]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/ipv4/tcp_input.c
tcp: randomize tcp timestamp offsets for each connection
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
dca145ff 83int sysctl_tcp_max_reordering __read_mostly = 300;
ab32ea5d
BH
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 86int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 88
282f23c6 89/* rfc5961 challenge ack rate limiting */
75ff39cc 90int sysctl_tcp_challenge_ack_limit = 1000;
282f23c6 91
ab32ea5d
BH
92int sysctl_tcp_stdurg __read_mostly;
93int sysctl_tcp_rfc1337 __read_mostly;
94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 95int sysctl_tcp_frto __read_mostly = 2;
f6722583 96int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
1da177e4 97
7e380175
AP
98int sysctl_tcp_thin_dupack __read_mostly;
99
ab32ea5d 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 101int sysctl_tcp_early_retrans __read_mostly = 3;
032ee423 102int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
1da177e4 103
1da177e4
LT
104#define FLAG_DATA 0x01 /* Incoming frame contained data. */
105#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109#define FLAG_DATA_SACKED 0x20 /* New SACK. */
110#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 111#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
1da177e4 112#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 113#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 114#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 115#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 116#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 117#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
118
119#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
123
1da177e4 124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 126
e662ca40
YC
127#define REXMIT_NONE 0 /* no loss recovery to do */
128#define REXMIT_LOST 1 /* retransmit packets marked lost */
129#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
130
e905a9ed 131/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 132 * real world.
e905a9ed 133 */
056834d9 134static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 135{
463c84b9 136 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 137 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 138 unsigned int len;
1da177e4 139
e905a9ed 140 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
141
142 /* skb->len may jitter because of SACKs, even if peer
143 * sends good full-sized frames.
144 */
056834d9 145 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
146 if (len >= icsk->icsk_ack.rcv_mss) {
147 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
148 } else {
149 /* Otherwise, we make more careful check taking into account,
150 * that SACKs block is variable.
151 *
152 * "len" is invariant segment length, including TCP header.
153 */
9c70220b 154 len += skb->data - skb_transport_header(skb);
bee7ca9e 155 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
156 /* If PSH is not set, packet should be
157 * full sized, provided peer TCP is not badly broken.
158 * This observation (if it is correct 8)) allows
159 * to handle super-low mtu links fairly.
160 */
161 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 162 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
163 /* Subtract also invariant (if peer is RFC compliant),
164 * tcp header plus fixed timestamp option length.
165 * Resulting "len" is MSS free of SACK jitter.
166 */
463c84b9
ACM
167 len -= tcp_sk(sk)->tcp_header_len;
168 icsk->icsk_ack.last_seg_size = len;
1da177e4 169 if (len == lss) {
463c84b9 170 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
171 return;
172 }
173 }
1ef9696c
AK
174 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
175 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 176 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
177 }
178}
179
463c84b9 180static void tcp_incr_quickack(struct sock *sk)
1da177e4 181{
463c84b9 182 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 183 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 184
056834d9
IJ
185 if (quickacks == 0)
186 quickacks = 2;
463c84b9
ACM
187 if (quickacks > icsk->icsk_ack.quick)
188 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
189}
190
1b9f4092 191static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 192{
463c84b9
ACM
193 struct inet_connection_sock *icsk = inet_csk(sk);
194 tcp_incr_quickack(sk);
195 icsk->icsk_ack.pingpong = 0;
196 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
197}
198
199/* Send ACKs quickly, if "quick" count is not exhausted
200 * and the session is not interactive.
201 */
202
2251ae46 203static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 204{
463c84b9 205 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 206 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 207
2251ae46
JM
208 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
209 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
210}
211
735d3831 212static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 213{
056834d9 214 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
215 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
216}
217
735d3831 218static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
219{
220 if (tcp_hdr(skb)->cwr)
221 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222}
223
735d3831 224static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
225{
226 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
227}
228
735d3831 229static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 230{
b82d1bb4 231 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 232 case INET_ECN_NOT_ECT:
bdf1ee5d 233 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
234 * and we already seen ECT on a previous segment,
235 * it is probably a retransmit.
236 */
237 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 238 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
239 break;
240 case INET_ECN_CE:
9890092e
FW
241 if (tcp_ca_needs_ecn((struct sock *)tp))
242 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
243
aae06bf5
ED
244 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
245 /* Better not delay acks, sender can have a very low cwnd */
246 tcp_enter_quickack_mode((struct sock *)tp);
247 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
248 }
9890092e
FW
249 tp->ecn_flags |= TCP_ECN_SEEN;
250 break;
7a269ffa 251 default:
9890092e
FW
252 if (tcp_ca_needs_ecn((struct sock *)tp))
253 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 254 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 255 break;
bdf1ee5d
IJ
256 }
257}
258
735d3831
FW
259static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
260{
261 if (tp->ecn_flags & TCP_ECN_OK)
262 __tcp_ecn_check_ce(tp, skb);
263}
264
265static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 266{
056834d9 267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
268 tp->ecn_flags &= ~TCP_ECN_OK;
269}
270
735d3831 271static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 272{
056834d9 273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
274 tp->ecn_flags &= ~TCP_ECN_OK;
275}
276
735d3831 277static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 278{
056834d9 279 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
280 return true;
281 return false;
bdf1ee5d
IJ
282}
283
1da177e4
LT
284/* Buffer size and advertised window tuning.
285 *
286 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
287 */
288
6ae70532 289static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 290{
6ae70532 291 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 292 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
293 int sndmem, per_mss;
294 u32 nr_segs;
295
296 /* Worst case is non GSO/TSO : each frame consumes one skb
297 * and skb->head is kmalloced using power of two area of memory
298 */
299 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
300 MAX_TCP_HEADER +
301 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
302
303 per_mss = roundup_pow_of_two(per_mss) +
304 SKB_DATA_ALIGN(sizeof(struct sk_buff));
305
306 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
307 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
308
309 /* Fast Recovery (RFC 5681 3.2) :
310 * Cubic needs 1.7 factor, rounded to 2 to include
311 * extra cushion (application might react slowly to POLLOUT)
312 */
77bfc174
YC
313 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
314 sndmem *= nr_segs * per_mss;
1da177e4 315
06a59ecb
ED
316 if (sk->sk_sndbuf < sndmem)
317 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
318}
319
320/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
321 *
322 * All tcp_full_space() is split to two parts: "network" buffer, allocated
323 * forward and advertised in receiver window (tp->rcv_wnd) and
324 * "application buffer", required to isolate scheduling/application
325 * latencies from network.
326 * window_clamp is maximal advertised window. It can be less than
327 * tcp_full_space(), in this case tcp_full_space() - window_clamp
328 * is reserved for "application" buffer. The less window_clamp is
329 * the smoother our behaviour from viewpoint of network, but the lower
330 * throughput and the higher sensitivity of the connection to losses. 8)
331 *
332 * rcv_ssthresh is more strict window_clamp used at "slow start"
333 * phase to predict further behaviour of this connection.
334 * It is used for two goals:
335 * - to enforce header prediction at sender, even when application
336 * requires some significant "application buffer". It is check #1.
337 * - to prevent pruning of receive queue because of misprediction
338 * of receiver window. Check #2.
339 *
340 * The scheme does not work when sender sends good segments opening
caa20d9a 341 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
342 * in common situations. Otherwise, we have to rely on queue collapsing.
343 */
344
345/* Slow part of check#2. */
9e412ba7 346static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 347{
9e412ba7 348 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 349 /* Optimize this! */
dfd4f0ae
ED
350 int truesize = tcp_win_from_space(skb->truesize) >> 1;
351 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
352
353 while (tp->rcv_ssthresh <= window) {
354 if (truesize <= skb->len)
463c84b9 355 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
356
357 truesize >>= 1;
358 window >>= 1;
359 }
360 return 0;
361}
362
cf533ea5 363static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 364{
9e412ba7
IJ
365 struct tcp_sock *tp = tcp_sk(sk);
366
1da177e4
LT
367 /* Check #1 */
368 if (tp->rcv_ssthresh < tp->window_clamp &&
369 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 370 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
371 int incr;
372
373 /* Check #2. Increase window, if skb with such overhead
374 * will fit to rcvbuf in future.
375 */
376 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 377 incr = 2 * tp->advmss;
1da177e4 378 else
9e412ba7 379 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
380
381 if (incr) {
4d846f02 382 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
383 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
384 tp->window_clamp);
463c84b9 385 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
386 }
387 }
388}
389
390/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
391static void tcp_fixup_rcvbuf(struct sock *sk)
392{
e9266a02 393 u32 mss = tcp_sk(sk)->advmss;
e9266a02 394 int rcvmem;
1da177e4 395
85f16525
YC
396 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
397 tcp_default_init_rwnd(mss);
e9266a02 398
b0983d3c
ED
399 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
400 * Allow enough cushion so that sender is not limited by our window
401 */
402 if (sysctl_tcp_moderate_rcvbuf)
403 rcvmem <<= 2;
404
e9266a02
ED
405 if (sk->sk_rcvbuf < rcvmem)
406 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
407}
408
caa20d9a 409/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
410 * established state.
411 */
10467163 412void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
413{
414 struct tcp_sock *tp = tcp_sk(sk);
415 int maxwin;
416
417 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
418 tcp_fixup_rcvbuf(sk);
419 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 420 tcp_sndbuf_expand(sk);
1da177e4
LT
421
422 tp->rcvq_space.space = tp->rcv_wnd;
b0983d3c
ED
423 tp->rcvq_space.time = tcp_time_stamp;
424 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
425
426 maxwin = tcp_full_space(sk);
427
428 if (tp->window_clamp >= maxwin) {
429 tp->window_clamp = maxwin;
430
431 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
432 tp->window_clamp = max(maxwin -
433 (maxwin >> sysctl_tcp_app_win),
434 4 * tp->advmss);
435 }
436
437 /* Force reservation of one segment. */
438 if (sysctl_tcp_app_win &&
439 tp->window_clamp > 2 * tp->advmss &&
440 tp->window_clamp + tp->advmss > maxwin)
441 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
442
443 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
444 tp->snd_cwnd_stamp = tcp_time_stamp;
445}
446
1da177e4 447/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 448static void tcp_clamp_window(struct sock *sk)
1da177e4 449{
9e412ba7 450 struct tcp_sock *tp = tcp_sk(sk);
6687e988 451 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 452
6687e988 453 icsk->icsk_ack.quick = 0;
1da177e4 454
326f36e9
JH
455 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
456 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 457 !tcp_under_memory_pressure(sk) &&
180d8cd9 458 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
459 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
460 sysctl_tcp_rmem[2]);
1da177e4 461 }
326f36e9 462 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 463 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
464}
465
40efc6fa
SH
466/* Initialize RCV_MSS value.
467 * RCV_MSS is an our guess about MSS used by the peer.
468 * We haven't any direct information about the MSS.
469 * It's better to underestimate the RCV_MSS rather than overestimate.
470 * Overestimations make us ACKing less frequently than needed.
471 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
472 */
473void tcp_initialize_rcv_mss(struct sock *sk)
474{
cf533ea5 475 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
476 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
477
056834d9 478 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 479 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
480 hint = max(hint, TCP_MIN_MSS);
481
482 inet_csk(sk)->icsk_ack.rcv_mss = hint;
483}
4bc2f18b 484EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 485
1da177e4
LT
486/* Receiver "autotuning" code.
487 *
488 * The algorithm for RTT estimation w/o timestamps is based on
489 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 490 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
491 *
492 * More detail on this code can be found at
631dd1a8 493 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
494 * though this reference is out of date. A new paper
495 * is pending.
496 */
497static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
498{
499 u32 new_sample = tp->rcv_rtt_est.rtt;
500 long m = sample;
501
502 if (m == 0)
503 m = 1;
504
505 if (new_sample != 0) {
506 /* If we sample in larger samples in the non-timestamp
507 * case, we could grossly overestimate the RTT especially
508 * with chatty applications or bulk transfer apps which
509 * are stalled on filesystem I/O.
510 *
511 * Also, since we are only going for a minimum in the
31f34269 512 * non-timestamp case, we do not smooth things out
caa20d9a 513 * else with timestamps disabled convergence takes too
1da177e4
LT
514 * long.
515 */
516 if (!win_dep) {
517 m -= (new_sample >> 3);
518 new_sample += m;
18a223e0
NC
519 } else {
520 m <<= 3;
521 if (m < new_sample)
522 new_sample = m;
523 }
1da177e4 524 } else {
caa20d9a 525 /* No previous measure. */
1da177e4
LT
526 new_sample = m << 3;
527 }
528
529 if (tp->rcv_rtt_est.rtt != new_sample)
530 tp->rcv_rtt_est.rtt = new_sample;
531}
532
533static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
534{
535 if (tp->rcv_rtt_est.time == 0)
536 goto new_measure;
537 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
538 return;
651913ce 539 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
540
541new_measure:
542 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
543 tp->rcv_rtt_est.time = tcp_time_stamp;
544}
545
056834d9
IJ
546static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
547 const struct sk_buff *skb)
1da177e4 548{
463c84b9 549 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
550 if (tp->rx_opt.rcv_tsecr &&
551 (TCP_SKB_CB(skb)->end_seq -
463c84b9 552 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
553 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
554}
555
556/*
557 * This function should be called every time data is copied to user space.
558 * It calculates the appropriate TCP receive buffer space.
559 */
560void tcp_rcv_space_adjust(struct sock *sk)
561{
562 struct tcp_sock *tp = tcp_sk(sk);
563 int time;
b0983d3c 564 int copied;
e905a9ed 565
1da177e4 566 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 567 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 568 return;
e905a9ed 569
b0983d3c
ED
570 /* Number of bytes copied to user in last RTT */
571 copied = tp->copied_seq - tp->rcvq_space.seq;
572 if (copied <= tp->rcvq_space.space)
573 goto new_measure;
574
575 /* A bit of theory :
576 * copied = bytes received in previous RTT, our base window
577 * To cope with packet losses, we need a 2x factor
578 * To cope with slow start, and sender growing its cwin by 100 %
579 * every RTT, we need a 4x factor, because the ACK we are sending
580 * now is for the next RTT, not the current one :
581 * <prev RTT . ><current RTT .. ><next RTT .... >
582 */
583
584 if (sysctl_tcp_moderate_rcvbuf &&
585 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
586 int rcvwin, rcvmem, rcvbuf;
1da177e4 587
b0983d3c
ED
588 /* minimal window to cope with packet losses, assuming
589 * steady state. Add some cushion because of small variations.
590 */
591 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 592
b0983d3c
ED
593 /* If rate increased by 25%,
594 * assume slow start, rcvwin = 3 * copied
595 * If rate increased by 50%,
596 * assume sender can use 2x growth, rcvwin = 4 * copied
597 */
598 if (copied >=
599 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
600 if (copied >=
601 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
602 rcvwin <<= 1;
603 else
604 rcvwin += (rcvwin >> 1);
605 }
1da177e4 606
b0983d3c
ED
607 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
608 while (tcp_win_from_space(rcvmem) < tp->advmss)
609 rcvmem += 128;
1da177e4 610
b0983d3c
ED
611 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
612 if (rcvbuf > sk->sk_rcvbuf) {
613 sk->sk_rcvbuf = rcvbuf;
1da177e4 614
b0983d3c
ED
615 /* Make the window clamp follow along. */
616 tp->window_clamp = rcvwin;
1da177e4
LT
617 }
618 }
b0983d3c 619 tp->rcvq_space.space = copied;
e905a9ed 620
1da177e4
LT
621new_measure:
622 tp->rcvq_space.seq = tp->copied_seq;
623 tp->rcvq_space.time = tcp_time_stamp;
624}
625
626/* There is something which you must keep in mind when you analyze the
627 * behavior of the tp->ato delayed ack timeout interval. When a
628 * connection starts up, we want to ack as quickly as possible. The
629 * problem is that "good" TCP's do slow start at the beginning of data
630 * transmission. The means that until we send the first few ACK's the
631 * sender will sit on his end and only queue most of his data, because
632 * he can only send snd_cwnd unacked packets at any given time. For
633 * each ACK we send, he increments snd_cwnd and transmits more of his
634 * queue. -DaveM
635 */
9e412ba7 636static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 637{
9e412ba7 638 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 639 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
640 u32 now;
641
463c84b9 642 inet_csk_schedule_ack(sk);
1da177e4 643
463c84b9 644 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
645
646 tcp_rcv_rtt_measure(tp);
e905a9ed 647
1da177e4
LT
648 now = tcp_time_stamp;
649
463c84b9 650 if (!icsk->icsk_ack.ato) {
1da177e4
LT
651 /* The _first_ data packet received, initialize
652 * delayed ACK engine.
653 */
463c84b9
ACM
654 tcp_incr_quickack(sk);
655 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 656 } else {
463c84b9 657 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 658
056834d9 659 if (m <= TCP_ATO_MIN / 2) {
1da177e4 660 /* The fastest case is the first. */
463c84b9
ACM
661 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
662 } else if (m < icsk->icsk_ack.ato) {
663 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
664 if (icsk->icsk_ack.ato > icsk->icsk_rto)
665 icsk->icsk_ack.ato = icsk->icsk_rto;
666 } else if (m > icsk->icsk_rto) {
caa20d9a 667 /* Too long gap. Apparently sender failed to
1da177e4
LT
668 * restart window, so that we send ACKs quickly.
669 */
463c84b9 670 tcp_incr_quickack(sk);
3ab224be 671 sk_mem_reclaim(sk);
1da177e4
LT
672 }
673 }
463c84b9 674 icsk->icsk_ack.lrcvtime = now;
1da177e4 675
735d3831 676 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
677
678 if (skb->len >= 128)
9e412ba7 679 tcp_grow_window(sk, skb);
1da177e4
LT
680}
681
1da177e4
LT
682/* Called to compute a smoothed rtt estimate. The data fed to this
683 * routine either comes from timestamps, or from segments that were
684 * known _not_ to have been retransmitted [see Karn/Partridge
685 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
686 * piece by Van Jacobson.
687 * NOTE: the next three routines used to be one big routine.
688 * To save cycles in the RFC 1323 implementation it was better to break
689 * it up into three procedures. -- erics
690 */
740b0f18 691static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 692{
6687e988 693 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
694 long m = mrtt_us; /* RTT */
695 u32 srtt = tp->srtt_us;
1da177e4 696
1da177e4
LT
697 /* The following amusing code comes from Jacobson's
698 * article in SIGCOMM '88. Note that rtt and mdev
699 * are scaled versions of rtt and mean deviation.
e905a9ed 700 * This is designed to be as fast as possible
1da177e4
LT
701 * m stands for "measurement".
702 *
703 * On a 1990 paper the rto value is changed to:
704 * RTO = rtt + 4 * mdev
705 *
706 * Funny. This algorithm seems to be very broken.
707 * These formulae increase RTO, when it should be decreased, increase
31f34269 708 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
709 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
710 * does not matter how to _calculate_ it. Seems, it was trap
711 * that VJ failed to avoid. 8)
712 */
4a5ab4e2
ED
713 if (srtt != 0) {
714 m -= (srtt >> 3); /* m is now error in rtt est */
715 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
716 if (m < 0) {
717 m = -m; /* m is now abs(error) */
740b0f18 718 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
719 /* This is similar to one of Eifel findings.
720 * Eifel blocks mdev updates when rtt decreases.
721 * This solution is a bit different: we use finer gain
722 * for mdev in this case (alpha*beta).
723 * Like Eifel it also prevents growth of rto,
724 * but also it limits too fast rto decreases,
725 * happening in pure Eifel.
726 */
727 if (m > 0)
728 m >>= 3;
729 } else {
740b0f18 730 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 731 }
740b0f18
ED
732 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
733 if (tp->mdev_us > tp->mdev_max_us) {
734 tp->mdev_max_us = tp->mdev_us;
735 if (tp->mdev_max_us > tp->rttvar_us)
736 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
737 }
738 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
739 if (tp->mdev_max_us < tp->rttvar_us)
740 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 741 tp->rtt_seq = tp->snd_nxt;
740b0f18 742 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
743 }
744 } else {
745 /* no previous measure. */
4a5ab4e2 746 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
747 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
748 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
749 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
750 tp->rtt_seq = tp->snd_nxt;
751 }
740b0f18 752 tp->srtt_us = max(1U, srtt);
1da177e4
LT
753}
754
95bd09eb
ED
755/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
756 * Note: TCP stack does not yet implement pacing.
757 * FQ packet scheduler can be used to implement cheap but effective
758 * TCP pacing, to smooth the burst on large writes when packets
759 * in flight is significantly lower than cwnd (or rwin)
760 */
43e122b0
ED
761int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
762int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
763
95bd09eb
ED
764static void tcp_update_pacing_rate(struct sock *sk)
765{
766 const struct tcp_sock *tp = tcp_sk(sk);
767 u64 rate;
768
769 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
770 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
771
772 /* current rate is (cwnd * mss) / srtt
773 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
774 * In Congestion Avoidance phase, set it to 120 % the current rate.
775 *
776 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
777 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
778 * end of slow start and should slow down.
779 */
780 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
781 rate *= sysctl_tcp_pacing_ss_ratio;
782 else
783 rate *= sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
784
785 rate *= max(tp->snd_cwnd, tp->packets_out);
786
740b0f18
ED
787 if (likely(tp->srtt_us))
788 do_div(rate, tp->srtt_us);
95bd09eb 789
ba537427
ED
790 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
791 * without any lock. We want to make sure compiler wont store
792 * intermediate values in this location.
793 */
794 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
795 sk->sk_max_pacing_rate);
95bd09eb
ED
796}
797
1da177e4
LT
798/* Calculate rto without backoff. This is the second half of Van Jacobson's
799 * routine referred to above.
800 */
f7e56a76 801static void tcp_set_rto(struct sock *sk)
1da177e4 802{
463c84b9 803 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
804 /* Old crap is replaced with new one. 8)
805 *
806 * More seriously:
807 * 1. If rtt variance happened to be less 50msec, it is hallucination.
808 * It cannot be less due to utterly erratic ACK generation made
809 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
810 * to do with delayed acks, because at cwnd>2 true delack timeout
811 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 812 * ACKs in some circumstances.
1da177e4 813 */
f1ecd5d9 814 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
815
816 /* 2. Fixups made earlier cannot be right.
817 * If we do not estimate RTO correctly without them,
818 * all the algo is pure shit and should be replaced
caa20d9a 819 * with correct one. It is exactly, which we pretend to do.
1da177e4 820 */
1da177e4 821
ee6aac59
IJ
822 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
823 * guarantees that rto is higher.
824 */
f1ecd5d9 825 tcp_bound_rto(sk);
1da177e4
LT
826}
827
cf533ea5 828__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
829{
830 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
831
22b71c8f 832 if (!cwnd)
442b9635 833 cwnd = TCP_INIT_CWND;
1da177e4
LT
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835}
836
e60402d0
IJ
837/*
838 * Packet counting of FACK is based on in-order assumptions, therefore TCP
839 * disables it when reordering is detected
840 */
4aabd8ef 841void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 842{
85cc391c
IJ
843 /* RFC3517 uses different metric in lost marker => reset on change */
844 if (tcp_is_fack(tp))
845 tp->lost_skb_hint = NULL;
ab56222a 846 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
847}
848
564262c1 849/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
850static void tcp_dsack_seen(struct tcp_sock *tp)
851{
ab56222a 852 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
853}
854
6687e988
ACM
855static void tcp_update_reordering(struct sock *sk, const int metric,
856 const int ts)
1da177e4 857{
6687e988 858 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 859 if (metric > tp->reordering) {
40b215e5
PE
860 int mib_idx;
861
dca145ff 862 tp->reordering = min(sysctl_tcp_max_reordering, metric);
1da177e4
LT
863
864 /* This exciting event is worth to be remembered. 8) */
865 if (ts)
40b215e5 866 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 867 else if (tcp_is_reno(tp))
40b215e5 868 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 869 else if (tcp_is_fack(tp))
40b215e5 870 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 871 else
40b215e5
PE
872 mib_idx = LINUX_MIB_TCPSACKREORDER;
873
c10d9310 874 NET_INC_STATS(sock_net(sk), mib_idx);
1da177e4 875#if FASTRETRANS_DEBUG > 1
91df42be
JP
876 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
877 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
878 tp->reordering,
879 tp->fackets_out,
880 tp->sacked_out,
881 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 882#endif
e60402d0 883 tcp_disable_fack(tp);
1da177e4 884 }
eed530b6
YC
885
886 if (metric > 0)
887 tcp_disable_early_retrans(tp);
4f41b1c5 888 tp->rack.reord = 1;
1da177e4
LT
889}
890
006f582c 891/* This must be called before lost_out is incremented */
c8c213f2
IJ
892static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
893{
51456b29 894 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
895 before(TCP_SKB_CB(skb)->seq,
896 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
897 tp->retransmit_skb_hint = skb;
898
899 if (!tp->lost_out ||
900 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
901 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
902}
903
0682e690
NC
904/* Sum the number of packets on the wire we have marked as lost.
905 * There are two cases we care about here:
906 * a) Packet hasn't been marked lost (nor retransmitted),
907 * and this is the first loss.
908 * b) Packet has been marked both lost and retransmitted,
909 * and this means we think it was lost again.
910 */
911static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
912{
913 __u8 sacked = TCP_SKB_CB(skb)->sacked;
914
915 if (!(sacked & TCPCB_LOST) ||
916 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
917 tp->lost += tcp_skb_pcount(skb);
918}
919
41ea36e3
IJ
920static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
921{
922 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
923 tcp_verify_retransmit_hint(tp, skb);
924
925 tp->lost_out += tcp_skb_pcount(skb);
0682e690 926 tcp_sum_lost(tp, skb);
41ea36e3
IJ
927 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
928 }
929}
930
4f41b1c5 931void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
932{
933 tcp_verify_retransmit_hint(tp, skb);
934
0682e690 935 tcp_sum_lost(tp, skb);
006f582c
IJ
936 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
937 tp->lost_out += tcp_skb_pcount(skb);
938 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
939 }
940}
941
1da177e4
LT
942/* This procedure tags the retransmission queue when SACKs arrive.
943 *
944 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
945 * Packets in queue with these bits set are counted in variables
946 * sacked_out, retrans_out and lost_out, correspondingly.
947 *
948 * Valid combinations are:
949 * Tag InFlight Description
950 * 0 1 - orig segment is in flight.
951 * S 0 - nothing flies, orig reached receiver.
952 * L 0 - nothing flies, orig lost by net.
953 * R 2 - both orig and retransmit are in flight.
954 * L|R 1 - orig is lost, retransmit is in flight.
955 * S|R 1 - orig reached receiver, retrans is still in flight.
956 * (L|S|R is logically valid, it could occur when L|R is sacked,
957 * but it is equivalent to plain S and code short-curcuits it to S.
958 * L|S is logically invalid, it would mean -1 packet in flight 8))
959 *
960 * These 6 states form finite state machine, controlled by the following events:
961 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
962 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 963 * 3. Loss detection event of two flavors:
1da177e4
LT
964 * A. Scoreboard estimator decided the packet is lost.
965 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
966 * A''. Its FACK modification, head until snd.fack is lost.
967 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
968 * segment was retransmitted.
969 * 4. D-SACK added new rule: D-SACK changes any tag to S.
970 *
971 * It is pleasant to note, that state diagram turns out to be commutative,
972 * so that we are allowed not to be bothered by order of our actions,
973 * when multiple events arrive simultaneously. (see the function below).
974 *
975 * Reordering detection.
976 * --------------------
977 * Reordering metric is maximal distance, which a packet can be displaced
978 * in packet stream. With SACKs we can estimate it:
979 *
980 * 1. SACK fills old hole and the corresponding segment was not
981 * ever retransmitted -> reordering. Alas, we cannot use it
982 * when segment was retransmitted.
983 * 2. The last flaw is solved with D-SACK. D-SACK arrives
984 * for retransmitted and already SACKed segment -> reordering..
985 * Both of these heuristics are not used in Loss state, when we cannot
986 * account for retransmits accurately.
5b3c9882
IJ
987 *
988 * SACK block validation.
989 * ----------------------
990 *
991 * SACK block range validation checks that the received SACK block fits to
992 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
993 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
994 * it means that the receiver is rather inconsistent with itself reporting
995 * SACK reneging when it should advance SND.UNA. Such SACK block this is
996 * perfectly valid, however, in light of RFC2018 which explicitly states
997 * that "SACK block MUST reflect the newest segment. Even if the newest
998 * segment is going to be discarded ...", not that it looks very clever
999 * in case of head skb. Due to potentional receiver driven attacks, we
1000 * choose to avoid immediate execution of a walk in write queue due to
1001 * reneging and defer head skb's loss recovery to standard loss recovery
1002 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1003 *
1004 * Implements also blockage to start_seq wrap-around. Problem lies in the
1005 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1006 * there's no guarantee that it will be before snd_nxt (n). The problem
1007 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1008 * wrap (s_w):
1009 *
1010 * <- outs wnd -> <- wrapzone ->
1011 * u e n u_w e_w s n_w
1012 * | | | | | | |
1013 * |<------------+------+----- TCP seqno space --------------+---------->|
1014 * ...-- <2^31 ->| |<--------...
1015 * ...---- >2^31 ------>| |<--------...
1016 *
1017 * Current code wouldn't be vulnerable but it's better still to discard such
1018 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1019 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1020 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1021 * equal to the ideal case (infinite seqno space without wrap caused issues).
1022 *
1023 * With D-SACK the lower bound is extended to cover sequence space below
1024 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1025 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1026 * for the normal SACK blocks, explained above). But there all simplicity
1027 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1028 * fully below undo_marker they do not affect behavior in anyway and can
1029 * therefore be safely ignored. In rare cases (which are more or less
1030 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1031 * fragmentation and packet reordering past skb's retransmission. To consider
1032 * them correctly, the acceptable range must be extended even more though
1033 * the exact amount is rather hard to quantify. However, tp->max_window can
1034 * be used as an exaggerated estimate.
1da177e4 1035 */
a2a385d6
ED
1036static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1037 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1038{
1039 /* Too far in future, or reversed (interpretation is ambiguous) */
1040 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1041 return false;
5b3c9882
IJ
1042
1043 /* Nasty start_seq wrap-around check (see comments above) */
1044 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1045 return false;
5b3c9882 1046
564262c1 1047 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1048 * start_seq == snd_una is non-sensical (see comments above)
1049 */
1050 if (after(start_seq, tp->snd_una))
a2a385d6 1051 return true;
5b3c9882
IJ
1052
1053 if (!is_dsack || !tp->undo_marker)
a2a385d6 1054 return false;
5b3c9882
IJ
1055
1056 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1057 if (after(end_seq, tp->snd_una))
a2a385d6 1058 return false;
5b3c9882
IJ
1059
1060 if (!before(start_seq, tp->undo_marker))
a2a385d6 1061 return true;
5b3c9882
IJ
1062
1063 /* Too old */
1064 if (!after(end_seq, tp->undo_marker))
a2a385d6 1065 return false;
5b3c9882
IJ
1066
1067 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1068 * start_seq < undo_marker and end_seq >= undo_marker.
1069 */
1070 return !before(start_seq, end_seq - tp->max_window);
1071}
1072
a2a385d6
ED
1073static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1074 struct tcp_sack_block_wire *sp, int num_sacks,
1075 u32 prior_snd_una)
d06e021d 1076{
1ed83465 1077 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1078 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1079 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1080 bool dup_sack = false;
d06e021d
DM
1081
1082 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1083 dup_sack = true;
e60402d0 1084 tcp_dsack_seen(tp);
c10d9310 1085 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1086 } else if (num_sacks > 1) {
d3e2ce3b
HH
1087 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1088 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1089
1090 if (!after(end_seq_0, end_seq_1) &&
1091 !before(start_seq_0, start_seq_1)) {
a2a385d6 1092 dup_sack = true;
e60402d0 1093 tcp_dsack_seen(tp);
c10d9310 1094 NET_INC_STATS(sock_net(sk),
de0744af 1095 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1096 }
1097 }
1098
1099 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1100 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1101 !after(end_seq_0, prior_snd_una) &&
1102 after(end_seq_0, tp->undo_marker))
1103 tp->undo_retrans--;
1104
1105 return dup_sack;
1106}
1107
a1197f5a 1108struct tcp_sacktag_state {
740b0f18
ED
1109 int reord;
1110 int fack_count;
31231a8a
KKJ
1111 /* Timestamps for earliest and latest never-retransmitted segment
1112 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1113 * but congestion control should still get an accurate delay signal.
1114 */
1115 struct skb_mstamp first_sackt;
1116 struct skb_mstamp last_sackt;
b9f64820 1117 struct rate_sample *rate;
740b0f18 1118 int flag;
a1197f5a
IJ
1119};
1120
d1935942
IJ
1121/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1122 * the incoming SACK may not exactly match but we can find smaller MSS
1123 * aligned portion of it that matches. Therefore we might need to fragment
1124 * which may fail and creates some hassle (caller must handle error case
1125 * returns).
832d11c5
IJ
1126 *
1127 * FIXME: this could be merged to shift decision code
d1935942 1128 */
0f79efdc 1129static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1130 u32 start_seq, u32 end_seq)
d1935942 1131{
a2a385d6
ED
1132 int err;
1133 bool in_sack;
d1935942 1134 unsigned int pkt_len;
adb92db8 1135 unsigned int mss;
d1935942
IJ
1136
1137 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1138 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1139
1140 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1141 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1142 mss = tcp_skb_mss(skb);
d1935942
IJ
1143 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1144
adb92db8 1145 if (!in_sack) {
d1935942 1146 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1147 if (pkt_len < mss)
1148 pkt_len = mss;
1149 } else {
d1935942 1150 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1151 if (pkt_len < mss)
1152 return -EINVAL;
1153 }
1154
1155 /* Round if necessary so that SACKs cover only full MSSes
1156 * and/or the remaining small portion (if present)
1157 */
1158 if (pkt_len > mss) {
1159 unsigned int new_len = (pkt_len / mss) * mss;
1160 if (!in_sack && new_len < pkt_len) {
1161 new_len += mss;
2cd0d743 1162 if (new_len >= skb->len)
adb92db8
IJ
1163 return 0;
1164 }
1165 pkt_len = new_len;
1166 }
6cc55e09 1167 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1168 if (err < 0)
1169 return err;
1170 }
1171
1172 return in_sack;
1173}
1174
cc9a672e
NC
1175/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1176static u8 tcp_sacktag_one(struct sock *sk,
1177 struct tcp_sacktag_state *state, u8 sacked,
1178 u32 start_seq, u32 end_seq,
740b0f18
ED
1179 int dup_sack, int pcount,
1180 const struct skb_mstamp *xmit_time)
9e10c47c 1181{
6859d494 1182 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1183 int fack_count = state->fack_count;
9e10c47c
IJ
1184
1185 /* Account D-SACK for retransmitted packet. */
1186 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1187 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1188 after(end_seq, tp->undo_marker))
9e10c47c 1189 tp->undo_retrans--;
ede9f3b1 1190 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1191 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1192 }
1193
1194 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1195 if (!after(end_seq, tp->snd_una))
a1197f5a 1196 return sacked;
9e10c47c
IJ
1197
1198 if (!(sacked & TCPCB_SACKED_ACKED)) {
659a8ad5
YC
1199 tcp_rack_advance(tp, xmit_time, sacked);
1200
9e10c47c
IJ
1201 if (sacked & TCPCB_SACKED_RETRANS) {
1202 /* If the segment is not tagged as lost,
1203 * we do not clear RETRANS, believing
1204 * that retransmission is still in flight.
1205 */
1206 if (sacked & TCPCB_LOST) {
a1197f5a 1207 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1208 tp->lost_out -= pcount;
1209 tp->retrans_out -= pcount;
9e10c47c
IJ
1210 }
1211 } else {
1212 if (!(sacked & TCPCB_RETRANS)) {
1213 /* New sack for not retransmitted frame,
1214 * which was in hole. It is reordering.
1215 */
cc9a672e 1216 if (before(start_seq,
9e10c47c 1217 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1218 state->reord = min(fack_count,
1219 state->reord);
e33099f9
YC
1220 if (!after(end_seq, tp->high_seq))
1221 state->flag |= FLAG_ORIG_SACK_ACKED;
31231a8a
KKJ
1222 if (state->first_sackt.v64 == 0)
1223 state->first_sackt = *xmit_time;
1224 state->last_sackt = *xmit_time;
9e10c47c
IJ
1225 }
1226
1227 if (sacked & TCPCB_LOST) {
a1197f5a 1228 sacked &= ~TCPCB_LOST;
f58b22fd 1229 tp->lost_out -= pcount;
9e10c47c
IJ
1230 }
1231 }
1232
a1197f5a
IJ
1233 sacked |= TCPCB_SACKED_ACKED;
1234 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1235 tp->sacked_out += pcount;
ddf1af6f 1236 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1237
f58b22fd 1238 fack_count += pcount;
9e10c47c
IJ
1239
1240 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
00db4124 1241 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
cc9a672e 1242 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1243 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1244
1245 if (fack_count > tp->fackets_out)
1246 tp->fackets_out = fack_count;
9e10c47c
IJ
1247 }
1248
1249 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1250 * frames and clear it. undo_retrans is decreased above, L|R frames
1251 * are accounted above as well.
1252 */
a1197f5a
IJ
1253 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1254 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1255 tp->retrans_out -= pcount;
9e10c47c
IJ
1256 }
1257
a1197f5a 1258 return sacked;
9e10c47c
IJ
1259}
1260
daef52ba
NC
1261/* Shift newly-SACKed bytes from this skb to the immediately previous
1262 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1263 */
a2a385d6
ED
1264static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1265 struct tcp_sacktag_state *state,
1266 unsigned int pcount, int shifted, int mss,
1267 bool dup_sack)
832d11c5
IJ
1268{
1269 struct tcp_sock *tp = tcp_sk(sk);
50133161 1270 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1271 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1272 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1273
1274 BUG_ON(!pcount);
1275
4c90d3b3
NC
1276 /* Adjust counters and hints for the newly sacked sequence
1277 * range but discard the return value since prev is already
1278 * marked. We must tag the range first because the seq
1279 * advancement below implicitly advances
1280 * tcp_highest_sack_seq() when skb is highest_sack.
1281 */
1282 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1283 start_seq, end_seq, dup_sack, pcount,
740b0f18 1284 &skb->skb_mstamp);
b9f64820 1285 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1286
1287 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1288 tp->lost_cnt_hint += pcount;
1289
832d11c5
IJ
1290 TCP_SKB_CB(prev)->end_seq += shifted;
1291 TCP_SKB_CB(skb)->seq += shifted;
1292
cd7d8498
ED
1293 tcp_skb_pcount_add(prev, pcount);
1294 BUG_ON(tcp_skb_pcount(skb) < pcount);
1295 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1296
1297 /* When we're adding to gso_segs == 1, gso_size will be zero,
1298 * in theory this shouldn't be necessary but as long as DSACK
1299 * code can come after this skb later on it's better to keep
1300 * setting gso_size to something.
1301 */
f69ad292
ED
1302 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1303 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1304
1305 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1306 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1307 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1308
832d11c5
IJ
1309 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1310 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1311
832d11c5
IJ
1312 if (skb->len > 0) {
1313 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1314 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1315 return false;
832d11c5
IJ
1316 }
1317
1318 /* Whole SKB was eaten :-) */
1319
92ee76b6
IJ
1320 if (skb == tp->retransmit_skb_hint)
1321 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1322 if (skb == tp->lost_skb_hint) {
1323 tp->lost_skb_hint = prev;
1324 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1325 }
1326
5e8a402f 1327 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1328 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1329 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1330 TCP_SKB_CB(prev)->end_seq++;
1331
832d11c5
IJ
1332 if (skb == tcp_highest_sack(sk))
1333 tcp_advance_highest_sack(sk, skb);
1334
cfea5a68 1335 tcp_skb_collapse_tstamp(prev, skb);
b9f64820
YC
1336 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1337 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1338
832d11c5
IJ
1339 tcp_unlink_write_queue(skb, sk);
1340 sk_wmem_free_skb(sk, skb);
1341
c10d9310 1342 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1343
a2a385d6 1344 return true;
832d11c5
IJ
1345}
1346
1347/* I wish gso_size would have a bit more sane initialization than
1348 * something-or-zero which complicates things
1349 */
cf533ea5 1350static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1351{
775ffabf 1352 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1353}
1354
1355/* Shifting pages past head area doesn't work */
cf533ea5 1356static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1357{
1358 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1359}
1360
1361/* Try collapsing SACK blocks spanning across multiple skbs to a single
1362 * skb.
1363 */
1364static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1365 struct tcp_sacktag_state *state,
832d11c5 1366 u32 start_seq, u32 end_seq,
a2a385d6 1367 bool dup_sack)
832d11c5
IJ
1368{
1369 struct tcp_sock *tp = tcp_sk(sk);
1370 struct sk_buff *prev;
1371 int mss;
1372 int pcount = 0;
1373 int len;
1374 int in_sack;
1375
1376 if (!sk_can_gso(sk))
1377 goto fallback;
1378
1379 /* Normally R but no L won't result in plain S */
1380 if (!dup_sack &&
9969ca5f 1381 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1382 goto fallback;
1383 if (!skb_can_shift(skb))
1384 goto fallback;
1385 /* This frame is about to be dropped (was ACKed). */
1386 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1387 goto fallback;
1388
1389 /* Can only happen with delayed DSACK + discard craziness */
1390 if (unlikely(skb == tcp_write_queue_head(sk)))
1391 goto fallback;
1392 prev = tcp_write_queue_prev(sk, skb);
1393
1394 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1395 goto fallback;
1396
a643b5d4
MKL
1397 if (!tcp_skb_can_collapse_to(prev))
1398 goto fallback;
1399
832d11c5
IJ
1400 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1401 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1402
1403 if (in_sack) {
1404 len = skb->len;
1405 pcount = tcp_skb_pcount(skb);
775ffabf 1406 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1407
1408 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1409 * drop this restriction as unnecessary
1410 */
775ffabf 1411 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1412 goto fallback;
1413 } else {
1414 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1415 goto noop;
1416 /* CHECKME: This is non-MSS split case only?, this will
1417 * cause skipped skbs due to advancing loop btw, original
1418 * has that feature too
1419 */
1420 if (tcp_skb_pcount(skb) <= 1)
1421 goto noop;
1422
1423 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1424 if (!in_sack) {
1425 /* TODO: head merge to next could be attempted here
1426 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1427 * though it might not be worth of the additional hassle
1428 *
1429 * ...we can probably just fallback to what was done
1430 * previously. We could try merging non-SACKed ones
1431 * as well but it probably isn't going to buy off
1432 * because later SACKs might again split them, and
1433 * it would make skb timestamp tracking considerably
1434 * harder problem.
1435 */
1436 goto fallback;
1437 }
1438
1439 len = end_seq - TCP_SKB_CB(skb)->seq;
1440 BUG_ON(len < 0);
1441 BUG_ON(len > skb->len);
1442
1443 /* MSS boundaries should be honoured or else pcount will
1444 * severely break even though it makes things bit trickier.
1445 * Optimize common case to avoid most of the divides
1446 */
1447 mss = tcp_skb_mss(skb);
1448
1449 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1450 * drop this restriction as unnecessary
1451 */
775ffabf 1452 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1453 goto fallback;
1454
1455 if (len == mss) {
1456 pcount = 1;
1457 } else if (len < mss) {
1458 goto noop;
1459 } else {
1460 pcount = len / mss;
1461 len = pcount * mss;
1462 }
1463 }
1464
4648dc97
NC
1465 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1466 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1467 goto fallback;
1468
832d11c5
IJ
1469 if (!skb_shift(prev, skb, len))
1470 goto fallback;
9ec06ff5 1471 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1472 goto out;
1473
1474 /* Hole filled allows collapsing with the next as well, this is very
1475 * useful when hole on every nth skb pattern happens
1476 */
1477 if (prev == tcp_write_queue_tail(sk))
1478 goto out;
1479 skb = tcp_write_queue_next(sk, prev);
1480
f0bc52f3
IJ
1481 if (!skb_can_shift(skb) ||
1482 (skb == tcp_send_head(sk)) ||
1483 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1484 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1485 goto out;
1486
1487 len = skb->len;
1488 if (skb_shift(prev, skb, len)) {
1489 pcount += tcp_skb_pcount(skb);
9ec06ff5 1490 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1491 }
1492
1493out:
a1197f5a 1494 state->fack_count += pcount;
832d11c5
IJ
1495 return prev;
1496
1497noop:
1498 return skb;
1499
1500fallback:
c10d9310 1501 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1502 return NULL;
1503}
1504
68f8353b
IJ
1505static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1506 struct tcp_sack_block *next_dup,
a1197f5a 1507 struct tcp_sacktag_state *state,
68f8353b 1508 u32 start_seq, u32 end_seq,
a2a385d6 1509 bool dup_sack_in)
68f8353b 1510{
832d11c5
IJ
1511 struct tcp_sock *tp = tcp_sk(sk);
1512 struct sk_buff *tmp;
1513
68f8353b
IJ
1514 tcp_for_write_queue_from(skb, sk) {
1515 int in_sack = 0;
a2a385d6 1516 bool dup_sack = dup_sack_in;
68f8353b
IJ
1517
1518 if (skb == tcp_send_head(sk))
1519 break;
1520
1521 /* queue is in-order => we can short-circuit the walk early */
1522 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1523 break;
1524
00db4124 1525 if (next_dup &&
68f8353b
IJ
1526 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1527 in_sack = tcp_match_skb_to_sack(sk, skb,
1528 next_dup->start_seq,
1529 next_dup->end_seq);
1530 if (in_sack > 0)
a2a385d6 1531 dup_sack = true;
68f8353b
IJ
1532 }
1533
832d11c5
IJ
1534 /* skb reference here is a bit tricky to get right, since
1535 * shifting can eat and free both this skb and the next,
1536 * so not even _safe variant of the loop is enough.
1537 */
1538 if (in_sack <= 0) {
a1197f5a
IJ
1539 tmp = tcp_shift_skb_data(sk, skb, state,
1540 start_seq, end_seq, dup_sack);
00db4124 1541 if (tmp) {
832d11c5
IJ
1542 if (tmp != skb) {
1543 skb = tmp;
1544 continue;
1545 }
1546
1547 in_sack = 0;
1548 } else {
1549 in_sack = tcp_match_skb_to_sack(sk, skb,
1550 start_seq,
1551 end_seq);
1552 }
1553 }
1554
68f8353b
IJ
1555 if (unlikely(in_sack < 0))
1556 break;
1557
832d11c5 1558 if (in_sack) {
cc9a672e
NC
1559 TCP_SKB_CB(skb)->sacked =
1560 tcp_sacktag_one(sk,
1561 state,
1562 TCP_SKB_CB(skb)->sacked,
1563 TCP_SKB_CB(skb)->seq,
1564 TCP_SKB_CB(skb)->end_seq,
1565 dup_sack,
59c9af42 1566 tcp_skb_pcount(skb),
740b0f18 1567 &skb->skb_mstamp);
b9f64820 1568 tcp_rate_skb_delivered(sk, skb, state->rate);
68f8353b 1569
832d11c5
IJ
1570 if (!before(TCP_SKB_CB(skb)->seq,
1571 tcp_highest_sack_seq(tp)))
1572 tcp_advance_highest_sack(sk, skb);
1573 }
1574
a1197f5a 1575 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1576 }
1577 return skb;
1578}
1579
1580/* Avoid all extra work that is being done by sacktag while walking in
1581 * a normal way
1582 */
1583static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1584 struct tcp_sacktag_state *state,
1585 u32 skip_to_seq)
68f8353b
IJ
1586{
1587 tcp_for_write_queue_from(skb, sk) {
1588 if (skb == tcp_send_head(sk))
1589 break;
1590
e8bae275 1591 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1592 break;
d152a7d8 1593
a1197f5a 1594 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1595 }
1596 return skb;
1597}
1598
1599static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1600 struct sock *sk,
1601 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1602 struct tcp_sacktag_state *state,
1603 u32 skip_to_seq)
68f8353b 1604{
51456b29 1605 if (!next_dup)
68f8353b
IJ
1606 return skb;
1607
1608 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1609 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1610 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1611 next_dup->start_seq, next_dup->end_seq,
1612 1);
68f8353b
IJ
1613 }
1614
1615 return skb;
1616}
1617
cf533ea5 1618static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1619{
1620 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1621}
1622
1da177e4 1623static int
cf533ea5 1624tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1625 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1626{
1627 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1628 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1629 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1630 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1631 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1632 struct tcp_sack_block *cache;
1633 struct sk_buff *skb;
4389dded 1634 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1635 int used_sacks;
a2a385d6 1636 bool found_dup_sack = false;
68f8353b 1637 int i, j;
fda03fbb 1638 int first_sack_index;
1da177e4 1639
196da974
KKJ
1640 state->flag = 0;
1641 state->reord = tp->packets_out;
a1197f5a 1642
d738cd8f 1643 if (!tp->sacked_out) {
de83c058
IJ
1644 if (WARN_ON(tp->fackets_out))
1645 tp->fackets_out = 0;
6859d494 1646 tcp_highest_sack_reset(sk);
d738cd8f 1647 }
1da177e4 1648
1ed83465 1649 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1650 num_sacks, prior_snd_una);
b9f64820 1651 if (found_dup_sack) {
196da974 1652 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1653 tp->delivered++; /* A spurious retransmission is delivered */
1654 }
6f74651a
BE
1655
1656 /* Eliminate too old ACKs, but take into
1657 * account more or less fresh ones, they can
1658 * contain valid SACK info.
1659 */
1660 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1661 return 0;
1662