]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/ipv4/tcp_input.c
rocker: add change MTU support
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
83int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
dca145ff 84int sysctl_tcp_max_reordering __read_mostly = 300;
4bc2f18b 85EXPORT_SYMBOL(sysctl_tcp_reordering);
ab32ea5d
BH
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 88int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 90
282f23c6
ED
91/* rfc5961 challenge ack rate limiting */
92int sysctl_tcp_challenge_ack_limit = 100;
93
ab32ea5d
BH
94int sysctl_tcp_stdurg __read_mostly;
95int sysctl_tcp_rfc1337 __read_mostly;
96int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 97int sysctl_tcp_frto __read_mostly = 2;
1da177e4 98
7e380175
AP
99int sysctl_tcp_thin_dupack __read_mostly;
100
ab32ea5d 101int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 102int sysctl_tcp_early_retrans __read_mostly = 3;
032ee423 103int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
1da177e4 104
1da177e4
LT
105#define FLAG_DATA 0x01 /* Incoming frame contained data. */
106#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
107#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
108#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
109#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
110#define FLAG_DATA_SACKED 0x20 /* New SACK. */
111#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 112#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
1da177e4 113#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 114#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 115#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 116#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 117#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 118#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
119
120#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
123#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
124
1da177e4 125#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 126#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 127
e905a9ed 128/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 129 * real world.
e905a9ed 130 */
056834d9 131static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 132{
463c84b9 133 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 134 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 135 unsigned int len;
1da177e4 136
e905a9ed 137 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
138
139 /* skb->len may jitter because of SACKs, even if peer
140 * sends good full-sized frames.
141 */
056834d9 142 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
143 if (len >= icsk->icsk_ack.rcv_mss) {
144 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
145 } else {
146 /* Otherwise, we make more careful check taking into account,
147 * that SACKs block is variable.
148 *
149 * "len" is invariant segment length, including TCP header.
150 */
9c70220b 151 len += skb->data - skb_transport_header(skb);
bee7ca9e 152 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
153 /* If PSH is not set, packet should be
154 * full sized, provided peer TCP is not badly broken.
155 * This observation (if it is correct 8)) allows
156 * to handle super-low mtu links fairly.
157 */
158 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 159 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
160 /* Subtract also invariant (if peer is RFC compliant),
161 * tcp header plus fixed timestamp option length.
162 * Resulting "len" is MSS free of SACK jitter.
163 */
463c84b9
ACM
164 len -= tcp_sk(sk)->tcp_header_len;
165 icsk->icsk_ack.last_seg_size = len;
1da177e4 166 if (len == lss) {
463c84b9 167 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
168 return;
169 }
170 }
1ef9696c
AK
171 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 173 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
174 }
175}
176
463c84b9 177static void tcp_incr_quickack(struct sock *sk)
1da177e4 178{
463c84b9 179 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 180 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 181
056834d9
IJ
182 if (quickacks == 0)
183 quickacks = 2;
463c84b9
ACM
184 if (quickacks > icsk->icsk_ack.quick)
185 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
186}
187
1b9f4092 188static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 189{
463c84b9
ACM
190 struct inet_connection_sock *icsk = inet_csk(sk);
191 tcp_incr_quickack(sk);
192 icsk->icsk_ack.pingpong = 0;
193 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
194}
195
196/* Send ACKs quickly, if "quick" count is not exhausted
197 * and the session is not interactive.
198 */
199
a2a385d6 200static inline bool tcp_in_quickack_mode(const struct sock *sk)
1da177e4 201{
463c84b9 202 const struct inet_connection_sock *icsk = inet_csk(sk);
a2a385d6 203
463c84b9 204 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
205}
206
735d3831 207static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 208{
056834d9 209 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
210 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
211}
212
735d3831 213static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
214{
215 if (tcp_hdr(skb)->cwr)
216 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
217}
218
735d3831 219static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
220{
221 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222}
223
735d3831 224static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 225{
b82d1bb4 226 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 227 case INET_ECN_NOT_ECT:
bdf1ee5d 228 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
229 * and we already seen ECT on a previous segment,
230 * it is probably a retransmit.
231 */
232 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 233 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
234 break;
235 case INET_ECN_CE:
9890092e
FW
236 if (tcp_ca_needs_ecn((struct sock *)tp))
237 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
238
aae06bf5
ED
239 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
240 /* Better not delay acks, sender can have a very low cwnd */
241 tcp_enter_quickack_mode((struct sock *)tp);
242 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
243 }
9890092e
FW
244 tp->ecn_flags |= TCP_ECN_SEEN;
245 break;
7a269ffa 246 default:
9890092e
FW
247 if (tcp_ca_needs_ecn((struct sock *)tp))
248 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 249 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 250 break;
bdf1ee5d
IJ
251 }
252}
253
735d3831
FW
254static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
255{
256 if (tp->ecn_flags & TCP_ECN_OK)
257 __tcp_ecn_check_ce(tp, skb);
258}
259
260static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 261{
056834d9 262 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
263 tp->ecn_flags &= ~TCP_ECN_OK;
264}
265
735d3831 266static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 267{
056834d9 268 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
269 tp->ecn_flags &= ~TCP_ECN_OK;
270}
271
735d3831 272static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 273{
056834d9 274 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
275 return true;
276 return false;
bdf1ee5d
IJ
277}
278
1da177e4
LT
279/* Buffer size and advertised window tuning.
280 *
281 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
282 */
283
6ae70532 284static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 285{
6ae70532
ED
286 const struct tcp_sock *tp = tcp_sk(sk);
287 int sndmem, per_mss;
288 u32 nr_segs;
289
290 /* Worst case is non GSO/TSO : each frame consumes one skb
291 * and skb->head is kmalloced using power of two area of memory
292 */
293 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
294 MAX_TCP_HEADER +
295 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
296
297 per_mss = roundup_pow_of_two(per_mss) +
298 SKB_DATA_ALIGN(sizeof(struct sk_buff));
299
300 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
301 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
302
303 /* Fast Recovery (RFC 5681 3.2) :
304 * Cubic needs 1.7 factor, rounded to 2 to include
305 * extra cushion (application might react slowly to POLLOUT)
306 */
307 sndmem = 2 * nr_segs * per_mss;
1da177e4 308
06a59ecb
ED
309 if (sk->sk_sndbuf < sndmem)
310 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
311}
312
313/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
314 *
315 * All tcp_full_space() is split to two parts: "network" buffer, allocated
316 * forward and advertised in receiver window (tp->rcv_wnd) and
317 * "application buffer", required to isolate scheduling/application
318 * latencies from network.
319 * window_clamp is maximal advertised window. It can be less than
320 * tcp_full_space(), in this case tcp_full_space() - window_clamp
321 * is reserved for "application" buffer. The less window_clamp is
322 * the smoother our behaviour from viewpoint of network, but the lower
323 * throughput and the higher sensitivity of the connection to losses. 8)
324 *
325 * rcv_ssthresh is more strict window_clamp used at "slow start"
326 * phase to predict further behaviour of this connection.
327 * It is used for two goals:
328 * - to enforce header prediction at sender, even when application
329 * requires some significant "application buffer". It is check #1.
330 * - to prevent pruning of receive queue because of misprediction
331 * of receiver window. Check #2.
332 *
333 * The scheme does not work when sender sends good segments opening
caa20d9a 334 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
335 * in common situations. Otherwise, we have to rely on queue collapsing.
336 */
337
338/* Slow part of check#2. */
9e412ba7 339static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 340{
9e412ba7 341 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 342 /* Optimize this! */
dfd4f0ae
ED
343 int truesize = tcp_win_from_space(skb->truesize) >> 1;
344 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
345
346 while (tp->rcv_ssthresh <= window) {
347 if (truesize <= skb->len)
463c84b9 348 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
349
350 truesize >>= 1;
351 window >>= 1;
352 }
353 return 0;
354}
355
cf533ea5 356static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 357{
9e412ba7
IJ
358 struct tcp_sock *tp = tcp_sk(sk);
359
1da177e4
LT
360 /* Check #1 */
361 if (tp->rcv_ssthresh < tp->window_clamp &&
362 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 363 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
364 int incr;
365
366 /* Check #2. Increase window, if skb with such overhead
367 * will fit to rcvbuf in future.
368 */
369 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 370 incr = 2 * tp->advmss;
1da177e4 371 else
9e412ba7 372 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
373
374 if (incr) {
4d846f02 375 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
376 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
377 tp->window_clamp);
463c84b9 378 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
379 }
380 }
381}
382
383/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
384static void tcp_fixup_rcvbuf(struct sock *sk)
385{
e9266a02 386 u32 mss = tcp_sk(sk)->advmss;
e9266a02 387 int rcvmem;
1da177e4 388
85f16525
YC
389 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
390 tcp_default_init_rwnd(mss);
e9266a02 391
b0983d3c
ED
392 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
393 * Allow enough cushion so that sender is not limited by our window
394 */
395 if (sysctl_tcp_moderate_rcvbuf)
396 rcvmem <<= 2;
397
e9266a02
ED
398 if (sk->sk_rcvbuf < rcvmem)
399 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
400}
401
caa20d9a 402/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
403 * established state.
404 */
10467163 405void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
406{
407 struct tcp_sock *tp = tcp_sk(sk);
408 int maxwin;
409
410 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
411 tcp_fixup_rcvbuf(sk);
412 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 413 tcp_sndbuf_expand(sk);
1da177e4
LT
414
415 tp->rcvq_space.space = tp->rcv_wnd;
b0983d3c
ED
416 tp->rcvq_space.time = tcp_time_stamp;
417 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
418
419 maxwin = tcp_full_space(sk);
420
421 if (tp->window_clamp >= maxwin) {
422 tp->window_clamp = maxwin;
423
424 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
425 tp->window_clamp = max(maxwin -
426 (maxwin >> sysctl_tcp_app_win),
427 4 * tp->advmss);
428 }
429
430 /* Force reservation of one segment. */
431 if (sysctl_tcp_app_win &&
432 tp->window_clamp > 2 * tp->advmss &&
433 tp->window_clamp + tp->advmss > maxwin)
434 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
435
436 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
437 tp->snd_cwnd_stamp = tcp_time_stamp;
438}
439
1da177e4 440/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 441static void tcp_clamp_window(struct sock *sk)
1da177e4 442{
9e412ba7 443 struct tcp_sock *tp = tcp_sk(sk);
6687e988 444 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 445
6687e988 446 icsk->icsk_ack.quick = 0;
1da177e4 447
326f36e9
JH
448 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
449 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 450 !tcp_under_memory_pressure(sk) &&
180d8cd9 451 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
452 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
453 sysctl_tcp_rmem[2]);
1da177e4 454 }
326f36e9 455 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 456 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
457}
458
40efc6fa
SH
459/* Initialize RCV_MSS value.
460 * RCV_MSS is an our guess about MSS used by the peer.
461 * We haven't any direct information about the MSS.
462 * It's better to underestimate the RCV_MSS rather than overestimate.
463 * Overestimations make us ACKing less frequently than needed.
464 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
465 */
466void tcp_initialize_rcv_mss(struct sock *sk)
467{
cf533ea5 468 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
469 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
470
056834d9 471 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 472 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
473 hint = max(hint, TCP_MIN_MSS);
474
475 inet_csk(sk)->icsk_ack.rcv_mss = hint;
476}
4bc2f18b 477EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 478
1da177e4
LT
479/* Receiver "autotuning" code.
480 *
481 * The algorithm for RTT estimation w/o timestamps is based on
482 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 483 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
484 *
485 * More detail on this code can be found at
631dd1a8 486 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
487 * though this reference is out of date. A new paper
488 * is pending.
489 */
490static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
491{
492 u32 new_sample = tp->rcv_rtt_est.rtt;
493 long m = sample;
494
495 if (m == 0)
496 m = 1;
497
498 if (new_sample != 0) {
499 /* If we sample in larger samples in the non-timestamp
500 * case, we could grossly overestimate the RTT especially
501 * with chatty applications or bulk transfer apps which
502 * are stalled on filesystem I/O.
503 *
504 * Also, since we are only going for a minimum in the
31f34269 505 * non-timestamp case, we do not smooth things out
caa20d9a 506 * else with timestamps disabled convergence takes too
1da177e4
LT
507 * long.
508 */
509 if (!win_dep) {
510 m -= (new_sample >> 3);
511 new_sample += m;
18a223e0
NC
512 } else {
513 m <<= 3;
514 if (m < new_sample)
515 new_sample = m;
516 }
1da177e4 517 } else {
caa20d9a 518 /* No previous measure. */
1da177e4
LT
519 new_sample = m << 3;
520 }
521
522 if (tp->rcv_rtt_est.rtt != new_sample)
523 tp->rcv_rtt_est.rtt = new_sample;
524}
525
526static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
527{
528 if (tp->rcv_rtt_est.time == 0)
529 goto new_measure;
530 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
531 return;
651913ce 532 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
533
534new_measure:
535 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
536 tp->rcv_rtt_est.time = tcp_time_stamp;
537}
538
056834d9
IJ
539static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
540 const struct sk_buff *skb)
1da177e4 541{
463c84b9 542 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
543 if (tp->rx_opt.rcv_tsecr &&
544 (TCP_SKB_CB(skb)->end_seq -
463c84b9 545 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
546 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
547}
548
549/*
550 * This function should be called every time data is copied to user space.
551 * It calculates the appropriate TCP receive buffer space.
552 */
553void tcp_rcv_space_adjust(struct sock *sk)
554{
555 struct tcp_sock *tp = tcp_sk(sk);
556 int time;
b0983d3c 557 int copied;
e905a9ed 558
1da177e4 559 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 560 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 561 return;
e905a9ed 562
b0983d3c
ED
563 /* Number of bytes copied to user in last RTT */
564 copied = tp->copied_seq - tp->rcvq_space.seq;
565 if (copied <= tp->rcvq_space.space)
566 goto new_measure;
567
568 /* A bit of theory :
569 * copied = bytes received in previous RTT, our base window
570 * To cope with packet losses, we need a 2x factor
571 * To cope with slow start, and sender growing its cwin by 100 %
572 * every RTT, we need a 4x factor, because the ACK we are sending
573 * now is for the next RTT, not the current one :
574 * <prev RTT . ><current RTT .. ><next RTT .... >
575 */
576
577 if (sysctl_tcp_moderate_rcvbuf &&
578 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
579 int rcvwin, rcvmem, rcvbuf;
1da177e4 580
b0983d3c
ED
581 /* minimal window to cope with packet losses, assuming
582 * steady state. Add some cushion because of small variations.
583 */
584 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 585
b0983d3c
ED
586 /* If rate increased by 25%,
587 * assume slow start, rcvwin = 3 * copied
588 * If rate increased by 50%,
589 * assume sender can use 2x growth, rcvwin = 4 * copied
590 */
591 if (copied >=
592 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
593 if (copied >=
594 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
595 rcvwin <<= 1;
596 else
597 rcvwin += (rcvwin >> 1);
598 }
1da177e4 599
b0983d3c
ED
600 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
601 while (tcp_win_from_space(rcvmem) < tp->advmss)
602 rcvmem += 128;
1da177e4 603
b0983d3c
ED
604 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
605 if (rcvbuf > sk->sk_rcvbuf) {
606 sk->sk_rcvbuf = rcvbuf;
1da177e4 607
b0983d3c
ED
608 /* Make the window clamp follow along. */
609 tp->window_clamp = rcvwin;
1da177e4
LT
610 }
611 }
b0983d3c 612 tp->rcvq_space.space = copied;
e905a9ed 613
1da177e4
LT
614new_measure:
615 tp->rcvq_space.seq = tp->copied_seq;
616 tp->rcvq_space.time = tcp_time_stamp;
617}
618
619/* There is something which you must keep in mind when you analyze the
620 * behavior of the tp->ato delayed ack timeout interval. When a
621 * connection starts up, we want to ack as quickly as possible. The
622 * problem is that "good" TCP's do slow start at the beginning of data
623 * transmission. The means that until we send the first few ACK's the
624 * sender will sit on his end and only queue most of his data, because
625 * he can only send snd_cwnd unacked packets at any given time. For
626 * each ACK we send, he increments snd_cwnd and transmits more of his
627 * queue. -DaveM
628 */
9e412ba7 629static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 630{
9e412ba7 631 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 632 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
633 u32 now;
634
463c84b9 635 inet_csk_schedule_ack(sk);
1da177e4 636
463c84b9 637 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
638
639 tcp_rcv_rtt_measure(tp);
e905a9ed 640
1da177e4
LT
641 now = tcp_time_stamp;
642
463c84b9 643 if (!icsk->icsk_ack.ato) {
1da177e4
LT
644 /* The _first_ data packet received, initialize
645 * delayed ACK engine.
646 */
463c84b9
ACM
647 tcp_incr_quickack(sk);
648 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 649 } else {
463c84b9 650 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 651
056834d9 652 if (m <= TCP_ATO_MIN / 2) {
1da177e4 653 /* The fastest case is the first. */
463c84b9
ACM
654 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
655 } else if (m < icsk->icsk_ack.ato) {
656 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
657 if (icsk->icsk_ack.ato > icsk->icsk_rto)
658 icsk->icsk_ack.ato = icsk->icsk_rto;
659 } else if (m > icsk->icsk_rto) {
caa20d9a 660 /* Too long gap. Apparently sender failed to
1da177e4
LT
661 * restart window, so that we send ACKs quickly.
662 */
463c84b9 663 tcp_incr_quickack(sk);
3ab224be 664 sk_mem_reclaim(sk);
1da177e4
LT
665 }
666 }
463c84b9 667 icsk->icsk_ack.lrcvtime = now;
1da177e4 668
735d3831 669 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
670
671 if (skb->len >= 128)
9e412ba7 672 tcp_grow_window(sk, skb);
1da177e4
LT
673}
674
1da177e4
LT
675/* Called to compute a smoothed rtt estimate. The data fed to this
676 * routine either comes from timestamps, or from segments that were
677 * known _not_ to have been retransmitted [see Karn/Partridge
678 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
679 * piece by Van Jacobson.
680 * NOTE: the next three routines used to be one big routine.
681 * To save cycles in the RFC 1323 implementation it was better to break
682 * it up into three procedures. -- erics
683 */
740b0f18 684static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 685{
6687e988 686 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
687 long m = mrtt_us; /* RTT */
688 u32 srtt = tp->srtt_us;
1da177e4 689
1da177e4
LT
690 /* The following amusing code comes from Jacobson's
691 * article in SIGCOMM '88. Note that rtt and mdev
692 * are scaled versions of rtt and mean deviation.
e905a9ed 693 * This is designed to be as fast as possible
1da177e4
LT
694 * m stands for "measurement".
695 *
696 * On a 1990 paper the rto value is changed to:
697 * RTO = rtt + 4 * mdev
698 *
699 * Funny. This algorithm seems to be very broken.
700 * These formulae increase RTO, when it should be decreased, increase
31f34269 701 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
702 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
703 * does not matter how to _calculate_ it. Seems, it was trap
704 * that VJ failed to avoid. 8)
705 */
4a5ab4e2
ED
706 if (srtt != 0) {
707 m -= (srtt >> 3); /* m is now error in rtt est */
708 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
709 if (m < 0) {
710 m = -m; /* m is now abs(error) */
740b0f18 711 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
712 /* This is similar to one of Eifel findings.
713 * Eifel blocks mdev updates when rtt decreases.
714 * This solution is a bit different: we use finer gain
715 * for mdev in this case (alpha*beta).
716 * Like Eifel it also prevents growth of rto,
717 * but also it limits too fast rto decreases,
718 * happening in pure Eifel.
719 */
720 if (m > 0)
721 m >>= 3;
722 } else {
740b0f18 723 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 724 }
740b0f18
ED
725 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
726 if (tp->mdev_us > tp->mdev_max_us) {
727 tp->mdev_max_us = tp->mdev_us;
728 if (tp->mdev_max_us > tp->rttvar_us)
729 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
730 }
731 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
732 if (tp->mdev_max_us < tp->rttvar_us)
733 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 734 tp->rtt_seq = tp->snd_nxt;
740b0f18 735 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
736 }
737 } else {
738 /* no previous measure. */
4a5ab4e2 739 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
740 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
741 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
742 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
743 tp->rtt_seq = tp->snd_nxt;
744 }
740b0f18 745 tp->srtt_us = max(1U, srtt);
1da177e4
LT
746}
747
95bd09eb
ED
748/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
749 * Note: TCP stack does not yet implement pacing.
750 * FQ packet scheduler can be used to implement cheap but effective
751 * TCP pacing, to smooth the burst on large writes when packets
752 * in flight is significantly lower than cwnd (or rwin)
753 */
754static void tcp_update_pacing_rate(struct sock *sk)
755{
756 const struct tcp_sock *tp = tcp_sk(sk);
757 u64 rate;
758
759 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
740b0f18 760 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
95bd09eb
ED
761
762 rate *= max(tp->snd_cwnd, tp->packets_out);
763
740b0f18
ED
764 if (likely(tp->srtt_us))
765 do_div(rate, tp->srtt_us);
95bd09eb 766
ba537427
ED
767 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
768 * without any lock. We want to make sure compiler wont store
769 * intermediate values in this location.
770 */
771 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
772 sk->sk_max_pacing_rate);
95bd09eb
ED
773}
774
1da177e4
LT
775/* Calculate rto without backoff. This is the second half of Van Jacobson's
776 * routine referred to above.
777 */
f7e56a76 778static void tcp_set_rto(struct sock *sk)
1da177e4 779{
463c84b9 780 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
781 /* Old crap is replaced with new one. 8)
782 *
783 * More seriously:
784 * 1. If rtt variance happened to be less 50msec, it is hallucination.
785 * It cannot be less due to utterly erratic ACK generation made
786 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
787 * to do with delayed acks, because at cwnd>2 true delack timeout
788 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 789 * ACKs in some circumstances.
1da177e4 790 */
f1ecd5d9 791 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
792
793 /* 2. Fixups made earlier cannot be right.
794 * If we do not estimate RTO correctly without them,
795 * all the algo is pure shit and should be replaced
caa20d9a 796 * with correct one. It is exactly, which we pretend to do.
1da177e4 797 */
1da177e4 798
ee6aac59
IJ
799 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
800 * guarantees that rto is higher.
801 */
f1ecd5d9 802 tcp_bound_rto(sk);
1da177e4
LT
803}
804
cf533ea5 805__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
806{
807 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
808
22b71c8f 809 if (!cwnd)
442b9635 810 cwnd = TCP_INIT_CWND;
1da177e4
LT
811 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
812}
813
e60402d0
IJ
814/*
815 * Packet counting of FACK is based on in-order assumptions, therefore TCP
816 * disables it when reordering is detected
817 */
4aabd8ef 818void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 819{
85cc391c
IJ
820 /* RFC3517 uses different metric in lost marker => reset on change */
821 if (tcp_is_fack(tp))
822 tp->lost_skb_hint = NULL;
ab56222a 823 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
824}
825
564262c1 826/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
827static void tcp_dsack_seen(struct tcp_sock *tp)
828{
ab56222a 829 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
830}
831
6687e988
ACM
832static void tcp_update_reordering(struct sock *sk, const int metric,
833 const int ts)
1da177e4 834{
6687e988 835 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 836 if (metric > tp->reordering) {
40b215e5
PE
837 int mib_idx;
838
dca145ff 839 tp->reordering = min(sysctl_tcp_max_reordering, metric);
1da177e4
LT
840
841 /* This exciting event is worth to be remembered. 8) */
842 if (ts)
40b215e5 843 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 844 else if (tcp_is_reno(tp))
40b215e5 845 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 846 else if (tcp_is_fack(tp))
40b215e5 847 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 848 else
40b215e5
PE
849 mib_idx = LINUX_MIB_TCPSACKREORDER;
850
de0744af 851 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 852#if FASTRETRANS_DEBUG > 1
91df42be
JP
853 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
854 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
855 tp->reordering,
856 tp->fackets_out,
857 tp->sacked_out,
858 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 859#endif
e60402d0 860 tcp_disable_fack(tp);
1da177e4 861 }
eed530b6
YC
862
863 if (metric > 0)
864 tcp_disable_early_retrans(tp);
1da177e4
LT
865}
866
006f582c 867/* This must be called before lost_out is incremented */
c8c213f2
IJ
868static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
869{
51456b29 870 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
871 before(TCP_SKB_CB(skb)->seq,
872 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
873 tp->retransmit_skb_hint = skb;
874
875 if (!tp->lost_out ||
876 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
877 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
878}
879
41ea36e3
IJ
880static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
881{
882 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
883 tcp_verify_retransmit_hint(tp, skb);
884
885 tp->lost_out += tcp_skb_pcount(skb);
886 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
887 }
888}
889
e1aa680f
IJ
890static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
891 struct sk_buff *skb)
006f582c
IJ
892{
893 tcp_verify_retransmit_hint(tp, skb);
894
895 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
896 tp->lost_out += tcp_skb_pcount(skb);
897 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
898 }
899}
900
1da177e4
LT
901/* This procedure tags the retransmission queue when SACKs arrive.
902 *
903 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
904 * Packets in queue with these bits set are counted in variables
905 * sacked_out, retrans_out and lost_out, correspondingly.
906 *
907 * Valid combinations are:
908 * Tag InFlight Description
909 * 0 1 - orig segment is in flight.
910 * S 0 - nothing flies, orig reached receiver.
911 * L 0 - nothing flies, orig lost by net.
912 * R 2 - both orig and retransmit are in flight.
913 * L|R 1 - orig is lost, retransmit is in flight.
914 * S|R 1 - orig reached receiver, retrans is still in flight.
915 * (L|S|R is logically valid, it could occur when L|R is sacked,
916 * but it is equivalent to plain S and code short-curcuits it to S.
917 * L|S is logically invalid, it would mean -1 packet in flight 8))
918 *
919 * These 6 states form finite state machine, controlled by the following events:
920 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
921 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 922 * 3. Loss detection event of two flavors:
1da177e4
LT
923 * A. Scoreboard estimator decided the packet is lost.
924 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
925 * A''. Its FACK modification, head until snd.fack is lost.
926 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
927 * segment was retransmitted.
928 * 4. D-SACK added new rule: D-SACK changes any tag to S.
929 *
930 * It is pleasant to note, that state diagram turns out to be commutative,
931 * so that we are allowed not to be bothered by order of our actions,
932 * when multiple events arrive simultaneously. (see the function below).
933 *
934 * Reordering detection.
935 * --------------------
936 * Reordering metric is maximal distance, which a packet can be displaced
937 * in packet stream. With SACKs we can estimate it:
938 *
939 * 1. SACK fills old hole and the corresponding segment was not
940 * ever retransmitted -> reordering. Alas, we cannot use it
941 * when segment was retransmitted.
942 * 2. The last flaw is solved with D-SACK. D-SACK arrives
943 * for retransmitted and already SACKed segment -> reordering..
944 * Both of these heuristics are not used in Loss state, when we cannot
945 * account for retransmits accurately.
5b3c9882
IJ
946 *
947 * SACK block validation.
948 * ----------------------
949 *
950 * SACK block range validation checks that the received SACK block fits to
951 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
952 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
953 * it means that the receiver is rather inconsistent with itself reporting
954 * SACK reneging when it should advance SND.UNA. Such SACK block this is
955 * perfectly valid, however, in light of RFC2018 which explicitly states
956 * that "SACK block MUST reflect the newest segment. Even if the newest
957 * segment is going to be discarded ...", not that it looks very clever
958 * in case of head skb. Due to potentional receiver driven attacks, we
959 * choose to avoid immediate execution of a walk in write queue due to
960 * reneging and defer head skb's loss recovery to standard loss recovery
961 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
962 *
963 * Implements also blockage to start_seq wrap-around. Problem lies in the
964 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
965 * there's no guarantee that it will be before snd_nxt (n). The problem
966 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
967 * wrap (s_w):
968 *
969 * <- outs wnd -> <- wrapzone ->
970 * u e n u_w e_w s n_w
971 * | | | | | | |
972 * |<------------+------+----- TCP seqno space --------------+---------->|
973 * ...-- <2^31 ->| |<--------...
974 * ...---- >2^31 ------>| |<--------...
975 *
976 * Current code wouldn't be vulnerable but it's better still to discard such
977 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
978 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
979 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
980 * equal to the ideal case (infinite seqno space without wrap caused issues).
981 *
982 * With D-SACK the lower bound is extended to cover sequence space below
983 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 984 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
985 * for the normal SACK blocks, explained above). But there all simplicity
986 * ends, TCP might receive valid D-SACKs below that. As long as they reside
987 * fully below undo_marker they do not affect behavior in anyway and can
988 * therefore be safely ignored. In rare cases (which are more or less
989 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
990 * fragmentation and packet reordering past skb's retransmission. To consider
991 * them correctly, the acceptable range must be extended even more though
992 * the exact amount is rather hard to quantify. However, tp->max_window can
993 * be used as an exaggerated estimate.
1da177e4 994 */
a2a385d6
ED
995static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
996 u32 start_seq, u32 end_seq)
5b3c9882
IJ
997{
998 /* Too far in future, or reversed (interpretation is ambiguous) */
999 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1000 return false;
5b3c9882
IJ
1001
1002 /* Nasty start_seq wrap-around check (see comments above) */
1003 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1004 return false;
5b3c9882 1005
564262c1 1006 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1007 * start_seq == snd_una is non-sensical (see comments above)
1008 */
1009 if (after(start_seq, tp->snd_una))
a2a385d6 1010 return true;
5b3c9882
IJ
1011
1012 if (!is_dsack || !tp->undo_marker)
a2a385d6 1013 return false;
5b3c9882
IJ
1014
1015 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1016 if (after(end_seq, tp->snd_una))
a2a385d6 1017 return false;
5b3c9882
IJ
1018
1019 if (!before(start_seq, tp->undo_marker))
a2a385d6 1020 return true;
5b3c9882
IJ
1021
1022 /* Too old */
1023 if (!after(end_seq, tp->undo_marker))
a2a385d6 1024 return false;
5b3c9882
IJ
1025
1026 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1027 * start_seq < undo_marker and end_seq >= undo_marker.
1028 */
1029 return !before(start_seq, end_seq - tp->max_window);
1030}
1031
1c1e87ed 1032/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 1033 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 1034 * for reordering! Ugly, but should help.
f785a8e2
IJ
1035 *
1036 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1037 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1038 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1039 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1040 */
291a00d1 1041static void tcp_mark_lost_retrans(struct sock *sk, int *flag)
1c1e87ed 1042{
9f58f3b7 1043 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1044 struct tcp_sock *tp = tcp_sk(sk);
1045 struct sk_buff *skb;
f785a8e2 1046 int cnt = 0;
df2e014b 1047 u32 new_low_seq = tp->snd_nxt;
6859d494 1048 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1049
1050 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1051 !after(received_upto, tp->lost_retrans_low) ||
1052 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1053 return;
1c1e87ed
IJ
1054
1055 tcp_for_write_queue(skb, sk) {
1056 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1057
1058 if (skb == tcp_send_head(sk))
1059 break;
f785a8e2 1060 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1061 break;
1062 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1063 continue;
1064
f785a8e2
IJ
1065 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1066 continue;
1067
d0af4160
IJ
1068 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1069 * constraint here (see above) but figuring out that at
1070 * least tp->reordering SACK blocks reside between ack_seq
1071 * and received_upto is not easy task to do cheaply with
1072 * the available datastructures.
1073 *
1074 * Whether FACK should check here for tp->reordering segs
1075 * in-between one could argue for either way (it would be
1076 * rather simple to implement as we could count fack_count
1077 * during the walk and do tp->fackets_out - fack_count).
1078 */
1079 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1080 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1081 tp->retrans_out -= tcp_skb_pcount(skb);
291a00d1 1082 *flag |= FLAG_LOST_RETRANS;
006f582c 1083 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1084 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1085 } else {
df2e014b 1086 if (before(ack_seq, new_low_seq))
b08d6cb2 1087 new_low_seq = ack_seq;
f785a8e2 1088 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1089 }
1090 }
b08d6cb2
IJ
1091
1092 if (tp->retrans_out)
1093 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1094}
5b3c9882 1095
a2a385d6
ED
1096static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1097 struct tcp_sack_block_wire *sp, int num_sacks,
1098 u32 prior_snd_una)
d06e021d 1099{
1ed83465 1100 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1101 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1102 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1103 bool dup_sack = false;
d06e021d
DM
1104
1105 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1106 dup_sack = true;
e60402d0 1107 tcp_dsack_seen(tp);
de0744af 1108 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1109 } else if (num_sacks > 1) {
d3e2ce3b
HH
1110 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1111 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1112
1113 if (!after(end_seq_0, end_seq_1) &&
1114 !before(start_seq_0, start_seq_1)) {
a2a385d6 1115 dup_sack = true;
e60402d0 1116 tcp_dsack_seen(tp);
de0744af
PE
1117 NET_INC_STATS_BH(sock_net(sk),
1118 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1119 }
1120 }
1121
1122 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1123 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1124 !after(end_seq_0, prior_snd_una) &&
1125 after(end_seq_0, tp->undo_marker))
1126 tp->undo_retrans--;
1127
1128 return dup_sack;
1129}
1130
a1197f5a 1131struct tcp_sacktag_state {
740b0f18
ED
1132 int reord;
1133 int fack_count;
31231a8a
KKJ
1134 /* Timestamps for earliest and latest never-retransmitted segment
1135 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1136 * but congestion control should still get an accurate delay signal.
1137 */
1138 struct skb_mstamp first_sackt;
1139 struct skb_mstamp last_sackt;
740b0f18 1140 int flag;
a1197f5a
IJ
1141};
1142
d1935942
IJ
1143/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1144 * the incoming SACK may not exactly match but we can find smaller MSS
1145 * aligned portion of it that matches. Therefore we might need to fragment
1146 * which may fail and creates some hassle (caller must handle error case
1147 * returns).
832d11c5
IJ
1148 *
1149 * FIXME: this could be merged to shift decision code
d1935942 1150 */
0f79efdc 1151static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1152 u32 start_seq, u32 end_seq)
d1935942 1153{
a2a385d6
ED
1154 int err;
1155 bool in_sack;
d1935942 1156 unsigned int pkt_len;
adb92db8 1157 unsigned int mss;
d1935942
IJ
1158
1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1160 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1161
1162 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1163 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1164 mss = tcp_skb_mss(skb);
d1935942
IJ
1165 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1166
adb92db8 1167 if (!in_sack) {
d1935942 1168 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1169 if (pkt_len < mss)
1170 pkt_len = mss;
1171 } else {
d1935942 1172 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1173 if (pkt_len < mss)
1174 return -EINVAL;
1175 }
1176
1177 /* Round if necessary so that SACKs cover only full MSSes
1178 * and/or the remaining small portion (if present)
1179 */
1180 if (pkt_len > mss) {
1181 unsigned int new_len = (pkt_len / mss) * mss;
1182 if (!in_sack && new_len < pkt_len) {
1183 new_len += mss;
2cd0d743 1184 if (new_len >= skb->len)
adb92db8
IJ
1185 return 0;
1186 }
1187 pkt_len = new_len;
1188 }
6cc55e09 1189 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1190 if (err < 0)
1191 return err;
1192 }
1193
1194 return in_sack;
1195}
1196
cc9a672e
NC
1197/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1198static u8 tcp_sacktag_one(struct sock *sk,
1199 struct tcp_sacktag_state *state, u8 sacked,
1200 u32 start_seq, u32 end_seq,
740b0f18
ED
1201 int dup_sack, int pcount,
1202 const struct skb_mstamp *xmit_time)
9e10c47c 1203{
6859d494 1204 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1205 int fack_count = state->fack_count;
9e10c47c
IJ
1206
1207 /* Account D-SACK for retransmitted packet. */
1208 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1209 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1210 after(end_seq, tp->undo_marker))
9e10c47c 1211 tp->undo_retrans--;
ede9f3b1 1212 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1213 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1214 }
1215
1216 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1217 if (!after(end_seq, tp->snd_una))
a1197f5a 1218 return sacked;
9e10c47c
IJ
1219
1220 if (!(sacked & TCPCB_SACKED_ACKED)) {
1221 if (sacked & TCPCB_SACKED_RETRANS) {
1222 /* If the segment is not tagged as lost,
1223 * we do not clear RETRANS, believing
1224 * that retransmission is still in flight.
1225 */
1226 if (sacked & TCPCB_LOST) {
a1197f5a 1227 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1228 tp->lost_out -= pcount;
1229 tp->retrans_out -= pcount;
9e10c47c
IJ
1230 }
1231 } else {
1232 if (!(sacked & TCPCB_RETRANS)) {
1233 /* New sack for not retransmitted frame,
1234 * which was in hole. It is reordering.
1235 */
cc9a672e 1236 if (before(start_seq,
9e10c47c 1237 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1238 state->reord = min(fack_count,
1239 state->reord);
e33099f9
YC
1240 if (!after(end_seq, tp->high_seq))
1241 state->flag |= FLAG_ORIG_SACK_ACKED;
31231a8a
KKJ
1242 if (state->first_sackt.v64 == 0)
1243 state->first_sackt = *xmit_time;
1244 state->last_sackt = *xmit_time;
9e10c47c
IJ
1245 }
1246
1247 if (sacked & TCPCB_LOST) {
a1197f5a 1248 sacked &= ~TCPCB_LOST;
f58b22fd 1249 tp->lost_out -= pcount;
9e10c47c
IJ
1250 }
1251 }
1252
a1197f5a
IJ
1253 sacked |= TCPCB_SACKED_ACKED;
1254 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1255 tp->sacked_out += pcount;
9e10c47c 1256
f58b22fd 1257 fack_count += pcount;
9e10c47c
IJ
1258
1259 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
00db4124 1260 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
cc9a672e 1261 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1262 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1263
1264 if (fack_count > tp->fackets_out)
1265 tp->fackets_out = fack_count;
9e10c47c
IJ
1266 }
1267
1268 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1269 * frames and clear it. undo_retrans is decreased above, L|R frames
1270 * are accounted above as well.
1271 */
a1197f5a
IJ
1272 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1273 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1274 tp->retrans_out -= pcount;
9e10c47c
IJ
1275 }
1276
a1197f5a 1277 return sacked;
9e10c47c
IJ
1278}
1279
daef52ba
NC
1280/* Shift newly-SACKed bytes from this skb to the immediately previous
1281 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1282 */
a2a385d6
ED
1283static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1284 struct tcp_sacktag_state *state,
1285 unsigned int pcount, int shifted, int mss,
1286 bool dup_sack)
832d11c5
IJ
1287{
1288 struct tcp_sock *tp = tcp_sk(sk);
50133161 1289 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1290 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1291 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1292
1293 BUG_ON(!pcount);
1294
4c90d3b3
NC
1295 /* Adjust counters and hints for the newly sacked sequence
1296 * range but discard the return value since prev is already
1297 * marked. We must tag the range first because the seq
1298 * advancement below implicitly advances
1299 * tcp_highest_sack_seq() when skb is highest_sack.
1300 */
1301 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1302 start_seq, end_seq, dup_sack, pcount,
740b0f18 1303 &skb->skb_mstamp);
4c90d3b3
NC
1304
1305 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1306 tp->lost_cnt_hint += pcount;
1307
832d11c5
IJ
1308 TCP_SKB_CB(prev)->end_seq += shifted;
1309 TCP_SKB_CB(skb)->seq += shifted;
1310
cd7d8498
ED
1311 tcp_skb_pcount_add(prev, pcount);
1312 BUG_ON(tcp_skb_pcount(skb) < pcount);
1313 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1314
1315 /* When we're adding to gso_segs == 1, gso_size will be zero,
1316 * in theory this shouldn't be necessary but as long as DSACK
1317 * code can come after this skb later on it's better to keep
1318 * setting gso_size to something.
1319 */
f69ad292
ED
1320 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1321 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1322
1323 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1324 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1325 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1326
832d11c5
IJ
1327 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1328 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1329
832d11c5
IJ
1330 if (skb->len > 0) {
1331 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1332 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1333 return false;
832d11c5
IJ
1334 }
1335
1336 /* Whole SKB was eaten :-) */
1337
92ee76b6
IJ
1338 if (skb == tp->retransmit_skb_hint)
1339 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1340 if (skb == tp->lost_skb_hint) {
1341 tp->lost_skb_hint = prev;
1342 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1343 }
1344
5e8a402f
ED
1345 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1346 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1347 TCP_SKB_CB(prev)->end_seq++;
1348
832d11c5
IJ
1349 if (skb == tcp_highest_sack(sk))
1350 tcp_advance_highest_sack(sk, skb);
1351
1352 tcp_unlink_write_queue(skb, sk);
1353 sk_wmem_free_skb(sk, skb);
1354
111cc8b9
IJ
1355 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1356
a2a385d6 1357 return true;
832d11c5
IJ
1358}
1359
1360/* I wish gso_size would have a bit more sane initialization than
1361 * something-or-zero which complicates things
1362 */
cf533ea5 1363static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1364{
775ffabf 1365 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1366}
1367
1368/* Shifting pages past head area doesn't work */
cf533ea5 1369static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1370{
1371 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1372}
1373
1374/* Try collapsing SACK blocks spanning across multiple skbs to a single
1375 * skb.
1376 */
1377static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1378 struct tcp_sacktag_state *state,
832d11c5 1379 u32 start_seq, u32 end_seq,
a2a385d6 1380 bool dup_sack)
832d11c5
IJ
1381{
1382 struct tcp_sock *tp = tcp_sk(sk);
1383 struct sk_buff *prev;
1384 int mss;
1385 int pcount = 0;
1386 int len;
1387 int in_sack;
1388
1389 if (!sk_can_gso(sk))
1390 goto fallback;
1391
1392 /* Normally R but no L won't result in plain S */
1393 if (!dup_sack &&
9969ca5f 1394 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1395 goto fallback;
1396 if (!skb_can_shift(skb))
1397 goto fallback;
1398 /* This frame is about to be dropped (was ACKed). */
1399 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1400 goto fallback;
1401
1402 /* Can only happen with delayed DSACK + discard craziness */
1403 if (unlikely(skb == tcp_write_queue_head(sk)))
1404 goto fallback;
1405 prev = tcp_write_queue_prev(sk, skb);
1406
1407 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1408 goto fallback;
1409
1410 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1411 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1412
1413 if (in_sack) {
1414 len = skb->len;
1415 pcount = tcp_skb_pcount(skb);
775ffabf 1416 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1417
1418 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1419 * drop this restriction as unnecessary
1420 */
775ffabf 1421 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1422 goto fallback;
1423 } else {
1424 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1425 goto noop;
1426 /* CHECKME: This is non-MSS split case only?, this will
1427 * cause skipped skbs due to advancing loop btw, original
1428 * has that feature too
1429 */
1430 if (tcp_skb_pcount(skb) <= 1)
1431 goto noop;
1432
1433 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1434 if (!in_sack) {
1435 /* TODO: head merge to next could be attempted here
1436 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1437 * though it might not be worth of the additional hassle
1438 *
1439 * ...we can probably just fallback to what was done
1440 * previously. We could try merging non-SACKed ones
1441 * as well but it probably isn't going to buy off
1442 * because later SACKs might again split them, and
1443 * it would make skb timestamp tracking considerably
1444 * harder problem.
1445 */
1446 goto fallback;
1447 }
1448
1449 len = end_seq - TCP_SKB_CB(skb)->seq;
1450 BUG_ON(len < 0);
1451 BUG_ON(len > skb->len);
1452
1453 /* MSS boundaries should be honoured or else pcount will
1454 * severely break even though it makes things bit trickier.
1455 * Optimize common case to avoid most of the divides
1456 */
1457 mss = tcp_skb_mss(skb);
1458
1459 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1460 * drop this restriction as unnecessary
1461 */
775ffabf 1462 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1463 goto fallback;
1464
1465 if (len == mss) {
1466 pcount = 1;
1467 } else if (len < mss) {
1468 goto noop;
1469 } else {
1470 pcount = len / mss;
1471 len = pcount * mss;
1472 }
1473 }
1474
4648dc97
NC
1475 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1476 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1477 goto fallback;
1478
832d11c5
IJ
1479 if (!skb_shift(prev, skb, len))
1480 goto fallback;
9ec06ff5 1481 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1482 goto out;
1483
1484 /* Hole filled allows collapsing with the next as well, this is very
1485 * useful when hole on every nth skb pattern happens
1486 */
1487 if (prev == tcp_write_queue_tail(sk))
1488 goto out;
1489 skb = tcp_write_queue_next(sk, prev);
1490
f0bc52f3
IJ
1491 if (!skb_can_shift(skb) ||
1492 (skb == tcp_send_head(sk)) ||
1493 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1494 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1495 goto out;
1496
1497 len = skb->len;
1498 if (skb_shift(prev, skb, len)) {
1499 pcount += tcp_skb_pcount(skb);
9ec06ff5 1500 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1501 }
1502
1503out:
a1197f5a 1504 state->fack_count += pcount;
832d11c5
IJ
1505 return prev;
1506
1507noop:
1508 return skb;
1509
1510fallback:
111cc8b9 1511 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1512 return NULL;
1513}
1514
68f8353b
IJ
1515static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1516 struct tcp_sack_block *next_dup,
a1197f5a 1517 struct tcp_sacktag_state *state,
68f8353b 1518 u32 start_seq, u32 end_seq,
a2a385d6 1519 bool dup_sack_in)
68f8353b 1520{
832d11c5
IJ
1521 struct tcp_sock *tp = tcp_sk(sk);
1522 struct sk_buff *tmp;
1523
68f8353b
IJ
1524 tcp_for_write_queue_from(skb, sk) {
1525 int in_sack = 0;
a2a385d6 1526 bool dup_sack = dup_sack_in;
68f8353b
IJ
1527
1528 if (skb == tcp_send_head(sk))
1529 break;
1530
1531 /* queue is in-order => we can short-circuit the walk early */
1532 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1533 break;
1534
00db4124 1535 if (next_dup &&
68f8353b
IJ
1536 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1537 in_sack = tcp_match_skb_to_sack(sk, skb,
1538 next_dup->start_seq,
1539 next_dup->end_seq);
1540 if (in_sack > 0)
a2a385d6 1541 dup_sack = true;
68f8353b
IJ
1542 }
1543
832d11c5
IJ
1544 /* skb reference here is a bit tricky to get right, since
1545 * shifting can eat and free both this skb and the next,
1546 * so not even _safe variant of the loop is enough.
1547 */
1548 if (in_sack <= 0) {
a1197f5a
IJ
1549 tmp = tcp_shift_skb_data(sk, skb, state,
1550 start_seq, end_seq, dup_sack);
00db4124 1551 if (tmp) {
832d11c5
IJ
1552 if (tmp != skb) {
1553 skb = tmp;
1554 continue;
1555 }
1556
1557 in_sack = 0;
1558 } else {
1559 in_sack = tcp_match_skb_to_sack(sk, skb,
1560 start_seq,
1561 end_seq);
1562 }
1563 }
1564
68f8353b
IJ
1565 if (unlikely(in_sack < 0))
1566 break;
1567
832d11c5 1568 if (in_sack) {
cc9a672e
NC
1569 TCP_SKB_CB(skb)->sacked =
1570 tcp_sacktag_one(sk,
1571 state,
1572 TCP_SKB_CB(skb)->sacked,
1573 TCP_SKB_CB(skb)->seq,
1574 TCP_SKB_CB(skb)->end_seq,
1575 dup_sack,
59c9af42 1576 tcp_skb_pcount(skb),
740b0f18 1577 &skb->skb_mstamp);
68f8353b 1578
832d11c5
IJ
1579 if (!before(TCP_SKB_CB(skb)->seq,
1580 tcp_highest_sack_seq(tp)))
1581 tcp_advance_highest_sack(sk, skb);
1582 }
1583
a1197f5a 1584 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1585 }
1586 return skb;
1587}
1588
1589/* Avoid all extra work that is being done by sacktag while walking in
1590 * a normal way
1591 */
1592static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1593 struct tcp_sacktag_state *state,
1594 u32 skip_to_seq)
68f8353b
IJ
1595{
1596 tcp_for_write_queue_from(skb, sk) {
1597 if (skb == tcp_send_head(sk))
1598 break;
1599
e8bae275 1600 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1601 break;
d152a7d8 1602
a1197f5a 1603 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1604 }
1605 return skb;
1606}
1607
1608static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1609 struct sock *sk,
1610 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1611 struct tcp_sacktag_state *state,
1612 u32 skip_to_seq)
68f8353b 1613{
51456b29 1614 if (!next_dup)
68f8353b
IJ
1615 return skb;
1616
1617 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1618 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1619 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1620 next_dup->start_seq, next_dup->end_seq,
1621 1);
68f8353b
IJ
1622 }
1623
1624 return skb;
1625}
1626
cf533ea5 1627static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1628{
1629 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1630}
1631
1da177e4 1632static int
cf533ea5 1633tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1634 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1635{
1636 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1637 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1638 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1639 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1640 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1641 struct tcp_sack_block *cache;
1642 struct sk_buff *skb;
4389dded 1643 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1644 int used_sacks;
a2a385d6 1645 bool found_dup_sack = false;
68f8353b 1646 int i, j;
fda03fbb 1647 int first_sack_index;
1da177e4 1648
196da974
KKJ
1649 state->flag = 0;
1650 state->reord = tp->packets_out;
a1197f5a 1651
d738cd8f 1652 if (!tp->sacked_out) {
de83c058
IJ
1653 if (WARN_ON(tp->fackets_out))
1654 tp->fackets_out = 0;
6859d494 1655 tcp_highest_sack_reset(sk);
d738cd8f 1656 }
1da177e4 1657
1ed83465 1658 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1659 num_sacks, prior_snd_una);
1660 if (found_dup_sack)
196da974 1661 state->flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1662
1663 /* Eliminate too old ACKs, but take into
1664 * account more or less fresh ones, they can
1665 * contain valid SACK info.
1666 */
1667 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1668 return 0;
1669