]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - net/ipv4/tcp_input.c
net: tcp: GRO should be ECN friendly
[mirror_ubuntu-focal-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
5ffc02a1 71#include <net/dst.h>
1da177e4
LT
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
1a2449a8 76#include <net/netdma.h>
1da177e4 77
ab32ea5d
BH
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 83EXPORT_SYMBOL(sysctl_tcp_reordering);
255cac91 84int sysctl_tcp_ecn __read_mostly = 2;
4bc2f18b 85EXPORT_SYMBOL(sysctl_tcp_ecn);
ab32ea5d
BH
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 88int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 90
282f23c6
ED
91/* rfc5961 challenge ack rate limiting */
92int sysctl_tcp_challenge_ack_limit = 100;
93
ab32ea5d
BH
94int sysctl_tcp_stdurg __read_mostly;
95int sysctl_tcp_rfc1337 __read_mostly;
96int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 97int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 98int sysctl_tcp_frto_response __read_mostly;
1da177e4 99
7e380175
AP
100int sysctl_tcp_thin_dupack __read_mostly;
101
ab32ea5d
BH
102int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
103int sysctl_tcp_abc __read_mostly;
eed530b6 104int sysctl_tcp_early_retrans __read_mostly = 2;
1da177e4 105
1da177e4
LT
106#define FLAG_DATA 0x01 /* Incoming frame contained data. */
107#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111#define FLAG_DATA_SACKED 0x20 /* New SACK. */
112#define FLAG_ECE 0x40 /* ECE in this ACK */
1da177e4 113#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 114#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 115#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 116#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
009a2e3e 117#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
cadbd031 118#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
1da177e4
LT
119
120#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
123#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 124#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 125
1da177e4 126#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 127#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 128
e905a9ed 129/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 130 * real world.
e905a9ed 131 */
056834d9 132static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 133{
463c84b9 134 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 135 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 136 unsigned int len;
1da177e4 137
e905a9ed 138 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
139
140 /* skb->len may jitter because of SACKs, even if peer
141 * sends good full-sized frames.
142 */
056834d9 143 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
144 if (len >= icsk->icsk_ack.rcv_mss) {
145 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
146 } else {
147 /* Otherwise, we make more careful check taking into account,
148 * that SACKs block is variable.
149 *
150 * "len" is invariant segment length, including TCP header.
151 */
9c70220b 152 len += skb->data - skb_transport_header(skb);
bee7ca9e 153 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
154 /* If PSH is not set, packet should be
155 * full sized, provided peer TCP is not badly broken.
156 * This observation (if it is correct 8)) allows
157 * to handle super-low mtu links fairly.
158 */
159 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 160 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
161 /* Subtract also invariant (if peer is RFC compliant),
162 * tcp header plus fixed timestamp option length.
163 * Resulting "len" is MSS free of SACK jitter.
164 */
463c84b9
ACM
165 len -= tcp_sk(sk)->tcp_header_len;
166 icsk->icsk_ack.last_seg_size = len;
1da177e4 167 if (len == lss) {
463c84b9 168 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
169 return;
170 }
171 }
1ef9696c
AK
172 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 174 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
175 }
176}
177
463c84b9 178static void tcp_incr_quickack(struct sock *sk)
1da177e4 179{
463c84b9 180 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 181 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 182
056834d9
IJ
183 if (quickacks == 0)
184 quickacks = 2;
463c84b9
ACM
185 if (quickacks > icsk->icsk_ack.quick)
186 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
187}
188
1b9f4092 189static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 190{
463c84b9
ACM
191 struct inet_connection_sock *icsk = inet_csk(sk);
192 tcp_incr_quickack(sk);
193 icsk->icsk_ack.pingpong = 0;
194 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
195}
196
197/* Send ACKs quickly, if "quick" count is not exhausted
198 * and the session is not interactive.
199 */
200
a2a385d6 201static inline bool tcp_in_quickack_mode(const struct sock *sk)
1da177e4 202{
463c84b9 203 const struct inet_connection_sock *icsk = inet_csk(sk);
a2a385d6 204
463c84b9 205 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
206}
207
bdf1ee5d
IJ
208static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
209{
056834d9 210 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
211 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
212}
213
cf533ea5 214static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
215{
216 if (tcp_hdr(skb)->cwr)
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218}
219
220static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
221{
222 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
223}
224
7a269ffa 225static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 226{
7a269ffa
ED
227 if (!(tp->ecn_flags & TCP_ECN_OK))
228 return;
229
b82d1bb4 230 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 231 case INET_ECN_NOT_ECT:
bdf1ee5d 232 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
233 * and we already seen ECT on a previous segment,
234 * it is probably a retransmit.
235 */
236 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 237 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
238 break;
239 case INET_ECN_CE:
240 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
241 /* fallinto */
242 default:
243 tp->ecn_flags |= TCP_ECN_SEEN;
bdf1ee5d
IJ
244 }
245}
246
cf533ea5 247static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 248{
056834d9 249 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
250 tp->ecn_flags &= ~TCP_ECN_OK;
251}
252
cf533ea5 253static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 254{
056834d9 255 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
256 tp->ecn_flags &= ~TCP_ECN_OK;
257}
258
a2a385d6 259static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 260{
056834d9 261 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
262 return true;
263 return false;
bdf1ee5d
IJ
264}
265
1da177e4
LT
266/* Buffer size and advertised window tuning.
267 *
268 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
269 */
270
271static void tcp_fixup_sndbuf(struct sock *sk)
272{
87fb4b7b 273 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
1da177e4 274
06a59ecb
ED
275 sndmem *= TCP_INIT_CWND;
276 if (sk->sk_sndbuf < sndmem)
277 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
278}
279
280/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
281 *
282 * All tcp_full_space() is split to two parts: "network" buffer, allocated
283 * forward and advertised in receiver window (tp->rcv_wnd) and
284 * "application buffer", required to isolate scheduling/application
285 * latencies from network.
286 * window_clamp is maximal advertised window. It can be less than
287 * tcp_full_space(), in this case tcp_full_space() - window_clamp
288 * is reserved for "application" buffer. The less window_clamp is
289 * the smoother our behaviour from viewpoint of network, but the lower
290 * throughput and the higher sensitivity of the connection to losses. 8)
291 *
292 * rcv_ssthresh is more strict window_clamp used at "slow start"
293 * phase to predict further behaviour of this connection.
294 * It is used for two goals:
295 * - to enforce header prediction at sender, even when application
296 * requires some significant "application buffer". It is check #1.
297 * - to prevent pruning of receive queue because of misprediction
298 * of receiver window. Check #2.
299 *
300 * The scheme does not work when sender sends good segments opening
caa20d9a 301 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
302 * in common situations. Otherwise, we have to rely on queue collapsing.
303 */
304
305/* Slow part of check#2. */
9e412ba7 306static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 307{
9e412ba7 308 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 309 /* Optimize this! */
dfd4f0ae
ED
310 int truesize = tcp_win_from_space(skb->truesize) >> 1;
311 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
312
313 while (tp->rcv_ssthresh <= window) {
314 if (truesize <= skb->len)
463c84b9 315 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
316
317 truesize >>= 1;
318 window >>= 1;
319 }
320 return 0;
321}
322
cf533ea5 323static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 324{
9e412ba7
IJ
325 struct tcp_sock *tp = tcp_sk(sk);
326
1da177e4
LT
327 /* Check #1 */
328 if (tp->rcv_ssthresh < tp->window_clamp &&
329 (int)tp->rcv_ssthresh < tcp_space(sk) &&
180d8cd9 330 !sk_under_memory_pressure(sk)) {
1da177e4
LT
331 int incr;
332
333 /* Check #2. Increase window, if skb with such overhead
334 * will fit to rcvbuf in future.
335 */
336 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 337 incr = 2 * tp->advmss;
1da177e4 338 else
9e412ba7 339 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
340
341 if (incr) {
4d846f02 342 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
343 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
344 tp->window_clamp);
463c84b9 345 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
346 }
347 }
348}
349
350/* 3. Tuning rcvbuf, when connection enters established state. */
351
352static void tcp_fixup_rcvbuf(struct sock *sk)
353{
e9266a02
ED
354 u32 mss = tcp_sk(sk)->advmss;
355 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
356 int rcvmem;
1da177e4 357
e9266a02
ED
358 /* Limit to 10 segments if mss <= 1460,
359 * or 14600/mss segments, with a minimum of two segments.
1da177e4 360 */
e9266a02
ED
361 if (mss > 1460)
362 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
363
364 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
365 while (tcp_win_from_space(rcvmem) < mss)
1da177e4 366 rcvmem += 128;
e9266a02
ED
367
368 rcvmem *= icwnd;
369
370 if (sk->sk_rcvbuf < rcvmem)
371 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
372}
373
caa20d9a 374/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
375 * established state.
376 */
377static void tcp_init_buffer_space(struct sock *sk)
378{
379 struct tcp_sock *tp = tcp_sk(sk);
380 int maxwin;
381
382 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
383 tcp_fixup_rcvbuf(sk);
384 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
385 tcp_fixup_sndbuf(sk);
386
387 tp->rcvq_space.space = tp->rcv_wnd;
388
389 maxwin = tcp_full_space(sk);
390
391 if (tp->window_clamp >= maxwin) {
392 tp->window_clamp = maxwin;
393
394 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
395 tp->window_clamp = max(maxwin -
396 (maxwin >> sysctl_tcp_app_win),
397 4 * tp->advmss);
398 }
399
400 /* Force reservation of one segment. */
401 if (sysctl_tcp_app_win &&
402 tp->window_clamp > 2 * tp->advmss &&
403 tp->window_clamp + tp->advmss > maxwin)
404 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
405
406 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
407 tp->snd_cwnd_stamp = tcp_time_stamp;
408}
409
1da177e4 410/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 411static void tcp_clamp_window(struct sock *sk)
1da177e4 412{
9e412ba7 413 struct tcp_sock *tp = tcp_sk(sk);
6687e988 414 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 415
6687e988 416 icsk->icsk_ack.quick = 0;
1da177e4 417
326f36e9
JH
418 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
419 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
180d8cd9
GC
420 !sk_under_memory_pressure(sk) &&
421 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
422 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
423 sysctl_tcp_rmem[2]);
1da177e4 424 }
326f36e9 425 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 426 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
427}
428
40efc6fa
SH
429/* Initialize RCV_MSS value.
430 * RCV_MSS is an our guess about MSS used by the peer.
431 * We haven't any direct information about the MSS.
432 * It's better to underestimate the RCV_MSS rather than overestimate.
433 * Overestimations make us ACKing less frequently than needed.
434 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
435 */
436void tcp_initialize_rcv_mss(struct sock *sk)
437{
cf533ea5 438 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
439 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
440
056834d9 441 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 442 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
443 hint = max(hint, TCP_MIN_MSS);
444
445 inet_csk(sk)->icsk_ack.rcv_mss = hint;
446}
4bc2f18b 447EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 448
1da177e4
LT
449/* Receiver "autotuning" code.
450 *
451 * The algorithm for RTT estimation w/o timestamps is based on
452 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 453 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
454 *
455 * More detail on this code can be found at
631dd1a8 456 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
457 * though this reference is out of date. A new paper
458 * is pending.
459 */
460static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
461{
462 u32 new_sample = tp->rcv_rtt_est.rtt;
463 long m = sample;
464
465 if (m == 0)
466 m = 1;
467
468 if (new_sample != 0) {
469 /* If we sample in larger samples in the non-timestamp
470 * case, we could grossly overestimate the RTT especially
471 * with chatty applications or bulk transfer apps which
472 * are stalled on filesystem I/O.
473 *
474 * Also, since we are only going for a minimum in the
31f34269 475 * non-timestamp case, we do not smooth things out
caa20d9a 476 * else with timestamps disabled convergence takes too
1da177e4
LT
477 * long.
478 */
479 if (!win_dep) {
480 m -= (new_sample >> 3);
481 new_sample += m;
18a223e0
NC
482 } else {
483 m <<= 3;
484 if (m < new_sample)
485 new_sample = m;
486 }
1da177e4 487 } else {
caa20d9a 488 /* No previous measure. */
1da177e4
LT
489 new_sample = m << 3;
490 }
491
492 if (tp->rcv_rtt_est.rtt != new_sample)
493 tp->rcv_rtt_est.rtt = new_sample;
494}
495
496static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
497{
498 if (tp->rcv_rtt_est.time == 0)
499 goto new_measure;
500 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
501 return;
651913ce 502 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
503
504new_measure:
505 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
506 tp->rcv_rtt_est.time = tcp_time_stamp;
507}
508
056834d9
IJ
509static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
510 const struct sk_buff *skb)
1da177e4 511{
463c84b9 512 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
513 if (tp->rx_opt.rcv_tsecr &&
514 (TCP_SKB_CB(skb)->end_seq -
463c84b9 515 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
516 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
517}
518
519/*
520 * This function should be called every time data is copied to user space.
521 * It calculates the appropriate TCP receive buffer space.
522 */
523void tcp_rcv_space_adjust(struct sock *sk)
524{
525 struct tcp_sock *tp = tcp_sk(sk);
526 int time;
527 int space;
e905a9ed 528
1da177e4
LT
529 if (tp->rcvq_space.time == 0)
530 goto new_measure;
e905a9ed 531
1da177e4 532 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 533 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 534 return;
e905a9ed 535
1da177e4
LT
536 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
537
538 space = max(tp->rcvq_space.space, space);
539
540 if (tp->rcvq_space.space != space) {
541 int rcvmem;
542
543 tp->rcvq_space.space = space;
544
6fcf9412
JH
545 if (sysctl_tcp_moderate_rcvbuf &&
546 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
547 int new_clamp = space;
548
549 /* Receive space grows, normalize in order to
550 * take into account packet headers and sk_buff
551 * structure overhead.
552 */
553 space /= tp->advmss;
554 if (!space)
555 space = 1;
87fb4b7b 556 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
1da177e4
LT
557 while (tcp_win_from_space(rcvmem) < tp->advmss)
558 rcvmem += 128;
559 space *= rcvmem;
560 space = min(space, sysctl_tcp_rmem[2]);
561 if (space > sk->sk_rcvbuf) {
562 sk->sk_rcvbuf = space;
563
564 /* Make the window clamp follow along. */
565 tp->window_clamp = new_clamp;
566 }
567 }
568 }
e905a9ed 569
1da177e4
LT
570new_measure:
571 tp->rcvq_space.seq = tp->copied_seq;
572 tp->rcvq_space.time = tcp_time_stamp;
573}
574
575/* There is something which you must keep in mind when you analyze the
576 * behavior of the tp->ato delayed ack timeout interval. When a
577 * connection starts up, we want to ack as quickly as possible. The
578 * problem is that "good" TCP's do slow start at the beginning of data
579 * transmission. The means that until we send the first few ACK's the
580 * sender will sit on his end and only queue most of his data, because
581 * he can only send snd_cwnd unacked packets at any given time. For
582 * each ACK we send, he increments snd_cwnd and transmits more of his
583 * queue. -DaveM
584 */
9e412ba7 585static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 586{
9e412ba7 587 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 588 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
589 u32 now;
590
463c84b9 591 inet_csk_schedule_ack(sk);
1da177e4 592
463c84b9 593 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
594
595 tcp_rcv_rtt_measure(tp);
e905a9ed 596
1da177e4
LT
597 now = tcp_time_stamp;
598
463c84b9 599 if (!icsk->icsk_ack.ato) {
1da177e4
LT
600 /* The _first_ data packet received, initialize
601 * delayed ACK engine.
602 */
463c84b9
ACM
603 tcp_incr_quickack(sk);
604 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 605 } else {
463c84b9 606 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 607
056834d9 608 if (m <= TCP_ATO_MIN / 2) {
1da177e4 609 /* The fastest case is the first. */
463c84b9
ACM
610 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
611 } else if (m < icsk->icsk_ack.ato) {
612 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
613 if (icsk->icsk_ack.ato > icsk->icsk_rto)
614 icsk->icsk_ack.ato = icsk->icsk_rto;
615 } else if (m > icsk->icsk_rto) {
caa20d9a 616 /* Too long gap. Apparently sender failed to
1da177e4
LT
617 * restart window, so that we send ACKs quickly.
618 */
463c84b9 619 tcp_incr_quickack(sk);
3ab224be 620 sk_mem_reclaim(sk);
1da177e4
LT
621 }
622 }
463c84b9 623 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
624
625 TCP_ECN_check_ce(tp, skb);
626
627 if (skb->len >= 128)
9e412ba7 628 tcp_grow_window(sk, skb);
1da177e4
LT
629}
630
1da177e4
LT
631/* Called to compute a smoothed rtt estimate. The data fed to this
632 * routine either comes from timestamps, or from segments that were
633 * known _not_ to have been retransmitted [see Karn/Partridge
634 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
635 * piece by Van Jacobson.
636 * NOTE: the next three routines used to be one big routine.
637 * To save cycles in the RFC 1323 implementation it was better to break
638 * it up into three procedures. -- erics
639 */
2d2abbab 640static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 641{
6687e988 642 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
643 long m = mrtt; /* RTT */
644
1da177e4
LT
645 /* The following amusing code comes from Jacobson's
646 * article in SIGCOMM '88. Note that rtt and mdev
647 * are scaled versions of rtt and mean deviation.
e905a9ed 648 * This is designed to be as fast as possible
1da177e4
LT
649 * m stands for "measurement".
650 *
651 * On a 1990 paper the rto value is changed to:
652 * RTO = rtt + 4 * mdev
653 *
654 * Funny. This algorithm seems to be very broken.
655 * These formulae increase RTO, when it should be decreased, increase
31f34269 656 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
657 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
658 * does not matter how to _calculate_ it. Seems, it was trap
659 * that VJ failed to avoid. 8)
660 */
2de979bd 661 if (m == 0)
1da177e4
LT
662 m = 1;
663 if (tp->srtt != 0) {
664 m -= (tp->srtt >> 3); /* m is now error in rtt est */
665 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
666 if (m < 0) {
667 m = -m; /* m is now abs(error) */
668 m -= (tp->mdev >> 2); /* similar update on mdev */
669 /* This is similar to one of Eifel findings.
670 * Eifel blocks mdev updates when rtt decreases.
671 * This solution is a bit different: we use finer gain
672 * for mdev in this case (alpha*beta).
673 * Like Eifel it also prevents growth of rto,
674 * but also it limits too fast rto decreases,
675 * happening in pure Eifel.
676 */
677 if (m > 0)
678 m >>= 3;
679 } else {
680 m -= (tp->mdev >> 2); /* similar update on mdev */
681 }
682 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
683 if (tp->mdev > tp->mdev_max) {
684 tp->mdev_max = tp->mdev;
685 if (tp->mdev_max > tp->rttvar)
686 tp->rttvar = tp->mdev_max;
687 }
688 if (after(tp->snd_una, tp->rtt_seq)) {
689 if (tp->mdev_max < tp->rttvar)
056834d9 690 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
1da177e4 691 tp->rtt_seq = tp->snd_nxt;
05bb1fad 692 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
693 }
694 } else {
695 /* no previous measure. */
056834d9
IJ
696 tp->srtt = m << 3; /* take the measured time to be rtt */
697 tp->mdev = m << 1; /* make sure rto = 3*rtt */
05bb1fad 698 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
699 tp->rtt_seq = tp->snd_nxt;
700 }
1da177e4
LT
701}
702
703/* Calculate rto without backoff. This is the second half of Van Jacobson's
704 * routine referred to above.
705 */
4aabd8ef 706void tcp_set_rto(struct sock *sk)
1da177e4 707{
463c84b9 708 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
709 /* Old crap is replaced with new one. 8)
710 *
711 * More seriously:
712 * 1. If rtt variance happened to be less 50msec, it is hallucination.
713 * It cannot be less due to utterly erratic ACK generation made
714 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
715 * to do with delayed acks, because at cwnd>2 true delack timeout
716 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 717 * ACKs in some circumstances.
1da177e4 718 */
f1ecd5d9 719 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
720
721 /* 2. Fixups made earlier cannot be right.
722 * If we do not estimate RTO correctly without them,
723 * all the algo is pure shit and should be replaced
caa20d9a 724 * with correct one. It is exactly, which we pretend to do.
1da177e4 725 */
1da177e4 726
ee6aac59
IJ
727 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
728 * guarantees that rto is higher.
729 */
f1ecd5d9 730 tcp_bound_rto(sk);
1da177e4
LT
731}
732
cf533ea5 733__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
734{
735 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
736
22b71c8f 737 if (!cwnd)
442b9635 738 cwnd = TCP_INIT_CWND;
1da177e4
LT
739 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
740}
741
40efc6fa 742/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 743void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
744{
745 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 746 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
747
748 tp->prior_ssthresh = 0;
749 tp->bytes_acked = 0;
e01f9d77 750 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 751 tp->undo_marker = 0;
3cfe3baa
IJ
752 if (set_ssthresh)
753 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
754 tp->snd_cwnd = min(tp->snd_cwnd,
755 tcp_packets_in_flight(tp) + 1U);
756 tp->snd_cwnd_cnt = 0;
757 tp->high_seq = tp->snd_nxt;
758 tp->snd_cwnd_stamp = tcp_time_stamp;
759 TCP_ECN_queue_cwr(tp);
760
761 tcp_set_ca_state(sk, TCP_CA_CWR);
762 }
763}
764
e60402d0
IJ
765/*
766 * Packet counting of FACK is based on in-order assumptions, therefore TCP
767 * disables it when reordering is detected
768 */
4aabd8ef 769void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 770{
85cc391c
IJ
771 /* RFC3517 uses different metric in lost marker => reset on change */
772 if (tcp_is_fack(tp))
773 tp->lost_skb_hint = NULL;
ab56222a 774 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
775}
776
564262c1 777/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
778static void tcp_dsack_seen(struct tcp_sock *tp)
779{
ab56222a 780 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
781}
782
6687e988
ACM
783static void tcp_update_reordering(struct sock *sk, const int metric,
784 const int ts)
1da177e4 785{
6687e988 786 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 787 if (metric > tp->reordering) {
40b215e5
PE
788 int mib_idx;
789
1da177e4
LT
790 tp->reordering = min(TCP_MAX_REORDERING, metric);
791
792 /* This exciting event is worth to be remembered. 8) */
793 if (ts)
40b215e5 794 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 795 else if (tcp_is_reno(tp))
40b215e5 796 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 797 else if (tcp_is_fack(tp))
40b215e5 798 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 799 else
40b215e5
PE
800 mib_idx = LINUX_MIB_TCPSACKREORDER;
801
de0744af 802 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 803#if FASTRETRANS_DEBUG > 1
91df42be
JP
804 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
805 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
806 tp->reordering,
807 tp->fackets_out,
808 tp->sacked_out,
809 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 810#endif
e60402d0 811 tcp_disable_fack(tp);
1da177e4 812 }
eed530b6
YC
813
814 if (metric > 0)
815 tcp_disable_early_retrans(tp);
1da177e4
LT
816}
817
006f582c 818/* This must be called before lost_out is incremented */
c8c213f2
IJ
819static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
820{
006f582c 821 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
822 before(TCP_SKB_CB(skb)->seq,
823 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
824 tp->retransmit_skb_hint = skb;
825
826 if (!tp->lost_out ||
827 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
828 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
829}
830
41ea36e3
IJ
831static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
832{
833 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
834 tcp_verify_retransmit_hint(tp, skb);
835
836 tp->lost_out += tcp_skb_pcount(skb);
837 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
838 }
839}
840
e1aa680f
IJ
841static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
842 struct sk_buff *skb)
006f582c
IJ
843{
844 tcp_verify_retransmit_hint(tp, skb);
845
846 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
847 tp->lost_out += tcp_skb_pcount(skb);
848 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
849 }
850}
851
1da177e4
LT
852/* This procedure tags the retransmission queue when SACKs arrive.
853 *
854 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
855 * Packets in queue with these bits set are counted in variables
856 * sacked_out, retrans_out and lost_out, correspondingly.
857 *
858 * Valid combinations are:
859 * Tag InFlight Description
860 * 0 1 - orig segment is in flight.
861 * S 0 - nothing flies, orig reached receiver.
862 * L 0 - nothing flies, orig lost by net.
863 * R 2 - both orig and retransmit are in flight.
864 * L|R 1 - orig is lost, retransmit is in flight.
865 * S|R 1 - orig reached receiver, retrans is still in flight.
866 * (L|S|R is logically valid, it could occur when L|R is sacked,
867 * but it is equivalent to plain S and code short-curcuits it to S.
868 * L|S is logically invalid, it would mean -1 packet in flight 8))
869 *
870 * These 6 states form finite state machine, controlled by the following events:
871 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
872 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 873 * 3. Loss detection event of two flavors:
1da177e4
LT
874 * A. Scoreboard estimator decided the packet is lost.
875 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
876 * A''. Its FACK modification, head until snd.fack is lost.
877 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
878 * segment was retransmitted.
879 * 4. D-SACK added new rule: D-SACK changes any tag to S.
880 *
881 * It is pleasant to note, that state diagram turns out to be commutative,
882 * so that we are allowed not to be bothered by order of our actions,
883 * when multiple events arrive simultaneously. (see the function below).
884 *
885 * Reordering detection.
886 * --------------------
887 * Reordering metric is maximal distance, which a packet can be displaced
888 * in packet stream. With SACKs we can estimate it:
889 *
890 * 1. SACK fills old hole and the corresponding segment was not
891 * ever retransmitted -> reordering. Alas, we cannot use it
892 * when segment was retransmitted.
893 * 2. The last flaw is solved with D-SACK. D-SACK arrives
894 * for retransmitted and already SACKed segment -> reordering..
895 * Both of these heuristics are not used in Loss state, when we cannot
896 * account for retransmits accurately.
5b3c9882
IJ
897 *
898 * SACK block validation.
899 * ----------------------
900 *
901 * SACK block range validation checks that the received SACK block fits to
902 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
903 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
904 * it means that the receiver is rather inconsistent with itself reporting
905 * SACK reneging when it should advance SND.UNA. Such SACK block this is
906 * perfectly valid, however, in light of RFC2018 which explicitly states
907 * that "SACK block MUST reflect the newest segment. Even if the newest
908 * segment is going to be discarded ...", not that it looks very clever
909 * in case of head skb. Due to potentional receiver driven attacks, we
910 * choose to avoid immediate execution of a walk in write queue due to
911 * reneging and defer head skb's loss recovery to standard loss recovery
912 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
913 *
914 * Implements also blockage to start_seq wrap-around. Problem lies in the
915 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
916 * there's no guarantee that it will be before snd_nxt (n). The problem
917 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
918 * wrap (s_w):
919 *
920 * <- outs wnd -> <- wrapzone ->
921 * u e n u_w e_w s n_w
922 * | | | | | | |
923 * |<------------+------+----- TCP seqno space --------------+---------->|
924 * ...-- <2^31 ->| |<--------...
925 * ...---- >2^31 ------>| |<--------...
926 *
927 * Current code wouldn't be vulnerable but it's better still to discard such
928 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
929 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
930 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
931 * equal to the ideal case (infinite seqno space without wrap caused issues).
932 *
933 * With D-SACK the lower bound is extended to cover sequence space below
934 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 935 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
936 * for the normal SACK blocks, explained above). But there all simplicity
937 * ends, TCP might receive valid D-SACKs below that. As long as they reside
938 * fully below undo_marker they do not affect behavior in anyway and can
939 * therefore be safely ignored. In rare cases (which are more or less
940 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
941 * fragmentation and packet reordering past skb's retransmission. To consider
942 * them correctly, the acceptable range must be extended even more though
943 * the exact amount is rather hard to quantify. However, tp->max_window can
944 * be used as an exaggerated estimate.
1da177e4 945 */
a2a385d6
ED
946static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
947 u32 start_seq, u32 end_seq)
5b3c9882
IJ
948{
949 /* Too far in future, or reversed (interpretation is ambiguous) */
950 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 951 return false;
5b3c9882
IJ
952
953 /* Nasty start_seq wrap-around check (see comments above) */
954 if (!before(start_seq, tp->snd_nxt))
a2a385d6 955 return false;
5b3c9882 956
564262c1 957 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
958 * start_seq == snd_una is non-sensical (see comments above)
959 */
960 if (after(start_seq, tp->snd_una))
a2a385d6 961 return true;
5b3c9882
IJ
962
963 if (!is_dsack || !tp->undo_marker)
a2a385d6 964 return false;
5b3c9882
IJ
965
966 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 967 if (after(end_seq, tp->snd_una))
a2a385d6 968 return false;
5b3c9882
IJ
969
970 if (!before(start_seq, tp->undo_marker))
a2a385d6 971 return true;
5b3c9882
IJ
972
973 /* Too old */
974 if (!after(end_seq, tp->undo_marker))
a2a385d6 975 return false;
5b3c9882
IJ
976
977 /* Undo_marker boundary crossing (overestimates a lot). Known already:
978 * start_seq < undo_marker and end_seq >= undo_marker.
979 */
980 return !before(start_seq, end_seq - tp->max_window);
981}
982
1c1e87ed 983/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 984 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 985 * for reordering! Ugly, but should help.
f785a8e2
IJ
986 *
987 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
988 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
989 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
990 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 991 */
407ef1de 992static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 993{
9f58f3b7 994 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
995 struct tcp_sock *tp = tcp_sk(sk);
996 struct sk_buff *skb;
f785a8e2 997 int cnt = 0;
df2e014b 998 u32 new_low_seq = tp->snd_nxt;
6859d494 999 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1000
1001 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1002 !after(received_upto, tp->lost_retrans_low) ||
1003 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1004 return;
1c1e87ed
IJ
1005
1006 tcp_for_write_queue(skb, sk) {
1007 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1008
1009 if (skb == tcp_send_head(sk))
1010 break;
f785a8e2 1011 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1012 break;
1013 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1014 continue;
1015
f785a8e2
IJ
1016 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1017 continue;
1018
d0af4160
IJ
1019 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1020 * constraint here (see above) but figuring out that at
1021 * least tp->reordering SACK blocks reside between ack_seq
1022 * and received_upto is not easy task to do cheaply with
1023 * the available datastructures.
1024 *
1025 * Whether FACK should check here for tp->reordering segs
1026 * in-between one could argue for either way (it would be
1027 * rather simple to implement as we could count fack_count
1028 * during the walk and do tp->fackets_out - fack_count).
1029 */
1030 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1031 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1032 tp->retrans_out -= tcp_skb_pcount(skb);
1033
006f582c 1034 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1035 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1036 } else {
df2e014b 1037 if (before(ack_seq, new_low_seq))
b08d6cb2 1038 new_low_seq = ack_seq;
f785a8e2 1039 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1040 }
1041 }
b08d6cb2
IJ
1042
1043 if (tp->retrans_out)
1044 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1045}
5b3c9882 1046
a2a385d6
ED
1047static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1048 struct tcp_sack_block_wire *sp, int num_sacks,
1049 u32 prior_snd_una)
d06e021d 1050{
1ed83465 1051 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1052 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1053 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1054 bool dup_sack = false;
d06e021d
DM
1055
1056 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1057 dup_sack = true;
e60402d0 1058 tcp_dsack_seen(tp);
de0744af 1059 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1060 } else if (num_sacks > 1) {
d3e2ce3b
HH
1061 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1062 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1063
1064 if (!after(end_seq_0, end_seq_1) &&
1065 !before(start_seq_0, start_seq_1)) {
a2a385d6 1066 dup_sack = true;
e60402d0 1067 tcp_dsack_seen(tp);
de0744af
PE
1068 NET_INC_STATS_BH(sock_net(sk),
1069 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1070 }
1071 }
1072
1073 /* D-SACK for already forgotten data... Do dumb counting. */
c24f691b 1074 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
d06e021d
DM
1075 !after(end_seq_0, prior_snd_una) &&
1076 after(end_seq_0, tp->undo_marker))
1077 tp->undo_retrans--;
1078
1079 return dup_sack;
1080}
1081
a1197f5a
IJ
1082struct tcp_sacktag_state {
1083 int reord;
1084 int fack_count;
1085 int flag;
1086};
1087
d1935942
IJ
1088/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1089 * the incoming SACK may not exactly match but we can find smaller MSS
1090 * aligned portion of it that matches. Therefore we might need to fragment
1091 * which may fail and creates some hassle (caller must handle error case
1092 * returns).
832d11c5
IJ
1093 *
1094 * FIXME: this could be merged to shift decision code
d1935942 1095 */
0f79efdc 1096static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1097 u32 start_seq, u32 end_seq)
d1935942 1098{
a2a385d6
ED
1099 int err;
1100 bool in_sack;
d1935942 1101 unsigned int pkt_len;
adb92db8 1102 unsigned int mss;
d1935942
IJ
1103
1104 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1105 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1106
1107 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1108 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1109 mss = tcp_skb_mss(skb);
d1935942
IJ
1110 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1111
adb92db8 1112 if (!in_sack) {
d1935942 1113 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1114 if (pkt_len < mss)
1115 pkt_len = mss;
1116 } else {
d1935942 1117 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1118 if (pkt_len < mss)
1119 return -EINVAL;
1120 }
1121
1122 /* Round if necessary so that SACKs cover only full MSSes
1123 * and/or the remaining small portion (if present)
1124 */
1125 if (pkt_len > mss) {
1126 unsigned int new_len = (pkt_len / mss) * mss;
1127 if (!in_sack && new_len < pkt_len) {
1128 new_len += mss;
1129 if (new_len > skb->len)
1130 return 0;
1131 }
1132 pkt_len = new_len;
1133 }
1134 err = tcp_fragment(sk, skb, pkt_len, mss);
d1935942
IJ
1135 if (err < 0)
1136 return err;
1137 }
1138
1139 return in_sack;
1140}
1141
cc9a672e
NC
1142/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1143static u8 tcp_sacktag_one(struct sock *sk,
1144 struct tcp_sacktag_state *state, u8 sacked,
1145 u32 start_seq, u32 end_seq,
a2a385d6 1146 bool dup_sack, int pcount)
9e10c47c 1147{
6859d494 1148 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1149 int fack_count = state->fack_count;
9e10c47c
IJ
1150
1151 /* Account D-SACK for retransmitted packet. */
1152 if (dup_sack && (sacked & TCPCB_RETRANS)) {
c24f691b 1153 if (tp->undo_marker && tp->undo_retrans &&
cc9a672e 1154 after(end_seq, tp->undo_marker))
9e10c47c 1155 tp->undo_retrans--;
ede9f3b1 1156 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1157 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1158 }
1159
1160 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1161 if (!after(end_seq, tp->snd_una))
a1197f5a 1162 return sacked;
9e10c47c
IJ
1163
1164 if (!(sacked & TCPCB_SACKED_ACKED)) {
1165 if (sacked & TCPCB_SACKED_RETRANS) {
1166 /* If the segment is not tagged as lost,
1167 * we do not clear RETRANS, believing
1168 * that retransmission is still in flight.
1169 */
1170 if (sacked & TCPCB_LOST) {
a1197f5a 1171 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1172 tp->lost_out -= pcount;
1173 tp->retrans_out -= pcount;
9e10c47c
IJ
1174 }
1175 } else {
1176 if (!(sacked & TCPCB_RETRANS)) {
1177 /* New sack for not retransmitted frame,
1178 * which was in hole. It is reordering.
1179 */
cc9a672e 1180 if (before(start_seq,
9e10c47c 1181 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1182 state->reord = min(fack_count,
1183 state->reord);
9e10c47c
IJ
1184
1185 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
cc9a672e 1186 if (!after(end_seq, tp->frto_highmark))
a1197f5a 1187 state->flag |= FLAG_ONLY_ORIG_SACKED;
9e10c47c
IJ
1188 }
1189
1190 if (sacked & TCPCB_LOST) {
a1197f5a 1191 sacked &= ~TCPCB_LOST;
f58b22fd 1192 tp->lost_out -= pcount;
9e10c47c
IJ
1193 }
1194 }
1195
a1197f5a
IJ
1196 sacked |= TCPCB_SACKED_ACKED;
1197 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1198 tp->sacked_out += pcount;
9e10c47c 1199
f58b22fd 1200 fack_count += pcount;
9e10c47c
IJ
1201
1202 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1203 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
cc9a672e 1204 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1205 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1206
1207 if (fack_count > tp->fackets_out)
1208 tp->fackets_out = fack_count;
9e10c47c
IJ
1209 }
1210
1211 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1212 * frames and clear it. undo_retrans is decreased above, L|R frames
1213 * are accounted above as well.
1214 */
a1197f5a
IJ
1215 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1216 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1217 tp->retrans_out -= pcount;
9e10c47c
IJ
1218 }
1219
a1197f5a 1220 return sacked;
9e10c47c
IJ
1221}
1222
daef52ba
NC
1223/* Shift newly-SACKed bytes from this skb to the immediately previous
1224 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1225 */
a2a385d6
ED
1226static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1227 struct tcp_sacktag_state *state,
1228 unsigned int pcount, int shifted, int mss,
1229 bool dup_sack)
832d11c5
IJ
1230{
1231 struct tcp_sock *tp = tcp_sk(sk);
50133161 1232 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1233 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1234 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1235
1236 BUG_ON(!pcount);
1237
4c90d3b3
NC
1238 /* Adjust counters and hints for the newly sacked sequence
1239 * range but discard the return value since prev is already
1240 * marked. We must tag the range first because the seq
1241 * advancement below implicitly advances
1242 * tcp_highest_sack_seq() when skb is highest_sack.
1243 */
1244 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1245 start_seq, end_seq, dup_sack, pcount);
1246
1247 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1248 tp->lost_cnt_hint += pcount;
1249
832d11c5
IJ
1250 TCP_SKB_CB(prev)->end_seq += shifted;
1251 TCP_SKB_CB(skb)->seq += shifted;
1252
1253 skb_shinfo(prev)->gso_segs += pcount;
1254 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1255 skb_shinfo(skb)->gso_segs -= pcount;
1256
1257 /* When we're adding to gso_segs == 1, gso_size will be zero,
1258 * in theory this shouldn't be necessary but as long as DSACK
1259 * code can come after this skb later on it's better to keep
1260 * setting gso_size to something.
1261 */
1262 if (!skb_shinfo(prev)->gso_size) {
1263 skb_shinfo(prev)->gso_size = mss;
1264 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1265 }
1266
1267 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1268 if (skb_shinfo(skb)->gso_segs <= 1) {
1269 skb_shinfo(skb)->gso_size = 0;
1270 skb_shinfo(skb)->gso_type = 0;
1271 }
1272
832d11c5
IJ
1273 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1274 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1275
832d11c5
IJ
1276 if (skb->len > 0) {
1277 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1278 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1279 return false;
832d11c5
IJ
1280 }
1281
1282 /* Whole SKB was eaten :-) */
1283
92ee76b6
IJ
1284 if (skb == tp->retransmit_skb_hint)
1285 tp->retransmit_skb_hint = prev;
1286 if (skb == tp->scoreboard_skb_hint)
1287 tp->scoreboard_skb_hint = prev;
1288 if (skb == tp->lost_skb_hint) {
1289 tp->lost_skb_hint = prev;
1290 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1291 }
1292
4de075e0 1293 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
832d11c5
IJ
1294 if (skb == tcp_highest_sack(sk))
1295 tcp_advance_highest_sack(sk, skb);
1296
1297 tcp_unlink_write_queue(skb, sk);
1298 sk_wmem_free_skb(sk, skb);
1299
111cc8b9
IJ
1300 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1301
a2a385d6 1302 return true;
832d11c5
IJ
1303}
1304
1305/* I wish gso_size would have a bit more sane initialization than
1306 * something-or-zero which complicates things
1307 */
cf533ea5 1308static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1309{
775ffabf 1310 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1311}
1312
1313/* Shifting pages past head area doesn't work */
cf533ea5 1314static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1315{
1316 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1317}
1318
1319/* Try collapsing SACK blocks spanning across multiple skbs to a single
1320 * skb.
1321 */
1322static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1323 struct tcp_sacktag_state *state,
832d11c5 1324 u32 start_seq, u32 end_seq,
a2a385d6 1325 bool dup_sack)
832d11c5
IJ
1326{
1327 struct tcp_sock *tp = tcp_sk(sk);
1328 struct sk_buff *prev;
1329 int mss;
1330 int pcount = 0;
1331 int len;
1332 int in_sack;
1333
1334 if (!sk_can_gso(sk))
1335 goto fallback;
1336
1337 /* Normally R but no L won't result in plain S */
1338 if (!dup_sack &&
9969ca5f 1339 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1340 goto fallback;
1341 if (!skb_can_shift(skb))
1342 goto fallback;
1343 /* This frame is about to be dropped (was ACKed). */
1344 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1345 goto fallback;
1346
1347 /* Can only happen with delayed DSACK + discard craziness */
1348 if (unlikely(skb == tcp_write_queue_head(sk)))
1349 goto fallback;
1350 prev = tcp_write_queue_prev(sk, skb);
1351
1352 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1353 goto fallback;
1354
1355 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1356 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1357
1358 if (in_sack) {
1359 len = skb->len;
1360 pcount = tcp_skb_pcount(skb);
775ffabf 1361 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1362
1363 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1364 * drop this restriction as unnecessary
1365 */
775ffabf 1366 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1367 goto fallback;
1368 } else {
1369 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1370 goto noop;
1371 /* CHECKME: This is non-MSS split case only?, this will
1372 * cause skipped skbs due to advancing loop btw, original
1373 * has that feature too
1374 */
1375 if (tcp_skb_pcount(skb) <= 1)
1376 goto noop;
1377
1378 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1379 if (!in_sack) {
1380 /* TODO: head merge to next could be attempted here
1381 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1382 * though it might not be worth of the additional hassle
1383 *
1384 * ...we can probably just fallback to what was done
1385 * previously. We could try merging non-SACKed ones
1386 * as well but it probably isn't going to buy off
1387 * because later SACKs might again split them, and
1388 * it would make skb timestamp tracking considerably
1389 * harder problem.
1390 */
1391 goto fallback;
1392 }
1393
1394 len = end_seq - TCP_SKB_CB(skb)->seq;
1395 BUG_ON(len < 0);
1396 BUG_ON(len > skb->len);
1397
1398 /* MSS boundaries should be honoured or else pcount will
1399 * severely break even though it makes things bit trickier.
1400 * Optimize common case to avoid most of the divides
1401 */
1402 mss = tcp_skb_mss(skb);
1403
1404 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1405 * drop this restriction as unnecessary
1406 */
775ffabf 1407 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1408 goto fallback;
1409
1410 if (len == mss) {
1411 pcount = 1;
1412 } else if (len < mss) {
1413 goto noop;
1414 } else {
1415 pcount = len / mss;
1416 len = pcount * mss;
1417 }
1418 }
1419
4648dc97
NC
1420 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1421 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1422 goto fallback;
1423
832d11c5
IJ
1424 if (!skb_shift(prev, skb, len))
1425 goto fallback;
9ec06ff5 1426 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1427 goto out;
1428
1429 /* Hole filled allows collapsing with the next as well, this is very
1430 * useful when hole on every nth skb pattern happens
1431 */
1432 if (prev == tcp_write_queue_tail(sk))
1433 goto out;
1434 skb = tcp_write_queue_next(sk, prev);
1435
f0bc52f3
IJ
1436 if (!skb_can_shift(skb) ||
1437 (skb == tcp_send_head(sk)) ||
1438 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1439 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1440 goto out;
1441
1442 len = skb->len;
1443 if (skb_shift(prev, skb, len)) {
1444 pcount += tcp_skb_pcount(skb);
9ec06ff5 1445 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1446 }
1447
1448out:
a1197f5a 1449 state->fack_count += pcount;
832d11c5
IJ
1450 return prev;
1451
1452noop:
1453 return skb;
1454
1455fallback:
111cc8b9 1456 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1457 return NULL;
1458}
1459
68f8353b
IJ
1460static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1461 struct tcp_sack_block *next_dup,
a1197f5a 1462 struct tcp_sacktag_state *state,
68f8353b 1463 u32 start_seq, u32 end_seq,
a2a385d6 1464 bool dup_sack_in)
68f8353b 1465{
832d11c5
IJ
1466 struct tcp_sock *tp = tcp_sk(sk);
1467 struct sk_buff *tmp;
1468
68f8353b
IJ
1469 tcp_for_write_queue_from(skb, sk) {
1470 int in_sack = 0;
a2a385d6 1471 bool dup_sack = dup_sack_in;
68f8353b
IJ
1472
1473 if (skb == tcp_send_head(sk))
1474 break;
1475
1476 /* queue is in-order => we can short-circuit the walk early */
1477 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1478 break;
1479
1480 if ((next_dup != NULL) &&
1481 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1482 in_sack = tcp_match_skb_to_sack(sk, skb,
1483 next_dup->start_seq,
1484 next_dup->end_seq);
1485 if (in_sack > 0)
a2a385d6 1486 dup_sack = true;
68f8353b
IJ
1487 }
1488
832d11c5
IJ
1489 /* skb reference here is a bit tricky to get right, since
1490 * shifting can eat and free both this skb and the next,
1491 * so not even _safe variant of the loop is enough.
1492 */
1493 if (in_sack <= 0) {
a1197f5a
IJ
1494 tmp = tcp_shift_skb_data(sk, skb, state,
1495 start_seq, end_seq, dup_sack);
832d11c5
IJ
1496 if (tmp != NULL) {
1497 if (tmp != skb) {
1498 skb = tmp;
1499 continue;
1500 }
1501
1502 in_sack = 0;
1503 } else {
1504 in_sack = tcp_match_skb_to_sack(sk, skb,
1505 start_seq,
1506 end_seq);
1507 }
1508 }
1509
68f8353b
IJ
1510 if (unlikely(in_sack < 0))
1511 break;
1512
832d11c5 1513 if (in_sack) {
cc9a672e
NC
1514 TCP_SKB_CB(skb)->sacked =
1515 tcp_sacktag_one(sk,
1516 state,
1517 TCP_SKB_CB(skb)->sacked,
1518 TCP_SKB_CB(skb)->seq,
1519 TCP_SKB_CB(skb)->end_seq,
1520 dup_sack,
1521 tcp_skb_pcount(skb));
68f8353b 1522
832d11c5
IJ
1523 if (!before(TCP_SKB_CB(skb)->seq,
1524 tcp_highest_sack_seq(tp)))
1525 tcp_advance_highest_sack(sk, skb);
1526 }
1527
a1197f5a 1528 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1529 }
1530 return skb;
1531}
1532
1533/* Avoid all extra work that is being done by sacktag while walking in
1534 * a normal way
1535 */
1536static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1537 struct tcp_sacktag_state *state,
1538 u32 skip_to_seq)
68f8353b
IJ
1539{
1540 tcp_for_write_queue_from(skb, sk) {
1541 if (skb == tcp_send_head(sk))
1542 break;
1543
e8bae275 1544 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1545 break;
d152a7d8 1546
a1197f5a 1547 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1548 }
1549 return skb;
1550}
1551
1552static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1553 struct sock *sk,
1554 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1555 struct tcp_sacktag_state *state,
1556 u32 skip_to_seq)
68f8353b
IJ
1557{
1558 if (next_dup == NULL)
1559 return skb;
1560
1561 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1562 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1563 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1564 next_dup->start_seq, next_dup->end_seq,
1565 1);
68f8353b
IJ
1566 }
1567
1568 return skb;
1569}
1570
cf533ea5 1571static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1572{
1573 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1574}
1575
1da177e4 1576static int
cf533ea5 1577tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
056834d9 1578 u32 prior_snd_una)
1da177e4 1579{
6687e988 1580 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1581 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1582 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1583 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1584 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1585 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1586 struct tcp_sack_block *cache;
a1197f5a 1587 struct tcp_sacktag_state state;
68f8353b 1588 struct sk_buff *skb;
4389dded 1589 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1590 int used_sacks;
a2a385d6 1591 bool found_dup_sack = false;
68f8353b 1592 int i, j;
fda03fbb 1593 int first_sack_index;
1da177e4 1594
a1197f5a
IJ
1595 state.flag = 0;
1596 state.reord = tp->packets_out;
1597
d738cd8f 1598 if (!tp->sacked_out) {
de83c058
IJ
1599 if (WARN_ON(tp->fackets_out))
1600 tp->fackets_out = 0;
6859d494 1601 tcp_highest_sack_reset(sk);
d738cd8f 1602 }
1da177e4 1603
1ed83465 1604 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1605 num_sacks, prior_snd_una);
1606 if (found_dup_sack)
a1197f5a 1607 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1608
1609 /* Eliminate too old ACKs, but take into
1610 * account more or less fresh ones, they can
1611 * contain valid SACK info.
1612 */
1613 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1614 return 0;
1615