sk, tp)) {
c1b4a7e6 3615 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
3616 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3617 demanded = max_t(unsigned int, tp->snd_cwnd,
3618 tp->reordering + 1);
3619 sndmem *= 2*demanded;
3620 if (sndmem > sk->sk_sndbuf)
3621 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3622 tp->snd_cwnd_stamp = tcp_time_stamp;
3623 }
3624
3625 sk->sk_write_space(sk);
3626}
3627
40efc6fa 3628static void tcp_check_space(struct sock *sk)
1da177e4
LT
3629{
3630 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3631 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3632 if (sk->sk_socket &&
3633 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3634 tcp_new_space(sk);
3635 }
3636}
3637
40efc6fa 3638static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
1da177e4 3639{
55c97f3e 3640 tcp_push_pending_frames(sk, tp);
1da177e4
LT
3641 tcp_check_space(sk);
3642}
3643
3644/*
3645 * Check if sending an ack is needed.
3646 */
3647static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3648{
3649 struct tcp_sock *tp = tcp_sk(sk);
3650
3651 /* More than one full frame received... */
463c84b9 3652 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
3653 /* ... and right edge of window advances far enough.
3654 * (tcp_recvmsg() will send ACK otherwise). Or...
3655 */
3656 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3657 /* We ACK each frame or... */
463c84b9 3658 tcp_in_quickack_mode(sk) ||
1da177e4
LT
3659 /* We have out of order data. */
3660 (ofo_possible &&
3661 skb_peek(&tp->out_of_order_queue))) {
3662 /* Then ack it now */
3663 tcp_send_ack(sk);
3664 } else {
3665 /* Else, send delayed ack. */
3666 tcp_send_delayed_ack(sk);
3667 }
3668}
3669
40efc6fa 3670static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 3671{
463c84b9 3672 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
3673 /* We sent a data segment already. */
3674 return;
3675 }
3676 __tcp_ack_snd_check(sk, 1);
3677}
3678
3679/*
3680 * This routine is only called when we have urgent data
caa20d9a 3681 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
3682 * moved inline now as tcp_urg is only called from one
3683 * place. We handle URGent data wrong. We have to - as
3684 * BSD still doesn't use the correction from RFC961.
3685 * For 1003.1g we should support a new option TCP_STDURG to permit
3686 * either form (or just set the sysctl tcp_stdurg).
3687 */
3688
3689static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3690{
3691 struct tcp_sock *tp = tcp_sk(sk);
3692 u32 ptr = ntohs(th->urg_ptr);
3693
3694 if (ptr && !sysctl_tcp_stdurg)
3695 ptr--;
3696 ptr += ntohl(th->seq);
3697
3698 /* Ignore urgent data that we've already seen and read. */
3699 if (after(tp->copied_seq, ptr))
3700 return;
3701
3702 /* Do not replay urg ptr.
3703 *
3704 * NOTE: interesting situation not covered by specs.
3705 * Misbehaving sender may send urg ptr, pointing to segment,
3706 * which we already have in ofo queue. We are not able to fetch
3707 * such data and will stay in TCP_URG_NOTYET until will be eaten
3708 * by recvmsg(). Seems, we are not obliged to handle such wicked
3709 * situations. But it is worth to think about possibility of some
3710 * DoSes using some hypothetical application level deadlock.
3711 */
3712 if (before(ptr, tp->rcv_nxt))
3713 return;
3714
3715 /* Do we already have a newer (or duplicate) urgent pointer? */
3716 if (tp->urg_data && !after(ptr, tp->urg_seq))
3717 return;
3718
3719 /* Tell the world about our new urgent pointer. */
3720 sk_send_sigurg(sk);
3721
3722 /* We may be adding urgent data when the last byte read was
3723 * urgent. To do this requires some care. We cannot just ignore
3724 * tp->copied_seq since we would read the last urgent byte again
3725 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 3726 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
3727 *
3728 * NOTE. Double Dutch. Rendering to plain English: author of comment
3729 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3730 * and expect that both A and B disappear from stream. This is _wrong_.
3731 * Though this happens in BSD with high probability, this is occasional.
3732 * Any application relying on this is buggy. Note also, that fix "works"
3733 * only in this artificial test. Insert some normal data between A and B and we will
3734 * decline of BSD again. Verdict: it is better to remove to trap
3735 * buggy users.
3736 */
3737 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3738 !sock_flag(sk, SOCK_URGINLINE) &&
3739 tp->copied_seq != tp->rcv_nxt) {
3740 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3741 tp->copied_seq++;
3742 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 3743 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
3744 __kfree_skb(skb);
3745 }
3746 }
3747
3748 tp->urg_data = TCP_URG_NOTYET;
3749 tp->urg_seq = ptr;
3750
3751 /* Disable header prediction. */
3752 tp->pred_flags = 0;
3753}
3754
3755/* This is the 'fast' part of urgent handling. */
3756static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3757{
3758 struct tcp_sock *tp = tcp_sk(sk);
3759
3760 /* Check if we get a new urgent pointer - normally not. */
3761 if (th->urg)
3762 tcp_check_urg(sk,th);
3763
3764 /* Do we wait for any urgent data? - normally not... */
3765 if (tp->urg_data == TCP_URG_NOTYET) {
3766 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3767 th->syn;
3768
3769 /* Is the urgent pointer pointing into this packet? */
3770 if (ptr < skb->len) {
3771 u8 tmp;
3772 if (skb_copy_bits(skb, ptr, &tmp, 1))
3773 BUG();
3774 tp->urg_data = TCP_URG_VALID | tmp;
3775 if (!sock_flag(sk, SOCK_DEAD))
3776 sk->sk_data_ready(sk, 0);
3777 }
3778 }
3779}
3780
3781static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3782{
3783 struct tcp_sock *tp = tcp_sk(sk);
3784 int chunk = skb->len - hlen;
3785 int err;
3786
3787 local_bh_enable();
3788 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3789 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3790 else
3791 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3792 tp->ucopy.iov);
3793
3794 if (!err) {
3795 tp->ucopy.len -= chunk;
3796 tp->copied_seq += chunk;
3797 tcp_rcv_space_adjust(sk);
3798 }
3799
3800 local_bh_disable();
3801 return err;
3802}
3803
b51655b9 3804static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 3805{
b51655b9 3806 __sum16 result;
1da177e4
LT
3807
3808 if (sock_owned_by_user(sk)) {
3809 local_bh_enable();
3810 result = __tcp_checksum_complete(skb);
3811 local_bh_disable();
3812 } else {
3813 result = __tcp_checksum_complete(skb);
3814 }
3815 return result;
3816}
3817
40efc6fa 3818static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4
LT
3819{
3820 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3821 __tcp_checksum_complete_user(sk, skb);
3822}
3823
1a2449a8
CL
3824#ifdef CONFIG_NET_DMA
3825static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3826{
3827 struct tcp_sock *tp = tcp_sk(sk);
3828 int chunk = skb->len - hlen;
3829 int dma_cookie;
3830 int copied_early = 0;
3831
3832 if (tp->ucopy.wakeup)
3833 return 0;
3834
3835 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3836 tp->ucopy.dma_chan = get_softnet_dma();
3837
3838 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3839
3840 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3841 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3842
3843 if (dma_cookie < 0)
3844 goto out;
3845
3846 tp->ucopy.dma_cookie = dma_cookie;
3847 copied_early = 1;
3848
3849 tp->ucopy.len -= chunk;
3850 tp->copied_seq += chunk;
3851 tcp_rcv_space_adjust(sk);
3852
3853 if ((tp->ucopy.len == 0) ||
3854 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3855 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3856 tp->ucopy.wakeup = 1;
3857 sk->sk_data_ready(sk, 0);
3858 }
3859 } else if (chunk > 0) {
3860 tp->ucopy.wakeup = 1;
3861 sk->sk_data_ready(sk, 0);
3862 }
3863out:
3864 return copied_early;
3865}
3866#endif /* CONFIG_NET_DMA */
3867
1da177e4
LT
3868/*
3869 * TCP receive function for the ESTABLISHED state.
3870 *
3871 * It is split into a fast path and a slow path. The fast path is
3872 * disabled when:
3873 * - A zero window was announced from us - zero window probing
3874 * is only handled properly in the slow path.
3875 * - Out of order segments arrived.
3876 * - Urgent data is expected.
3877 * - There is no buffer space left
3878 * - Unexpected TCP flags/window values/header lengths are received
3879 * (detected by checking the TCP header against pred_flags)
3880 * - Data is sent in both directions. Fast path only supports pure senders
3881 * or pure receivers (this means either the sequence number or the ack
3882 * value must stay constant)
3883 * - Unexpected TCP option.
3884 *
3885 * When these conditions are not satisfied it drops into a standard
3886 * receive procedure patterned after RFC793 to handle all cases.
3887 * The first three cases are guaranteed by proper pred_flags setting,
3888 * the rest is checked inline. Fast processing is turned on in
3889 * tcp_data_queue when everything is OK.
3890 */
3891int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3892 struct tcphdr *th, unsigned len)
3893{
3894 struct tcp_sock *tp = tcp_sk(sk);
3895
3896 /*
3897 * Header prediction.
3898 * The code loosely follows the one in the famous
3899 * "30 instruction TCP receive" Van Jacobson mail.
3900 *
3901 * Van's trick is to deposit buffers into socket queue
3902 * on a device interrupt, to call tcp_recv function
3903 * on the receive process context and checksum and copy
3904 * the buffer to user space. smart...
3905 *
3906 * Our current scheme is not silly either but we take the
3907 * extra cost of the net_bh soft interrupt processing...
3908 * We do checksum and copy also but from device to kernel.
3909 */
3910
3911 tp->rx_opt.saw_tstamp = 0;
3912
3913 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 3914 * if header_prediction is to be made
1da177e4
LT
3915 * 'S' will always be tp->tcp_header_len >> 2
3916 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3917 * turn it off (when there are holes in the receive
3918 * space for instance)
3919 * PSH flag is ignored.
3920 */
3921
3922 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3923 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3924 int tcp_header_len = tp->tcp_header_len;
3925
3926 /* Timestamp header prediction: tcp_header_len
3927 * is automatically equal to th->doff*4 due to pred_flags
3928 * match.
3929 */
3930
3931 /* Check timestamp */
3932 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4f3608b7 3933 __be32 *ptr = (__be32 *)(th + 1);
1da177e4
LT
3934
3935 /* No? Slow path! */
4f3608b7 3936 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
3937 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3938 goto slow_path;
3939
3940 tp->rx_opt.saw_tstamp = 1;
3941 ++ptr;
3942 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3943 ++ptr;
3944 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3945
3946 /* If PAWS failed, check it more carefully in slow path */
3947 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3948 goto slow_path;
3949
3950 /* DO NOT update ts_recent here, if checksum fails
3951 * and timestamp was corrupted part, it will result
3952 * in a hung connection since we will drop all
3953 * future packets due to the PAWS test.
3954 */
3955 }
3956
3957 if (len <= tcp_header_len) {
3958 /* Bulk data transfer: sender */
3959 if (len == tcp_header_len) {
3960 /* Predicted packet is in window by definition.
3961 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3962 * Hence, check seq<=rcv_wup reduces to:
3963 */
3964 if (tcp_header_len ==
3965 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3966 tp->rcv_nxt == tp->rcv_wup)
3967 tcp_store_ts_recent(tp);
3968
1da177e4
LT
3969 /* We know that such packets are checksummed
3970 * on entry.
3971 */
3972 tcp_ack(sk, skb, 0);
3973 __kfree_skb(skb);
55c97f3e 3974 tcp_data_snd_check(sk, tp);
1da177e4
LT
3975 return 0;
3976 } else { /* Header too small */
3977 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3978 goto discard;
3979 }
3980 } else {
3981 int eaten = 0;
1a2449a8 3982 int copied_early = 0;
1da177e4 3983
1a2449a8
CL
3984 if (tp->copied_seq == tp->rcv_nxt &&
3985 len - tcp_header_len <= tp->ucopy.len) {
3986#ifdef CONFIG_NET_DMA
3987 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
3988 copied_early = 1;
3989 eaten = 1;
3990 }
3991#endif
3992 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
3993 __set_current_state(TASK_RUNNING);
1da177e4 3994
1a2449a8
CL
3995 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
3996 eaten = 1;
3997 }
3998 if (eaten) {
1da177e4
LT
3999 /* Predicted packet is in window by definition.
4000 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4001 * Hence, check seq<=rcv_wup reduces to:
4002 */
4003 if (tcp_header_len ==
4004 (sizeof(struct tcphdr) +
4005 TCPOLEN_TSTAMP_ALIGNED) &&
4006 tp->rcv_nxt == tp->rcv_wup)
4007 tcp_store_ts_recent(tp);
4008
463c84b9 4009 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4010
4011 __skb_pull(skb, tcp_header_len);
4012 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4013 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 4014 }
1a2449a8
CL
4015 if (copied_early)
4016 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
4017 }
4018 if (!eaten) {
4019 if (tcp_checksum_complete_user(sk, skb))
4020 goto csum_error;
4021
4022 /* Predicted packet is in window by definition.
4023 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4024 * Hence, check seq<=rcv_wup reduces to:
4025 */
4026 if (tcp_header_len ==
4027 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4028 tp->rcv_nxt == tp->rcv_wup)
4029 tcp_store_ts_recent(tp);
4030
463c84b9 4031 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4032
4033 if ((int)skb->truesize > sk->sk_forward_alloc)
4034 goto step5;
4035
4036 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4037
4038 /* Bulk data transfer: receiver */
4039 __skb_pull(skb,tcp_header_len);
4040 __skb_queue_tail(&sk->sk_receive_queue, skb);
4041 sk_stream_set_owner_r(skb, sk);
4042 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4043 }
4044
4045 tcp_event_data_recv(sk, tp, skb);
4046
4047 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4048 /* Well, only one small jumplet in fast path... */
4049 tcp_ack(sk, skb, FLAG_DATA);
55c97f3e 4050 tcp_data_snd_check(sk, tp);
463c84b9 4051 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4052 goto no_ack;
4053 }
4054
31432412 4055 __tcp_ack_snd_check(sk, 0);
1da177e4 4056no_ack:
1a2449a8
CL
4057#ifdef CONFIG_NET_DMA
4058 if (copied_early)
4059 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4060 else
4061#endif
1da177e4
LT
4062 if (eaten)
4063 __kfree_skb(skb);
4064 else
4065 sk->sk_data_ready(sk, 0);
4066 return 0;
4067 }
4068 }
4069
4070slow_path:
4071 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4072 goto csum_error;
4073
4074 /*
4075 * RFC1323: H1. Apply PAWS check first.
4076 */
4077 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4078 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4079 if (!th->rst) {
4080 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4081 tcp_send_dupack(sk, skb);
4082 goto discard;
4083 }
4084 /* Resets are accepted even if PAWS failed.
4085
4086 ts_recent update must be made after we are sure
4087 that the packet is in window.
4088 */
4089 }
4090
4091 /*
4092 * Standard slow path.
4093 */
4094
4095 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4096 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4097 * (RST) segments are validated by checking their SEQ-fields."
4098 * And page 69: "If an incoming segment is not acceptable,
4099 * an acknowledgment should be sent in reply (unless the RST bit
4100 * is set, if so drop the segment and return)".
4101 */
4102 if (!th->rst)
4103 tcp_send_dupack(sk, skb);
4104 goto discard;
4105 }
4106
4107 if(th->rst) {
4108 tcp_reset(sk);
4109 goto discard;
4110 }
4111
4112 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4113
4114 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4115 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4116 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4117 tcp_reset(sk);
4118 return 1;
4119 }
4120
4121step5:
4122 if(th->ack)
4123 tcp_ack(sk, skb, FLAG_SLOWPATH);
4124
463c84b9 4125 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4126
4127 /* Process urgent data. */
4128 tcp_urg(sk, skb, th);
4129
4130 /* step 7: process the segment text */
4131 tcp_data_queue(sk, skb);
4132
55c97f3e 4133 tcp_data_snd_check(sk, tp);
1da177e4
LT
4134 tcp_ack_snd_check(sk);
4135 return 0;
4136
4137csum_error:
4138 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4139
4140discard:
4141 __kfree_skb(skb);
4142 return 0;
4143}
4144
4145static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4146 struct tcphdr *th, unsigned len)
4147{
4148 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4149 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4150 int saved_clamp = tp->rx_opt.mss_clamp;
4151
4152 tcp_parse_options(skb, &tp->rx_opt, 0);
4153
4154 if (th->ack) {
4155 /* rfc793:
4156 * "If the state is SYN-SENT then
4157 * first check the ACK bit
4158 * If the ACK bit is set
4159 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4160 * a reset (unless the RST bit is set, if so drop
4161 * the segment and return)"
4162 *
4163 * We do not send data with SYN, so that RFC-correct
4164 * test reduces to:
4165 */
4166 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4167 goto reset_and_undo;
4168
4169 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4170 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4171 tcp_time_stamp)) {
4172 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4173 goto reset_and_undo;
4174 }
4175
4176 /* Now ACK is acceptable.
4177 *
4178 * "If the RST bit is set
4179 * If the ACK was acceptable then signal the user "error:
4180 * connection reset", drop the segment, enter CLOSED state,
4181 * delete TCB, and return."
4182 */
4183
4184 if (th->rst) {
4185 tcp_reset(sk);
4186 goto discard;
4187 }
4188
4189 /* rfc793:
4190 * "fifth, if neither of the SYN or RST bits is set then
4191 * drop the segment and return."
4192 *
4193 * See note below!
4194 * --ANK(990513)
4195 */
4196 if (!th->syn)
4197 goto discard_and_undo;
4198
4199 /* rfc793:
4200 * "If the SYN bit is on ...
4201 * are acceptable then ...
4202 * (our SYN has been ACKed), change the connection
4203 * state to ESTABLISHED..."
4204 */
4205
4206 TCP_ECN_rcv_synack(tp, th);
1da177e4
LT
4207
4208 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4209 tcp_ack(sk, skb, FLAG_SLOWPATH);
4210
4211 /* Ok.. it's good. Set up sequence numbers and
4212 * move to established.
4213 */
4214 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4215 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4216
4217 /* RFC1323: The window in SYN & SYN/ACK segments is
4218 * never scaled.
4219 */
4220 tp->snd_wnd = ntohs(th->window);
4221 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4222
4223 if (!tp->rx_opt.wscale_ok) {
4224 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4225 tp->window_clamp = min(tp->window_clamp, 65535U);
4226 }
4227
4228 if (tp->rx_opt.saw_tstamp) {
4229 tp->rx_opt.tstamp_ok = 1;
4230 tp->tcp_header_len =
4231 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4232 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4233 tcp_store_ts_recent(tp);
4234 } else {
4235 tp->tcp_header_len = sizeof(struct tcphdr);
4236 }
4237
4238 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4239 tp->rx_opt.sack_ok |= 2;
4240
5d424d5a 4241 tcp_mtup_init(sk);
d83d8461 4242 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4243 tcp_initialize_rcv_mss(sk);
4244
4245 /* Remember, tcp_poll() does not lock socket!
4246 * Change state from SYN-SENT only after copied_seq
4247 * is initialized. */
4248 tp->copied_seq = tp->rcv_nxt;
e16aa207 4249 smp_mb();
1da177e4
LT
4250 tcp_set_state(sk, TCP_ESTABLISHED);
4251
6b877699
VY
4252 security_inet_conn_established(sk, skb);
4253
1da177e4 4254 /* Make sure socket is routed, for correct metrics. */
8292a17a 4255 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4256
4257 tcp_init_metrics(sk);
4258
6687e988 4259 tcp_init_congestion_control(sk);
317a76f9 4260
1da177e4
LT
4261 /* Prevent spurious tcp_cwnd_restart() on first data
4262 * packet.
4263 */
4264 tp->lsndtime = tcp_time_stamp;
4265
4266 tcp_init_buffer_space(sk);
4267
4268 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4269 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4270
4271 if (!tp->rx_opt.snd_wscale)
4272 __tcp_fast_path_on(tp, tp->snd_wnd);
4273 else
4274 tp->pred_flags = 0;
4275
4276 if (!sock_flag(sk, SOCK_DEAD)) {
4277 sk->sk_state_change(sk);
4278 sk_wake_async(sk, 0, POLL_OUT);
4279 }
4280
295f7324
ACM
4281 if (sk->sk_write_pending ||
4282 icsk->icsk_accept_queue.rskq_defer_accept ||
4283 icsk->icsk_ack.pingpong) {
1da177e4
LT
4284 /* Save one ACK. Data will be ready after
4285 * several ticks, if write_pending is set.
4286 *
4287 * It may be deleted, but with this feature tcpdumps
4288 * look so _wonderfully_ clever, that I was not able
4289 * to stand against the temptation 8) --ANK
4290 */
463c84b9 4291 inet_csk_schedule_ack(sk);
295f7324
ACM
4292 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4293 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4294 tcp_incr_quickack(sk);
4295 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4296 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4297 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4298
4299discard:
4300 __kfree_skb(skb);
4301 return 0;
4302 } else {
4303 tcp_send_ack(sk);
4304 }
4305 return -1;
4306 }
4307
4308 /* No ACK in the segment */
4309
4310 if (th->rst) {
4311 /* rfc793:
4312 * "If the RST bit is set
4313 *
4314 * Otherwise (no ACK) drop the segment and return."
4315 */
4316
4317 goto discard_and_undo;
4318 }
4319
4320 /* PAWS check. */
4321 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4322 goto discard_and_undo;
4323
4324 if (th->syn) {
4325 /* We see SYN without ACK. It is attempt of
4326 * simultaneous connect with crossed SYNs.
4327 * Particularly, it can be connect to self.
4328 */
4329 tcp_set_state(sk, TCP_SYN_RECV);
4330
4331 if (tp->rx_opt.saw_tstamp) {
4332 tp->rx_opt.tstamp_ok = 1;
4333 tcp_store_ts_recent(tp);
4334 tp->tcp_header_len =
4335 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4336 } else {
4337 tp->tcp_header_len = sizeof(struct tcphdr);
4338 }
4339
4340 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4341 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4342
4343 /* RFC1323: The window in SYN & SYN/ACK segments is
4344 * never scaled.
4345 */
4346 tp->snd_wnd = ntohs(th->window);
4347 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4348 tp->max_window = tp->snd_wnd;
4349
4350 TCP_ECN_rcv_syn(tp, th);
1da177e4 4351
5d424d5a 4352 tcp_mtup_init(sk);
d83d8461 4353 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4354 tcp_initialize_rcv_mss(sk);
4355
4356
4357 tcp_send_synack(sk);
4358#if 0
4359 /* Note, we could accept data and URG from this segment.
4360 * There are no obstacles to make this.
4361 *
4362 * However, if we ignore data in ACKless segments sometimes,
4363 * we have no reasons to accept it sometimes.
4364 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4365 * is not flawless. So, discard packet for sanity.
4366 * Uncomment this return to process the data.
4367 */
4368 return -1;
4369#else
4370 goto discard;
4371#endif
4372 }
4373 /* "fifth, if neither of the SYN or RST bits is set then
4374 * drop the segment and return."
4375 */
4376
4377discard_and_undo:
4378 tcp_clear_options(&tp->rx_opt);
4379 tp->rx_opt.mss_clamp = saved_clamp;
4380 goto discard;
4381
4382reset_and_undo:
4383 tcp_clear_options(&tp->rx_opt);
4384 tp->rx_opt.mss_clamp = saved_clamp;
4385 return 1;
4386}
4387
4388
4389/*
4390 * This function implements the receiving procedure of RFC 793 for
4391 * all states except ESTABLISHED and TIME_WAIT.
4392 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4393 * address independent.
4394 */
4395
4396int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4397 struct tcphdr *th, unsigned len)
4398{
4399 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4400 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4401 int queued = 0;
4402
4403 tp->rx_opt.saw_tstamp = 0;
4404
4405 switch (sk->sk_state) {
4406 case TCP_CLOSE:
4407 goto discard;
4408
4409 case TCP_LISTEN:
4410 if(th->ack)
4411 return 1;
4412
4413 if(th->rst)
4414 goto discard;
4415
4416 if(th->syn) {
8292a17a 4417 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4418 return 1;
4419
1da177e4
LT
4420 /* Now we have several options: In theory there is
4421 * nothing else in the frame. KA9Q has an option to
4422 * send data with the syn, BSD accepts data with the
4423 * syn up to the [to be] advertised window and
4424 * Solaris 2.1 gives you a protocol error. For now
4425 * we just ignore it, that fits the spec precisely
4426 * and avoids incompatibilities. It would be nice in
4427 * future to drop through and process the data.
4428 *
4429 * Now that TTCP is starting to be used we ought to
4430 * queue this data.
4431 * But, this leaves one open to an easy denial of
4432 * service attack, and SYN cookies can't defend
4433 * against this problem. So, we drop the data
fb7e2399
MN
4434 * in the interest of security over speed unless
4435 * it's still in use.
1da177e4 4436 */
fb7e2399
MN
4437 kfree_skb(skb);
4438 return 0;
1da177e4
LT
4439 }
4440 goto discard;
4441
4442 case TCP_SYN_SENT:
1da177e4
LT
4443 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4444 if (queued >= 0)
4445 return queued;
4446
4447 /* Do step6 onward by hand. */
4448 tcp_urg(sk, skb, th);
4449 __kfree_skb(skb);
55c97f3e 4450 tcp_data_snd_check(sk, tp);
1da177e4
LT
4451 return 0;
4452 }
4453
4454 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4455 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4456 if (!th->rst) {
4457 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4458 tcp_send_dupack(sk, skb);
4459 goto discard;
4460 }
4461 /* Reset is accepted even if it did not pass PAWS. */
4462 }
4463
4464 /* step 1: check sequence number */
4465 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4466 if (!th->rst)
4467 tcp_send_dupack(sk, skb);
4468 goto discard;
4469 }
4470
4471 /* step 2: check RST bit */
4472 if(th->rst) {
4473 tcp_reset(sk);
4474 goto discard;
4475 }
4476
4477 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4478
4479 /* step 3: check security and precedence [ignored] */
4480
4481 /* step 4:
4482 *
4483 * Check for a SYN in window.
4484 */
4485 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4486 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4487 tcp_reset(sk);
4488 return 1;
4489 }
4490
4491 /* step 5: check the ACK field */
4492 if (th->ack) {
4493 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4494
4495 switch(sk->sk_state) {
4496 case TCP_SYN_RECV:
4497 if (acceptable) {
4498 tp->copied_seq = tp->rcv_nxt;
e16aa207 4499 smp_mb();
1da177e4
LT
4500 tcp_set_state(sk, TCP_ESTABLISHED);
4501 sk->sk_state_change(sk);
4502
4503 /* Note, that this wakeup is only for marginal
4504 * crossed SYN case. Passively open sockets
4505 * are not waked up, because sk->sk_sleep ==
4506 * NULL and sk->sk_socket == NULL.
4507 */
4508 if (sk->sk_socket) {
4509 sk_wake_async(sk,0,POLL_OUT);
4510 }
4511
4512 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4513 tp->snd_wnd = ntohs(th->window) <<
4514 tp->rx_opt.snd_wscale;
4515 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4516 TCP_SKB_CB(skb)->seq);
4517
4518 /* tcp_ack considers this ACK as duplicate
4519 * and does not calculate rtt.
4520 * Fix it at least with timestamps.
4521 */
4522 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4523 !tp->srtt)
2d2abbab 4524 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
4525
4526 if (tp->rx_opt.tstamp_ok)
4527 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4528
4529 /* Make sure socket is routed, for
4530 * correct metrics.
4531 */
8292a17a 4532 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4533
4534 tcp_init_metrics(sk);
4535
6687e988 4536 tcp_init_congestion_control(sk);
317a76f9 4537
1da177e4
LT
4538 /* Prevent spurious tcp_cwnd_restart() on
4539 * first data packet.
4540 */
4541 tp->lsndtime = tcp_time_stamp;
4542
5d424d5a 4543 tcp_mtup_init(sk);
1da177e4
LT
4544 tcp_initialize_rcv_mss(sk);
4545 tcp_init_buffer_space(sk);
4546 tcp_fast_path_on(tp);
4547 } else {
4548 return 1;
4549 }
4550 break;
4551
4552 case TCP_FIN_WAIT1:
4553 if (tp->snd_una == tp->write_seq) {
4554 tcp_set_state(sk, TCP_FIN_WAIT2);
4555 sk->sk_shutdown |= SEND_SHUTDOWN;
4556 dst_confirm(sk->sk_dst_cache);
4557
4558 if (!sock_flag(sk, SOCK_DEAD))
4559 /* Wake up lingering close() */
4560 sk->sk_state_change(sk);
4561 else {
4562 int tmo;
4563
4564 if (tp->linger2 < 0 ||
4565 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4566 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4567 tcp_done(sk);
4568 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4569 return 1;
4570 }
4571
463c84b9 4572 tmo = tcp_fin_time(sk);
1da177e4 4573 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 4574 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
4575 } else if (th->fin || sock_owned_by_user(sk)) {
4576 /* Bad case. We could lose such FIN otherwise.
4577 * It is not a big problem, but it looks confusing
4578 * and not so rare event. We still can lose it now,
4579 * if it spins in bh_lock_sock(), but it is really
4580 * marginal case.
4581 */
463c84b9 4582 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
4583 } else {
4584 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4585 goto discard;
4586 }
4587 }
4588 }
4589 break;
4590
4591 case TCP_CLOSING:
4592 if (tp->snd_una == tp->write_seq) {
4593 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4594 goto discard;
4595 }
4596 break;
4597
4598 case TCP_LAST_ACK:
4599 if (tp->snd_una == tp->write_seq) {
4600 tcp_update_metrics(sk);
4601 tcp_done(sk);
4602 goto discard;
4603 }
4604 break;
4605 }
4606 } else
4607 goto discard;
4608
4609 /* step 6: check the URG bit */
4610 tcp_urg(sk, skb, th);
4611
4612 /* step 7: process the segment text */
4613 switch (sk->sk_state) {
4614 case TCP_CLOSE_WAIT:
4615 case TCP_CLOSING:
4616 case TCP_LAST_ACK:
4617 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4618 break;
4619 case TCP_FIN_WAIT1:
4620 case TCP_FIN_WAIT2:
4621 /* RFC 793 says to queue data in these states,
4622 * RFC 1122 says we MUST send a reset.
4623 * BSD 4.4 also does reset.
4624 */
4625 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4626 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4627 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4628 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4629 tcp_reset(sk);
4630 return 1;
4631 }
4632 }
4633 /* Fall through */
4634 case TCP_ESTABLISHED:
4635 tcp_data_queue(sk, skb);
4636 queued = 1;
4637 break;
4638 }
4639
4640 /* tcp_data could move socket to TIME-WAIT */
4641 if (sk->sk_state != TCP_CLOSE) {
55c97f3e 4642 tcp_data_snd_check(sk, tp);
1da177e4
LT
4643 tcp_ack_snd_check(sk);
4644 }
4645
4646 if (!queued) {
4647discard:
4648 __kfree_skb(skb);
4649 }
4650 return 0;
4651}
4652
4653EXPORT_SYMBOL(sysctl_tcp_ecn);
4654EXPORT_SYMBOL(sysctl_tcp_reordering);
4655EXPORT_SYMBOL(tcp_parse_options);
4656EXPORT_SYMBOL(tcp_rcv_established);
4657EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 4658EXPORT_SYMBOL(tcp_initialize_rcv_mss);