]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/ipv4/tcp_input.c
tcp: do not delay ACK in DCTCP upon CE status change
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
02c30a84 9 * Authors: Ross Biro
1da177e4
LT
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 44 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
e905a9ed 52 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 53 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 54 * work without delayed acks.
1da177e4
LT
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
63 */
64
afd46503
JP
65#define pr_fmt(fmt) "TCP: " fmt
66
1da177e4 67#include <linux/mm.h>
5a0e3ad6 68#include <linux/slab.h>
1da177e4
LT
69#include <linux/module.h>
70#include <linux/sysctl.h>
a0bffffc 71#include <linux/kernel.h>
ad971f61 72#include <linux/prefetch.h>
5ffc02a1 73#include <net/dst.h>
1da177e4
LT
74#include <net/tcp.h>
75#include <net/inet_common.h>
76#include <linux/ipsec.h>
77#include <asm/unaligned.h>
e1c8a607 78#include <linux/errqueue.h>
5941521c 79#include <trace/events/tcp.h>
60e2a778 80#include <linux/static_key.h>
1da177e4 81
ab32ea5d 82int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
1da177e4 83
1da177e4
LT
84#define FLAG_DATA 0x01 /* Incoming frame contained data. */
85#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
86#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
87#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
88#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
89#define FLAG_DATA_SACKED 0x20 /* New SACK. */
90#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 91#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
31770e34 92#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 93#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 94#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 95#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
df92c839 96#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
cadbd031 97#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 98#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
d0e1a1b5 99#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
1da177e4
LT
100
101#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
102#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
d09b9e60 103#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
1da177e4
LT
104#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
105
1da177e4 106#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 107#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 108
e662ca40
YC
109#define REXMIT_NONE 0 /* no loss recovery to do */
110#define REXMIT_LOST 1 /* retransmit packets marked lost */
111#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
112
0b9aefea
MRL
113static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
114 unsigned int len)
dcb17d22
MRL
115{
116 static bool __once __read_mostly;
117
118 if (!__once) {
119 struct net_device *dev;
120
121 __once = true;
122
123 rcu_read_lock();
124 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
125 if (!dev || len >= dev->mtu)
126 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
127 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
128 rcu_read_unlock();
129 }
130}
131
e905a9ed 132/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 133 * real world.
e905a9ed 134 */
056834d9 135static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 136{
463c84b9 137 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 138 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 139 unsigned int len;
1da177e4 140
e905a9ed 141 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
142
143 /* skb->len may jitter because of SACKs, even if peer
144 * sends good full-sized frames.
145 */
056834d9 146 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 147 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
148 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
149 tcp_sk(sk)->advmss);
0b9aefea
MRL
150 /* Account for possibly-removed options */
151 if (unlikely(len > icsk->icsk_ack.rcv_mss +
152 MAX_TCP_OPTION_SPACE))
153 tcp_gro_dev_warn(sk, skb, len);
1da177e4
LT
154 } else {
155 /* Otherwise, we make more careful check taking into account,
156 * that SACKs block is variable.
157 *
158 * "len" is invariant segment length, including TCP header.
159 */
9c70220b 160 len += skb->data - skb_transport_header(skb);
bee7ca9e 161 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
162 /* If PSH is not set, packet should be
163 * full sized, provided peer TCP is not badly broken.
164 * This observation (if it is correct 8)) allows
165 * to handle super-low mtu links fairly.
166 */
167 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 168 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
169 /* Subtract also invariant (if peer is RFC compliant),
170 * tcp header plus fixed timestamp option length.
171 * Resulting "len" is MSS free of SACK jitter.
172 */
463c84b9
ACM
173 len -= tcp_sk(sk)->tcp_header_len;
174 icsk->icsk_ack.last_seg_size = len;
1da177e4 175 if (len == lss) {
463c84b9 176 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
177 return;
178 }
179 }
1ef9696c
AK
180 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
181 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 182 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
183 }
184}
185
463c84b9 186static void tcp_incr_quickack(struct sock *sk)
1da177e4 187{
463c84b9 188 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 189 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 190
056834d9
IJ
191 if (quickacks == 0)
192 quickacks = 2;
463c84b9
ACM
193 if (quickacks > icsk->icsk_ack.quick)
194 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
195}
196
8a2ff6a5 197void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 198{
463c84b9
ACM
199 struct inet_connection_sock *icsk = inet_csk(sk);
200 tcp_incr_quickack(sk);
201 icsk->icsk_ack.pingpong = 0;
202 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 203}
8a2ff6a5 204EXPORT_SYMBOL(tcp_enter_quickack_mode);
1da177e4
LT
205
206/* Send ACKs quickly, if "quick" count is not exhausted
207 * and the session is not interactive.
208 */
209
2251ae46 210static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 211{
463c84b9 212 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 213 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 214
2251ae46
JM
215 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
216 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
217}
218
735d3831 219static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 220{
056834d9 221 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
222 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
223}
224
735d3831 225static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
226{
227 if (tcp_hdr(skb)->cwr)
228 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
229}
230
735d3831 231static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
232{
233 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
234}
235
735d3831 236static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 237{
b82d1bb4 238 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 239 case INET_ECN_NOT_ECT:
bdf1ee5d 240 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
241 * and we already seen ECT on a previous segment,
242 * it is probably a retransmit.
243 */
244 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 245 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
246 break;
247 case INET_ECN_CE:
9890092e
FW
248 if (tcp_ca_needs_ecn((struct sock *)tp))
249 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
250
aae06bf5
ED
251 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
252 /* Better not delay acks, sender can have a very low cwnd */
253 tcp_enter_quickack_mode((struct sock *)tp);
254 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
255 }
9890092e
FW
256 tp->ecn_flags |= TCP_ECN_SEEN;
257 break;
7a269ffa 258 default:
9890092e
FW
259 if (tcp_ca_needs_ecn((struct sock *)tp))
260 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 261 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 262 break;
bdf1ee5d
IJ
263 }
264}
265
735d3831
FW
266static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
267{
268 if (tp->ecn_flags & TCP_ECN_OK)
269 __tcp_ecn_check_ce(tp, skb);
270}
271
272static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 273{
056834d9 274 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
275 tp->ecn_flags &= ~TCP_ECN_OK;
276}
277
735d3831 278static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 279{
056834d9 280 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
281 tp->ecn_flags &= ~TCP_ECN_OK;
282}
283
735d3831 284static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 285{
056834d9 286 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
287 return true;
288 return false;
bdf1ee5d
IJ
289}
290
1da177e4
LT
291/* Buffer size and advertised window tuning.
292 *
293 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
294 */
295
6ae70532 296static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 297{
6ae70532 298 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 299 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
300 int sndmem, per_mss;
301 u32 nr_segs;
302
303 /* Worst case is non GSO/TSO : each frame consumes one skb
304 * and skb->head is kmalloced using power of two area of memory
305 */
306 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
307 MAX_TCP_HEADER +
308 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
309
310 per_mss = roundup_pow_of_two(per_mss) +
311 SKB_DATA_ALIGN(sizeof(struct sk_buff));
312
313 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
314 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
315
316 /* Fast Recovery (RFC 5681 3.2) :
317 * Cubic needs 1.7 factor, rounded to 2 to include
318 * extra cushion (application might react slowly to POLLOUT)
319 */
77bfc174
YC
320 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
321 sndmem *= nr_segs * per_mss;
1da177e4 322
06a59ecb 323 if (sk->sk_sndbuf < sndmem)
356d1833 324 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
1da177e4
LT
325}
326
327/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
328 *
329 * All tcp_full_space() is split to two parts: "network" buffer, allocated
330 * forward and advertised in receiver window (tp->rcv_wnd) and
331 * "application buffer", required to isolate scheduling/application
332 * latencies from network.
333 * window_clamp is maximal advertised window. It can be less than
334 * tcp_full_space(), in this case tcp_full_space() - window_clamp
335 * is reserved for "application" buffer. The less window_clamp is
336 * the smoother our behaviour from viewpoint of network, but the lower
337 * throughput and the higher sensitivity of the connection to losses. 8)
338 *
339 * rcv_ssthresh is more strict window_clamp used at "slow start"
340 * phase to predict further behaviour of this connection.
341 * It is used for two goals:
342 * - to enforce header prediction at sender, even when application
343 * requires some significant "application buffer". It is check #1.
344 * - to prevent pruning of receive queue because of misprediction
345 * of receiver window. Check #2.
346 *
347 * The scheme does not work when sender sends good segments opening
caa20d9a 348 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
349 * in common situations. Otherwise, we have to rely on queue collapsing.
350 */
351
352/* Slow part of check#2. */
9e412ba7 353static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 354{
9e412ba7 355 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 356 /* Optimize this! */
94f0893e 357 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
356d1833 358 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
359
360 while (tp->rcv_ssthresh <= window) {
361 if (truesize <= skb->len)
463c84b9 362 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
363
364 truesize >>= 1;
365 window >>= 1;
366 }
367 return 0;
368}
369
cf533ea5 370static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 371{
9e412ba7
IJ
372 struct tcp_sock *tp = tcp_sk(sk);
373
1da177e4
LT
374 /* Check #1 */
375 if (tp->rcv_ssthresh < tp->window_clamp &&
376 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 377 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
378 int incr;
379
380 /* Check #2. Increase window, if skb with such overhead
381 * will fit to rcvbuf in future.
382 */
94f0893e 383 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
056834d9 384 incr = 2 * tp->advmss;
1da177e4 385 else
9e412ba7 386 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
387
388 if (incr) {
4d846f02 389 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
390 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
391 tp->window_clamp);
463c84b9 392 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
393 }
394 }
395}
396
397/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
398static void tcp_fixup_rcvbuf(struct sock *sk)
399{
e9266a02 400 u32 mss = tcp_sk(sk)->advmss;
e9266a02 401 int rcvmem;
1da177e4 402
85f16525
YC
403 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
404 tcp_default_init_rwnd(mss);
e9266a02 405
b0983d3c
ED
406 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
407 * Allow enough cushion so that sender is not limited by our window
408 */
4540c0cf 409 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
b0983d3c
ED
410 rcvmem <<= 2;
411
e9266a02 412 if (sk->sk_rcvbuf < rcvmem)
356d1833 413 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1da177e4
LT
414}
415
caa20d9a 416/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
417 * established state.
418 */
10467163 419void tcp_init_buffer_space(struct sock *sk)
1da177e4 420{
0c12654a 421 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
1da177e4
LT
422 struct tcp_sock *tp = tcp_sk(sk);
423 int maxwin;
424
425 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
426 tcp_fixup_rcvbuf(sk);
427 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 428 tcp_sndbuf_expand(sk);
1da177e4
LT
429
430 tp->rcvq_space.space = tp->rcv_wnd;
9a568de4 431 tcp_mstamp_refresh(tp);
645f4c6f 432 tp->rcvq_space.time = tp->tcp_mstamp;
b0983d3c 433 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
434
435 maxwin = tcp_full_space(sk);
436
437 if (tp->window_clamp >= maxwin) {
438 tp->window_clamp = maxwin;
439
0c12654a 440 if (tcp_app_win && maxwin > 4 * tp->advmss)
1da177e4 441 tp->window_clamp = max(maxwin -
0c12654a 442 (maxwin >> tcp_app_win),
1da177e4
LT
443 4 * tp->advmss);
444 }
445
446 /* Force reservation of one segment. */
0c12654a 447 if (tcp_app_win &&
1da177e4
LT
448 tp->window_clamp > 2 * tp->advmss &&
449 tp->window_clamp + tp->advmss > maxwin)
450 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
451
452 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
c2203cf7 453 tp->snd_cwnd_stamp = tcp_jiffies32;
1da177e4
LT
454}
455
1da177e4 456/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 457static void tcp_clamp_window(struct sock *sk)
1da177e4 458{
9e412ba7 459 struct tcp_sock *tp = tcp_sk(sk);
6687e988 460 struct inet_connection_sock *icsk = inet_csk(sk);
356d1833 461 struct net *net = sock_net(sk);
1da177e4 462
6687e988 463 icsk->icsk_ack.quick = 0;
1da177e4 464
356d1833 465 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
326f36e9 466 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 467 !tcp_under_memory_pressure(sk) &&
180d8cd9 468 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9 469 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
356d1833 470 net->ipv4.sysctl_tcp_rmem[2]);
1da177e4 471 }
326f36e9 472 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 473 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
474}
475
40efc6fa
SH
476/* Initialize RCV_MSS value.
477 * RCV_MSS is an our guess about MSS used by the peer.
478 * We haven't any direct information about the MSS.
479 * It's better to underestimate the RCV_MSS rather than overestimate.
480 * Overestimations make us ACKing less frequently than needed.
481 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
482 */
483void tcp_initialize_rcv_mss(struct sock *sk)
484{
cf533ea5 485 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
486 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
487
056834d9 488 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 489 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
490 hint = max(hint, TCP_MIN_MSS);
491
492 inet_csk(sk)->icsk_ack.rcv_mss = hint;
493}
4bc2f18b 494EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 495
1da177e4
LT
496/* Receiver "autotuning" code.
497 *
498 * The algorithm for RTT estimation w/o timestamps is based on
499 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 500 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
501 *
502 * More detail on this code can be found at
631dd1a8 503 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
504 * though this reference is out of date. A new paper
505 * is pending.
506 */
507static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
508{
645f4c6f 509 u32 new_sample = tp->rcv_rtt_est.rtt_us;
1da177e4
LT
510 long m = sample;
511
1da177e4
LT
512 if (new_sample != 0) {
513 /* If we sample in larger samples in the non-timestamp
514 * case, we could grossly overestimate the RTT especially
515 * with chatty applications or bulk transfer apps which
516 * are stalled on filesystem I/O.
517 *
518 * Also, since we are only going for a minimum in the
31f34269 519 * non-timestamp case, we do not smooth things out
caa20d9a 520 * else with timestamps disabled convergence takes too
1da177e4
LT
521 * long.
522 */
523 if (!win_dep) {
524 m -= (new_sample >> 3);
525 new_sample += m;
18a223e0
NC
526 } else {
527 m <<= 3;
528 if (m < new_sample)
529 new_sample = m;
530 }
1da177e4 531 } else {
caa20d9a 532 /* No previous measure. */
1da177e4
LT
533 new_sample = m << 3;
534 }
535
645f4c6f 536 tp->rcv_rtt_est.rtt_us = new_sample;
1da177e4
LT
537}
538
539static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
540{
645f4c6f
ED
541 u32 delta_us;
542
9a568de4 543 if (tp->rcv_rtt_est.time == 0)
1da177e4
LT
544 goto new_measure;
545 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
546 return;
9a568de4 547 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
9ee11bd0
WW
548 if (!delta_us)
549 delta_us = 1;
645f4c6f 550 tcp_rcv_rtt_update(tp, delta_us, 1);
1da177e4
LT
551
552new_measure:
553 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
645f4c6f 554 tp->rcv_rtt_est.time = tp->tcp_mstamp;
1da177e4
LT
555}
556
056834d9
IJ
557static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
558 const struct sk_buff *skb)
1da177e4 559{
463c84b9 560 struct tcp_sock *tp = tcp_sk(sk);
9a568de4 561
1da177e4
LT
562 if (tp->rx_opt.rcv_tsecr &&
563 (TCP_SKB_CB(skb)->end_seq -
9a568de4
ED
564 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
565 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
9ee11bd0 566 u32 delta_us;
9a568de4 567
9ee11bd0
WW
568 if (!delta)
569 delta = 1;
570 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
9a568de4
ED
571 tcp_rcv_rtt_update(tp, delta_us, 0);
572 }
1da177e4
LT
573}
574
575/*
576 * This function should be called every time data is copied to user space.
577 * It calculates the appropriate TCP receive buffer space.
578 */
579void tcp_rcv_space_adjust(struct sock *sk)
580{
581 struct tcp_sock *tp = tcp_sk(sk);
ee07c64f 582 u32 copied;
1da177e4 583 int time;
e905a9ed 584
86323850 585 tcp_mstamp_refresh(tp);
9a568de4 586 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
645f4c6f 587 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
1da177e4 588 return;
e905a9ed 589
b0983d3c
ED
590 /* Number of bytes copied to user in last RTT */
591 copied = tp->copied_seq - tp->rcvq_space.seq;
592 if (copied <= tp->rcvq_space.space)
593 goto new_measure;
594
595 /* A bit of theory :
596 * copied = bytes received in previous RTT, our base window
597 * To cope with packet losses, we need a 2x factor
598 * To cope with slow start, and sender growing its cwin by 100 %
599 * every RTT, we need a 4x factor, because the ACK we are sending
600 * now is for the next RTT, not the current one :
601 * <prev RTT . ><current RTT .. ><next RTT .... >
602 */
603
4540c0cf 604 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
b0983d3c 605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
ee07c64f
ED
606 int rcvmem, rcvbuf;
607 u64 rcvwin;
1da177e4 608
b0983d3c
ED
609 /* minimal window to cope with packet losses, assuming
610 * steady state. Add some cushion because of small variations.
611 */
ee07c64f 612 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
1da177e4 613
b0983d3c
ED
614 /* If rate increased by 25%,
615 * assume slow start, rcvwin = 3 * copied
616 * If rate increased by 50%,
617 * assume sender can use 2x growth, rcvwin = 4 * copied
618 */
619 if (copied >=
620 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
621 if (copied >=
622 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
623 rcvwin <<= 1;
624 else
625 rcvwin += (rcvwin >> 1);
626 }
1da177e4 627
b0983d3c 628 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
94f0893e 629 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
b0983d3c 630 rcvmem += 128;
1da177e4 631
ee07c64f
ED
632 do_div(rcvwin, tp->advmss);
633 rcvbuf = min_t(u64, rcvwin * rcvmem,
356d1833 634 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
b0983d3c
ED
635 if (rcvbuf > sk->sk_rcvbuf) {
636 sk->sk_rcvbuf = rcvbuf;
1da177e4 637
b0983d3c 638 /* Make the window clamp follow along. */
82d42ab7 639 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
1da177e4
LT
640 }
641 }
b0983d3c 642 tp->rcvq_space.space = copied;
e905a9ed 643
1da177e4
LT
644new_measure:
645 tp->rcvq_space.seq = tp->copied_seq;
645f4c6f 646 tp->rcvq_space.time = tp->tcp_mstamp;
1da177e4
LT
647}
648
649/* There is something which you must keep in mind when you analyze the
650 * behavior of the tp->ato delayed ack timeout interval. When a
651 * connection starts up, we want to ack as quickly as possible. The
652 * problem is that "good" TCP's do slow start at the beginning of data
653 * transmission. The means that until we send the first few ACK's the
654 * sender will sit on his end and only queue most of his data, because
655 * he can only send snd_cwnd unacked packets at any given time. For
656 * each ACK we send, he increments snd_cwnd and transmits more of his
657 * queue. -DaveM
658 */
9e412ba7 659static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 660{
9e412ba7 661 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 662 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
663 u32 now;
664
463c84b9 665 inet_csk_schedule_ack(sk);
1da177e4 666
463c84b9 667 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
668
669 tcp_rcv_rtt_measure(tp);
e905a9ed 670
70eabf0e 671 now = tcp_jiffies32;
1da177e4 672
463c84b9 673 if (!icsk->icsk_ack.ato) {
1da177e4
LT
674 /* The _first_ data packet received, initialize
675 * delayed ACK engine.
676 */
463c84b9
ACM
677 tcp_incr_quickack(sk);
678 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 679 } else {
463c84b9 680 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 681
056834d9 682 if (m <= TCP_ATO_MIN / 2) {
1da177e4 683 /* The fastest case is the first. */
463c84b9
ACM
684 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
685 } else if (m < icsk->icsk_ack.ato) {
686 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
687 if (icsk->icsk_ack.ato > icsk->icsk_rto)
688 icsk->icsk_ack.ato = icsk->icsk_rto;
689 } else if (m > icsk->icsk_rto) {
caa20d9a 690 /* Too long gap. Apparently sender failed to
1da177e4
LT
691 * restart window, so that we send ACKs quickly.
692 */
463c84b9 693 tcp_incr_quickack(sk);
3ab224be 694 sk_mem_reclaim(sk);
1da177e4
LT
695 }
696 }
463c84b9 697 icsk->icsk_ack.lrcvtime = now;
1da177e4 698
735d3831 699 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
700
701 if (skb->len >= 128)
9e412ba7 702 tcp_grow_window(sk, skb);
1da177e4
LT
703}
704
1da177e4
LT
705/* Called to compute a smoothed rtt estimate. The data fed to this
706 * routine either comes from timestamps, or from segments that were
707 * known _not_ to have been retransmitted [see Karn/Partridge
708 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
709 * piece by Van Jacobson.
710 * NOTE: the next three routines used to be one big routine.
711 * To save cycles in the RFC 1323 implementation it was better to break
712 * it up into three procedures. -- erics
713 */
740b0f18 714static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 715{
6687e988 716 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
717 long m = mrtt_us; /* RTT */
718 u32 srtt = tp->srtt_us;
1da177e4 719
1da177e4
LT
720 /* The following amusing code comes from Jacobson's
721 * article in SIGCOMM '88. Note that rtt and mdev
722 * are scaled versions of rtt and mean deviation.
e905a9ed 723 * This is designed to be as fast as possible
1da177e4
LT
724 * m stands for "measurement".
725 *
726 * On a 1990 paper the rto value is changed to:
727 * RTO = rtt + 4 * mdev
728 *
729 * Funny. This algorithm seems to be very broken.
730 * These formulae increase RTO, when it should be decreased, increase
31f34269 731 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
732 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
733 * does not matter how to _calculate_ it. Seems, it was trap
734 * that VJ failed to avoid. 8)
735 */
4a5ab4e2
ED
736 if (srtt != 0) {
737 m -= (srtt >> 3); /* m is now error in rtt est */
738 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
739 if (m < 0) {
740 m = -m; /* m is now abs(error) */
740b0f18 741 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
742 /* This is similar to one of Eifel findings.
743 * Eifel blocks mdev updates when rtt decreases.
744 * This solution is a bit different: we use finer gain
745 * for mdev in this case (alpha*beta).
746 * Like Eifel it also prevents growth of rto,
747 * but also it limits too fast rto decreases,
748 * happening in pure Eifel.
749 */
750 if (m > 0)
751 m >>= 3;
752 } else {
740b0f18 753 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 754 }
740b0f18
ED
755 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
756 if (tp->mdev_us > tp->mdev_max_us) {
757 tp->mdev_max_us = tp->mdev_us;
758 if (tp->mdev_max_us > tp->rttvar_us)
759 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
760 }
761 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
762 if (tp->mdev_max_us < tp->rttvar_us)
763 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 764 tp->rtt_seq = tp->snd_nxt;
740b0f18 765 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
766 }
767 } else {
768 /* no previous measure. */
4a5ab4e2 769 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
770 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
771 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
772 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
773 tp->rtt_seq = tp->snd_nxt;
774 }
740b0f18 775 tp->srtt_us = max(1U, srtt);
1da177e4
LT
776}
777
95bd09eb
ED
778static void tcp_update_pacing_rate(struct sock *sk)
779{
780 const struct tcp_sock *tp = tcp_sk(sk);
781 u64 rate;
782
783 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
784 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
785
786 /* current rate is (cwnd * mss) / srtt
787 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
788 * In Congestion Avoidance phase, set it to 120 % the current rate.
789 *
790 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
791 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
792 * end of slow start and should slow down.
793 */
794 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
23a7102a 795 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
43e122b0 796 else
c26e91f8 797 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
798
799 rate *= max(tp->snd_cwnd, tp->packets_out);
800
740b0f18
ED
801 if (likely(tp->srtt_us))
802 do_div(rate, tp->srtt_us);
95bd09eb 803
a9da6f29 804 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
ba537427
ED
805 * without any lock. We want to make sure compiler wont store
806 * intermediate values in this location.
807 */
a9da6f29
MR
808 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
809 sk->sk_max_pacing_rate));
95bd09eb
ED
810}
811
1da177e4
LT
812/* Calculate rto without backoff. This is the second half of Van Jacobson's
813 * routine referred to above.
814 */
f7e56a76 815static void tcp_set_rto(struct sock *sk)
1da177e4 816{
463c84b9 817 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
818 /* Old crap is replaced with new one. 8)
819 *
820 * More seriously:
821 * 1. If rtt variance happened to be less 50msec, it is hallucination.
822 * It cannot be less due to utterly erratic ACK generation made
823 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
824 * to do with delayed acks, because at cwnd>2 true delack timeout
825 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 826 * ACKs in some circumstances.
1da177e4 827 */
f1ecd5d9 828 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
829
830 /* 2. Fixups made earlier cannot be right.
831 * If we do not estimate RTO correctly without them,
832 * all the algo is pure shit and should be replaced
caa20d9a 833 * with correct one. It is exactly, which we pretend to do.
1da177e4 834 */
1da177e4 835
ee6aac59
IJ
836 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
837 * guarantees that rto is higher.
838 */
f1ecd5d9 839 tcp_bound_rto(sk);
1da177e4
LT
840}
841
cf533ea5 842__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
843{
844 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
845
22b71c8f 846 if (!cwnd)
442b9635 847 cwnd = TCP_INIT_CWND;
1da177e4
LT
848 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
849}
850
564262c1 851/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
852static void tcp_dsack_seen(struct tcp_sock *tp)
853{
ab56222a 854 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1f255691 855 tp->rack.dsack_seen = 1;
e60402d0
IJ
856}
857
737ff314
YC
858/* It's reordering when higher sequence was delivered (i.e. sacked) before
859 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
860 * distance is approximated in full-mss packet distance ("reordering").
861 */
862static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
863 const int ts)
1da177e4 864{
6687e988 865 struct tcp_sock *tp = tcp_sk(sk);
737ff314
YC
866 const u32 mss = tp->mss_cache;
867 u32 fack, metric;
40b215e5 868
737ff314
YC
869 fack = tcp_highest_sack_seq(tp);
870 if (!before(low_seq, fack))
6f5b24ee
SHY
871 return;
872
737ff314
YC
873 metric = fack - low_seq;
874 if ((metric > tp->reordering * mss) && mss) {
1da177e4 875#if FASTRETRANS_DEBUG > 1
91df42be
JP
876 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
877 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
878 tp->reordering,
737ff314 879 0,
91df42be
JP
880 tp->sacked_out,
881 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 882#endif
737ff314
YC
883 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
884 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1da177e4 885 }
eed530b6 886
4f41b1c5 887 tp->rack.reord = 1;
2d2517ee 888 /* This exciting event is worth to be remembered. 8) */
737ff314
YC
889 NET_INC_STATS(sock_net(sk),
890 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1da177e4
LT
891}
892
006f582c 893/* This must be called before lost_out is incremented */
c8c213f2
IJ
894static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
895{
51456b29 896 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
897 before(TCP_SKB_CB(skb)->seq,
898 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c 899 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
900}
901
0682e690
NC
902/* Sum the number of packets on the wire we have marked as lost.
903 * There are two cases we care about here:
904 * a) Packet hasn't been marked lost (nor retransmitted),
905 * and this is the first loss.
906 * b) Packet has been marked both lost and retransmitted,
907 * and this means we think it was lost again.
908 */
909static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
910{
911 __u8 sacked = TCP_SKB_CB(skb)->sacked;
912
913 if (!(sacked & TCPCB_LOST) ||
914 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
915 tp->lost += tcp_skb_pcount(skb);
916}
917
41ea36e3
IJ
918static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
919{
920 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
921 tcp_verify_retransmit_hint(tp, skb);
922
923 tp->lost_out += tcp_skb_pcount(skb);
0682e690 924 tcp_sum_lost(tp, skb);
41ea36e3
IJ
925 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
926 }
927}
928
4f41b1c5 929void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
930{
931 tcp_verify_retransmit_hint(tp, skb);
932
0682e690 933 tcp_sum_lost(tp, skb);
006f582c
IJ
934 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
935 tp->lost_out += tcp_skb_pcount(skb);
936 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
937 }
938}
939
1da177e4
LT
940/* This procedure tags the retransmission queue when SACKs arrive.
941 *
942 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
943 * Packets in queue with these bits set are counted in variables
944 * sacked_out, retrans_out and lost_out, correspondingly.
945 *
946 * Valid combinations are:
947 * Tag InFlight Description
948 * 0 1 - orig segment is in flight.
949 * S 0 - nothing flies, orig reached receiver.
950 * L 0 - nothing flies, orig lost by net.
951 * R 2 - both orig and retransmit are in flight.
952 * L|R 1 - orig is lost, retransmit is in flight.
953 * S|R 1 - orig reached receiver, retrans is still in flight.
954 * (L|S|R is logically valid, it could occur when L|R is sacked,
955 * but it is equivalent to plain S and code short-curcuits it to S.
956 * L|S is logically invalid, it would mean -1 packet in flight 8))
957 *
958 * These 6 states form finite state machine, controlled by the following events:
959 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
960 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 961 * 3. Loss detection event of two flavors:
1da177e4
LT
962 * A. Scoreboard estimator decided the packet is lost.
963 * A'. Reno "three dupacks" marks head of queue lost.
974c1236 964 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
965 * segment was retransmitted.
966 * 4. D-SACK added new rule: D-SACK changes any tag to S.
967 *
968 * It is pleasant to note, that state diagram turns out to be commutative,
969 * so that we are allowed not to be bothered by order of our actions,
970 * when multiple events arrive simultaneously. (see the function below).
971 *
972 * Reordering detection.
973 * --------------------
974 * Reordering metric is maximal distance, which a packet can be displaced
975 * in packet stream. With SACKs we can estimate it:
976 *
977 * 1. SACK fills old hole and the corresponding segment was not
978 * ever retransmitted -> reordering. Alas, we cannot use it
979 * when segment was retransmitted.
980 * 2. The last flaw is solved with D-SACK. D-SACK arrives
981 * for retransmitted and already SACKed segment -> reordering..
982 * Both of these heuristics are not used in Loss state, when we cannot
983 * account for retransmits accurately.
5b3c9882
IJ
984 *
985 * SACK block validation.
986 * ----------------------
987 *
988 * SACK block range validation checks that the received SACK block fits to
989 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
990 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
991 * it means that the receiver is rather inconsistent with itself reporting
992 * SACK reneging when it should advance SND.UNA. Such SACK block this is
993 * perfectly valid, however, in light of RFC2018 which explicitly states
994 * that "SACK block MUST reflect the newest segment. Even if the newest
995 * segment is going to be discarded ...", not that it looks very clever
996 * in case of head skb. Due to potentional receiver driven attacks, we
997 * choose to avoid immediate execution of a walk in write queue due to
998 * reneging and defer head skb's loss recovery to standard loss recovery
999 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1000 *
1001 * Implements also blockage to start_seq wrap-around. Problem lies in the
1002 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1003 * there's no guarantee that it will be before snd_nxt (n). The problem
1004 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1005 * wrap (s_w):
1006 *
1007 * <- outs wnd -> <- wrapzone ->
1008 * u e n u_w e_w s n_w
1009 * | | | | | | |
1010 * |<------------+------+----- TCP seqno space --------------+---------->|
1011 * ...-- <2^31 ->| |<--------...
1012 * ...---- >2^31 ------>| |<--------...
1013 *
1014 * Current code wouldn't be vulnerable but it's better still to discard such
1015 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1016 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1017 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1018 * equal to the ideal case (infinite seqno space without wrap caused issues).
1019 *
1020 * With D-SACK the lower bound is extended to cover sequence space below
1021 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1022 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1023 * for the normal SACK blocks, explained above). But there all simplicity
1024 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1025 * fully below undo_marker they do not affect behavior in anyway and can
1026 * therefore be safely ignored. In rare cases (which are more or less
1027 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1028 * fragmentation and packet reordering past skb's retransmission. To consider
1029 * them correctly, the acceptable range must be extended even more though
1030 * the exact amount is rather hard to quantify. However, tp->max_window can
1031 * be used as an exaggerated estimate.
1da177e4 1032 */
a2a385d6
ED
1033static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1034 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1035{
1036 /* Too far in future, or reversed (interpretation is ambiguous) */
1037 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1038 return false;
5b3c9882
IJ
1039
1040 /* Nasty start_seq wrap-around check (see comments above) */
1041 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1042 return false;
5b3c9882 1043
564262c1 1044 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1045 * start_seq == snd_una is non-sensical (see comments above)
1046 */
1047 if (after(start_seq, tp->snd_una))
a2a385d6 1048 return true;
5b3c9882
IJ
1049
1050 if (!is_dsack || !tp->undo_marker)
a2a385d6 1051 return false;
5b3c9882
IJ
1052
1053 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1054 if (after(end_seq, tp->snd_una))
a2a385d6 1055 return false;
5b3c9882
IJ
1056
1057 if (!before(start_seq, tp->undo_marker))
a2a385d6 1058 return true;
5b3c9882
IJ
1059
1060 /* Too old */
1061 if (!after(end_seq, tp->undo_marker))
a2a385d6 1062 return false;
5b3c9882
IJ
1063
1064 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1065 * start_seq < undo_marker and end_seq >= undo_marker.
1066 */
1067 return !before(start_seq, end_seq - tp->max_window);
1068}
1069
a2a385d6
ED
1070static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1071 struct tcp_sack_block_wire *sp, int num_sacks,
1072 u32 prior_snd_una)
d06e021d 1073{
1ed83465 1074 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1075 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1076 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1077 bool dup_sack = false;
d06e021d
DM
1078
1079 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1080 dup_sack = true;
e60402d0 1081 tcp_dsack_seen(tp);
c10d9310 1082 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1083 } else if (num_sacks > 1) {
d3e2ce3b
HH
1084 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1085 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1086
1087 if (!after(end_seq_0, end_seq_1) &&
1088 !before(start_seq_0, start_seq_1)) {
a2a385d6 1089 dup_sack = true;
e60402d0 1090 tcp_dsack_seen(tp);
c10d9310 1091 NET_INC_STATS(sock_net(sk),
de0744af 1092 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1093 }
1094 }
1095
1096 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1097 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1098 !after(end_seq_0, prior_snd_una) &&
1099 after(end_seq_0, tp->undo_marker))
1100 tp->undo_retrans--;
1101
1102 return dup_sack;
1103}
1104
a1197f5a 1105struct tcp_sacktag_state {
737ff314 1106 u32 reord;
31231a8a
KKJ
1107 /* Timestamps for earliest and latest never-retransmitted segment
1108 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1109 * but congestion control should still get an accurate delay signal.
1110 */
9a568de4
ED
1111 u64 first_sackt;
1112 u64 last_sackt;
b9f64820 1113 struct rate_sample *rate;
740b0f18 1114 int flag;
75c119af 1115 unsigned int mss_now;
a1197f5a
IJ
1116};
1117
d1935942
IJ
1118/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1119 * the incoming SACK may not exactly match but we can find smaller MSS
1120 * aligned portion of it that matches. Therefore we might need to fragment
1121 * which may fail and creates some hassle (caller must handle error case
1122 * returns).
832d11c5
IJ
1123 *
1124 * FIXME: this could be merged to shift decision code
d1935942 1125 */
0f79efdc 1126static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1127 u32 start_seq, u32 end_seq)
d1935942 1128{
a2a385d6
ED
1129 int err;
1130 bool in_sack;
d1935942 1131 unsigned int pkt_len;
adb92db8 1132 unsigned int mss;
d1935942
IJ
1133
1134 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1135 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1136
1137 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1138 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1139 mss = tcp_skb_mss(skb);
d1935942
IJ
1140 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1141
adb92db8 1142 if (!in_sack) {
d1935942 1143 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1144 if (pkt_len < mss)
1145 pkt_len = mss;
1146 } else {
d1935942 1147 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1148 if (pkt_len < mss)
1149 return -EINVAL;
1150 }
1151
1152 /* Round if necessary so that SACKs cover only full MSSes
1153 * and/or the remaining small portion (if present)
1154 */
1155 if (pkt_len > mss) {
1156 unsigned int new_len = (pkt_len / mss) * mss;
b451e5d2 1157 if (!in_sack && new_len < pkt_len)
adb92db8 1158 new_len += mss;
adb92db8
IJ
1159 pkt_len = new_len;
1160 }
b451e5d2
YC
1161
1162 if (pkt_len >= skb->len && !in_sack)
1163 return 0;
1164
75c119af
ED
1165 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1166 pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1167 if (err < 0)
1168 return err;
1169 }
1170
1171 return in_sack;
1172}
1173
cc9a672e
NC
1174/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1175static u8 tcp_sacktag_one(struct sock *sk,
1176 struct tcp_sacktag_state *state, u8 sacked,
1177 u32 start_seq, u32 end_seq,
740b0f18 1178 int dup_sack, int pcount,
9a568de4 1179 u64 xmit_time)
9e10c47c 1180{
6859d494 1181 struct tcp_sock *tp = tcp_sk(sk);
9e10c47c
IJ
1182
1183 /* Account D-SACK for retransmitted packet. */
1184 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1185 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1186 after(end_seq, tp->undo_marker))
9e10c47c 1187 tp->undo_retrans--;
737ff314
YC
1188 if ((sacked & TCPCB_SACKED_ACKED) &&
1189 before(start_seq, state->reord))
1190 state->reord = start_seq;
9e10c47c
IJ
1191 }
1192
1193 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1194 if (!after(end_seq, tp->snd_una))
a1197f5a 1195 return sacked;
9e10c47c
IJ
1196
1197 if (!(sacked & TCPCB_SACKED_ACKED)) {
d2329f10 1198 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
659a8ad5 1199
9e10c47c
IJ
1200 if (sacked & TCPCB_SACKED_RETRANS) {
1201 /* If the segment is not tagged as lost,
1202 * we do not clear RETRANS, believing
1203 * that retransmission is still in flight.
1204 */
1205 if (sacked & TCPCB_LOST) {
a1197f5a 1206 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1207 tp->lost_out -= pcount;
1208 tp->retrans_out -= pcount;
9e10c47c
IJ
1209 }
1210 } else {
1211 if (!(sacked & TCPCB_RETRANS)) {
1212 /* New sack for not retransmitted frame,
1213 * which was in hole. It is reordering.
1214 */
cc9a672e 1215 if (before(start_seq,
737ff314
YC
1216 tcp_highest_sack_seq(tp)) &&
1217 before(start_seq, state->reord))
1218 state->reord = start_seq;
1219
e33099f9
YC
1220 if (!after(end_seq, tp->high_seq))
1221 state->flag |= FLAG_ORIG_SACK_ACKED;
9a568de4
ED
1222 if (state->first_sackt == 0)
1223 state->first_sackt = xmit_time;
1224 state->last_sackt = xmit_time;
9e10c47c
IJ
1225 }
1226
1227 if (sacked & TCPCB_LOST) {
a1197f5a 1228 sacked &= ~TCPCB_LOST;
f58b22fd 1229 tp->lost_out -= pcount;
9e10c47c
IJ
1230 }
1231 }
1232
a1197f5a
IJ
1233 sacked |= TCPCB_SACKED_ACKED;
1234 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1235 tp->sacked_out += pcount;
ddf1af6f 1236 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1237
9e10c47c 1238 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
713bafea 1239 if (tp->lost_skb_hint &&
cc9a672e 1240 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1241 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1242 }
1243
1244 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1245 * frames and clear it. undo_retrans is decreased above, L|R frames
1246 * are accounted above as well.
1247 */
a1197f5a
IJ
1248 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1249 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1250 tp->retrans_out -= pcount;
9e10c47c
IJ
1251 }
1252
a1197f5a 1253 return sacked;
9e10c47c
IJ
1254}
1255
daef52ba
NC
1256/* Shift newly-SACKed bytes from this skb to the immediately previous
1257 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1258 */
f3319816
ED
1259static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1260 struct sk_buff *skb,
a2a385d6
ED
1261 struct tcp_sacktag_state *state,
1262 unsigned int pcount, int shifted, int mss,
1263 bool dup_sack)
832d11c5
IJ
1264{
1265 struct tcp_sock *tp = tcp_sk(sk);
daef52ba
NC
1266 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1267 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1268
1269 BUG_ON(!pcount);
1270
4c90d3b3
NC
1271 /* Adjust counters and hints for the newly sacked sequence
1272 * range but discard the return value since prev is already
1273 * marked. We must tag the range first because the seq
1274 * advancement below implicitly advances
1275 * tcp_highest_sack_seq() when skb is highest_sack.
1276 */
1277 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1278 start_seq, end_seq, dup_sack, pcount,
9a568de4 1279 skb->skb_mstamp);
b9f64820 1280 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1281
1282 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1283 tp->lost_cnt_hint += pcount;
1284
832d11c5
IJ
1285 TCP_SKB_CB(prev)->end_seq += shifted;
1286 TCP_SKB_CB(skb)->seq += shifted;
1287
cd7d8498
ED
1288 tcp_skb_pcount_add(prev, pcount);
1289 BUG_ON(tcp_skb_pcount(skb) < pcount);
1290 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1291
1292 /* When we're adding to gso_segs == 1, gso_size will be zero,
1293 * in theory this shouldn't be necessary but as long as DSACK
1294 * code can come after this skb later on it's better to keep
1295 * setting gso_size to something.
1296 */
f69ad292
ED
1297 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1298 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1299
1300 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1301 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1302 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1303
832d11c5
IJ
1304 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1305 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1306
832d11c5
IJ
1307 if (skb->len > 0) {
1308 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1309 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1310 return false;
832d11c5
IJ
1311 }
1312
1313 /* Whole SKB was eaten :-) */
1314
92ee76b6
IJ
1315 if (skb == tp->retransmit_skb_hint)
1316 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1317 if (skb == tp->lost_skb_hint) {
1318 tp->lost_skb_hint = prev;
1319 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1320 }
1321
5e8a402f 1322 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1323 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1324 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1325 TCP_SKB_CB(prev)->end_seq++;
1326
832d11c5
IJ
1327 if (skb == tcp_highest_sack(sk))
1328 tcp_advance_highest_sack(sk, skb);
1329
cfea5a68 1330 tcp_skb_collapse_tstamp(prev, skb);
9a568de4
ED
1331 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1332 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
b9f64820 1333
75c119af 1334 tcp_rtx_queue_unlink_and_free(skb, sk);
832d11c5 1335
c10d9310 1336 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1337
a2a385d6 1338 return true;
832d11c5
IJ
1339}
1340
1341/* I wish gso_size would have a bit more sane initialization than
1342 * something-or-zero which complicates things
1343 */
cf533ea5 1344static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1345{
775ffabf 1346 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1347}
1348
1349/* Shifting pages past head area doesn't work */
cf533ea5 1350static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1351{
1352 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1353}
1354
1355/* Try collapsing SACK blocks spanning across multiple skbs to a single
1356 * skb.
1357 */
1358static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1359 struct tcp_sacktag_state *state,
832d11c5 1360 u32 start_seq, u32 end_seq,
a2a385d6 1361 bool dup_sack)
832d11c5
IJ
1362{
1363 struct tcp_sock *tp = tcp_sk(sk);
1364 struct sk_buff *prev;
1365 int mss;
1366 int pcount = 0;
1367 int len;
1368 int in_sack;
1369
1370 if (!sk_can_gso(sk))
1371 goto fallback;
1372
1373 /* Normally R but no L won't result in plain S */
1374 if (!dup_sack &&
9969ca5f 1375 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1376 goto fallback;
1377 if (!skb_can_shift(skb))
1378 goto fallback;
1379 /* This frame is about to be dropped (was ACKed). */
1380 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1381 goto fallback;
1382
1383 /* Can only happen with delayed DSACK + discard craziness */
75c119af
ED
1384 prev = skb_rb_prev(skb);
1385 if (!prev)
832d11c5 1386 goto fallback;
832d11c5
IJ
1387
1388 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1389 goto fallback;
1390
a643b5d4
MKL
1391 if (!tcp_skb_can_collapse_to(prev))
1392 goto fallback;
1393
832d11c5
IJ
1394 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1395 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1396
1397 if (in_sack) {
1398 len = skb->len;
1399 pcount = tcp_skb_pcount(skb);
775ffabf 1400 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1401
1402 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1403 * drop this restriction as unnecessary
1404 */
775ffabf 1405 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1406 goto fallback;
1407 } else {
1408 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1409 goto noop;
1410 /* CHECKME: This is non-MSS split case only?, this will
1411 * cause skipped skbs due to advancing loop btw, original
1412 * has that feature too
1413 */
1414 if (tcp_skb_pcount(skb) <= 1)
1415 goto noop;
1416
1417 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1418 if (!in_sack) {
1419 /* TODO: head merge to next could be attempted here
1420 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1421 * though it might not be worth of the additional hassle
1422 *
1423 * ...we can probably just fallback to what was done
1424 * previously. We could try merging non-SACKed ones
1425 * as well but it probably isn't going to buy off
1426 * because later SACKs might again split them, and
1427 * it would make skb timestamp tracking considerably
1428 * harder problem.
1429 */
1430 goto fallback;
1431 }
1432
1433 len = end_seq - TCP_SKB_CB(skb)->seq;
1434 BUG_ON(len < 0);
1435 BUG_ON(len > skb->len);
1436
1437 /* MSS boundaries should be honoured or else pcount will
1438 * severely break even though it makes things bit trickier.
1439 * Optimize common case to avoid most of the divides
1440 */
1441 mss = tcp_skb_mss(skb);
1442
1443 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1444 * drop this restriction as unnecessary
1445 */
775ffabf 1446 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1447 goto fallback;
1448
1449 if (len == mss) {
1450 pcount = 1;
1451 } else if (len < mss) {
1452 goto noop;
1453 } else {
1454 pcount = len / mss;
1455 len = pcount * mss;
1456 }
1457 }
1458
4648dc97
NC
1459 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1460 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1461 goto fallback;
1462
832d11c5
IJ
1463 if (!skb_shift(prev, skb, len))
1464 goto fallback;
f3319816 1465 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1466 goto out;
1467
1468 /* Hole filled allows collapsing with the next as well, this is very
1469 * useful when hole on every nth skb pattern happens
1470 */
75c119af
ED
1471 skb = skb_rb_next(prev);
1472 if (!skb)
832d11c5 1473 goto out;
832d11c5 1474
f0bc52f3 1475 if (!skb_can_shift(skb) ||
f0bc52f3 1476 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1477 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1478 goto out;
1479
1480 len = skb->len;
1481 if (skb_shift(prev, skb, len)) {
1482 pcount += tcp_skb_pcount(skb);
f3319816
ED
1483 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1484 len, mss, 0);
832d11c5
IJ
1485 }
1486
1487out:
832d11c5
IJ
1488 return prev;
1489
1490noop:
1491 return skb;
1492
1493fallback:
c10d9310 1494 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1495 return NULL;
1496}
1497
68f8353b
IJ
1498static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1499 struct tcp_sack_block *next_dup,
a1197f5a 1500 struct tcp_sacktag_state *state,
68f8353b 1501 u32 start_seq, u32 end_seq,
a2a385d6 1502 bool dup_sack_in)
68f8353b 1503{
832d11c5
IJ
1504 struct tcp_sock *tp = tcp_sk(sk);
1505 struct sk_buff *tmp;
1506
75c119af 1507 skb_rbtree_walk_from(skb) {
68f8353b 1508 int in_sack = 0;
a2a385d6 1509 bool dup_sack = dup_sack_in;
68f8353b 1510
68f8353b
IJ
1511 /* queue is in-order => we can short-circuit the walk early */
1512 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1513 break;
1514
00db4124 1515 if (next_dup &&
68f8353b
IJ
1516 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1517 in_sack = tcp_match_skb_to_sack(sk, skb,
1518 next_dup->start_seq,
1519 next_dup->end_seq);
1520 if (in_sack > 0)
a2a385d6 1521 dup_sack = true;
68f8353b
IJ
1522 }
1523
832d11c5
IJ
1524 /* skb reference here is a bit tricky to get right, since
1525 * shifting can eat and free both this skb and the next,
1526 * so not even _safe variant of the loop is enough.
1527 */
1528 if (in_sack <= 0) {
a1197f5a
IJ
1529 tmp = tcp_shift_skb_data(sk, skb, state,
1530 start_seq, end_seq, dup_sack);
00db4124 1531 if (tmp) {
832d11c5
IJ
1532 if (tmp != skb) {
1533 skb = tmp;
1534 continue;
1535 }
1536
1537 in_sack = 0;
1538 } else {
1539 in_sack = tcp_match_skb_to_sack(sk, skb,
1540 start_seq,
1541 end_seq);
1542 }
1543 }
1544
68f8353b
IJ
1545 if (unlikely(in_sack < 0))
1546 break;
1547
832d11c5 1548 if (in_sack) {
cc9a672e
NC
1549 TCP_SKB_CB(skb)->sacked =
1550 tcp_sacktag_one(sk,
1551 state,
1552 TCP_SKB_CB(skb)->sacked,
1553 TCP_SKB_CB(skb)->seq,
1554 TCP_SKB_CB(skb)->end_seq,
1555 dup_sack,
59c9af42 1556 tcp_skb_pcount(skb),
9a568de4 1557 skb->skb_mstamp);
b9f64820 1558 tcp_rate_skb_delivered(sk, skb, state->rate);
e2080072
ED
1559 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1560 list_del_init(&skb->tcp_tsorted_anchor);
68f8353b 1561
832d11c5
IJ
1562 if (!before(TCP_SKB_CB(skb)->seq,
1563 tcp_highest_sack_seq(tp)))
1564 tcp_advance_highest_sack(sk, skb);
1565 }
68f8353b
IJ
1566 }
1567 return skb;
1568}
1569
75c119af
ED
1570static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1571 struct tcp_sacktag_state *state,
1572 u32 seq)
1573{
1574 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1575 struct sk_buff *skb;
75c119af
ED
1576
1577 while (*p) {
1578 parent = *p;
1579 skb = rb_to_skb(parent);
1580 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1581 p = &parent->rb_left;
1582 continue;
1583 }
1584 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1585 p = &parent->rb_right;
1586 continue;
1587 }
75c119af
ED
1588 return skb;
1589 }
1590 return NULL;
1591}
1592
68f8353b 1593static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1594 struct tcp_sacktag_state *state,
1595 u32 skip_to_seq)
68f8353b 1596{
75c119af
ED
1597 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1598 return skb;
d152a7d8 1599
75c119af 1600 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
68f8353b
IJ
1601}
1602
1603static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1604 struct sock *sk,
1605 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1606 struct tcp_sacktag_state *state,
1607 u32 skip_to_seq)
68f8353b 1608{
51456b29 1609 if (!next_dup)
68f8353b
IJ
1610 return skb;
1611
1612 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1613 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1614 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1615 next_dup->start_seq, next_dup->end_seq,
1616 1);
68f8353b
IJ
1617 }
1618
1619 return skb;
1620}
1621
cf533ea5 1622static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1623{
1624 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1625}
1626
1da177e4 1627static int
cf533ea5 1628tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1629 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1630{
1631 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1632 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1633 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1634 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1635 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1636 struct tcp_sack_block *cache;
1637 struct sk_buff *skb;
4389dded 1638 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1639 int used_sacks;
a2a385d6 1640 bool found_dup_sack = false;
68f8353b 1641 int i, j;
fda03fbb 1642 int first_sack_index;
1da177e4 1643
196da974 1644 state->flag = 0;
737ff314 1645 state->reord = tp->snd_nxt;
a1197f5a 1646
737ff314 1647 if (!tp->sacked_out)
6859d494 1648 tcp_highest_sack_reset(sk);
1da177e4 1649
1ed83465 1650 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1651 num_sacks, prior_snd_una);
b9f64820 1652 if (found_dup_sack) {
196da974 1653 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1654 tp->delivered++; /* A spurious retransmission is delivered */
1655 }
6f74651a
BE
1656
1657 /* Eliminate too old ACKs, but take into
1658 * account more or less fresh ones, they can
1659 * contain valid SACK info.
1660 */
1661 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1662 return 0;
1663