]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/ipv4/tcp_input.c
[TCP]: Don't panic if S+L skb is detected
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
e905a9ed 53 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 54 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 55 * work without delayed acks.
1da177e4
LT
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
1da177e4
LT
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly;
3cfe3baa 89int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 90int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 91
ab32ea5d
BH
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
1da177e4 94
1da177e4
LT
95#define FLAG_DATA 0x01 /* Incoming frame contained data. */
96#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100#define FLAG_DATA_SACKED 0x20 /* New SACK. */
101#define FLAG_ECE 0x40 /* ECE in this ACK */
102#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 104#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 105#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
49ff4bb4 106#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
1da177e4
LT
107
108#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
109#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
110#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
111#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 112#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4
LT
113
114#define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
115#define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
116#define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
117
4dc2665e
IJ
118#define IsSackFrto() (sysctl_tcp_frto == 0x2)
119
1da177e4 120#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 121#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 122
e905a9ed 123/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 124 * real world.
e905a9ed 125 */
40efc6fa
SH
126static void tcp_measure_rcv_mss(struct sock *sk,
127 const struct sk_buff *skb)
1da177e4 128{
463c84b9 129 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 131 unsigned int len;
1da177e4 132
e905a9ed 133 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
ff9b5e0f 138 len = skb_shinfo(skb)->gso_size ?: skb->len;
463c84b9
ACM
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
9c70220b 147 len += skb->data - skb_transport_header(skb);
1da177e4
LT
148 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
463c84b9
ACM
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
1da177e4 162 if (len == lss) {
463c84b9 163 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
164 return;
165 }
166 }
1ef9696c
AK
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
170 }
171}
172
463c84b9 173static void tcp_incr_quickack(struct sock *sk)
1da177e4 174{
463c84b9
ACM
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
177
178 if (quickacks==0)
179 quickacks=2;
463c84b9
ACM
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
182}
183
463c84b9 184void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 185{
463c84b9
ACM
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
190}
191
192/* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
463c84b9 196static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 197{
463c84b9
ACM
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
200}
201
bdf1ee5d
IJ
202static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
203{
204 if (tp->ecn_flags&TCP_ECN_OK)
205 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
206}
207
208static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
209{
210 if (tcp_hdr(skb)->cwr)
211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212}
213
214static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
215{
216 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
217}
218
219static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
220{
221 if (tp->ecn_flags&TCP_ECN_OK) {
222 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
223 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
224 /* Funny extension: if ECT is not set on a segment,
225 * it is surely retransmit. It is not in ECN RFC,
226 * but Linux follows this rule. */
227 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
228 tcp_enter_quickack_mode((struct sock *)tp);
229 }
230}
231
232static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
233{
234 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
235 tp->ecn_flags &= ~TCP_ECN_OK;
236}
237
238static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
239{
240 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
241 tp->ecn_flags &= ~TCP_ECN_OK;
242}
243
244static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
245{
246 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
247 return 1;
248 return 0;
249}
250
1da177e4
LT
251/* Buffer size and advertised window tuning.
252 *
253 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
254 */
255
256static void tcp_fixup_sndbuf(struct sock *sk)
257{
258 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
259 sizeof(struct sk_buff);
260
261 if (sk->sk_sndbuf < 3 * sndmem)
262 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
263}
264
265/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
266 *
267 * All tcp_full_space() is split to two parts: "network" buffer, allocated
268 * forward and advertised in receiver window (tp->rcv_wnd) and
269 * "application buffer", required to isolate scheduling/application
270 * latencies from network.
271 * window_clamp is maximal advertised window. It can be less than
272 * tcp_full_space(), in this case tcp_full_space() - window_clamp
273 * is reserved for "application" buffer. The less window_clamp is
274 * the smoother our behaviour from viewpoint of network, but the lower
275 * throughput and the higher sensitivity of the connection to losses. 8)
276 *
277 * rcv_ssthresh is more strict window_clamp used at "slow start"
278 * phase to predict further behaviour of this connection.
279 * It is used for two goals:
280 * - to enforce header prediction at sender, even when application
281 * requires some significant "application buffer". It is check #1.
282 * - to prevent pruning of receive queue because of misprediction
283 * of receiver window. Check #2.
284 *
285 * The scheme does not work when sender sends good segments opening
caa20d9a 286 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
287 * in common situations. Otherwise, we have to rely on queue collapsing.
288 */
289
290/* Slow part of check#2. */
9e412ba7 291static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 292{
9e412ba7 293 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
294 /* Optimize this! */
295 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 296 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
297
298 while (tp->rcv_ssthresh <= window) {
299 if (truesize <= skb->len)
463c84b9 300 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
301
302 truesize >>= 1;
303 window >>= 1;
304 }
305 return 0;
306}
307
9e412ba7 308static void tcp_grow_window(struct sock *sk,
40efc6fa 309 struct sk_buff *skb)
1da177e4 310{
9e412ba7
IJ
311 struct tcp_sock *tp = tcp_sk(sk);
312
1da177e4
LT
313 /* Check #1 */
314 if (tp->rcv_ssthresh < tp->window_clamp &&
315 (int)tp->rcv_ssthresh < tcp_space(sk) &&
316 !tcp_memory_pressure) {
317 int incr;
318
319 /* Check #2. Increase window, if skb with such overhead
320 * will fit to rcvbuf in future.
321 */
322 if (tcp_win_from_space(skb->truesize) <= skb->len)
323 incr = 2*tp->advmss;
324 else
9e412ba7 325 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
326
327 if (incr) {
328 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 329 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
330 }
331 }
332}
333
334/* 3. Tuning rcvbuf, when connection enters established state. */
335
336static void tcp_fixup_rcvbuf(struct sock *sk)
337{
338 struct tcp_sock *tp = tcp_sk(sk);
339 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
340
341 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 342 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
343 * (was 3; 4 is minimum to allow fast retransmit to work.)
344 */
345 while (tcp_win_from_space(rcvmem) < tp->advmss)
346 rcvmem += 128;
347 if (sk->sk_rcvbuf < 4 * rcvmem)
348 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
349}
350
caa20d9a 351/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
352 * established state.
353 */
354static void tcp_init_buffer_space(struct sock *sk)
355{
356 struct tcp_sock *tp = tcp_sk(sk);
357 int maxwin;
358
359 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
360 tcp_fixup_rcvbuf(sk);
361 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
362 tcp_fixup_sndbuf(sk);
363
364 tp->rcvq_space.space = tp->rcv_wnd;
365
366 maxwin = tcp_full_space(sk);
367
368 if (tp->window_clamp >= maxwin) {
369 tp->window_clamp = maxwin;
370
371 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
372 tp->window_clamp = max(maxwin -
373 (maxwin >> sysctl_tcp_app_win),
374 4 * tp->advmss);
375 }
376
377 /* Force reservation of one segment. */
378 if (sysctl_tcp_app_win &&
379 tp->window_clamp > 2 * tp->advmss &&
380 tp->window_clamp + tp->advmss > maxwin)
381 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
382
383 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
384 tp->snd_cwnd_stamp = tcp_time_stamp;
385}
386
1da177e4 387/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 388static void tcp_clamp_window(struct sock *sk)
1da177e4 389{
9e412ba7 390 struct tcp_sock *tp = tcp_sk(sk);
6687e988 391 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 392
6687e988 393 icsk->icsk_ack.quick = 0;
1da177e4 394
326f36e9
JH
395 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
396 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
397 !tcp_memory_pressure &&
398 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
399 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
400 sysctl_tcp_rmem[2]);
1da177e4 401 }
326f36e9 402 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 403 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
404}
405
40efc6fa
SH
406
407/* Initialize RCV_MSS value.
408 * RCV_MSS is an our guess about MSS used by the peer.
409 * We haven't any direct information about the MSS.
410 * It's better to underestimate the RCV_MSS rather than overestimate.
411 * Overestimations make us ACKing less frequently than needed.
412 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
413 */
414void tcp_initialize_rcv_mss(struct sock *sk)
415{
416 struct tcp_sock *tp = tcp_sk(sk);
417 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
418
419 hint = min(hint, tp->rcv_wnd/2);
420 hint = min(hint, TCP_MIN_RCVMSS);
421 hint = max(hint, TCP_MIN_MSS);
422
423 inet_csk(sk)->icsk_ack.rcv_mss = hint;
424}
425
1da177e4
LT
426/* Receiver "autotuning" code.
427 *
428 * The algorithm for RTT estimation w/o timestamps is based on
429 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
430 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
431 *
432 * More detail on this code can be found at
433 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
434 * though this reference is out of date. A new paper
435 * is pending.
436 */
437static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
438{
439 u32 new_sample = tp->rcv_rtt_est.rtt;
440 long m = sample;
441
442 if (m == 0)
443 m = 1;
444
445 if (new_sample != 0) {
446 /* If we sample in larger samples in the non-timestamp
447 * case, we could grossly overestimate the RTT especially
448 * with chatty applications or bulk transfer apps which
449 * are stalled on filesystem I/O.
450 *
451 * Also, since we are only going for a minimum in the
31f34269 452 * non-timestamp case, we do not smooth things out
caa20d9a 453 * else with timestamps disabled convergence takes too
1da177e4
LT
454 * long.
455 */
456 if (!win_dep) {
457 m -= (new_sample >> 3);
458 new_sample += m;
459 } else if (m < new_sample)
460 new_sample = m << 3;
461 } else {
caa20d9a 462 /* No previous measure. */
1da177e4
LT
463 new_sample = m << 3;
464 }
465
466 if (tp->rcv_rtt_est.rtt != new_sample)
467 tp->rcv_rtt_est.rtt = new_sample;
468}
469
470static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
471{
472 if (tp->rcv_rtt_est.time == 0)
473 goto new_measure;
474 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
475 return;
476 tcp_rcv_rtt_update(tp,
477 jiffies - tp->rcv_rtt_est.time,
478 1);
479
480new_measure:
481 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
482 tp->rcv_rtt_est.time = tcp_time_stamp;
483}
484
463c84b9 485static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 486{
463c84b9 487 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
488 if (tp->rx_opt.rcv_tsecr &&
489 (TCP_SKB_CB(skb)->end_seq -
463c84b9 490 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
491 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
492}
493
494/*
495 * This function should be called every time data is copied to user space.
496 * It calculates the appropriate TCP receive buffer space.
497 */
498void tcp_rcv_space_adjust(struct sock *sk)
499{
500 struct tcp_sock *tp = tcp_sk(sk);
501 int time;
502 int space;
e905a9ed 503
1da177e4
LT
504 if (tp->rcvq_space.time == 0)
505 goto new_measure;
e905a9ed 506
1da177e4
LT
507 time = tcp_time_stamp - tp->rcvq_space.time;
508 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
509 tp->rcv_rtt_est.rtt == 0)
510 return;
e905a9ed 511
1da177e4
LT
512 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
513
514 space = max(tp->rcvq_space.space, space);
515
516 if (tp->rcvq_space.space != space) {
517 int rcvmem;
518
519 tp->rcvq_space.space = space;
520
6fcf9412
JH
521 if (sysctl_tcp_moderate_rcvbuf &&
522 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
523 int new_clamp = space;
524
525 /* Receive space grows, normalize in order to
526 * take into account packet headers and sk_buff
527 * structure overhead.
528 */
529 space /= tp->advmss;
530 if (!space)
531 space = 1;
532 rcvmem = (tp->advmss + MAX_TCP_HEADER +
533 16 + sizeof(struct sk_buff));
534 while (tcp_win_from_space(rcvmem) < tp->advmss)
535 rcvmem += 128;
536 space *= rcvmem;
537 space = min(space, sysctl_tcp_rmem[2]);
538 if (space > sk->sk_rcvbuf) {
539 sk->sk_rcvbuf = space;
540
541 /* Make the window clamp follow along. */
542 tp->window_clamp = new_clamp;
543 }
544 }
545 }
e905a9ed 546
1da177e4
LT
547new_measure:
548 tp->rcvq_space.seq = tp->copied_seq;
549 tp->rcvq_space.time = tcp_time_stamp;
550}
551
552/* There is something which you must keep in mind when you analyze the
553 * behavior of the tp->ato delayed ack timeout interval. When a
554 * connection starts up, we want to ack as quickly as possible. The
555 * problem is that "good" TCP's do slow start at the beginning of data
556 * transmission. The means that until we send the first few ACK's the
557 * sender will sit on his end and only queue most of his data, because
558 * he can only send snd_cwnd unacked packets at any given time. For
559 * each ACK we send, he increments snd_cwnd and transmits more of his
560 * queue. -DaveM
561 */
9e412ba7 562static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 563{
9e412ba7 564 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 565 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
566 u32 now;
567
463c84b9 568 inet_csk_schedule_ack(sk);
1da177e4 569
463c84b9 570 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
571
572 tcp_rcv_rtt_measure(tp);
e905a9ed 573
1da177e4
LT
574 now = tcp_time_stamp;
575
463c84b9 576 if (!icsk->icsk_ack.ato) {
1da177e4
LT
577 /* The _first_ data packet received, initialize
578 * delayed ACK engine.
579 */
463c84b9
ACM
580 tcp_incr_quickack(sk);
581 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 582 } else {
463c84b9 583 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
584
585 if (m <= TCP_ATO_MIN/2) {
586 /* The fastest case is the first. */
463c84b9
ACM
587 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
588 } else if (m < icsk->icsk_ack.ato) {
589 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
590 if (icsk->icsk_ack.ato > icsk->icsk_rto)
591 icsk->icsk_ack.ato = icsk->icsk_rto;
592 } else if (m > icsk->icsk_rto) {
caa20d9a 593 /* Too long gap. Apparently sender failed to
1da177e4
LT
594 * restart window, so that we send ACKs quickly.
595 */
463c84b9 596 tcp_incr_quickack(sk);
1da177e4
LT
597 sk_stream_mem_reclaim(sk);
598 }
599 }
463c84b9 600 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
601
602 TCP_ECN_check_ce(tp, skb);
603
604 if (skb->len >= 128)
9e412ba7 605 tcp_grow_window(sk, skb);
1da177e4
LT
606}
607
05bb1fad
DM
608static u32 tcp_rto_min(struct sock *sk)
609{
610 struct dst_entry *dst = __sk_dst_get(sk);
611 u32 rto_min = TCP_RTO_MIN;
612
5c127c58 613 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
05bb1fad
DM
614 rto_min = dst->metrics[RTAX_RTO_MIN-1];
615 return rto_min;
616}
617
1da177e4
LT
618/* Called to compute a smoothed rtt estimate. The data fed to this
619 * routine either comes from timestamps, or from segments that were
620 * known _not_ to have been retransmitted [see Karn/Partridge
621 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
622 * piece by Van Jacobson.
623 * NOTE: the next three routines used to be one big routine.
624 * To save cycles in the RFC 1323 implementation it was better to break
625 * it up into three procedures. -- erics
626 */
2d2abbab 627static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 628{
6687e988 629 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
630 long m = mrtt; /* RTT */
631
1da177e4
LT
632 /* The following amusing code comes from Jacobson's
633 * article in SIGCOMM '88. Note that rtt and mdev
634 * are scaled versions of rtt and mean deviation.
e905a9ed 635 * This is designed to be as fast as possible
1da177e4
LT
636 * m stands for "measurement".
637 *
638 * On a 1990 paper the rto value is changed to:
639 * RTO = rtt + 4 * mdev
640 *
641 * Funny. This algorithm seems to be very broken.
642 * These formulae increase RTO, when it should be decreased, increase
31f34269 643 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
644 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
645 * does not matter how to _calculate_ it. Seems, it was trap
646 * that VJ failed to avoid. 8)
647 */
2de979bd 648 if (m == 0)
1da177e4
LT
649 m = 1;
650 if (tp->srtt != 0) {
651 m -= (tp->srtt >> 3); /* m is now error in rtt est */
652 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
653 if (m < 0) {
654 m = -m; /* m is now abs(error) */
655 m -= (tp->mdev >> 2); /* similar update on mdev */
656 /* This is similar to one of Eifel findings.
657 * Eifel blocks mdev updates when rtt decreases.
658 * This solution is a bit different: we use finer gain
659 * for mdev in this case (alpha*beta).
660 * Like Eifel it also prevents growth of rto,
661 * but also it limits too fast rto decreases,
662 * happening in pure Eifel.
663 */
664 if (m > 0)
665 m >>= 3;
666 } else {
667 m -= (tp->mdev >> 2); /* similar update on mdev */
668 }
669 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
670 if (tp->mdev > tp->mdev_max) {
671 tp->mdev_max = tp->mdev;
672 if (tp->mdev_max > tp->rttvar)
673 tp->rttvar = tp->mdev_max;
674 }
675 if (after(tp->snd_una, tp->rtt_seq)) {
676 if (tp->mdev_max < tp->rttvar)
677 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
678 tp->rtt_seq = tp->snd_nxt;
05bb1fad 679 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
680 }
681 } else {
682 /* no previous measure. */
683 tp->srtt = m<<3; /* take the measured time to be rtt */
684 tp->mdev = m<<1; /* make sure rto = 3*rtt */
05bb1fad 685 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
686 tp->rtt_seq = tp->snd_nxt;
687 }
1da177e4
LT
688}
689
690/* Calculate rto without backoff. This is the second half of Van Jacobson's
691 * routine referred to above.
692 */
463c84b9 693static inline void tcp_set_rto(struct sock *sk)
1da177e4 694{
463c84b9 695 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
696 /* Old crap is replaced with new one. 8)
697 *
698 * More seriously:
699 * 1. If rtt variance happened to be less 50msec, it is hallucination.
700 * It cannot be less due to utterly erratic ACK generation made
701 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
702 * to do with delayed acks, because at cwnd>2 true delack timeout
703 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 704 * ACKs in some circumstances.
1da177e4 705 */
463c84b9 706 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
707
708 /* 2. Fixups made earlier cannot be right.
709 * If we do not estimate RTO correctly without them,
710 * all the algo is pure shit and should be replaced
caa20d9a 711 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
712 */
713}
714
715/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
716 * guarantees that rto is higher.
717 */
463c84b9 718static inline void tcp_bound_rto(struct sock *sk)
1da177e4 719{
463c84b9
ACM
720 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
721 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
722}
723
724/* Save metrics learned by this TCP session.
725 This function is called only, when TCP finishes successfully
726 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
727 */
728void tcp_update_metrics(struct sock *sk)
729{
730 struct tcp_sock *tp = tcp_sk(sk);
731 struct dst_entry *dst = __sk_dst_get(sk);
732
733 if (sysctl_tcp_nometrics_save)
734 return;
735
736 dst_confirm(dst);
737
738 if (dst && (dst->flags&DST_HOST)) {
6687e988 739 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
740 int m;
741
6687e988 742 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
743 /* This session failed to estimate rtt. Why?
744 * Probably, no packets returned in time.
745 * Reset our results.
746 */
747 if (!(dst_metric_locked(dst, RTAX_RTT)))
748 dst->metrics[RTAX_RTT-1] = 0;
749 return;
750 }
751
752 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
753
754 /* If newly calculated rtt larger than stored one,
755 * store new one. Otherwise, use EWMA. Remember,
756 * rtt overestimation is always better than underestimation.
757 */
758 if (!(dst_metric_locked(dst, RTAX_RTT))) {
759 if (m <= 0)
760 dst->metrics[RTAX_RTT-1] = tp->srtt;
761 else
762 dst->metrics[RTAX_RTT-1] -= (m>>3);
763 }
764
765 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
766 if (m < 0)
767 m = -m;
768
769 /* Scale deviation to rttvar fixed point */
770 m >>= 1;
771 if (m < tp->mdev)
772 m = tp->mdev;
773
774 if (m >= dst_metric(dst, RTAX_RTTVAR))
775 dst->metrics[RTAX_RTTVAR-1] = m;
776 else
777 dst->metrics[RTAX_RTTVAR-1] -=
778 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
779 }
780
781 if (tp->snd_ssthresh >= 0xFFFF) {
782 /* Slow start still did not finish. */
783 if (dst_metric(dst, RTAX_SSTHRESH) &&
784 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
785 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
786 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
787 if (!dst_metric_locked(dst, RTAX_CWND) &&
788 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
789 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
790 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 791 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
792 /* Cong. avoidance phase, cwnd is reliable. */
793 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
794 dst->metrics[RTAX_SSTHRESH-1] =
795 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
796 if (!dst_metric_locked(dst, RTAX_CWND))
797 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
798 } else {
799 /* Else slow start did not finish, cwnd is non-sense,
800 ssthresh may be also invalid.
801 */
802 if (!dst_metric_locked(dst, RTAX_CWND))
803 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
804 if (dst->metrics[RTAX_SSTHRESH-1] &&
805 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
806 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
807 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
808 }
809
810 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
811 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
812 tp->reordering != sysctl_tcp_reordering)
813 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
814 }
815 }
816}
817
26722873
DM
818/* Numbers are taken from RFC3390.
819 *
820 * John Heffner states:
821 *
822 * The RFC specifies a window of no more than 4380 bytes
823 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
824 * is a bit misleading because they use a clamp at 4380 bytes
825 * rather than use a multiplier in the relevant range.
826 */
1da177e4
LT
827__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
828{
829 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
830
831 if (!cwnd) {
c1b4a7e6 832 if (tp->mss_cache > 1460)
1da177e4
LT
833 cwnd = 2;
834 else
c1b4a7e6 835 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
836 }
837 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
838}
839
40efc6fa 840/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 841void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
842{
843 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 844 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
845
846 tp->prior_ssthresh = 0;
847 tp->bytes_acked = 0;
e01f9d77 848 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 849 tp->undo_marker = 0;
3cfe3baa
IJ
850 if (set_ssthresh)
851 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
852 tp->snd_cwnd = min(tp->snd_cwnd,
853 tcp_packets_in_flight(tp) + 1U);
854 tp->snd_cwnd_cnt = 0;
855 tp->high_seq = tp->snd_nxt;
856 tp->snd_cwnd_stamp = tcp_time_stamp;
857 TCP_ECN_queue_cwr(tp);
858
859 tcp_set_ca_state(sk, TCP_CA_CWR);
860 }
861}
862
1da177e4
LT
863/* Initialize metrics on socket. */
864
865static void tcp_init_metrics(struct sock *sk)
866{
867 struct tcp_sock *tp = tcp_sk(sk);
868 struct dst_entry *dst = __sk_dst_get(sk);
869
870 if (dst == NULL)
871 goto reset;
872
873 dst_confirm(dst);
874
875 if (dst_metric_locked(dst, RTAX_CWND))
876 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
877 if (dst_metric(dst, RTAX_SSTHRESH)) {
878 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
879 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
880 tp->snd_ssthresh = tp->snd_cwnd_clamp;
881 }
882 if (dst_metric(dst, RTAX_REORDERING) &&
883 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
884 tp->rx_opt.sack_ok &= ~2;
885 tp->reordering = dst_metric(dst, RTAX_REORDERING);
886 }
887
888 if (dst_metric(dst, RTAX_RTT) == 0)
889 goto reset;
890
891 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
892 goto reset;
893
894 /* Initial rtt is determined from SYN,SYN-ACK.
895 * The segment is small and rtt may appear much
896 * less than real one. Use per-dst memory
897 * to make it more realistic.
898 *
899 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 900 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
901 * packets force peer to delay ACKs and calculation is correct too.
902 * The algorithm is adaptive and, provided we follow specs, it
903 * NEVER underestimate RTT. BUT! If peer tries to make some clever
904 * tricks sort of "quick acks" for time long enough to decrease RTT
905 * to low value, and then abruptly stops to do it and starts to delay
906 * ACKs, wait for troubles.
907 */
908 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
909 tp->srtt = dst_metric(dst, RTAX_RTT);
910 tp->rtt_seq = tp->snd_nxt;
911 }
912 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
913 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
914 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
915 }
463c84b9
ACM
916 tcp_set_rto(sk);
917 tcp_bound_rto(sk);
918 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
919 goto reset;
920 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
921 tp->snd_cwnd_stamp = tcp_time_stamp;
922 return;
923
924reset:
925 /* Play conservative. If timestamps are not
926 * supported, TCP will fail to recalculate correct
927 * rtt, if initial rto is too small. FORGET ALL AND RESET!
928 */
929 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
930 tp->srtt = 0;
931 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 932 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
933 }
934}
935
6687e988
ACM
936static void tcp_update_reordering(struct sock *sk, const int metric,
937 const int ts)
1da177e4 938{
6687e988 939 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
940 if (metric > tp->reordering) {
941 tp->reordering = min(TCP_MAX_REORDERING, metric);
942
943 /* This exciting event is worth to be remembered. 8) */
944 if (ts)
945 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
946 else if (IsReno(tp))
947 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
948 else if (IsFack(tp))
949 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
950 else
951 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
952#if FASTRETRANS_DEBUG > 1
953 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 954 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
955 tp->reordering,
956 tp->fackets_out,
957 tp->sacked_out,
958 tp->undo_marker ? tp->undo_retrans : 0);
959#endif
960 /* Disable FACK yet. */
961 tp->rx_opt.sack_ok &= ~2;
962 }
963}
964
965/* This procedure tags the retransmission queue when SACKs arrive.
966 *
967 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
968 * Packets in queue with these bits set are counted in variables
969 * sacked_out, retrans_out and lost_out, correspondingly.
970 *
971 * Valid combinations are:
972 * Tag InFlight Description
973 * 0 1 - orig segment is in flight.
974 * S 0 - nothing flies, orig reached receiver.
975 * L 0 - nothing flies, orig lost by net.
976 * R 2 - both orig and retransmit are in flight.
977 * L|R 1 - orig is lost, retransmit is in flight.
978 * S|R 1 - orig reached receiver, retrans is still in flight.
979 * (L|S|R is logically valid, it could occur when L|R is sacked,
980 * but it is equivalent to plain S and code short-curcuits it to S.
981 * L|S is logically invalid, it would mean -1 packet in flight 8))
982 *
983 * These 6 states form finite state machine, controlled by the following events:
984 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
985 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
986 * 3. Loss detection event of one of three flavors:
987 * A. Scoreboard estimator decided the packet is lost.
988 * A'. Reno "three dupacks" marks head of queue lost.
989 * A''. Its FACK modfication, head until snd.fack is lost.
990 * B. SACK arrives sacking data transmitted after never retransmitted
991 * hole was sent out.
992 * C. SACK arrives sacking SND.NXT at the moment, when the
993 * segment was retransmitted.
994 * 4. D-SACK added new rule: D-SACK changes any tag to S.
995 *
996 * It is pleasant to note, that state diagram turns out to be commutative,
997 * so that we are allowed not to be bothered by order of our actions,
998 * when multiple events arrive simultaneously. (see the function below).
999 *
1000 * Reordering detection.
1001 * --------------------
1002 * Reordering metric is maximal distance, which a packet can be displaced
1003 * in packet stream. With SACKs we can estimate it:
1004 *
1005 * 1. SACK fills old hole and the corresponding segment was not
1006 * ever retransmitted -> reordering. Alas, we cannot use it
1007 * when segment was retransmitted.
1008 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1009 * for retransmitted and already SACKed segment -> reordering..
1010 * Both of these heuristics are not used in Loss state, when we cannot
1011 * account for retransmits accurately.
1012 */
d06e021d
DM
1013static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1014 struct tcp_sack_block_wire *sp, int num_sacks,
1015 u32 prior_snd_una)
1016{
1017 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1018 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1019 int dup_sack = 0;
1020
1021 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1022 dup_sack = 1;
1023 tp->rx_opt.sack_ok |= 4;
1024 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1025 } else if (num_sacks > 1) {
1026 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1027 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1028
1029 if (!after(end_seq_0, end_seq_1) &&
1030 !before(start_seq_0, start_seq_1)) {
1031 dup_sack = 1;
1032 tp->rx_opt.sack_ok |= 4;
1033 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1034 }
1035 }
1036
1037 /* D-SACK for already forgotten data... Do dumb counting. */
1038 if (dup_sack &&
1039 !after(end_seq_0, prior_snd_una) &&
1040 after(end_seq_0, tp->undo_marker))
1041 tp->undo_retrans--;
1042
1043 return dup_sack;
1044}
1045
1da177e4
LT
1046static int
1047tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1048{
6687e988 1049 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1050 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
1051 unsigned char *ptr = (skb_transport_header(ack_skb) +
1052 TCP_SKB_CB(ack_skb)->sacked);
269bd27e 1053 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
fda03fbb 1054 struct sk_buff *cached_skb;
1da177e4
LT
1055 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1056 int reord = tp->packets_out;
1057 int prior_fackets;
1058 u32 lost_retrans = 0;
1059 int flag = 0;
7769f406 1060 int found_dup_sack = 0;
fda03fbb 1061 int cached_fack_count;
1da177e4 1062 int i;
fda03fbb 1063 int first_sack_index;
1da177e4 1064
d738cd8f 1065 if (!tp->sacked_out) {
1da177e4 1066 tp->fackets_out = 0;
d738cd8f
IJ
1067 tp->highest_sack = tp->snd_una;
1068 }
1da177e4
LT
1069 prior_fackets = tp->fackets_out;
1070
d06e021d
DM
1071 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1072 num_sacks, prior_snd_una);
1073 if (found_dup_sack)
49ff4bb4 1074 flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1075
1076 /* Eliminate too old ACKs, but take into
1077 * account more or less fresh ones, they can
1078 * contain valid SACK info.
1079 */
1080 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1081 return 0;
1082
6a438bbe
SH
1083 /* SACK fastpath:
1084 * if the only SACK change is the increase of the end_seq of
1085 * the first block then only apply that SACK block
1086 * and use retrans queue hinting otherwise slowpath */
1087 flag = 1;
6f74651a
BE
1088 for (i = 0; i < num_sacks; i++) {
1089 __be32 start_seq = sp[i].start_seq;
1090 __be32 end_seq = sp[i].end_seq;
6a438bbe 1091
6f74651a 1092 if (i == 0) {
6a438bbe
SH
1093 if (tp->recv_sack_cache[i].start_seq != start_seq)
1094 flag = 0;
1095 } else {
1096 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1097 (tp->recv_sack_cache[i].end_seq != end_seq))
1098 flag = 0;
1099 }
1100 tp->recv_sack_cache[i].start_seq = start_seq;
1101 tp->recv_sack_cache[i].end_seq = end_seq;
6a438bbe 1102 }
8a3c3a97
BE
1103 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1104 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1105 tp->recv_sack_cache[i].start_seq = 0;
1106 tp->recv_sack_cache[i].end_seq = 0;
1107 }
6a438bbe 1108
fda03fbb 1109 first_sack_index = 0;
6a438bbe
SH
1110 if (flag)
1111 num_sacks = 1;
1112 else {
1113 int j;
1114 tp->fastpath_skb_hint = NULL;
1115
1116 /* order SACK blocks to allow in order walk of the retrans queue */
1117 for (i = num_sacks-1; i > 0; i--) {
1118 for (j = 0; j < i; j++){
1119 if (after(ntohl(sp[j].start_seq),
1120 ntohl(sp[j+1].start_seq))){
db3ccdac
BE
1121 struct tcp_sack_block_wire tmp;
1122
1123 tmp = sp[j];
1124 sp[j] = sp[j+1];
1125 sp[j+1] = tmp;
fda03fbb
BE
1126
1127 /* Track where the first SACK block goes to */
1128 if (j == first_sack_index)
1129 first_sack_index = j+1;
6a438bbe
SH
1130 }
1131
1132 }
1133 }
1134 }
1135
1136 /* clear flag as used for different purpose in following code */
1137 flag = 0;
1138
fda03fbb
BE
1139 /* Use SACK fastpath hint if valid */
1140 cached_skb = tp->fastpath_skb_hint;
1141 cached_fack_count = tp->fastpath_cnt_hint;
1142 if (!cached_skb) {
fe067e8a 1143 cached_skb = tcp_write_queue_head(sk);
fda03fbb
BE
1144 cached_fack_count = 0;
1145 }
1146
6a438bbe
SH
1147 for (i=0; i<num_sacks; i++, sp++) {
1148 struct sk_buff *skb;
1149 __u32 start_seq = ntohl(sp->start_seq);
1150 __u32 end_seq = ntohl(sp->end_seq);
1151 int fack_count;
7769f406 1152 int dup_sack = (found_dup_sack && (i == first_sack_index));
6a438bbe 1153
fda03fbb
BE
1154 skb = cached_skb;
1155 fack_count = cached_fack_count;
1da177e4
LT
1156
1157 /* Event "B" in the comment above. */
1158 if (after(end_seq, tp->high_seq))
1159 flag |= FLAG_DATA_LOST;
1160
fe067e8a 1161 tcp_for_write_queue_from(skb, sk) {
6475be16
DM
1162 int in_sack, pcount;
1163 u8 sacked;
1da177e4 1164
fe067e8a
DM
1165 if (skb == tcp_send_head(sk))
1166 break;
1167
fda03fbb
BE
1168 cached_skb = skb;
1169 cached_fack_count = fack_count;
1170 if (i == first_sack_index) {
1171 tp->fastpath_skb_hint = skb;
1172 tp->fastpath_cnt_hint = fack_count;
1173 }
6a438bbe 1174
1da177e4
LT
1175 /* The retransmission queue is always in order, so
1176 * we can short-circuit the walk early.
1177 */
6475be16 1178 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1179 break;
1180
3c05d92e
HX
1181 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1182 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1183
6475be16
DM
1184 pcount = tcp_skb_pcount(skb);
1185
3c05d92e
HX
1186 if (pcount > 1 && !in_sack &&
1187 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
6475be16
DM
1188 unsigned int pkt_len;
1189
3c05d92e
HX
1190 in_sack = !after(start_seq,
1191 TCP_SKB_CB(skb)->seq);
1192
1193 if (!in_sack)
6475be16
DM
1194 pkt_len = (start_seq -
1195 TCP_SKB_CB(skb)->seq);
1196 else
1197 pkt_len = (end_seq -
1198 TCP_SKB_CB(skb)->seq);
7967168c 1199 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
6475be16
DM
1200 break;
1201 pcount = tcp_skb_pcount(skb);
1202 }
1203
1204 fack_count += pcount;
1da177e4 1205
6475be16
DM
1206 sacked = TCP_SKB_CB(skb)->sacked;
1207
1da177e4
LT
1208 /* Account D-SACK for retransmitted packet. */
1209 if ((dup_sack && in_sack) &&
1210 (sacked & TCPCB_RETRANS) &&
1211 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1212 tp->undo_retrans--;
1213
1214 /* The frame is ACKed. */
1215 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1216 if (sacked&TCPCB_RETRANS) {
1217 if ((dup_sack && in_sack) &&
1218 (sacked&TCPCB_SACKED_ACKED))
1219 reord = min(fack_count, reord);
1220 } else {
1221 /* If it was in a hole, we detected reordering. */
1222 if (fack_count < prior_fackets &&
1223 !(sacked&TCPCB_SACKED_ACKED))
1224 reord = min(fack_count, reord);
1225 }
1226
1227 /* Nothing to do; acked frame is about to be dropped. */
1228 continue;
1229 }
1230
1231 if ((sacked&TCPCB_SACKED_RETRANS) &&
1232 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1233 (!lost_retrans || after(end_seq, lost_retrans)))
1234 lost_retrans = end_seq;
1235
1236 if (!in_sack)
1237 continue;
1238
1239 if (!(sacked&TCPCB_SACKED_ACKED)) {
1240 if (sacked & TCPCB_SACKED_RETRANS) {
1241 /* If the segment is not tagged as lost,
1242 * we do not clear RETRANS, believing
1243 * that retransmission is still in flight.
1244 */
1245 if (sacked & TCPCB_LOST) {
1246 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1247 tp->lost_out -= tcp_skb_pcount(skb);
1248 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1249
1250 /* clear lost hint */
1251 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1252 }
1253 } else {
1254 /* New sack for not retransmitted frame,
1255 * which was in hole. It is reordering.
1256 */
1257 if (!(sacked & TCPCB_RETRANS) &&
1258 fack_count < prior_fackets)
1259 reord = min(fack_count, reord);
1260
1261 if (sacked & TCPCB_LOST) {
1262 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1263 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1264
1265 /* clear lost hint */
1266 tp->retransmit_skb_hint = NULL;
1da177e4 1267 }
4dc2665e
IJ
1268 /* SACK enhanced F-RTO detection.
1269 * Set flag if and only if non-rexmitted
1270 * segments below frto_highmark are
1271 * SACKed (RFC4138; Appendix B).
1272 * Clearing correct due to in-order walk
1273 */
1274 if (after(end_seq, tp->frto_highmark)) {
1275 flag &= ~FLAG_ONLY_ORIG_SACKED;
1276 } else {
1277 if (!(sacked & TCPCB_RETRANS))
1278 flag |= FLAG_ONLY_ORIG_SACKED;
1279 }
1da177e4
LT
1280 }
1281
1282 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1283 flag |= FLAG_DATA_SACKED;
1284 tp->sacked_out += tcp_skb_pcount(skb);
1285
1286 if (fack_count > tp->fackets_out)
1287 tp->fackets_out = fack_count;
d738cd8f
IJ
1288
1289 if (after(TCP_SKB_CB(skb)->seq,
1290 tp->highest_sack))
1291 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1da177e4
LT
1292 } else {
1293 if (dup_sack && (sacked&TCPCB_RETRANS))
1294 reord = min(fack_count, reord);
1295 }
1296
1297 /* D-SACK. We can detect redundant retransmission
1298 * in S|R and plain R frames and clear it.
1299 * undo_retrans is decreased above, L|R frames
1300 * are accounted above as well.
1301 */
1302 if (dup_sack &&
1303 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1304 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1305 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1306 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1307 }
1308 }
1309 }
1310
1311 /* Check for lost retransmit. This superb idea is
1312 * borrowed from "ratehalving". Event "C".
1313 * Later note: FACK people cheated me again 8),
1314 * we have to account for reordering! Ugly,
1315 * but should help.
1316 */
6687e988 1317 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1da177e4
LT
1318 struct sk_buff *skb;
1319
fe067e8a
DM
1320 tcp_for_write_queue(skb, sk) {
1321 if (skb == tcp_send_head(sk))
1322 break;
1da177e4
LT
1323 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1324 break;
1325 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1326 continue;
1327 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1328 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1329 (IsFack(tp) ||
1330 !before(lost_retrans,
1331 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
c1b4a7e6 1332 tp->mss_cache))) {
1da177e4
LT
1333 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1334 tp->retrans_out -= tcp_skb_pcount(skb);
1335
6a438bbe
SH
1336 /* clear lost hint */
1337 tp->retransmit_skb_hint = NULL;
1338
1da177e4
LT
1339 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1340 tp->lost_out += tcp_skb_pcount(skb);
1341 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1342 flag |= FLAG_DATA_SACKED;
1343 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1344 }
1345 }
1346 }
1347 }
1348
86426c22
IJ
1349 tcp_verify_left_out(tp);
1350
288035f9 1351 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
c5e7af0d 1352 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
6687e988 1353 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1354
1355#if FASTRETRANS_DEBUG > 0
1356 BUG_TRAP((int)tp->sacked_out >= 0);
1357 BUG_TRAP((int)tp->lost_out >= 0);
1358 BUG_TRAP((int)tp->retrans_out >= 0);
1359 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1360#endif
1361 return flag;
1362}
1363
575ee714
IJ
1364/* F-RTO can only be used if TCP has never retransmitted anything other than
1365 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
30935cf4 1366 */
4ddf6676
IJ
1367static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1368{
1369 struct tcp_sock *tp = tcp_sk(sk);
1370 u32 holes;
1371
1372 holes = max(tp->lost_out, 1U);
1373 holes = min(holes, tp->packets_out);
1374
1375 if ((tp->sacked_out + holes) > tp->packets_out) {
1376 tp->sacked_out = tp->packets_out - holes;
1377 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1378 }
1379}
1380
1381/* Emulate SACKs for SACKless connection: account for a new dupack. */
1382
1383static void tcp_add_reno_sack(struct sock *sk)
1384{
1385 struct tcp_sock *tp = tcp_sk(sk);
1386 tp->sacked_out++;
1387 tcp_check_reno_reordering(sk, 0);
005903bc 1388 tcp_verify_left_out(tp);
4ddf6676
IJ
1389}
1390
1391/* Account for ACK, ACKing some data in Reno Recovery phase. */
1392
1393static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1394{
1395 struct tcp_sock *tp = tcp_sk(sk);
1396
1397 if (acked > 0) {
1398 /* One ACK acked hole. The rest eat duplicate ACKs. */
1399 if (acked-1 >= tp->sacked_out)
1400 tp->sacked_out = 0;
1401 else
1402 tp->sacked_out -= acked-1;
1403 }
1404 tcp_check_reno_reordering(sk, acked);
005903bc 1405 tcp_verify_left_out(tp);
4ddf6676
IJ
1406}
1407
1408static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1409{
1410 tp->sacked_out = 0;
4ddf6676
IJ
1411}
1412
46d0de4e 1413int tcp_use_frto(struct sock *sk)
bdaae17d
IJ
1414{
1415 const struct tcp_sock *tp = tcp_sk(sk);
46d0de4e
IJ
1416 struct sk_buff *skb;
1417
575ee714 1418 if (!sysctl_tcp_frto)
46d0de4e 1419 return 0;
bdaae17d 1420
4dc2665e
IJ
1421 if (IsSackFrto())
1422 return 1;
1423
46d0de4e
IJ
1424 /* Avoid expensive walking of rexmit queue if possible */
1425 if (tp->retrans_out > 1)
1426 return 0;
1427
fe067e8a
DM
1428 skb = tcp_write_queue_head(sk);
1429 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1430 tcp_for_write_queue_from(skb, sk) {
1431 if (skb == tcp_send_head(sk))
1432 break;
46d0de4e
IJ
1433 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1434 return 0;
1435 /* Short-circuit when first non-SACKed skb has been checked */
1436 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1437 break;
1438 }
1439 return 1;
bdaae17d
IJ
1440}
1441
30935cf4
IJ
1442/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1443 * recovery a bit and use heuristics in tcp_process_frto() to detect if
d1a54c6a
IJ
1444 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1445 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1446 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1447 * bits are handled if the Loss state is really to be entered (in
1448 * tcp_enter_frto_loss).
7487c48c
IJ
1449 *
1450 * Do like tcp_enter_loss() would; when RTO expires the second time it
1451 * does:
1452 * "Reduce ssthresh if it has not yet been made inside this window."
1da177e4
LT
1453 */
1454void tcp_enter_frto(struct sock *sk)
1455{
6687e988 1456 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1457 struct tcp_sock *tp = tcp_sk(sk);
1458 struct sk_buff *skb;
1459
7487c48c 1460 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
e905a9ed 1461 tp->snd_una == tp->high_seq ||
7487c48c
IJ
1462 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1463 !icsk->icsk_retransmits)) {
6687e988 1464 tp->prior_ssthresh = tcp_current_ssthresh(sk);
66e93e45
IJ
1465 /* Our state is too optimistic in ssthresh() call because cwnd
1466 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1467 * recovery has not yet completed. Pattern would be this: RTO,
1468 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1469 * up here twice).
1470 * RFC4138 should be more specific on what to do, even though
1471 * RTO is quite unlikely to occur after the first Cumulative ACK
1472 * due to back-off and complexity of triggering events ...
1473 */
1474 if (tp->frto_counter) {
1475 u32 stored_cwnd;
1476 stored_cwnd = tp->snd_cwnd;
1477 tp->snd_cwnd = 2;
1478 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1479 tp->snd_cwnd = stored_cwnd;
1480 } else {
1481 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1482 }
1483 /* ... in theory, cong.control module could do "any tricks" in
1484 * ssthresh(), which means that ca_state, lost bits and lost_out
1485 * counter would have to be faked before the call occurs. We
1486 * consider that too expensive, unlikely and hacky, so modules
1487 * using these in ssthresh() must deal these incompatibility
1488 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1489 */
6687e988 1490 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1491 }
1492
1da177e4
LT
1493 tp->undo_marker = tp->snd_una;
1494 tp->undo_retrans = 0;
1495
fe067e8a 1496 skb = tcp_write_queue_head(sk);
d1a54c6a 1497 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
522e7548 1498 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
d1a54c6a 1499 tp->retrans_out -= tcp_skb_pcount(skb);
1da177e4 1500 }
005903bc 1501 tcp_verify_left_out(tp);
1da177e4 1502
4dc2665e
IJ
1503 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1504 * The last condition is necessary at least in tp->frto_counter case.
1505 */
1506 if (IsSackFrto() && (tp->frto_counter ||
1507 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1508 after(tp->high_seq, tp->snd_una)) {
1509 tp->frto_highmark = tp->high_seq;
1510 } else {
1511 tp->frto_highmark = tp->snd_nxt;
1512 }
7b0eb22b
IJ
1513 tcp_set_ca_state(sk, TCP_CA_Disorder);
1514 tp->high_seq = tp->snd_nxt;
7487c48c 1515 tp->frto_counter = 1;
1da177e4
LT
1516}
1517
1518/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1519 * which indicates that we should follow the traditional RTO recovery,
1520 * i.e. mark everything lost and do go-back-N retransmission.
1521 */
d1a54c6a 1522static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1da177e4
LT
1523{
1524 struct tcp_sock *tp = tcp_sk(sk);
1525 struct sk_buff *skb;
1da177e4 1526
1da177e4 1527 tp->lost_out = 0;
d1a54c6a 1528 tp->retrans_out = 0;
9bff40fd
IJ
1529 if (IsReno(tp))
1530 tcp_reset_reno_sack(tp);
1da177e4 1531
fe067e8a
DM
1532 tcp_for_write_queue(skb, sk) {
1533 if (skb == tcp_send_head(sk))
1534 break;
d1a54c6a
IJ
1535 /*
1536 * Count the retransmission made on RTO correctly (only when
1537 * waiting for the first ACK and did not get it)...
1538 */
1539 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
0a9f2a46
IJ
1540 /* For some reason this R-bit might get cleared? */
1541 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1542 tp->retrans_out += tcp_skb_pcount(skb);
d1a54c6a
IJ
1543 /* ...enter this if branch just for the first segment */
1544 flag |= FLAG_DATA_ACKED;
1545 } else {
1546 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1547 }
1da177e4 1548
9bff40fd
IJ
1549 /* Don't lost mark skbs that were fwd transmitted after RTO */
1550 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1551 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1552 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1553 tp->lost_out += tcp_skb_pcount(skb);
1da177e4
LT
1554 }
1555 }
005903bc 1556 tcp_verify_left_out(tp);
1da177e4 1557
95c4922b 1558 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1da177e4
LT
1559 tp->snd_cwnd_cnt = 0;
1560 tp->snd_cwnd_stamp = tcp_time_stamp;
1561 tp->undo_marker = 0;
1562 tp->frto_counter = 0;
1563
1564 tp->reordering = min_t(unsigned int, tp->reordering,
1565 sysctl_tcp_reordering);
6687e988 1566 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1567 tp->high_seq = tp->frto_highmark;
1568 TCP_ECN_queue_cwr(tp);
6a438bbe
SH
1569
1570 clear_all_retrans_hints(tp);
1da177e4
LT
1571}
1572
1573void tcp_clear_retrans(struct tcp_sock *tp)
1574{
1da177e4
LT
1575 tp->retrans_out = 0;
1576
1577 tp->fackets_out = 0;
1578 tp->sacked_out = 0;
1579 tp->lost_out = 0;
1580
1581 tp->undo_marker = 0;
1582 tp->undo_retrans = 0;
1583}
1584
1585/* Enter Loss state. If "how" is not zero, forget all SACK information
1586 * and reset tags completely, otherwise preserve SACKs. If receiver
1587 * dropped its ofo queue, we will know this due to reneging detection.
1588 */
1589void tcp_enter_loss(struct sock *sk, int how)
1590{
6687e988 1591 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1592 struct tcp_sock *tp = tcp_sk(sk);
1593 struct sk_buff *skb;
1594 int cnt = 0;
1595
1596 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1597 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1598 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1599 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1600 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1601 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1602 }
1603 tp->snd_cwnd = 1;
1604 tp->snd_cwnd_cnt = 0;
1605 tp->snd_cwnd_stamp = tcp_time_stamp;
1606
9772efb9 1607 tp->bytes_acked = 0;
1da177e4
LT
1608 tcp_clear_retrans(tp);
1609
1610 /* Push undo marker, if it was plain RTO and nothing
1611 * was retransmitted. */
1612 if (!how)
1613 tp->undo_marker = tp->snd_una;
1614
fe067e8a
DM
1615 tcp_for_write_queue(skb, sk) {
1616 if (skb == tcp_send_head(sk))
1617 break;
1da177e4
LT
1618 cnt += tcp_skb_pcount(skb);
1619 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1620 tp->undo_marker = 0;
1621 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1622 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1623 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1624 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1625 tp->lost_out += tcp_skb_pcount(skb);
1626 } else {
1627 tp->sacked_out += tcp_skb_pcount(skb);
1628 tp->fackets_out = cnt;
1629 }
1630 }
005903bc 1631 tcp_verify_left_out(tp);
1da177e4
LT
1632
1633 tp->reordering = min_t(unsigned int, tp->reordering,
1634 sysctl_tcp_reordering);
6687e988 1635 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1636 tp->high_seq = tp->snd_nxt;
1637 TCP_ECN_queue_cwr(tp);
580e572a
IJ
1638 /* Abort FRTO algorithm if one is in progress */
1639 tp->frto_counter = 0;
6a438bbe
SH
1640
1641 clear_all_retrans_hints(tp);
1da177e4
LT
1642}
1643
463c84b9 1644static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1645{
1646 struct sk_buff *skb;
1647
1648 /* If ACK arrived pointing to a remembered SACK,
1649 * it means that our remembered SACKs do not reflect
1650 * real state of receiver i.e.
1651 * receiver _host_ is heavily congested (or buggy).
1652 * Do processing similar to RTO timeout.
1653 */
fe067e8a 1654 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1da177e4 1655 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1656 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1657 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1658
1659 tcp_enter_loss(sk, 1);
6687e988 1660 icsk->icsk_retransmits++;
fe067e8a 1661 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
463c84b9 1662 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1663 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1664 return 1;
1665 }
1666 return 0;
1667}
1668
1669static inline int tcp_fackets_out(struct tcp_sock *tp)
1670{
1671 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1672}
1673
463c84b9 1674static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1675{
463c84b9 1676 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1677}
1678
9e412ba7 1679static inline int tcp_head_timedout(struct sock *sk)
1da177e4 1680{
9e412ba7
IJ
1681 struct tcp_sock *tp = tcp_sk(sk);
1682
1da177e4 1683 return tp->packets_out &&
fe067e8a 1684 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1da177e4
LT
1685}
1686
1687/* Linux NewReno/SACK/FACK/ECN state machine.
1688 * --------------------------------------
1689 *
1690 * "Open" Normal state, no dubious events, fast path.
1691 * "Disorder" In all the respects it is "Open",
1692 * but requires a bit more attention. It is entered when
1693 * we see some SACKs or dupacks. It is split of "Open"
1694 * mainly to move some processing from fast path to slow one.
1695 * "CWR" CWND was reduced due to some Congestion Notification event.
1696 * It can be ECN, ICMP source quench, local device congestion.
1697 * "Recovery" CWND was reduced, we are fast-retransmitting.
1698 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1699 *
1700 * tcp_fastretrans_alert() is entered:
1701 * - each incoming ACK, if state is not "Open"
1702 * - when arrived ACK is unusual, namely:
1703 * * SACK
1704 * * Duplicate ACK.
1705 * * ECN ECE.
1706 *
1707 * Counting packets in flight is pretty simple.
1708 *
1709 * in_flight = packets_out - left_out + retrans_out
1710 *
1711 * packets_out is SND.NXT-SND.UNA counted in packets.
1712 *
1713 * retrans_out is number of retransmitted segments.
1714 *
1715 * left_out is number of segments left network, but not ACKed yet.
1716 *
1717 * left_out = sacked_out + lost_out
1718 *
1719 * sacked_out: Packets, which arrived to receiver out of order
1720 * and hence not ACKed. With SACKs this number is simply
1721 * amount of SACKed data. Even without SACKs
1722 * it is easy to give pretty reliable estimate of this number,
1723 * counting duplicate ACKs.
1724 *
1725 * lost_out: Packets lost by network. TCP has no explicit
1726 * "loss notification" feedback from network (for now).
1727 * It means that this number can be only _guessed_.
1728 * Actually, it is the heuristics to predict lossage that
1729 * distinguishes different algorithms.
1730 *
1731 * F.e. after RTO, when all the queue is considered as lost,
1732 * lost_out = packets_out and in_flight = retrans_out.
1733 *
1734 * Essentially, we have now two algorithms counting
1735 * lost packets.
1736 *
1737 * FACK: It is the simplest heuristics. As soon as we decided
1738 * that something is lost, we decide that _all_ not SACKed
1739 * packets until the most forward SACK are lost. I.e.
1740 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1741 * It is absolutely correct estimate, if network does not reorder
1742 * packets. And it loses any connection to reality when reordering
1743 * takes place. We use FACK by default until reordering
1744 * is suspected on the path to this destination.
1745 *
1746 * NewReno: when Recovery is entered, we assume that one segment
1747 * is lost (classic Reno). While we are in Recovery and
1748 * a partial ACK arrives, we assume that one more packet
1749 * is lost (NewReno). This heuristics are the same in NewReno
1750 * and SACK.
1751 *
1752 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1753 * deflation etc. CWND is real congestion window, never inflated, changes
1754 * only according to classic VJ rules.
1755 *
1756 * Really tricky (and requiring careful tuning) part of algorithm
1757 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1758 * The first determines the moment _when_ we should reduce CWND and,
1759 * hence, slow down forward transmission. In fact, it determines the moment
1760 * when we decide that hole is caused by loss, rather than by a reorder.
1761 *
1762 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1763 * holes, caused by lost packets.
1764 *
1765 * And the most logically complicated part of algorithm is undo
1766 * heuristics. We detect false retransmits due to both too early
1767 * fast retransmit (reordering) and underestimated RTO, analyzing
1768 * timestamps and D-SACKs. When we detect that some segments were
1769 * retransmitted by mistake and CWND reduction was wrong, we undo
1770 * window reduction and abort recovery phase. This logic is hidden
1771 * inside several functions named tcp_try_undo_<something>.
1772 */
1773
1774/* This function decides, when we should leave Disordered state
1775 * and enter Recovery phase, reducing congestion window.
1776 *
1777 * Main question: may we further continue forward transmission
1778 * with the same cwnd?
1779 */
9e412ba7 1780static int tcp_time_to_recover(struct sock *sk)
1da177e4 1781{
9e412ba7 1782 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1783 __u32 packets_out;
1784
52c63f1e
IJ
1785 /* Do not perform any recovery during FRTO algorithm */
1786 if (tp->frto_counter)
1787 return 0;
1788
1da177e4
LT
1789 /* Trick#1: The loss is proven. */
1790 if (tp->lost_out)
1791 return 1;
1792
1793 /* Not-A-Trick#2 : Classic rule... */
1794 if (tcp_fackets_out(tp) > tp->reordering)
1795 return 1;
1796
1797 /* Trick#3 : when we use RFC2988 timer restart, fast
1798 * retransmit can be triggered by timeout of queue head.
1799 */
9e412ba7 1800 if (tcp_head_timedout(sk))
1da177e4
LT
1801 return 1;
1802
1803 /* Trick#4: It is still not OK... But will it be useful to delay
1804 * recovery more?
1805 */
1806 packets_out = tp->packets_out;
1807 if (packets_out <= tp->reordering &&
1808 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
9e412ba7 1809 !tcp_may_send_now(sk)) {
1da177e4
LT
1810 /* We have nothing to send. This connection is limited
1811 * either by receiver window or by application.
1812 */
1813 return 1;
1814 }
1815
1816 return 0;
1817}
1818
d8f4f223
IJ
1819/* RFC: This is from the original, I doubt that this is necessary at all:
1820 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1821 * retransmitted past LOST markings in the first place? I'm not fully sure
1822 * about undo and end of connection cases, which can cause R without L?
1823 */
1824static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1825 struct sk_buff *skb)
1826{
1827 if ((tp->retransmit_skb_hint != NULL) &&
1828 before(TCP_SKB_CB(skb)->seq,
1829 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
19b2b486 1830 tp->retransmit_skb_hint = NULL;
d8f4f223
IJ
1831}
1832
1da177e4 1833/* Mark head of queue up as lost. */
9e412ba7 1834static void tcp_mark_head_lost(struct sock *sk,
1da177e4
LT
1835 int packets, u32 high_seq)
1836{
9e412ba7 1837 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1838 struct sk_buff *skb;
6a438bbe 1839 int cnt;
1da177e4 1840
6a438bbe
SH
1841 BUG_TRAP(packets <= tp->packets_out);
1842 if (tp->lost_skb_hint) {
1843 skb = tp->lost_skb_hint;
1844 cnt = tp->lost_cnt_hint;
1845 } else {
fe067e8a 1846 skb = tcp_write_queue_head(sk);
6a438bbe
SH
1847 cnt = 0;
1848 }
1da177e4 1849
fe067e8a
DM
1850 tcp_for_write_queue_from(skb, sk) {
1851 if (skb == tcp_send_head(sk))
1852 break;
6a438bbe
SH
1853 /* TODO: do this better */
1854 /* this is not the most efficient way to do this... */
1855 tp->lost_skb_hint = skb;
1856 tp->lost_cnt_hint = cnt;
1857 cnt += tcp_skb_pcount(skb);
1858 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4
LT
1859 break;
1860 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1861 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1862 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 1863 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
1864 }
1865 }
005903bc 1866 tcp_verify_left_out(tp);
1da177e4
LT
1867}
1868
1869/* Account newly detected lost packet(s) */
1870
9e412ba7 1871static void tcp_update_scoreboard(struct sock *sk)
1da177e4 1872{
9e412ba7
IJ
1873 struct tcp_sock *tp = tcp_sk(sk);
1874
1da177e4
LT
1875 if (IsFack(tp)) {
1876 int lost = tp->fackets_out - tp->reordering;
1877 if (lost <= 0)
1878 lost = 1;
9e412ba7 1879 tcp_mark_head_lost(sk, lost, tp->high_seq);
1da177e4 1880 } else {
9e412ba7 1881 tcp_mark_head_lost(sk, 1, tp->high_seq);
1da177e4
LT
1882 }
1883
1884 /* New heuristics: it is possible only after we switched
1885 * to restart timer each time when something is ACKed.
1886 * Hence, we can detect timed out packets during fast
1887 * retransmit without falling to slow start.
1888 */
9e412ba7 1889 if (!IsReno(tp) && tcp_head_timedout(sk)) {
1da177e4
LT
1890 struct sk_buff *skb;
1891
6a438bbe 1892 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
fe067e8a 1893 : tcp_write_queue_head(sk);
6a438bbe 1894
fe067e8a
DM
1895 tcp_for_write_queue_from(skb, sk) {
1896 if (skb == tcp_send_head(sk))
1897 break;
6a438bbe
SH
1898 if (!tcp_skb_timedout(sk, skb))
1899 break;
1900
1901 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
1902 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1903 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 1904 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
1905 }
1906 }
6a438bbe
SH
1907
1908 tp->scoreboard_skb_hint = skb;
1909
005903bc 1910 tcp_verify_left_out(tp);
1da177e4
LT
1911 }
1912}
1913
1914/* CWND moderation, preventing bursts due to too big ACKs
1915 * in dubious situations.
1916 */
1917static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1918{
1919 tp->snd_cwnd = min(tp->snd_cwnd,
1920 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1921 tp->snd_cwnd_stamp = tcp_time_stamp;
1922}
1923
72dc5b92
SH
1924/* Lower bound on congestion window is slow start threshold
1925 * unless congestion avoidance choice decides to overide it.
1926 */
1927static inline u32 tcp_cwnd_min(const struct sock *sk)
1928{
1929 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1930
1931 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1932}
1933
1da177e4 1934/* Decrease cwnd each second ack. */
1e757f99 1935static void tcp_cwnd_down(struct sock *sk, int flag)
1da177e4 1936{
6687e988 1937 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1938 int decr = tp->snd_cwnd_cnt + 1;
1da177e4 1939
49ff4bb4 1940 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
1e757f99
IJ
1941 (IsReno(tp) && !(flag&FLAG_NOT_DUP))) {
1942 tp->snd_cwnd_cnt = decr&1;
1943 decr >>= 1;
1da177e4 1944
1e757f99
IJ
1945 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1946 tp->snd_cwnd -= decr;
1da177e4 1947
1e757f99
IJ
1948 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1949 tp->snd_cwnd_stamp = tcp_time_stamp;
1950 }
1da177e4
LT
1951}
1952
1953/* Nothing was retransmitted or returned timestamp is less
1954 * than timestamp of the first retransmission.
1955 */
1956static inline int tcp_packet_delayed(struct tcp_sock *tp)
1957{
1958 return !tp->retrans_stamp ||
1959 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1960 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1961}
1962
1963/* Undo procedures. */
1964
1965#if FASTRETRANS_DEBUG > 1
9e412ba7 1966static void DBGUNDO(struct sock *sk, const char *msg)
1da177e4 1967{
9e412ba7 1968 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1969 struct inet_sock *inet = inet_sk(sk);
9e412ba7 1970
1da177e4
LT
1971 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1972 msg,
1973 NIPQUAD(inet->daddr), ntohs(inet->dport),
83ae4088 1974 tp->snd_cwnd, tcp_left_out(tp),
1da177e4
LT
1975 tp->snd_ssthresh, tp->prior_ssthresh,
1976 tp->packets_out);
1977}
1978#else
1979#define DBGUNDO(x...) do { } while (0)
1980#endif
1981
6687e988 1982static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 1983{
6687e988
ACM
1984 struct tcp_sock *tp = tcp_sk(sk);
1985
1da177e4 1986 if (tp->prior_ssthresh) {
6687e988
ACM
1987 const struct inet_connection_sock *icsk = inet_csk(sk);
1988
1989 if (icsk->icsk_ca_ops->undo_cwnd)
1990 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
1991 else
1992 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1993
1994 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1995 tp->snd_ssthresh = tp->prior_ssthresh;
1996 TCP_ECN_withdraw_cwr(tp);
1997 }
1998 } else {
1999 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2000 }
2001 tcp_moderate_cwnd(tp);
2002 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
2003
2004 /* There is something screwy going on with the retrans hints after
2005 an undo */
2006 clear_all_retrans_hints(tp);
1da177e4
LT
2007}
2008
2009static inline int tcp_may_undo(struct tcp_sock *tp)
2010{
2011 return tp->undo_marker &&
2012 (!tp->undo_retrans || tcp_packet_delayed(tp));
2013}
2014
2015/* People celebrate: "We love our President!" */
9e412ba7 2016static int tcp_try_undo_recovery(struct sock *sk)
1da177e4 2017{
9e412ba7
IJ
2018 struct tcp_sock *tp = tcp_sk(sk);
2019
1da177e4
LT
2020 if (tcp_may_undo(tp)) {
2021 /* Happy end! We did not retransmit anything
2022 * or our original transmission succeeded.
2023 */
9e412ba7 2024 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
6687e988
ACM
2025 tcp_undo_cwr(sk, 1);
2026 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
2027 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2028 else
2029 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2030 tp->undo_marker = 0;
2031 }
2032 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
2033 /* Hold old state until something *above* high_seq
2034 * is ACKed. For Reno it is MUST to prevent false
2035 * fast retransmits (RFC2582). SACK TCP is safe. */
2036 tcp_moderate_cwnd(tp);
2037 return 1;
2038 }
6687e988 2039 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2040 return 0;
2041}
2042
2043/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
9e412ba7 2044static void tcp_try_undo_dsack(struct sock *sk)
1da177e4 2045{
9e412ba7
IJ
2046 struct tcp_sock *tp = tcp_sk(sk);
2047
1da177e4 2048 if (tp->undo_marker && !tp->undo_retrans) {
9e412ba7 2049 DBGUNDO(sk, "D-SACK");
6687e988 2050 tcp_undo_cwr(sk, 1);
1da177e4
LT
2051 tp->undo_marker = 0;
2052 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2053 }
2054}
2055
2056/* Undo during fast recovery after partial ACK. */
2057
9e412ba7 2058static int tcp_try_undo_partial(struct sock *sk, int acked)
1da177e4 2059{
9e412ba7 2060 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2061 /* Partial ACK arrived. Force Hoe's retransmit. */
2062 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
2063
2064 if (tcp_may_undo(tp)) {
2065 /* Plain luck! Hole if filled with delayed
2066 * packet, rather than with a retransmit.
2067 */
2068 if (tp->retrans_out == 0)
2069 tp->retrans_stamp = 0;
2070
6687e988 2071 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4 2072
9e412ba7 2073 DBGUNDO(sk, "Hoe");
6687e988 2074 tcp_undo_cwr(sk, 0);
1da177e4
LT
2075 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2076
2077 /* So... Do not make Hoe's retransmit yet.
2078 * If the first packet was delayed, the rest
2079 * ones are most probably delayed as well.
2080 */
2081 failed = 0;
2082 }
2083 return failed;
2084}
2085
2086/* Undo during loss recovery after partial ACK. */
9e412ba7 2087static int tcp_try_undo_loss(struct sock *sk)
1da177e4 2088{
9e412ba7
IJ
2089 struct tcp_sock *tp = tcp_sk(sk);
2090
1da177e4
LT
2091 if (tcp_may_undo(tp)) {
2092 struct sk_buff *skb;
fe067e8a
DM
2093 tcp_for_write_queue(skb, sk) {
2094 if (skb == tcp_send_head(sk))
2095 break;
1da177e4
LT
2096 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2097 }
6a438bbe
SH
2098
2099 clear_all_retrans_hints(tp);
2100
9e412ba7 2101 DBGUNDO(sk, "partial loss");
1da177e4 2102 tp->lost_out = 0;
6687e988 2103 tcp_undo_cwr(sk, 1);
1da177e4 2104 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 2105 inet_csk(sk)->icsk_retransmits = 0;
1da177e4
LT
2106 tp->undo_marker = 0;
2107 if (!IsReno(tp))
6687e988 2108 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2109 return 1;
2110 }
2111 return 0;
2112}
2113
6687e988 2114static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 2115{
6687e988 2116 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 2117 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 2118 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 2119 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
2120}
2121
9e412ba7 2122static void tcp_try_to_open(struct sock *sk, int flag)
1da177e4 2123{
9e412ba7
IJ
2124 struct tcp_sock *tp = tcp_sk(sk);
2125
86426c22
IJ
2126 tcp_verify_left_out(tp);
2127
1da177e4
LT
2128 if (tp->retrans_out == 0)
2129 tp->retrans_stamp = 0;
2130
2131 if (flag&FLAG_ECE)
3cfe3baa 2132 tcp_enter_cwr(sk, 1);
1da177e4 2133
6687e988 2134 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
2135 int state = TCP_CA_Open;
2136
d02596e3 2137 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
1da177e4
LT
2138 state = TCP_CA_Disorder;
2139
6687e988
ACM
2140 if (inet_csk(sk)->icsk_ca_state != state) {
2141 tcp_set_ca_state(sk, state);
1da177e4
LT
2142 tp->high_seq = tp->snd_nxt;
2143 }
2144 tcp_moderate_cwnd(tp);
2145 } else {
1e757f99 2146 tcp_cwnd_down(sk, flag);
1da177e4
LT
2147 }
2148}
2149
5d424d5a
JH
2150static void tcp_mtup_probe_failed(struct sock *sk)
2151{
2152 struct inet_connection_sock *icsk = inet_csk(sk);
2153
2154 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2155 icsk->icsk_mtup.probe_size = 0;
2156}
2157
2158static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2159{
2160 struct tcp_sock *tp = tcp_sk(sk);
2161 struct inet_connection_sock *icsk = inet_csk(sk);
2162
2163 /* FIXME: breaks with very large cwnd */
2164 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2165 tp->snd_cwnd = tp->snd_cwnd *
2166 tcp_mss_to_mtu(sk, tp->mss_cache) /
2167 icsk->icsk_mtup.probe_size;
2168 tp->snd_cwnd_cnt = 0;
2169 tp->snd_cwnd_stamp = tcp_time_stamp;
2170 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2171
2172 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2173 icsk->icsk_mtup.probe_size = 0;
2174 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2175}
2176
2177
1da177e4
LT
2178/* Process an event, which can update packets-in-flight not trivially.
2179 * Main goal of this function is to calculate new estimate for left_out,
2180 * taking into account both packets sitting in receiver's buffer and
2181 * packets lost by network.
2182 *
2183 * Besides that it does CWND reduction, when packet loss is detected
2184 * and changes state of machine.
2185 *
2186 * It does _not_ decide what to send, it is made in function
2187 * tcp_xmit_retransmit_queue().
2188 */
2189static void
1b6d427b 2190tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
1da177e4 2191{
6687e988 2192 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2193 struct tcp_sock *tp = tcp_sk(sk);
2e605294
IJ
2194 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2195 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2196 (tp->fackets_out > tp->reordering));
1da177e4
LT
2197
2198 /* Some technical things:
2199 * 1. Reno does not count dupacks (sacked_out) automatically. */
2200 if (!tp->packets_out)
2201 tp->sacked_out = 0;
e905a9ed 2202 /* 2. SACK counts snd_fack in packets inaccurately. */
1da177e4
LT
2203 if (tp->sacked_out == 0)
2204 tp->fackets_out = 0;
2205
e905a9ed 2206 /* Now state machine starts.
1da177e4
LT
2207 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2208 if (flag&FLAG_ECE)
2209 tp->prior_ssthresh = 0;
2210
2211 /* B. In all the states check for reneging SACKs. */
463c84b9 2212 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
2213 return;
2214
2215 /* C. Process data loss notification, provided it is valid. */
2216 if ((flag&FLAG_DATA_LOST) &&
2217 before(tp->snd_una, tp->high_seq) &&
6687e988 2218 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4 2219 tp->fackets_out > tp->reordering) {
9e412ba7 2220 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
1da177e4
LT
2221 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2222 }
2223
005903bc
IJ
2224 /* D. Check consistency of the current state. */
2225 tcp_verify_left_out(tp);
1da177e4
LT
2226
2227 /* E. Check state exit conditions. State can be terminated
2228 * when high_seq is ACKed. */
6687e988 2229 if (icsk->icsk_ca_state == TCP_CA_Open) {
7b0eb22b 2230 BUG_TRAP(tp->retrans_out == 0);
1da177e4
LT
2231 tp->retrans_stamp = 0;
2232 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 2233 switch (icsk->icsk_ca_state) {
1da177e4 2234 case TCP_CA_Loss:
6687e988 2235 icsk->icsk_retransmits = 0;
9e412ba7 2236 if (tcp_try_undo_recovery(sk))
1da177e4
LT
2237 return;
2238 break;
2239
2240 case TCP_CA_CWR:
2241 /* CWR is to be held something *above* high_seq
2242 * is ACKed for CWR bit to reach receiver. */
2243 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
2244 tcp_complete_cwr(sk);
2245 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2246 }
2247 break;
2248
2249 case TCP_CA_Disorder:
9e412ba7 2250 tcp_try_undo_dsack(sk);
1da177e4
LT
2251 if (!tp->undo_marker ||
2252 /* For SACK case do not Open to allow to undo
2253 * catching for all duplicate ACKs. */
2254 IsReno(tp) || tp->snd_una != tp->high_seq) {
2255 tp->undo_marker = 0;
6687e988 2256 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2257 }
2258 break;
2259
2260 case TCP_CA_Recovery:
2261 if (IsReno(tp))
2262 tcp_reset_reno_sack(tp);
9e412ba7 2263 if (tcp_try_undo_recovery(sk))
1da177e4 2264 return;
6687e988 2265 tcp_complete_cwr(sk);
1da177e4
LT
2266 break;
2267 }
2268 }
2269
2270 /* F. Process state. */
6687e988 2271 switch (icsk->icsk_ca_state) {
1da177e4 2272 case TCP_CA_Recovery:
2e605294 2273 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
1da177e4 2274 if (IsReno(tp) && is_dupack)
6687e988 2275 tcp_add_reno_sack(sk);
1b6d427b
IJ
2276 } else
2277 do_lost = tcp_try_undo_partial(sk, pkts_acked);
1da177e4
LT
2278 break;
2279 case TCP_CA_Loss:
2280 if (flag&FLAG_DATA_ACKED)
6687e988 2281 icsk->icsk_retransmits = 0;
9e412ba7 2282 if (!tcp_try_undo_loss(sk)) {
1da177e4
LT
2283 tcp_moderate_cwnd(tp);
2284 tcp_xmit_retransmit_queue(sk);
2285 return;
2286 }
6687e988 2287 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2288 return;
2289 /* Loss is undone; fall through to processing in Open state. */
2290 default:
2291 if (IsReno(tp)) {
2e605294 2292 if (flag & FLAG_SND_UNA_ADVANCED)
1da177e4
LT
2293 tcp_reset_reno_sack(tp);
2294 if (is_dupack)
6687e988 2295 tcp_add_reno_sack(sk);
1da177e4
LT
2296 }
2297
6687e988 2298 if (icsk->icsk_ca_state == TCP_CA_Disorder)
9e412ba7 2299 tcp_try_undo_dsack(sk);
1da177e4 2300
9e412ba7
IJ
2301 if (!tcp_time_to_recover(sk)) {
2302 tcp_try_to_open(sk, flag);
1da177e4
LT
2303 return;
2304 }
2305
5d424d5a
JH
2306 /* MTU probe failure: don't reduce cwnd */
2307 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2308 icsk->icsk_mtup.probe_size &&
0e7b1368 2309 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2310 tcp_mtup_probe_failed(sk);
2311 /* Restores the reduction we did in tcp_mtup_probe() */
2312 tp->snd_cwnd++;
2313 tcp_simple_retransmit(sk);
2314 return;
2315 }
2316
1da177e4
LT
2317 /* Otherwise enter Recovery state */
2318
2319 if (IsReno(tp))
2320 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2321 else
2322 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2323
2324 tp->high_seq = tp->snd_nxt;
2325 tp->prior_ssthresh = 0;
2326 tp->undo_marker = tp->snd_una;
2327 tp->undo_retrans = tp->retrans_out;
2328
6687e988 2329 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2330 if (!(flag&FLAG_ECE))
6687e988
ACM
2331 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2332 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2333 TCP_ECN_queue_cwr(tp);
2334 }
2335
9772efb9 2336 tp->bytes_acked = 0;
1da177e4 2337 tp->snd_cwnd_cnt = 0;
6687e988 2338 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2339 }
2340
2e605294 2341 if (do_lost || tcp_head_timedout(sk))
9e412ba7 2342 tcp_update_scoreboard(sk);
1e757f99 2343 tcp_cwnd_down(sk, flag);
1da177e4
LT
2344 tcp_xmit_retransmit_queue(sk);
2345}
2346
2347/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2348 * with this code. (Supersedes RFC1323)
1da177e4 2349 */
2d2abbab 2350static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2351{
1da177e4
LT
2352 /* RTTM Rule: A TSecr value received in a segment is used to
2353 * update the averaged RTT measurement only if the segment
2354 * acknowledges some new data, i.e., only if it advances the
2355 * left edge of the send window.
2356 *
2357 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2358 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2359 *
2360 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2361 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2362 * samples are accepted even from very old segments: f.e., when rtt=1
2363 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2364 * answer arrives rto becomes 120 seconds! If at least one of segments
2365 * in window is lost... Voila. --ANK (010210)
2366 */
463c84b9
ACM
2367 struct tcp_sock *tp = tcp_sk(sk);
2368 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2369 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2370 tcp_set_rto(sk);
2371 inet_csk(sk)->icsk_backoff = 0;
2372 tcp_bound_rto(sk);
1da177e4
LT
2373}
2374
2d2abbab 2375static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2376{
2377 /* We don't have a timestamp. Can only use
2378 * packets that are not retransmitted to determine
2379 * rtt estimates. Also, we must not reset the
2380 * backoff for rto until we get a non-retransmitted
2381 * packet. This allows us to deal with a situation
2382 * where the network delay has increased suddenly.
2383 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2384 */
2385
2386 if (flag & FLAG_RETRANS_DATA_ACKED)
2387 return;
2388
2d2abbab 2389 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2390 tcp_set_rto(sk);
2391 inet_csk(sk)->icsk_backoff = 0;
2392 tcp_bound_rto(sk);
1da177e4
LT
2393}
2394
463c84b9 2395static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2396 const s32 seq_rtt)
1da177e4 2397{
463c84b9 2398 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2399 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2400 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2401 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2402 else if (seq_rtt >= 0)
2d2abbab 2403 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2404}
2405
16751347 2406static void tcp_cong_avoid(struct sock *sk, u32 ack,
40efc6fa 2407 u32 in_flight, int good)
1da177e4 2408{
6687e988 2409 const struct inet_connection_sock *icsk = inet_csk(sk);
16751347 2410 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
6687e988 2411 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2412}
2413
1da177e4
LT
2414/* Restart timer after forward progress on connection.
2415 * RFC2988 recommends to restart timer to now+rto.
2416 */
2417
9e412ba7 2418static void tcp_ack_packets_out(struct sock *sk)
1da177e4 2419{
9e412ba7
IJ
2420 struct tcp_sock *tp = tcp_sk(sk);
2421
1da177e4 2422 if (!tp->packets_out) {
463c84b9 2423 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2424 } else {
3f421baa 2425 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2426 }
2427}
2428
1da177e4
LT
2429static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2430 __u32 now, __s32 *seq_rtt)
2431{
2432 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2433 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1da177e4
LT
2434 __u32 seq = tp->snd_una;
2435 __u32 packets_acked;
2436 int acked = 0;
2437
2438 /* If we get here, the whole TSO packet has not been
2439 * acked.
2440 */
2441 BUG_ON(!after(scb->end_seq, seq));
2442
2443 packets_acked = tcp_skb_pcount(skb);
2444 if (tcp_trim_head(sk, skb, seq - scb->seq))
2445 return 0;
2446 packets_acked -= tcp_skb_pcount(skb);
2447
2448 if (packets_acked) {
2449 __u8 sacked = scb->sacked;
2450
2451 acked |= FLAG_DATA_ACKED;
2452 if (sacked) {
2453 if (sacked & TCPCB_RETRANS) {
2454 if (sacked & TCPCB_SACKED_RETRANS)
2455 tp->retrans_out -= packets_acked;
2456 acked |= FLAG_RETRANS_DATA_ACKED;
2457 *seq_rtt = -1;
2458 } else if (*seq_rtt < 0)
2459 *seq_rtt = now - scb->when;
2460 if (sacked & TCPCB_SACKED_ACKED)
2461 tp->sacked_out -= packets_acked;
2462 if (sacked & TCPCB_LOST)
2463 tp->lost_out -= packets_acked;
2464 if (sacked & TCPCB_URG) {
2465 if (tp->urg_mode &&
2466 !before(seq, tp->snd_up))
2467 tp->urg_mode = 0;
2468 }
2469 } else if (*seq_rtt < 0)
2470 *seq_rtt = now - scb->when;
2471
2472 if (tp->fackets_out) {
2473 __u32 dval = min(tp->fackets_out, packets_acked);
2474 tp->fackets_out -= dval;
2475 }
48611c47
IJ
2476 /* hint's skb might be NULL but we don't need to care */
2477 tp->fastpath_cnt_hint -= min_t(u32, packets_acked,
2478 tp->fastpath_cnt_hint);
1da177e4
LT
2479 tp->packets_out -= packets_acked;
2480
2481 BUG_ON(tcp_skb_pcount(skb) == 0);
2482 BUG_ON(!before(scb->seq, scb->end_seq));
2483 }
2484
2485 return acked;
2486}
2487
1da177e4 2488/* Remove acknowledged frames from the retransmission queue. */
2d2abbab 2489static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
1da177e4
LT
2490{
2491 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2492 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2493 struct sk_buff *skb;
2494 __u32 now = tcp_time_stamp;
2495 int acked = 0;
6418204f 2496 int prior_packets = tp->packets_out;
1da177e4 2497 __s32 seq_rtt = -1;
b9ce204f 2498 ktime_t last_ackt = net_invalid_timestamp();
1da177e4 2499
fe067e8a
DM
2500 while ((skb = tcp_write_queue_head(sk)) &&
2501 skb != tcp_send_head(sk)) {
e905a9ed 2502 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1da177e4
LT
2503 __u8 sacked = scb->sacked;
2504
2505 /* If our packet is before the ack sequence we can
2506 * discard it as it's confirmed to have arrived at
2507 * the other end.
2508 */
2509 if (after(scb->end_seq, tp->snd_una)) {
cb83199a
DM
2510 if (tcp_skb_pcount(skb) > 1 &&
2511 after(tp->snd_una, scb->seq))
1da177e4
LT
2512 acked |= tcp_tso_acked(sk, skb,
2513 now, &seq_rtt);
2514 break;
2515 }
2516
2517 /* Initial outgoing SYN's get put onto the write_queue
2518 * just like anything else we transmit. It is not
2519 * true data, and if we misinform our callers that
2520 * this ACK acks real data, we will erroneously exit
2521 * connection startup slow start one packet too
2522 * quickly. This is severely frowned upon behavior.
2523 */
2524 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2525 acked |= FLAG_DATA_ACKED;
2526 } else {
2527 acked |= FLAG_SYN_ACKED;
2528 tp->retrans_stamp = 0;
2529 }
2530
5d424d5a
JH
2531 /* MTU probing checks */
2532 if (icsk->icsk_mtup.probe_size) {
0e7b1368 2533 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
5d424d5a
JH
2534 tcp_mtup_probe_success(sk, skb);
2535 }
2536 }
2537
1da177e4
LT
2538 if (sacked) {
2539 if (sacked & TCPCB_RETRANS) {
2de979bd 2540 if (sacked & TCPCB_SACKED_RETRANS)
1da177e4
LT
2541 tp->retrans_out -= tcp_skb_pcount(skb);
2542 acked |= FLAG_RETRANS_DATA_ACKED;
2543 seq_rtt = -1;
2d2abbab 2544 } else if (seq_rtt < 0) {
1da177e4 2545 seq_rtt = now - scb->when;
164891aa 2546 last_ackt = skb->tstamp;
a61bbcf2 2547 }
1da177e4
LT
2548 if (sacked & TCPCB_SACKED_ACKED)
2549 tp->sacked_out -= tcp_skb_pcount(skb);
2550 if (sacked & TCPCB_LOST)
2551 tp->lost_out -= tcp_skb_pcount(skb);
2552 if (sacked & TCPCB_URG) {
2553 if (tp->urg_mode &&
2554 !before(scb->end_seq, tp->snd_up))
2555 tp->urg_mode = 0;
2556 }
2d2abbab 2557 } else if (seq_rtt < 0) {
1da177e4 2558 seq_rtt = now - scb->when;
164891aa 2559 last_ackt = skb->tstamp;
2d2abbab 2560 }
1da177e4
LT
2561 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2562 tcp_packets_out_dec(tp, skb);
fe067e8a 2563 tcp_unlink_write_queue(skb, sk);
1da177e4 2564 sk_stream_free_skb(sk, skb);
6a438bbe 2565 clear_all_retrans_hints(tp);
1da177e4
LT
2566 }
2567
2568 if (acked&FLAG_ACKED) {
6418204f 2569 u32 pkts_acked = prior_packets - tp->packets_out;
164891aa
SH
2570 const struct tcp_congestion_ops *ca_ops
2571 = inet_csk(sk)->icsk_ca_ops;
2572
2d2abbab 2573 tcp_ack_update_rtt(sk, acked, seq_rtt);
9e412ba7 2574 tcp_ack_packets_out(sk);
317a76f9 2575
1b6d427b
IJ
2576 if (IsReno(tp))
2577 tcp_remove_reno_sacks(sk, pkts_acked);
2578
30cfd0ba
SH
2579 if (ca_ops->pkts_acked) {
2580 s32 rtt_us = -1;
2581
2582 /* Is the ACK triggering packet unambiguous? */
2583 if (!(acked & FLAG_RETRANS_DATA_ACKED)) {
2584 /* High resolution needed and available? */
2585 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2586 !ktime_equal(last_ackt,
2587 net_invalid_timestamp()))
2588 rtt_us = ktime_us_delta(ktime_get_real(),
2589 last_ackt);
2590 else if (seq_rtt > 0)
2591 rtt_us = jiffies_to_usecs(seq_rtt);
2592 }
b9ce204f 2593
30cfd0ba
SH
2594 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2595 }
1da177e4
LT
2596 }
2597
2598#if FASTRETRANS_DEBUG > 0
2599 BUG_TRAP((int)tp->sacked_out >= 0);
2600 BUG_TRAP((int)tp->lost_out >= 0);
2601 BUG_TRAP((int)tp->retrans_out >= 0);
2602 if (!tp->packets_out && tp->rx_opt.sack_ok) {
6687e988 2603 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2604 if (tp->lost_out) {
2605 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2606 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2607 tp->lost_out = 0;
2608 }
2609 if (tp->sacked_out) {
2610 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2611 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2612 tp->sacked_out = 0;
2613 }
2614 if (tp->retrans_out) {
2615 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2616 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2617 tp->retrans_out = 0;
2618 }
2619 }
2620#endif
2621 *seq_rtt_p = seq_rtt;
2622 return acked;
2623}
2624
2625static void tcp_ack_probe(struct sock *sk)
2626{
463c84b9
ACM
2627 const struct tcp_sock *tp = tcp_sk(sk);
2628 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2629
2630 /* Was it a usable window open? */
2631
fe067e8a 2632 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
1da177e4 2633 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2634 icsk->icsk_backoff = 0;
2635 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2636 /* Socket must be waked up by subsequent tcp_data_snd_check().
2637 * This function is not for random using!
2638 */
2639 } else {
463c84b9 2640 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2641 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2642 TCP_RTO_MAX);
1da177e4
LT
2643 }
2644}
2645
6687e988 2646static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2647{
2648 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2649 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2650}
2651
6687e988 2652static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2653{
6687e988 2654 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2655 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2656 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2657}
2658
2659/* Check that window update is acceptable.
2660 * The function assumes that snd_una<=ack<=snd_next.
2661 */
463c84b9
ACM
2662static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2663 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2664{
2665 return (after(ack, tp->snd_una) ||
2666 after(ack_seq, tp->snd_wl1) ||
2667 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2668}
2669
2670/* Update our send window.
2671 *
2672 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2673 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2674 */
9e412ba7
IJ
2675static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2676 u32 ack_seq)
1da177e4 2677{
9e412ba7 2678 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2679 int flag = 0;
aa8223c7 2680 u32 nwin = ntohs(tcp_hdr(skb)->window);
1da177e4 2681
aa8223c7 2682 if (likely(!tcp_hdr(skb)->syn))
1da177e4
LT
2683 nwin <<= tp->rx_opt.snd_wscale;
2684
2685 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2686 flag |= FLAG_WIN_UPDATE;
2687 tcp_update_wl(tp, ack, ack_seq);
2688
2689 if (tp->snd_wnd != nwin) {
2690 tp->snd_wnd = nwin;
2691
2692 /* Note, it is the only place, where
2693 * fast path is recovered for sending TCP.
2694 */
2ad41065 2695 tp->pred_flags = 0;
9e412ba7 2696 tcp_fast_path_check(sk);
1da177e4
LT
2697
2698 if (nwin > tp->max_window) {
2699 tp->max_window = nwin;
d83d8461 2700 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2701 }
2702 }
2703 }
2704
2705 tp->snd_una = ack;
2706
2707 return flag;
2708}
2709
9ead9a1d
IJ
2710/* A very conservative spurious RTO response algorithm: reduce cwnd and
2711 * continue in congestion avoidance.
2712 */
2713static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2714{
2715 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
aa8b6a7a 2716 tp->snd_cwnd_cnt = 0;
46323655 2717 TCP_ECN_queue_cwr(tp);
9ead9a1d
IJ
2718 tcp_moderate_cwnd(tp);
2719}
2720
3cfe3baa
IJ
2721/* A conservative spurious RTO response algorithm: reduce cwnd using
2722 * rate halving and continue in congestion avoidance.
2723 */
2724static void tcp_ratehalving_spur_to_response(struct sock *sk)
2725{
3cfe3baa 2726 tcp_enter_cwr(sk, 0);
3cfe3baa
IJ
2727}
2728
e317f6f6 2729static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3cfe3baa 2730{
e317f6f6
IJ
2731 if (flag&FLAG_ECE)
2732 tcp_ratehalving_spur_to_response(sk);
2733 else
2734 tcp_undo_cwr(sk, 1);
3cfe3baa
IJ
2735}
2736
30935cf4
IJ
2737/* F-RTO spurious RTO detection algorithm (RFC4138)
2738 *
6408d206
IJ
2739 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2740 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2741 * window (but not to or beyond highest sequence sent before RTO):
30935cf4
IJ
2742 * On First ACK, send two new segments out.
2743 * On Second ACK, RTO was likely spurious. Do spurious response (response
2744 * algorithm is not part of the F-RTO detection algorithm
2745 * given in RFC4138 but can be selected separately).
2746 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
d551e454
IJ
2747 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2748 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2749 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
30935cf4
IJ
2750 *
2751 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2752 * original window even after we transmit two new data segments.
2753 *
4dc2665e
IJ
2754 * SACK version:
2755 * on first step, wait until first cumulative ACK arrives, then move to
2756 * the second step. In second step, the next ACK decides.
2757 *
30935cf4
IJ
2758 * F-RTO is implemented (mainly) in four functions:
2759 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2760 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2761 * called when tcp_use_frto() showed green light
2762 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2763 * - tcp_enter_frto_loss() is called if there is not enough evidence
2764 * to prove that the RTO is indeed spurious. It transfers the control
2765 * from F-RTO to the conventional RTO recovery
2766 */
2e605294 2767static int tcp_process_frto(struct sock *sk, int flag)
1da177e4
LT
2768{
2769 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2770
005903bc 2771 tcp_verify_left_out(tp);
e905a9ed 2772
7487c48c
IJ
2773 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2774 if (flag&FLAG_DATA_ACKED)
2775 inet_csk(sk)->icsk_retransmits = 0;
2776
95c4922b 2777 if (!before(tp->snd_una, tp->frto_highmark)) {
d551e454 2778 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
7c9a4a5b 2779 return 1;
95c4922b
IJ
2780 }
2781
4dc2665e
IJ
2782 if (!IsSackFrto() || IsReno(tp)) {
2783 /* RFC4138 shortcoming in step 2; should also have case c):
2784 * ACK isn't duplicate nor advances window, e.g., opposite dir
2785 * data, winupdate
2786 */
2e605294 2787 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
4dc2665e
IJ
2788 return 1;
2789
2790 if (!(flag&FLAG_DATA_ACKED)) {
2791 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2792 flag);
2793 return 1;
2794 }
2795 } else {
2796 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2797 /* Prevent sending of new data. */
2798 tp->snd_cwnd = min(tp->snd_cwnd,
2799 tcp_packets_in_flight(tp));
2800 return 1;
2801 }
6408d206 2802
d551e454 2803 if ((tp->frto_counter >= 2) &&
4dc2665e
IJ
2804 (!(flag&FLAG_FORWARD_PROGRESS) ||
2805 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2806 /* RFC4138 shortcoming (see comment above) */
2807 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2808 return 1;
2809
2810 tcp_enter_frto_loss(sk, 3, flag);
2811 return 1;
2812 }
1da177e4
LT
2813 }
2814
2815 if (tp->frto_counter == 1) {
575ee714
IJ
2816 /* Sending of the next skb must be allowed or no FRTO */
2817 if (!tcp_send_head(sk) ||
2818 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2819 tp->snd_una + tp->snd_wnd)) {
d551e454
IJ
2820 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2821 flag);
575ee714
IJ
2822 return 1;
2823 }
2824
1da177e4 2825 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
94d0ea77 2826 tp->frto_counter = 2;
7c9a4a5b 2827 return 1;
d551e454 2828 } else {
3cfe3baa
IJ
2829 switch (sysctl_tcp_frto_response) {
2830 case 2:
e317f6f6 2831 tcp_undo_spur_to_response(sk, flag);
3cfe3baa
IJ
2832 break;
2833 case 1:
2834 tcp_conservative_spur_to_response(tp);
2835 break;
2836 default:
2837 tcp_ratehalving_spur_to_response(sk);
2838 break;
3ff50b79 2839 }
94d0ea77 2840 tp->frto_counter = 0;
1da177e4 2841 }
7c9a4a5b 2842 return 0;
1da177e4
LT
2843}
2844
1da177e4
LT
2845/* This routine deals with incoming acks, but not outgoing ones. */
2846static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2847{
6687e988 2848 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2849 struct tcp_sock *tp = tcp_sk(sk);
2850 u32 prior_snd_una = tp->snd_una;
2851 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2852 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2853 u32 prior_in_flight;
2854 s32 seq_rtt;
2855 int prior_packets;
7c9a4a5b 2856 int frto_cwnd = 0;
1da177e4
LT
2857
2858 /* If the ack is newer than sent or older than previous acks
2859 * then we can probably ignore it.
2860 */
2861 if (after(ack, tp->snd_nxt))
2862 goto uninteresting_ack;
2863
2864 if (before(ack, prior_snd_una))
2865 goto old_ack;
2866
2e605294
IJ
2867 if (after(ack, prior_snd_una))
2868 flag |= FLAG_SND_UNA_ADVANCED;
2869
3fdf3f0c
DO
2870 if (sysctl_tcp_abc) {
2871 if (icsk->icsk_ca_state < TCP_CA_CWR)
2872 tp->bytes_acked += ack - prior_snd_una;
2873 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2874 /* we assume just one segment left network */
2875 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2876 }
9772efb9 2877
1da177e4
LT
2878 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2879 /* Window is constant, pure forward advance.
2880 * No more checks are required.
2881 * Note, we use the fact that SND.UNA>=SND.WL2.
2882 */
2883 tcp_update_wl(tp, ack, ack_seq);
2884 tp->snd_una = ack;
1da177e4
LT
2885 flag |= FLAG_WIN_UPDATE;
2886
6687e988 2887 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 2888
1da177e4
LT
2889 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2890 } else {
2891 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2892 flag |= FLAG_DATA;
2893 else
2894 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2895
9e412ba7 2896 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
1da177e4
LT
2897
2898 if (TCP_SKB_CB(skb)->sacked)
2899 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2900
aa8223c7 2901 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
1da177e4
LT
2902 flag |= FLAG_ECE;
2903
6687e988 2904 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
2905 }
2906
2907 /* We passed data and got it acked, remove any soft error
2908 * log. Something worked...
2909 */
2910 sk->sk_err_soft = 0;
2911 tp->rcv_tstamp = tcp_time_stamp;
2912 prior_packets = tp->packets_out;
2913 if (!prior_packets)
2914 goto no_queue;
2915
2916 prior_in_flight = tcp_packets_in_flight(tp);
2917
2918 /* See if we can take anything off of the retransmit queue. */
2d2abbab 2919 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4
LT
2920
2921 if (tp->frto_counter)
2e605294 2922 frto_cwnd = tcp_process_frto(sk, flag);
1da177e4 2923
6687e988 2924 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 2925 /* Advance CWND, if state allows this. */
7c9a4a5b
IJ
2926 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2927 tcp_may_raise_cwnd(sk, flag))
16751347 2928 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
1b6d427b 2929 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
1da177e4 2930 } else {
7c9a4a5b 2931 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
16751347 2932 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
1da177e4
LT
2933 }
2934
2935 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2936 dst_confirm(sk->sk_dst_cache);
2937
2938 return 1;
2939
2940no_queue:
6687e988 2941 icsk->icsk_probes_out = 0;
1da177e4
LT
2942
2943 /* If this ack opens up a zero window, clear backoff. It was
2944 * being used to time the probes, and is probably far higher than
2945 * it needs to be for normal retransmission.
2946 */
fe067e8a 2947 if (tcp_send_head(sk))
1da177e4
LT
2948 tcp_ack_probe(sk);
2949 return 1;
2950
2951old_ack:
2952 if (TCP_SKB_CB(skb)->sacked)
2953 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2954
2955uninteresting_ack:
2956 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2957 return 0;
2958}
2959
2960
2961/* Look for tcp options. Normally only called on SYN and SYNACK packets.
2962 * But, this can also be called on packets in the established flow when
2963 * the fast version below fails.
2964 */
2965void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2966{
2967 unsigned char *ptr;
aa8223c7 2968 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
2969 int length=(th->doff*4)-sizeof(struct tcphdr);
2970
2971 ptr = (unsigned char *)(th + 1);
2972 opt_rx->saw_tstamp = 0;
2973
2de979bd 2974 while (length > 0) {
e905a9ed 2975 int opcode=*ptr++;
1da177e4
LT
2976 int opsize;
2977
2978 switch (opcode) {
2979 case TCPOPT_EOL:
2980 return;
2981 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2982 length--;
2983 continue;
2984 default:
2985 opsize=*ptr++;
2986 if (opsize < 2) /* "silly options" */
2987 return;
2988 if (opsize > length)
2989 return; /* don't parse partial options */
2de979bd 2990 switch (opcode) {
1da177e4 2991 case TCPOPT_MSS:
2de979bd 2992 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
4f3608b7 2993 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
1da177e4
LT
2994 if (in_mss) {
2995 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2996 in_mss = opt_rx->user_mss;
2997 opt_rx->mss_clamp = in_mss;
2998 }
2999 }
3000 break;
3001 case TCPOPT_WINDOW:
2de979bd 3002 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
1da177e4
LT
3003 if (sysctl_tcp_window_scaling) {
3004 __u8 snd_wscale = *(__u8 *) ptr;
3005 opt_rx->wscale_ok = 1;
3006 if (snd_wscale > 14) {
2de979bd 3007 if (net_ratelimit())
1da177e4
LT
3008 printk(KERN_INFO "tcp_parse_options: Illegal window "
3009 "scaling value %d >14 received.\n",
3010 snd_wscale);
3011 snd_wscale = 14;
3012 }
3013 opt_rx->snd_wscale = snd_wscale;
3014 }
3015 break;
3016 case TCPOPT_TIMESTAMP:
2de979bd 3017 if (opsize==TCPOLEN_TIMESTAMP) {
1da177e4
LT
3018 if ((estab && opt_rx->tstamp_ok) ||
3019 (!estab && sysctl_tcp_timestamps)) {
3020 opt_rx->saw_tstamp = 1;
4f3608b7
AV
3021 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3022 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
1da177e4
LT
3023 }
3024 }
3025 break;
3026 case TCPOPT_SACK_PERM:
2de979bd 3027 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
1da177e4
LT
3028 if (sysctl_tcp_sack) {
3029 opt_rx->sack_ok = 1;
3030 tcp_sack_reset(opt_rx);
3031 }
3032 }
3033 break;
3034
3035 case TCPOPT_SACK:
2de979bd 3036 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
1da177e4
LT
3037 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3038 opt_rx->sack_ok) {
3039 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3040 }
d7ea5b91 3041 break;
cfb6eeb4
YH
3042#ifdef CONFIG_TCP_MD5SIG
3043 case TCPOPT_MD5SIG:
3044 /*
3045 * The MD5 Hash has already been
3046 * checked (see tcp_v{4,6}_do_rcv()).
3047 */
3048 break;
3049#endif
3ff50b79
SH
3050 }
3051
e905a9ed
YH
3052 ptr+=opsize-2;
3053 length-=opsize;
3ff50b79 3054 }
1da177e4
LT
3055 }
3056}
3057
3058/* Fast parse options. This hopes to only see timestamps.
3059 * If it is wrong it falls back on tcp_parse_options().
3060 */
40efc6fa
SH
3061static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3062 struct tcp_sock *tp)
1da177e4
LT
3063{
3064 if (th->doff == sizeof(struct tcphdr)>>2) {
3065 tp->rx_opt.saw_tstamp = 0;
3066 return 0;
3067 } else if (tp->rx_opt.tstamp_ok &&
3068 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
4f3608b7
AV
3069 __be32 *ptr = (__be32 *)(th + 1);
3070 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
3071 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3072 tp->rx_opt.saw_tstamp = 1;
3073 ++ptr;
3074 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3075 ++ptr;
3076 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3077 return 1;
3078 }
3079 }
3080 tcp_parse_options(skb, &tp->rx_opt, 1);
3081 return 1;
3082}
3083
3084static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3085{
3086 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
9d729f72 3087 tp->rx_opt.ts_recent_stamp = get_seconds();
1da177e4
LT
3088}
3089
3090static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3091{
3092 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3093 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3094 * extra check below makes sure this can only happen
3095 * for pure ACK frames. -DaveM
3096 *
3097 * Not only, also it occurs for expired timestamps.
3098 */
3099
2de979bd 3100 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
9d729f72 3101 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
1da177e4
LT
3102 tcp_store_ts_recent(tp);
3103 }
3104}
3105
3106/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3107 *
3108 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3109 * it can pass through stack. So, the following predicate verifies that
3110 * this segment is not used for anything but congestion avoidance or
3111 * fast retransmit. Moreover, we even are able to eliminate most of such
3112 * second order effects, if we apply some small "replay" window (~RTO)
3113 * to timestamp space.
3114 *
3115 * All these measures still do not guarantee that we reject wrapped ACKs
3116 * on networks with high bandwidth, when sequence space is recycled fastly,
3117 * but it guarantees that such events will be very rare and do not affect
3118 * connection seriously. This doesn't look nice, but alas, PAWS is really
3119 * buggy extension.
3120 *
3121 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3122 * states that events when retransmit arrives after original data are rare.
3123 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3124 * the biggest problem on large power networks even with minor reordering.
3125 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3126 * up to bandwidth of 18Gigabit/sec. 8) ]
3127 */
3128
463c84b9 3129static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3130{
463c84b9 3131 struct tcp_sock *tp = tcp_sk(sk);
aa8223c7 3132 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3133 u32 seq = TCP_SKB_CB(skb)->seq;
3134 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3135
3136 return (/* 1. Pure ACK with correct sequence number. */
3137 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3138
3139 /* 2. ... and duplicate ACK. */
3140 ack == tp->snd_una &&
3141
3142 /* 3. ... and does not update window. */
3143 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3144
3145 /* 4. ... and sits in replay window. */
463c84b9 3146 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
3147}
3148
463c84b9 3149static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3150{
463c84b9 3151 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 3152 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
9d729f72 3153 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 3154 !tcp_disordered_ack(sk, skb));
1da177e4
LT
3155}
3156
3157/* Check segment sequence number for validity.
3158 *
3159 * Segment controls are considered valid, if the segment
3160 * fits to the window after truncation to the window. Acceptability
3161 * of data (and SYN, FIN, of course) is checked separately.
3162 * See tcp_data_queue(), for example.
3163 *
3164 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3165 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3166 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3167 * (borrowed from freebsd)
3168 */
3169
3170static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3171{
3172 return !before(end_seq, tp->rcv_wup) &&
3173 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3174}
3175
3176/* When we get a reset we do this. */
3177static void tcp_reset(struct sock *sk)
3178{
3179 /* We want the right error as BSD sees it (and indeed as we do). */
3180 switch (sk->sk_state) {
3181 case TCP_SYN_SENT:
3182 sk->sk_err = ECONNREFUSED;
3183 break;
3184 case TCP_CLOSE_WAIT:
3185 sk->sk_err = EPIPE;
3186 break;
3187 case TCP_CLOSE:
3188 return;
3189 default:
3190 sk->sk_err = ECONNRESET;
3191 }
3192
3193 if (!sock_flag(sk, SOCK_DEAD))
3194 sk->sk_error_report(sk);
3195
3196 tcp_done(sk);
3197}
3198
3199/*
3200 * Process the FIN bit. This now behaves as it is supposed to work
3201 * and the FIN takes effect when it is validly part of sequence
3202 * space. Not before when we get holes.
3203 *
3204 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3205 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3206 * TIME-WAIT)
3207 *
3208 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3209 * close and we go into CLOSING (and later onto TIME-WAIT)
3210 *
3211 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3212 */
3213static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3214{
3215 struct tcp_sock *tp = tcp_sk(sk);
3216
463c84b9 3217 inet_csk_schedule_ack(sk);
1da177e4
LT
3218
3219 sk->sk_shutdown |= RCV_SHUTDOWN;
3220 sock_set_flag(sk, SOCK_DONE);
3221
3222 switch (sk->sk_state) {
3223 case TCP_SYN_RECV:
3224 case TCP_ESTABLISHED:
3225 /* Move to CLOSE_WAIT */
3226 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 3227 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
3228 break;
3229
3230 case TCP_CLOSE_WAIT:
3231 case TCP_CLOSING:
3232 /* Received a retransmission of the FIN, do
3233 * nothing.
3234 */
3235 break;
3236 case TCP_LAST_ACK:
3237 /* RFC793: Remain in the LAST-ACK state. */
3238 break;
3239
3240 case TCP_FIN_WAIT1:
3241 /* This case occurs when a simultaneous close
3242 * happens, we must ack the received FIN and
3243 * enter the CLOSING state.
3244 */
3245 tcp_send_ack(sk);
3246 tcp_set_state(sk, TCP_CLOSING);
3247 break;
3248 case TCP_FIN_WAIT2:
3249 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3250 tcp_send_ack(sk);
3251 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3252 break;
3253 default:
3254 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3255 * cases we should never reach this piece of code.
3256 */
3257 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3258 __FUNCTION__, sk->sk_state);
3259 break;
3ff50b79 3260 }
1da177e4
LT
3261
3262 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3263 * Probably, we should reset in this case. For now drop them.
3264 */
3265 __skb_queue_purge(&tp->out_of_order_queue);
3266 if (tp->rx_opt.sack_ok)
3267 tcp_sack_reset(&tp->rx_opt);
3268 sk_stream_mem_reclaim(sk);
3269
3270 if (!sock_flag(sk, SOCK_DEAD)) {
3271 sk->sk_state_change(sk);
3272
3273 /* Do not send POLL_HUP for half duplex close. */
3274 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3275 sk->sk_state == TCP_CLOSE)
3276 sk_wake_async(sk, 1, POLL_HUP);
3277 else
3278 sk_wake_async(sk, 1, POLL_IN);
3279 }
3280}
3281
40efc6fa 3282static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
3283{
3284 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3285 if (before(seq, sp->start_seq))
3286 sp->start_seq = seq;
3287 if (after(end_seq, sp->end_seq))
3288 sp->end_seq = end_seq;
3289 return 1;
3290 }
3291 return 0;
3292}
3293
40efc6fa 3294static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3295{
3296 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3297 if (before(seq, tp->rcv_nxt))
3298 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3299 else
3300 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3301
3302 tp->rx_opt.dsack = 1;
3303 tp->duplicate_sack[0].start_seq = seq;
3304 tp->duplicate_sack[0].end_seq = end_seq;
3305 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3306 }
3307}
3308
40efc6fa 3309static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3310{
3311 if (!tp->rx_opt.dsack)
3312 tcp_dsack_set(tp, seq, end_seq);
3313 else
3314 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3315}
3316
3317static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3318{
3319 struct tcp_sock *tp = tcp_sk(sk);
3320
3321 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3322 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3323 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 3324 tcp_enter_quickack_mode(sk);
1da177e4
LT
3325
3326 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3327 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3328
3329 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3330 end_seq = tp->rcv_nxt;
3331 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3332 }
3333 }
3334
3335 tcp_send_ack(sk);
3336}
3337
3338/* These routines update the SACK block as out-of-order packets arrive or
3339 * in-order packets close up the sequence space.
3340 */
3341static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3342{
3343 int this_sack;
3344 struct tcp_sack_block *sp = &tp->selective_acks[0];
3345 struct tcp_sack_block *swalk = sp+1;
3346
3347 /* See if the recent change to the first SACK eats into
3348 * or hits the sequence space of other SACK blocks, if so coalesce.
3349 */
3350 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3351 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3352 int i;
3353
3354 /* Zap SWALK, by moving every further SACK up by one slot.
3355 * Decrease num_sacks.
3356 */
3357 tp->rx_opt.num_sacks--;
3358 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2de979bd 3359 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
1da177e4
LT
3360 sp[i] = sp[i+1];
3361 continue;
3362 }
3363 this_sack++, swalk++;
3364 }
3365}
3366
40efc6fa 3367static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
3368{
3369 __u32 tmp;
3370
3371 tmp = sack1->start_seq;
3372 sack1->start_seq = sack2->start_seq;
3373 sack2->start_seq = tmp;
3374
3375 tmp = sack1->end_seq;
3376 sack1->end_seq = sack2->end_seq;
3377 sack2->end_seq = tmp;
3378}
3379
3380static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3381{
3382 struct tcp_sock *tp = tcp_sk(sk);
3383 struct tcp_sack_block *sp = &tp->selective_acks[0];
3384 int cur_sacks = tp->rx_opt.num_sacks;
3385 int this_sack;
3386
3387 if (!cur_sacks)
3388 goto new_sack;
3389
3390 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3391 if (tcp_sack_extend(sp, seq, end_seq)) {
3392 /* Rotate this_sack to the first one. */
3393 for (; this_sack>0; this_sack--, sp--)
3394 tcp_sack_swap(sp, sp-1);
3395 if (cur_sacks > 1)
3396 tcp_sack_maybe_coalesce(tp);
3397 return;
3398 }
3399 }
3400
3401 /* Could not find an adjacent existing SACK, build a new one,
3402 * put it at the front, and shift everyone else down. We
3403 * always know there is at least one SACK present already here.
3404 *
3405 * If the sack array is full, forget about the last one.
3406 */
3407 if (this_sack >= 4) {
3408 this_sack--;
3409 tp->rx_opt.num_sacks--;
3410 sp--;
3411 }
2de979bd 3412 for (; this_sack > 0; this_sack--, sp--)
1da177e4
LT
3413 *sp = *(sp-1);
3414
3415new_sack:
3416 /* Build the new head SACK, and we're done. */
3417 sp->start_seq = seq;
3418 sp->end_seq = end_seq;
3419 tp->rx_opt.num_sacks++;
3420 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3421}
3422
3423/* RCV.NXT advances, some SACKs should be eaten. */
3424
3425static void tcp_sack_remove(struct tcp_sock *tp)
3426{
3427 struct tcp_sack_block *sp = &tp->selective_acks[0];
3428 int num_sacks = tp->rx_opt.num_sacks;
3429 int this_sack;
3430
3431 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3432 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3433 tp->rx_opt.num_sacks = 0;
3434 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3435 return;
3436 }
3437
2de979bd 3438 for (this_sack = 0; this_sack < num_sacks; ) {
1da177e4
LT
3439 /* Check if the start of the sack is covered by RCV.NXT. */
3440 if (!before(tp->rcv_nxt, sp->start_seq)) {
3441 int i;
3442
3443 /* RCV.NXT must cover all the block! */
3444 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3445
3446 /* Zap this SACK, by moving forward any other SACKS. */
3447 for (i=this_sack+1; i < num_sacks; i++)
3448 tp->selective_acks[i-1] = tp->selective_acks[i];
3449 num_sacks--;
3450 continue;
3451 }
3452 this_sack++;
3453 sp++;
3454 }
3455 if (num_sacks != tp->rx_opt.num_sacks) {
3456 tp->rx_opt.num_sacks = num_sacks;
3457 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3458 }
3459}
3460
3461/* This one checks to see if we can put data from the
3462 * out_of_order queue into the receive_queue.
3463 */
3464static void tcp_ofo_queue(struct sock *sk)
3465{
3466 struct tcp_sock *tp = tcp_sk(sk);
3467 __u32 dsack_high = tp->rcv_nxt;
3468 struct sk_buff *skb;
3469
3470 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3471 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3472 break;
3473
3474 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3475 __u32 dsack = dsack_high;
3476 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3477 dsack_high = TCP_SKB_CB(skb)->end_seq;
3478 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3479 }
3480
3481 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3482 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3483 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3484 __kfree_skb(skb);
3485 continue;
3486 }
3487 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3488 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3489 TCP_SKB_CB(skb)->end_seq);
3490
8728b834 3491 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3492 __skb_queue_tail(&sk->sk_receive_queue, skb);
3493 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
aa8223c7
ACM
3494 if (tcp_hdr(skb)->fin)
3495 tcp_fin(skb, sk, tcp_hdr(skb));
1da177e4
LT
3496 }
3497}
3498
3499static int tcp_prune_queue(struct sock *sk);
3500
3501static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3502{
aa8223c7 3503 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3504 struct tcp_sock *tp = tcp_sk(sk);
3505 int eaten = -1;
3506
3507 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3508 goto drop;
3509
1da177e4
LT
3510 __skb_pull(skb, th->doff*4);
3511
3512 TCP_ECN_accept_cwr(tp, skb);
3513
3514 if (tp->rx_opt.dsack) {
3515 tp->rx_opt.dsack = 0;
3516 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3517 4 - tp->rx_opt.tstamp_ok);
3518 }
3519
3520 /* Queue data for delivery to the user.
3521 * Packets in sequence go to the receive queue.
3522 * Out of sequence packets to the out_of_order_queue.
3523 */
3524 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3525 if (tcp_receive_window(tp) == 0)
3526 goto out_of_window;
3527
3528 /* Ok. In sequence. In window. */
3529 if (tp->ucopy.task == current &&
3530 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3531 sock_owned_by_user(sk) && !tp->urg_data) {
3532 int chunk = min_t(unsigned int, skb->len,
3533 tp->ucopy.len);
3534
3535 __set_current_state(TASK_RUNNING);
3536
3537 local_bh_enable();
3538 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3539 tp->ucopy.len -= chunk;
3540 tp->copied_seq += chunk;
3541 eaten = (chunk == skb->len && !th->fin);
3542 tcp_rcv_space_adjust(sk);
3543 }
3544 local_bh_disable();
3545 }
3546
3547 if (eaten <= 0) {
3548queue_and_out:
3549 if (eaten < 0 &&
3550 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3551 !sk_stream_rmem_schedule(sk, skb))) {
3552 if (tcp_prune_queue(sk) < 0 ||
3553 !sk_stream_rmem_schedule(sk, skb))
3554 goto drop;
3555 }
3556 sk_stream_set_owner_r(skb, sk);
3557 __skb_queue_tail(&sk->sk_receive_queue, skb);
3558 }
3559 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2de979bd 3560 if (skb->len)
9e412ba7 3561 tcp_event_data_recv(sk, skb);
2de979bd 3562 if (th->fin)
1da177e4
LT
3563 tcp_fin(skb, sk, th);
3564
b03efcfb 3565 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3566 tcp_ofo_queue(sk);
3567
3568 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3569 * gap in queue is filled.
3570 */
b03efcfb 3571 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3572 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3573 }
3574
3575 if (tp->rx_opt.num_sacks)
3576 tcp_sack_remove(tp);
3577
9e412ba7 3578 tcp_fast_path_check(sk);
1da177e4
LT
3579
3580 if (eaten > 0)
3581 __kfree_skb(skb);
3582 else if (!sock_flag(sk, SOCK_DEAD))
3583 sk->sk_data_ready(sk, 0);
3584 return;
3585 }
3586
3587 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3588 /* A retransmit, 2nd most common case. Force an immediate ack. */
3589 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3590 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3591
3592out_of_window:
463c84b9
ACM
3593 tcp_enter_quickack_mode(sk);
3594 inet_csk_schedule_ack(sk);
1da177e4
LT
3595drop:
3596 __kfree_skb(skb);
3597 return;
3598 }
3599
3600 /* Out of window. F.e. zero window probe. */
3601 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3602 goto out_of_window;
3603
463c84b9 3604 tcp_enter_quickack_mode(sk);
1da177e4
LT
3605
3606 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3607 /* Partial packet, seq < rcv_next < end_seq */
3608 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3609 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3610 TCP_SKB_CB(skb)->end_seq);
3611
3612 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
e905a9ed 3613
1da177e4
LT
3614 /* If window is closed, drop tail of packet. But after
3615 * remembering D-SACK for its head made in previous line.
3616 */
3617 if (!tcp_receive_window(tp))
3618 goto out_of_window;
3619 goto queue_and_out;
3620 }
3621
3622 TCP_ECN_check_ce(tp, skb);
3623
3624 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3625 !sk_stream_rmem_schedule(sk, skb)) {
3626 if (tcp_prune_queue(sk) < 0 ||
3627 !sk_stream_rmem_schedule(sk, skb))
3628 goto drop;
3629 }
3630
3631 /* Disable header prediction. */
3632 tp->pred_flags = 0;
463c84b9 3633 inet_csk_schedule_ack(sk);
1da177e4
LT
3634
3635 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3636 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3637
3638 sk_stream_set_owner_r(skb, sk);
3639
3640 if (!skb_peek(&tp->out_of_order_queue)) {
3641 /* Initial out of order segment, build 1 SACK. */
3642 if (tp->rx_opt.sack_ok) {
3643 tp->rx_opt.num_sacks = 1;
3644 tp->rx_opt.dsack = 0;
3645 tp->rx_opt.eff_sacks = 1;
3646 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3647 tp->selective_acks[0].end_seq =
3648 TCP_SKB_CB(skb)->end_seq;
3649 }
3650 __skb_queue_head(&tp->out_of_order_queue,skb);
3651 } else {
3652 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3653 u32 seq = TCP_SKB_CB(skb)->seq;
3654 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3655
3656 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3657 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3658
3659 if (!tp->rx_opt.num_sacks ||
3660 tp->selective_acks[0].end_seq != seq)
3661 goto add_sack;
3662
3663 /* Common case: data arrive in order after hole. */
3664 tp->selective_acks[0].end_seq = end_seq;
3665 return;
3666 }
3667
3668 /* Find place to insert this segment. */
3669 do {
3670 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3671 break;
3672 } while ((skb1 = skb1->prev) !=
3673 (struct sk_buff*)&tp->out_of_order_queue);
3674
3675 /* Do skb overlap to previous one? */
3676 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3677 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3678 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3679 /* All the bits are present. Drop. */
3680 __kfree_skb(skb);
3681 tcp_dsack_set(tp, seq, end_seq);
3682 goto add_sack;
3683 }
3684 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3685 /* Partial overlap. */
3686 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3687 } else {
3688 skb1 = skb1->prev;
3689 }
3690 }
3691 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
e905a9ed 3692
1da177e4
LT
3693 /* And clean segments covered by new one as whole. */
3694 while ((skb1 = skb->next) !=
3695 (struct sk_buff*)&tp->out_of_order_queue &&
3696 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3697 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3698 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3699 break;
3700 }
8728b834 3701 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3702 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3703 __kfree_skb(skb1);
3704 }
3705
3706add_sack:
3707 if (tp->rx_opt.sack_ok)
3708 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3709 }
3710}
3711
3712/* Collapse contiguous sequence of skbs head..tail with
3713 * sequence numbers start..end.
3714 * Segments with FIN/SYN are not collapsed (only because this
3715 * simplifies code)
3716 */
3717static void
8728b834
DM
3718tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3719 struct sk_buff *head, struct sk_buff *tail,
3720 u32 start, u32 end)
1da177e4
LT
3721{
3722 struct sk_buff *skb;
3723
caa20d9a 3724 /* First, check that queue is collapsible and find
1da177e4
LT
3725 * the point where collapsing can be useful. */
3726 for (skb = head; skb != tail; ) {
3727 /* No new bits? It is possible on ofo queue. */
3728 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3729 struct sk_buff *next = skb->next;
8728b834 3730 __skb_unlink(skb, list);
1da177e4
LT
3731 __kfree_skb(skb);
3732 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3733 skb = next;
3734 continue;
3735 }
3736
3737 /* The first skb to collapse is:
3738 * - not SYN/FIN and
3739 * - bloated or contains data before "start" or
3740 * overlaps to the next one.
3741 */
aa8223c7 3742 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
1da177e4
LT
3743 (tcp_win_from_space(skb->truesize) > skb->len ||
3744 before(TCP_SKB_CB(skb)->seq, start) ||
3745 (skb->next != tail &&
3746 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3747 break;
3748
3749 /* Decided to skip this, advance start seq. */
3750 start = TCP_SKB_CB(skb)->end_seq;
3751 skb = skb->next;
3752 }
aa8223c7 3753 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
1da177e4
LT
3754 return;
3755
3756 while (before(start, end)) {
3757 struct sk_buff *nskb;
3758 int header = skb_headroom(skb);
3759 int copy = SKB_MAX_ORDER(header, 0);
3760
3761 /* Too big header? This can happen with IPv6. */
3762 if (copy < 0)
3763 return;
3764 if (end-start < copy)
3765 copy = end-start;
3766 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3767 if (!nskb)
3768 return;
c51957da 3769
98e399f8 3770 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
9c70220b
ACM
3771 skb_set_network_header(nskb, (skb_network_header(skb) -
3772 skb->head));
3773 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3774 skb->head));
1da177e4
LT
3775 skb_reserve(nskb, header);
3776 memcpy(nskb->head, skb->head, header);
1da177e4
LT
3777 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3778 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3779 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3780 sk_stream_set_owner_r(nskb, sk);
3781
3782 /* Copy data, releasing collapsed skbs. */
3783 while (copy > 0) {
3784 int offset = start - TCP_SKB_CB(skb)->seq;
3785 int size = TCP_SKB_CB(skb)->end_seq - start;
3786
09a62660 3787 BUG_ON(offset < 0);
1da177e4
LT
3788 if (size > 0) {
3789 size = min(copy, size);
3790 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3791 BUG();
3792 TCP_SKB_CB(nskb)->end_seq += size;
3793 copy -= size;
3794 start += size;
3795 }
3796 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3797 struct sk_buff *next = skb->next;
8728b834 3798 __skb_unlink(skb, list);
1da177e4
LT
3799 __kfree_skb(skb);
3800 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3801 skb = next;
aa8223c7
ACM
3802 if (skb == tail ||
3803 tcp_hdr(skb)->syn ||
3804 tcp_hdr(skb)->fin)
1da177e4
LT
3805 return;
3806 }
3807 }
3808 }
3809}
3810
3811/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3812 * and tcp_collapse() them until all the queue is collapsed.
3813 */
3814static void tcp_collapse_ofo_queue(struct sock *sk)
3815{
3816 struct tcp_sock *tp = tcp_sk(sk);
3817 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3818 struct sk_buff *head;
3819 u32 start, end;
3820
3821 if (skb == NULL)
3822 return;
3823
3824 start = TCP_SKB_CB(skb)->seq;
3825 end = TCP_SKB_CB(skb)->end_seq;
3826 head = skb;
3827
3828 for (;;) {
3829 skb = skb->next;
3830
3831 /* Segment is terminated when we see gap or when
3832 * we are at the end of all the queue. */
3833 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3834 after(TCP_SKB_CB(skb)->seq, end) ||
3835 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3836 tcp_collapse(sk, &tp->out_of_order_queue,
3837 head, skb, start, end);
1da177e4
LT
3838 head = skb;
3839 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3840 break;
3841 /* Start new segment */
3842 start = TCP_SKB_CB(skb)->seq;
3843 end = TCP_SKB_CB(skb)->end_seq;
3844 } else {
3845 if (before(TCP_SKB_CB(skb)->seq, start))
3846 start = TCP_SKB_CB(skb)->seq;
3847 if (after(TCP_SKB_CB(skb)->end_seq, end))
3848 end = TCP_SKB_CB(skb)->end_seq;
3849 }
3850 }
3851}
3852
3853/* Reduce allocated memory if we can, trying to get
3854 * the socket within its memory limits again.
3855 *
3856 * Return less than zero if we should start dropping frames
3857 * until the socket owning process reads some of the data
3858 * to stabilize the situation.
3859 */
3860static int tcp_prune_queue(struct sock *sk)
3861{
e905a9ed 3862 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
3863
3864 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3865
3866 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3867
3868 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
9e412ba7 3869 tcp_clamp_window(sk);
1da177e4
LT
3870 else if (tcp_memory_pressure)
3871 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3872
3873 tcp_collapse_ofo_queue(sk);
8728b834
DM
3874 tcp_collapse(sk, &sk->sk_receive_queue,
3875 sk->sk_receive_queue.next,
1da177e4
LT
3876 (struct sk_buff*)&sk->sk_receive_queue,
3877 tp->copied_seq, tp->rcv_nxt);
3878 sk_stream_mem_reclaim(sk);
3879
3880 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3881 return 0;
3882
3883 /* Collapsing did not help, destructive actions follow.
3884 * This must not ever occur. */
3885
3886 /* First, purge the out_of_order queue. */
b03efcfb
DM
3887 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3888 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
3889 __skb_queue_purge(&tp->out_of_order_queue);
3890
3891 /* Reset SACK state. A conforming SACK implementation will
3892 * do the same at a timeout based retransmit. When a connection
3893 * is in a sad state like this, we care only about integrity
3894 * of the connection not performance.
3895 */
3896 if (tp->rx_opt.sack_ok)
3897 tcp_sack_reset(&tp->rx_opt);
3898 sk_stream_mem_reclaim(sk);
3899 }
3900
3901 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3902 return 0;
3903
3904 /* If we are really being abused, tell the caller to silently
3905 * drop receive data on the floor. It will get retransmitted
3906 * and hopefully then we'll have sufficient space.
3907 */
3908 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3909
3910 /* Massive buffer overcommit. */
3911 tp->pred_flags = 0;
3912 return -1;
3913}
3914
3915
3916/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3917 * As additional protections, we do not touch cwnd in retransmission phases,
3918 * and if application hit its sndbuf limit recently.
3919 */
3920void tcp_cwnd_application_limited(struct sock *sk)
3921{
3922 struct tcp_sock *tp = tcp_sk(sk);
3923
6687e988 3924 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
3925 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3926 /* Limited by application or receiver window. */
d254bcdb
IJ
3927 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3928 u32 win_used = max(tp->snd_cwnd_used, init_win);
1da177e4 3929 if (win_used < tp->snd_cwnd) {
6687e988 3930 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
3931 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3932 }
3933 tp->snd_cwnd_used = 0;
3934 }
3935 tp->snd_cwnd_stamp = tcp_time_stamp;
3936}
3937
9e412ba7 3938static int tcp_should_expand_sndbuf(struct sock *sk)
0d9901df 3939{
9e412ba7
IJ
3940 struct tcp_sock *tp = tcp_sk(sk);
3941
0d9901df
DM
3942 /* If the user specified a specific send buffer setting, do
3943 * not modify it.
3944 */
3945 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3946 return 0;
3947
3948 /* If we are under global TCP memory pressure, do not expand. */
3949 if (tcp_memory_pressure)
3950 return 0;
3951
3952 /* If we are under soft global TCP memory pressure, do not expand. */
3953 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3954 return 0;
3955
3956 /* If we filled the congestion window, do not expand. */
3957 if (tp->packets_out >= tp->snd_cwnd)
3958 return 0;
3959
3960 return 1;
3961}
1da177e4
LT
3962
3963/* When incoming ACK allowed to free some skb from write_queue,
3964 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3965 * on the exit from tcp input handler.
3966 *
3967 * PROBLEM: sndbuf expansion does not work well with largesend.
3968 */
3969static void tcp_new_space(struct sock *sk)
3970{
3971 struct tcp_sock *tp = tcp_sk(sk);
3972
9e412ba7 3973 if (tcp_should_expand_sndbuf(sk)) {
e905a9ed 3974 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
3975 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3976 demanded = max_t(unsigned int, tp->snd_cwnd,
3977 tp->reordering + 1);
3978 sndmem *= 2*demanded;
3979 if (sndmem > sk->sk_sndbuf)
3980 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3981 tp->snd_cwnd_stamp = tcp_time_stamp;
3982 }
3983
3984 sk->sk_write_space(sk);
3985}
3986
40efc6fa 3987static void tcp_check_space(struct sock *sk)
1da177e4
LT
3988{
3989 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3990 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3991 if (sk->sk_socket &&
3992 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3993 tcp_new_space(sk);
3994 }
3995}
3996
9e412ba7 3997static inline void tcp_data_snd_check(struct sock *sk)
1da177e4 3998{
9e412ba7 3999 tcp_push_pending_frames(sk);
1da177e4
LT
4000 tcp_check_space(sk);
4001}
4002
4003/*
4004 * Check if sending an ack is needed.
4005 */
4006static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4007{
4008 struct tcp_sock *tp = tcp_sk(sk);
4009
4010 /* More than one full frame received... */
463c84b9 4011 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
4012 /* ... and right edge of window advances far enough.
4013 * (tcp_recvmsg() will send ACK otherwise). Or...
4014 */
4015 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4016 /* We ACK each frame or... */
463c84b9 4017 tcp_in_quickack_mode(sk) ||
1da177e4
LT
4018 /* We have out of order data. */
4019 (ofo_possible &&
4020 skb_peek(&tp->out_of_order_queue))) {
4021 /* Then ack it now */
4022 tcp_send_ack(sk);
4023 } else {
4024 /* Else, send delayed ack. */
4025 tcp_send_delayed_ack(sk);
4026 }
4027}
4028
40efc6fa 4029static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 4030{
463c84b9 4031 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
4032 /* We sent a data segment already. */
4033 return;
4034 }
4035 __tcp_ack_snd_check(sk, 1);
4036}
4037
4038/*
4039 * This routine is only called when we have urgent data
caa20d9a 4040 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
4041 * moved inline now as tcp_urg is only called from one
4042 * place. We handle URGent data wrong. We have to - as
4043 * BSD still doesn't use the correction from RFC961.
4044 * For 1003.1g we should support a new option TCP_STDURG to permit
4045 * either form (or just set the sysctl tcp_stdurg).
4046 */
e905a9ed 4047
1da177e4
LT
4048static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4049{
4050 struct tcp_sock *tp = tcp_sk(sk);
4051 u32 ptr = ntohs(th->urg_ptr);
4052
4053 if (ptr && !sysctl_tcp_stdurg)
4054 ptr--;
4055 ptr += ntohl(th->seq);
4056
4057 /* Ignore urgent data that we've already seen and read. */
4058 if (after(tp->copied_seq, ptr))
4059 return;
4060
4061 /* Do not replay urg ptr.
4062 *
4063 * NOTE: interesting situation not covered by specs.
4064 * Misbehaving sender may send urg ptr, pointing to segment,
4065 * which we already have in ofo queue. We are not able to fetch
4066 * such data and will stay in TCP_URG_NOTYET until will be eaten
4067 * by recvmsg(). Seems, we are not obliged to handle such wicked
4068 * situations. But it is worth to think about possibility of some
4069 * DoSes using some hypothetical application level deadlock.
4070 */
4071 if (before(ptr, tp->rcv_nxt))
4072 return;
4073
4074 /* Do we already have a newer (or duplicate) urgent pointer? */
4075 if (tp->urg_data && !after(ptr, tp->urg_seq))
4076 return;
4077
4078 /* Tell the world about our new urgent pointer. */
4079 sk_send_sigurg(sk);
4080
4081 /* We may be adding urgent data when the last byte read was
4082 * urgent. To do this requires some care. We cannot just ignore
4083 * tp->copied_seq since we would read the last urgent byte again
4084 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 4085 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
4086 *
4087 * NOTE. Double Dutch. Rendering to plain English: author of comment
4088 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4089 * and expect that both A and B disappear from stream. This is _wrong_.
4090 * Though this happens in BSD with high probability, this is occasional.
4091 * Any application relying on this is buggy. Note also, that fix "works"
4092 * only in this artificial test. Insert some normal data between A and B and we will
4093 * decline of BSD again. Verdict: it is better to remove to trap
4094 * buggy users.
4095 */
4096 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4097 !sock_flag(sk, SOCK_URGINLINE) &&
4098 tp->copied_seq != tp->rcv_nxt) {
4099 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4100 tp->copied_seq++;
4101 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 4102 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
4103 __kfree_skb(skb);
4104 }
4105 }
4106
4107 tp->urg_data = TCP_URG_NOTYET;
4108 tp->urg_seq = ptr;
4109
4110 /* Disable header prediction. */
4111 tp->pred_flags = 0;
4112}
4113
4114/* This is the 'fast' part of urgent handling. */
4115static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4116{
4117 struct tcp_sock *tp = tcp_sk(sk);
4118
4119 /* Check if we get a new urgent pointer - normally not. */
4120 if (th->urg)
4121 tcp_check_urg(sk,th);
4122
4123 /* Do we wait for any urgent data? - normally not... */
4124 if (tp->urg_data == TCP_URG_NOTYET) {
4125 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4126 th->syn;
4127
e905a9ed 4128 /* Is the urgent pointer pointing into this packet? */
1da177e4
LT
4129 if (ptr < skb->len) {
4130 u8 tmp;
4131 if (skb_copy_bits(skb, ptr, &tmp, 1))
4132 BUG();
4133 tp->urg_data = TCP_URG_VALID | tmp;
4134 if (!sock_flag(sk, SOCK_DEAD))
4135 sk->sk_data_ready(sk, 0);
4136 }
4137 }
4138}
4139
4140static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4141{
4142 struct tcp_sock *tp = tcp_sk(sk);
4143 int chunk = skb->len - hlen;
4144 int err;
4145
4146 local_bh_enable();
60476372 4147 if (skb_csum_unnecessary(skb))
1da177e4
LT
4148 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4149 else
4150 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4151 tp->ucopy.iov);
4152
4153 if (!err) {
4154 tp->ucopy.len -= chunk;
4155 tp->copied_seq += chunk;
4156 tcp_rcv_space_adjust(sk);
4157 }
4158
4159 local_bh_disable();
4160 return err;
4161}
4162
b51655b9 4163static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4164{
b51655b9 4165 __sum16 result;
1da177e4
LT
4166
4167 if (sock_owned_by_user(sk)) {
4168 local_bh_enable();
4169 result = __tcp_checksum_complete(skb);
4170 local_bh_disable();
4171 } else {
4172 result = __tcp_checksum_complete(skb);
4173 }
4174 return result;
4175}
4176
40efc6fa 4177static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4178{
60476372 4179 return !skb_csum_unnecessary(skb) &&
1da177e4
LT
4180 __tcp_checksum_complete_user(sk, skb);
4181}
4182
1a2449a8
CL
4183#ifdef CONFIG_NET_DMA
4184static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4185{
4186 struct tcp_sock *tp = tcp_sk(sk);
4187 int chunk = skb->len - hlen;
4188 int dma_cookie;
4189 int copied_early = 0;
4190
4191 if (tp->ucopy.wakeup)
e905a9ed 4192 return 0;
1a2449a8
CL
4193
4194 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4195 tp->ucopy.dma_chan = get_softnet_dma();
4196
60476372 4197 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
1a2449a8
CL
4198
4199 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4200 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4201
4202 if (dma_cookie < 0)
4203 goto out;
4204
4205 tp->ucopy.dma_cookie = dma_cookie;
4206 copied_early = 1;
4207
4208 tp->ucopy.len -= chunk;
4209 tp->copied_seq += chunk;
4210 tcp_rcv_space_adjust(sk);
4211
4212 if ((tp->ucopy.len == 0) ||
aa8223c7 4213 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
1a2449a8
CL
4214 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4215 tp->ucopy.wakeup = 1;
4216 sk->sk_data_ready(sk, 0);
4217 }
4218 } else if (chunk > 0) {
4219 tp->ucopy.wakeup = 1;
4220 sk->sk_data_ready(sk, 0);
4221 }
4222out:
4223 return copied_early;
4224}
4225#endif /* CONFIG_NET_DMA */
4226
1da177e4 4227/*
e905a9ed 4228 * TCP receive function for the ESTABLISHED state.
1da177e4 4229 *
e905a9ed 4230 * It is split into a fast path and a slow path. The fast path is
1da177e4
LT
4231 * disabled when:
4232 * - A zero window was announced from us - zero window probing
e905a9ed 4233 * is only handled properly in the slow path.
1da177e4
LT
4234 * - Out of order segments arrived.
4235 * - Urgent data is expected.
4236 * - There is no buffer space left
4237 * - Unexpected TCP flags/window values/header lengths are received
e905a9ed 4238 * (detected by checking the TCP header against pred_flags)
1da177e4
LT
4239 * - Data is sent in both directions. Fast path only supports pure senders
4240 * or pure receivers (this means either the sequence number or the ack
4241 * value must stay constant)
4242 * - Unexpected TCP option.
4243 *
e905a9ed 4244 * When these conditions are not satisfied it drops into a standard
1da177e4
LT
4245 * receive procedure patterned after RFC793 to handle all cases.
4246 * The first three cases are guaranteed by proper pred_flags setting,
e905a9ed 4247 * the rest is checked inline. Fast processing is turned on in
1da177e4
LT
4248 * tcp_data_queue when everything is OK.
4249 */
4250int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4251 struct tcphdr *th, unsigned len)
4252{
4253 struct tcp_sock *tp = tcp_sk(sk);
4254
4255 /*
4256 * Header prediction.
e905a9ed 4257 * The code loosely follows the one in the famous
1da177e4 4258 * "30 instruction TCP receive" Van Jacobson mail.
e905a9ed
YH
4259 *
4260 * Van's trick is to deposit buffers into socket queue
1da177e4
LT
4261 * on a device interrupt, to call tcp_recv function
4262 * on the receive process context and checksum and copy
4263 * the buffer to user space. smart...
4264 *
e905a9ed 4265 * Our current scheme is not silly either but we take the
1da177e4
LT
4266 * extra cost of the net_bh soft interrupt processing...
4267 * We do checksum and copy also but from device to kernel.
4268 */
4269
4270 tp->rx_opt.saw_tstamp = 0;
4271
4272 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 4273 * if header_prediction is to be made
1da177e4
LT
4274 * 'S' will always be tp->tcp_header_len >> 2
4275 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
e905a9ed 4276 * turn it off (when there are holes in the receive
1da177e4
LT
4277 * space for instance)
4278 * PSH flag is ignored.
4279 */
4280
4281 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4282 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4283 int tcp_header_len = tp->tcp_header_len;
4284
4285 /* Timestamp header prediction: tcp_header_len
4286 * is automatically equal to th->doff*4 due to pred_flags
4287 * match.
4288 */
4289
4290 /* Check timestamp */
4291 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4f3608b7 4292 __be32 *ptr = (__be32 *)(th + 1);
1da177e4
LT
4293
4294 /* No? Slow path! */
4f3608b7 4295 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
4296 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4297 goto slow_path;
4298
4299 tp->rx_opt.saw_tstamp = 1;
e905a9ed 4300 ++ptr;
1da177e4
LT
4301 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4302 ++ptr;
4303 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4304
4305 /* If PAWS failed, check it more carefully in slow path */
4306 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4307 goto slow_path;
4308
4309 /* DO NOT update ts_recent here, if checksum fails
4310 * and timestamp was corrupted part, it will result
4311 * in a hung connection since we will drop all
4312 * future packets due to the PAWS test.
4313 */
4314 }
4315
4316 if (len <= tcp_header_len) {
4317 /* Bulk data transfer: sender */
4318 if (len == tcp_header_len) {
4319 /* Predicted packet is in window by definition.
4320 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4321 * Hence, check seq<=rcv_wup reduces to:
4322 */
4323 if (tcp_header_len ==
4324 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4325 tp->rcv_nxt == tp->rcv_wup)
4326 tcp_store_ts_recent(tp);
4327
1da177e4
LT
4328 /* We know that such packets are checksummed
4329 * on entry.
4330 */
4331 tcp_ack(sk, skb, 0);
e905a9ed 4332 __kfree_skb(skb);
9e412ba7 4333 tcp_data_snd_check(sk);
1da177e4
LT
4334 return 0;
4335 } else { /* Header too small */
4336 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4337 goto discard;
4338 }
4339 } else {
4340 int eaten = 0;
1a2449a8 4341 int copied_early = 0;
1da177e4 4342
1a2449a8
CL
4343 if (tp->copied_seq == tp->rcv_nxt &&
4344 len - tcp_header_len <= tp->ucopy.len) {
4345#ifdef CONFIG_NET_DMA
4346 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4347 copied_early = 1;
4348 eaten = 1;
4349 }
4350#endif
4351 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4352 __set_current_state(TASK_RUNNING);
1da177e4 4353
1a2449a8
CL
4354 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4355 eaten = 1;
4356 }
4357 if (eaten) {
1da177e4
LT
4358 /* Predicted packet is in window by definition.
4359 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4360 * Hence, check seq<=rcv_wup reduces to:
4361 */
4362 if (tcp_header_len ==
4363 (sizeof(struct tcphdr) +
4364 TCPOLEN_TSTAMP_ALIGNED) &&
4365 tp->rcv_nxt == tp->rcv_wup)
4366 tcp_store_ts_recent(tp);
4367
463c84b9 4368 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4369
4370 __skb_pull(skb, tcp_header_len);
4371 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4372 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 4373 }
1a2449a8
CL
4374 if (copied_early)
4375 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
4376 }
4377 if (!eaten) {
4378 if (tcp_checksum_complete_user(sk, skb))
4379 goto csum_error;
4380
4381 /* Predicted packet is in window by definition.
4382 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4383 * Hence, check seq<=rcv_wup reduces to:
4384 */
4385 if (tcp_header_len ==
4386 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4387 tp->rcv_nxt == tp->rcv_wup)
4388 tcp_store_ts_recent(tp);
4389
463c84b9 4390 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4391
4392 if ((int)skb->truesize > sk->sk_forward_alloc)
4393 goto step5;
4394
4395 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4396
4397 /* Bulk data transfer: receiver */
4398 __skb_pull(skb,tcp_header_len);
4399 __skb_queue_tail(&sk->sk_receive_queue, skb);
4400 sk_stream_set_owner_r(skb, sk);
4401 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4402 }
4403
9e412ba7 4404 tcp_event_data_recv(sk, skb);
1da177e4
LT
4405
4406 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4407 /* Well, only one small jumplet in fast path... */
4408 tcp_ack(sk, skb, FLAG_DATA);
9e412ba7 4409 tcp_data_snd_check(sk);
463c84b9 4410 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4411 goto no_ack;
4412 }
4413
31432412 4414 __tcp_ack_snd_check(sk, 0);
1da177e4 4415no_ack:
1a2449a8
CL
4416#ifdef CONFIG_NET_DMA
4417 if (copied_early)
4418 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4419 else
4420#endif
1da177e4
LT
4421 if (eaten)
4422 __kfree_skb(skb);
4423 else
4424 sk->sk_data_ready(sk, 0);
4425 return 0;
4426 }
4427 }
4428
4429slow_path:
4430 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4431 goto csum_error;
4432
4433 /*
4434 * RFC1323: H1. Apply PAWS check first.
4435 */
4436 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4437 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4438 if (!th->rst) {
4439 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4440 tcp_send_dupack(sk, skb);
4441 goto discard;
4442 }
4443 /* Resets are accepted even if PAWS failed.
4444
4445 ts_recent update must be made after we are sure
4446 that the packet is in window.
4447 */
4448 }
4449
4450 /*
4451 * Standard slow path.
4452 */
4453
4454 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4455 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4456 * (RST) segments are validated by checking their SEQ-fields."
4457 * And page 69: "If an incoming segment is not acceptable,
4458 * an acknowledgment should be sent in reply (unless the RST bit
4459 * is set, if so drop the segment and return)".
4460 */
4461 if (!th->rst)
4462 tcp_send_dupack(sk, skb);
4463 goto discard;
4464 }
4465
2de979bd 4466 if (th->rst) {
1da177e4
LT
4467 tcp_reset(sk);
4468 goto discard;
4469 }
4470
4471 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4472
4473 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4474 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4475 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4476 tcp_reset(sk);
4477 return 1;
4478 }
4479
4480step5:
2de979bd 4481 if (th->ack)
1da177e4
LT
4482 tcp_ack(sk, skb, FLAG_SLOWPATH);
4483
463c84b9 4484 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4485
4486 /* Process urgent data. */
4487 tcp_urg(sk, skb, th);
4488
4489 /* step 7: process the segment text */
4490 tcp_data_queue(sk, skb);
4491
9e412ba7 4492 tcp_data_snd_check(sk);
1da177e4
LT
4493 tcp_ack_snd_check(sk);
4494 return 0;
4495
4496csum_error:
4497 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4498
4499discard:
4500 __kfree_skb(skb);
4501 return 0;
4502}
4503
4504static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4505 struct tcphdr *th, unsigned len)
4506{
4507 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4508 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4509 int saved_clamp = tp->rx_opt.mss_clamp;
4510
4511 tcp_parse_options(skb, &tp->rx_opt, 0);
4512
4513 if (th->ack) {
4514 /* rfc793:
4515 * "If the state is SYN-SENT then
4516 * first check the ACK bit
4517 * If the ACK bit is set
4518 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4519 * a reset (unless the RST bit is set, if so drop
4520 * the segment and return)"
4521 *
4522 * We do not send data with SYN, so that RFC-correct
4523 * test reduces to:
4524 */
4525 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4526 goto reset_and_undo;
4527
4528 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4529 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4530 tcp_time_stamp)) {
4531 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4532 goto reset_and_undo;
4533 }
4534
4535 /* Now ACK is acceptable.
4536 *
4537 * "If the RST bit is set
4538 * If the ACK was acceptable then signal the user "error:
4539 * connection reset", drop the segment, enter CLOSED state,
4540 * delete TCB, and return."
4541 */
4542
4543 if (th->rst) {
4544 tcp_reset(sk);
4545 goto discard;
4546 }
4547
4548 /* rfc793:
4549 * "fifth, if neither of the SYN or RST bits is set then
4550 * drop the segment and return."
4551 *
4552 * See note below!
4553 * --ANK(990513)
4554 */
4555 if (!th->syn)
4556 goto discard_and_undo;
4557
4558 /* rfc793:
4559 * "If the SYN bit is on ...
4560 * are acceptable then ...
4561 * (our SYN has been ACKed), change the connection
4562 * state to ESTABLISHED..."
4563 */
4564
4565 TCP_ECN_rcv_synack(tp, th);
1da177e4
LT
4566
4567 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4568 tcp_ack(sk, skb, FLAG_SLOWPATH);
4569
4570 /* Ok.. it's good. Set up sequence numbers and
4571 * move to established.
4572 */
4573 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4574 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4575
4576 /* RFC1323: The window in SYN & SYN/ACK segments is
4577 * never scaled.
4578 */
4579 tp->snd_wnd = ntohs(th->window);
4580 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4581
4582 if (!tp->rx_opt.wscale_ok) {
4583 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4584 tp->window_clamp = min(tp->window_clamp, 65535U);
4585 }
4586
4587 if (tp->rx_opt.saw_tstamp) {
4588 tp->rx_opt.tstamp_ok = 1;
4589 tp->tcp_header_len =
4590 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4591 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4592 tcp_store_ts_recent(tp);
4593 } else {
4594 tp->tcp_header_len = sizeof(struct tcphdr);
4595 }
4596
4597 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4598 tp->rx_opt.sack_ok |= 2;
4599
5d424d5a 4600 tcp_mtup_init(sk);
d83d8461 4601 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4602 tcp_initialize_rcv_mss(sk);
4603
4604 /* Remember, tcp_poll() does not lock socket!
4605 * Change state from SYN-SENT only after copied_seq
4606 * is initialized. */
4607 tp->copied_seq = tp->rcv_nxt;
e16aa207 4608 smp_mb();
1da177e4
LT
4609 tcp_set_state(sk, TCP_ESTABLISHED);
4610
6b877699
VY
4611 security_inet_conn_established(sk, skb);
4612
1da177e4 4613 /* Make sure socket is routed, for correct metrics. */
8292a17a 4614 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4615
4616 tcp_init_metrics(sk);
4617
6687e988 4618 tcp_init_congestion_control(sk);
317a76f9 4619
1da177e4
LT
4620 /* Prevent spurious tcp_cwnd_restart() on first data
4621 * packet.
4622 */
4623 tp->lsndtime = tcp_time_stamp;
4624
4625 tcp_init_buffer_space(sk);
4626
4627 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4628 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4629
4630 if (!tp->rx_opt.snd_wscale)
4631 __tcp_fast_path_on(tp, tp->snd_wnd);
4632 else
4633 tp->pred_flags = 0;
4634
4635 if (!sock_flag(sk, SOCK_DEAD)) {
4636 sk->sk_state_change(sk);
4637 sk_wake_async(sk, 0, POLL_OUT);
4638 }
4639
295f7324
ACM
4640 if (sk->sk_write_pending ||
4641 icsk->icsk_accept_queue.rskq_defer_accept ||
4642 icsk->icsk_ack.pingpong) {
1da177e4
LT
4643 /* Save one ACK. Data will be ready after
4644 * several ticks, if write_pending is set.
4645 *
4646 * It may be deleted, but with this feature tcpdumps
4647 * look so _wonderfully_ clever, that I was not able
4648 * to stand against the temptation 8) --ANK
4649 */
463c84b9 4650 inet_csk_schedule_ack(sk);
295f7324
ACM
4651 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4652 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4653 tcp_incr_quickack(sk);
4654 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4655 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4656 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4657
4658discard:
4659 __kfree_skb(skb);
4660 return 0;
4661 } else {
4662 tcp_send_ack(sk);
4663 }
4664 return -1;
4665 }
4666
4667 /* No ACK in the segment */
4668
4669 if (th->rst) {
4670 /* rfc793:
4671 * "If the RST bit is set
4672 *
4673 * Otherwise (no ACK) drop the segment and return."
4674 */
4675
4676 goto discard_and_undo;
4677 }
4678
4679 /* PAWS check. */
4680 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4681 goto discard_and_undo;
4682
4683 if (th->syn) {
4684 /* We see SYN without ACK. It is attempt of
4685 * simultaneous connect with crossed SYNs.
4686 * Particularly, it can be connect to self.
4687 */
4688 tcp_set_state(sk, TCP_SYN_RECV);
4689
4690 if (tp->rx_opt.saw_tstamp) {
4691 tp->rx_opt.tstamp_ok = 1;
4692 tcp_store_ts_recent(tp);
4693 tp->tcp_header_len =
4694 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4695 } else {
4696 tp->tcp_header_len = sizeof(struct tcphdr);
4697 }
4698
4699 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4700 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4701
4702 /* RFC1323: The window in SYN & SYN/ACK segments is
4703 * never scaled.
4704 */
4705 tp->snd_wnd = ntohs(th->window);
4706 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4707 tp->max_window = tp->snd_wnd;
4708
4709 TCP_ECN_rcv_syn(tp, th);
1da177e4 4710
5d424d5a 4711 tcp_mtup_init(sk);
d83d8461 4712 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4713 tcp_initialize_rcv_mss(sk);
4714
4715
4716 tcp_send_synack(sk);
4717#if 0
4718 /* Note, we could accept data and URG from this segment.
4719 * There are no obstacles to make this.
4720 *
4721 * However, if we ignore data in ACKless segments sometimes,
4722 * we have no reasons to accept it sometimes.
4723 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4724 * is not flawless. So, discard packet for sanity.
4725 * Uncomment this return to process the data.
4726 */
4727 return -1;
4728#else
4729 goto discard;
4730#endif
4731 }
4732 /* "fifth, if neither of the SYN or RST bits is set then
4733 * drop the segment and return."
4734 */
4735
4736discard_and_undo:
4737 tcp_clear_options(&tp->rx_opt);
4738 tp->rx_opt.mss_clamp = saved_clamp;
4739 goto discard;
4740
4741reset_and_undo:
4742 tcp_clear_options(&tp->rx_opt);
4743 tp->rx_opt.mss_clamp = saved_clamp;
4744 return 1;
4745}
4746
4747
4748/*
4749 * This function implements the receiving procedure of RFC 793 for
e905a9ed 4750 * all states except ESTABLISHED and TIME_WAIT.
1da177e4
LT
4751 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4752 * address independent.
4753 */
e905a9ed 4754
1da177e4
LT
4755int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4756 struct tcphdr *th, unsigned len)
4757{
4758 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4759 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4760 int queued = 0;
4761
4762 tp->rx_opt.saw_tstamp = 0;
4763
4764 switch (sk->sk_state) {
4765 case TCP_CLOSE:
4766 goto discard;
4767
4768 case TCP_LISTEN:
2de979bd 4769 if (th->ack)
1da177e4
LT
4770 return 1;
4771
2de979bd 4772 if (th->rst)
1da177e4
LT
4773 goto discard;
4774
2de979bd 4775 if (th->syn) {
8292a17a 4776 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4777 return 1;
4778
e905a9ed
YH
4779 /* Now we have several options: In theory there is
4780 * nothing else in the frame. KA9Q has an option to
1da177e4 4781 * send data with the syn, BSD accepts data with the
e905a9ed
YH
4782 * syn up to the [to be] advertised window and
4783 * Solaris 2.1 gives you a protocol error. For now
4784 * we just ignore it, that fits the spec precisely
1da177e4
LT
4785 * and avoids incompatibilities. It would be nice in
4786 * future to drop through and process the data.
4787 *
e905a9ed 4788 * Now that TTCP is starting to be used we ought to
1da177e4
LT
4789 * queue this data.
4790 * But, this leaves one open to an easy denial of
e905a9ed 4791 * service attack, and SYN cookies can't defend
1da177e4 4792 * against this problem. So, we drop the data
fb7e2399
MN
4793 * in the interest of security over speed unless
4794 * it's still in use.
1da177e4 4795 */
fb7e2399
MN
4796 kfree_skb(skb);
4797 return 0;
1da177e4
LT
4798 }
4799 goto discard;
4800
4801 case TCP_SYN_SENT:
1da177e4
LT
4802 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4803 if (queued >= 0)
4804 return queued;
4805
4806 /* Do step6 onward by hand. */
4807 tcp_urg(sk, skb, th);
4808 __kfree_skb(skb);
9e412ba7 4809 tcp_data_snd_check(sk);
1da177e4
LT
4810 return 0;
4811 }
4812
4813 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4814 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4815 if (!th->rst) {
4816 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4817 tcp_send_dupack(sk, skb);
4818 goto discard;
4819 }
4820 /* Reset is accepted even if it did not pass PAWS. */
4821 }
4822
4823 /* step 1: check sequence number */
4824 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4825 if (!th->rst)
4826 tcp_send_dupack(sk, skb);
4827 goto discard;
4828 }
4829
4830 /* step 2: check RST bit */
2de979bd 4831 if (th->rst) {
1da177e4
LT
4832 tcp_reset(sk);
4833 goto discard;
4834 }
4835
4836 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4837
4838 /* step 3: check security and precedence [ignored] */
4839
4840 /* step 4:
4841 *
4842 * Check for a SYN in window.
4843 */
4844 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4845 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4846 tcp_reset(sk);
4847 return 1;
4848 }
4849
4850 /* step 5: check the ACK field */
4851 if (th->ack) {
4852 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4853
2de979bd 4854 switch (sk->sk_state) {
1da177e4
LT
4855 case TCP_SYN_RECV:
4856 if (acceptable) {
4857 tp->copied_seq = tp->rcv_nxt;
e16aa207 4858 smp_mb();
1da177e4
LT
4859 tcp_set_state(sk, TCP_ESTABLISHED);
4860 sk->sk_state_change(sk);
4861
4862 /* Note, that this wakeup is only for marginal
4863 * crossed SYN case. Passively open sockets
4864 * are not waked up, because sk->sk_sleep ==
4865 * NULL and sk->sk_socket == NULL.
4866 */
4867 if (sk->sk_socket) {
4868 sk_wake_async(sk,0,POLL_OUT);
4869 }
4870
4871 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4872 tp->snd_wnd = ntohs(th->window) <<
4873 tp->rx_opt.snd_wscale;
4874 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4875 TCP_SKB_CB(skb)->seq);
4876
4877 /* tcp_ack considers this ACK as duplicate
4878 * and does not calculate rtt.
4879 * Fix it at least with timestamps.
4880 */
4881 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4882 !tp->srtt)
2d2abbab 4883 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
4884
4885 if (tp->rx_opt.tstamp_ok)
4886 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4887
4888 /* Make sure socket is routed, for
4889 * correct metrics.
4890 */
8292a17a 4891 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4892
4893 tcp_init_metrics(sk);
4894
6687e988 4895 tcp_init_congestion_control(sk);
317a76f9 4896
1da177e4
LT
4897 /* Prevent spurious tcp_cwnd_restart() on
4898 * first data packet.
4899 */
4900 tp->lsndtime = tcp_time_stamp;
4901
5d424d5a 4902 tcp_mtup_init(sk);
1da177e4
LT
4903 tcp_initialize_rcv_mss(sk);
4904 tcp_init_buffer_space(sk);
4905 tcp_fast_path_on(tp);
4906 } else {
4907 return 1;
4908 }
4909 break;
4910
4911 case TCP_FIN_WAIT1:
4912 if (tp->snd_una == tp->write_seq) {
4913 tcp_set_state(sk, TCP_FIN_WAIT2);
4914 sk->sk_shutdown |= SEND_SHUTDOWN;
4915 dst_confirm(sk->sk_dst_cache);
4916
4917 if (!sock_flag(sk, SOCK_DEAD))
4918 /* Wake up lingering close() */
4919 sk->sk_state_change(sk);
4920 else {
4921 int tmo;
4922
4923 if (tp->linger2 < 0 ||
4924 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4925 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4926 tcp_done(sk);
4927 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4928 return 1;
4929 }
4930
463c84b9 4931 tmo = tcp_fin_time(sk);
1da177e4 4932 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 4933 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
4934 } else if (th->fin || sock_owned_by_user(sk)) {
4935 /* Bad case. We could lose such FIN otherwise.
4936 * It is not a big problem, but it looks confusing
4937 * and not so rare event. We still can lose it now,
4938 * if it spins in bh_lock_sock(), but it is really
4939 * marginal case.
4940 */
463c84b9 4941 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
4942 } else {
4943 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4944 goto discard;
4945 }
4946 }
4947 }
4948 break;
4949
4950 case TCP_CLOSING:
4951 if (tp->snd_una == tp->write_seq) {
4952 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4953 goto discard;
4954 }
4955 break;
4956
4957 case TCP_LAST_ACK:
4958 if (tp->snd_una == tp->write_seq) {
4959 tcp_update_metrics(sk);
4960 tcp_done(sk);
4961 goto discard;
4962 }
4963 break;
4964 }
4965 } else
4966 goto discard;
4967
4968 /* step 6: check the URG bit */
4969 tcp_urg(sk, skb, th);
4970
4971 /* step 7: process the segment text */
4972 switch (sk->sk_state) {
4973 case TCP_CLOSE_WAIT:
4974 case TCP_CLOSING:
4975 case TCP_LAST_ACK:
4976 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4977 break;
4978 case TCP_FIN_WAIT1:
4979 case TCP_FIN_WAIT2:
4980 /* RFC 793 says to queue data in these states,
e905a9ed 4981 * RFC 1122 says we MUST send a reset.
1da177e4
LT
4982 * BSD 4.4 also does reset.
4983 */
4984 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4985 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4986 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4987 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4988 tcp_reset(sk);
4989 return 1;
4990 }
4991 }
4992 /* Fall through */
e905a9ed 4993 case TCP_ESTABLISHED:
1da177e4
LT
4994 tcp_data_queue(sk, skb);
4995 queued = 1;
4996 break;
4997 }
4998
4999 /* tcp_data could move socket to TIME-WAIT */
5000 if (sk->sk_state != TCP_CLOSE) {
9e412ba7 5001 tcp_data_snd_check(sk);
1da177e4
LT
5002 tcp_ack_snd_check(sk);
5003 }
5004
e905a9ed 5005 if (!queued) {
1da177e4
LT
5006discard:
5007 __kfree_skb(skb);
5008 }
5009 return 0;
5010}
5011
5012EXPORT_SYMBOL(sysctl_tcp_ecn);
5013EXPORT_SYMBOL(sysctl_tcp_reordering);
5014EXPORT_SYMBOL(tcp_parse_options);
5015EXPORT_SYMBOL(tcp_rcv_established);
5016EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 5017EXPORT_SYMBOL(tcp_initialize_rcv_mss);